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Abstract The objective of the paper is that of constructing finite Gaussian
mixture approximations to analytically intractable density kernels. The pro-
posed method is adaptive in that terms are added one at the time and the
mixture is fully re-optimized at each step using a distance measure that ap-
proximates the corresponding importance sampling variance. All functions of
interest are evaluated under Gaussian product rules. Since product rules suffer
from an obvious curse of dimensionality, the proposed algorithm as presented
is only applicable to models whose non-linear and/or non-Gaussian subspace is
of dimension up to three. Extensions to higher-dimensional applications would
require the use of sparse grids, as discussed in the paper. Examples include
a sequential (filtering) evaluation of the likelihood function of a stochastic
volatility model where all relevant densities (filtering, predictive and likeli-
hood) are closely approximated by mixtures.

Jean-François Richard acknowledges support from the National Science Foundation under
grant no.1529151.

Natalia Khorunzhina
Copenhagen Business School
Department of Economics
Porcelænshaven 16A
2000 Frederiksberg, Denmark
Tel.: +45 3815 2403
E-mail: nk.eco@cbs.dk

Jean-François Richard
University of Pittsburgh
Department of Economics
4917 Wesley W. Posvar Hall
Pittsburgh, PA 15260, USA
Tel.: 1 412 6481750
E-mail: fantin@pitt.edu



2 Natalia Khorunzhina, Jean-François Richard

Keywords Finite mixture · Distance measure · Gaussian quadrature ·
Importance sampling · Adaptive algorithm · Stochastic volatility · Density
kernel

1 Introduction

Starting with early contributions more than a century ago by Newcomb (1886),
Holmes (1892), Weldon (1892, 1893), and Pearson (1894) among others, finite
mixtures have been continuously used in statistics (see section 2.18 in McLach-
lan and Peel 2000 for a short history of finite mixture models and Table 2.13
in Titterington et al 1985 for an extensive list of direct applications of mix-
tures; see also the monographs of Everitt and Hand 1981, Scott 1992, and
Frühwirth-Schnatter 2006). More recently, mixtures of normal distributions
have been increasingly applied in macro- and micro-economics (e.g., regime-
switching models of economic time series in Hamilton 1989, or analysis of
dynamics of educational attainment in Keane and Wolpin 1997, and Cameron
and Heckman 2001), marketing science (structured representation of market
information in DeSarbo et al 2001, and forecasting of new product sales in
Moe and Fader 2002), and empirical finance (modeling stock returns in Kon
1984, and Tucker 1992, value-at-risk in Duffie and Pan 1997, Venkataraman
1997, and Hull and White 1998, stochastic volatility models in Kim et al 1998
and Omori et al 2007).

In the present paper we focus our attention on the specific problem of using
finite mixture of Gaussian densities for approximating a non-standard density
kernel. Such approximations are critically needed when inference requires nu-
merical integration of an analytically intractable density kernel, such as a
marginal likelihood for a non-linear and/or non-Gaussian state-space model
or a Bayesian posterior density . Whether one relies upon direct numerical in-
tegration (Gaussian quadratures) or simulation methods such as Importance
Sampling (IS) or Markov Chain Monte Carlo (MCMC), the numerical accu-
racy of the results critically depends on the quality of approximation. For
example, an inefficient inportance sampler might require prohibitive number
of draws to produce accurate results, or might even fail to converge due to tail
problems (see, e.g., Geweke, 1996)

Finite mixtures are conceptually attractive within this context since theo-
retically they can produce accurate approximations to most density functions,
depending upon the number of components (Ferguson, 1973).

There exist a vast literature which proposes various procedures for con-
structing finite (mostly Gaussian) mixture approximations. In a nutshell, the
key numerical issues are the selection of a distance measure to assess goodness
of fit, the (typically sequential) determination of the number of terms in the
approximating mixtures and the estimation of its component parameters and
weights.

Extending earlier proposals by West (1992), Oh and Berger (1993), Cappé,
Guillin, Marin, and Robert (2004), and Douc, Guillin, Marin, and Robert
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(2007), Cappé, Douc, Guillin, Marin, and Robert (2008) proposes an adaptive
algorithm to optimize the IS performance of a mixture sampler with a prede-
termined number of components. Specifically, their Mixture Population Monte
Carlo (M-PMC) algorithm aims at maximizing the entropy criterion between
a target kernel and the mixture approximation. It is adaptive in that it relies
upon sampling from the current mixture proposal in updating its weights and
component parameters. Convergence is assessed on the basis of the Shannon
entropy of the normalized IS ratios.

Hoogerheide et al (2007) propose an adaptive algorithm to construct mix-
tures of Student-t distributions to approximate an arbitrary target density
with the objective of minimizing the variance of the corresponding IS ratios.
Adaption means that the components of the mixture are introduced sequen-
tially until a good enough fit is obtained. This algorithm has been implemented
within the R package AdMit in Ardia et al (2009). A subsequent adaptive al-
gorithm is developed by Hoogerheide et al (2012) and implemented into the R
package MitISEM by Basturk et al (2012). As we shall see, the algorithm we
propose below is adaptive in the sense of Basturk et al (2012), but differs in
several important ways: it relies upon a different distance measure; the latter
is evaluated by Gaussian quadrature instead of importance sampling (classi-
cal) or Metropolis-Hastings (bayesian); optimization relies upon an analytical
gradient optimizer and initial values are computed differently.

Giordani and Kohn (2010) propose an adaptive Independent Metropolis-
Hastings algorithm for constructing mixture proposal densities. Fast re-estimation
of the mixtures relies upon a k-means algorithm discussed in Bradley and
Fayyad (1998) and subsequently in Hamerly and Elkan (2002) and Gior-
dani and Kohn (2010). Efficient designs rely upon reducing the number of
re-estimations as coverage improves.

Kurtz and Song (2013) propose a Cross-Entropy-Based Adaptive Impor-
tance Sampling algorithm to construct an optimal Gaussian mixture IS density
with a preassigned number of terms. The objective function that is sequentially
minimized is the Kullback-Leibler cross-entropy between the target density
and the mixture.

The approach of Bornkamp (2011) relies upon iterated Laplace approxima-
tions to add components one by one as needed. However, only the weights of the
mixture components are re-optimized with each iteration while their Laplace
modes and inverted Hessians are left unchanged. It immediately follows that
a mixture target cannot be reproduced. In sharp contrast our algorithm in-
cludes full sequential re-optimization to the effect that if the target density
is a mixture it reproduces it exactly as we shall illustrate in section 3.1 for
example 2 in Bornkamp (2011).

In this paper we propose a fully adaptive algorithm to construct Gaus-
sian mixture approximations to a low-dimensional (n ≤ 3) target density
kernel. Our algorithm is also applicable in higher dimensional models that
can be factorized into a linear Gaussian conditional density and a marginal
non-standard density to be approximated by a mixture. An example of such
dimension reduction is provided in section 3.2 below. Our algorithm includes
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full re-optimization with the introduction of each additional component. Since
such mixture approximations will often be used as importance sampling or pro-
posal densities, we use an efficient importance sampling (EIS) approximation
of the sampling variance as our distance measure to be minimized, whereby
optimization takes the form of an auxiliary non-linear least squares problem.

Our algorithm is illustrated by several test cases. The first application
approximates a mixture of three bivariate normal distributions and demon-
strates the ability of the proposed algorithm to exactly reproduce the target
mixture. The second application approximates a bivariate skew-distribution, a
class of densities of growing importance in economics (modeling fertility pat-
terns in Mazzuco and Scarpa, 2015, stochastic frontier analysis in Domı́nguez-
Molina et al, 2004, sample selection models in Marchenko and Genton, 2012;
Ogundimu and Hutton, 2016) and finance (capital asset pricing models in Ad-
cock, 2004, 2010). Our third application deals with a basic stochastic volatility
model, whose measurement density can be approximated by a mixture of nor-
mal distributions (see, e.g. Kim et al, 1998; Omori et al, 2007). The potential
scope of applications of our procedure is not limited to approximating ana-
lytically intractable densities. Our procedure provides alternative numerical
solutions to a wide range of problems in economics and finance, some of which
we outline in the paper.

The paper is organized as follows: the baseline algorithm is presented in
section 2; examples are presented in section 3. In section 4, we discuss future
research plans together with pilot applications. Section 5 concludes. Technical
derivations are regrouped in as Appendix.

2 Mixture approximation

2.1 Notation

Let ϕ(x) denote the target (density) kernel to be approximated. Its integrating
constant on the support D ⊂ Rd is given by

G =

∫
D

ϕ(x)dx (1)

and is typically unknown. We note that ϕ and G could depend on unknown
parameters in which case the approximations presented below would have to
be re-computed for each new parameter value. Dependence on such parame-
ters is omitted in our notation for ease of presentation. Let k(x, α) denote a
parametric Gaussian kernel of the form

k(x, α) = |R| exp

[
−1

2
(x− µ)

′
RR

′
(x− µ)

]
, (2)

with R (Cholesky) lower triangular (with the elements rij , where rii > 0)
and α = (µ,R). Since G is generally unknown and not equal to 1, we aim at
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constructing an un-normalized Gaussian mixture kernel of the form

kJ(x, aJ) =

J∑
j=1

eδjk(x, αj) (3)

with aJ = ((α1, δ1), ..., (αJ , δJ)). The corresponding importance sampling den-
sity is given by1

mJ(x|aJ) = χ−1J (aJ)kJ(x, aJ) (4)

χJ(aJ) = (2π)d/2
J∑
j=1

eδj (5)

with component probabilities

πi = eδi

 J∑
j=1

eδj

−1 . (6)

The corresponding IS ratios are proportional to

ν(x, aJ) =
ϕ(x)

kJ(x, aJ)
(7)

with proportionately constant G−1χJ(aJ).

2.2 Distance measure

Most of the approximation methods we have surveyed, as well as the one we
propose, can be subsumed under the heading “minimum distance estimators”.
Table 4.5.1 in Titterington et al (1985) lists several distance measures that
have been used in the literature and discusses their relative merits, noting that
the choice of a distance measure can be very important and should, therefore,
be guided by the intended usage of the approximations. Since most of the
applications that we have in mind require the construction of efficient proposal
densities for IS and MCMC, we rely upon the distance measure proposed by
Richard and Zhang (2007) for EIS. It consists of a second order approximation
to the sampling variance of the IS ratios in Equation (7) and is proportional
to

fJ(aJ) =
1

2

∫
D

[lnϕ(x)− ln kJ(x, aJ)]
2
ϕ(x)dx. (8)

Note the absence of an intercept in the squared difference. Inclusion of an
intercept would indeed require that the mixture weights eδj add up to 1 for
identification. It is far more convenient to leave these weights unconstrained
by setting the intercept equal to zero. This being said, in order to avoid poten-
tially large imbalances between lnϕ(x) and ln kJ(x, aJ), it is often advisable

1 Or a truncated version thereof is D is a strict subset of Rd.
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to normalize ϕ(x) by (2π)d/2Ĝ0, where Ĝ0 denotes an initial estimate of G
as obtained below. In such a case we might expect the sum of the mixture
weights to get closer to 1 as J increases.

2.3 Gaussian integration

Obviously, fJ(aJ) in Equation (8) has to be evaluated numerically. In order to
apply IS for that purpose, Richard and Zhang (2007) propose replacing fJ(aJ)
in Equation (8) by

f̃J(aJ) =
1

2

∫
D

[lnϕ(x)− ln kJ(x, aJ)]
2
mJ(x|aJ)dx. (9)

While f̃ is not equivalent to f (unless mJ(x|aJ) were proportional to ϕ(x),
in which case the problem is solved), it provides an alternative operational
distance measure to approximate lnϕ(x). Foremost, its IS estimate is then
given by

f̂J(aJ) =
1

2S

S∑
i=1

[lnϕ(x̃i)− ln kJ(x̃i, aJ)]
2
, (10)

where {x̃i}Si=1 denotes S i.i.d. draws from mJ(x|aJ). Since these draws depend

on aJ , minimization of f̂J(aJ) obtains from a fixed point sequence whereby

â
[l]
J is computed under draws from mJ(x|â[l]J ), with an initial estimate â

[o]
J

obtained e.g. from Laplace approximations (see Richard and Zhang, 2007, for
implementation details). However, we found out from initial trial runs that
such a fixed point procedure cannot be recommended for mixtures since it
fails to produce enough draws for reliable estimation of low probability mixture
components (since, in particular, the gradient for αj is proportional to eδj , as
discussed further in section 3 below).

Instead we propose to evaluate fJ(aJ) using a product of univariate Gaus-
sian quadrature. Product rules remain manageable for low dimensions, say
d 6 3. Higher dimensions require the use of sparse grids, as will be discussed
in section 4. We can also take advantage of situations where ϕ(x) can be
partitioned into

ϕ(x) = ϕ1(x1)ϕ2(x2|x1) (11)

with x1 low-dimensional and ϕ2 a linear Gaussian kernel, in which case only
ϕ1 needs to be approximated by a mixture.

We implemented three different product rules based on Legendre, Hermite
and Mixture-Hermite quadratures, all of which are paired with appropriate
linear transformations of x. The key trade-off between Legendre and Hermite
rules is largely depending on the tail behaviour of the target kernel. Hermite
rules operate on Rd and will reach far in the tails of the target, but will often
waste nodes (especially for product rules) in distant regions where tails become
negligible for practical purposes. Legendre rules avoid that tail problem to a
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large extent by operating on bounded subspaces of Rd but could fail to ade-
quately capture tail behaviour in the case of excessive truncation (a problem
that is, nevertheless, easy to detect by an additional trial run under increased
range). An explicit comparison between the three rules is provided in section
3.2.

2.3.1 Legendre

Depending on how far we might want to account for tail behaviour, we might
consider restricting the range of approximation to a bounded linear subspace
of Rd. This can be done by introducing a linear transformation of the form

x = b+ Cy, y ∈ [−1, 1]d (12)

with Jacobian JL = |C|. For example, if we use the diagonal transformation

xi =
1

2
[(bi + ci) + yi(bi − ci)], bi > ci (13)

with Jacobian JL =
∏d
i=1

1
2 (bi − ci), then xi ∈ [ci, bi]. More generally, by

using a non-diagonal transformation, we can take advantage of tilted axes or
asymmetries in ϕ(x).

Selection of an n-point Legendre quadrature generates N = nd product
nodes and weights {(yLi , wLi )}Ni=1 that are transformed into {(xi, wi)}Ni=1 by
Equation (12), together with wi = JLwLi ϕ(xi). It follows that the distance
measure fJ(aJ) in Equation (8) is approximated by

f̂J(aJ) =
1

2

N∑
i=1

wi [lnϕ(xi)− ln kJ(xi, aJ)]
2
. (14)

Minimization of f̂J(aJ) with respect to aJ is discussed in section 2.5 below.
One potentially important computational advantage of Legendre quadratures
as well as Hermite quadratures discussed next, is that the nodes and weights
{(xi, wi)}Ni=1 remain unchanged across all J ’s. This is not the case with Im-
portance Sampling in Equation (10), or with Hermite mixture quadratures in
section 2.3.3 below.

2.3.2 Hermite

The use of Hermite quadratures offers the advantage that it operates on Rd

though it requires attention since it relies on a Gaussian thin tail weight func-
tion. It is particularly attractive when ϕ(x) itself includs a Gaussian kernel,
say

ϕ(x) = φ(x)F (x) (15)

with

φ(x) = exp

[
−1

2
(x−m0)

′
H0(x−m0)

]
(16)
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and F (x) typically well-behaved. In such a case we can rely on a transformation
of the form

x = m0 +
√

2P0y, with P
′

0H0P0 = Id (17)

and Jacobian JH = 2d/2|P0|. φ(x) is then transformed into the Hermite weight
function exp(−y′y). The Hermite nodes and weights {(yHi , wHi )}Ni=1 are trans-
formed into {(xi, wi)}Ni=1 by Equation (17) together with wi = JHwHi and

f̂J(aJ) is estimated according to the Equation (14).
Actually, we can use Hermite even when ϕ(x) does not include a Gaussian

kernel provided we pay attention to tail behaviour. Specifically, by introducing
an auxiliary kernel φ(x) of the form given by Equation (16) we can rewrite
fJ(aJ) as

fJ(aJ) =
1

2

∫
[lnϕ(x)− ln kJ(x, aJ)]

2

[
ϕ(x)

φ(x)

]
φ(x)dx. (18)

This equation is then evaluated using the Equation (14) with the following
adjustments: we now use Hermite nodes and weights and the corresponding
adjusted weights wi are given by

wi = JHwHi
[
ϕ(xi)

φ(xi)

]
. (19)

It is then critical that the ratios ϕ(xi)/φ(xi) remain sufficiently well-behaved
(at minimum for all xi’s). Laplace approximations are often used to construct
Gaussian kernel approximations. However, they can produce tails that are
too thin and induce unacceptably large variations in the weights wi. We rec-
ommend instead using moment approximations for m0 and H0, following a
procedure presented in section 3 to compute initial values.

2.3.3 Mixture-Hermite

A computationally more intensive but potentially more accurate procedure
consists of using a J-term mixture approximation as weight function in step
J . Specifically, fJ(aJ) is rewritten as

fJ(aJ) =
1

2

J∑
j=1

eδ
o
j

∫
[lnϕ(x)− ln kJ(x, aJ)]

2
ν(x, aoJ)kJ(x, αoJ)dx. (20)

with

ν(x, aoJ) =
ϕ(x)

kJ(x, aoJ)
, j : 1→ J (21)

where aoJ = {αoj , δoj }Jj=1, are set (and kept fixed) at the initial values selected
for the aJ optimization. Indeed, we do not recommend using an EIS type fixed-
point optimization sequence for âJ since, in particular, the optimal mixture
that obtains at step J will be replaced by a new one at step J + 1 (as long
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as we keep increasing J). An obvious choice for aoJ = {αoj , δoj }
J−1
j=1 for J > 1

consists of the optimal âJ−1 obtained at step J − 1, while for (αoJ , δ
o
J) we can

use the initial values for step J obtained as described in section 2.6.2 below.
Actually, for J > 1, we can run the summation in Equation (20) from j = 1 to
J − 1, ignoring the new term. Both alternatives are covered by Equation (20)
if we run summation from j = 1 to JM , where JM = 1 for J = 1 and either J
or J − 1 for J > 1.

Next, we apply the transformation in Equation (17) indexed by j to each
term in the summation. This produces a new set of nodes and weights that
are given by

xij = mj
0 +
√

2P j0 yi (22)

wij = eδ
0
jwjν(xij , a

o
J) (23)

for i : 1→ N and j : 1→ JM . The estimate of fJ(aJ) is then given by

f̂J(aJ) =
1

2

JM∑
j=1

N∑
i=1

wij [lnϕ(xij)− ln kJ(xij , aJ)]
2
. (24)

Potential advantages of that procedure are twofold. As J increases, kJ(x, aJ)
provides a closer approximation to ϕ(x) so that the variance of the ratios
ν(x, aoJ) is expected to decrease significantly thereby alleviating the thin tail
problem inherent to Hermite. Also the number of nodes is now given by NJM
and is, therefore, proportional to the number of auxiliary parameters in aJ .
Thus it is possible to reduce the number N of grid points accordingly. A
significant drawback is that each J iteration relies upon a new grid, in sharp
contrast with the Legendre and Hermite when the grid remains the same for
all J ’s.

2.4 Identification

In it well known that Maximum Likelihood (thereafter ML) estimation of mix-
tures raises important issues of identifiability and regularity. See Titterington
et al (1985, section 3.1) or Frühwirth-Schnatter (2006, section 1.3). These are
three main issues: (i) mixtures are invariant relative to a permutation (re-
labeling) of their components; (ii) parameters of a component with (near)
zero probability or of two equal components are not (or poorly) identified -
this is referred to as “overfitting”; and (iii) determination of the number of
components is complicated by the fact that standard asymptotic theory does
not apply when parameters lie at the boundary of the parameter space. See
McLachlan and Peel (2000, section 6.1) or Kasahara and Shimotsu (2015).

Relabeling or permutation appear to have no practical implications for our
algorithm. While it certainly can happen, it is inconsequential for our gradient
minimization of fJ(aJ). We have never faced a convergence problem that could
be attributed to relabeling. Initially, we did incorporate in our algorithm an
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ordering of the means but found out that is complicates programming and
does not affect or even accelerate convergence. Failure of regularity conditions
is irrelevant in a framework where we discuss approximating a known density
kernel and when, as we discuss next, addition of new terms is linked to further
reductions in the distance measure fJ(aJ).

Overfitting is obviously an issue but one that is actually easy to address. As
discussed in the Appendix, gradients are proportional to the mixture weights
eδ

o
j to the extent that optimization will inevitably be problematic for any new

term with a (relatively) very low weight. However, such terms would minimally
contribute to lowering further fJ(aJ). Thus, as discussed next, low weight is
one of the stopping criterion that can be implemented.

2.5 Minimization of the distance measure

In order to minimize the distance measure fJ(aJ) in Equation (8), more specif-
ically its quadrature estimates in Equation (14), (18) or (24), we can take ad-
vantage of the fact that the first and second order derivatives of ln kJ(x, aJ)
with respect to aJ obtain analytically. Thus, we can use numerical optimizers
that rely upon analytic gradients and, possibly, Hessians. After extensive ini-
tial experimentation, we found out that a quasi-Newton method using analytic
gradient is numerically efficient for minimizing fJ(aJ). The expressions for the
analytic gradient of fJ(aJ) are derived in Appendix.

In addition to supplying subroutines to analytically evaluate fJ(aJ) and its
gradient, we also need to provide initial values and a diagonal scaling matrix.
Initial values are derived in the next section. As for scaling, we found that the
default option (all diagonal entries set to 1) works perfectly fine as long as ϕ(x)
is approximately normalized in order to avoid large imbalances with kJ(x, aJ).
While such normalization was not needed for the examples presented below, an
obvious solution consists of dividing ϕ(x) by G0, an initial quadrature estimate
of its integral as presented next.

2.6 Initial values

Numerical minimization of fJ(aJ) in step J requires initial values for aJ =
{µj , Rj , δj}Jj=1 in Equation (3). Thus, for J = 1, we need to provide initial
(µo1, R

o
1, δ

o
1). For J > 1, it is natural to define the new initial value of aoJ as

aoJ = âJ−1∪ (µoJ , R
o
J , δ

o
J), where âJ−1 denotes the optimal mixture parameters

obtained at step J − 1 (with a minor proportional adjustment to the mixture
weight).

A fairly common practice in the literature surveyed in Introduction, con-
sists of relying upon (local) Laplace approximations to construct µoJ and

Ho
J = RoJR

o′

J . For example, Ardia et al (2009) define µoJ as the (global) maxi-
mum of the importance sampling log ratio

ln νJ−1(x, âJ−1) = lnϕ(x)− ln kJ−1(x, âJ−1), (25)



Approximations to Analytically Intractable Density Kernels 11

and use minus its Hessian for Ho
J . Bornkamp (2011) applies the same idea to

the log difference ln rJ−1(x), with

rJ−1(x) = ϕ(x)− kJ−1(x, aJ−1), (26)

where rJ−1(x) has to be bounded below by some ε > 0 to avoid problems com-
puting its logarithm. We experimented with Bornkamp’s method and found
out that it works overall quite well.

However, we now rely on a different approach to construct initial values
that takes advantage of the fact that Gaussian quadratures can be used to
compute moments (whether truncated or not) directly. The advantage of this
procedure is twofold: (i) it replaces local Laplace approximations by global
ones, a concept that is central to the EIS principle introduced by Richard
and Zhang (2007); and (ii) it relies exclusively upon function evaluations that
were already produced using the step J − 1 Gaussian grid, while Laplace
approximations require new function evaluations for the mode and Hessian.
Thus, the computation of initial values relies upon integrals of the form:

H =

∫
D

h(x)ϕ(x)dx. (27)

Under Legendre and Hermite rules, the computation of H relies upon the
fixed grid (xi, wi)

N
i=1 associated with the selected rule. Under the mixture

approach for J > 1, the grid consists of the grids associated with the J − 1
individual Gaussian kernels in kJ−1(x, âJ−1). For the ease of notation, we run
the summation over i from 1 to M , where M is either N (Legendre, Hermite)
or (J − 1)N (mixture for J > 1). Let ν(x) denote the ratio between ϕ(x) and
the selected weight function. It is given by

Legendre : ν(x) = 1 (28a)

Hermite : ν(x) = ϕ(x)/φ(x), with φ(x) defined in (18) (28b)

Mixture(J > 1) : ν(x) = ϕ(x)/kJ−1(x, âJ−1) (28c)

The quadrature estimate of H is then given by

ĤN =

M∑
i=1

w̃ih(xi), (29)

where w̃i denotes the adjusted weight

w̃i = wiν(xi). (30)

Next, we describe how formulas (28)-(30) are used to construct the initial
values aoJ = {µoj , Roj , δoj }Jj=1.
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2.6.1 Initial values for step J = 1

Under Legendre and Hermite rules, we compute initial values for (µo1, R
o
1) as

follows:

µo1 =

M∑
i=1

w∗i xi (31)

Σo
1 =

M∑
i=1

w∗i (xi − µo1)(xi − µo1)
′

(32)

with

w∗i =
w̃i∑M
j=1 w̃j

. (33)

and Ro1 obtaining from the Cholesky factorization of Ho
1 = Σo−1

1 = Ro1R
o′

1 .
As for δo1 , we equate the initial estimate of G0 with (2π)d/2, the integrating

factor of k(x, αo1). Thus

δo1 = ln

(
M∑
i=1

w̃i

)
− d

2
ln 2π. (34)

For the mixture approach, we use either Legendre or Hermite, as described
above, to produce the initial step J = 1 mixture.

2.6.2 Initial values for step J > 1

As already mentioned, the initial values for step J > 1 essentially consist of
the optimal âJ−1 obtained at step J − 1 complemented by initial values for
the added term:

aoJ ' âJ−1 ∪ (µoJ , R
o
J , δ

o
J) (35)

with a downward adjustment for (δ̂j)
J
j=1. The latter is justified by the fact that

the integrating factor of the successive mixture kJ(x, âJ) all approximate the
same (unknown) constant G. Thus the addition of a new term with exp(δoJ) >

0 should result in a reduction of the current δ̂j ’s. We experimented with a
variety of rules of thumb to select δoJ . Based on the observation that new

terms generally exhibit decreasing δ̂j ’s, we adopted the following simple rule
that works consistently well:

(i) Define δ∗J as the smallest of the current δ̂j ’s:

δ∗J = min δ̂j , for j = 1, ..., J − 1 (36)

(ii) Compute an adjustment ratio θJ < 1 defined as

θJ =

 J∑
j=1

eδ̂j

eδ∗J +

J−1∑
j=1

eδ̂j

−1 (37)
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(iii) The step J initial weights are then given by

δoj = δ̂j + ln θJ for j = 1, ..., J − 1

δoJ = δ∗J + ln θJ
(38)

Given θJ , we define the truncated density kernel

κJ−1(x) = ϕ(x)− θJkJ−1(x, âJ−1) if positive

= 0 otherwise,
(39)

and the initial values for (µoJ , R
o
J) obtain as for step 1, with ϕ(x) replaced by

κJ−1(x). Even with θJ < 1, there remain a theoretical possibility that κJ−1(x)
could have a sharp peak (relative to the quadrature grid) to the effect that
the (non-negative) Σo

J could be (near) singular. We have not yet encountered
that eventuality but it would be trivial to fix either by adding to Σo

J a small
positive scalar multiple of the identity matrix Id, or by reverting to a Laplace
approximation of lnκJ−1(x), where κJ−1(x) would then be bounded below by
ε > 0, as in Bornkamp (2011).

3 Test cases

In this section we present three test cases taken from the literature and high-
lighting key features of our approach. The first is taken from Gilks et al (1998)
(also used in Bornkamp, 2011) with a bivariate target mixture and illustrates
the importance of full re-optimization of the approximating mixture with the
introduction of each new term. The second case is taken from Azzalini and
Dalla Valle (1996). The target is bivariate skew-distribution representing a
class of densities of growing importance in econometrics. It also illustrates the
importance of reducing the dimension of the kernel that has to be approxi-
mated as mixtures do suffer from an obvious curse of dimensionality, to be
discussed further below. The last case discusses a mixture approximation to
the density of a logχ2

1 variable. As we discuss in section 4, such approxima-
tions provide an important tool to construct a mixture filtering approach to
stochastic volatility models.

3.1 Mixture of three bivariate normal distributions

Example 2 in Bornkamp (2011) applies the iterated Laplace algorithm to the
following bivariate target mixture, originally used in Gilks et al (1998):

ϕ(x) =

3∑
i=1

πifN (x|µi, Σi), (40)
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Table 1 Initial and terminal values for approximating the mixture of three bivariate normal
distributions

J j initial values terminal values

exp(δoi ) µoi Σo
i exp(δ̂i) µ̂i Σ̂i

1 1 0.027

(
−0.336
−0.336

) (
5.155 4.159
4.159 5.155

)
0.204

(
−0.298
−0.298

) (
6.110 4.936
4.936 6.110

)
f1(ao1) = 59.131 f1(â1) = 18.381

2 1 0.102

(
−0.298
−0.298

) (
6.110 4.936
4.936 6.110

)
0.757

(
1.447
1.447

) (
2.365 0.610
0.610 2.365

)
2 0.102

(
−0.332
−0.333

) (
5.215 4.220
4.220 5.215

)
0.399

(
−2.671
−2.671

) (
1.751 1.640
1.640 1.751

)
f2(ao2) = 18.431 f2(â2) = 0.967

3 1 0.562

(
1.447
1.447

) (
2.365 0.610
0.610 2.365

)
0.330

(
2.000
2.000

) (
1.000 −0.900
−0.900 1.000

)
2 0.296

(
−2.671
−2.671

) (
1.751 1.640
1.640 1.751

)
0.330

(
−3.000
−3.000

) (
1.000 0.900
0.900 1.000

)
3 0.296

(
−0.059
−0.059

) (
5.160 4.066
4.066 5.160

)
0.340

(
0.000
0.000

) (
1.000 0.000
0.000 1.000

)
f3(ao3) = 1.076 f3(â3) = 2.136E − 8

with (π1, π2, π3) = (0.34, 0.33, 0.34), µ
′

1 = (0, 0), µ
′

2 = (−3, 3), µ
′

3 = (2, 2),
Σ1 = ( 1 0

0 1 ), Σ2 = ( 1 0.9
0.9 1 ), Σ3 =

(
1 −0.9
−0.9 1

)
. Bornkamp’s algorithm con-

structs the mixture approximation sequentially as we do but does not re-
optimize their Laplace moments. Thus it cannot replicate the target. Actu-
ally, it ends producing a five-term mixture approximation whose means and
standard deviations are all within less than 1% of those of the moments of the
target density. In sharp contrast, our algorithm reproduces exactly the tar-
get density (up to the optimizer’s stopping rule). In order to illustrate how it
works, we reproduce in Table 1 initial and final values for the three successive
iterations using Legendre rule on the range [−6, 6]2, though any reasonable
range will deliver the same perfect fit. Similar results obtain under the Her-
mite and mixture approach.

3.2 Skew-Normal density

Multivariate skew-distributions are gaining importance in stochastic frontier
analysis and sample selection models. Stochastic frontier analysis models have
been using skewness as an intrinsic characteristic to measure technical ineffi-
ciency. The skewed shape of the error term in the stochastic frontier problem
arises from its composite structure, consisting of two separate error compo-
nents – a symmetric measurement error and an inefficiency factor, defined to
be one-sided. Dealing with production frontiers corresponding to firms pro-
ducing multiple outputs ultimately led to the system of stochastic frontier
equations, where the multivariate skewed distribution is applied to model the
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Fig. 1 Contour plot SN2 for ω = 0.3 and δ = 0.8.

composite error (Domı́nguez-Molina et al, 2007; Ferreira and Steel, 2007). In
sample selection models, skew-distributions are used to mitigate the effects of
distributional misspecifications. The distribution of many economic outcomes
(e.g., wages) is likely to be skew in the population, before selection. Further,
the skewness in outcomes could be induced by the selection itself as a hidden
truncation. These considerations led to developing parametric sample selec-
tion models for skew outcomes such as in Marchenko and Genton (2012) and
Ogundimu and Hutton (2016).

Our second test case is related to dealing with multivariate skew-distributions
and consists of the following bivariate skew-normal density taken from Azzalini
and Dalla Valle (1996):

ϕ(x) =
1

π

[
|Ω|− 1

2 exp(−1

2
x′Ω−1x)

]
Φ(αι′x), (41)

where Φ denotes the standardized Normal cdf, ι′ = (1, 1), Ω = ( 1 ω
ω 1 ), and

α = δ(1− ω){(1− ω2)[1− ω2 − 2δ2(1− ω)]}− 1
2 , with ω = 0.3 and δ = 0.8. Its

skewed contour plot is presented in Figure 1.
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Table 2 Mixture moments’ comparison for approximation of the bivariate skew-normal
density

Hermite (5-term) Legendre Mixture-Hermite
Orthogonal Cholesky (5-term) (7-term)

µ
(

0.6399
0.6399

) (
0.6368
0.6383

) (
0.6392
0.6351

) (
0.6377
0.6380

)
Σ

(
0.5904 −0.1096
−0.1096 0.5904

)(
0.5922 −0.1042
−0.1042 0.5904

)(
0.5922 −0.1094
−0.1094 0.5942

)(
0.5916 −0.1086
−0.1086 0.5912

)
Nodes 90 univar.nodes 28×28a 28×28a J10×10a

Comp.
timeb 0.45 2.54 2.54 2.84
a product rule.
b seconds.

Since ϕ(x) already includes a Gaussian kernel, it is natural to apply Her-
mite rule. The two obvious Ω factorizations leading to transformation (17)
are the Cholesky and orthogonal ones. The corresponding transformations are
given by

x =
√

2

(
1.00 0.00

0.30
√

0.91

)
y, (42a) x =

√
2

(√
0.65

√
0.35√

0.65 −
√

0.35

)
y, (42b)

respectively. It turns out that the orthogonal transformation produces a much
simpler expression for the transformed target that is given by

ϕ(y) =
2

π
ϕ1(y1)ϕ2(y2), (43)

with ϕ1(y1) = Φ(8
√

2y1) exp(−y21), and ϕ2(y2) = exp(−y22). Therefore, we only
need to construct a univariate mixture approximation k1(y1, â) for ϕ1(y1) and
the corresponding bivariate mixture approximation for ϕ(y) obtains as

k(y, â) = k1(y1, â)ϕ2(y2), (44)

to be transformed back into a mixture approximation for ϕ(y) by the in-
verse transformation (42b). We can also apply Hermite quadrature to compute
the “true” moments of y1 and, therefore, those of x. Using 1,000 quadrature
points since Φ(8

√
2y1) is very tight, we find that µ1 = µ2 = 0.63830765,

σ11 = σ22 = 0.59256335 and σ12 = σ21 = −0.10743665. Both transformations
in (42) produce 5-term mixture approximations with plot contours that are
virtually indistinguishable from that of ϕ(y) in Figure 1. The corresponding
mixture moments under both transformations are given in Table 2. The or-
thogonal transformation produces fairly accurate results as expected, though
it requires additional algebraic transformations. It illustrates the importance
of exploring dimension-reducing transformations both for accuracy and to re-
duce the curse of dimensionality inherent to finite mixtures. For comparison,
we apply Legendre and Mixture-Hermite rules to the test case of bivariate
skew-normal density and obtain the comparable 5-term mixture approxima-
tion for Legendre rule and 7-term mixture approximation for Mixture-Hermite
rule with the corresponding mixture moments, presented in Table 2.
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Fig. 2 The log of the ratio of the χ2
1 density to the mixture approximation.

3.3 Basic stochastic volatility model

A density kernel for a logχ2
1 random variable is given by

ϕ(x) = exp

[
1

2
(x− ex)

]
, (45)

As is well known and discussed further in section 4 below, this kernel plays
a central role in likelihood (filtering) evaluations of a number of Stochastic
Volatility (thereafter SV) models. Since ϕ(x) is significantly skewed, it is nat-
ural to consider approximating it by a finite Gaussian mixture. One such
mixture is proposed by Kim et al (1998, Equation (10) and Table 4) and is
obtained by “using a non-linear least squares program to move the weights,
means and variances around until the answers were satisfactory”. Adjusting
for their mean shift of 1.2704, we use their parameter values as initial values
for a direct 200 point Legendre minimization of f̂7(a7) in Equation (14) over
the range [-20, 4]. The comparable results are reported in Table 2 and Figure
2.

Optimization has reduced the distance measure f7 by a factor 19. Since
fJ(aJ) is (approximately) proportional to the Importance Sampling variance
of the corresponding IS ratios, such large reductions would result in equally
large reductions in the number of draws in IS applications.
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Table 3 Mixture approximation of the logχ2
1 kernel

initial values optimal values
πi µi σ2

i πi µi σ2
i

1 0.00730 -10.12999 5.795960 0.01661 -6.44535 13.58034
2 0.00002 -8.56686 5.179500 0.00002 -8.58075 3.70735
3 0.10556 -3.97281 2.613690 0.08720 -3.59047 4.86088
4 0.25750 -1.08819 1.262610 0.20824 -1.38055 2.09610
5 0.34001 0.61942 0.640090 0.30992 0.23027 0.99504
6 0.24566 1.79518 0.34023 0.27751 1.43183 0.51327
7 0.04395 2.77786 0.16735 0.10073 2.37341 0.28337

f7(ao7)=6.8544E-003 f7(â7)=3.6942E-004

4 Future research

Our generic procedure to construct finite Gaussian mixture approximations
to analytically intractable density kernels provides alternative numerical solu-
tions to a wide range of problems in statistics, economics and finance. We out-
line below three ongoing projects for which we have already produced promis-
ing initial results. We also discuss extensions to non-Gaussian mixtures.

4.1 Filtering

Dynamic state space models are increasingly widely used in sciences, includ-
ing economics. When the latent state and the measurement process are both
linear Gaussian, the Kalman Filter provides operational fully analytical so-
lutions. When this is not the case, Particle Filters (hereafter PF’s) that rely
upon Sequential Important Sampling and extensions thereof are commonly
used to produce approximations to the relevant densities (filtering, predictive
and likelihood) in the form of discrete mixtures of Dirac measures (referred to
as swarms of particles). PF’s are widely applicable but also suffer from poten-
tial problems, foremost degeneracy and sample impoverishment (see e.g. Ristic
et al, 2004, for an in-depth presentation of particle filters with emphasis on
tracking applications). Various extensions of the baseline PF algorithm have
been produced to enhance its numerical efficiency (see e.g. Pitt and Shephard,
1999, the collection of papers in Doucet et al, 2001; see also section II.D in
Cappé et al, 2007 for advances in Sequential Monte Carlo, of which the Mix-
ture Kalman filter is directly relevant to the present project). It applies to
a broad range of state space models that consist of a linear Gaussian latent
state process combined with a non-linear or non-Gaussian measurement pro-
cess. It combines Kalman filtering for the state part, and particle filtering for
the measurement part. Our ongoing project consists of replacing the latter
by a Gaussian mixture approximation of the measurement density. Doing so
essentially amounts to constructing a mixture extension of the Kalman filter.
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In a nutshell, it operates as follows. The non-linear or non-Gaussian mea-
surement densities are approximated by finite Gaussian mixtures. In period t,
one inherits a period t− 1 filtering mixture approximation, which is combined
with the state linear Gaussian transition in order to produce a predictive mix-
ture approximation. The latter is then multiplied by the measurement mixture
approximation. Assuming we are relying upon J-term mixtures, this product
takes the form of a J2-term mixture that can in turn be approximated by a
J-term mixture (by selecting the J terms with highest probability, re-scaling
them into initial values and re-optimizing). The likelihood then obtains as the
analytical integrating constant of the mixture kernel and the period t filtering
density as the normalized version of that same mixture. Moreover, once we
have run the forward filtering algorithm, it is possible to run it backward in
order to produce smooth (mixture bound) estimates of the state variables.

Unsurprisingly, there is a fair amount of analytical details to be cleaned
up in order to produce a generic mixture extension of the Kalman filter but
we have already tested it on a univariate baseline stochastic volatility appli-
cation taken from Liesenfeld and Richard (2006). That application offers the
critical advantage that the period t measurement density obtains as a linear
transformation of a canonical logχ2

1 density, whose mixture approximation was
presented in section 3.3 and needs to be computed only once. The application
consists of a sample of 945 weekly exchange rates for the British pound against
the US dollar. Using mixture approximations, we obtained the following values
for the log-likelihood at the ML parameter values: -918.62 (7-term mixtures)
and -918.61 (8-term mixtures). For comparison, Liesenfeld and Richard (2006,
Table 1, column 2) report an EIS estimate of -918.60. Moreover, 100 MC-EIS
replications produce a mean of -918.66 with a standard deviation of 0.026 and
a range (-918.72, -918.59). Obviously, our mixture estimates are non-stochastic
but their high numerical accuracy is illustrated by the near identical values
obtained under 7- and 8-term mixtures.

The results of that pilot application are extremely encouraging and we are
currently developing a generic multivariate mixture extension of the baseline
Kalman filter (log)-likelihood estimation as well as filtered and smooth state
estimates. Our plan is to test this mixture algorithm to the three-dimensional
state-space stochastic volatility model for inflation, as analyzed by Stock and
Watson (2007, section 3).

4.2 Mixture approximations of non-parametric density estimates

Finite Gaussian mixtures are used increasingly as approximations for nonpara-
metric kernels (see, e.g., Scott and Szewczyk, 2001). The papers by Han et al
(2008) and Wang and Wang (2015) include useful surveys of the recent litera-
ture to that effect as well as new proposals for large reductions in the number of
components. The most commonly proposed method consists of sequential re-
ductions of the number of terms based upon a variety of clustering procedures.
We propose instead to apply our algorithm directly to the nonparametric ker-
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Fig. 6 6-term mixture approximation

nel as target, adding terms one by one using our distance measure to assess
the goodness of fit of the mixture approximation. As a pilot illustration of
the potential of such procedure, we used a simple example taken from Duong
(2007), where the author constructs nonparametric density kernels for a data
set consisting 200 i.i.d. draws from a “dumbbell” (unimodal) density given by
the normal mixture

4

11

[
N
((−2

2

)
, I2
)

+N
((

2
−2
)
, I2
)]

+
3

11
N
(
( 0
0 ) ,
(

0.80 −0.72
−0.72 0.80

))
.

The density is illustrated in Figure 3, whereas the 200 data points drawn from
this density are plotted in Figure 4.

We applied our algorithm to produce a 6-term mixture approximation to
Duong’s (2007) plug-in nonparametric kernel estimate. The contours for the
Duong’s (2007) nonparametric estimate are presented in Figure 5, whereas
Figure 6 illustrates our 6-term mixture approximation. Here again, the results
of this pilot application are very promising. Our current objective is that of
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producing an algorithm applicable to large data sets, where dramatic reduc-
tions in the number of terms and clustering will be critical for analysis. We
aim at achieving high numerical efficiency for such simplification exercises. A
critical step toward that objective consists of replacing the quadrature grid
by the data, reinterpreted as equal weight draws from the nonparametric ker-
nel estimate to be approximated. Initial value calculations are to be adjusted
accordingly.

4.3 Sparse grids

The product rules used for the numerical evaluation of the distance measure
in Equation (8) suffer from an obvious “curse of dimensionality”. As explained
by Heiss and Winschel (2008, section 2.4), the exponential growth of compu-
tational costs as a function of the dimension d originates from the fact that
the product rule is exact for a tensor product of univariate polynomials, not
for polynomials of bounded total order. The concept of sparse grids combines
univariate rules in such a way that it is exact for complete polynomials of a
given order with computational costs rising considerably slower than expo-
nentially. The basic idea originates from Smolyak (1963) providing a generic
procedure for multivariate generalizations of univariate operators (see Bun-
gartz and Griebel, 2004 for a detailed presentation and Heiss and Winschel,
2008 for a self-contained description of how to construct sparse grids).

We have started exploring how to produce a sparse grid version of our mix-
ture algorithm. An immediate problem arises from the fact that a significant
percentage (typically close to 50%) of the weights associated with the nodes
are negative. It follows that the baseline distance measure in Equation (23)
is no longer bounded below by zero and, consequently, that its minimization
generally fails. An obvious remedy consists of replacing the negative weights
in (23) by their absolute values. This produces an objective function that can
no longer be interpreted as an approximation of the sampling variance of the
IS ratios in Equation (7) but one that can still be interpreted as a distance
measure.

Our next step will be that of adjusting our procedure to compute initial
values. While using Laplace approximations remains possible, it can be com-
putationally inefficient, especially as the dimension d gets larger and sparse
grid points increasingly dispersed. Our truncated moments approach avoids
additional target evaluations outside of the grid but negative weights remain
problematic as they could occasionally produce non-positive truncated initial
covariance matrices.

For illustration purposes, we rerun the bivariate skew-normal density ex-
ample presented in section 3.2 under sparse grids with Laplace initial values.
We obtain the following results with the Cholesky transformation and 200
sparse-grid nodes:

µ =
(

0.63657460
0.63658100

)
, Σ =

(
0.58987717 −0.10914464
−0.10914464 0.58987327

)
,
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which are similar to those reported in section 3.2. Computing time is 0.53 sec-
onds. Thus, the use of sparse grids provides a very promising lead for extending
our algorithm beyond dimension two or three.

4.4 Other mixture types

While Gaussian mixtures are by far the most commonly used, other types are
worthy of consideration. For example, Hoogerheide et al (2007) and Hooger-
heide et al (2012) use mixtures of Student-t kernels with one degree of freedom
to approximate targets with fat tails. Titterington et al (1985, Table 2.1.3,
pages 6-21) provide an extensive list of applications, many with non-Gaussian
mixture types (von Mises, Gamma, Poisson, Weibull, negative binomial, ex-
ponential, beta, log-normal, multinomial etc.). There certainly are no concep-
tual problems in using non-Gaussian mixtures for ln kJ(x, aJ), at the cost of
programming analytical gradients (finite difference optimization is computa-
tionally very inefficient) and adjusting accordingly the computation of initial
values. Depending upon the situation, we can also use alternative quadrature
rules, such as Generalized Laguerre on (0,∞). Note, in particular, that the
sparse grid approach discussed above allows for combining different types of
univariate quadrature rules.

All in all, the algorithm we present in this paper can be extended in a
number of ways to improve its flexibility at the cost of conceptually fairly
straightforward though somewhat tedious additional programming.

5 Summary

We have proposed a generic sequential algorithm to construct Gaussian mix-
ture approximations to analytically intractable density kernels. Our algorithm
aims at minimizing a distance measure between the target kernel and the mix-
ture that approximates the Monte Carlo variance of the corresponding IS ratio.
In order to identify low probability terms, it currently relies upon products
of univariate quadrature rules as an alternative to importance sampling. It is
operational for low dimensions (say, up to three) but we expect to be able
to handle higher dimensional targets by using instead sparse grid rules. For
minimization of the distance measure we rely upon a quasi-Newton method
using analytical gradient. Reliance upon analytical gradients requires one-time
programming under an appropriate parametrization but has proved compu-
tationally much more efficient than minimizers relying upon finite difference
or simplex optimizers. Extensions to other mixture types are computationally
straightforward at the cost of programming of the corresponding gradients and
adjusting accordingly the computation of initial values for the mixture terms.
Pilot applications have demonstrated the flexibility as well as numerical accu-
racy of our algorithm.
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Foremost, it is applicable to a wide range of important empirical mixture
applications of considerable interest in the statistical and econometric litera-
ture. Two such applications are currently under development. One consists of
a mixture filtering extension of the Kalman filter applicable to a broad range
of dynamic state-space models combining a linear Gaussian latent fields with
non-linear or non-Gaussian measurement densities. Essentially, the Kalman
filter swarms of particles (mixtures of Dirac measures) are replaced by sequen-
tial finite Gaussian mixtures. The other application aims at producing finite
mixture approximations to nonparametric density kernels. By reducing the
number of terms well below the number of data points, we aim at facilitat-
ing the interpretations of the result e.g. by identifying data clusters captured
by individual mixture terms. Pilot applications have already proved highly
promising.

Programs for our current algorithm are available at http://sf.cbs.dk/nk.
Further developments will be added as they became available.

Appendix

The distance measure fJ (aJ ) in Equation (8) can be approximated by Equation (14), which
we reproduce here:

f̂J (aJ ) =
1

2

N∑
i=1

wi [lnϕ(xi)− ln kJ (xi, aJ )]2 . (46)

In order to minimize f̂J (aJ ), we first need to adopt a parametrization that guarantees

the positivity of the diagonal elements rjss of the lower triangular Cholesky factor Rj . This

is achieved by re-parameterizing rjss as exp{r̃jss}. Hence, the set of auxiliary parameters con-

sists of (µj , {rjts}t<s, {r̃
j
ss}, δj). The gradient of f̂J (aJ ) with respect to (µj , {rjts}t<s, {r̃

j
ss}, δj)

is given by

g =

N∑
i=1

wi
[ln(ϕ(xi))− ln kJ (xi, aJ )]

kJ (xi, aJ )

J∑
h=1

eδhk(xi, αh)dh(xi), (47)

where the summation in h represents the gradient of kJ (xi, aJ ) with respect to (µj ,{rjts}t<s,
{r̃jss},δj). The vector dh(xi) consists of the following components

dµh(x) = RhR
′
h(x− µh)

drtsh(x) = −(xs − µhs )etR
′
h(x− µh) if t < s for t, s = 1, ..., d

dr̃ssh(x) = −(xs − µhs )esR
′
h(x− µh) exp{r̃hss}+ 1 for s = 1, ..., d,

dδh(x) = 1,

where es for s = 1, ..., d is the d-dimensional vector, which consists of zeros and a unity at
the s’th element of that vector, and µhs is the s element of d-dimensional vector of means
µh for h = 1, ..., J .
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