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Large sample results for frequentist multiple imputation
for Cox regression with missing covariate data

Frank Eriksson · Torben Martinussen ·
Søren Feodor Nielsen

Abstract Incomplete information on explanatory variables is commonly en-
countered in studies of possibly censored event times. A popular approach to 
deal with partially observed covariates is multiple imputation, where a num-
ber of completed data sets, that can be analyzed by standard complete data 
methods, are obtained by imputing missing values from an appropriate distri-
bution. We show how the combination of multiple imputations from a compat-
ible model with suitably estimated parameters and the usual Cox regression 
estimators leads to consistent and asymptotically Gaussian estimators of both 
the finite-dimensional regression parameter and the infinite-dimensional cumu-
lative baseline hazard parameter. We also derive a consistent estimator of the 
covariance operator. Simulation studies and an application to a study on sur-
vival after treatment for liver cirrhosis show that the estimators perform well 
with moderate sample sizes and indicate that iterating the multiple-imputation 
estimator increases the precision.

Keywords Asymptotic distribution, Coarsened data, Semiparametric, 
Survival, Variance estimator

1 Introduction

The possible effect of prognostic factors X on a censored time-to-event out-
come is often modelled using the Cox model (Cox 1972), specified by the 
conditional hazard function

α(t|X = x) = α(t) exp (β>x), (1)
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Biostatistics, Department of Public Health, University of Copenhagen · Center for Statistics,
Department of Finance, Copenhagen Business School
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where β denotes the regression parameter and α(t) is the baseline hazard func-
tion, which is not further specified. Statistical inference in the Cox model with
no missing data is well established, but in practice some values of X may be
missing. Literature studying possible solutions to this problem is extensive.
One solution is to use inverse probability weighted estimators (Pugh et al.
1993), but these may suffer from low efficiency. Augmenting may improve the
efficiency but the optimal augmenting function may be difficult to estimate
in practice. Another way of improving the efficiency of inverse probability
weighted estimators is to estimate the weights nonparametrically as shown by
Qi et al. (2005). However, when having several covariates nonparametric esti-
mation is affected by the curse of dimensionality and the higher order kernels
used by Qi et al. (2005) may result in estimated selection probabilities out-
side the unit interval. An alternative direction is to use full likelihood based
methods (Chen and Little (1999); Martinussen (1999); see also Chen (2002);
Herring and Ibrahim (2001)). This leads to efficient estimators but requires
specialized programming. Another class of methods, that are popular in prac-
tice, are imputation methods, where missing data are replaced by suitably
generated “best guesses”, which can then be analyzed by standard software.
Multiple imputation methods, where the imputation and estimation process
is repeated a number of times and the estimators subsequently combined, are
particularly popular, in part because the simulation noise may be diminished
by repeated imputation. It has been stressed in the literature that the impu-
tations should be done with care and that the response must be included in
the imputation model, see Sterne et al. (2009). This has created some con-
fusion when dealing with survival data where the response is censored. The
problem was investigated in some detail by White and Royston (2009). Taking
their approach, however, may lead to models that are incompatible which in
turn may result in inconsistent estimates as shown by Bartlett et al. (2015).
Bartlett et al. (2015) also show how rejection sampling may be used to gen-
erate the imputations that ensure model compatibility. In their paper they
devised a Bayesian multiple imputation procedure that seems to work well
judging from their numerical results. Unfortunately, they did not establish
large sample results for this procedure.

Although multiple imputation is widely used in practice for analyzing sur-
vival data with the Cox model, there exists, to the best of our knowledge,
no formal results justifying its appropriateness. General asymptotic results
for multiple imputation estimators in parametric models, such as those es-
tablished by Wang and Robins (1998) and Robins and Wang (2000)(see also
Tsiatis (2006)), rely on stochastic equicontinuity of a process, which is not
stochastic equicontinuous in this setting. Thus, the large sample properties
of the estimators are unclear, and the validity of the suggested standard er-
ror estimators is unknown. This is unfortunate as it may invalidate scientific
conclusions based on such analysis.

In this paper we study the properties of multiple imputation estimators
based on imputations from a compatible model. Such imputations may be
generated using rejection sampling as suggested by Bartlett et al. (2015). We
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focus on what Tsiatis (2006) call frequentist multiple imputation, i.e. the case
where the imputation model is based on a consistent and asymptotically lin-
ear initial estimator. Estimators of the finite-dimensional regression parameter
and the infinite-dimensional cumulative baseline hazard parameter are shown
to be

√
n-consistent and weak convergence is established. Furthermore, we

provide a consistent estimator of the asymptotic variance for the estimator
of the regression parameter as well as a consistent estimator for the covari-
ance operator for the estimator of the cumulated baseline hazard. Hence our
results provide the necessary justification for drawing correct statistical infer-
ence when using multiple imputation in Cox regression. Finally, we discuss
how to improve on the multiple imputation estimators using a simple iterative
scheme. The finite sample performance of the proposed estimators is inves-
tigated using simulations, and we further apply them in a study on survival
after treatment for liver cirrhosis.

2 Frequentist multiple imputation for Cox regression

Let X denote a p-dimensional vector of prognostic covariates that are partially
missing for some individuals. Assume that the distribution of the event time
T̃ given X is governed by the Cox model (1). T̃ may be censored by U and
we only observe the minimum of the two T = T̃ ∧ U and the event indicator
∆ = I(T̃ ≤ U). We assume that T̃ and U are independent given the always
observed part of X. Assume that T is observed on the finite time interval
[0, τ ]. The full data, denoted by Z1, . . . , Zn, are independent realizations of
Z = (T,∆,X) with density

α(t)δ exp(δβ>x) exp
{
−A(t) exp(β>x)

}
αU (t|x)1−δpr(U > t|x)pX(x, θ),

for z = (t, δ, x), where the density of X, pX(x, θ), is known up to the q-

dimensional parameter θ, and A(t) =
∫ t

0
α(s) ds is the integrated baseline

hazard function. Let φ = (β,A, θ) and let φ0 denote the true parameter.
Assume that the censoring hazard αU (t|X) does not depend on φ or partially
unobserved covariates. Under full data we would estimate β0 by Cox’s partial
likelihood estimator and A0(t) by the corresponding Breslow estimator.

The data is assumed missing (or coarsened) at random, and the observed
data is {C, GC(Z)}, where C denotes the missingness pattern and GC(Z) =
{T,∆,GX,C(X)} with GX,r(x) denoting the observed part of x under missing-
ness pattern C = r, using a similar notation as in Tsiatis (2006). Thus with
missing data we may let C = r be a vector of response indicators, i.e., a vector
of zeros and ones denoting (by 1) which components of X are observed and
which are missing (corresponding to 0), or as in Tsiatis (2006) simply a number
indicating which missingness pattern we observe for this observation. GX,C(X)
may then be just the actually observed values. Our notation and results also
apply to data that are coarsened at random; see Jacobsen and Keiding (1995)
for examples of how to represent coarsened data by {C, GX,C(X)}. In the ap-
pendix we argue that the part of the density function adhering to censoring
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can be ignored when estimating φ0. Furthermore, both the censoring mech-
anism and the missing data mechanism may be ignored when imputing the
missing covariates.

In this paper we consider what Tsiatis (2006) refers to as frequentist multi-
ple imputation and Wang and Robins (1998) call “type B”. For each observed
data {Ci, GCi(Zi)} we wish to sample at random from the conditional distri-
bution of X given the observed data with density pX|C,G{x|Ci, GCi(Zi), φ0},
but to do so we need to estimate the parameter φ0. We assume that an ini-
tial consistent and asymptotically linear estimator φ̂I is available. We then
sample at random from pX|C,G{x|Ci, GCi(Zi), φ̂I} m times to obtain random

quantities Xij(φ̂
I), j = 1, . . . ,m, i = 1, . . . , n. One way of sampling from this

distribution is to use rejection sampling, i.e., by generating proposals from
another distribution and accepting these with a suitable probability to make
the resulting sample a sample from the desired distribution. How to do this
when the substantive model is a Cox model has been described by Bartlett
et al. (2015), who used conditional distributions derived from the distribution
of X to generate proposals. However, our results do not rely on how the impu-
tations are generated as long as the imputations have the correct conditional
distribution.

Standard Cox regression analysis on the jth set of imputed full data yields
the estimators {β̂j , Âj(t)}. The multiple-imputation estimators are

β̂ = m−1
m∑
j=1

β̂j , Â(t) = m−1
m∑
j=1

Âj(t), (2)

where β̂j is the maximizer of Cox’s partial likelihood function based on the

jth set of imputations and Âj(t) the corresponding Breslow estimator.

3 Asymptotics

In order to present our result regarding the asymptotic distribution of β̂ and
{Â(t)}t∈[0;τ ], we need to introduce some notation. The asymptotic represen-
tation of the full-data efficient score for β evaluated at φ0 is

SFeff(Z) =

∫ τ

0

{
X − s1(t)

s0(t)

}
dMF (t, Z),

where dMF (t, Z) = dN(t)−Y (t) exp(β>0 X)α0(t)dt with N(t) = I(T ≤ t,∆ =
1) and Y (t) = I(T > t), sk(t) = E[Sk{t, Z(φ0), β0}], and Sk(t, Z, β) =
Y (t)X⊗k exp(β>X), k = 0, 1, 2.

Let the continuous linear operator Sφ(z) : Rp × `∞[0, τ ] × Rq 7→ R de-
note the Hadamard derivative of log {p̃Z(z, φ)}, where p̃Z(z, φ) = exp{δβ>x−
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A(t) exp(β>x)}pX(x, θ), at φ (van der Vaart 1998, Section 20.2). The deriva-

tive at φ0 in the direction (φ̂I − φ0) is given by

Sφ0
(z)
(
φ̂I − φ0

)
=
{
δ −A0(t) exp(β>0 x)

}
x>(β̂I − β0)

+
{
∇θ0 log pX(x, θ)|θ=θ0

}>
(θ̂I − θ0)

−
∫ ∞

0

I(u ≤ t) exp(β>0 x)d(ÂI −A0)(u).

Define Sφ0(r, gr) = E {Sφ0(Z)| C = r,GC(Z) = gr} similar to Tsiatis (2006,
Section 7.3). Finally, let q{C, GC(Z)} be the influence function of the initial

estimator, φ̂I , so that

n1/2(φ̂I − φ0)(t) = n−1/2
n∑
i=1

q{Ci, GCi(Zi)}(t) + op(1).

Theorem 1 Under the regularity conditions in the appendix,[
n1/2

(
β̂ − β0

)
, n1/2

{
Â(t)−A0(t)

}
t∈[0,τ ]

]
converges in distribution to a tight mean zero Gaussian process in Rp×`∞[0, τ ].
In particular,

n1/2(β̂ − β0)→ N
{

0, (IF )−1Σ (IF )−1
}

(3)

in distribution, where

Σ = m−1E
[
var{SFeff(Z)|C, GC(Z)}

]
+ var

[
E{SFeff(Z)|C, GC(Z)}+Deff(φ0)q{C, GC(Z)}

]
and Deff(φ0) = E

(
SFeff(Z) [Sφ0

(Z)− Sφ0
{C, GC(Z)}]

)
and IF denotes the vari-

ance of the Cox partial likelihood score, i.e., the full-data information matrix
for β0.

Remark 1 We omit giving an expression for the asymptotic variance of Â to
keep the presentation brief. In the next section we present consistent estimators
of the variance of both β̂ and Â(t).

Remark 2 Having a joint asymptotic distribution for β̂ and Â allows us to draw
inference also about e.g., the survival function S0(t, x) = exp{−A0(t) exp(β>0 x)}
for a subject with covariates x. To do so, we may use that

n1/2{Ŝ(t, x)− S0(t, x)}

= −S0(t, x) exp(β>0 x)
[
n1/2{Â(t)−A0(t)}+A0(t)n1/2(β̂ − β0)

]
+ oP (1)

(see e.g., Andersen et al. (1992)).
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As mentioned in the introduction, the standard asymptotic results for
multiple imputation estimators rely on empirical process tools. In particu-
lar, we would need stochastic equicontinuity of the empirical process based on
m−1

∑m
j=1 S

F
eff{Zij(φ)}. However, as we show in the appendix, if any of the

missing explanatory variables are categorical, this process is not stochastic
equicontinuous. To circumvent this problem, we split m−1

∑m
j=1 S

F
eff{Zij(φ)}

in m−1
∑m
j=1(SFeff{Zij(φ)} − E[SFeff{Zij(φ)}|Ci, GCi(Zi)]) and∑m

j=1E[SFeff{Zij(φ)}|Ci, GCi(Zi)], show that the empirical process correspond-
ing to the latter term is stochastic equicontinuous and handle the former term
using a conditional central limit theorem conditioning on the observed data.
Further details are given in the appendix.

4 Estimation of the variance

The variance of a multiple imputation estimator is usually estimated by com-
bining of the complete data variance estimators and an estimate of the between
imputation variance. For the regression parameters of the Cox model, the vari-
ance would be estimated by

(
ÎF
)−1

+

(
1 +

1

m

)
1

m− 1

m∑
j=1

(β̂j − β̂)2 (4)

where ÎF = 1
m

∑m
j=1 Î

F
j , with

ÎFj = n−1
n∑
i=1

∑n
l=1 S2{Ti, Zlj(φ̂I), β̂j}∑n
l=1 S0{Ti, Zlj(φ̂I), β̂j}

−

[∑n
l=1 S1{Ti, Zlj(φ̂I), β̂j}∑n
l=1 S0{Ti, Zlj(φ̂I), β̂j}

]⊗2
∆i,

the full-data observed information matrix from Cox’s partial likelihood based
on the imputed data. It is however generally accepted that the validity of
this estimator relies on the imputations being at least approximately drawn
from Bayesian predictive distribution (Rubin 1996; Wang and Robins 1998).
Using the results we derive in the appendix, it is easily seen that (4) fails to

estimate the variance of β̂, and the simulations in section 6 indicate that (4)
underestimates the variance in line with Tsiatis (2006, p. 365).

In the following, we will derive a consistent variance estimator. The multiple-
imputation estimator of β is not asymptotically linear in general as the imputa-
tions are not generally sufficiently “smooth” as functions of the initial estima-
tor. It does however have the same asymptotic distribution as n−1/2

∑n
i=1(IF )−1ξi,

where

ξi =
1

m

m∑
j=1

SFeff{Zij(φ0)}+Deffq{Ci, GCi(Zi)}, (5)
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by the central limit theorem as var(ξ1) = Σ. Hence the variance of the esti-
mator of β0 can be estimated consistently by(

ÎF
)−1

n−1
n∑
i=1

ξ̂iξ̂
>
i

(
ÎF
)−1

,

if we can provide reasonable estimates, ξ̂i, of ξi, so that n−1
∑n
i=1 ξ̂iξ̂

>
i is a

consistent estimator of Σ. It follows from lemma 4 in the appendix that ÎF is
a consistent estimator of the full-data expected information IF .

To obtain ξ̂i we first note that as shown in the appendix we can replace the
efficient score, SFeff{Zij(φ0)}, in (5) involving the infeasible perfect imputations

Zij(φ0) by the Cox partial score function with the actual imputations Zij(φ̂
I).

Next, to estimate the termDeff(φ0)q{Ci, GCi(Zi)} we first replace q{Ci, GCi(Zi)}
by its empirical counter part q̂{Ci, GCi(Zi)} (cf. assumption 7 in the appendix).
To estimate Deff(φ0) we need to estimate

E
{
SFeff(Z)Sη

>(Z, φ0)
}
− E

[
SFeff(Z)Sη

>{C, GC(Z), φ0}
]

where η = (β, θ) and Sη(z, φ) = ∂/∂η log p̃Z(z, φ) is the score for η, as well as
the mean in the integral∫ τ

0

E
(
SFeff(Z)I(u ≤ T )

[
exp(β>0 X)− E

{
exp(β>0 X)

∣∣ C, GC(Z)
}])

dq̂A{Ci, GCi(Zi)}(u)

(6)

where q̂A is the part of q̂ corresponding to A. Hence, we need to estimate means
of the form E

{
SFeff(Z)f(Z, φ0, u)

}
and E

[
SFeff(Z)E{f(Z, φ0, u)|C, GC(Z)}

]
for

suitable functions f . The first type of terms can be estimated consistently by

m−1
m∑
j=1

n−1
n∑
i=1

[
Xij(φ̂

I)−
∑n
l=1 S1{Ti, Zlj(φ̂I), β̂j}∑n
l=1 S0{Ti, Zlj(φ̂I), β̂j}

]
∆if{Zij(φ̂I), φ̂j , u}.

where φ̂j = (β̂j , Âj , θ̂
I), using corollary 1 and lemma 4. The second type of

terms can be estimated consistently by

n−1
n∑
i=1

{m(m− 1)}−1
m∑

j,j′=1

j 6=j′

[
Xij(φ̂

I)−
∑n
l=1 S1{Ti, Zlj(φ̂I), β̂j}∑n
l=1 S0{Ti, Zlj(φ̂I), β̂j}

]
∆if{Zij′ (φ̂

I), φ̂j′ , u},

as

E
[
SFeff(Z)E{f(Z, φ0, u)|C, GC(Z)}

]
=E

[
E{SFeff(Z)|C, GC(Z)}E{f(Z, φ0, u)|C, GC(Z)}

]
=E

[
SFeff{Zij(φ0)}f{Zij′ (φ0), φ0, u}

]
for j 6= j′. This allows us to estimate the means that form Deff(φ0) giving us

the estimator D̂eff .
We summarize this as
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Theorem 2 The asymptotic variance of the multiple imputation estimator β̂
can be estimated by (

ÎF
)−1

n−1
n∑
i=1

ξ̂iξ̂
>
i

(
ÎF
)−1

where ÎF is the average of the observed data information matrices from Cox’s
partial likelihood based on the m sets of imputations and

ξ̂i =
1

m

m∑
j=1

[
Xij(φ̂

I)−
∑n
l=1 S1{Ti, Zlj(φ̂I), β̂j}∑n
l=1 S0{Ti, Zlj(φ̂I), β̂j}

]
∆i + D̂eff q̂{Ci, GCi(Zi)},

with D̂eff as described above.

Estimation of the variance of Â(t) may be done in a similar manner:
n1/2{Â(t)−A0(t)} has the same asymptotic distribution as

n−1/2
n∑
i=1

ρAi (t), (7)

where

ρAi (t) =−
∫ t

0

s1(u)

s0(u)
α0(u)du (IF )−1ξi +m−1

m∑
j=1

∫ t

0

dMF {u, Zij(φ0)}
s0(u)

−
{∫ t

0

E (S0(u, Z) [Sφ0
(Z)− Sφ0

{C, GC(Z)}])
s0(u)

α0(u)du

}
q{Ci, GCi(Zi)}

and its variance can be estimated by n−1
∑n
i=1

{
ρ̂Ai (t)

}2
, where ρ̂Ai approxi-

mates ρAi using techniques parallel to what was outlined for β above.

5 Iterated multiple imputation

The efficiency of the multiple-imputation estimator depends on the number
of imputations and on the efficiency of the initial estimator. Clearly, the effi-
ciency increases with the number of imputations, but we would also expect the
multiple imputation estimator with a sufficiently large number of imputations
to improve on an inefficient initial estimator. Obviously, if the initial estimator
is fully efficient, imputing the missing data will not improve the estimation.
If on the other hand the initial estimator is the complete-case estimator (if
the data is missing completely at random) or a simple inverse probability of
missingness weighted estimator, imputation will allow us to use the incomplete
observations, too. Indeed, for both of these initial estimators the estimator of
the integrated hazard will only jump at event times for which we have com-
plete data, whereas the multiple-imputation estimator will jump whenever we
observe an event time allowing the multiple imputation estimator to better ap-
proximate the unknown smooth integrated baseline hazard. An obvious idea
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for how to improve the estimation further would be to iterate the imputation:
First estimate the parameters using multiple imputations based on an ineffi-
cient initial estimator. It will typically be beneficial to re-estimate θ as well
based on the multiply imputed data. Then generate new imputations based
on the multiple-imputation estimator and estimate the unknown parameters
again. Obviously this iteration scheme may be repeated several times. The
final estimator is again a multiple imputation estimator based on an initial
estimator which is now a multiple imputation estimator. Unfortunately, the
proofs of our asymptotic results rely on the initial estimator being asymptot-
ically linear, which the imputation estimator is not guaranteed to be as that
requires stochastic equicontinuity. Hence, a new argument, which we outline
in the appendix, is required to secure the asymptotic results for the iterated
estimator. The conclusion is that the iterated multiple-imputation estimator is
asymptotically Gaussian and that its variance may be estimated as outlined in
the previous section with q̂{Ci, GCi(Zi)}(t) replaced by ρ̂i(t) = {ρ̂βi , ρ̂Ai (t), ρ̂θi }
where ρ̂βi = (IF )−1ξ̂i, ξ̂i and ρ̂Ai were defined in section 4, and ρ̂θi is an estimate
of the influence function of the multiple imputation estimator for θ obtained
using techniques similar to those used to get ρ̂βi .

6 Simulation study

We simulated covariates X3 ∼ N(1, 0.5), X2 ∼ Bernoulli{p = expit(−1 +
0.5X3)}, X1 ∼ N(−0.25 + X2 − 0.5X3, 1). Event times were generated from
the hazard α(t) = λνtν−1 exp(β1X1 + β2X2 + β3X3 + β4X2X3), with Weibull
baseline parameters ν = 0.5, λ = 0.1 and regression coefficients β1 = −0.2,
β2 = 0.3, β3 = 0.5, β4 = 0.2. Right-censoring times were generated from an
exponential distribution with mean 100. Durations longer than τ=100 were
right-censored.

The covariates X1 and X2 were missing at random according to three dif-
ferent missing data mechanisms. In the first, pr(X1 missing|X3) = expit(−3 +
X3) and pr(X2 missing|X3) = expit(1 − 2X3), leading to approximately 60%
complete cases. In the second, pr(X1 missing|X3) = expit(−1 + X3) and
pr(X2 missing|X3) = expit(2− 2X3), leading to approximately 23% complete
cases. In the last, pr(X1 missing|X3) = expit(0.6X3) and pr(X2 missing|X3) =
expit(1.6 − X3), leading to approximately 12% complete cases. For the first
scenario, we used a moderate sample size (n = 500), while for the latter two,
we used a larger sample size (n = 2000).

Table 1 summarizes 10000 repeated simulations with m=20 imputations
and using rejection sampling as in Bartlett et al. (2015) to generate the im-
putations. Increasing m to 40 had no notable effect on the precision. The
complete-case estimator was used as initial estimator, as this is an asymptoti-
cally linear, unbiased estimator of the unknown parameters under the missing
data mechanisms used here. The confidence intervals for the cumulative base-
line were calculated using a log-transformation.
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In all scenarios, the multiple-imputation estimators appear to produce un-
biased estimates and yield considerably smaller standard errors compared to
the complete-case estimator. In the simulations where the probability of miss-
ingness is smaller, the variance of the multiple imputation estimator is 17%-
47% smaller than that of the complete-case estimator. Iterating the multiple
imputation estimator leads to a negligible improvement. In the simulations
with larger rates of missing data, the variance of the multiple imputation es-
timator is 31%-78% smaller than the complete-case estimator variance. Here,
iterating the multiple imputation estimator leads to another 13%-45% im-
provement.

The estimator of the cumulative baseline performs very well in terms of
standard error and confidence interval coverage in all settings. The bias is small
in all cases but noticeably smaller for the multiple imputation estimators. The
coverage of the confidence intervals for the regression parameters is reasonable
in all settings.

For completeness, we compared the average β̂ variance estimates using the
biased estimator given in (4) to the empirical variance. As expected, the esti-
mator (4) underestimates the variance. In the first scenario (moderate missing-
ness), the variance is underestimated by 5%-23%, in the second scenario the
variances are estimated 23%-57% too low, and in the third scenario (heavy
missingness), the underestimation is 44%-72%.

TABLE 1 ABOUT HERE

7 Example: survival with liver cirrhosis

CSL1 was a double blind randomized clinical trial conducted by the Copen-
hagen Study Group for Liver Diseases (Schlichting et al. 1983). In the period
1962-1969, 488 patients with liver cirrhosis were treated with either the active
drug prednisone (251 patients), or placebo (237 patients). The purpose of the
trial was to evaluate the effect of treatment on survival after randomization.
Patients were followed to either death, drop-out or end of study in September
1974. 142 predistone patients and 150 placebo patients died during follow-up.
The survival times for the remaining patients were right-censored.

The covariates recorded at entry into the trial were treatment, 0 if pred-
nisone and 1 if placebo; sex; age at entry; antinuclear factor (an unspecific sero-
logical indicator of self-perpetuated autoimmune processes), 0 if not present
and 1 if ++ to +++; and acetylcholinesterase in µmol/min/ml. Schlichting
et al. (1983) found that antinuclear factor interacts with treatment. Therefore,
we include this interaction in our substantive Cox model.

Antinuclear factor is missing for 153 (31%) patients and acetylcholinesterase
is missing for 43 (9%) patients. Only 300 (61%) of the patients have fully ob-
served covariate data. We assume that data are missing completely at random.
Since treatment was randomized, this covariate is left out from the imputation
model. It is not necessary to specify a distribution for sex and age, which have
no missing values. The problem is thus reduced to the specification of the
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joint conditional distribution of antinuclear factor and acetylcholinesterase.
We model acetylcholinesterase by linear regression on sex, age and antinu-
clear factor, and model the conditional distribution of antinuclear factor by a
logistic regression on sex and age.

Table 2 shows the estimates from the complete-case estimator, a multiple-
imputation estimator with m=20 using the complete-case estimator as ini-
tial estimator, and an estimator where the multiple-imputation estimator is
iterated five times. The standard error estimates obtained by the multiple-
imputation estimators are smaller than those of the complete-case estimator,
and iterating the multiple-imputation estimator improves the precision of the
estimates further. There are only minor differences between the point esti-
mates, but effects of treatment and its interaction with the antinuclear factor
becomes significant when using the multiple imputation estimators.

TABLE 2 ABOUT HERE

A Appendix

A.1 Assumptions

Assumption 1 Assume that (β0, θ0) ∈ B×Θ for known compact sets B ⊂ Rp and Θ ⊂ Rq ,
and that A0(t) is strictly increasing and continuously differentiable and that A0(0) = 0.

Assumption 2 The covariates X are bounded almost surely.

Assumption 3 Data are missing at random, pr(C = r|Z = z) = pr{C = r|GC(Z) =
Gr(z)}.

Assumption 4 The full-data information matrix, IF , for β at the true parameter value is
invertible.

Assumption 5 There is a finite maximum follow-up time τ > 0, when all individuals still
at risk are censored, and pr{Y (τ) = 1} = pr(T = τ) > 0.

Assumption 6 The censoring distribution does not depend on φ0 and potentially missing
covariates, αU (t|x)1−δpr(U > t|x) = αU{t|GX,r(x)}1−δpr{U > t|GX,r(x)}.

Assumption 7 There exists a consistent (but possibly inefficient) asymptotically linear es-

timator φ̂I = {β̂I , ÂI(t), θ̂I} such that n1/2(φ̂I − φ0)(t) = n−1/2
∑n
i=1 q{Ci, GCi (Zi)}(t) +

oP (1), where q{Ci, GCi (Zi)}(t) are independent processes, converges weakly to a tight Gaus-
sian process in Rp×`∞[0, τ ]×Rq . Further we assume that the variance var{q{Ci, GCi (Zi)}(t)}
can be estimated consistently by n−1

∑n
i=1 q̂{Ci, GCi (Zi)}(t)q̂{Ci, GCi (Zi)}(t)> for some

suitable q̂{Ci, GCi (Zi)}(t).

Assumption 8 Assume that pX|C,G(x|r, g, φ), the conditional density of X given C and
GC with respect to a reference measure νX , is a Lipschitz continuous function of φ (with
respect to the L2-norm) in a neighbourhood of φ0, with an integrable Lipschitz constant,
h(x|r, g) such that

∫
h(x|r, g)dνX(x) is a bounded function of (r, g).
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A.2 Lemmas

We first introduce some notation. The density of the (potentially unobserved) full data
z = (t, δ, x) and the observed data {r, g = (t, δ, gx)} are

pC,Z(r, z, φ) = pr(C = r|Z = z)αU (t|x)1−δpr(U > t|x)

× α(t)δ exp
{
δβ>x−A(t) exp(β>x)

}
pX(x, θ)

= pr{C = r|GC(Z) = Gr(z)}αU{t|GX,r(x)}1−δ

× pr{U > t|GX,r(x)}α(t)δ exp
{
δβ>x−A(t) exp(β>x)

}
pX(x, θ),

pC,G(r, g, φ) =

∫
{Gr(z)=g}

pC,Z(r, z, φ)dνZ(z)

= pr(C = r|GC(Z) = g)αU{t|GX,r(x)}1−δpr{U > t|GX,r(x)}

× α(t)δ
∫
{GX,r(x)=gx}

exp
{
δβ>x−A(t) exp(β>x)

}
pX(x, θ)dνX(x),

where ν·(·) is a dominating measure for which the densities of the random variables are
defined. Recall the definition p̃Z(z, φ) = exp

{
δβ>x−A(t) exp

(
β>x

)}
pX(x, θ) and let

p̃G(g, φ) =
∫
{Gr(v)=g} p̃Z(v)dνZ(v). Note that

pC,Z(r, z, φ)

pC,G{r,Gr(z), φ}
=

p̃Z(z, φ)

p̃G{Gr(z, φ)}
.

The following lemma building on Wang and Robins (1998); Robins and Wang (2000),
see also Tsiatis (2006, Lemma 14.2), will be used repeatedly.

Lemma 1 For f(t, Z), continuous in t ∈ [0, τ ] and bounded with probability one,

n1/2E [f{t, Z(φ)} − f{t, Z(φ0)}]|φ=φ̂I

= E
(
f(t, Z)

[
Sφ0

(Z)− Sφ0
{C, GC(Z)}

])
n1/2(φ̂I − φ0) + op(1)

where the remainder term is uniform in t.

Proof Following Tsiatis (2006, pp. 350-352), we write

E [f{t, Z(φ)}] = E (E [f{t, Z(φ)}| C, GC(Z), φ])

=

∫
f(t, z)

pC,Z(r, z, φ)

pC,G{r,Gr(z), φ}
pC,G{r,Gr(z), φ0}dνC,Z(r, z)

=

∫
f(t, z)

p̃Z(z, φ)

p̃G{Gr(z), φ}
pC,G{r,Gr(z), φ0}dνC,Z(r, z)

so that

E [f{t, Z(φ)} − f{t, Z(φ0)}]|φ=φ̂I

=

∫
f(t, z)

[
p̃Z(z, φ̂I)

p̃G{Gr(z), φ̂I}
−

p̃Z(z, φ0)

p̃G{Gr(z), φ0}

]
pC,G{r,Gr(z), φ0}dνC,Z(r, z)

=

∫
f(t, z)

p̃Z(z, φ0)

p̃G{Gr(z), φ0}
[
Sφ0

(z)− Sφ0
{r,Gr(z)}

]
(φ̂I − φ0)

× pC,G{r,Gr(z), φ0}dνC,Z(r, z) + oP (n−1/2)

=

∫
f(t, z)

[
Sφ0

(z)− Sφ0
{r,Gr(z)}

]
(φ̂I − φ0)pC,Z(r, z, φ0)dνC,Z(r, z) + oP (n−1/2)

= E
(
f(t, Z)

[
Sφ0

(Z)− Sφ0
{C, GC(Z)}

])
(φ̂I − φ0) + oP (n−1/2)

ut
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Lemma 2 Let f [{Xij(φ), Ci, GCi (Zi)}j=1,...,m] be a bounded function. Then the logarithm
of the ε-bracketing number of the class

{(r, g) 7→ E(f [{Xij(φ)}j=1,...,m, Ci, GCi (Zi)]|Ci = r,GCi (Zi) = g) : ‖φ− φ0‖L2 ≤ δ} (8)

is bounded by a constant times 1/ε.

Proof Let Fi(φ) = E(f [{Xij(φ)}j=1,...,m, Ci, GCi (Zi)]|Ci, GCi (Zi)). Then

|Fi(φ)− Fi(φ0)|

≤
∫
|f{x, Ci, GCi (Zi)}||pX|C,G{x|Ci, GCi (Zi), φ} − pX|C,G{x|Ci, GCi (Zi), φ0}|dνX(x)

≤ constant× ‖φ− φ0‖L2

by assumption 8. It follows that the bracketing number of the class (8) is bounded by the
bracketing number of {φ : ‖φ−φ0‖L2

≤ δ} and this is dominated by the bracketing number
of the integrated baseline hazard which is smaller than exp(K/ε) by van der Vaart and
Wellner (1996, Theorem 2.7.5) for a constant K. ut

It follows that for a bounded function f , the process

n−1/2
n∑
i=1

{
E(f [{Zij(φ)}j=1,...,m]|Ci, GCi (Zi))− E(f [{Zij(φ)}j=1,...,m])

}
is stochastic equicontinuous near φ0, and that

n−1
n∑
i=1

E(f [{Zij(φ)}j=1,...,m]|Ci, GCi (Zi))

converges almost surely, uniformly in a neighbourhood of φ0. The process

n−1/2
n∑
i=1

{f [{Zij(φ)}j=1,...,m]− E(f [{Zij(φ)}j=1,...,m])}

is not stochastic equicontinuous in general. A proof of this is included at the end of this
appendix.

We will need some results for averages of functions of the imputations and the unknown
parameter.

Lemma 3 Let f [{Zij(φ̂I)}j=1,...,m, φ] be a bounded function which is Lipschitz continuous
as a function of φ in a neighbourhood of φ0 with a bounded Lipschitz constant. Then

n−1
n∑
i=1

f [{Zij(φ̂I)}j=1,...,m, φ̃]− E(f [{Zij(φ)}j=1,...,m, φ0]|Ci, GCi (Zi))|φ=φ̂I

converges to in probability to 0 for any consistent estimator φ̃ of φ0.

Proof As |f [{Zij(φ̂I)}j=1,...,m, φ̃]− f [{Zij(φ̂I)}j=1,...,m, φ0]| ≤ constant×‖φ̃− φ0‖L2
, we

only need to consider the case where φ̃ = φ0. Letting

Fi = f [{Zij(φ̂I)}j=1,...,m, φ0]− E(f [{Zij(φ)}j=1,...,m, φ0]|Ci, GCi (Zi))|φ=φ̂I

we see that E{Fi|Ci, GCi (Zi)} = 0 so that

var

(
n−1

n∑
i=1

Fi

)
= E

[
n−2

n∑
i=1

var
{
Fi| Ci, GCi (Zi)

}]
= O(1/n)

as Fi is bounded by assumption. ut
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Corollary 1 Let f [{Zij(φ̂I)}j=1,...,m, φ] be a bounded function, which is Lipschitz con-
tinuous as a function of φ in a neighbourhood of φ0 with a bounded Lipschitz constant.
Suppose further that E(f [{Zij(φ′)}j=1,...,m, φ0]) is a continuous function of φ′. Then

n−1
n∑
i=1

f [{Zij(φ̂I)}j=1,...,m, φ̃]→ E(f [{Z1j}j=1,...,m, φ0])

in probability for any consistent estimator φ̃ of φ0.

Proof The average n−1
∑n
i=1 f [{Zij(φ̂I)}j=1,...,m, φ̃] may be split into a sum of

n−1
n∑
i=1

f [{Zij(φ̂I)}j=1,...,m, φ̃]− E(f [{Zij(φ)}j=1,...,m, φ0]|Ci, GCi (Zi))|φ=φ̂I

which is oP (1) by lemma 3, and n−1
∑n
i=1 E(f [{Zij(φ)}j=1,...,m, φ0]|Ci, GCi (Zi))|φ=φ̂I

which converges to E(f [{Z1j}j=1,...,m, φ0]) by lemma 2 and the uniform law of large num-
bers. ut

Lemma 4 If β̃ → β0 in probability, then

n−1
n∑
i=1

Sk{t, Zij(φ̂I), β̃} → sk(t) (k = 0, 1, 2, j = 1, . . . ,m)

in probability, uniformly in t ∈ [0, τ ].

Proof It suffices to consider the case where X is one-dimensional. Clearly, by differentiability
and boundedness,

sup
t∈[0,τ ]

∣∣∣∣∣n−1
n∑
i=1

Sk{t, Zij(φ̂I), β̃} − n−1
n∑
i=1

Sk{t, Zij(φ̂I), β0}

∣∣∣∣∣ ≤ constant × |β̃ − β0|

so we may replace β̃ by β0. Furthermore, by corollary 1, n−1
∑n
i=1 Sk{t, Zij(φ̂I), β0} −

sk(t) = oP (1) for any t. Assume for simplicity X1 ≥ 0 with probability 1. Choose finitely
many 0 = t0 < t1 < . . . < tL = τ such that for any t there is an ` such that E{Y1(t) −
Y1(t`)}, E{Y1(t`−1)− Y1(t)} ≤ ε/ck, where ck is an upper bound on Xk

1 exp(β>0 X1). Then

n−1
n∑
i=1

Sk{t, Zij(φ̂I), β0} − sk(t)

≤ n−1
n∑
i=1

Sk{t`−1, Zij(φ̂
I), β0} − sk(t`−1) + sk(t`−1)− sk(t) ≤ oP (1) + ε

where the oP (1)-term does not depend on t. Combined with a similar lower bound, this yields

the desired uniform convergence. If pr(X1 < 0) > 0 we may split (when k = 1) Xij(φ̂
I)

into a sum of Xij(φ̂
I)−minX1 and minX1, where minX1 denotes the lower bound for the

support of X1 (the essential infimum). Thus n−1
∑n
i=1 Sk{t, Zij(φ̂I), β0} may be split into

a sum of two terms, each of which may be handled as indicated above. ut

A.3 Proof of theorem 1: Regression parameters

The multiple-imputation estimator of β0 is β̂ = m−1
∑m
j=1 β̂j , where the jth imputation

estimator β̂j is the solution to Uj(β̂j , φ̂
I) = 0, with

Uj(β, φ̂
I) =

n∑
i=1

[
Xij(φ̂

I)−
∑n
l=1 S1{Ti, Zlj(φ̂I), β}∑n
l=1 S0{Ti, Zlj(φ̂I), β}

]
∆i.
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Following standard arguments and using lemma 4, β̂j may be shown to be consistent

and n1/2(β̂j−β0) = n−1/2
(
IF
)−1

Uj(β0, φ̂I)+oP (1), where IF is the full-data information
matrix for β. Averaging the m estimators we get

n1/2(β̂ − β0) = n−1/2
(
IF
)−1

m−1
m∑
j=1

Uj(β0, φ̂
I) + oP (1). (9)

As the imputations depend on the initial estimator, φ̂I , which involves information from all
subjects, this is not a sum of independent and identically distributed terms. We can write

n−1/2Uj(β0, φ̂
I) = n−1/2

n∑
i=1

∫ τ

0

[
Xij(φ̂

I)−
∑n
l=1 S1{u, Zlj(φ̂I), β0}∑n
l=1 S0{u, Zlj(φ̂I), β0}

]
dMF {u, Zij(φ̂I)}

= n−1/2
n∑
i=1

∫ τ

0

{
Xij(φ̂

I)− e(u)
}
dMF {u, Zij(φ̂I)}

+

∫ τ

0

[
e(u)−

∑n
l=1 S1{u, Zlj(φ̂I), β0}∑n
l=1 S0{u, Zlj(φ̂I), β0}

]
n−1/2

n∑
i=1

dMF {u, Zij(φ0)}

−

∫ τ

0

[
e(u)−

∑n
l=1 S1{u, Zlj(φ̂I), β0}∑n
l=1 S0{u, Zlj(φ̂I), β0}

]

× n−1/2
n∑
i=1

Yi(u)
[
exp

{
β>0 Xij(φ̂

I)
}
− exp

{
β>0 Xij(φ0)

}]
α0(u)du.

(10)

The second term on the right-hand side above converges to zero in probability by lemma
4 and Kosorok (2008)[Lemma 4.2]. To show that the third term also converges to zero in
probability, it suffices (by Kosorok (2008)[Lemma 4.2]) to show that the second factor in
the integrand of (10),

n−1/2
n∑
i=1

Yi(u)
[
exp

{
β>0 Xij(φ̂

I)
}
− exp

{
β>0 Xij(φ0)

}]
(11)

= n−1/2
n∑
i=1

Yi(u)

(
exp

{
β>0 Xij(φ̂

I)
}
− E

[
exp

{
β>0 Xij(φ)

}∣∣∣ Ci, GCi (Zi)
]
|φ=φ̂I

)

− n−1/2
n∑
i=1

Yi(u)
(

exp
{
β>0 Xij(φ0)

}
− E

[
exp

{
β>0 Xij(φ0)

}∣∣∣ Ci, GCi (Zi)
])

+ n−1/2
n∑
i=1

Yi(u)

(
E
[

exp{β>0 Xij(φ)}
∣∣∣ Ci, GCi (Zi)

]
|φ=φ̂I

− E
[

exp{β>0 Xij(φ0)}
∣∣∣ Ci, GCi (Zi)

])

is bounded in probability. The first two terms have mean zero and finite variance and are
thus bounded in probability. By stochastic equicontinuity, continuity of the mean and n1/2-
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consistency of the initial estimator, the third term is also bounded in probability. Thus,

n−1/2m−1
m∑
j=1

Uj(β0, φ̂
I)

= n−1/2
n∑
i=1

m−1
m∑
j=1

SFeff{Zij(φ̂
I)}+ oP (1)

= n−1/2
n∑
i=1

m−1
m∑
j=1

(
SFeff{Zij(φ̂

I)} − E[SFeff{Zij(φ)}|Ci, GCi (Zi)]|φ=φ̂I

)
(12)

+ n−1/2
n∑
i=1

(
E[SFeff{Zi1(φ)}|Ci, GCi (Zi)]|φ=φ̂I − E[SFeff{Zi1(φ)}]|φ=φ̂I

)
− n−1/2

n∑
i=1

(
E[SFeff{Zi1(φ0)}|Ci, GCi (Zi)]− E[SFeff{Zi1(φ0)}]

) (13)

+ n−1/2
n∑
i=1

E[SFeff{Zi1(φ0)}|Ci, GCi (Zi)] (14)

+ n1/2
(
E[SFeff{Z11(φ)}]|φ=φ̂I − E[SFeff{Z11(φ0)}]

)
+ oP (1), (15)

where E[SFeff{Zi1(φ0)}] equals zero but has been included for clarity. Using lemma 1 we may
write

n1/2
(
E[SFeff{Z11(φ)}]|φ=φ̂I − E[SFeff{Z11(φ0)}]

)
= Deff(φ0)n1/2(φ̂I − φ0) + oP (1)

= n−1/2
n∑
i=1

Deff(φ0)q{Ci, GCi (Zi)}+ oP (1)

where Deff(φ0) = E(SFeff(Z)[Sφ0
(Z) − Sφ0

{C, GC(Z)}]). Thus the last three terms – (13),
(14), (15) – may be written as

n−1/2
n∑
i=1

(
E[SFeff{Zi1(φ0)}|Ci, GCi (Zi)] +Deff(φ0)q{Ci, GCi (Zi)}

)
+ oP (1)

as (13) is oP (1) by the stochastic equicontinuity implied by lemma 2.
Lemma 2 (with a straightforward extension) also implies that

n−1
n∑
i=1

var[SFeff{Zi1(φ)}|Ci, GCi (Zi)]→ E
(
var[SFeff{Z(φ)}|C, GC(Z)]

)
almost surely, uniformly in a neighbourhood of φ0. Assume for now (for simplicity) that φ̂I

is strongly consistent. Then conditionally on the observed data, for almost every realization,

n−1/2
n∑
i=1

m−1
m∑
j=1

(
SFeff{Zij(φ̂

I)} − E[SFeff{Zij(φ)}|Ci, GCi (Zi)]|φ=φ̂I

)
→ N

{
0,m−1E

(
var[SFeff{Z(φ0)}|C, GC(Z)]

)} (16)

in distribution by the Lindeberg-Feller central limit theorem (van der Vaart 1998, Propo-
sition 2.27). Using Schenker and Welsh (1988, Lemma 1) or Nielsen (2003, Lemma 1), it
follows that (16) also holds unconditionally and that (12) is asymptotically independent
of the observed data. Without strong consistency, we may for every subsequence extract a
further subsequence where φ̂I converges almost surely to φ0. Thus every subsequence has a
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subsequence, where (16) holds. Thus the conditional characteristic function of the left hand
side of (16) converges almost surely along subsequences of subsequences to the characteristic
function of the right hand side of (16). This implies that the convergence holds in probabil-
ity for the original sequence of characteristic functions and as the characteristic function is
bounded this ensures that (16) holds unconditionally. The asymptotic distribution of β̂ now
follows.

A.4 Proof of theorem 1: Cumulative baseline hazard

The multiple-imputation estimator of the cumulative baseline hazard function is Â(t) =

m−1
∑m
j=1 Âj(t, β̂j), where

Âj(t, β) =

∫ t

0

1∑n
i=1 S0{u, Zij(φ̂I), β}

dN·(u)

is the estimator from the jth imputation where N·(t) =
∑n
i=1Ni(t). Let

dM(t, Zi) = dNi(t)− E{Yi(t) exp(β>0 Xi)|Ci, GCi (Zi)}α0(t)dt.

Then M·(t) =
∑n
i=1 M(t, Zi) is a zero mean square-integrable martingale with respect to

the observed filtration.
We may write n1/2{Â(t)−A0(t)} = n1/2{Â(t)− Â0(t)}+ n1/2{Â0(t)−A0(t)}, where

Â0(t) = m−1
m∑
j=1

∫ t

0

1∑n
i=1 S0{u, Zij(φ̂I), β0}

dN·(u).

Using lemma 4 and Kosorok (2008)[Lemma 4.2], we have

n1/2{Â(t)− Â0(t)}

= −m−1
m∑
j=1

∫ t

0

n−1
∑n
i=1 S1{u, Zij(φ̂I), β0}

[n−1
∑n
i=1 S0{u, Zij(φ̂I), β0}]2

n−1dN·(u)n1/2(β̂ − β0) + oP (1)

= −
∫ t

0

s1(u)

s0(u)
α0(u)dun1/2(β̂ − β0) + oP (1).

Now

n1/2{Â0(t)−A0(t)}

= n1/2

m−1
m∑
j=1

∫ t

0

1∑n
i=1 S0{u, Zij(φ̂I), β0}

dN·(u)−
∫ t

0
α0(u)du


= m−1

m∑
j=1

∫ t

0

[
1∑n

i=1 S0{u, Zij(φ̂I), β0}

−
1∑n

i=1 E{Yi(u)exp(β>0 Xi)|Ci, GCi (Zi)}

]
n1/2dN·(u)

+ n1/2

[∫ t

0

1∑n
i=1 E{Yi(u)exp(β>0 Xi)|Ci, GCi (Zi)}

dN·(u)−
∫ t

0
α0(u)du

]
.

(17)

The second term of (17) may be rewritten as∫ t

0

1

n−1
∑n
i=1 E{Yi(u)exp(β>0 Xi)|Ci, GCi (Zi)}

n−1/2dM·(u) + oP (1)

=

∫ t

0

1

s0(u)
n−1/2dM·(u) + oP (1)
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which converges to a Gaussian martingale. Before turning to the first term of (17) we note
that

n−1/2
n∑
i=1

Yi(u)
(

exp
{
β>0 Xij(φ̂

I)
}
− E

[
exp

(
β>0 Xi

)
|Ci, GCi (Zi)

])
= n−1/2

n∑
i=1

Yi(u)
(

exp
{
β>0 Xij(φ̂

I)
}
− E [exp{β>0 Xi1(φ)

}
|Ci, GCi (Zi)

]
|φ=φ̂I

)
+ n−1/2

n∑
i=1

Yi(u)

(
E
[

exp
{
β>0 Xi1(φ)

}∣∣∣ Ci, GCi (Zi)
]
|φ=φ̂I

− E
{

exp
(
β>0 Xi

)
|Ci, GCi (Zi)

})
.

(18)

The second term of (18) is asymptotically equivalent to

n1/2
(
E[S0{u, Z(φ), β0}]|φ=φ̂I− E{S0(u, Z, β0)}

)
= D0(u, φ0)n1/2(φ̂I − φ0) + oP (1)

where D0(u, φ0) = E(S0(u, Z, β0)[Sφ0
(Z) − Sφ0

{C, GC(Z)}]) by lemma 1. Thus, we may
write the integrand of the first term of (17) as

n1/2

(
1∑n

i=1 S0{u, Zij(φ̂I), β0}
−

1∑n
i=1 E

[
Yi(u)exp

{
β>0 Xi1(φ0)

}
|Ci, GCi (Zi)

])

= −
n−3/2

∑n
i=1 Yi(u)

(
exp

{
β>0 Xij(φ̂

I)
}
− E

[
exp

{
β>0 Xi1(φ)

}∣∣ Ci, GCi (Zi)
]
|φ=φ̂I

)
s0(u)2

− n−1D0(u, φ0)
n1/2(φ̂I − φ0)

s0(u)2
+ oP (1)

and hence the first term of (17) as

−
∫ t

0
n−1

n∑
i=1

Yi(u)

m−1
m∑
j=1

exp
{
β>0 Xij(φ̂

I)
}
− E

[
exp

{
β>0 Xi1(φ)

}∣∣∣ Ci, GCi (Zi)
]
|φ=φ̂I


×
n−1/2dM.(u)

s0(u)2

−
∫ t

0
n−1/2

n∑
i=1

Yi(u)

m−1
m∑
j=1

exp
{
β>0 Xij(φ̂

I)
}
− E

[
exp

{
β>0 Xi1(φ)

}∣∣∣ Ci, GCi (Zi)
]
|φ=φ̂I


×
α0(u)

s0(u)
du

−
∫ t

0
D0(u, φ0)

1

s0(u)2
n−1dM.(u)n1/2(φ̂I − φ0)

−
∫ t

0
D0(u, φ0)

α0(u)

s0(u)
dun1/2(φ̂I − φ0) + oP (1)
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where the first and the third term are both oP (1) (Kosorok 2008, Lemma 4.2). Thus

n1/2{Â(t)−A0(t)}

= −
∫ t

0
n−1/2

n∑
i=1

Yi(u)

m−1
m∑
j=1

exp
{
β>0 Xij(φ̂

I)
}
− E

[
exp

{
β>0 Xi1(φ)

}∣∣∣ Ci, GCi (Zi)
]
|φ=φ̂I


×
α0(u)

s0(u)
du

−
∫ t

0
D0(u, φ0)

α0(u)

s0(u)
dun1/2(φ̂I − φ0) +

∫ t

0

1

s0(u)
n−1/2dM·(u)

−
∫ t

0

s1(u)

s0(u)
α0(u)dun1/2(β̂ − β0) + oP (1) (19)

where the three latter terms converge as processes. To show tightness of the first term, let
w(s, t) denote

−
∫ t

s
n−1/2

n∑
i=1

Yi(u)

m−1
m∑
j=1

exp
{
β>0 Xij(φ̂

I)
}
− E

[
exp

{
β>0 Xi1(φ)

}∣∣∣ Ci, GCi (Zi)
]
|φ=φ̂I


×
α0(u)

s0(u)
du

= −n−1/2
n∑
i=1

∫ t

s
Yi(u)

α0(u)

s0(u)
du

×m−1
m∑
j=1

(
exp

{
β>0 Xij(φ̂

I)
}
− E

[
exp

{
β>0 Xi1(φ)

}∣∣∣ Ci, GCi (Zi)
]
|φ=φ̂I

)
.

Then clearly E{w(s, t)} = E(E[w(s, t)|{Ci, GCi (Zi)}i=1,...,n)} = 0 so that

E{w(s, t)2} = E(var [w(s, t)|{Ci, GCi (Zi)}i=1,...,n])

= n−1
n∑
i=1

E

({∫ t

s
Yi(u)

α0(u)

s0(u)
du

}2

×m−1var
[

exp
{
β>0 Xi1(φ0)

}∣∣∣ {Ci, GCi (Zi)}i=1,...,n

])
= O{(t− s)2}

implying (van der Vaart and Wellner 1996, section 2.2.3) that also the first term of (19) is

tight. Finally, we may write n1/2{Â(t)−A0(t)} as a sum of

n−1/2
n∑
i=1

{∫ t

0

1

s0(u)
dMi(u)−

∫ t

0
D0(u, φ0)

α0(u)

s0(u)
du q{Ci, GCi (Zi)}

−
∫ t

0

s1(u)

s0(u)
α0(u)du (IF )−1

×
(
E[SFeff{Zij(φ0)}|Ci, GCi (Zi)] +Deff(φ0)q{Ci, GCi (Zi)}

)}
(20)
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and

− n−1/2
n∑
i=1

{∫ t

0

s1(u)

s0(u)
α0(u)du (IF )−1

×m−1
m∑
j=1

(
SFeff{Zij(φ̂

I)} − E[SFeff{Zij(φ)}|Ci, GCi (Zi)]|φ=φ̂I

)

+

∫ t

0
Yi(u)

α0(u)

s0(u)
du

×m−1
m∑
j=1

(
exp

{
β>0 Xij(φ̂

I)
}
− E

[
exp

{
β>0 Xi1(φ)

}∣∣∣ Ci, GCi (Zi)
]
|φ=φ̂I

)
(21)

plus oP (1)-terms. Proceeding as in the proof of asymptotic normality of the regression
parameters, we can show that the terms in (21) are asymptotically independent of the
terms in (20) and converge in distribution to a normal distribution. Also the terms in (20)

are asymptotically normal. Thus n1/2{Â(t)− A0(t)} converges to a Gaussian process with
mean 0.

A.5 Proof of theorem 1: Joint convergence

To see that n1/2(β̂−β0) and n1/2{Â(t)−A0(t)}t∈[0,τ ] converge jointly in distribution, note
that we have written both as a sum of terms – (12), (21) – that depend on the imputations
but are asymptotically independent of the observed data, terms – (14), (15), (20) – that
depend only on the observed data, and terms, that are asymptotically negligible. Joint
convergence follows by noting that linear combinations of the “imputation terms”, (12)
and (21), are asymptotically independent of the observed data and converge to a normal
distribution, while the same linear combinations of the “observed data terms”, (14), (15), and

(20), also converge to a normal distribution. Hence n1/2(β̂−β0) and n1/2{Â(t)−A0(t)}t∈[0,τ ]

converge jointly in distribution to a Gaussian process.

A.6 Iterating the estimation process

In order to establish asymptotic results for the iterated multiple-imputation estimator, we
extend the arguments in the previous parts of the appendix to the case where the “initial
estimator” is a multiple-imputation estimator of the type we are considering. We let φ̂(1)

denote the multiple-imputation estimator based on the initial imputations and let Z
(2)
ij (φ̂(1))

denote the second iteration imputations, i.e. imputations generated using φ̂(1) as the true
parameter. We focus on the asymptotic distribution of β̂(2), the multiple-imputation esti-
mator of β0 based on the second iteration imputations and outline the changes we need to
make to the expansion of the score function given in equations (12)-(15).

Consider first the term (12). Conditional on the observed data and the first iteration

imputations the mean of SFeff{Z
(2)
ij (φ̂(1))} equals E[SFeff{Z

(2)
ij (φ)}|Ci, GC(Zi)]|φ=φ̂(1) as the

second iteration imputations only depend on the first iteration imputations through the
first iteration estimator φ̂(1). It follows as before that (12) is asymptotically normal and
asymptotically independent of the observed data (and the first iteration imputations).

The terms (13) and (14) are unchanged. Finally, the term (15) may be rewritten as

Deff(φ0)n1/2(φ̂(1) − φ0). When plugging in the asymptotic expression for n1/2(φ̂(1) − φ0)
derived above, and splitting it into the first iteration imputation part corresponding to
(12) and (21) and the rest, we end up with a term (12) depending on the second iteration
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imputations, which is asymptotically independent of the first iteration imputations, terms
depending on the first iteration imputations and the observed data, which are asymptotically
independent of the observed data, and terms depending only on the observed data. It now
follows that the Cox partial score function is asymptotically normal and it is straightforward
to verify that it has the same asymptotic distribution as (5) with qi replaced by ρi =
(IF )−1ξi.

The second iteration estimator of the integrated baseline hazard may be shown to be
asymptotically Gaussian by following a similar line of arguments, splitting (21) into a sum
of terms depending on the second iteration imputations and terms depending on the first
iteration imputations and conditioning as above. Joint convergence follows in a similar
manner to what we did for the original multiple-imputation estimator. Further iterations
may be handled by splitting the “imputation terms” into additional terms and repeated
conditioning.

A.7 Stochastic equicontinuity

Whereas stochastic equicontinuity of the empirical process based onm−1
∑m
j=1 S

F
eff{Zij(φ0)}

is straightforward to verify when imputing a large class of continuous covariates, we claim
that for discrete covariates the combination of the unknown baseline hazard and the inher-
ent discontinuity of the covariate rules out stochastic equicontinuity. To see this we prove
the following lemma:

Lemma 5 The set of sets{
{(x, t) ∈ X × R : x ≤ a(t)} a : R→ R increasing

}
with X ⊂ R is a Vapnik-Chervonenkis (VC) class if and only if X is a finite set.

Proof Consider a set A = {(x1, t1), . . . , (xn, tn)}. Assuming that |X | is finite, then any set
of n > |X | points will contain at least two points (xi, ti), (xj , tj), such that xi = xj and
(without loss of generality) ti ≤ tj . Clearly, we cannot pick out a subset of A containing
xi but not xj : If a(ti) ≥ xi then a(tj) ≥ a(ti) ≥ xi = xj . Thus no sufficiently large set
is shattered, and the set of sets is a VC class. If X is not finite, then choosing A such
that x1 < x2 < . . . < xn and t1 < t2 < . . . < tn any subset may be picked out: For a
subset B ⊆ A choose a so that it jumps to just above xi just before ti for any i such that
(xi, ti) ∈ B. As A can be shattered, the set of sets is not a VC class. ut

Consider imputing a single binary explanatory variable, X, with conditional probability
of success given by

p{C, GC(Z), φ} =
exp{∆β −A(T ) exp(β)}p(θ)

exp{∆β −A(T ) exp(β)}p(θ) + exp{−A(T )}{1− p(θ)}
.

Then the simplest way of simulating X is

X(φ) = I[{Ũ ≤ ∆β −A(T )(exp(β)− 1)− logit{p(θ)}],

with Ũ = logit(U), where U is uniformly distributed. Lemma 5 shows that even if we fix β
and θ, these indicator functions are not indicators of a VC class of sets. It follows that it
is not VC if we allow β and θ to vary, either. Dudley (1984, Theorem 11.4.1) shows that
when a set of indicator functions are not based on a VC class, the corresponding empirical
process is not pregaussian. This basically rules out stochastic equicontinuity.

This argument shows that the efficient score process with imputed data is not stochastic
equicontinuous in general. It does not rule out – though we find it unlikely – that one might
construct another simulation scheme which would be sufficiently “smooth” for a discrete
covariate to make the process stochastic equicontinuous.
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Table 1 Simulation study. All values have been multiplied by 100.

Complete case Multiple imputation Iterated multiple imputation
Bias ESE ASE ECP Bias ESE ASE ECP Bias ESE ASE ECP

n=500, X1 missing for 13% and X2 missing for 30%, 60% complete cases.
β1 0.4 6.9 6.8 94.3 0.4 6.1 5.9 94.4 0.4 6.1 5.9 94.4
β2 0.4 39.7 38.4 94.2 -0.1 36.1 34.6 93.9 -0.6 35.7 34.3 93.9
β3 -0.6 20.4 19.9 94.4 -0.5 15.3 15.0 94.5 -0.5 15.2 15.0 94.6
β4 -1.0 31.6 30.2 93.8 -0.6 27.4 26.2 93.8 -0.3 27.2 26.0 94.0
A(τ/2) -1.5 17.8 17.2 94.5 -0.8 12.9 12.7 94.8 -0.7 12.8 12.7 94.8
A(3τ/4) -2.0 21.6 21.2 94.7 -1.1 15.8 15.6 94.8 -1.0 15.7 15.5 94.6
A(τ) -2.6 25.5 24.7 94.5 -1.4 18.5 18.1 94.8 -1.3 18.3 18.1 94.6

n=2000, X1 and X2 missing for 50% each, 23% complete cases
β1 0.2 5.6 5.5 94.4 0.2 4.7 4.6 93.9 0.2 4.3 4.2 94.4
β2 -0.1 32.8 31.9 94.4 -0.5 25.7 24.9 94.2 -0.9 22.1 21.6 94.4
β3 -0.4 16.8 16.6 94.6 -0.3 8.6 8.6 94.9 -0.2 8.0 8.0 94.9
β4 -0.5 26.0 25.3 94.2 0.0 17.8 17.4 94.3 0.2 15.4 15.2 94.7
A(τ/2) -1.1 14.5 14.2 94.8 -0.3 7.7 7.6 95.0 -0.1 7.0 7.0 94.9
A(3τ/4) -1.5 17.8 17.5 94.8 -0.4 9.4 9.3 94.9 -0.2 8.5 8.5 94.9
A(τ) -1.7 20.6 20.4 94.8 -0.5 10.8 10.7 95.2 -0.3 9.9 9.8 95.1

n=2000, X1 and X2 missing for 64% each, 12% complete cases
β1 0.4 7.9 7.6 93.9 0.3 6.6 6.2 93.6 0.4 5.3 5.1 94.0
β2 0.3 41.9 40.5 94.1 -0.2 32.5 31.3 93.6 -0.6 24.9 24.2 94.2
β3 -0.9 21.9 21.1 94.0 -0.4 10.4 10.2 94.9 -0.2 8.6 8.6 95.1
β4 -0.9 33.7 32.3 93.8 -0.1 23.3 22.3 93.5 -0.2 17.3 16.9 94.3
A(τ/2) -1.6 18.6 17.9 94.5 -0.4 9.1 8.9 94.9 -0.2 7.5 7.5 94.8
A(3τ/4) -2.2 23.0 22.0 94.4 -0.7 11.0 10.8 94.9 -0.4 9.1 9.1 95.0
A(τ) -2.7 26.8 25.7 94.5 -0.8 12.7 12.5 94.8 -0.5 10.5 10.4 95.1

ESE, empirical standard error; ASE, average of the estimated standard error; ECP,
empirical coverage probability of the 95% confidence intervals; ESE ratio
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Table 2 Estimates from the liver cirrhosis study.

Method Variable Scoring β se(β) p

CC Treatment Placebo 0.534 0.317 0.096
Sex Male 0.501 0.182 0.009
Age years 0.036 0.009 <0.001
Antinuclear factor (ANF) Present 0.305 0.291 0.231
Acetylcholinesterase µmol/min/ml -0.003 0.001 <0.001
ANF×Treatment Present:Placebo -0.675 0.365 0.072

MI Treatment Placebo 0.707 0.277 0.015
Sex Male 0.462 0.148 0.003
Age years 0.045 0.007 <0.001
Acetylcholinesterase Present 0.446 0.285 0.105
Antinuclear factor (ANF) Antinuclear factor (ANF) -0.003 0.001 <0.001
ANF×Treatment Present:Placebo -0.878 0.357 0.019

Iterated MI Treatment Placebo 0.672 0.263 0.015
Sex Male 0.444 0.151 0.005
Age years 0.046 0.007 <0.001
Antinuclear factor (ANF) Present 0.476 0.279 0.094
Acetylcholinesterase µmol/min/ml -0.003 0.001 <0.001
ANF×Treatment Present:Placebo -0.841 0.327 0.014

CC, complete case; MI, multiple imputation; se, standard error; p, p-value


