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Abstract: For the analysis of competing risks data, three different types of hazard functions have been 

considered in the literature, namely the cause-specific hazard, the sub-distribution hazard, and the 

marginal hazard function. Accordingly, medical researchers can fit three different types of the Cox 

model to estimate the effect of covariates on each of the hazard function. While the relationship between 

the cause-specific hazard and the sub-distribution hazard has been extensively studied, the relationship 

to the marginal hazard function has not yet been analyzed due to the difficulties related to non-

identifiability. In this paper, we adopt an assumed copula model to deal with the model identifiability 

issue, making it possible to establish a relationship between the sub-distribution hazard and the marginal 

hazard function. We then compare the two methods of fitting the Cox model to competing risks data. 

We also extend our comparative analysis to clustered competing risks data that are frequently used in 

medical studies. To facilitate the numerical comparison, we implement the computing algorithm for 

marginal Cox regression with clustered competing risks data in the R joint.Cox package and check its 

performance via simulations. For illustration, we analyze two survival datasets from lung cancer and 

bladder cancer patients. 
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1. Introduction 

Competing risks data often arise in medical follow-up studies or industrial life tests where several 

different types of events determine the follow-up duration of a subject. In such circumstances, 

understanding the effects of covariates on individual event times is essential. For modeling the effects of 

covariates on event times, researchers typically fit the Cox proportional hazards model [1] on the hazard 

function of a specific event time of interest. However, there are various ways to formulate the Cox 

model in the case of competing risks. 

For the analysis of competing risks data, three different types of hazard functions have been 

considered, namely the cause-specific hazard, the sub-distribution hazard (subhazard), and the marginal 

hazard function. Modeling the effect of covariates on the cause-specific hazard functions is the 

traditional approach to the analysis of competing risks data [2]. While it has been shown that the 

covariate effects on the cause-specific functions and on the sub-distribution functions are different [3-4], 

not much is known how the effect on the marginal hazard functions relate. Unlike the cause-specific 

hazard and subhazard, modeling covariate effects on the marginal hazard typically requires a strong 

assumption, called “assumed copula” [5]. This means that the dependence structure between competing 

event times is completely known or assumed by the researcher. If this assumption is deemed acceptable, 

it is straightforward to model covariate effects on marginal hazards [6-9]. While marginal hazard 

regression is relatively recently developed, the exploration of the marginal effects is historically 

regarded as the main goal of competing risk analysis [10]. 

To draw an appropriate conclusion from competing risks data, it is essential to understand the 

difference between the three types of hazard function. Several studies, e.g. [4, 11-13], compared the 

difference between the cause-specific hazard and the subhazard. In addition, the comparison between the 

cause-specific hazard and marginal hazard is relatively straightforward, and has been considered in 

detail [8, 14, 15]. In this paper, we compare the difference between subhazard and marginal hazard 

models, which has not yet been explored in the literature. The absence of such a comparative study is 

partially due to the technical difficulty of implementing marginal regression and the lack of an adequate 

software package. 

This paper makes the following contributions: 
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(a) We establish a mathematical relationship between the subhazard and the marginal hazard function 

under an assumed copula (Theorems 1-2). The relationship is also extended to clustered competing 

risks data that are increasingly popular in the literature (Theorem 3).  

(b) We make numerical comparisons between subhazard regression and marginal hazard regression by 

using two cancer datasets. 

(c) We develop an R function to implement a semiparametric inference method for marginal regression 

analysis with clustered competing risks data. This is made available in the joint.Cox R package [16]. 

This tool is useful for researchers who wish to compare the results of subhazard regression and 

marginal hazard regression. 

 

The paper is organized as follows. Section 2 reviews classical competing risks models. Section 3 

develops a mathematical relationship between the marginal hazard and subhazard. Section 4 compares 

covariate effects between the marginal hazard and subhazard through the Cox models. Section 5 extends 

our analysis to clustered competing risks data. Section 6 concludes and discusses the main findings. 

 

2. Classical competing risks models 

In the classical theory of competing risks, survival time of a subject is determined by several different 

causes of failures [17]. This implies that survival time is determined by the time at which at least one of 

the events occurs. In many applications of the competing risks theory, survival time of a subject can be 

any terminal event time, not necessarily time-to-death. For instance, if the major event of interest is 

death, the occurrence of dropout [8] or liver transplantation [18] can be regarded as a competing risk for 

death. The independence among different events is not assumed in competing risks analysis. 

Hereafter, we consider bivariate competing risks where one event is a major focus of analysis and 

the other event is of secondary importance. For instance, if researchers are interested in survival time of 

prostate cancer patients, death from prostate cancer is the major cause of failure, and death due to other 

reasons is relegated to another cause of failure [6, 11]. For another instance, if researchers are interested 

in overall survival of lung cancer patients, death from any cause is the major importance, and dropout 

and follow-up end are combined into another cause of failure [19]. Conversely, researchers may treat 

death as a competing risk if their major interest is on time-to-relapse [20]. 

Let X  be time to “Event 1” and Y  be time to “Event 2”. Under competing risks, we observe the first 

occurring event time min( , )T X Y= , and the event indicator ( )T Xδ = =I , where ( )⋅I  is the indicator 
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function. Since one cannot observe X  and Y  simultaneously, the pair of event times X  and Y  are 

often called “latent times” [10, 21].  

 

2.1 Hazard functions 

The marginal hazard function for Event 1 is defined as 

dttXdttXtt /)|Pr()(1 >+≤<=λ . 

The marginal hazard function describes the instantaneous risk of experiencing Event 1 given that a 

subject has not yet experienced Event 1 at time t. It is simply a hazard for one marginal of the pair 

( , )X Y . Accordingly, the marginal survival function is related to the marginal hazard function through 

1 10
( ) Pr( ) exp ( )

t
S t X t s dsλ ≡ > = −  ∫ . 

If X  and Y  were independent, the distribution could be easily estimated by treating Y  as an 

independent censoring variable. In dependent competing risks, the marginal distribution is not 

identifiable unless some assumptions are made on the joint distribution of ( , )X Y  [22]. 

Other functions of interest are therefore often considered in the presence of dependent competing 

risks. What can be estimated without knowing or assuming the risk dependence is the cause-specific (CS) 

hazard function. For Event 1 it is defined as 

dttTdttTttCS /)|1,Pr()(1 >=+≤<= δλ . 

This is the instantaneous risk of experiencing Event 1 given that a subject has not yet experienced any 

event before time t. The CS hazard function for Event 2 ( 0δ = ) is analogously 2 ( )CS tλ . By definition, 

1 2( ) ( )CS CSt tλ λ+  is the hazard function for T . 

Another identifiable quantity in dependent competing risks is the sub-distribution function 

1 ( ) Pr( , 1)SubF t T t δ= ≤ = . 

This is simply the probability of experiencing Event 1 before time t, which is also known as the 

cumulative incidence function (CIF). Many analyses of competing risks data start by plotting a 

nonparametric estimate of 1 ( )SubF t  (e.g. [11]).  

The subhazard function for Event 1 is defined as a hazard function associated with the sub-

distribution function through  

dttTtTdttTt
dttFdt SubSub

/)}0,{}{|1,Pr(
/})(1log{)( 11

=≤>=+≤<=
−−=

δδ
λ


.                             (1) 
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Here, the conditioning event of the CS hazard function is modified by adding the event }0,{ =≤ δtT . 

While it is difficult to interpret the conditioning event, an important advantage of the subhazard is the 

direct link to the sub-distribution function, such that 1 10
( ) 1 exp ( )

tSub SubF t s dsλ = − −  ∫ . 

The relationship between the subhazard and CS hazard is well-known. It is not difficult to show 

1 1( ) [ ( ) / ] / Pr( )CS Subt dF t dt T tλ = >  and 1 2Pr( ) exp[ ( ) ( )]CS CST t t t> = −Λ −Λ , where 1 ( )CS tΛ  and 2 ( )CS tΛ  

are the cumulative CS hazard functions for Events 1 and 2, respectively. With these equations, we obtain 

the well-known relationship 

1 1 1 20
( ) ( ) exp[ ( ) ( )]

tSub CS CS CSF t s s s dsλ= −Λ −Λ∫ . 

By taking the derivative of the preceding equation, the relationship between the subhazard and CS 

hazard is obtained as 

1 1 1 2 1( ) ( ) exp[ ( ) ( )] /{1 ( ) }Sub CS CS CS Subt t t t F tλ λ= −Λ −Λ − . 

These relationships are general and do not require restrictions on the model. Similarly, we have for the 

relationship between the marginal hazard and the subhazard  

)(
)(
)(

)(1
)()( 1

1

1

1

1
1 t

tS
tf

tF
tft Sub

Sub
Sub λλ =≤

−
= ,  0t∀ >  

which follows from  

)()Pr(1),Pr(1)1,Pr(1)(1 11 tStXYXtXtTtF Sub =≤−≥≤≤−==≤−=− δ    and 

)(/)(/)Pr(/),Pr(/)()( 1111 tfdttdSdtdttXtdtYXdttXtdttdFtf SubSub =−=+≤<≤≤+≤<== , 

where )(1 tf Sub  is the sub-density function and )(1 tf  is the marginal density function. 

Unfortunately, the mathematical equation between the marginal hazard and subhazard cannot be 

established unless some model assumptions are made. Indeed, the same CS hazard function can 

originate from many different marginal models [22]. This problem is known as the nonidentifiability. To 

derive a mathematical relationship between the marginal hazard and subhazard functions, we first 

consider the independent competing risks model as a special case. 
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2.2 Independence assumption 

A classical assumption is the independence between X  and Y , which makes the joint distribution of 

( , )X Y  identifiable from the joint distribution of ( , )T δ [22]. Under the independence assumption, it is 

known that 1 1( ) ( )CSt tλ λ=  and 2 2( ) ( )CSt tλ λ= . Hence, the sub-distribution function can be expressed as 

the marginal hazards by  

1 1 1 20
( ) ( ) exp[ ( ) ( )]

tSubF t s s s dsλ= −Λ −Λ∫ . 

Accordingly, the subhazard is then 

1 2
1 1

1 1 20

exp{ ( ) ( ) }( ) ( )
1 ( )exp{ ( ) ( ) }

Sub
t

t tt t
s s s ds

λ λ
λ

− Λ − Λ
=

− − Λ − Λ∫
. 

It is important to note that 1 1( ) ( )Sub t tλ λ≠  even though 1 1( ) ( )CS t tλ λ= . To see this phenomenon more 

closely, let us consider the exponential margin 1 2( ) ( )t t tλΛ = Λ = . Then, 

1
2exp( 2 )( )

1 exp( 2 )
Sub tt

t
λλ λ
λ

−
=

+ −
,        1

1 exp( 2 )( )
2

Sub tF t λ− −
= . 

Thus, the constant marginal hazard functions give a non-constant subhazard function for Event 1. 

Therefore, the marginal hazard and subhazard functions have different functional forms in the case of 

independent competing risks.  

 

2.3 Assumed copula for competing risks 

In competing risks analysis, the two random variables X  and Y  are rarely independent. Zheng and 

Klein [5] showed that the joint distribution of X  and Y  becomes identifiable by assuming a copula 

function for the dependence structure between risks. Independence between X  and Y  is simply a 

special case of assuming the independence copula.  

To model the dependence between two competing event times, Escarela and Carrière [6] proposed a 

survival copula model 

1 2Pr( , ) { ( ), ( ) }X x Y y C S x S yθ> > =                                                 (2) 

where 2 :[ 0,1 ] [ 0,1 ]Cθ   is a copula function with a parameter θ  [23]. The copula function can be 

any bivariate distribution function having the uniform marginal distribution on (0,1). Here, the assumed 

copula in the sense of [5] means the assumptions for both the parametric form of Cθ  and its parameter 

value θ . The survival copula model (2) is subsequently applied to various competing risks problems in 
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[8, 9, 19, 24].  

We shall not use another copula model 1 2Pr( , ) {1 ( ),1 ( ) }X x Y y C S x S yθ≤ ≤ = − −  that produces a 

different joint distribution of X  and Y  from the survival copula model (2).  

Examples of commonly used  copula functions Cθ  are as follows: 

 

 The Clayton copula: 

0,)1(),( /1 >−+= −−− θθθθ
θ vuvuC ,  

 The Gumbel copula: 

0,})log()log({exp),( 1
1

11 ≥







−+−−= +++ θθθθ

θ vuvuC , 

 The Farlie-Gumbel-Morgenstern (FGM) copula: 

( , ) {1 (1 )(1 ) },       1 1C u v uv u vθ θ θ= + − − − ≤ ≤ .       

 The Fréchet-Hoeffding upper bound copula: 

( , ) min( , )C u v u v∞ = . 

 

The parameter θ  is related to Kendall’s tau ( τ ) between X  and Y . The Clayton copula has 

/ ( 2)τ θ θ= + , the Gumbel copula has / ( 1)τ θ θ= + , and the FGM copula has 2 / 9τ θ= . These three 

copulas reduce to the independence copula uvvuC =),(  when 0θ → . When θ →∞ , the Clayton and 

Gumbel copulas reduce to the Fréchet-Hoeffding upper bound copula whose Kendall’s tau is 1. 

 

3. Mathematical relationship between the marginal hazard and subhazard 

To establish the relationship between the subhazard and marginal hazard, it is convenient to introduce 

the following notations:  

( , ) { exp( ), exp( ) }D s t C s tθ θ= − − ,    [1,0] ( , ) ( , )D s t D s t
sθ θ
∂

= −
∂

,    [0,1] ( , ) ( , )D s t D s t
tθ θ
∂

= −
∂

. 

Also, we rewrite the copula model (2) as 1 2Pr( , ) { ( ), ( ) }X x Y y D x yθ> > = Λ Λ . This expression 

emphasizes the relationship between the joint survival function and the marginal cumulative hazard 

functions. For instance, the Gumbel copula has 1 1 1/( 1)( , ) exp ( )D s t s tθ θ θ
θ

+ + + = − +  , which implies 

1 1 1/( 1)
1 2Pr( , ) exp { ( ) ( ) }X x Y y x yθ θ θ+ + + > > = − Λ + Λ  . 
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The sub-distribution function for Event 1 is  

1 0
( ) Pr( , ) Pr( , )

tSub

x y

F t X t Y X X x Y y dy
x =

∂
= ≤ ≥ = − > ≥

∂∫ . 

This well-known formula implies that the sub-distribution function is obtained through the joint survival 

function Pr( , )X x Y y> >  [6, 11]. Under the survival copula model (2), we have 

[1,0]
1 1 2 1 1 20 0

( ) { ( ), ( ) } ( ) { ( ), ( ) } .
t tSub

x s

F t D x s ds s D s s ds
x θ θλ

=

∂
= − Λ Λ = Λ Λ

∂∫ ∫                    (3) 

This expression describes the link between the sub-distribution function and marginal hazard function. 

The integral in Equation (3) cannot be computed analytically for most of the well-known copulas.  

By using Equation (3) and 1 1( ) log[1 ( )] /Sub Subt d F t dtλ = − − , we arrive at the following result: 

 

Theorem 1: Under the copula model (2), the marginal hazard and subhazard are connected through  
[1,0]

1 2
1 1 [1,0]

1 1 20

{ ( ), ( ) }( ) ( )
1 ( ) { ( ), ( ) }

Sub
t

D t tt t
s D s s ds
θ

θ

λ λ
λ

Λ Λ
=

− Λ Λ∫
. 

 

Under the common marginal assumption 1 2( ) ( ) ( )t t tΛ ≡ Λ = Λ , the integrals in Theorem 1 may have 

explicit forms. For instance, the Gumbel copula gives 

( )
1/( 1) 1 1/( 1) 1/( 1) 1/( 1)

1 1/( 1)1 1/( 1)

2 exp 2 ( ) 2 exp 2 ( )
( ) ( ) ( )

exp 2 ( ) 11 2 exp 2 ( ) 1
Sub

t t
t t t

tt

θ θ θ θ

θθ
λ λ λ

+ − + + +

+− +

   − Λ − Λ   = =
 − Λ + + − Λ −   

. 

For the Clayton copula, we have 
1/ 1

1 1/
2exp{ ( ) }[ 2exp{ ( ) } 1 ]( ) ( )

1 [ 2exp{ ( ) } 1 ]
Sub t tt t

t

θ

θ

θ θλ λ
θ

− −

−

Λ Λ −
=

+ Λ −
,                             (4) 

and for the FGM copula, we have 

)])}(exp{1[1}()(2exp{1
)])}(exp{1][)}(exp{21[1}()(2exp{2)()( 21 tt

tttttSub

Λ−−+Λ−+
Λ−−Λ−−+Λ−

=
θ

θλλ .              (5) 

   Our numerical studies confirm 1 1( ) ( )Sub t tλ λ<  0t∀ >  under various models (details are given in 

the Supplementary Material). The difference 1 1( ) ( )Subt tλ λ−  can be quite large, which depends heavily 

on the choice of the marginal distributions. For instance, exponential distributions in the marginal 

models produce a steeply decreasing subhazard function (S1, Supplementary Material). The choice of 
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copula function also influences the difference 1 1( ) ( )Subt tλ λ− . We do not observe equality 

1 1( ) ( )Sub t tλ λ=  in any of the numerically examined models but technically it is attained under the 

following necessary and sufficient conditions. 

 

Theorem 2: Under the copula model (2) with continuous marginal survival functions, one has 

0)()( 11 ≥∀= tttSub λλ    if and only if   1)Pr( =≤ YX . 

 

The proof of Theorem 2 is given in Appendix A. 

Under the copula model (2), Theorem 2 reveals that the equality )()( 11 ttSub λλ =  holds for all 0≥t  

if and only if the model is degenerated under competing risks, i.e. XYXT == ),min(  with probability 

one. Thus, we conclude that 0)()( 11 ≥∀= tttSub λλ  does not hold for any real competing risks model 

that gives observed values for Y. 

 

Example 1:  Consider the Fréchet-Hoeffding upper bound copula model 

1 2 1 2Pr( , ) { ( ), ( ) } min{ ( ), ( ) }X x Y y C S x S y S x S y∞> > = = ,   0, ≥yx ,                    (6) 

for continuous marginal survival functions 1 2( ) ( ) 0S t S t t< ∀ ≥ . One can verify  

1
1 1

( )( ) Pr( , ) ( )  0Sub

x y t

d dS tf t X x Y y f t t
dx dt= =

= − > > = − = ∀ ≥ . 

Hence, 0)()( 11 ≥∀= tttSub λλ  holds true. By Theorem 2, we have Pr( ) 1X Y≤ = . One can also verify 

Pr( ) 1X Y≤ =  directly from the model (6). ■ 

 

3.1 Covariate effects 

So far, we have focused on the difference between 1 ( )Sub tλ  and 1( )tλ  as a function of t . Another 

approach is to compare the difference in terms of covariate effects given t . To study the covariate 

effects on the two hazards, we assume a marginal Cox model 1 10 1( | ) ( ) exp( )t tλ λ ′=Z β Z  for some 

baseline hazard function 10 ( )λ ⋅ , regression coefficients 1β , and covariates Z . By Theorem 1,  

[1,0]
10 1 2

1 10 1 [1,0]
10 1 10 1 20

{ ( ) exp( ), ( | ) }( | ) ( ) exp( )
1 ( )exp( ) { ( ) exp( ), ( | ) }

Sub
t

D t tt t
s D s s ds

θ

θ

λ λ
λ

′Λ Λ′=
′ ′− Λ Λ∫

β Z ZZ β Z
β Z β Z Z

, 



9 
 

where 10 100
( ) ( )

t
t s dsλΛ = ∫ . Hence, 1 ( | )Sub tλ Z  does not have a proportional hazard form since the 

covariate effect depends on t. An exception is the case of 0t = , where for some copulas (e.g. the 

Clayton copula in Equation (4) and FGM copula in Equation (5)) give 1 10 1(0 | ) (0)exp( )Subλ λ ′=Z β Z . 

We emphasize the difference between the subhazard and marginal hazard by considering the case of 

1 =β 0 ; i.e., no marginal effect on Event 1. Then, the subhazard function is 

[1,0]
10 2

1 10 [1,0]
10 10 20

{ ( ), ( | ) }( | ) ( )
1 ( ) { ( ), ( | ) }

Sub
t

D t tt t
s D s s ds
θ

θ

λ λ
λ

Λ Λ
=

− Λ Λ∫
ZZ

Z
. 

Hence, even if there is no marginal effect on Event 1, the subhazard of Event 1 is influenced by the 

marginal effect on Event 2.  

 

4. Semiparametric inference for the Cox model 

We compare two inference methods for the marginal Cox model and subhazard Cox model, respectively. 

Let 1β̂  be an estimator obtained by fitting a model 1 10 1( | ) ( ) exp( )t tλ λ ′=Z β Z  and 1
ˆ Subβ  be an estimator 

obtained by fitting a model 1 10 1( | ) ( ) exp( )Sub Sub Subt tλ λ=Z β Z . We wish to compare the two methods of 

computing 1β̂  and 1
ˆ Subβ  from a dataset consisting of 1 2( , , , )j j j jT δ δ Z , 1, 2, ...,j n= , where 

min( , , )j j j jT X Y C= , 1 ( )j j jT Xδ = =I , 2 ( )j j jT Yδ = =I , and jC  is independent censoring time. 

Censored cases correspond to 1 2 0j jδ δ= = .  

Below, we review two semiparametric estimators 1β̂  and 1
ˆ Subβ  that do not require the model 

specifications for baseline hazard functions.  

 

4.1 Fitting the subhazard model 

Fine and Gray [3] proposed Cox regression on the sub-distribution based on the model 

1 10 1( | ) ( )exp( )Sub Sub Sub
j jt tλ λ=Z β Z . 

The estimator 1
ˆ Subβ  is obtained by applying some weights to the partial likelihood [3]. Here, the weights 

are computed by estimating the survival function of censoring time jC . The cmprsk R package [25] 

can compute 1
ˆ Subβ  and its standard error (SE) and confidence interval (CI). The package can also 
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estimate the covariate-specific cumulative subhazard function as 1 10 1
ˆˆ ˆ( | ) ( ) exp( )Sub Sub Subt tΛ = ΛZ β Z  and 

sub-distribution function as 1 1
ˆ ˆ( | ) 1 exp[ ( | )]Sub SubF t t= − −ΛZ Z . See [11] for the review. 

   Some explanation is necessary to interpret the value of 1
ˆ Subβ  as the effects of covariates. In the 

subhazard model, the major focus is on the effects of covariates on the sub-distribution function. In this 

respect, the value of 1
ˆ Subβ  is interpreted as the acceleration factor in a complementary log-log linear 

model for the sub-distribution function 

1 10 1log[ log{1 ( | ) }] log[ log{1 ( ) }]Sub Sub SubF t F t− − = − − +Z β Z , 

where 10 1( ) ( | )Sub SubF t F t= 0 . Hence, 1
ˆ Subβ  is linked to the observed differences among the nonparametric 

estimates of the sub-distribution function computed for different covariate values. While this link is 

advantageous, the interpretation of the subhazard itself is not straightforward due to its complex 

conditioning events in Equation (1). 

 

4.2 Fitting the marginal Cox model 

We assume the two Cox models for the two marginal hazard functions such that 

1 10 1( | ) ( )exp( )j jt tλ λ ′=Z β Z ,       2 20 2( | ) ( )exp( )j jt tλ λ ′=Z β Z . 

The joint survival function is defined by  

1 2Pr( , | ) [ exp{ ( | ) }, exp{ ( | ) } ]j j j j jX x Y y C x yθ> > = − Λ − ΛZ Z Z , 

where Cθ  is a copula, the parameter θ  is assumed or known, and 
0

( | ) ( | )
t

k j k jt u duλΛ = ∫Z Z  is the 

marginal cumulative hazard functions ( k =  1 and 2). The estimates 1 2 10 20
ˆ ˆ ˆ ˆ( , , , )λ λβ β  are obtained by a 

semiparametric method of [8].  Appendix B provides the details of this method. 

 

4.3 Methodological comparison of the two Cox models  

In this subsection we qualitatively compare the two Cox models and provide some guidance on the 

choice of a suitable model. 

If the main interest lies in a single event, fitting the subhazard Cox model is easier and requires 

weaker restrictions on the model. The subhazard Cox model for a single event time does not require any 

assumption on the other event time. On the other hand, the marginal hazard approach needs to specify 

two Cox models on two event times, as well as their copula function. A minor drawback of the 
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subhazard approach is the need to estimate the censoring distribution by applying the inverse probability 

of censoring weighting to the partial likelihood. Fitting the marginal Cox model does not need to 

estimate the censoring distribution, yet the numerical computation is demanding [8]. 

If the interest lies in the joint assessment of two events, the marginal Cox model may be desirable. 

However, investigation of the dependence structure between two events is inherently difficult with 

competing risks data. The subhazard Cox model does not provide any parameter related to the 

dependence structure since the latter is not a part of the observational model. In the marginal Cox model, 

the copula parameter provides a tool to assess dependence. However, the current consensus is to perform 

a sensitivity analysis under an assumed value of a copula parameter. Often, the fitted results are 

examined under a few different copula parameters selected by a researcher [8, 9, 15]. We shall further 

demonstrate the method of assessing the dependence through a real data example. 

 

4.4 Numerical comparison of the two Cox models  

We suggest comparing the two Cox models with aid of graphical diagnostic tools. We consider three 

estimators of 1 ( | ) Pr( , 1| )SubF t T t δ= ≤ =Z Z : 

 A new estimator for Equation (3) that bases on the marginal Cox model 

[1,0]
ˆ 1 1 1 21,

:

ˆ ˆ ˆ( | ) ( | ) { ( | ), ( | ) }
j

Sub
j j j j

j T t
F t T D T Tθδ λ

≤

= Λ Λ∑ξ
Z Z Z Z ,      

where 1 10 1
ˆ ˆ ˆ( | ) ( )exp( )λ λ⋅ = ⋅Z β Z , 0

ˆ ˆ ˆ( | ) ( )exp( )k k kΛ ⋅ = Λ ⋅Z β Z , and 1 2 10 20
ˆ ˆ ˆ ˆ( , , , )λ λβ β  are given in Appendix B. 

 The estimator under the subhazard Cox model 

1 1
ˆ ˆ( | ) 1 exp[ ( | )]Sub SubF t t= − −ΛZ Z , 

where 1 10 1
ˆˆ ˆ( | ) ( ) exp( )Sub Sub Subt tΛ = ΛZ β Z . 

 The nonparametric (model-free) estimator  

∑
=≤

=
ZZ Z

ZZ
jj tTj j

j
j

NP

n
TStF

,: ,

1
1 )|(ˆ)|(ˆ δ

, 

where ∏
=≤

+−=
ZZ

ZZ
jj tTj

jjj ntS
,:

,21 }/)(1{)|(ˆ δδ  and ∑
=

≥=
ZZ

Z I
ii

jij TTn
:

, )( . 

We then plot the three estimators ˆ1,
( | )SubF t

ξ
Z , 1̂ ( | )SubF t Z , and 1̂ ( | )NPF t Z  to check their similarity. 

A discrepancy among them is a signal of inappropriate model assumptions made in one of the Cox 
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models. The first two estimators are inconsistent if their model assumptions are wrong. On the other 

hand, the last (model-free) estimator represents the empirical behavior of the sub-distribution function 

without any model assumption. The idea was presented in Escarela and Carrière [6] for the marginal 

Cox model and Pintilie [11] for the subhazard Cox model. A similar plot can be made to compare 

ˆ2,
( | )SubF t

ξ
Z , 2̂ ( | )SubF t Z , and 2̂ ( | )NPF t Z  for Event 2. 

The Cramér-von Mises (CvM) distance can be used as a tool for selecting a copula parameter in 

marginal regression. As a measure of fit based on the CvM distance, we suggest 

2
2

ˆ,
1 :,

1 ˆCvM { ( | ) ( | ) }
j

Sub NP
kj j k jk

I k jk

F T F T
nδ δ

∈ = =

 
= −     
∑ ∑ ∑ ξ
Z Z ZZ

Z Z , 

where I  is the set of all possible covariate values and ∑ =
==

n

j jkjkn
1, )( ZZIZ δδ  for k =1 and 2. The 

idea follows from Shih and Emura [26] who present a goodness-of-fit test based on the CvM distance 

under a parametric model and in the absence of covariates. We suggest using a grid search to find θ  that 

minimizes the CvM distance. The detailed algorithms and simulation results are given in the 

Supplementary Material (S2, Copula parameter selection). These results show that θ  is only weakly 

identified by the minimizer of the CvM distance due to the latter often being very flat. The convergence 

behavior of the estimated parameters is therefore worse than if θ  was known or assumed. The 

identification of θ  comes from the presence of covariates and the assumptions for the marginal Cox 

models [19, 27, 28]. In the absence of covariates, θ  is not identified. 

However, the CvM distance may not be used to select between the marginal model and subhazard 

model. First, the CvM distance under the marginal model could be minimized over a number of copula 

parameters, or different copula functions. On the other hand, the subhazard does not have such options. 

Second, the CvM distance does not account for the difference in the number of parameters, which may 

lead to a favourable result for a model with a larger number of parameters. 

 

Remark I: A goodness-of-fit method for the subhazard Cox model was developed by Scheike and Zhang 

[29] and Sfumato et al. [30]. These methods are not applicable to measure the fit of the marginal Cox 

model, and hence, it cannot be used to compare the two models. 
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Remark II: Since the estimator ˆ1,
( | )SubF t

ξ
Z  is new in the literature, we have checked its accuracy by 

simulations given in the Supplementary Material (S2, Copula parameter selection). Our results show that 

ˆ1,
( | )SubF t

ξ
Z  consistently estimates 1 ( | )SubF t Z  if the value of θ  is correctly specified. 

 

4.5 Data example (lung cancer data) 

We analyze the data on 125 lung cancer patients of Chen et al. [31]. In this study, the primary endpoint 

is overall survival (i.e., time-to-death). During the follow-up, 38 patients died, while the remaining 87 

patients were censored by dropout or the end of the study. Some early dropouts were possibly related to 

patients’ health status. Therefore, we regard this censoring as a competing risk for death, leading to 

bivariate competing risks involving time-to-death ( iX ) for Event 1 and time-to-censoring ( jY ) for Event 

2. There is no independent censoring (i.e., jC = ∞ ). As in [31], we use the 63 training samples out of the 

125 samples. 

    We are interested in how the gene expression of ZNF264 is associated with overall survival. The 

values of ZNF264 were categorized according to the quantile (taking values 1, 2, 3 and 4; see [31]). It is 

found in [31] that the gene expression of ZNF264 is significantly associated with overall survival (P-

value<0.05) based on the usual Cox regression with independent censoring. However, the analysis did 

not allow for dependent censoring. Therefore, we adopt a dependent competing risks model. 

The subhazard model for Event 1 (death) is 

1 10 1( ) ( ) exp( 264 )Sub Sub Sub
j jt t ZNFλ λ β= × , 

and the subhazard model for Event 2 (censoring) is  

2 20 2( ) ( ) exp( 264 )Sub Sub Sub
j jt t ZNFλ λ β= × . 

We fitted the data to the two models to estimate 1
Subβ  and 2

Subβ  using the method of Section 4.1.  

The marginal models for Events 1 and 2 are specified as 

1 10 1

2 20 2
1/

1 2

( ) ( )exp( 264 )                      (for  death),
( ) ( )exp( 264 )                 (for censoring),

Pr( , ) [ exp{ ( ) } exp{ ( ) } 1] ,

j j

j j

j j j j

t t ZNF
t t ZNF

X x Y y x y θ

λ λ β
λ λ β

θ θ −

 = ×
 = ×
 > > = Λ + Λ −

   

where θ = 0, 0.22, … and 18. The latter correspond to τ = 0, 0.1, … and 0.9, respectively. For each θ , 

we fitted the data to estimate 1β  and 2β  using the method of Section 4.2.  
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Table 1 summarizes the results of fitting the data. Under the subhazard model, the effect of ZNF264 

gene on overall survival is significant (P-value<0.05). Under the marginal hazard model, the effect of 

ZNF264 gene on overall survival is also significant across all the selected values of θ . However, the 

effect sizes in the two different models are interpreted in different ways. For instance, the value 

1̂ 0.548β =  (under 00.0=θ ) implies that the unit increase of ZNF264 gene expression yields about 1.73 

(= exp(0.548) ) times higher instantaneous risk of death. This value is equivalent to that obtained by [31] 

under the usual Cox regression with independent censoring. Meanwhile, the value 1̂ 0.425Subβ =  yields 

the degree of acceleration in the sub-distribution function 

1 1log[ log{1 ( | 1 ) }] 0.425 log[ log{1 ( | ) }]Sub SubF t Z F t Z− − + = − − − . 

Interpreting 1̂exp( ) 1.57Subβ =  as a relative risk of death is difficult, since the conditioning events are 

complex and involve censoring.  

 

Table 1. Regression coefficients obtained by fitting the lung cancer data. 

Model 
Event 1 (death) 

1̂β  (95%CI) 
Event 2 (censoring) 

2β̂  (95%CI) 

Subhazard 0.425 (0.044, 0.807) -0.222 (-0.586, 0.143) 
Marginal ( 00.0=θ ; 0.0=τ ) 0.548 (0.144, 0.952) 0.259 (-0.176, 0.694) 
Marginal ( 22.0=θ ; 1.0=τ ) 0.560 (0.154, 0.965) 0.272 (-0.158, 0.702) 
Marginal ( 50.0=θ ; 2.0=τ ) 0.570 (0.162, 0.979) 0.280 (-0.143, 0.704) 
Marginal ( 86.0=θ ; 3.0=τ ) 0.578 (0.169, 0.988) 0.290 (-0.129, 0.710) 
Marginal ( 33.1=θ ; 4.0=τ ) 0.585 (0.178, 0.991) 0.311 (-0.103, 0.725) 
Marginal ( 00.2=θ ; 5.0=τ ) 0.593 (0.198, 0.987) 0.349 (-0.051, 0.749) 
Marginal ( 00.3=θ ; 6.0=τ ) 0.599 (0.229, 0.969) 0.394 (0.026, 0.762) 
Marginal ( 67.4=θ ; 7.0=τ ) 0.591 (0.251, 0.932) 0.432 (0.101, 0.762) 
Marginal ( 00.8=θ ; 8.0=τ ) 0.561 (0.251, 0.872) 0.453 (0.156, 0.751) 
Marginal ( 0.18=θ ; 9.0=τ ) 0.508 (0.227, 0.788) 0.455 (0.187, 0.723) 

 

Table 1 shows some interesting differences in the regression coefficients between the subhazard 

model and marginal model for Event 2 (censoring); while 2
ˆ Subβ  is negative and non-significant, 2β̂  is 

positive for all values of θ with a P-value<0.05 for 3θ ≥ . Thus, the overexpressed value of ZNF264 

gene expression may increase the instantaneous risk of censoring; though, this effect may not become 

apparent from the sub-distribution-based analysis.   
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To draw some conclusions on the effect of ZNF264 gene on the hazard of censoring time, we 

selected the copula parameter 8θ =  ( 0.8τ = ) that minimizes the CvM distance (see Section 4.4). Under 

this value, ZNF264 gene is significantly associated with censoring time ( 2
ˆ 0.454β = , 95%CI: 

0.156~0.751). On the other hand, the regression coefficient for the subhazard model lacks statistical 

significance ( 2
ˆ 0.222Subβ = − , 95%CI: -0.182~0.698). The difference of these conclusions comes 

naturally, as the two models are estimating two different quantities.  

Figure 1 gives the model diagnosis plot for the subhazard model and the marginal model. Both 

models fit well to the data since their model-based estimators of the sub-distribution function capture the 

empirical behavior of the sub-distribution. While the CvM distance is smaller for the marginal model, this 

does not mean the marginal hazard is more suitable for the data (Section 4.4). 

 

 
Figure 1.  The estimated sub-distribution functions under the marginal Cox model (Mar-Cox), subhazard 

Cox model (Sub-Cox), and nonparametric model (Nonpara) using the lung cancer data. The plots show the 
estimated cumulative incidence rates for Event 1(death) and Event 2 (censoring). The nonparametric 

estimator for Event 1 (death) is not available for Z = 3 since this group only contains 3 censored samples. 
The marginal hazard model is fitted under 8=θ . 
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5. Clustered competing risks data 

This section extends our analysis to permit for more complex data structure, namely, clustered 

competing risks data. Clustered data frequently appear in medical studies, where patients are collected 

from different hospitals (in multi-center clinical trials) or different studies (in meta-analysis). Competing 

risks methods for analyzing clustered data are developed by a number of authors [24, 32-38], most of 

them using frailty to account for heterogeneity between clusters. 

Consider G  different clusters with the i -th cluster containing iN  subjects. Let ijX  be the time to 

Event 1, ijY  be the time to Event 2 for Gi ...,,2,1=  and iNj ...,,2,1= . Define min( , )ij ij ijT X Y=  and 

)( ijijij XT == Iδ . Independent censoring is introduced later. 

To account for heterogeneity between clusters, we consider an unobserved frailty term iu  that acts 

on the hazard functions of ijX  and ijY . The frailty term iu  is considered as a realization of a positive-

valued random variable. Two parametric distributions are commonly used for iu : The gamma 

distribution with 1)( =iuEη  and ηη =)( iuVar , and the log-normal distribution exp( )i iu v=  where 

( ) 0iE vη =  and ( )iVar vη η= . In either case, a large value of η  implies a large amount of heterogeneity 

while the value of 0η →  implies no heterogeneity between the clusters. 

The marginal hazard functions of ijX  and ijY  given iu  are denoted as 1 ( | )ij it uλ  and 2 ( | )ij it uλ , 

respectively. Here, the “marginal” refers to one marginal of the joint survival function 

Pr( , | )ij ij iX x Y y u> > . For instance, the marginal hazard for ijX  is 

1 ( | ) log Pr( , 0 | ) /ij i ij ij it u d X t Y u dtλ = − > > . In a multi-center analysis, the frailty term iu  captures the 

“frailty” for the i-th center, acting on all the patients in the center. The corresponding marginal survival 

function is 1 1 10
( | ) exp[ ( | )] exp ( | )

t

ij i ij i ij iS t u t u s u dsλ = −Λ = −  ∫ . 

As in Ha et al. [37], the subhazard function for Event 1, given the frailty term, is 

1 ( | ) Pr( , 1|{ } { , 0 }, ) /Sub
ij i ij ij ij ij ij it u t T t dt T t T t u dtλ δ δ= ≤ < + = ≥ ∪ < = . 

The subhazard and the sub-distribution function are related through 

1 1( | ) log[1 ( | )] /Sub Sub
ij i ij it u d F t u dtλ = − − , where 1 ( | ) Pr( , 1| )Sub

ij i ij ij iF t u T t uδ= ≤ =  is the sub-distribution 

function for Event 1.  
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The next theorem extends the relationship between the marginal hazard and subhazard as given in 

Theorem 1 to clustered competing risks data: 

 

Theorem 3: Under the joint frailty-copula model (Emura et al. 2017) of 

1 2Pr( , | ) { ( | ), ( | ) }ij ij i ij i ij iX x Y y u C S x u S y uθ> > = ,                                  (7) 

the marginal hazard and subhazard are connected through 
[1,0]

1 2
1 1 [1,0]

1 1 20

{ ( | ), ( | ) }
( | ) ( | )

1 ( | ) { ( | ), ( | ) }
ij i ij iSub

ij i ij i t

ij i ij i ij i

D t u t u
t u t u

x u D x u x u dx
θ

θ

λ λ
λ

Λ Λ
=

− Λ Λ∫
. 

 

Assuming ( , )C u v uvθ =  in Equation (7) corresponds to ijX  and ijY  that are independent given the 

frailty term. In this case we have the joint frailty model of Rondeau et al. [32]. However, assuming 

independence does not simplify the relationship between the marginal hazard and subhazard as in 

Section 3. A copula model similar to Equation (7) was also considered by Rotolo et al. [24] for the 

purpose of simulating clustered competing risks data. 

  The implications of Theorem 3 are similar to those from Theorem 1 for non-clustered data. 

Specifically, 1 1( | ) ( | )Sub
ij i ij it u t uλ λ<  hold for 0t∀ >  under various marginal models. The difference 

1 1( | ) ( | )Sub
ij i ij it u t uλ λ−  is usually large, which depends on both marginal distributions and an assumed 

copula. The equality 1 1( | ) ( | )Sub
ij i ij it u t uλ λ=  does not hold except for a degenerated competing risks 

model satisfying Pr( | ) 1ij ij iT X u= = . Thus, we conclude that 1 1( | ) ( | )Sub
ij i ij it u t uλ λ=  does not hold for 

any clustered competing risks data that contains observed values for ijY . 

Next, we study the effect of covariates on the two hazards. 

 

5.1 Semiparametric inference for the Cox models 

Medical researchers are typically interested in estimating the effects of covariates jZ  on one or two 

event times. For Event 1, we specify the covariate effects through the subhazard Cox model given  iu : 

1 10 1( | , ) ( ) exp( )Sub Sub Sub
ij i ij i ijt u u tλ λ=Z β Z . 

The estimator of 1
Subβ  is denoted by 1

ˆ Subβ . Similarly for Event 2, we consider the subhazard Cox model 
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2 20 2( | , ) ( ) exp( )Sub Sub Sub
ij i ij i ijt u u tλ λ=Z β Z , 

and the estimator is denoted as 2
ˆ Subβ . The two estimators 1

ˆ Subβ  and 2
ˆ Subβ  are obtained separately by 

working on two different likelihood functions (e.g. Ha et al. [37]). 

Meanwhile, we also specify the covariate effects through the marginal Cox models 

1 10 1

2 20 2

( | , ) ( )exp( ),
( | , ) ( )exp( ),
ij i ij i ij

ij i ij i ij

t u u t
t u u tα

λ λ
λ λ

′=
 ′=

Z β Z
Z β Z

 

where 10 20( , )λ λ  are baseline hazard functions, and α  can be any real number such as 1α =  (shared 

frailty case) and 0α =  (no frailty on Event 2). The estimators 1 2
ˆ ˆ( , )β β  can be obtained by maximizing a 

likelihood function for clustered competing risks data that was shortly mentioned in [34]. To implement 

their methods, we make the cmprskCox.reg( ) function available in the R joint.Cox package. While our 

goal in this paper is to compare between marginal regression and subhazard regression, the R function 

itself can be a useful tool for researchers.  

A conclusion from Theorem 3 and Section 4 is that the subhazard Cox model and marginal Cox 

model do not hold simultaneously. Hence, ˆ Sub
kβ  and  ˆ

kβ  are estimating different population values. 

Nonetheless, it is informative to review how these estimators can be computed from the clustered 

competing risks data. 

Clustered competing risks data consist of 1 2( , , , )ij ij ij ijT δ δ Z  for Gi ...,,2,1=  and iNj ...,,2,1= , 

where min( , , )ij ij ij ijT X Y C= , ijC  is independent censoring time, 1 ( )ij ij ijT Xδ = =I  and 

2 ( )ij ij ijT Yδ = =I  are event indicators. Next, we introduce the models for analyzing the data. 

 

Fitting the subhazard model 

The estimator 1
ˆ Subβ  is obtained by maximizing the profiled h-likelihood function [13, 37]. The frailtyHL 

R package [39] can compute 1
ˆ Subβ  and its SE and CI. Note that the estimates  1

ˆ Subβ  and 2
ˆ Subβ  should be 

obtained separately by fitting two subhazard Cox models. 

 

Fitting the marginal model 

We give the methodological details for computing the marginal regression estimators 1 2
ˆ ˆ( , )β β . Emura et 

al. [34] derived the log-likelihood function 
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1 21 2

1 2 10 20 1 1 2 2
1 1

*
1 2 1 2

1
0

( , , , , | , ) { log ( ) log ( ) }

        log [ ( ), ( ) ] [ ( ), ( ) ]

                             

i

i
ij iji i

NG

ij ij ij ij ij ij
i j

N
m m
i i ij ij i ij ij i ij ij i ij ij

j

T T

u u T u T u T u Tδ δα α α
θ θ

η λ λ θ α δ λ δ λ

ψ ψ

= =

∞

+

=


= +




+ Λ Λ Λ Λ



∑ ∑

∏∫

β β

1 2                                                  [ ( ), ( ) ] ( ) ,i ij ij i ij ij i iD u T u T f u duα
θ η


× Λ Λ  

 

 

where 0( ) ( ) exp( )kij k k ijt tλ λ ′= β Z , 
0

( ) ( )
t

kij kijt s dsλΛ = ∫ , and 
1

iN
ki kijj

m δ
=

=∑  for k = 1 and 2. They 

proposed to apply a cubic M-spline function to model 10 20( , )λ λ . Unlike the full nonparametric models, 

the spline yields smooth functions 1

10 1
( ) ( )Lt g M tλ

=
=∑  

 and 2

20 1
( ) ( )Lt h M tλ

=
=∑  

, where )(tM   is a 

cubic M-spline basis function [40], and 0≥g  and 0≥h  are unknown parameters. 

To compute the M-spline basis functions, one needs to specify the number and locations of knots. 

As in [34, 38], we adopt equally-spaced knots 321 ξξξ << , where 1 min( )jTξ = , 3 max( )jTξ = , and 

2 1 3( ) / 2ξ ξ ξ= + . The functions )(tM  ’s for 1 2 5L L= =  are defined on  1 3[ , ]t ξ ξ∈ . 

We develop the R function cmprskCox.reg( ) in the joint.Cox R package that automatically obtains 

1 2 10 20
ˆ ˆ ˆ ˆˆ( , , , , )η λ λβ β . This function applies a Newton-type optimization to the penalized log-likelihood  

2 22 2

1 2 1 10 2 202 2( , , , , | , ) ( ) ( )d dt dt t dt
dt dt

η θ α κ λ κ λ
   

− −   
   
∫ ∫β β g h ,                             (8) 

where θ , α , and 0kκ >  are given values. The R function cmprskCox.reg( ) automatically selects the 

best values of 1κ  and 2κ  by a cross-validation while the values θ  and α  have to be pre-specified. We 

suggest considering 0α = , 1α = , and other plausible values, and then choose the one that gives the best 

(largest) likelihood value in Equation (8). This is straightforward by checking the output of 

“cmprskCox.reg(,alpha=)”. The choice 0α =  implies that the risks of Event 2 are homogeneous across 

clusters. The choice 1α =  gives a shared frailty model for Events 1 and 2 so that the between-cluster 

heterogeneity in two events are similar. We have examined the performance of the inference procedure 

via simulations (Appendix C). 
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5.2 Data example (bladder cancer) 

We consider the bladder cancer data collected from 21 centers that participated in the EORTC trial 

30791 [41]. We use the subset of the bladder cancer data as considered in Section 1.2.4 of Ha et al. [13], 

consisting of 396 patients with bladder cancer from 21 centers. We consider two competing endpoints, 

i.e, time to first bladder recurrence (Event 1) and time to death prior to recurrence (Event 2). Of 396 

patients, 200 (50.51%) had recurrence of bladder cancer, 81 (20.45%) died prior to recurrence, and 115 

(29.04%) were censored without recurrence or death at the last date of the follow-up. The numbers of 

patients per center varied from 3 to 78, with the mean of 18.9 and the median of 14. Two covariates are 

considered: Chemotherapy (0 = No vs. 1 = Yes) and Age (0 if age ≤ 65 years vs. 1 if age > 65 years). 

   The subhazard model for Event k is 

0 1 2( | ) ( ) exp( )Sub Sub Sub Sub
kij i i k k ij k ijt u u t Chemo Ageλ λ β β= × + × , 

for k =1 (Recurrence) and k =2 (Death). The two models are fitted separately to compute ˆ Subβ ’s. 

The marginal model for the two events is jointly specified as 

1 10 11 12

2 20 21 22

1 2

( | ) ( )exp( )              (for recurrence),
( | ) ( )exp( )              (for death),

Pr( , | ) [ exp{ ( | ) } exp{ ( | )

ij i i ij ij

ij i i ij ij

ij ij i ij i ij i

t u u t Chemo Age
t u u t Chemo Age
X x Y y u x u y u

α

λ λ β β
λ λ β β

θ θ

= × + ×
= × + ×

> > = Λ + Λ 1/} 1 ] .θ−




 −

   

We set θ = 0, 0.5, 2, or 8, which corresponds to τ = 0, 0.2, 0.5, or 0.8, respectively. We report the fitted 

results for 1α =  (shared frailty model) as it gave a greater likelihood value than other values of  α  (e.g. 

0α = , 2α = ). 

Table 2 summarizes the results of fitting the two different Cox models. For the subhazard model, the 

effect of Chemo on time-to-recurrence is significant ( ˆ 0.70Subβ = − ; P-value<0.05) but its effect on time-

to-death is non-significant ( ˆ 0.64Subβ = ; P-value>0.05). The result implies that the chemotherapy is 

effective for reducing the event rate of recurrence, in the sense that the sub-distribution function is 

decreased as 

1 1log[ log{1 ( | Yes ) }] 0.70 log[ log{1 ( | No ) }]Sub SubF t Chemo F t Chemo− − = = − + − − = . 

However, the effect of Chemo on time-to-death is non-significant, possibly due to toxicity or side effects.  

Under the marginal hazard model, the effect of Chemo on time-to-recurrence is significant (P-

value<0.05) but its effect on time-to-death is non-significant (P-value>0.05). Hence, the significance of 

Chemo is confirmed on both the marginal hazard and subhazard. However, since the values of ˆ Subβ  and 
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β̂  are targeted to measure different risks, they must be interpreted differently. To interpret the results for 

the marginal regression, we choose θ =2 (τ =0.5) corresponding to a moderate amount of dependence 

between time-to-recurrence and time-to-death. Under this value, Chemo reduced the marginal hazard 

rate of recurrence by ˆexp( ) exp( 0.51) 0.60β = − = . Normally, researchers do not interpret ˆ 0.51β = −  as 

the decrease in the survival function. 

Now we compare the effects of Age on the two endpoints (Table 2). Under the subhazard model, Age 

significantly influences time-to-death. This means that older patients tend to have higher death rate in 

terms of their increased sub-distribution function. While this appears to be a plausible finding, the 

marginal model with θ =2 (τ =0.5) and θ =8 (τ =0.8) suggests a different conclusion: Age does not have 

a significant effect on time-to-death. A possible explanation of the effect of Age on subhazard model is 

the presence of some indirect influence of the effect of Age on time-to-recurrence. That is, even if Age 

has no marginal effect on time-to-death, it influences the subhazard of time-to-death through its effect 

on time-to-recurrence (Section 3). 

 

Table 2. Regression coefficients obtained by fitting the bladder cancer data. 
Covariate (taking 0 or 1) Model Event 1 (recurrence) 

1β̂  (95%CI) 
Event 2 (death) 

2β̂  (95%CI) 

Chemo (1 for chemotherapy) Subhazard  -0.70 (-1.04, -0.36) 0.64 (-0.09, 1.37) 

 Marginal (θ =0; τ =0) -0.55 (-0.91, -0.20) 0.34 (-0.38, 1.06) 
 Marginal (θ =0.5; τ =0.2) -0.52 (-0.87, -0.17) 0.19 (-0.48, 0.86) 
 Marginal (θ =2; τ =0.5) -0.51 (-0.86, -0.16) -0.27 (-0.77, 0.23) 
 Marginal (θ =8; τ =0.8) -0.30 (-0.63, 0.04) -0.18 (-0.53, 0.18) 
Age (1 for > 65 years) Subhazard -0.22 (-0.50, 0.06) 0.93 (0.43, 1.43) 
 Marginal (θ =0; τ =0) -0.10 (-0.39, 0.18) 0.73 (0.21, 1.26) 
 Marginal (θ =0.5; τ =0.2) -0.07 (-0.36, 0.21) 0.66 (0.16, 1.17) 
 Marginal (θ =2; τ =0.5) -0.04 (-0.31, 0.23) 0.37 (-0.02, 0.76) 
 Marginal (θ =8; τ =0.8) -0.05 (-0.30, 0.20) 0.08 (-0.20, 0.36) 
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6. Conclusion and discussion 

In this article, we investigated in detail the relationship between the subhazard function and marginal 

hazard function in the analysis of competing risks data. We have adopted the assumed copula model of 

[5] to establish a mathematical relationship between the two hazard functions (Theorem 1). We have 

also adopted the joint frailty-copula model [34, 38] to extend the mathematical result to clustered 

competing risks data (Theorem 3). One conclusion from Theorems 1 and 3 is that, even if there is no 

marginal effect on one event time, the subhazard of this event time is influenced by the marginal effect 

on the other event. Hence, even if a fitted covariate for a marginal model does not show any significance 

on one event, the covariate can still be significant on the subhazard model. 

Beside these theoretical findings, we have developed an R function for marginal regression with 

clustered competing risks data: cmprskCox.reg( ), and checked the validity by means of simulations 

(Appendix C). This adds a new tool to the existing R functions for fitting the marginal hazard model for 

competing risks data (Table 3). While we do not intend to compare all the available packages, the new R 

function allows researchers to compare the results of subhazard regression and marginal hazard 

regression for their own data. An R package for subhazard regression using interval censored data is 

only recently developed [44]. 

 

Table 3. R functions in available R packages for competing risks 

 R package No covariate Covariates Covariate & cluster 
Subhazard cmprsk  

Gray [25] 
cuminc crr - 

 Timereg 
Scheike et al. [42] 

- comp.risk 
prop.odds.subdist 

comp.risk 
prop.odds.subdist 

 frailtyHL  
Ha et al. [39] 

- - hlike.frailty 

 Goftte 
Sfumato et al. [30] 

- prop.crr 
fcov.crr 

- 

Marginal 
hazard 

joint.Cox  
Emura [16]  

- - cmprskCox.reg 

 cmpound.Cox 
Emura et al. [43] 

- dependCox.reg 
dependCox.reg.CV 

- 

See Appendix B for some descriptions about the compound.Cox package. 

 

One has to recognize that the marginal hazard function and subhazard function describe different 

population quantities. We have shown that a constant marginal hazard function produces a steeply 
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decreasing subhazard function. In the analysis of the two cancer datasets, we have seen that regression 

coefficients fitted by the marginal hazard model and the subhazard model can have different signs. 

These findings emphasize the fact that the two hazard functions measure different natures of event risks. 

We introduced a Cramér-von Mises distance for selecting a copula parameter for the marginal 

hazard model. While we developed and tested the method for discrete or categorical covariates, an 

extension to continuous covariate might be possible by following the idea of Escarela and Carrière [6]. 

An extension of this method to clustered competing risks data is challenging, because of the lack of a 

nonparametric estimator for the sub-distribution function in presence of heterogeneity and/or correlation 

caused by clustering.  

 

Supplementary Material 

The paper includes the following supplementary materials. 

S1 Examples for Theorem 1 

S2 Copula parameter selection 

S3 Computer codes for the analysis of the lung cancer data 
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Appendix A: Proof of Theorem 2  

We first rewrite the condition 0)()( 11 ≥∀= tttSub λλ  as 1 1 1 1( ) ( ) ( ){1 ( ) } 0Sub Subf t S t f t F t t= − ∀ ≥ . 

The right-hand-side of this equation can be written as 

1 1 1 1

1 1 1 1 1 1

( ){1 ( ) } ( ){ ( ) Pr( , ) }
( ) ( ) { ( ) ( ) } ( ) ( )Pr( , ).

Sub

Sub Sub

f t F t f t S t X t X Y
f t S t f t f t S t f t X t X Y

− = + ≤ >

= + − + ≤ >
 

Hence, 0)()( 11 ≥∀= tttSub λλ  is equivalent to  

1 1 1 1{ ( ) ( ) } ( ) ( )Pr( , ) 0    Subf t f t S t f t X t X Y t− + ≤ > = ∀ .                                 (9) 
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Since 1( )S t  is non-increasing in t , [0, ]t∗∃ ∈ ∞  such that 0)(1 =tS  for t t∗∀ ≥ . Note that 0)(1 =tS  

implies 0)(1 =tf . Hence Equation (9) holds for t t∗∀ ≥ . On the other hand, for t t∗∀ < , we have a 

positive value 1( ) 0S t > . Thus, a necessary condition for Equation (9) is 1 1{ ( ) ( ) } 0 Subf t f t t t∗− = ∀ < . 

This is also a sufficient condition for Equation (9) since  

1 1Pr( , ) ( ) ( ) 0     Pr( , ) 0  Subd X t X Y f t f t t t iff X t X Y t t
dt

∗ ∗≤ > = − = ∀ < ≤ > = ∀ < . 

Hence, 0)()( 11 ≥∀= tttSub λλ  is equivalent to Pr( , ) 0  X t X Y t t∗≤ > = ∀ < . The proof complete since  

Pr( , ) 0   Pr( ) 0 Pr( ) 1X t X Y t t iff X Y iff X Y∗≤ > = ∀ < > = ≤ = .   □ 

 

Appendix B: Semiparametric MLE under the marginal model 

We introduce the marginal regression method of Chen [8] to compute the MLE 1 2 10 20
ˆ ˆ ˆ ˆ( , , , )λ λβ β  based 

on the dataset 1 2( , , , )j j j jT δ δ Z , 1, 2, ...,j n= . Under the marginal Cox models of Section 4.2, the CS 

hazard functions are 

)|,,,;()exp()()|( 20102111101 θηλλ ΛΛ′= ββZβZ ttt jjj
CS ,

)|,,,;()exp()()|( 20102122202 θηλλ ΛΛ′= ββZβZ ttt jjj
CS , 

where 
[1,0]

1 2
1 1 2 10 20

1 2

{ ( ), ( ) }
( ; , , , | )

{ ( ), ( ) }
j j

j
j j

D t t
t

D t t
θ

θ

η θ
Λ Λ

Λ Λ =
Λ Λ

β β ,  
[0,1]

1 2
2 1 2 10 20

1 2

{ ( ), ( ) }
( ; , , , | )

{ ( ), ( ) }
j j

j
j j

D t t
t

D t t
θ

θ

η θ
Λ Λ

Λ Λ =
Λ Λ

β β , 

where ( ) ( | )kj k jt tΛ ≡ Λ Z  for k =1 and 2. As in [8], we obtain the log-likelihood 

1 2 10 20 1 1 1 1 2 10 20 10

2 2 2 1 2 10 20 20

1

( , , , | ) [ log ( ; , , , | ) log ( ) ]

                                   (1 )[ log ( ; , , , | ) log ( ) ]

                                   [

j j j j j
j

j j j j j
j

T T

T T

Dθ

λ λ θ δ η θ λ

δ η θ λ

′= + Λ Λ +

′+ − + Λ Λ +

− Λ

∑

∑

β β β Z β β

β Z β β



2( ), ( ) ] .j j j j
j

T TΛ∑

 

For a given θ , the MLE is obtained as 1 2 10 20 1 2 10 20
ˆ ˆ ˆ ˆ( , , , ) arg max ( , , , | )λ λ λ λ θ=β β β β , where we treat 

0kΛ  as an increasing step function with jumps sizes 10 10 10 10( ) ( ) ( ) ( )j j j jT d T T T dtλ = Λ = Λ −Λ −  for 

1 1jδ =  and 20 20 20 20( ) ( ) ( ) ( )j j j jT d T T T dtλ = Λ = Λ −Λ −  for 2 0jδ = . Currently, there seems no software 

package to implement the computation of the MLE.  
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For a special case of jC = ∞  and one-dimensional covariate j jZ=Z , one can compute the MLE 

by the R function dependCox.reg( ) in compound.Cox R package [43]. The value of θ  should be given 

by user. Multiple covariates and cross-validated estimate of θ  can be handled by dependCox.reg.CV( ); 

however, the estimates are obtained from univariate analyses and they are not equal to 1 2 10 20
ˆ ˆˆ ˆ( , , , )λ λβ β . 

See Chapter 5 of [14] for details. We illustrate the dependCox.reg( ) function through the lung cancer 

data. Given below are the input (red color) and output (blue color) in the R console. 

 

> data(Lung) 
>  
> t.vec = Lung$t.vec[Lung$train == TRUE] 
> d.vec = Lung$d.vec[Lung$train == TRUE] 
> X.vec = Lung$ZNF264[Lung$train == TRUE] 
>  
> theta = 8 
> dependCox.reg(t.vec,d.vec,X.vec,censor.reg=TRUE,alpha=theta,baseline=TRUE) 
$surv.reg 
beta                     SE                        Z                         P  
0.5613137475     0.1583489783     3.5447891957     0.0003929272  
 
$censor.reg 
beta                   SE                      Z                       P  
0.453470429     0.151979571     2.983759106     0.002847308  
 
$baseline 
 [1] 0.006091766    0.012249470    0.018474552    0.025089564    0.025089564    0.032470851 
… 
[61] 1.006589532    1.006589532    1.006589532 
 
$cen.baseline 
 [1] 0.00000000    0.00000000    0.00000000    0.00000000    0.01387123    0.01387123 
… 
[61] 1.83754289    2.08436566    2.72019869 
 

We see the estimate 1̂β =0.5613137475 (along with the SE, Z-value, and P-value), a regression 

coefficient for Event 1 (death). Similarly, we see the estimate 2β̂ =0.453470429, a regression 

coefficient for Event 2 (censoring). We also see the cumulative baseline hazard function 0
ˆ ( )k jTΛ  for 
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1, 2, ...,j n=  and Event k. Since the sample size is 63n = , we have 0 ( )
ˆ ( )k jTΛ  for 63 ordered time 

points (1) (63)T T< <  . The value of θ  must be given by user as seen from the input “theta=8”.  

 

 

Appendix C: Simulations for the marginal regression method 

This appendix conducts simulation studies to demonstrate that the marginal regression methods for 

clustered competing risks data (Section 5.1) are reliable. To this end, we generate data from a joint 

frailty-copula model and estimate the parameters. We then check the consistency between the estimates 

and the parameters for 500 repetitions. 

 

C1. Simulation designs  

Following [34], we consider two different scenarios: 

Scenario (I):  5=G  and 100=iN  (or 200) for 5,,2,1 =i . 

Scenario (II):  30=G  and 10=iN  (or 20) for 30,,2,1 =i . 

The case of 5=G  corresponds to small number of clusters (studies), which is common in meta-analyses. 

For example, Sabatier et al. [45] combined 6=G  independent studies to examine the effect of ECRG4 

expression on survival. In the ovarian cancer research, Emura et al. [34] analyzed the effect of CXCL12 

expression to both tumor recurrence and death based on 4=G  independent studies. The case of 30=G  

corresponds to a larger amount of clusters with smaller number of subjects. Our bladder cancer data 

example (Section 5.2) is 21=G . 

For each cluster Gi ,,2,1 = , a frailty term iu  follows a gamma distribution with mean 1 and 

variance 5.0=η . For each subject iNj ,,2,1 = , a covariate ijZ  follows a uniform distribution on the 

unit interval )1,0( . Given iu  and ijZ , the joint distribution of ijX  (Event 1) and ijY  (Event 2) follows a 

joint frailty-copula model specified by 
θθθ /1

21 ]1})|(exp{})|(exp{[)|,Pr( −−Λ+Λ=>> iijiijiijij uyuxuyYxX , 

where )exp()()|( 1101 ijiiij Zxuux βΛ=Λ  and )exp()()|( 2202 ijiiij Zyuuy βαΛ=Λ  are the cumulative 

hazards with 1)(/)( 1010 ==Λ xdxxd λ  and 1)(/)( 2020 ==Λ ydyyd λ . Here, we introduce dependence 

between Events 1 and 2 by choosing 2=θ  ( 6=θ ) that corresponds to Kendall’s tau equals to 0.5 (0.75). 

To avoid the nonidentifiability issue on the competing risks data [22], we assumed the dependence 
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parameter θ  to be known. We also assumed 1=α  is known and not estimated. The independent 

censoring time ijC  follows a uniform distribution on the interval )5,0(  that yields around 16 – 36% 

censored subjects. After generating data, we fit the joint model by utilizing the R function 

cmprskCox.reg( ) in the joint.Cox R package. Our simulations are based on 500 replications.  

 

C2. Simulation results 

Table 4 shows the simulation results under Scenario (I). The parameter estimates are nearly unbiased for 

regression parameters 1β  and 2β . The standard deviations (SDs) of the estimates decrease as the 

numbers of subjects increase from 100=iN  to 200. In addition, the average standard errors (SEs) 

accurately approximate the SDs. Consequently, the coverage probabilities (CPs) of the 95%CIs are all 

close to the nominal confidence level of 0.95. 

Table 4 reveals that the estimates of the frailty parameter η  are biased. Also, the average SEs are 

lower than the SDs. Consequently, the resulting CPs of the 95%CIs do not reach the nominal confidence 

level of 0.95. These problems do not vanish even if the number of subjects increases from 100=iN  to 

200 (Table 4). This is because the bias is due to the small number of clusters ( 5=G ). Fortunately, the 

problems of the bias and CPs vanish when the number of subjects is large ( 30=G , Table 5).  

Table 5 shows the simulation results under Scenario (II). Similar conclusions can be drawn for the 

estimation of 1β  and 2β  from those of Scenario (I). On the other hand, unlike Scenario (I), the estimates 

of η  are nearly unbiased. The average SEs are close to the SDs, and hence, the CPs of the 95%CIs are 

close to the nominal confidence level of 0.95.  
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Table 4.  Simulation results under Scenario (I) ( 5=G  studies) based on 500 replications. 
   100=iN    200=iN   

 Parameter Mean SD SE CP Mean SD SE CP 

CEN = 16% 11 =β  1.003 0.212 0.217 0.95 1.003 0.148 0.151 0.96 

2=θ  12 =β  1.013 0.210 0.217 0.96 1.003 0.146 0.151 0.97 

 5.0=η  0.400 0.263 0.245 0.89 0.396 0.282 0.239 0.83 

 1κ  60.020 185.132 - - 28.880 108.023 - - 

 2κ  79.420 218.246 - - 26.480 86.495 - - 

CEN = 32% 11 −=β  -1.002 0.254 0.249 0.95 -1.000 0.169 0.174 0.95 

2=θ  12 −=β  -0.995 0.253 0.248 0.95 -0.995 0.172 0.174 0.96 

 5.0=η  0.397 0.264 0.244 0.89 0.395 0.283 0.239 0.83 

 1κ  264.340 397.644 - - 126.320 284.601 - - 

 2κ  229.340 373.205 - - 105.720 245.626 - - 

CEN = 18% 11 =β  1.007 0.193 0.198 0.95 1.005 0.139 0.138 0.95 

6=θ  12 =β  1.015 0.191 0.197 0.96 1.006 0.138 0.138 0.95 

 5.0=η  0.402 0.266 0.247 0.88 0.399 0.285 0.241 0.83 

 1κ  117.480 281.349 - - 55.800 178.341 - - 

 2κ  136.080 292.132 - - 52.200 175.123 - - 

CEN = 36% 11 −=β  -1.002 0.233 0.231 0.95 -0.999 0.157 0.161 0.95 

6=θ  12 −=β  -0.997 0.230 0.231 0.95 -0.998 0.158 0.161 0.95 

 5.0=η  0.400 0.268 0.248 0.89 0.396 0.281 0.240 0.84 

 1κ  306.740 420.877 - - 126.040 278.419 - - 

 2κ  285.940 412.046 - - 127.040 277.603 - - 

CEN = the censoring percentage, SD = the sample standard deviation of the estimates, SE = the average 
of the standard errors, CP = the coverage probability of the 95% CIs. 
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Table 5.  Simulation results under Scenario (II) ( 30=G  studies) based on 500 replications. 
   10=iN    20=iN   

 Parameter Mean SD SE CP Mean SD SE CP 

CEN = 16% 11 =β  0.993 0.306 0.296 0.95 1.019 0.193 0.201 0.96 

2=θ  12 =β  0.991 0.313 0.295 0.93 1.012 0.204 0.202 0.94 

 5.0=η  0.489 0.165 0.158 0.95 0.482 0.144 0.136 0.93 

 1κ  73.320 176.789 - - 29.520 64.846 - - 

 2κ  75.720 190.648 - - 27.520 57.491 - - 

CEN = 32% 11 −=β  -1.015 0.360 0.331 0.91 -0.991 0.221 0.229 0.96 

2=θ  12 −=β  -1.024 0.354 0.331 0.92 -0.994 0.228 0.229 0.95 

 5.0=η  0.493 0.176 0.168 0.97 0.480 0.147 0.139 0.94 

 1κ  262.420 397.434 - - 151.000 311.598 - - 

 2κ  267.220 401.863 - - 143.200 299.575 - - 

CEN = 18% 11 =β  0.993 0.287 0.274 0.94 1.013 0.178 0.185 0.96 

6=θ  12 =β  0.993 0.289 0.274 0.93 1.011 0.180 0.185 0.96 

 5.0=η  0.489 0.165 0.158 0.96 0.484 0.144 0.135 0.93 

 1κ  137.120 285.962 - - 49.440 143.696 - - 

 2κ  126.920 273.864 - - 54.840 143.462 - - 

CEN = 36% 11 −=β  -1.023 0.342 0.307 0.91 -0.999 0.206 0.213 0.96 

6=θ  12 −=β  -1.029 0.341 0.308 0.91 -1.001 0.207 0.213 0.95 

 5.0=η  0.494 0.177 0.171 0.97 0.482 0.148 0.141 0.94 

 1κ  343.880 435.267 - - 209.380 363.457 - - 

 2κ  341.680 440.912 - - 198.780 354.868 - - 

CEN = the censoring percentage, SD = the sample standard deviation of the estimates, SE = the average 
of the standard errors, CP = the coverage probability of the 95% CIs. 
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