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50 ABSTRACT (max 280 words- Appetite)

51

52

53 Aim: The neuropeptide neuromedin U (NMU) known for its role in appetite, feeding and energy 

54 balance could be involved in the control of food choice and taste sensitivity. We examined the 

55 association between NMU polymorphisms/haplotypes and taste thresholds and food preferences in a 

56 population of European children. 

57 Methods: A total of 578 subjects from the IDEFICS study (mean age 7.5±0.8 SD, boys 53.6%) 

58 with NMU genotype data and food preference (salty, fatty, sweet, flavour and umami food) and 

59 taste threshold (salt, fat, sweet, umami) tests available were analysed. Three single nucleotide 

60 polymorphisms (SNPs; rs6827359, T:C; rs12500837, T:C; rs9999653, C:T) of NMU gene were 

61 analyzed and five major haplotypes were inferred. The associations between genotypes and food 

62 preferences or taste thresholds were investigated (odds ratios –OR, adjusted for age, sex and 

63 country). A p<0.05 after false discovery rate adjustment (pFDR) was considered statistically 

64 significant. 

65 Results: The association between NMU genotypes and food preference showed two NMU SNPs 

66 associated with preference for food containing sodium glutamate (umami taste; rs6827359C, 

67 OR=1.61, 95% confidence interval (CI):1.20-2.17; rs9999653T, OR=1.59, 95%CI:1.18-2.13). In the 

68 haplotype analysis, the CTT haplotype showed an OR of 1.70 (95%CI:1.16-2.5) for the umami food 

69 preference, while CCT haplotype showed an OR of 1.63 (95%CI:1.11-2.40), compared to the most 

70 frequent haplotype (TTC). Carriers of CCT/CCT vs subjects with no CCT haplotype showed an OR 

71 of 4.78 (95%CI:1.86-12.30). Umami food preference was associated with low values of BMI z-

72 score, arm circumferences, skinfolds and fat mass (pFDR<0.05). No association between NMU 

73 genetic variants and taste thresholds was found.
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74 Conclusions: This study shows for the first time in children an association between preference for 

75 umami food and a NMU haplotype, previously found associated with low BMI values.

76

77 Keywords: food preferences; umami; neuromedin U; neurology; genetics; obesity
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84 INTRODUCTION 

85 Taste sensing influences food preference, appetite and satiety, thereby regulating diet quality 

86 and total food intake and, as a result, weight maintenance (Dotson 2012). Five taste qualities can be 

87 perceived by humans: sweet, salty, bitter, sour and umami. The ability of discriminate between 

88 tastes has shown to be the result of evolution, to avoid hazardous compounds while searching for 

89 nutrients important for life and development. 

90 In children, food preferences are often guided by taste alone. Specifically, preferences for 

91 sugar and fat may be acquired early in life, as children learn to prefer those flavors that are 

92 associated with high energy density and fat content, with higher risk of developing overweight 

93 (Drewnowski 1997). In line with that, several studies showed that food preferences and taste 

94 sensitivity differ between obese and non-obese children (Overberg 2012; Wardle 2001). 

95 The mechanisms behind the regulation of food preferences and taste perception has only 

96 been partially revealed (MacLean 2017). Recent findings suggested that genetics plays an important 

97 role, since high heritability levels were found for both food preferences and taste perception 

98 (Tornwall 2015). Genetic studies of taste variability have focused on a number of candidate genes 

99 encoding the taste receptors, hormones and neuropeptides, such as leptin, GLP-1 and NPY, 

100 important modulators at both peripheral and central level (Feeney 2011; Loper 2015). 

101 Neuromedin U (NMU) is a neuropeptide with a highly conserved genetic structure, thought 

102 to have several important functions. Transgenic mouse models and experimental studies showed its 

103 main involvement in the regulation of body weight, through its effect on appetite, feeding and 

104 energy balance (Martinez 2015). Recently, an increased preference for obesogenic food was 

105 observed in rats knockdown for NMU Receptor 2 (NMUR2), the NMU receptor mainly expressed 

106 in the central nervous system (Benzon 2014). Although the effects of NMU are well understood in 

107 animal models, little is known about its role in humans besides a suggested role in adiposity 
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108 regulation from epidemiological evidence. A rare NMU variant was in fact associated with 

109 overweight and obesity (Hainerová 2006). In addition, our group observed an association between 

110 NMU genetic polymorphisms and adiposity indices in a European children population (Gianfagna 

111 2017). While a link between NMU and adiposity regulation was identified, no data have been 

112 produced to link this neuropeptide to adiposity intermediate phenotypes. To this respect, NMU 

113 could cooperate in modifying taste perception and selective appetite.

114 In this study, we aimed at evaluating the potential association of NMU with food 

115 preferences and taste perception, by investigating NMU genetic variants in a European children 

116 population recruited for the IDEFICS Study (Ahrens 2011).

117

118

119

120

121 MATERIALS AND METHODS

122

123 Study population 

124 IDEFICS (Identification and prevention of dietary - and lifestyle - induced health effects in 

125 children and infants) is a large European multi-center study aimed at investigating risk factors 

126 associated with childhood obesity (Ahrens 2011). A cohort of 16,229 children aged 2.0–9.9 years 

127 was recruited in a population-based survey between September 2007 and May 2008 (T0), in eight 

128 European countries (Belgium, Cyprus, Estonia, Germany, Hungary, Italy, Spain and Sweden). 

129 For taste threshold and food preference test, from the subgroup of participating primary 

130 schoolchildren aged 6–9 or 7–9 years (depending on age of school enrolment), a subsample of 1839 

131 (20.8%) children were randomly selected (Lanfer 2012). For genetic analyses, a subgroup of 4,678 

132 (28.8%) samples was randomly selected from the total study population of European descent 
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133 children, stratifying by age, sex and country (about 600 subjects from each country) (Gianfagna 

134 2013; Cugino 2013). Finally, 578 children, 6–9-year-old with NMU genotype and food preference 

135 and taste threshold test available were selected for the present analysis.

136 Ethical approval was obtained by the ethical committees of each center engaged in the 

137 fieldwork: Ethics Committee, University Hospital, Gent, Belgium; Cyprus National Bioethics 

138 Committee, Strovolos, Cyprus; Tallinn Medical Research Ethics Committee, Tallinn, Estonia; 

139 Ethics Committee, University of Bremen, Bremen, Germany; Egészségügyi Tudományos Tanács, 

140 Pécs, Hungary; Comitato Etico, ASL Avellino, Avellino, Italy; Comité Ético de Investigación, 

141 Clínica de Aragón (CEICA), Zaragoza, Spain; Regional Ethics Committee, University of 

142 Gothenburg, Gothenburg, Sweden. Both children and their parents gave oral (children) and written 

143 (parents) informed consent.

144

145 Data collection

146 Food preference test. The preference test was organized as paired and forced choice on a 

147 board as previously described (Lanfer 2012, Knof 2011). Briefly, participating children had their 

148 last meal 1 h before to ensure that they were neither hungry nor sated. The test was conducted using 

149 five preference tests for five tastes. To evaluate sweet preference apple, juice was administered in 

150 small cups with a volume of 30 ml at 18±2 °C and with different addition of sucrose (0.53-3.11%). 

151 For the evaluation of flavour preferences, 0.05% apple flavour (nature identical, Sensient Flavors, 

152 Bremen, Germany) was added to the basic recipe. The children had to rinse their mouths with water 

153 between each pair sequence of the test. To assess the preference for salty, fatty and umami tastes, 

154 crackers were selected as food sample. The crackers were covered with 0.5% aqueous solution of 

155 sodium hydroxide (soda lye, Carl Roth Chemicals, Karlsruhe, Germany) to make them tastier to the 

156 children. The basic recipe of cracker included water, flour (wheat), fat (8%) and salt. The same type 

157 of crackers was modified with an increased 8% of fat to assess high-fat preference, an increased 1% 

158 of salt for salty taste and monosodium glutamate (1%) for umami crackers. In each sequence, the 
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159 children had to choose their preferred food sample between the basic recipe and a modified one. 

160 The order of assessment for the food choice was fat, salt and umami. The test procedure was subject 

161 to pre-testing before the beginning of the study (Suling 2011) and yielded reliable results in a 

162 reproducibility study (Knof 2011).

163 Taste detection threshold test. As a measure of taste sensitivity, detection threshold is the 

164 lowest value of a tastant that must be exceeded to have any effect on the observer. The procedure to 

165 evaluate the taste threshold was described in detail in Knof et al. (2011). In brief, a paired 

166 comparison test with five different watery solutions at different concentrations of tastants was 

167 served to the children in small cups of 20 ml. The concentration ranges of the tastants were sucrose 

168 (8.8-46.7 mmol/l), sodium chloride (3.4-27.4 mmol/l), caffeine (0.26-1.3 mmol/l) and monosodium 

169 glutamate (MSG) (0.6-9.5 mmol/l). The paired test was prepared as a board game and the children 

170 had to compare each test solution at increasing concentrations of tastants with a cup containing pure 

171 water, to find the cups that would taste differently from the previous one. Taste detection at lower 

172 tastant concentration (lower detection threshold value) indicates increased sensitivity for a specific 

173 tastant. Between the taste modalities, the children had to neutralize their taste with distilled water. 

174 Anthropometric data. Height was measured using a standard clinical Seca 225 stadiometer 

175 (Seca, Hamburg, Germany) to the nearest 0.1 cm, and weight was measured using a scale (BC 420 

176 SMA; Tanita, Amsterdam, The Netherlands) to the nearest 0.1 kg, on children wearing underwear 

177 clothes and without shoes. BMI was calculated as weight(kg)/height(m)2. Waist and hip 

178 circumference was measured with an inelastic tape (Seca 200, precision 0.1 cm, range 0–150 cm). 

179 Age- and sex-specific BMI and waist circumference z-scores and BMI categories were calculated 

180 according to the criteria of the International Obesity Task Force (IOTF) (Cole 2012). Leg-to-leg 

181 impedance was measured with the Tanita scale and fat-free mass was calculated using the formula 

182 of Tyrrell et al (2001). Skinfold thicknesses (tricipital and subscapular) were measured with a 

183 Holtain caliper (Holtain, Holtain Ltd, Pembrokeshire, UK, range 0±40 mm), taking measures twice 

184 on the right hand body side and using the mean of the two measures for the analyses. All 
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185 measurements were collected by standardized protocols across centers, checking intra- and inter-

186 observer reliability (Stomfai 2011).

187 Genotyping. DNA extraction was carried out from saliva samples (Oragene DNA Self-

188 Collection Kit, OG-300/OG-250; DNA Genotek Inc., Kanata, Ontario, Canada) (Koni 2011). 

189 Among the three main blocks of the NMU gene (chr4, 55595229–55636698, GRCh38.p7 

190 assembly), three tag SNPs (rs6827359, rs12500837, rs9999653; intronic regions) were selected 

191 from the Caucasian HapMap Project data using the Tagger Pairwise method of Haploview software 

192 (version 4.1; Broad Institute, Cambridge, MA, USA) (Barrett 2005). Tag SNP selection criteria 

193 were described in Gianfagna et al (2017). The SNPs were genotyped by a multiplexed end-point 

194 assay. The allelic discrimination was performed by 7500 Fast Real-Time System (Applied 

195 Biosystems). The genotyping success rate was on average 97.6% and a randomly selected sample 

196 (5%) was newly genotyped for all SNPs with 100% concordance.

197

198 Statistical analysis

199 The analyses were conducted with SAS (v9.3, SAS Institute Inc., Cary, NC) and R (v3.2.1; 

200 https://www.R-project.org/) software. Distribution of continuous variables was assessed using the 

201 Kolmogorov–Smirnov test and log-transformed variables were used where appropriate. Hardy-

202 Weinberg equilibrium (HWE) was assessed with the chi-square test. The best genetic model was 

203 checked for each genotype–phenotype association, testing dominance deviation from additivity and 

204 considering the additive model as default (Hoffman 2004). The Haplo.stats package of R software 

205 was used to estimate the haplotype frequencies and to verify the associations between haplotype and 

206 phenotype (haplo.glm function, the most prevalent haplotype as reference). Haplotypes with 

207 frequencies lower than 1% were excluded. Multiple regression analyses were performed using age, 

208 sex and countries as covariates, to evaluate the association between genotypes and food preferences 

209 (basic food or modified food with salty, fatty, umami, sweet and flavor tastes) or taste thresholds 

210 (sweet, salty, umami, bitter). The Benjamini-Hochberg false discovery rate (FDR) (Benjamini 

473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531



10

211 1995) was used to adjust the results for multiple comparisons, using PROC MULTTEST in SAS. A 

212 FDR-adjusted p value (pFDR) <0.05 was considered as statistically significant. 

213

214

215 RESULTS

216

217 Population characteristics 

218 Characteristics of the study population are shown in Table 1. Children with at least one SNP 

219 successfully genotyped in NMU gene and eating behavior data available were 578 (mean age 

220 7.5±0.8 SD, boys 53.6%). The lowest taste threshold value was found for sweet taste, taking into 

221 account mean thresholds and concentration ranges of test solutions (sucrose, 19.9 mmol/l; range 

222 8.8-46.7). In food preference tests, the most appreciated food were salt-added crackers (63.7% of 

223 children preferred them to the basic recipe crackers), while sodium glutamate-added crackers 

224 (umami taste) were the less appreciated (33.4%). Genotype frequencies are reported in Table 2a. No 

225 statistically significant differences were found between genotype frequencies of children randomly 

226 selected to be included or excluded from this analysis subjects (data not shown). All genotypes were 

227 in Hardy-Weinberg equilibrium and the minor allele frequencies (MAF) were similar to values 

228 reported in the HapMap database for Caucasians. Six haplotypes were inferred (Table 2b; wild-type 

229 haplotype 43.9%).

230

231 Associations with food preferences and taste thresholds

232 Deviation from additivity test showed codominance as the best genetic model for all 

233 phenotype-SNP and phenotype-haplotype associations, except for umami food preference for the 

234 reference haplotype TTC (H7), that showed a dominant model.
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235 The analysis of the association between NMU genetic variants and food preferences are 

236 shown in Table 3. Children carrying mutant allele in Two two out of the three NMU SNPs studied 

237 were more likely to prefer associated with preference for food containing sodium glutamate (umami 

238 taste) with respect to the same food prepared with a basic recipe (; rs6827359, odds ratio - 

239 OR=1.61, 95% confidence interval - 95%CI:1.20-2.17; rs9999653, OR=1.59, 95%CI:1.18-2.13; 

240 Table 3). The haplotype analysis confirmed the association between genetic variants and preference 

241 for with umami preferencefood. Subjects carrying the CTT haplotype showed an OR of 1.70 

242 (95%CI:1.16-2.50) for the umami preference, while CCT haplotype showed an OR of 1.63 

243 (95%CI:1.11-2.40), as compared to the most frequent TTC haplotype. The reference haplotype 

244 showed a reduced odd for umami preference when compared to all other haplotypes (OR=0.42; 

245 95%CI:0.27-0.66). The association between umami food preference and the two SNPs as well as 

246 the TTC haplotype remained statistically significant after FDR correction. The same analysis 

247 considering each single genotype or haplotype versus the correspondent wild-type (Table 3, last 

248 rows) showed even higher association values. Homozygotes for mutant allele of rs6827359 

249 (OR=2.57; 95%CI:1.43-4.61) and of rs9999653 (OR=2.31; 95%CI:1.29-4.15) versus the opposite 

250 homozygotes showed FDR-significant association with umami food preference. Similarly, 

251 homozygotes for CTT (OR=4.78; 95%CI:1.86-12.30), as well as carriers of TTC (OR=0.43; 

252 95%CI:0.26-0.68) haplotype showed FDR-significant association with umami food preference 

253 when compared with subjects without that specific haplotype. No significant associations were 

254 found between NMU genotypes or haplotypes and the other food preferences (Suppl. Table 1).

255 The analysis of the association between NMU genetic variants and taste thresholds showed 

256 no significant results (Table 4, codominant model, and Suppl. Table 2, genotype or haplotype 

257 contrasts).  

258

259 Association between umami preference and adiposity indices
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260 Preference for umami food was associated with lower levels of the main anthropometric 

261 measures (Table 5, Model 1), such as z-score BMI (-0.25, p=0.034) and fat mass (-0.93, p=0.012). 

262 The association between preference for umami food and overweight/obesity was not statistically 

263 significant (OR=0.70; 95%CI:0.42-1.17). An association was also found with skinfolds (sum of 

264 triceps and subscapular skinfold, -1.75, p=0.025) and arm circumference (-0.63, p=0.011). The 

265 association between umami and anthropometric measures did not change when NMU genetic 

266 variants were added as covariates in the regression model (Table 5, Model 2). The association 

267 between the NMU haplotypes and anthropometric measures, previously observed in the whole 

268 sample of subjects with genetic data available, was not significant in this smaller subsample of 

269 children with taste thresholds and food preference data. 

270

271

272 DISCUSSION

273

274 In this study, conducted in a sub-sample of children from the large European IDEFICS 

275 cohort, we found variants (two SNPs and two haplotypes) of NMU gene associated with preference 

276 for food containing glutamate. Preference for umami food was inversely associated with several 

277 anthropometric parameters such as BMI, weight, waist and arm circumference, skinfolds and fat 

278 mass.

279 This is the first study in humans investigating the potential involvement of NMU in 

280 influencing food preferences and taste perception in humans, although some experimental studies 

281 suggested this potential role. A recent experimental study in rats revealed that NMUR2, one of the 

282 two NMU receptors, could induce preference for high-fat foods (Benzon 2014). The NMUR2 is 

283 located mainly in central nervous system and is highly expressed in the hypothalamous and in other 

284 regions receiving fibers from taste sensory ganglia (Stanska 2016; Li 2017). Our results on the 

285 association between NMU genetic variants and umami food preference support the role of NMU in 
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286 regulating feeding behavior (Jethwa 2005; Kowalski 2005), specifically in neuronal pathways of 

287 taste-like/dislike preferences for umami food. We found no association with other food preferences. 

288 In line with our negative findings, a recent experimental study in mice showed that a NMU analog 

289 has no effect on preference for a sweet drink (Kaisho 2017). Although several hormones and 

290 neuropeptides were suggested as modulators of peripheral gustatory system (Loper 2015), we found 

291 no association between NMU genetic variants and taste perception thresholds. The reason of this 

292 negative result could be a lack of expression of NMU receptors in oral cavity. In fact, we found no 

293 literature data on expression of NMUR1 and NMUR2 in oral cavity, although at least NMUR1 is 

294 abundantly present along the gastrointestinal tract (Li 2017; Hedrick 2000; Raddatz 2000). These 

295 findings confirm that the associations of NMU with food preference is mediated by central nervous 

296 and not peripheral gustatory system.

297 In our population, we found significant associations between umami preference and 

298 anthropometric parameters. Although some associations did not reach statistical significance, all 

299 were concordantly in the direction of a protective effect for umami preference. The strongest 

300 significant association was found for fat mass. Children with preference for umami food present a 

301 decreased fat mass of approximately 1 kg. The umami taste is the fifth taste identified (Ikeda 2002), 

302 induced principally by three molecules: monosodium glutamate (MSG), inosine-5’-monophosphate 

303 (IMP) and guanylo-5’-monophosphate (GMP). These substances enhance the savory of foods and 

304 cause sensation such as pleasure and satisfaction (De Araujo 2003; Kurihara 2015), as well as 

305 insulin release, salivary, gastric and pancreatic secretion, gastric emptying and distal colon 

306 peristalsis (Stanska 2016). These effects could result in the modulation of short-term intake and 

307 satiety by giving umami an important role in appetite control (Masic 2014). The variants found 

308 associated with an increased preference for umami food were the same identified associated with 

309 lower BMI values, in a larger sample of the same population (Gianfagna 2017), suggesting that an 

310 increase in food preferences for umami could be also associated with decreased BMI. Supporting 

311 this hypothesis, a study in rats showed an association between preference of monosodium glutamate 
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312 solution and reduction of obesity (Kondoh 2008). This may suggest a potential mediating effect of 

313 umami food preference in the association between NMU genetic variants and BMI. However, in the 

314 subgroup with food preference data available, the association between NMU variants and BMI was 

315 not significant as we previously reported in the whole sample with genetic data available 

316 (Gianfagna 2013) due to the smaller sample size. The regression coefficient was however similar.

317 The strength of this study is the availability of a children population, which represent a good 

318 model for genetic studies. In fact, since the environment has had less time to exert its effect, 

319 phenotypes have a larger genetic component than in adults. However, taste and food preferences are 

320 influenced by several non-genetic factors, such as social, community and environmental factors, 

321 operating at multiple levels throughout life (Beckerman 2017; Russell 2013), which were not 

322 considered in this analysis. Although a confounding effect should be excluded due to the genetic 

323 study design, we cannot exclude a modification of the genetic effect due to factors not considered in 

324 the analyses. A further limitation of this study is the sample size, which is underpowered for the 

325 mediation effect analysis of umami preferences.

326 In conclusion, variants in the NMU gene might play a role in determining umami food 

327 preferences. This mechanism could mediate part of the association between the same NMU genetic 

328 variants and BMI, previously observed, although further studies are necessary to confirm this 

329 hypothesis.
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481 Table 1. Anthropometric characteristics of N = 578 children with genotype and food preferences or 

482 taste threshold data available. 

483

Variables N
Mean±SD,

n (%)

Age (years; mean±SD) 578 7.5 ±0.8

Males (n, %) 578 310 (53.6%)

Body Mass Index (mean±SD) 578 16.8 ±2.7

BMI z-score (mean±SD) 578 0.47 ±1.17

Weight (kg; mean±SD) 578 27.3 ±6.1

Waist circumference (cm; mean±SD) 578 57.0 ±7.0

Hip Circumference (cm; mean±SD) 577 67.1 ±6.7

Waist to hip (mean±SD) 577 0.85 ±0.05

Arm circumference (cm; mean±SD) 572 19.7 ±2.5

Skinfolds (sum of tricipital and subscapular, mm; mean±SD) 570 19.1 ±8.1

Fat mass (kg; mean±SD) 569 8.1 ±3.8

Overweight+obese 578 135 (23.4%)

Obese 578 49 (8.5%)

Children preferring each modified food versus basic recipe

Fat (n,%) 460 258 (56.1%)

Salt (n,%) 466 297 (63.7%)

Umami (n,%) 461 154 (33.4%)

Sweet (n,%) 514 300 (58.4%)

Flavour (n,%) 518 304 (58.7%)

Taste detection thresholds

Sweet (sucrose 8.8–46.7 mmol/l; mean±SD) 517 19.9 ±11.1

Salty (sodium chloride 3.4–27.4 mmol/l; mean±SD) 522 12.9 ±7.2

Bitter (caffeine 0.26–1.3 mmol/l; mean±SD) 521 0.88 ±0.49

Umami (MSG 0.6–9.5 mmol/l; mean±SD) 516 4.2 ±3.1
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485 Table 2a. Allele frequencies and Hardy-Weinberg equilibrium of the Neuromedin U (NMU) single nucleotide polymorphisms (SNPs; n = 578 with 

486 at least one SNP successfully genotyped).

487

SNP
Major:minor 

allele N
Homozygous 
(major allele) Heterozygous

Homozygous 
(minor allele) 

HWE* 
(p) 

MAF* 
(%)

CEU 
(%) 

rs6827359 T*:C 576 161 (27.9%) 268 (46.5%) 147(25.5%) 0.11 49 40
rs12500837 T*:C 577 323 (56.0%) 216(37.4%) 38 (6.6%) 0.91 24 21
rs9999653 C:T* 574 132 (23.0%) 264 (46.0%) 178(31.4%) 0.42 54 49

488

489 *Hardy-Weinberg Equilibrium (HWE) and Minor Allele Frequency (MAF) were checked on the whole sample of 4649 subjects genotyped; 

490 rs9999653T allele is considered the minor allele based on population frequencies; CEU=Utah Residents (Caucasians) with Northern and Western 

491 European Ancestry 

492

493 Table 2b. Haplotype frequencies (n = 578 with at least one SNP successfully genotyped).

rs6827359 rs12500837 rs9999653 Freq (%)
T T C 43.2%
T T T 7.9%
C C C 2.7%
C C T 22.6%
C T T 23.6%
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495 Table 3. Odds ratios (OR) for preferring specific modified food to basic recipe, in children carrying genetic variants versus wild-type (codominant 

496 model, OR per minor allele).

497

Genotypes 
OR (95%CI)

Haplotypes 
OR (95%CI)

Food 
preferences rs6827359 (C) rs12500837 (C) rs9999653 (T) H2 (CCT) H4 (CTT) H8 (TTT) H7 (TTC)°

Fat 1.04 (0.79-1.36) 0.91 (0.67-1.25) 1.07 (0.82-1.40) 0.98 (0.70-1.38) 1.10 (0.77-1.56) 0.94 (0.57-1.57) 1.00 (0.76-1.31)
Salt 1.07 (0.81-1.40) 0.98 (0.71-1.35) 1.11 (0.84-1.46) 1.06 (0.74-1.51) 1.15 (0.81-1.64) 1.04 (0.62-1.73) 0.93 (0.71-1.22)
Sweet 1.11 (0.87-1.42) 0.95 (0.71-1.26) 1.16 (0.91-1.49) 1.04 (0.75-1.44) 1.24 (0.90-1.70) 1.21 (0.77-1.89) 0.88 (0.68-1.13)
Flavour 0.93 (0.73-1.20) 0.90 (0.67-1.20) 0.89 (0.69-1.15) 0.85 (0.61-1.18) 0.98 (0.70-1.36) 0.94 (0.59-1.51) 1.08 (0.83-1.41)
Umami 1.61 (1.20-2.17)* 1.34 (0.96-1.87) 1.59 (1.18-2.13)* 1.63 (1.11-2.40) 1.70 (1.16-2.50) 1.38 (0.78-2.42) 0.42 (0.27-0.66)*§

W/M vsW/W† 1.17 (0.69-1.97) 1.26 (0.80-1.96) 0.94 (0.54-1.64) 1.56 (0.96-2.53) 1.29 (0.78-2.11) 1.50 (0.76-2.95) 0.42 (0.26-0.68)*
M/M vsW/W† 2.57 (1.43-4.61)* 1.98 (0.87-4.50) 2.31 (1.29-4.15)* 2.92 (1.17-7.33) 4.78 (1.86-12.30)* 1.00 (0.18-5.70) 0.43 (0.24-0.78)

498

499 Bold: nominally significant associations; *significant also after FDR correction, including rare haplotypes (not shown); § results for dominant 

500 model °all other haplotypes as reference; †Genotype or haplotype contrasts: for genotype analysis, heterozygotes or homozygotes for variant alleles 

501 (M) vs homozygotes for wild-type allele (W, ref); for haplotype analysis, subjects with 1 (w/M) or two (M/M) copies of a specific haplotypes versus 

502 subjects with the most frequent haplotype (TTC). Analyses adjusted for age, sex, country
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504 Table 4. Differences in detection thresholds for specific tastes, in children carrying genetic variants versus wild-type (codominant model, threshold 

505 change per minor allele).

506

Genotypes 
(beta±SE, p)

Haplotypes 
(beta±SE, p)

Taste 
thresholds rs6827359 (C) rs12500837 (C) rs9999653 (T) H2 (CCT) H4 (CTT) H8 (TTT) H7 (TTC)°

Sweet -0.34±0.65 (0.60) -0.03±0.75 (0.97) -0.90±0.64 (0.16) -0.59±0.83 (0.48) -0.79±0.84 (0.35) -1.57±1.31 (0.23) 0.74±0.65 (0.26)
Salty  0.37±0.42 (0.38) 0.59±0.49(0.23) -0.18±0.42 (0.66) 0.35±0.54 (0.52) -0.15±0.55 (0.78) -1.57±0.84 (0.06) 0.07±0.42 (0.87)
Bitter -0.02±0.03 (0.51) 0.02±0.03 (0.63) -0.02±0.02 (0.52) -0.004±0.04 (0.92) -0.03±0.037 (0.44) 0.06±0.06 (0.33) 0.001±0.03 (0.97)
Umami -0.08±0.18 (0.66) 0.12±0.22 (0.59) -0.14±0.19 (0.46) 0.002±0.24 (0.99) -0.24±0.24 (0.32) -0.08±0.38 (0.83) 0.10±0.19 (0.61)

507

508 °All other haplotypes as reference. Analysis adjusted for age, sex and country. Lower detection threshold values indicate higher sensitivity 

509 for a specific tastant.
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511 Table 5. Associations between anthropometric variables and umami or NMU variants in the IDEFICS children population.

N Model 1 Model 2
Anthropometric N Umami preferences Umami preferences H2/H2 H4/H4 H8/H8
BMI z-score (beta±SE, p) 456 -0.25±0.12 (0.034)*° -0.23±0.12 (0.043)° -0.12±0.26 (0.64) -0.15±0.23 (0.52) 0.22±0.60 (0.71)
Waist z-score (beta±SE, p) 456 -0.16±0.19 (0.42) -0.12±0.19 (0.53) -0.11±0.28 (0.69) 0.29±0.29 (0.32) 0.03±0.82 (0.97)
Arm circumference (beta±SE, p) 450 -0.63±0.25 (0.011)* -0.58±0.23 (0.011)* -0.26±0.52 (0.61) -0.41±0.44 (0.36) 0.61±1.34 (0.65)
Skinfolds§ (beta±SE, p) 450 -1.75±0.78 (0.025)* -1.71±0.68 (0.012)* -0.53±1.49 (0.72) 0.05±1.45 (0.98) -2.18±1.92 (0.26)
Fat mass (beta±SE, p) 453 -0.93±0.37 (0.012)* -0.85±0.34 (0.012)* -0.21±0.77 (0.78) -0.74±0.61 (0.23) 0.98±2.08 (0.64)
Overweight/obesity (OR, 95%CI) 456 0.70 (0.42-1.17) 0.72 (0.44-1.19) 1.09 (0.40-2.98) 0.80 (0.29-2.16) 0.96 (0.09-10.66)

512

513 Model 1: age, sex and country; model 2: all in model 1 plus haplotypes. Bold: nominally significant associations; *significant also after FDR 

514 correction; § sum of tricipital and subscapular skinfolds; ° This is equal to -6.1±3.0 (beta±SE) BMI percentiles of the European population 

515 distribution (extended definition, Cole et al. 2012) Analysis adjusted for age, sex, country

516
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Supplementary Table 1. Associations between Neuromedin U genotypes and food preferences in the IDEFICS children population.

Genotypes 
OR (95%CI)

Haplotypes 
OR (95%CI)

Food 
preferences

Genotype or 
haplotype 
contrast†

rs6827359 (C) rs12500837 (C) rs9999653 (T) H2 (CCT) H4 (CTT) H8 (TTT) H7 (TTC)°

Fat W/M vsW/W 1.06 (0.67-1.68) 0.83 (0.55-1.25) 0.84 (0.55-1.25) 0.91 (0.59-1.40) 1.04 (0.67-1.61) 0.81 (0.44-1.49) 0.88 (0.57-1.36)
M/M vsW/W 1.07 (0.63-1.84) 0.98 (0.44-2.19) 1.13 (0.66-1.92) 1.15 (0.50-2.67) 1.35 (0.52-3.49) 1.84 (0.34-9.97) 1.03 (0.59-1.79)

Salt W/M vsW/W 1.21 (0.76-1.93) 1.05 (0.69-1.60) 1.22 (0.74-2.02) 1.14 (0.73-1.80) 1.23 (0.78-1.94) 0.87 (0.49-1.56) 0.97 (0.62-1.54)
M/M vsW/W 1.12 (0.65-1.94) 0.85 (0.39-1.88) 1.24 (0.72-2.13) 0.96 (0.40-2.30) 1.15 (0.50-2.65) 2.99 (0.28-32.52) 0.85 (0.49-1.47)

Sweet W/M vsW/W 1.06 (0.69-1.63) 1.00 (0.68-1.46) 1.11 (0.70-1.77) 1.03 (0.69-1.54) 1.21 (0.81-1.82) 1.13 (0.66-1.95) 0.84 (0.56-1.25)
M/M vsW/W 1.24 (0.75-2.04) 0.82 (0.40-1.68) 1.34 (0.81-2.20) 1.11 (0.48-2.57) 1.59 (0.71-3.56) 1.87 (0.47-7.41) 0.79 (0.47-1.32)

Flavour W/M vsW/W 1.26 (0.82-1.96) 0.87 (0.59-1.29) 1.20 (0.74-1.93) 0.77 (0.51-1.16) 0.93 (0.61-1.42) 0.94 (0.56-1.59) 1.42 (0.94-2.13)
M/M vsW/W 0.86 (0.52-1.42) 0.84 (0.41-1.75) 0.83 (0.50-1.37) 0.89 (0.38-2.08) 1.07 (0.47-2.41) 0.88 (0.16-4.80) 1.08 (0.64-1.84)

Umami W/M vsW/W 1.17 (0.69-1.97) 1.26 (0.80-1.96) 0.94 (0.54-1.64) 1.56 (0.96-2.53) 1.29 (0.78-2.11) 1.50 (0.76-2.95) 0.42 (0.26-0.68)*
M/M vsW/W 2.57 (1.43-4.61)* 1.98 (0.87-4.50) 2.31 (1.29-4.15)* 2.92 (1.17-7.33) 4.78 (1.86-12.30)* 1.00 (0.18-5.70) 0.43 (0.24-0.78)

Bold: nominally significant associations; *significant also after FDR correction, including rare haplotypes (not shown); °all other haplotypes as 
reference; † for genotype analysis, heterozygotes or homozygotes for variant alleles (M) vs homozygotes for wild-type allele (W, ref); for haplotype 
analysis, subjects with 1 (w/M) or two (M/M) copies of a specific haplotypes versus subjects with the most frequent haplotype (TTC). Analyses 
adjusted for age, sex, country.
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Supplementary Table 2. Associations between Neuromedin U genotypes and taste thresholds in the IDEFICS children population.

Genotypes 
(beta±SE, p)

Haplotypes 
(beta±SE, p)

Taste
Genotype or 

haplotype 
contrast†

rs6827359 (C) rs12500837 (C) rs9999653 (T) H2 (CCT) H4 (CTT) H8 (TTT) H7 (TTC)°

Sweet W/M vsW/W -0.35±1.11 (0.75) -0.08±0.99 (0.93) -1.43±1.17 (0.22) -1.01±1.05 (0.34) -0.83±1.02 (0.41) -1.79±1.32 (0.18) 0.69±0.99 (0.49)
M/M vsW/W -0.68±1.30 (0.60) 0.03±1.87 (0.99) -1.83±1.29 (0.16) -0.28±2.09 (0.89) -1.46±2.06 (0.48) -1.97±1.99 (0.32) 1.48±1.33 (0.26)

Salt W/M vsW/W 1.12±0.72 (0.12) 1.24±0.64 (0.054) 0.24±0.77 (0.75) 0.68±0.69 (0.32) -0.10±0.70 (0.88) -1.51±0.82 (0.07) 0.70±0.67 (0.29)
M/M vsW/W 0.67±0.84 (0.43) 0.04±1.22 (0.97) -0.34±0.84 (0.69) 0.00±1.24 (1.00) -0.41±1.30 (0.75) -3.25±1.68 (0.053) 0.02±0.86 (0.98)

Bitter W/M vsW/W -0.01±0.05 (0.85) 0.03±0.04 (0.53) -0.01±0.05 (0.84) 0.01±0.05 (0.80) -0.02±0.05 (0.59) 0.01±0.06 (0.89) -0.01±0.05 (0.90)
M/M vsW/W -0.04±0.06 (0.50) 0.01±0.08 (0.89) -0.04±0.06 (0.53) -0.03±0.09 (0.75) -0.07±0.08 (0.37) 0.27±0.18 (0.13) 0.00±0.06 (0.95)

Umami W/M vsW/W -0.50±0.32 (0.12) 0.14±0.29 (0.61) -0.43±0.34 (0.20) 0.01±0.31 (0.97) -0.32±0.31 (0.30) -0.09±0.46 (0.85) -0.35±0.30 (0.25)
M/M vsW/W -0.13±0.38 (0.74) 0.19±0.54 (0.73) -0.29±0.37 (0.43) 0.00±0.57 (0.99) -0.34±0.49 (0.49) -0.22±1.17 (0.85) 0.28±0.39 (0.47)

° All other haplotypes as reference;  † for genotype analysis, heterozygotes or homozygotes for variant alleles (M) vs homozygotes for wild-type 
allele (W, ref); for haplotype analysis, subjects with 1 (w/M) or two (M/M) copies of a specific haplotypes versus subjects with the most frequent 
haplotype (TTC).  Analyses adjusted for age, sex, country. Lower detection threshold values indicate higher sensitivity for a specific tastant.




