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Abstract	
The	scope	of	this	thesis	is	to	examine	asset	allocation	using	Markowitz's	Modern	Portfolio	Theory	

and	the	Black-Litterman	model.	Further,	it	compares	the	performance	of	the	allocation	models	

over	 an	 out-of-sample	 period	 running	 from	 01-01-2000	 to	 31-12-2018,	 reflecting	 a	 real	

investment	 scenario.	The	analysis	 applies	 a	 simple	multi-asset	portfolio	 consisting	of	 equities	

(SPX	Index)	and	bonds	(LUATTRUU	Index).	

		

Generating	portfolio	allocations	using	historical	measures	has	often	shown	to	be	imprecise,	which	

can	be	seen	in	the	mean-variance	optimization	process.	The	implication	is	finely	solved	by	Black	

and	 Litterman	 (1990),	 who	 used	 equilibrium	 returns	 derived	 from	 the	 Capital	 Asset	 Pricing	

Model	as	a	benchmark	for	the	expected	excess	returns	of	the	portfolio.	Further,	the	model	gives	

the	 investor	the	possibility	of	combining	their	subjective	views	of	 the	return	movements	with	

quantitative	benchmark	data,	using	Bayesian	statistics.	Equity	and	bond	prediction	models	are	

applied	 to	 determine	 the	 individual	 beliefs	 of	 the	 investor,	 and	 the	 respective	 uncertainty	

regarding	the	established	views.	

		

The	 thesis	 investigates	 the	 out-of-sample	 performance	 of	 mean-variance,	 CAPM	 and	 Black-

Litterman	 portfolios	 using	 rolling	 window	 estimates	 of	 the	 expected	 return	 vectors	 and	

covariance	matrices.	The	models	 are	 evaluated	by	performance	measures	 such	 as	 the	 Sharpe	

ratio,	 the	 certainty	 equivalent,	 M-squared	 and	 t-statistics,	 in	 addition	 to	 presenting	 the	

cumulative	realized	portfolio	returns.	The	overall	conclusion	of	this	study	provides	evidence	that	

the	 Black-Litterman	 portfolio	 performs	 more	 inferior	 than	 the	 traditional	 mean-variance	

portfolio,	 especially	 during	 recessions	 and	 crisis,	when	 evaluating	 the	 performance	measures	

stated	above.	All	portfolios	show	significant	t-statistics;	however,	their	performance	appears	to	

differ	substantially	over	the	total	out-of-sample	period.	
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1.	Introduction		

1.1	Introduction	to	investment	

Portfolio	managers	and	traders	have	had	disagreements	regarding	their	preferred	choice	of	asset	

allocation	approaches	over	the	years.	It	is	often	the	case	that	they	favour	either	quantitative-	or	

qualitative	 approaches	 or	 passive	 allocation	models	 as	 opposed	 to	 active	 allocation	methods.	

Typical	 quantitative	 strategies	 often	 require	 historical	 observations	 of	 the	 asset	 prices	 to	

optimize	the	portfolios	or	to	generate	forecasting	models.	These	are	commonly	known	to	require	

a	lot	of	assumptions	and	constraints	to	perform	optimally,	which	can	be	both	expensive	and	time-

consuming,	leading	to	estimation	errors.	The	other	central	aspect	tends	to	focus	on	a	qualitative	

approach	where	the	investor,	for	instance,	performs	market	research	and	fundamental	company	

valuations	to	express	their	beliefs	about	the	future	prices	of	the	assets	in	question.	

	

The	 ground-breaking	 work	 of	 Markowitz	 (1952)	 changed	 how	 academics	 and	 practitioners	

within	finance	looked	at	portfolio	allocation	choice.	The	mean-variance	optimization	approach	is	

well-known	 in	 the	 academic	 world,	 as	 well	 as	 for	 practitioners	 within	 asset	 management.	

Markowitz's	 Modern	 Portfolio	 Theory	 presented	 an	 optimization	 of	 the	 risk-return	 trade-off	

between	 assets,	 which	 was	 quite	 revolutionary	 at	 this	 point.	 The	model	 made	 it	 possible	 to	

diversify	and	allocate	assets	 in	 the	 investors’	portfolio	 in	a	 sophisticated	manner.	Despite	 the	

excitement	regarding	the	model	at	first,	the	mean-variance	approach	has,	both	empirically	and	

practically,	 shown	 to	 have	 quite	 a	 few	 shortcomings	 and	 sparse	 estimation	 over	 time.	 The	

framework	of	Markowitz	applies	historical	return	and	volatility	as	a	proxy	for	future	expectations	

in	the	allocation	model.	Consequently,	it	can	be	an	inaccurate	assumption	that	the	returns	and	

variances	will	be	the	same	as	they	have	previously	been	in	the	future.	It	can	be	a	discussion	on	

whether	this	baseline	is	an	appropriate	assumption	of	the	future	realizations	of	the	asset	returns.	

	

Black	 and	 Litterman	 (1990)	 delicately	 solves	 this	 issue	 by	 applying	 an	 equilibrium	 return,	

originating	from	the	Capital	Asset	Pricing	Model,	as	the	baseline	for	defining	the	expected	return	

vector.	 A	 central	motivation	 for	 the	 construction	 of	 the	 Black-Litterman	 approach	 rests	 on	 a	

desire	 to	 combine	 the	 contradicting	 opinions	 mentioned	 above,	 about	 quantitative	 and	

qualitative	 asset	 allocation	methods,	which	 they	do	by	 letting	 the	 investor	 allocate	 individual	

views	on	the	assets	of	their	choice	in	the	portfolio.	The	incorporation	of	the	views	in	the	model	is	

done	by	the	use	of	Bayesian	statistics,	so	that	the	investor	is	able	to	combine	their	views	with	the	
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market	equilibrium.	As	a	result,	the	models	should	supposedly	provide	more	stable	and	intuitive	

weights	than	those	obtained	in	traditional	allocation	models.		

	

The	 application	 of	 the	 Black-Litterman	 framework	 is	 relatively	 straightforward,	 although,	

establishing	the	investors’	subjective	views,	and	defining	its	uncertainty,	can	be	demanding	and	

challenging	 since	 a	 tremendous	 number	 of	 factors	 are	 impacting	 the	 financial	 markets.	 The	

market	 movements	 and	 trends	 have	 had	 massive	 changes	 over	 the	 years.	 For	 instance,	 a	

remarkable	 factor	 in	 the	stock-bond	relationship	has	been	 the	 transition	of	 the	sign	changing	

from	positive	to	negative.	The	relationship	between	equities	and	bonds	is	one	of	the	fundamental	

building	 blocks	 of	 portfolio	 asset	 decisions,	 which	 could	 change	 the	 whole	 way	 investment	

managers	view	their	allocations,	combined	with	the	way	they	hedge	and	diversify.	Further,	many	

have	tried	to	find	clever	and	efficient	ways	to	determine	individual	investor	views	that	would	not	

require	an	extensive	use	of	time,	like	doing	market	research,	using	analysts’	recommendations,	

and	fundamental	valuations.	Finance	practitioners	have	found	a	generous	number	of	variables	

that	allegedly	have	the	power	to	predict	the	future	return	of	an	asset	or	an	index.	A	sub-goal	of	

this	analysis	will	be	to	exploit	the	literature	on	stock-	and	bond	predictability,	and	thereby	apply	

it	as	a	tool	to	solve	the	problem	of	generating	subjective	views	on	the	expected	return	of	an	asset.	

This	paper	will	use	a	quite	straight	forward	premium	prediction	model	for	equity	index	and	bond	

index.	

1.2	Research	question	

The	 project	 seeks	 to	 investigate	 the	 construction	 of	 mean-variance	 portfolios	 and	 the	 Black	

Litterman	model.	The	goal	is	to	find	empirical	evidence	of	the	relative	performance	of	the	Black-

Litterman	portfolio,	 compared	 to	an	optimized	mean-variance	portfolio.	More	specifically,	 the	

tangency	 portfolio.	 The	 performance	 will	 be	 tested	 over	 a	 significantly	 large	 out-of-sample	

period,	where	we	observe	different	kinds	of	market	movements.	A	second	focus	is	given	to	the	

determination	 and	 generation	 of	 the	 individual	 investors	 market	 views,	 used	 to	 adjust	 the	

expected	excess	return	vector	in	the	Black	Litterman	model.	The	main	research	question	will	be	

as	follows: 

How	do	we	generate	portfolios	using	the	Black-Litterman	model	and	the	mean-
variance	approach,	and	how	well	do	they	perform	out-of-sample?	
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This	will	be	investigated	by	answering	the	following	sub-questions:	
	

• How	do	we	construct	portfolios	applying	Markowitz’s	Modern	Portfolio	Theory	and	the	

Black-Litterman	approach?	

• Can	 equity	 and	 bond	 prediction	 models	 provide	 us	 with	 intuitive	 and	 well-working	

investor	views	in	the	Black-Litterman	model?	

• How	do	the	portfolio	weights	differ	when	comparing	the	approaches,	and	how	does	it	

affect	the	risk	allocation	of	the	portfolios?	

• How	 will	 the	 mean-variance,	 CAPM	 and	 Black-Litterman	 portfolios	 perform	 out-of-

sample?	

• How	does	 the	asset	allocation	perform	and	behave	when	comparing	 it	over	different	

periods?	

The	structure	of	this	study	will	comprise	seven	sections,	illustrated	in	Figure	1.	The	sections	are	

organised	the	following	way;	Section	1	introduces	the	project	with	a	primary	research	question	

(and	relevant	sub-questions)	followed	by	the	delimitations	of	the	analysis.	Section	2	and	3	overall	

contains	the	investigation	of	this	study,	which	is	the	theoretical	body	of	the	project.	It	provides	

an	 overview	 of	 the	 literature	 and	 previous	 research	 done	 on	 the	 subject,	 which	 is	 after	 that	

followed	 by	 the	 theoretical	 approaches	 concerning	 Modern	 Portfolio	 Theory	 (MPT)	 and	 the	

Black-Litterman	model	(BL).	Further,	a	description	of	the	data	and	methodology	applied	during	

this	paper	is	present	in	Section	4.	Section	5	gives	a	detailed	description	of	the	implementation	

with	 the	 belonging	 empirical	 measures,	 including	 computations	 of	 the	 out-of-sample	

performance	 measures.	 Proposals	 for	 further	 research	 and	 possible	 improvements	 will	 be	

discussed	 in	 Section	6.	 Lastly,	 the	 final	 section	provides	 an	 overall	 conclusion	 of	 the	 findings	

arising	from	the	research	and	analysis.		
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Figure	1:	Overview	of	the	structure	of	the	study	

	

1.3	Motivation	
The	 traditional	mean-variance	approach	 is	 a	well-known	portfolio	 theory,	which	has	gotten	a	

great	deal	of	attention	in	academic	curriculums.	While	the	model	gives	intuitive	understanding,	

it	 is	 not	widely	 applied	 in	practice.	Numerous	models	have	been	 investigated	 throughout	 the	

years,	but	no	models	have	been	acknowledged	as	a	standard	procedure	in	the	real-world	setting.	

The	part	of	combining	passive	and	active	portfolio	allocation	is	a	curious	strategy	of	optimization,	

thus	 investigating	 the	Black-Litterman	model	 is,	 in	 fact,	 relevant	 and	exciting	 research	 in	our	

opinion.	The	model	 gives	 the	 ability	 to	 implement	practical	 observations	of	 an	 investor	 to	be	

thereby	applied	in	asset	allocation	processes.	We	find	that	many	have	done	investigations	into	

the	 Black-Litterman	 model	 to	 look	 at	 the	 features	 of	 the	 model,	 which	 includes	 the	 view	

generating	process.	To	our	knowledge,	it	did	not	appear	to	exist	much	research	using	premium	

prediction	models	to	determine	the	investor	views.	Due	to	this	fact,	it	has	motivated	us	to	analyse	

this	possibility.	Lastly,	it	is	interesting	to	look	at	the	change	in	market	movements	over	the	total	

sample	period.	The	correlation	in	stocks	and	bonds	have	had	a	shift	in	the	sign	over	the	period,	

and	 it	 is	an	 important	 input	 in	 the	allocation	models.	 It	made	us	curious	 to	which	extent	 this	

proposes	 changes	 to	 our	 portfolio	 allocation	 over	 time,	 or	 that	 perhaps	 rolling	 estimation	

schemes	can	help	to	sort	this	issue.	
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1.4	Delimitations	and	assumptions	
The	thesis	will	evaluate	portfolios	consisting	of	a	simple	multi-asset	investment	universe	based	

on	stocks	and	bonds,	where	the	Standard	&	Poor	500	index	is	representing	the	equity	market.	In	

addition,	the	10-year	Treasury	index	will	serve	as	an	approximation	of	the	bond	market.	In	order	

to	determine	the	market	portfolio,	the	portfolio	is	excluding	asset	classes	like	commodities,	real	

estates,	derivatives,	currencies,	etc.,	since	the	Black	Litterman	model	requires	the	approximation	

of	the	market	portfolio.	Therefore,	anticipated	to	limit	such	asset	classes.	i.e.	a	combination	of	the	

equity-	and	the	bond	index	will	be	considered	as	the	market	portfolio.	The	investment	universe	

is	focusing	only	on	the	U.S.	market,	which	is	mostly	due	to	previous	research	regarding	the	return	

predictability	in	the	U.S.	

	

Due	to	the	simplicity	of	this	study,	the	finding	will	not	include	any	results	adjusted	for	transaction	

costs.	Furthermore,	the	mean-variance	optimization	and	the	CAPM	assumes	no	taxes.	Hence	taxes	

on	 gains	 and	deductible	 taxes	will	 not	be	 taken	 into	 account	during	 the	 thesis	 and	will	 show	

homogenous	investors.	The	trading	costs	are,	actuality,	relatively	low	for	the	treasury	index	and	

the	S&P	500,	because	these	are	only	trackers	of	the	market.	There	is	no	active	management	of	

these	indices,	like	mutual	funds,	which	is	why	it	must	be	cheaper	to	trade.	Because	the	inputs	are	

based	on	historical	information,	primarily	on	the	tangency	portfolio,	no	portfolio	constraints	are	

imposed	in	the	analysis.	Historical	information	is	known	to	generate	outliers’	weights,	or	negative	

positions	for	the	mean-variance	optimization,	therefore	it	could	be	desirable	to	apply	constraints.	

However,	this	study	allows	for	short	selling.	

	

To	meet	requirements	of	statistical	modelling	analysis,	it	must	be	secured	to	have	a	large	sample	

size,	therefore	applying	data	with	a	span	of	40	years.	However,	the	relation	of	the	data	is	in	danger	

of	 changing	 over	 time.	Using	 shorter	 periods,	 i.e.	 rolling	windows,	 could	 improve	 the	 sample	

forecast.	Using	a	rolling	window	is	determined	to	make	the	statistical	inference	more	robust	in	

the	 application	 of	 historical	 data.	 Also,	 different	 economic	 states,	 including	 the	 bull	 and	 bear	

markets,	are	present	within	the	data	frame.	The	dataset	provided	by	Goyal	and	Welsh	(2007)	only	

contains	data	until	December	2018,	hence	the	rest	of	the	analysis	will	be	restricted	to	apply	data	

within	the	same	period,	further,	to	provide	consistency.		
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2.	Literature	review		
This	 section	 seeks	 to	 describe	 prior	 literature	 and	 empirical	 evidence	 found	 on	 the	 relevant	

subjects.	A	special	focus	will	be	given	to	subjects	such	as	shortcomings/limitations	of	Markowitz's	

modern	 portfolio	 theory	 as	 an	 explanation	 and	 how	 the	 Black	 Litterman	model	 can	 be	more	

intuitive	to	use	for	portfolio	allocation.	Furthermore,	there	will	be	described	the	findings	on	the	

performance	of	mean-variance	portfolios	(and	Black-Litterman	portfolios)	over	time.	Lastly,	the	

literature	 on	 stock-	 and	 bond	 predictability	 will	 be	 presented	 for	 the	 explanation	 of	 the	

generation	of	views	of	the	Black	Litterman	portfolios.		

2.1	Modern	portfolio	theory	

How	 to	 allocate	 assets	 is	 one	of	 the	most	 important	decisions	 that	 investors	 take	 at	 the	 very	

beginning	 of	 their	 investment	 process.	 Necessarily,	 investors	 can	 allocate	 their	 portfolio	 by	

reducing	risk	through	diversification.	This	 is	presented	by	the	modern	portfolio	theory,	which	

comprises	mean-variance	optimization,	arguing	that	the	investor	can	create	the	optimal	portfolio	

by	maximizing	the	return	by	the	optimal	risk.	This	theory	has	become	one	of	the	most	traditional	

portfolio	 allocation	 theories	 among	 investors	 and	 researchers.	 Harry	Markowitz	 created	 and	

pioneered	 the	 theory,	published	 in	 the	essay	 "Portfolio	Selection"	 in	 the	 Journal	of	Finance	 in	

1952.	He	argues	that	the	value	of	additional	security	added	to	a	portfolio	should	be	measured	

with	the	relationship	to	all	other	securities	in	the	portfolios.	Notably,	he	showed	that	the	variance	

of	return	was	an	essential	measure	of	the	portfolio	risk	under	a	given	set	of	assumptions.	This	so-

called	mean-variance	optimization	was	the	beginning	of	 the	concept	of	diversification	and	the	

capital	asset	pricing	model	(CAPM)	of	Sharpe	(1964)	and	Lintner	(1965).	

	

When	 testing	whether	 the	Mean-Variance	portfolio	 is	 efficient	 based	on	 a	 portfolio	where	 all	

assets	are	risky,	it	is	equivalent	to	testing	the	validity	of	the	Capital	Asset	Pricing	Model.	This	was	

especially	 reviewed	 by	 theorists,	 e.g.	 Roll	 (1977)	 and	 Ross	 (1977),	 whose	 idea	 was	 an	

unobservable	market	portfolio,	and	the	creation	of	the	actual	market	portfolio	was	impossible	(it	

was	impossible	to	create	the	actual	market	portfolio).	Numerous	empirical	examinations,	among	

Gibbons	(1981),	Gibbons	et	al.	(1989)	&	MacKinlay	and	Richardson	(1991),	provided	evidence	

for	the	inefficiency	of	the	market	portfolio,	where	the	proxy	typically	is	far	away	from	the	efficient	

frontier.	Briére	et	al.	(2013)	support	this	conclusion,	where	they	apply	the	same	examinations	in	

their	empirical	analysis.	They	find	no	mean-variance	efficiency	of	the	market	portfolio	for	the	U.S.	

equity	market.	
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A	variety	of	literature	regarding	portfolio	selection	has	taken	application	in	the	modern	portfolio	

theory;	however,	the	approach	has	suffered	much	criticism	during	the	years	applied	in	the	real	

asset	management	setting.	It	is	remarkable	for	the	mean-variance	to	be	highly	sensitive	to	small	

variations	in	the	model	input	(expected	return,	variance)	since	small	changes	in	expected	return	

can	lead	to	drastic	changes	in	the	portfolio	construction.	In	other	words,	the	optimal	portfolio	

weights	are	sensitive	to	parameter	estimates,	especially	the	mean	return	vectors.	Michaud	(1989)	

defines	this	sensitivity	as	"error-maximization"	of	the	risk-return	estimates	(Michaud,	1989	p.	

33).	 This	 phenomenon	 indicates	 extreme	 portfolio	 reallocations	 when	 the	 mean-variance	

estimation	 overweight	 in	 assets	with	 a	 high	 expected	 return,	 negative	 correlation,	 and	 small	

variance,	oppositely,	underweights	assets	that	have	a	lower	expected	return,	positive	correlation,	

and	high	variance.	These	assets	are	those	having	high	exposure	to	estimation	errors,	which	often	

tend	 to	 give	poor	out-of-sample	 results	 (Unger,	 2015).	This	 statement	 is	 supported	by	 Jorion	

(1985)	&	Merton	(1980),	who	find	difficulties	when	estimating	the	expected	return	under	the	

assumption	of	the	quadratic	utility	preferences	of	portfolio	theory.	They	argue,	is	one	of	the	main	

reasons	why	mean-variance	efficient	portfolios	perform	poorly	out-of-sample.	

	

Several	authors	have	come	up	with	solutions	to	the	shortcomings	of	the	MV,	concerning	the	error-

maximization.	Jorion,	(1985	and	1986)	suggests	the	Bayesian	method	as	input	variables	for	the	

mean-variance	analysis.	This	Bayesian	approach	results	 in	decreasing	sample	returns,	shifting	

towards	 a	minimum	 variance	 portfolio,	which	 is	 known	 as	 Bayes-Stein	 shrinkage	 estimation.	

Another	method	of	the	Bayesian	approach	proposed	by	Pastor	(2000)	and	Pastor	and	Stambaugh	

(2000)	builds	on	the	prior	beliefs	of	an	asset	allocation	model,	where	the	investor	believes	can	be	

an	essential	determination	model	for	decision	models.	

2.2	The	Black-Litterman	model	

The	first	publication	of	the	Black-Litterman	asset	allocation	model	was	issued	in	1990	by	Fisher	

Black	and	Robert	Litterman.	They	suggested	a	model	that	would	solve	the	problem	of	the	less	

natural	results	and	weights	arising	from	traditional	mean-variance	optimization,	as	stated	above,	

by	incorporating	investor	views	with	historical	return	observations.	It	made	it	easier	for	portfolio	

managers	 to	 combine	 quantitative	 and	 qualitative	 investment	 strategies,	 which	 had	 been	 a	

conflict	of	interest	over	the	years.	This	approach	allows	for	the	investor	to	assign	views	on	asset	

returns,	either	as	a	relative	measure	to	another	asset	or	as	an	absolute	view.	The	investor	can	

select	views	to	a	self-chosen	number	of	assets,	in	which,	they	have	an	opinion	that	deviates	from	
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the	equilibrium	return,	also	known	as	the	market	portfolio.	The	market	portfolio	they	define	as	

the	reference	point	of	the	investor	views,	which	is	one	of	the	crucial	features	of	the	approach.	

Black	and	Litterman	(1990)	apply	their	model	on	a	global	equity	portfolio.	However,	they	argue	

that	the	model	conveniently	can	be	applied	to	a	wide	spectre	of	asset	classes	such	as	equities,	

fixed	income,	etc.	

	

In	1999,	He	and	Litterman	published	an	article	that	sought	to	explain	the	intuition	behind	the	

Black-Litterman	model	by	comparing	it	with	the	mean-variance	optimization	approach.	He	and	

Litterman	 (1999)	 argue	 that	 the	 mean-variance	 asset	 allocation	 process	 often	 suffers	 from	

unstable	weights,	and	the	empirical	results	are	sensitive	to	changes	in	the	model	input	and	often	

appear	not	to	be	especially	intuitive.	Additionally,	they	present	various	ways	where	the	Black-

Litterman	asset	allocation	model	provides	improved	and	more	intuitive	results	showing	this	with	

multiple	 examples.	 Due	 to	 properties	 like	 establishing	 investors'	 views	 with	 the	 equilibrium	

excess	 return	 vector	 as	 a	 starting	 point,	 investors	 can	 adjust	 their	 views	 from	 this	 CAPM	

equilibrium	given	personal	interpretation	of	the	future	excess	return	of	an	asset.	Other	papers	

such	 as	 Cheung	 (2009)	 also	 strive	 to	 explain	 the	 workings	 of	 the	 Black-Litterman	model,	 in	

addition	to	specifying	the	assumptions	of	the	model	and	suggesting	methods	for	coping	with	large	

portfolios	within	the	model.	Lastly,	Izadorek	(2004)	presents	a	“Step-By-Step”	approach	to	easily	

apply	the	model	and	understand	the	workings	of	it.	They	can	be	reviewed	for	further	assessment.	

	

Various	 academics	 provide	 an	 overview	 of	 the	 Black	 Litterman	model	 and	 presents	 us	 with	

examples	 of	 the	 application	 and	 generation	 process	 of	 the	model,	 and	 also,	 discussion	 of	 the	

estimation	parameters.	Satchell	and	Scowcroft	(2000)	presented	a	paper	called	“A	demystification	

of	 the	Black-Litterman	model”	 focusing	on	 the	quantitative	 and	mathematical	 approach	of	 the	

asset	 allocation	model,	 especially	 the	Bayesian	 framework	used	 to	 incorporate	 the	 individual	

investor	 opinions	 with	 quantitative	 data	 to	 form	 new	 opinions.	 This	 is	 also	 known	 as	 the	

“Alternative	 Reference	model”	 among	 academics.	 Satchell	 and	 Scowcroft	 (2000)	 argue	 that	 a	

comprehensible	paper	about	the	model	was	presented	by	Lee	(1999);	however,	it	still	failed	to	

present	a	legible	explanation	of	the	mathematical	concepts	underlying	the	model.	The	economic	

interpretation	of	Satchell	and	Scowcroft	(2000)	will	be	further	explained	throughout	the	theory	

section.		

	

Meucci	(2010)	also	discusses	the	original	model	pioneered	by	He	and	Litterman,	where	he	states	

the	value	of	scalar,	tau,	should	be	set	between	0	and	1	instead	of	applying	an	extension.	This	is	

due	 to	 posterior	 distributions	 building	 on	 two	 settings,	 returns	 and	 covariance,	 which	 is	
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dependent	on	whether	views	are	extremely	confident	or	if	the	investor	has	no	views,	meaning	

that	the	investor	views	either	goes	towards	infinity	or,	is	zero.	Meucci	(2010)	stated,	the	posterior	

model	should	be	the	implied	model	when	the	confidence	in	the	view	is	zero	and	oppositely,	when	

the	 confidence	of	 the	view	 is	high,	 the	posterior	model	 should	be	 the	 combined	model	which	

includes	the	views.		
		

Even	though	a	variety	of	literature	has	discussed	the	BL	model,	there	has	yet	been	a	considerable	

amount	 of	 testing	 the	 out-of-sample	 performance	 of	 the	Black	 Litterman	 approach.	However,	

Wolff,	 Bessler	 &	 Opfer	 (2012)	 present	 multi-asset	 portfolios	 and	 analyses	 the	 out-of-sample	

performance.	Here,	they	use	the	performance	measures	Sharpe	ratio,	Maximum	drawdown,	and	

the	Portfolio	Turnover	for	each	portfolio.	First,	they	find	that	multi-asset	portfolios	can	be	applied	

in	the	Black-Litterman	model,	not	only	stocks,	as	often	shown	in	the	literature.	Secondly,	their	

empirical	findings	show	that	the	Black-Litterman	model	is	performing	better	in	terms	of	Sharpe	

ratio	and	Maximum	drawdown	when	they	test	the	out-of-sample	performance.		

	

From	the	Black-Litterman,	as	mentioned	earlier	model,	the	subjectivity	of	the	investor's	views	

has	been	challenging	for	most	practitioners	and	researchers	to	obtain.	A	variety	of	studies	have	

investigated	 this	 to	 provide	 an	 explanation	 of	 these,	 and	hence,	 generate	 investor	 views.	 The	

model	is	satisfyingly	describing	the	views.	However,	the	model	does	not	answer	the	question	of	

how	 to	 form	 these	 views.	 There	 have	 been	 examinations	 of	 the	 application	 of	 the	 statistical	

framework	to	find	the	investor	views.	Both	Beach	and	Orlov	(2007)	and	Duqi,	Franci,	&	Torluccio	

(2014)	suggest	 the	utilization	of	 the	statistical	approach	based	on	 forecasting	 the	volatility	of	

returns	 to	 derive	 towards	 views.	 The	 model	 of	 volatility	 is	 based	 on	 a	 GARCH	 where	 they	

incorporate	 the	 stylized	 facts,	 e.g.	 volatility	 clustering,	 kurtosis,	 mean	 revision,	 time-varying	

volatility,	among	others.	In	particular,	their	investigations	show	the	preference	of	an	EGARCH-M	

argument	that	it	captures	the	regularities	of	stock	returns.	

2.3	Premium	predictability	
A	central	part	of	 the	following	view	generating	process	 in	this	paper	relies	on	the	prospect	of	

predictability	in	stock-	and	bond	premium,	which	will	serve	as	argumentation	for	using	stock-	

and	bond	predictability	as	an	approach	to	generate	views	in	the	Black-Litterman	framework.		

	

The	story	of	return	predictability	originates	in	the	efficient	market	hypothesis,	which	ultimately	

states	that	markets	are	efficient,	and	therefore	are	correctly	priced.	After	the	1960s	and	forward,	
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many	 economists,	 academics,	 and	 practitioners	 in	 the	 finance	 area	 have	 strived	 to	 identify	

variables	 that	 can	 predict	 the	 stock-	 and	bond	market.	 This	 section	will,	 therefore,	 provide	 a	

description	 and	 a	 recap	 on	 research	 done	 on	 variables	 that	 have	 shown	 to	 have	 predictable	

features,	combined	with	some	history	concerning	return	predictability.		

2.3.1	Stock	return	predictability	
The	stock	market	premium	has	been	known	to	differ	extensively	over	time	but	has	indeed	been	

high	on	average.	For	many	years,	academics	thought	that	the	risk	premium	of	stocks	followed	a	

random	 walk,	 where	 the	 best	 expectation	 of	 tomorrow's	 return	 is	 a	 constant.	 An	 extensive	

amount	of	regressions	has	been	used	to	try	to	explain	where	the	equity	return	is	heading.	This	is	

often	completed	by	regressing	any	indicator	or	signal	today	on	tomorrow's	return,	with	the	desire	

that	it	will	show	predictable	features.	Lettau	&	Ludvigson	(2001)	concludes	that	it	is,	nowadays,	

widely	accepted	that	assets	have	a	time-varying	risk	premium	and	can	be	predicted	by	various	

variables.	Their	findings	also	suggest	that	the	variables	have	especially	shown	a	good	ability	to	

predict	 expected	 returns	 over	 longer	 investment	 horizons,	 as	 opposed	 to	 shorter	 investment	

horizons.		

	

Many	 variables,	 especially	 valuation	 ratios	 and	macro	 variables,	 have	 been	 discovered	 in	 the	

literature	over	the	past	years	that	supposedly	have,	both	statistically	and	economically,	shown	

the	ability	 to	predict	 the	return	of	stocks	and	 indices,	mainly	 in-sample.	Dow	(1920),	Fama	&	

Schwert	(1977),	Fama	&	French	(1988),	Campbell	&	Shiller	(1988	&	1998)	and	Kothari	&	Shanken	

(1997)	investigated	the	predictive	power	of	valuation	ratios	such	as	the	dividend/price	ratio,	the	

book-to-market	 ratio	and	 the	earnings-price	ratio.	Many	of	 them	found	 in-sample	evidence	of	

predictive	 power	 by	 regressing	 these	 variables	 on	 tomorrow's	 stock	 return.	 Further,	

predictability	 in	 economic	 variables	 such	 as	 inflation,	 term-	 and	 default	 spreads,	 net	 equity	

expansion,	consumption-wealth	ratio,	and	stock	market	variance,	etc.,	has	also	been	popular	to	

exploit.	This	exploit	has	for	instance	been	investigated	by	Nelson	(1976),	Fama	&	Schwert	(1977),	

Baker	&	Wurgler	(2000),	Campbell	(1987),	and	Lettau	&	Ludvigson	(2001)	among	many	others.	

	

The	 paper	 of	 Goyal	 &	 Welsh	 (2007)	 presents	 a	 review	 of	 the	 performance	 of	 many	 of	 the	

previously	mentioned	 financial	 ratios	 and	macroeconomic	 variables	 briefly	mentioned	 above.	

First,	they	provide	a	complete	data	set	of	fourteen	economic	variables	to	analyse,	making	their	

findings	 easy	 to	 replicate.	 Further,	 they	 re-examine	 the	models	 and	 evaluate	 them	using	 four	

criteria:	(1)	in-sample	significance,	(2)	out-of-sample	performance,	(3)	relation	to	outliers,	and	

(4)	the	long-term	performance	which	should	hold	over	a	minimum	period	of	three	decades.	Their	
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overall	 conclusion	 states	 that	 the	 individual	models	 perform	poorly	when	 evaluated	 both	 in-

sample	and	out-of-sample.	 It	 is	 also	mentioned	 that	 some	of	 the	models	 fail	 to	pass	 standard	

diagnostic	tests	used	in	statistics.	

	

The	paper	presented	by	Goyal	&	Welsh	(2007),	with	the	belonging	data	set,	has	been	applied	by	

many	academics	with	an	attempt	to	design	equity	premium	prediction	models	that	outperform	

the	benchmark	or	historical	average.	Another	method	was	proposed	by	Campbell	and	Thompson	

(2007),	where	they	place	restrictions	on	the	coefficient	signs,	which	according	to	their	findings,	

improves	 the	 return	 forecast	 and	 provide	 useful	 information	 to	 mean-variance	 investors.	

However,	the	empirical	analysis	still	failed	to	present	consistent	out-of-sample	significance	over	

time,	 and	 the	 performance	was	 still	 highly	 uneven	 over	 time.	 Later	 on,	 Rapach	 et	 al.	 (2007)	

showed	a	method	to	predict	the	equity	premium	of	indices,	out-of-sample,	by	using	combination	

forecasts	and	covariate	estimation.	Their	findings,	motivated	by	Goyal	&	Welsh	(2007),	suggest	

that	 none	 of	 the	 fourteenth	 economic	 variables	 can	 beat	 the	 historical	 average	 individually	

measured	by	MSPE.	However,	by	 combining	 the	 individual	 regression	models	 in	 this	manner,	

Rapach	et	al.	(2007)	were	able	to	present	a	model	that	improved	the	out-of-sample	forecast	and	

consistently	outperformed	the	historical	average.	The	results	are	presented	for	multiple	lengths	

of	 the	 out-of-sample	 periods,	 and	 the	 conclusions	 are	 similar	 for	 the	 various	 out-of-sample	

periods.	

2.3.2	Bond	return	predictability	
There	is	a	wide	harmony	among	financial	experts	that	returns	on	nominal	U.S.	Treasury	bonds	

can	be	predicted	at	different	investment	horizons	or,	equivalently,	evidence	for	the	existence	of	

time-varying	expected	excess	return	of	the	government	bonds.	

	

It	is,	however,	reasonable	that	the	expectations	hypothesis,	that	the	investor	was	expected	to	gain	

zero	of	a	constant	excess	return	on	bonds	based	on	the	predictability	of	the	short-term	interest	

rate	built	on	the	long-term	rate,	has	been	rejected	through	studies.	Empirical	findings	have	shown	

to	have	statistically	and	empirically	significance	to	predict	bond	returns.	This	has	been	supported	

by	economists	such	as	Fama	and	Bliss	(1987),	Cochrane	and	Piazzesi	(2005),	Campbell	and	Shiller	

(1991),	and	Ludvigson	and	Ng	(2009).	They	carry	out	variables	using	forward	rates,	yield	spread,	

and	macroeconomic	 variables.	 Furthermore,	 it	was	 found	 that	 the	 expected	 term	premium	 is	

related	through	a	business	cycle,	as	the	term	premium	gets	positive	 in	booming	economy	and	

negative	during	recessions.		
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Engsted	 &	Møller	 (2013)	 investigate	 the	 predictability	 in	 US	 bond	 returns	 in	 expansion	 and	

recessions,	 applying	 univariate	 regressions	 and	 forecasting	 techniques.	 Their	 study	 rejects	

unpredictability	in-sample	and	out-of-sample	in	both	expansions	and	recession.	Here,	they	take	

into	account	the	utility	for	a	mean-variance	investor	which	includes	predictability	patterns	when	

investing	 capital.	 The	 economic	 significance	 is	 found	 to	 be	 positive	 during	 expansions	

consequently,	negative	in	recessions.		

	

In	recent	times,	newer	methods	are	pioneered	to	predict	the	term	structure.	This	is	determined	

from	the	movements	on	 long-term	rates	which	consist	of	 two	parts;	 the	 first	consisting	of	 the	

expected	return	from	the	short-rate,	and	an	additional	component,	also	known	as	term	premium,	

which	compensates	investors	in	long-term	bonds	for	interest	rate	risk.	It	is	often	known	that	the	

term	premium	is	calculated	as	the	difference	between	model-implied	fitted	yield	and	the	model	

implied	average	expected	return	on	the	short	rate.	Economist	Adrian,	Crump,	and	Moench	(2014)	

from	the	New	York	Fed	examine	 this	Treasury	 term	premium,	which	 is	 the	compensation	 for	

bearing	risk	associated	with	a	long-term	bond.	Older	methods	mostly	applied	infrequent	data,	e.g.	

inflation	or	forward	rate,	contrary	to	traditional	methods,	however,	ACM	used	available	nominal	

yield	data.	Their	research	shows	how	to	price	the	term	structure	of	 interest	rates	using	linear	

regressions.	In	their	study,	they	apply	pricing	factors	and	thus	estimate	the	term	premium.	Apart	

from	 four-factor	models	 from	Cochrane	and	Piazzesi	 (2008),	 they	present	a	 five-factor	model	

from	coupon-bearing	yields	that	essentially	outperforms	Cochrane	and	Piazzesi	models	in	an	out-

of-sample	estimation,	making	their	specification	of	term	premium	applicable.	Nevertheless,	they	

conclude	that	the	term	premium	tends	to	move	with	measures	of	uncertainty	of	disagreement	

about	the	future	 level	of	yields.	The	accuracy	of	the	yield	shows	superior	performance	for	the	

ACM	 five-factor	 model	 compared	 to	 three-factor	 models.	 Furthermore,	 they	 compare	 their	

implied	ten-year	yield,	found	from	the	five-factor	model,	with	the	ten-year	yield	from	the	GSW	

zero-coupon	yield,	where	their	findings	show	their	implied	yield	fits	the	yield	from	Gurkaynak,	

Sack	and	Wright	(2006)	quite	well	when	going	back	to	June	14,	1961.	
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FIGURE	2:	TEN-YEAR	TREASURY	YIELD	AND	TERM	PREMIUM	(ADRIAN,	CRUMP,	MILLS,	AND	MOENCH,	2014)	

	

However,	practitioners	often	employ	a	much	simpler	method	to	obtain	the	term	premium	rate,	

by	assuming	that	the	term	premium	is	generated	of	the	difference	of	the	long-end	bond	yield	and	

short-rate	 (Tang,	Li	&	Tandon,	2019;	BIS	Quarterly	Review,	2007).	 If	 this	method	applies,	 the	

underlying	assumption	 is	based	on	a	random	walk,	where	 the	expectation	of	 the	short	rate	 is	

equivalent	for	an	infinite	period.	This	means	that	the	long-term	yield	prices	where	it	expects	the	

short-term	yield	front-end	to	be	in	the	future	etc.	The	correlation	of	stocks	and	bonds	is	a	driver	

of	the	long-term	bond	prices	and	the	corresponding	term	premia.	

	

Contrarily	 to	 prediction	 in	 bond	 returns,	 literature	 has	 shown	 to	 provide	 little	 evidence	 for	

predictability	in	bond	returns	to	improve	investor’s	utility.	Thorntorn	and	Valente	(2012)	and	

investigate	the	predictability	of	bond	returns	out-of-sample.	Thorntorn	and	Vante	(2012)	 find	

that	forward	rates	do	not	add	higher	economic	value	compared	to	a	non-predictable	benchmark.	

Gargano,	Pettenuzzo,	and	Timmerman	(2017)	find	both	economic	and	statistical	significance	of	

out-of-sample	 predictability	 in	 US	 Treasury	 bond	 excess	 returns,	 applying	 variables	 as	 the	

forward	spread,	forward	rates,	and	macro	factors.		
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3.	Theoretical	framework	
This	section	seeks	to	describe	the	modern	portfolio	theory	presented	by	Markowitz’s	(MPT),	the	

Capital	Asset	Pricing	Model	(CAPM),	and	the	Black-Litterman	model,	in	addition	to	present	basic	

risk	and	return	computations.	Furthermore,	the	section	includes	mathematical	explanations	of	

these	 theories	 to	 get	 familiarized	 with	 the	 approaches.	 It’s	 crucial	 when	 applying	 the	 Black	

Litterman	 framework	 that	modern	portfolio	 theory	and	CAPM	is	understood,	as	 the	approach	

takes	practice	in	these.	These	models	are	therefore	carefully	explained	throughout	this	section.		

3.1	Basic	risk	and	return	calculations	
To	calculate	the	risk	and	returns	of	the	portfolios	in	question,	the	formulas	used	to	assess	these	

measures	are	defined.	The	standard	arithmetic	average,	�̅�!	and	sample	standard	deviation	𝜎!	is	

generated	as	following	(Munk,	2018)	
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The	expected	return,	variance	and	standard	deviation	of	a	mean-variance	portfolio	(and	other	

portfolios)	is	estimated	using	historical	observations	of	the	return	process,	and	is	computed	as	

follows:	

		 	 	 	 𝜇(𝜋) = 𝜋 ∙ 𝜇 = ∑ 𝜋)	𝜇)+
%)$% 	 	 			(Equation	3.1.1)	
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where	𝜇(𝜋)	and	𝜎(𝜋)	is,	respectively,	the	weighted	mean	and	standard	deviation	of	the	portfolio	

given	the	weights	invested.	Another	rule	stated	by	Markowitz	implied	that	the	investor	should	

diversify	and	that	he	should	maximize	expected	return.	The	investors	should	diversify	it	in	the	

way	that	he	invests	in	all	securities	that	give	the	highest	expected	return	(Markovitz,	1952).		
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3.2	Mean-Variance	analysis	
Markowitz	(1952)	developed	a	theory	in	his	paper	“Portfolio	Selection”,	that	investigated	trade-

offs	to	identify	the	optimal	portfolio	over	a	certain	period,	allowing	the	investor	to	observe	the	

maximum	 expected	 return	 given	 the	 lowest	 amount	 of	 portfolio	 risk.	 The	 mean-variance	

optimization	 is	 built	 as	 a	 theoretical	 foundation	 of	 Modern	 Portfolio	 Theory	 (MPT),	 which	

assumes	 that	 the	 investor	 makes	 rational	 decisions	 based	 on	 complete	 information.	 Sharpe	

(1964)	interprets	the	theory	where	“the	process	of	investment	choice	can	be	broken	down	into	two	

phases:	first,	the	choice	of	a	unique	optimum	combination	of	risky	assets;	and	second,	a	separate	

choice	concerning	the	allocation	of	funds	between	such	a	combination	and	a	single	riskless	asset”.	

3.2.1	Mean-variance	portfolio	
A	mean-variance	analysis	is	applied	to	make	decisions	about	which	securities	to	invest	in	given	

the	 level	 of	 risk	 and	expected	 return.	The	mean-variance	portfolio	 choice	 is	based	on	 several	

important	assumptions	(Markowitz,	1952),	all	listed	below:	

	

1. When	investors	choose	among	portfolios,	they	consider	only	the	expected	return	and	

the	return	variance	of	the	portfolios	over	a	fixed	period	of	time		

2. Investors	like	high	expected	returns		

3. Investors	dislike	high	return	variances,	which	indicates	risk	aversion.	

	

Investors	who	invest	like	this,	are	known	to	be	mean-variance	optimizers.		

	

First,	the	combination	of	risky	assets	will	be	explained.	Second,	the	allocation	between	risky	

assets	and	risk-free	assets	will	be	explained	further	below	in	Section	3.2.5.	

3.2.3.1	Mean-variance	efficient	portfolios	

A	portfolio	is	mean-variance	efficient,	between	risky	assets,	if	the	portfolios	contain	the	minimum	

variance	 among	 all	 portfolios	 with	 the	 same	 mean	 return	 or	 a	 portfolio	 that	 maximizes	 the	

expected	return	for	a	given	amount	of	risk.	Following	the	methodology	of	Markowitz	(1952),	he	

assumes	that	two	constraints	exist	when	minimizing	the	objective	function.	The	first	constraint	

is	that	the	investor	must	be	fully	invested,	meaning	all	of	the	capital	is	invested	at	this	moment	

and	the	second	that	the	expected	return	is	fixed	since	we	are	minimizing	the	risk	given	this	return.	

The	 fixed	return	 is	given	by	𝜇!.	The	𝜋)	is	explained	as	 the	 fraction	of	 the	 total	portfolio	value	

invested	in	asset	i,	and	the	portfolio	vector	must	therefore	satisfy		
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𝜋	 · 	1 = 𝜋% + 𝜋(+. . . +𝜋+ = 1	

	

The	sum	of	the	vector	should	sum	up	to	1.		

	

The	lowest	variance	for	the	quadratic	given	mean,	�̄�,	is	found	by	solving	the	minimum	variance,	

since	we	want	to	minimize	the	risk;	

	

𝑚𝑖𝑛	𝜋	 · 	∑𝜋	

𝑠. 𝑡. 𝜋 · 𝜇 = �̅�	

	

The	variance-covariance	matrix	is	derived	as	following	applying	a	two-asset	case,	which	is	

denoted	by		

∑ = >
𝜎%( 𝜌𝜎%𝜎(

𝜌𝜎%𝜎( 𝜎((
@	

And	its	inverse	is	

∑.% =
1

(1 − 𝜌()𝜎%(𝜎((
>

𝜎(( −𝜌𝜎%𝜎(
−𝜌𝜎%𝜎( 𝜎%(

@	

	

Where	𝜎%	and	𝜎(	are	the	standard	deviation	of	the	two	assets	and	𝜌	is	the	correlation	between	

the	assets.		

	

The	auxiliary	constants	are	defined	as,	

	

𝐴 = 𝜇#∑.%𝜇 = 𝜇 · ∑.%𝜇	

𝐵 = 𝜇/∑.%1 = 𝜇 · ∑.%1 = 1#∑.% = 1 · ∑.%𝜇	

𝐶 = 1#∑.%1 = 1 · ∑.%1 =
1

(1 − 𝜌()𝜎%(𝜎((
(𝜎%( + 𝜎(( − 2𝜌𝜎%𝜎()	

	

which	is	applied	to	the	computations	of	the	mean-variance	optimization.	

	

This	means	that	the	expression	for	the	variance	becomes,		

	

𝜎((�̄�) = 𝜋(�̄�) · ∑𝜋(�̅�) =
𝐶�̅�( − 2𝐵�̅� + 𝐴

𝐷
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Which	is	the	formula	for	the	variance	on	the	portfolio	for	the	efficient	frontier.	Of	all	the	portfolio	

with	the	expected	return	on	�̅�,	this	equation	provides	the	one	with	the	lowest	variance.	Taking	

the	square	root,	we	obtain	the	standard	deviation	that	can	be	plotted	into	a	(standard-dev,	mean)-

diagram.		

	

The	 mean-variance	 efficient	 portfolio	 weight	 vector,	 variance	 of	 the	 portfolio	 and	 standard	

deviation,	with	the	expected	return	is	given	as	

	

𝜋(�̄�) =
𝐶�̅� − 𝐵
𝐷

∑.%𝜇 +
𝐴 − 𝐵�̅�
𝐷

∑.%1	

	

𝜎((�̄�) = 𝜋(�̅�) · ∑𝜋(�̅�) =
𝐶�̅�( − 2𝐵�̅� + 𝐴

𝐷
	

	

𝜎(�̄�) = F𝐶�̅�
( − 2𝐵�̅� + 𝐴

𝐷
	

	

If	investing	in	three	or	more	assets,	many	portfolios	obtain	an	equally	expected	rate	of	return.	

Hence,	 the	optimal	portfolio	with	 expected	 return	 �̅�	 is	 the	portfolio	with	 the	 lowest	portfolio	

variance.	The	different	optimal	combinations	of	standard	deviation	and	mean	form	a	hyperbola	

in	a	(standard	deviation,	mean	diagram).	This	is	also	known	as	mean-variance	frontier	or	efficient	

frontier	of	risky	assets	(Munk,	2018).		

3.2.2	The	minimum-variance	portfolio	
The	minimum-variance	portfolio	is	defined	as	the	portfolio	that	has	the	minimum	variance	among	

all	portfolios.	The	portfolio	 is	also	called	 the	global	minimum-variance	portfolio.	The	 investor	

wants	to	invest	in	a	portfolio	where	he	does	not	care	about	the	expected	return	but	only	cares	

about	 the	 lowest	amount	of	risk.	Since	the	 investors	always	 invest	 in	an	efficient	portfolio,	he	

chooses	the	portfolio	on	the	efficient	frontier	with	the	minimum	standard	deviation.		

	

The	minimum-variance	is	defined	by	solving	the	mean,	that	gives	the	smallest	possible	variance	

	

𝑚𝑖𝑛	𝜋	 · 	∑𝜋	

𝑠. 𝑡. 𝜋	 · 	1 = 1	
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With	no	constraint	on	expected	return.		

	

The	minimum-variance	portfolio	is	given	by:	

	

𝜋012 =
1
𝐶
∑.%1 =

1
1 · ∑.%1

∑.%1	

	

With	expected	return,	variance	and	standard	deviation	

	

𝜇3)4 =
𝐵
𝐶
	

𝜎3)4( = 𝜎((�̅�3)4) =
%
5
	 						𝜎3)4 =

%
√5
	

	

As	the	minimum-variance	lays	on	the	efficient	frontier,	the	variance	and	the	expected	return	are	

therefore	 related.	 By	 minimizing	 the	 variance	 of	 the	 portfolio	 of	 the	 mean-variance,	 the	

minimum-variance	portfolio	can	be	identified.	In	the	minimum-variance	portfolio,	it	is	expected	

that	assets	with	low	standard	deviation	have	large	weights.	However,	this	method	focuses	on	the	

importance	of	the	correlation	structure	of	the	assets.	It	is	quite	useful	for	diversifying	away	risk,	

since	the	minimum-variance	portfolio	might	have	a	significant	overweight	on	assets	with	large	

standard	deviation	and	that	asset	might	have	low	correlation	with	some	low-variance	asset.		

	

We	would	look	after	the	slope	at	the	front	of	the	frontier	or	the	right	of	the	frontier.	It	has	to	be	

at	the	point	where	it	just	touches	the	efficient	frontier,	which	gives	the	maximum	portfolio.	

3.2.3	The	maximum-slope	portfolio	
A	maximum-slope	portfolio	is	known	as	the	portfolio	on	the	efficient	frontier	with	the	maximum	

slope.	The	Sharpe	ratio	is	the	ratio	of	the	expected	excess	return	of	the	portfolio	relative	to	its	

volatility.	A	portfolio	more	intuitively	knows	it	of	risky	assets	that	lie	to	a	point	in	a	(standard	

deviation,	mean)-diagram.	Therefore,	any	point	corresponds	to	the	mean-variance	frontier.	By	

connection,	any	point	with	the	origin	with	a	straight	line,	the	slope	of	the	line	becomes	𝜇/𝜎.	One	

desires	to	find	the	portfolio	that	maximizes	the	slope	of	this	line.		
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The	portfolio	that	gives	the	maximum	slope:	

	

𝜋789!: =
1
𝐵
∑.%𝜇 =

1
1 · ∑.%𝜇

∑.%𝜇	

	

Has	expected	return,	variance	and	standard	deviation	of		

𝜇789!: =
𝐴
𝐵
	

	

𝜎789!:( =
𝐴
𝐵(
,																	𝜎789!: =

√𝐴
|𝐵|
	

	

The	length	of	the	expected	rate	of	return	along	the	frontier	which	would	provide	the	maximum	

return	is	already	known.	Hence,	the	relationship	between	the	variance	and	the	expected	return	

can	be	exploited.		

	

The	maximum-slope	portfolio	corresponds	to	a	point	on	the	upward	sloping	branch	of	the	curved	

frontier.	Note:	If	B	<	0,	the	maximum-slope	portfolio	is	located	on	the	downward-sloping	branch	

of	the	curved	frontier	and	is	the	portfolio	giving	the	most	negative	slope	of	all	lines	considered	

(Munk,	2019).		

3.2.4	The	efficient	frontier	
The	efficient	frontier	is	a	curve	that	provides	all	efficient	portfolios	in	a	risk-return	approach.	An	

investor	 always	 invests	 in	 an	 efficient	 portfolio,	 since	 they	would	 always	 aim	 for	 the	 highest	

possible	expected	return.	This	comes	because	the	investor	is	risk	averse.		

	

From	the	derived	results	of	the	minimum-variance	and	the	maximum-slope	portfolio,	any	mean-

variance	efficient	portfolio	is	a	combination	of	the	maximum-slope	and	the	minimum-variance	

portfolio.	

	

A	mean-variance	efficient	frontier	consisting	of	risky	assets	can	be	stated	as	a	combined	portfolio	

between	the	maximum	slope	portfolio	and	the	minimum	variance	

	

𝜋(�̅�) =
(𝐶𝜇 − 𝐵)𝐵

𝐷
𝜋789!: +

(𝐴 − 𝐵�̅�)𝐶
𝐷

𝜋012	
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The	two	portfolios	will	have	a	zero	covariance,	and	every	frontier	portfolio	has	a	zero	covariance	

on	the	frontier.	The	two	coefficients	will	sum	up	to	one.	So,	that	𝜋(�̅�)	is	a	weighted	average	of	the	

maximum-slope	portfolio	and	the	minimum-variance	portfolio.	

	

There	are	two	ways	to	generate	the	mean-variance	efficient	frontier:	

1. Use	a	range	of	�̅�	values	with	the	corresponding	portfolio	standard	deviations	by	

applying	the	constants	A,	B,	C,	and	D.	

2. Compute	the	expected	return	and	variance	of	the	minimum-variance	and	maximum-

slope	portfolio.	

a. Then	a	combination	of	these	two	portfolios	should	be	considered	

b. Each	combination	should	contain	the	expected	return	and	standard	deviation	

c. The	combination	of	the	portfolio	can	be	described	as	𝜇(𝑤) = 𝑤�̅�3)4 +

(1 − 𝑤)�̅�789!: ,	giving	the	expected	return	of	the	portfolio.	The	portfolio	variance	

is	calculated	as	𝜎((𝑤) = 𝑤(𝜎3)4( + (1 − 𝑤)(𝜎789!:( + 2𝑤(1 − 𝑤)𝜎3)4( 	

This	efficient	frontier	of	risky	is	also	known	as	a	two-fund	separation,	meaning,	that	the	investors	

can	form	a	portfolio	of	N	risky	assets.	Furthermore,	a	mean-variance	investor	seeks	an	optimized	

portfolio	 being	 a	 combination	 of	 the	 two	 portfolios,	 the	minimum-variance	 portfolio	 and	 the	

maximum-slope	portfolio	(Munk,	2019).		

3.2.5	Tangency	portfolio	
The	investors	can	create	a	mean-variance	analysis	containing	both	risky	assets	and	a	risk-free	

asset.	Investors	that	have	these	preferences	can	invest	in	the	portfolio	with	the	maximum	Sharpe	

ratio.	Applying	a	combination	of	the	straight	line	from	(0,rf)	and	the	point	(𝜎, 𝜇)	corresponds	to	a	

portfolio	of	risky	assets.	The	slope	of	this	portfolio	is	equivalent	to	the	Sharpe	ratio	of	the	risky	

portfolio.	 The	 investors	 prefer	 a	 high	 expected	 return	 and	 a	 low	 standard	 deviation,	 and	

therefore,	the	𝜇 > 𝑟;	should	be	met	as	the	maximum	Sharpe	ratio	is	then	fulfilled.	

	

The	maximum	 Sharpe	 Ratio	 is	 defined	 as	 the	 relationship	 between	 the	 return-risk	 trade-off,	

which	is	a	measure	of	the	risk	premium	relative	to	the	total	risk	of	the	portfolio,	as	explained		

	

𝑆ℎ𝑎𝑟𝑝𝑒 =
+𝜇 − 𝑟;,

𝜎
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In	a	(𝜎, 𝜇)-diagram	the	tangency	portfolio	is	the	point	where	the	straight	line	starting	at	(0,rf)	is	

tangent	to	the	mean-variance	frontier	of	risky	assets.	Now	the	mean-variance	efficient	portfolio	

of	all	assets	 is	a	combination	of	 the	risk-free	rate	and	a	 tangency	portfolio	of	 risky	assets.	An	

expectation	of	the	individual	asset	with	high	Sharpe	ratios	is	a	more	significant	allocation	in	the	

tangency	portfolio.	Nevertheless,	the	correlations	are	essential,	to	diversify	the	risk	so	that	the	

tangency	portfolio	might	give	considerable	weight	 to	an	asset	with	a	 low	Sharpe	ratio	(Munk,	

2019).		

	

	

	
FIGURE	3:	THE	BLACK	IS	THE	RISKY	ASSETS,	WHILE	THE	GREY	IS	THE	RISK-FREE	ASSET	(MUNK,	2018).	

	

In	general,	investors	prefer	to	be	in	the	north-west	in	the	standard	deviation-mean	diagram	so	

that	the	tangency	portfolio	can	be	obtained.	The	two	figures	show	why	it	is	vital	that	the	risk-free	

rate	is	smaller	or	higher	than	the	minimum-variance	portfolio’s	expected	return.	The	first	graph	

shows	that	when	the	risk-free	rate	is	smaller	than	the	expected	return,	the	tangency	lies	on	the	

upward	slope	of	the	efficient	frontier	of	the	risky	assets.	In	contrast,	the	right	graph	shows	the	

opposite,	 precisely	 that	 the	 risk-free	 rate	 higher	 than	 the	 expected	 return	means	 a	 tangency	

portfolio	on	the	downward	sloping	efficient	frontier.	Both	of	the	graphs	represent	the	efficient	

frontier	of	all	asset,	although,	no	one	would	never	choose	a	point	corresponding	to	the	downward	

line	of	the	efficient	frontier	(Munk,	2019).	

	

The	tangency	portfolio	of	the	risky	assets	is	generated	as	follows:		

	

𝜋<=2 =
%

>.5?!
∑.%(𝜇 − 𝑟;1)		 	 														 		(Equation	3.2.1)	
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																																																					𝜇"@4 =
A·∑"#DA.?!%E

%·∑"#DA.?!%E
= F.>?!

>.5?!
	 	 																			(Equation	3.2.2)	

	

	 	 	 𝜎<=2( =
DA.?!%E·∑"#DA.?!%E

G%·∑"#DA.?!%EH
$ =

F.(>?!I5?!
$

D>.5%!E
$ 																							 						(Equation	3.2.3)	

	

	 	 	 	 						𝜎"@4 =
JF.(>?!I5?!

$

|>.5%!|
			 																	 						(Equation	3.2.4)	

	

|𝑆𝑅"@4| = 4𝐴 − 2𝐵𝑟; + 𝐶𝑟;(	 																																				(Equation	3.2.5)	

	

The	mean-variance	efficient	frontier	of	the	risk-free	asset	and	risky	assets	is	a	combined	portfolio	

of	the	risk-free	asset	and	the	tangency	portfolio	of	risky	assets,	which	can	be	viewed	in	Figure	4.	

Denoting,	w,	as	the	weight	in	the	tangency	portfolio	and	(1-w)	and	the	weight	on	the	risk-free	

asset,	the	expected	return	and	standard	deviation	of	the	portfolio	is	generated	as	follows;	

	

𝜇(𝑤) = 𝑤𝜇<=2 + (1 − 𝑤)𝑟;	

𝜎(𝑤) = |𝑤|𝜎"@4	

If	investors	agree	on	the	risk-free	rate	and	expected	return	and	risk	of	the	risky	assets,	they	agree	

on	the	construction	of	the	tangency	portfolio	where	every	investor	would	hold	the	same	portfolio	

of	risky	assets	and	risk-free	asset.	

	

The	mathematical	explanation	of	the	tangency	portfolio	is	given	as	follows:	

	

∑.%+𝜇 − 𝑟;1, =
1

(1 − 𝜌()𝜎%(𝜎((
>

𝜎(( −𝜌𝜎%𝜎(
−𝜌𝜎%𝜎( 𝜎%(

@ S
𝜇% − 𝑟;
𝜇( − 𝑟;T	

	

1 · ∑.%+𝜇 − 𝑟;1, =
1

(1 − 𝜌()𝜎%(𝜎((
S𝜎%(+𝜇( − 𝑟;, + 𝜎((+𝜇% − 𝑟;, − 𝜌𝜎%𝜎(+𝜇% + 𝜇( − 2𝑟;,T	

	

𝜋"@4 =
∑.%+𝜇 − 𝑟;1,

1 · ∑.%+𝜇 − 𝑟;1,
=

⎝

⎜
⎛

𝜎((+𝜇% − 𝑟;, − 𝜌𝜎%𝜎(+𝜇( − 𝑟;,
𝜎%(+𝜇( − 𝑟;, + 𝜎((+𝜇% − 𝑟;, − 𝜌𝜎%𝜎(+𝜇% + 𝜇( − 2?;,

𝜎%(+𝜇( − 𝑟;, − 𝜌𝜎%𝜎(+𝜇% − 𝑟;,
𝜎%(+𝜇( − 𝑟;, + 𝜎((+𝜇% − 𝑟;, − 𝜌𝜎%𝜎(+𝜇% + 𝜇( − 2?;,⎠

⎟
⎞
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FIGURE	4:	THE	EFFICIENT	FRONTIER	INCLUDING	RISK-FREE	ASSET	AND	RISKY	ASSETS,	AND	THE	TANGENCY	

PORTFOLIO		

3.2.6	The	optimal	portfolio		
In	general,	 any	mean-variance	optimizer	chooses	a	combination	of	 the	risk-free	asset	and	 the	

tangency	portfolio	of	risky	assets.	Therefore,	it	is	desirable	to	find	the	optimal	w	depending	on	

the	mean-variance	 trade-off	 of	 the	 investor.	 This	 fraction	 should	 be	 invested	 in	 the	 tangency	

portfolio,	whereas	1	-	w	of	wealth	should	be	invested	in	the	risk-free	asset	(Munk,	2019).	

	

To	 find	the	equation	 for	 the	optimal	value	of	w,	we	want	 to	set	 the	objective	 to	maximize	the	

investor’s	expected	return	minus	a	constant	time	the	variance.		

	

𝑚𝑎𝑥 S𝐸[𝑟] − %
(
𝛾𝑉𝑎𝑟[𝑟]T	 	 	 	 (Equation	3.2.5)	

	

Where	𝛾	a	is	a	positive	constant.	𝛾		corresponds	to	the	investor’s	risk	aversion.	The	excess	returns	

are	denoted	by	the	(N	x	1)	vector	𝜇	and	the	covariance	matrix	of	returns	is	denoted	by,	∑.			

	

The	mean-variance	optimal	vector	of	 the	 risky	assets,	w*	 (Nx1)	vector,	 is	 computed	 from	 the	

following	equation:	

	

𝑤∗ = 𝑎𝑟𝑔	𝑚𝑎𝑥	 b𝑤M𝜇 − 𝑦 ∗ %
(
∗ 𝑤M𝛴𝑤e				 	

												 		𝑤∗ = %
N
· ∑ 𝜇.% 			 	 	 																(Equation	3.2.6)	
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Where	𝜇	 is	 a	N	 x	 1	 vector	 of	 the	 expected	 rates	 of	 excess	 return	 and	𝛴	 is	 a	N	 x	 N	 variance-

covariance	matrix.		w,	is	the	fraction	of	the	total	portfolio	value,	which	is	invested	in	risky	assets,	

where	(1-w)	in	the	risk-free	asset.		

	

If	w	is	a	mean-variance	efficient	portfolio	concerning	a	universe	of	assets	with	a	known	return	

vector	 u	 and	 covariance	matrix	 ∑,	 then	 there	 exists	 a	 linear	 correlation	 between	 u	 and	 ∑w.	

Furthermore,	covariance	is	known	to	be	more	accurate	to	estimate	rather	than	expected	returns.	

Thus,	if	a	mean-variance	weight	vector	is	known	and	the	covariance	is	accurately	estimated,	the	

linear	relation	between	u	and	∑w	can	be	exploited	to	create	implied	expected	returns.	Pointed	

out	by	Munk	(2019),	reducing	the	risk	involved	by	investing	in	stocks	and	bonds,	predictability	

through	momentum	is	best	exploited	by	allocating	long	positions	in	assets	with	recent	positive	

excess	returns	and	short	positions	in	recent	negative	excess	returns.		

3.2.7	Utility	function	
One	key	driver	of	the	mean-variance	analysis	must	be	that	the	investor	decides	their	investment	

based	 on	 the	 expected	 return	 and	 the	 risk.	 In	 particular,	 the	 decision	 of	 an	 investor	 is	 often	

represented	as	a	utility	function.	The	mean-variance	objective	can	be	justified,	meaning	that	an	

optimal	solution	can	be	derived	for	the	optimal	portfolio.	

	

The	investor’s	wealth	is	denoted	as	W0	being	the	start	of	the	period,	and	if	assuming	the	investor	

where	to	invest	all	of	his	wealth,	it	would	end	up	as	W	given	as:	

	

𝑊 = 𝑊O(1 + 𝑟)	

	

Where	the	r	is	given	as	the	rate	of	return.	The	overall	wealth	depends	on	the	portfolio	choice.	The	

utility	function	is	then	defined	as	the	function	that	is	attached	to	each	wealth	function,	for	a	given	

portfolio,	at	the	end-period	u(W),	were	the	objective	function	can	be	stated	as	the	maximum	of	

expected	utility,	on	all	possible	portfolios	E[u(W)].	The	utility	is	also	reflected	by	the	risk-averse	

of	an	investor,	as	an	increasing	utility	function	means	that	the	investor	wants	as	much	wealth	as	

possible,	and	a	low	utility	is	assumed	to	mean	decreasing	in	wealth.	An	investor	being	risk-averse	

also	means,	rejecting	risky	investment	when	expected	profit	is	negative.	This	is	shown	by	the	first	

derivative	of	the	utility	function	(Munk,	2019).		
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3.2.7.1	Quadratic	utility	function	

Assuming	a	quadratic	utility	function,		

	

𝑢(𝑊) 	= 	𝑎 + 𝑏𝑊 − 𝑐𝑊(	

	

where	a,	b	and	c	are	given	as	constants.	The	expected	utility	is	as	follows:	

	

𝐸[𝑢(𝑊)] = 𝑎 + 𝑏	𝐸[𝑊] − 𝑐	𝐸[𝑊(] = 𝑎 + 𝑏	𝐸[𝑊]	− 𝑐(𝑉𝑎𝑟[𝑊] + (𝐸[𝑊])()		

	

The	expected	utility	only	replies	on	the	expectation	of	wealth	and	the	variance,	and	therefore,	the	

mean-variance	is	a	reasonable	fit	for	quadratic	utility	investors,	even	though	the	returns	are	non-

gaussian	(Munk,	2019).		

3.2.8	Critique	of	the	mean-variance	analysis	
There	 are	 several	 assumptions	 about	 investors	 and	 markets	 which	 point	 towards	 a	 lack	 of	

eligibility.	Despite	the	importance	of	the	theory,	there	are	critical	drawbacks	of	the	underlying	

framework	regarding	the	accurateness	of	MPT	conclusions	in	the	real	world.	

	

If	the	distribution	of	returns	is	non-gaussian,	there	are	limitations	of	the	predictability.	However,	

the	return	of	financial	returns	is	assumed	to	be	normally	distributed.	It	is	crucial	since	it	supports	

the	assumption	that	investors	only	care	about	the	expected	return	and	risk	of	their	portfolio.	This	

is	because	investors	only	look	at	the	first	two	moments	of	the	return	distribution	(Hull,	2012).	It	

is	known	that	the	return,	risk,	and	correlation	from	MPT	is	based	on	the	use	of	expected	values.	

Investors	have	to	predict	the	return	and	volatility	based	on	historical	data,	meaning	that	they	are	

subject	to	be	changed	by	variables	that	are	currently	not	known	or	considered.	Although	MPT	is	

not	 concerned	 with	 estimating	 variables,	 it	 is	 usually	 estimated	 by	 quantitatively	 analysing	

historical	data	(Fabozzio,	et	al.,	2002).	One	of	the	issues	with	estimating	the	variables	is	to	choose	

a	 representative	 subset	 of	 data,	 as	 the	 data	 should	 represent	 the	 period	 predicted.	 Often	 the	

historical	data	is	not	enough	to	say	how	the	future	returns	should	evolve.	Also	mentioned	in	the	

literature	 review,	 the	model	 is	 quite	 sensitive	 towards	 inputs	 causing	 error-maximization.	 A	

solution	proposed	by	Munk	(2019)	is	to	apply	asset	classes	instead	of	individual	assets,	since	the	

inputs	of	the	mean-variance	increases	in	step	with	the	number	of	assets.	A	low	number	of	inputs	

is	 limited	and	may	quickly	provide	a	 realizable	 forecast	of	 the	expected	returns	of	 the	asset's	

classes	rather	than	on	individual	assets.	Asset	classes	are	more	robust	against	individual	equities	
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turbulence,	 such	 as.	M&A,	 patents,	 CEO,	 etc,	which	might	 be	more	 representative	 against	 the	

future	returns.	

	

In	 practical	 terms,	 the	 framework	 is	 not	 really	 applied	 since	 it	 does	 not	 fit	 the	 real	 world.	

Investment	managers	prefer	to	focus	on	small	segments	in	their	investment	universe	and	find	

assets	they	feel	are	the	right	pick.	Although	the	MPT	takes	into	account	the	expected	return,	it	is	

required	that	they	are	specified	for	every	component	of	a	relevant	universe	but	in	reality,	they	

are	defined	by	a	benchmark	(Black	&	Litterman,	1992).	Furthermore,	the	portfolio	weights	can	

contain	constraints,	such	as	short	sales.	Black	and	Litterman	(1992)	state	that	excluding	short	

sales,	which	investment	managers	often	find	necessary,	the	portfolio	construction	will	give	quite	

a	 large	 position	 for	 a	 few	 assets.	 If	 involving	 short	 positions,	 the	 optimal	 portfolio	 can	 easily	

contain	large	negative	weights	in	certain	assets.	The	fundamentals	of	the	mean-variance	portfolio	

should	hold	when	including	constraints,	however,	the	interpretation	can	be	very	complicated.		

3.3	Capital	Asset	Pricing	Model	
The	 Capital	 Asset	 Pricing	 model	 (CAPM)	 was	 derived	 from	 Treynor	 (1961),	 Sharpe	 (1964),	

Lintner	 (1965)	and	Mossin	(1966)	 twelve	years	after	Harry	Markowitz	 (1959)	 introduced	his	

mean-variance	portfolio	theory	(Bodie	et	al,	2014).	Markowitz's	modern	portfolio	theory	laid	the	

groundwork	for	the	Capital	Asset	Pricing	Model.	Sharpe	and	Lintner	applied	this	to	an	economy-

wide	 setting	where	 an	 assumption	 is	 that	 the	 portfolios	 of	 investors	 are	 held	mean-variance	

efficient,	and	their	views	are	homogeneous	in	a	frictionless	market	(Campbell	et	al.,	1996).	The	

model	provides	 a	 relationship	between	expected	 return	and	 riskiness	of	 the	 asset,	which	 can	

serve	as	a	benchmark	for	future	investments	or	help	estimate	the	expected	return	of	assets	that	

are	not	yet	publicly	traded	(Bodie	et	al.,	2014).	The	model	is	ultimately	based	on	the	fact	that	the	

market	 is	 in	 equilibrium,	 where	 assets	 are	 priced	 correctly	 when	 the	 assumption	 of	 market	

equilibrium	is	held.	In	other	words,	the	definition	of	the	market	equilibrium	is	the	adjustment	of	

the	prices,	influenced	by	the	beliefs	and	expectation	of	the	investor,	until	the	expected	returns	are	

in	equilibrium	where	the	demand	matches	the	supply	(He	&	Litterman,	1992).	The	model	also	

allows	us	to	use	various	risk	measures	for	different	kinds	of	assets,	and	also	get	the	relationship	

of	efficient	and	inefficient	assets.	Because	the	market	is	in	equilibrium,	the	prices	of	assets	are	

such	that	the	tangency	portfolio	is	the	market	portfolio,	which	is	composed	of	all	risky	assets	in	

proportion	to	their	market	capitalization.	
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The	CAPM	model	is	based	on	several	assumptions	which	have	to	be	fulfilled.	The	assumptions	are	

quite	similar	to	the	once	introduced	in	modern	portfolio	theory,	and	are	given	as	follows	(Jensen,	

1967)	(Bodie	et	al.,	2014):	

	

● The	wealth	of	 individual	 investors	 is	small	compared	to	the	overall	wealth	 in	the	total	

market	

● Investors	have	the	same	holding	horizon	and	homogeneous	market	views,	i.e.	the	same	

underlying	distribution	of	future	expected	returns	

● The	risk-free	rate	is	the	same	for	all	investors,	and	they	can	lend	and	borrow	at	this	rate	

● The	investor	is	risk	averse,	however,	he	still	seeks	to	maximize	his/her	wealth	

● The	decision-making	is	determined	from	the	risk-return	perspective	

● The	market	is	in	equilibrium	

● There	are	no	market	frictions,	taxes,	etc.		

	

Some	of	the	assumptions	mentioned	above	are	a	simplification	of	the	real	world	which	does	not	

necessarily	hold	under	true	market	conditions.	Regardless,	they	are	essential	tools	to	be	able	to	

explain	the	market	equilibrium.	The	assumption	that	all	investors	seek	to	hold	or	replicate	the	

market	portfolio,	which	in	theory	contains	all	publicly	traded	assets,	is	in	reality	hard	to	establish.				

	

The	basic	CAPM-equation	is	defined	as	

	

𝐸(𝑟)	) = 𝑟; + 𝛽)(𝐸(𝑟3) − 𝑟;)	 	 	 (Equation	3.3.1)	

	

where	𝐸(𝑟))	 is	the	individual	asset	return,	𝐸(𝑟3)is	the	return	on	the	market	portfolio,	𝑟;	is	the	

risk-free	rate	and	𝛽	is	defined	as	a	measure	of	the	asset	risk,	given	as	

	

𝛽) =
P9Q%&,%(
R($ 		 	 	 	 (Equation	3.3.1)	

	

where	𝜎3(is	the	variance	of	the	market	portfolio,	and	𝑐𝑜𝑣?&,?(is	the	covariance	between	the	asset	

excess	return	and	the	excess	return	on	the	market	portfolio.	The	equation	shows	that	it	is	far	from	

straightforward	 to	estimate	 the	market	beta.	One	approach	 is	 to	use	probabilities	of	different	

outcomes	of	the	asset	return,	𝑟) 	and	of	the	return	of	the	market	portfolio,	𝑟3.	This	method	builds	

on	 the	 probability	 distribution	 of	 the	 stochastic	 variables.	 It	 is	 then	 used	 to	 calculate	 the	

covariance	between	the	market	return	and	the	asset	returns	and	the	variance	of	the	generated	



 32 

returns.	 The	 uncertainty	 of	 the	 assumptions	 that	 is	 done	 to	 estimate	 the	 beta	 is,	 therefore,	

significant	(Munk,	2019).	Estimating	beta	through	observations	on	historical	returns	of	the	asset	

and	the	market	is	a	more	conventional	method.	This	makes	it	possible	to	build	a	regression	model	

where	the	historical	data	helps	us	obtain	a	relationship	between	the	market	return	and	the	asset	

return.	

	

CAPM	 makes	 some	 assumptions	 of	 varying	 degrees	 of	 plausibility.	 For	 use	 in	 the	 reverse	

optimization	of	equilibrium	excess	returns	performed	in	Section	3.3.	Given	a	vector	of	specified	

market-clearing	asset	prices,	agents	must	agree	on	the	joint	distribution	of	asset	returns	from	

this	 period	 to	 the	 next.	 This	 assumption	 entails	 that	 any	 market	 portfolio	 must	 be	 on	 the	

minimum-variance	 frontier	 if	 the	 market	 is	 to	 clear	 all	 positions	 (Fama	 and	 French,	 2004).	

Additionally,	 CAPM	 assumes	 that	 investors	 are	 only	 concerned	 with	 the	 asset	 returns	 and	

variances,	the	first	two	moments.			

3.3.1	Capital	allocation	line	
The	Capital	Allocation	Line	(CAL)	is	a	graphical	lie	that	illustrates	the	relationship	of	the	risk-and-

reward	combinations	of	assets	and	 is	often	associated	with	 its	application	 to	 find	 the	optimal	

portfolio.	 The	 slope	 of	 CAL	 is	 the	 increase	 in	 the	 expected	 return	 of	 the	 portfolio	 per	 unit	 of	

additional	 risk,	 also	 referred	 to	 as	 the	 Sharpe	 ratio.	 The	 line	 is	mathematically	 expressed	 as	

follows:	

𝐸+𝑟!, = 𝑟; + 𝑆ℎ𝑎𝑟𝑝𝑒!𝜎!	 	 	 						(Equation	3.3.2)	

	

	
FIGURE	5:	GRAPHICAL	ILLUSTRATION	OF	THE	CAL	

	

The	different	allocation	options	also	mean	that	one	optimal	portfolio	is	present	but	does	depend	

on	the	different	level	of	risk	aversions.	The	different	levels	of	allocation	depend	on	how	much	we	
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want	 to	hold	 in	 risk-free	 assets	 and	 correspondingly,	 in	 risky	 assets.	 The	optimal	 portfolio	 is	

found,	when	the	CAL	is	tangent	to	the	efficient	frontier,	illustrated	by	the	graph.	The	point	at	𝑟; ,	

means	100%	investment	in	risk-free	assets,	whereas	the	point	(Optimal	Portfolio)	shows	100%	

investment	in	the	portfolio.	Between	the	risk-free	rate	and	the	optimal	portfolio,	investors	that	

lie	 there	 hold	 positions	 in	 both	 risk-free	 assets	 and	 the	 portfolio	 and	 represent	 an	 investor	

lending	a	part	of	their	portfolio,	as	investors	are	not	100%	invested	in	the	portfolio.	The	point	

after	 the	optimal	portfolio,	 show	a	 leveraged	position,	being	more	 than	100%	 invested	 in	 the	

portfolio,	and	therefore	borrowing	capital	to	buy	more	portfolio	(Bodie	et	al.	,	2014).		

3.3.2	Single	index	models	
The	market	portfolio	is	in	practice	a	mean-variance	efficient	portfolio	consisting	of	all	risky	assets.	

Testing	the	efficiency	of	the	market	portfolio	requires	construction	of	a	value-weighted	portfolio	

of	significant	size,	which	can	be	demanding	and	often	not	feasible.	Hence,	correcting	for	this	issue	

requires	additional	assumptions	(Bodie	et	al.,	2014).		

	

Sharpe	(1963)	developed	the	well-known	Single-Index	Model	where,	as	opposed	to	regular	factor	

models,	the	return	on	the	market	portfolio	or	a	stock	market	index	is	used	as	a	factor	to	explain	

the	 excess	 return	 of	 an	 individual	 asset	 (Munk,	 2019).	 The	 model	 illustrates	 a	 relationship	

between	the	expected	asset	return	and	its	respective	beta,	which	is	usually	formulated	as:	

	

𝐸(𝑟)) − 𝑟; = 𝛼) + ß)[𝐸(𝑟3) − 𝑟;]	
	

	
where	 the	 notation	 can	 be	 recalled	 under	 Section	 3.2	 and	 𝛼	 is	 the	 abnormal	 return	 or	 the	

difference	between	the	expected	return	and	the	realized	return.	The	traditional	CAPM	is	just	one	

example	of	the	Single	Index	model,	but	instead,	the	single	index	applies	an	economic	variable	to	

explain	the	excess	return.	The	theoretical	CAPM	implicitly	predicts	that,	for	all	assets,	the	alpha	

should	 yield	 zero.	 If	 the	 asset	 has	 an	 alpha	 that	 deviates	 from	 zero,	 it	 is	 not	 correctly	 priced	

according	to	the	theoretical	CAPM.	Under	CAPM,	taking	additional	risks	may	be	reduced	through	

diversification,	which	is	compensated	from	beta	by	taking	additional	systematic	risks.	This	is	not	

compensated	when	taking	risks	associated	with	alpha.	
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3.4	The	Black-Litterman	model	
The	Black-Litterman	model	 is	 an	 asset	 allocation	model	 created	 in	 1990	by	 Fisher	Black	 and	

Robert	Litterman	from	Goldman-Sachs	but	has	since	then	been	further	developed,	see	Black	and	

Litterman	(1990,	1991,	1992	&	1999).	They	found	that	the	traditional	MPT,	where	the	return	is	

maximized	for	a	given	level	of	risk,	was	known	to	produce	unrealistic	results,	and	therefore	they	

tried	 to	solve	 the	problems	using	their	method.	 In	1998	a	paper	published	by	Goldman-Sachs	

discussed	how	to	 implement	 the	Black-Litterman	approach:	 “Investors	 should	 take	risks	where	

they	have	views,	and	correspondingly,	they	should	take	the	most	risk	where	they	have	the	strongest	

views”	(Bevan	and	Winkelmann,	1998).	 In	other	words,	the	model	 intended	to	incorporate	the	

investors'	 subjective	views	with	an	asset	 allocation	model.	By	doing	 so,	 they	accomplished	 to	

create	a	more	intuitive	portfolio	by	providing	a	better	estimate	for	the	expected	return.	This	is	

based	on	the	Bayesian	methodology	that	seeks	to	combine	current	opinions	with	new	opinions	

(Satchell	&	Scowcroft,	2000).	A	simplified	illustration	of	the	procedure	is	presented	in	Figure	6	

and	will	be	explained	in	detail	throughout	this	section.			

	

FIGURE	6:	SIMPLIFIED	BLACK-LITTERMAN	PROCEDURE	

3.4.1	Bayesian	approach		
The	Black-Litterman	model	applies	a	Bayesian	approach	to	combine	the	subjective	views	of	an	

investor	with	historical	quantitative	data.	The	Bayesian	approach	is	a	statistical	theory	named	

after	 the	 British	 statistician	 Thomas	 Baye	 (Stigler,	 1982).	 The	 Bayesian	 approach	 allows	 the	

forecaster	to	account	for	information	or	events	that	occur	unexpectedly	and	simultaneously	be	

able	 to	 reflect	 it	 in	 the	 existing	 objective	 model	 by	 mixing	 their	 respective	 probability	

distributions.	 Subjective	 interpretations	 of	 the	 future	 or	 new	 information,	 such	 as	 prior	

knowledge	or	 individual	beliefs,	denoted	as	the	“prior	distribution”,	will	be	 incorporated	with	

relevant	existing	data	in	the	analysis	forming	a	“posterior	distribution”	(Insua	et	al.,	2012).	The	

expected	 return	 vector	 in	 the	 Black-Litterman	 model	 is	 suggested	 to	 be	 an	 outcome	 of	 two	

separate	normal	distributions	merged	 (Satchell	&	Scowcroft,	 2000).	As	mentioned,	 Satchell	&	

Scowcroft	(2000)	found	that	there	were	not	yet	provided	sufficient	readings	on	the	mathematical	
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approach	of	the	Black-Litterman	model,	which	seems	to	be	a	strong	motivation	for	their	paper	

describing	the	underlying	mathematics.	This	section	will	discuss	the	general	features	of	Bayes’	

Theorem,	which	is	the	groundwork/baseline	for	the	mathematical	approach	when	deriving	the	

Black-Litterman	model	suggested	by	Satchell	&	Scowcroft	(2000).		

	

A	 primary	 goal	 in	 statistical	 analysis	 is	 to	 obtain	 knowledge	 and	 information	 about	 various	

parameters.	Using	P(A)	as	a	parameter	of	a	stochastic	process	to	 investigate	 further,	as	 in	the	

Black-Litterman	world	will	equal	the	expected	returns.	Further,	we	have	a	sample	of	observations	

denoted	P(B),	which	will	be	used	to	calculate	the	updated	distribution	denoted	as	P(A|B)	(Insua	

et	al.,	2012).	The	reasoning	of	the	approach	builds	on	Bayes’	Theorem,	which	is	given	as		

	

Bayes’	Theorem	

																			𝑃(𝐴|𝐵) = &D𝐵S𝐴E&(F)
&(>)

		 	 															(Equation	3.4.1)	

	

The	“posterior”	distribution	is	the	output	of	the	distribution	mix,	denoted	P(A|B).	The	notation	

P(B|A)	is	often	called	the	“sampling”	distribution,	which	can	be	read	as	the	conditional	probability	

of	B	given	A.			P(A)	and	P(B)	is	the	probability	of	respectively	A	and	B,	where	P(A)	is	commonly	

known	 as	 the	 “prior”	 distribution	 as	 stated	 above,	 and	P(B)	 is	 a	 normalizing	 constant	 that	 is	

different	from	zero	(Agresti,	Franklin	&	Klingenberg,	2017).	When	these	rules	are	applied	to	the	

Black-Litterman	model,	the	equation	should	yield	in	this	manner:	

	

𝑝𝑑𝑓(𝐸(𝑟)|𝜋) =
!';V𝜋W𝐸(𝑟)X!';DY(?)E

!';(Z)
	 	 	 						(Equation	3.4.2)	

		
	
As	explained	by	Satchell	and	Scowcroft	(2000),	pdf(.)	are	the	probability	density	functions	of	the	

parameters	in	the	equation	above,	and	the	information	and	formula	above	can	be	directly	used	to	

apply	this	to	a	Black-Litterman	setting.		
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FIGURE	7:	FINANS/INVEST	NO.	4	(2016)	

	
Further,	Figure	7	shows	how	the	two	probability	distributions	of	the	prior	and	the	views	will	be	

combined	 to	 a	 posterior	 distribution	 using	 the	 approach	 as	 explained	 above.	 The	 blue	 line	

illustrates	 the	 prior	 distribution,	while	 the	 red	 line	 presents	 the	 view	distribution.	 These	 are	

combined	 to	 a	 posterior	 distribution,	 viewed	 by	 the	 green	 line.	 In	 general,	 including	 more	

observations	in	the	conditional	distribution,	the	posterior	distribution	will	converge	towards	the	

investor	views,	as	we	will	introduce	further	below.	If	the	investor	is	a	100%	confident	in	mean	

estimates	of	the	view	distribution,	making	the	standard	deviation	close	to	zero,	then	the	Bayesian	

approach	will	not	be	significantly	reflected	in	the	posterior	distribution	(Plesner,	2016).	

3.4.2	The	original	Black-Litterman	model	
Black-Litterman	 has	 been	 researched	 and	 investigated	 by	 academics	 ever	 since	 the	 Goldman	

Sachs	article	was	released	 in	1990.	Therefore,	 there	are	a	variety	of	models	known	as	“Black-

Litterman”,	however,	this	project	applies	mostly	the	same	approach	as	the	Black	and	Litterman	

original	“canonical”	model	described	in	He	and	Litterman	(1999).	Black-Litterman	is	based	on	the	

theoretical	 framework	of	CAPM	because	 the	 starting	point	 in	Black	Litterman	 is	 given	by	 the	

equilibrium	expected	returns.	These	weights	are	a	neutral	reference	point	since	the	prices	adjust	

after	all	assets	are	in	equilibrium.	Furthermore,	the	model	applies	the	views	held	by	the	investor	

since	these	investors	might	have	different	opinions	about	the	expected	return	on	an	asset	than	

those	that	hold	in	an	equilibrium.	Accordingly,	the	framework	is	combining	the	information	from	

the	market	equilibrium	with	investor’s	views	about	the	market,	so	the	optimal	portfolio	drifts	

away	from	the	market	portfolio	towards	the	investor’s	views	and	creates	a	diversified	portfolio	

(Plesner,	2016).	This	creates	a	new	set	of	vectors	of	expected	returns	which	can	then	be	applied	

for	portfolio	optimization.	

3.4.2.1	Equilibrium	return	vector	

The	equilibrium	return	vector	is	defined	as	the	reference	point	of	the	Black	Litterman	model,	and	

it	is,	therefore,	important	that	the	capitalized	weights	are	represented	through	these.	The	CAPM	
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weights	can	be	computed	in	several	ways.	However,	literature	shows	that	either	derivation	from	

CAPM	 or	 reverse	 optimization	 is	 the	 most	 applied	 method.	 In	 the	 Bayesian	 framework,	 the	

equilibrium	is	defined	as	the	"prior	distribution",	which	is	the	market	portfolio	that	includes	a	set	

of	weights	that	all	sum	up	to	one	and	is	more	significant	than	zero.	Eventually,	when	adding	the	

investor’s	view,	a	“posterior	distribution”	is	obtained	as	explained	further	in	Section	3.3.4.	The	

model	 retrieves	 the	 weights	 that	 are	 then	 included	 in	 the	 portfolio	 in	 accordance	 with	 the	

covariance	between	the	view	and	the	equilibrium	(He	and	Litterman,	1999).	

	

He	and	Litterman	(1999(b))	found	that	the	weight	on	a	view	is	likely	to	increase	when	an	investor	

is	more	bullish	on	 the	 view.	 In	 contrast,	 it	 is	 reflected	 in	 the	magnitude	of	 the	weight,	which	

increases	when	the	investor	becomes	less	uncertain	about	the	view	(He	and	Litterman,	1999(b)).	

By	deriving	the	equilibrium	excess	return	𝜋	from	the	market	portfolio,	an	assumption	regarding	

the	asset	returns	must	be	that	the	returns	are	normally	distributed	with	μ	being	the	expected	

return	and	the	covariance	matrix	𝛴:	

𝑟	 ∼ 𝑁(𝜇, ∑)	
	

where	 r	 is	 the	 return	 (He	 and	 Litterman,	 1999).	 The	mean	μ	 is	 also	 considered	 as	 a	 random	

variable	which	means	 that	 the	 investor	 needs	 to	 estimate	 μ.	 This	 is	 referred	 to	 as	 the	 “prior	

distribution”,	since	the	mean	μ	at	this	point	is	unknown,	𝜇 = 𝜋 + 𝜖.	The	following	way	of	deriving	

the	equilibrium	return	to	obtain	the	mean	μ	thereby,	is	explained	further.			

	

Reverse	optimization	

The	 equilibrium	 return	 can	 be	 backed-out	 from	 the	 market	 portfolio	 by	 applying	 reverse	

optimization.	Accordingly,	reverse	optimization	can	be	defined	as	a	contradiction	to	the	mean-

variance	framework,	as	it	uses	portfolio	weights	to	retrieve	excess	return	vectors.	The	method	

provides	a	better	alternative	of	forecasting	equilibrium	return	since	the	input	of	vectors	easier	

can	be	predicted.	Secondly,	the	method	gives	a	more	realistic	expected	return	rather	than	those	

in	the	mean-variance	approach	(Scowcroft,	2003).	

	

The	equilibrium	excess	return	acquired	from	CAPM	portfolio	applies	the	unconstrained	objective	

quadratic	utility	function,	which	is	seen	in	the	mean-variance	optimization	(Plesner,	2013)	(He	

and	Litterman,	1999(b)):		

𝑈 = 𝑤#𝛱 −
𝜆
2
𝑤#∑𝑤3	
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where	𝑤3	is	a	vector	with	equilibrium	weights,	∑	is	a	covariance	matrix,	U	is	the	utility	for	an	

investor,	𝛱	represents	the	equilibrium	excess	returns	for	each	asset,	and	𝜆	as	the	risk	aversion	

for	 an	 investor.	 In	 Markowitz’s	 framework,	 the	 optimal	 portfolio	 weights	 are	 derived	 by	

differencing	the	utility	function	for	the	weights	and	setting	it	equal	to	zero:	

	
𝑑𝑈
𝑑𝑊

	= 𝛱	 − 𝜆∑𝑤3 = 0		
	
⇔	
	

𝑤3 = (𝜆∑).%𝛱	
	
	

It	is	assumed	that	the	market	is	in	equilibrium	and	therefore,	the	implicit	equilibrium	return	is	

calculated	from	the	capitalization	weights.	The	model	applies	“equilibrium	excess	returns”	as	a	

neutral	starting	point	given	by:	

𝛱 = 𝜆∑𝑤3	 	 	 	(Equation	3.4.3)	

	

The	equilibrium	vector	is	an	n	x	1	matrix	with	the	excess	return	for	the	assets	that	are	included	

in	the	CAPM	market	portfolio.	∑	is	an	n	x	n	covariance	matrix	that	is	estimated	from	historical	

returns	from	the	market	portfolio.	𝜆	is	a	positive	constant	stated	by	𝜆 = A(.?!
R($

	,	and	is	defined	as	

the	average	risk	tolerance	which	represents	the	inputs	of	the	investment	managers.		

	

The	expected	returns	are	different	from	the	original	CAPM	equation.	The	market	portfolio	only	

contains	 risky	 assets,	 since	 the	 investors,	 by	 definition,	 are	 only	 rewarded	 for	 taking	 on	

systematic	 risk.	 Therefore,	 all	 risk-free	 assets	 (hence	𝛽 = 0)	 are	 not	 taking	 into	 account	 the	

market	portfolio	of	BL.	The	problem	using	 this	 equilibrium	return,	must	be	 the	estimation	of	

covariance,	∑.	It	must	often	be	assessed	that	the	covariance	comes	from	historical	returns.	

	

The	Bayesian	approach	assumes	that	the	expected	returns	𝜇	is	centred	at	the	equilibrium	values,	

which	is	normally	distributed	with	a	mean	of	𝛱	denoted	by	𝜇 = 𝛱 + 𝜖(:)	where,	𝜖(:)	is	a	vector	

that	 is	 normally	 distributed	 with	 a	 mean	 of	 zero	 and	 covariance	 of	 𝜏𝛴.	 𝜏is	 representing	 the	

uncertainty	of	the	CAPM	prior.	Thus,	the	expected	return	can	be	defined	as	a	random	variable,	

with	a	mean	of	𝛱	(He	and	Litteman,	1999).	

	

This	approach	is	the	most	applicable	method	and	thus,	also	the	most	practical	one.	This	method	

seeks	 to	use	a	benchmark	as	a	proxy	 for	 the	market	portfolio	since	 the	real	estimation	of	 the	
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market	 portfolio	 is	 difficult	 to	 obtain.	 In	 the	 real	 world,	 applying	 an	 index	 or	 a	 benchmark	

portfolio	is	the	most	employed	method	to	measure	an	investment	manager's	performance.	Their	

performance	is	often	compared	to	a	benchmark,	for	example,	to	observe	whether	the	manager	

outperformed	the	S&P	Global	1200.		

	

Risk	aversion	

Risk	is	usually	associated	with	the	standard	deviation;	however,	some	investors	are	more	risk	

averse	 than	 others,	 i.e.	 being	 willing	 to	 risk	 more	 capital	 than	 others,	 and	 the	 behaviour	 of	

investors	is	indicated	by	the	risk	aversion	coefficient	as	mentioned	in	Section	3.2.7.	A	higher	risk	

aversion	means	a	higher	 risk	premium	 is	 required.	Depending	on	 the	 level	of	 risk	aversion,	a	

higher	risk	aversion	coefficient	indicates	a	more	risk	averse	investment,	since	the	risk	aversion	

is	the	definition	on	how	much	expected	return,	we	are	willing	to	miss	out	on,	in	order	to	reduce	

the	 risk.	 In	other	words,	 the	 risk	aversion	 coefficient	 is	 thought	of	 as	 a	description	of	human	

investment	behaviour.	Since	 the	risk-aversion	coefficient	requires	 the	parameters	of	expected	

return	 and	 variance	 known,	 it	may	 be	more	 complicated	 to	 calculate.	 Although	 a	majority	 of	

literature	is	provided	on	how	to	measure	risk	aversion,	there	has	yet	been	a	commonly	accepted	

estimate.	 Probably	 the	 most	 referred	 estimates	 of	 the	 relative	 risk	 aversion	 coefficient	 lie	

between	 1	 and	 3,	 however,	 a	 vast	 range	 of	 the	 coefficients	 in	 the	 literature	 show	 everything	

between	0.2	to	10.	He	and	Litterman	(1999)	use	a	risk-aversion	coefficient	for	the	portfolios	on	

2.5,	since	it	corresponds	to	the	world	level	of	risk-aversion.		

3.4.2.2	Investor	views	

The	next	step	in	the	model	is	to	combine	the	views.	The	model	blends	the	prior	distribution	with	

the	 conditional	 distribution,	which	 is	 given	by	 the	 investor	 views.	 Incorporating	 this	 into	 the	

model,	 the	 theoretical	 formula	 for	 the	 posterior	 distribution	 change,	 which	 gives	 different	

calculations	for	the	returns	and	variance.	

The	investor’s	views	are	based	on	the	fact	that	an	investor	can,	and	often	do,	have	strong	market	

beliefs	that	the	Black-Litterman	model	manages	to	account	for	since	they	are	staying	away	from	

the	essential	market	neutral	view.	When	incorporating	the	views,	the	portfolio	drifts	away	from	

the	market	portfolio	and	thereby	giving	the	ability	to	form	it	however	one	wants	to.	In	the	model,	

a	view	is	defined	as	a	statement	about	the	expected	excess	return	for	any	portfolio.	Investment	

managers	tend	to	focus	on	a	small	segment	of	an	investment	universe,	where	they	are	choosing	

assets,	 they	 feel	 are	 undervalued,	 assets	 with	 momentum	 or	 finding	 relative	 value	 trades.	

Additionally,	investment	managers	often	think	of	weights	in	a	portfolio,	as	opposed	to	balancing	
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expected	returns	relative	to	risk	(He	and	Litterman,	1992).	If	the	investor	does	not	have	any	views	

on	 the	 market	 according	 to	 a	 BL	 model,	 the	 expected	 return	 is	 equivalent	 to	 the	 market	

equilibrium,	which	is	the	unconstrained	optimal	portfolio.	Relative	to	the	MPT,	the	BL	expected	

returns	 is	adjusted	 from	their	starting	values	by	stating	 that	 the	expected	return	 is	 raising	or	

dropping	from	an	implied	value.	Including	these	views	comes	with	a	degree	of	uncertainty	which	

has	to	be	incorporated	(He	and	Litterman,	1992).		

The	investor	has	K	views	regarding	the	portfolio	that	is	expressed	by	three	components,	Q,	P	and	

Ω.	The	prerequisites	from	the	following	components	are	leading	to	the	following	specification,	

𝑃𝜇 = 𝑄 + 𝜀(Q)																																										(Equation	3.4.4)	

where	𝜀(Q)	 is	 a	normal	distributed	 random	variable	with	mean	equal	 zero,	 represented	as	 an	

investor	 who	 has	 an	 uncertainty	 of	 views,	 and	 covariance	 matrix	 Ω,	 which	 expresses	 the	

uncertainty	in	each	of	the	views.	Since	the	views	are	mutually	uncorrelated,	the	covariance	matrix	

Ω	is	applied	diagonal.	If	the	variance	is	zero,	it	means	that	the	investor	is	sure	about	the	view.	The	

vector	𝜇	is	the	unknown	expected	return,	hence,	needs	to	be	estimated	(Satchell	and	Scowcroft,	

2000).		

● Q	is	a	[k	x	1]	vector	that	expresses	the	relative	change	returns	which	contains	either	absolute	

or	relative	returns,	i.e.	the	expected	return	of	particular	asset	yields	(absolute	returns)	or	

the	expected	difference	in	return	between	assets	(relative	view).		

● P	is	a	[K	x	N]	matrix	that	shows	portfolio	weights	in	Q	to	the	N	assets	given	by	the	investment	

universe.		

● Ω	represents	the	uncertainty	of	the	views	given	by	a	[k	x	k]	variance	matrix.		

This	is	an	example	of	how	views	can	be	expressed	in	a	matrix,	where	the	vector	Q	are	matched	to	

specific	assets	by	matrix	P.		

𝑃 = #0 1
0 0					

0 0
1 −1					

0
0(	; 				𝑄 = #𝑋%𝑋%( ; 					𝛺 = .	

𝜔!,! … 0
⋮ ⋱ ⋮
0 … 𝜔#,#

3	

This	shows	how	the	matrices	are	generated	by	examining	six	different	assets	where:	

● An	absolute	view	where	the	investor	believe	that	Asset	2	will	create	a	return	at	X%	with	

confidence	𝜔%,%	

● A	relative	view	where	the	investor	believe	that	Asset	3	will	outperform	Asset	4	by	X%	
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● The	rest	of	the	asset	does	not	hold	any	views	from	the	investor	and	the	return	should	not	be	

adjusted	

Black	 and	 Litterman	 (1992)	 states	 for	most	 of	 the	 view	 to	 be	 relative,	 saying	 one	 asset	 will	

outperform	another.	Another	approach	is	to	say	the	investor	looks	at	the	market	to	be	bullish	or	

bearish,	explained	as,	above	natural	or	below	natural,	of	the	market.	Black	and	Litterman	do	not	

specify	 how	 views	 should	 be	 formulated;	 thus,	 it	 gives	 complete	 liberty	 for	 the	 investor	 to	

characterise	these	views.	It	should	be	noted	that	the	P	matrix	indicates	the	subjective	views	of	

the	investor	and	does	not	provide	any	indication	whether	these,	in	fact,	are	true	or	if	these	are	

unbiased.	We	assume	that	the	investor	believes	that	his	predictions	are	unbiased.		

3.4.2.2.1	Covariance	Ω	

If	the	investors	are	insecure	about	the	views,	thereby	indicating	low	confidence,	the	views	will	

have	a	relatively	large	standard	deviation.	Oppositely,	if	the	investor	is	secure	about	his	views	

indicating	high	confidence,	the	views	have	a	lower	standard	deviation.	If	the	standard	deviation	

is	low,	it	will	not	necessarily	impact	the	expected	return	a	lot.	However,	if	the	standard	deviation	

is	high,	it	will	have	much	more	influence	on	the	expected	return.		This	means	that	the	variance	of	

the	views	is	proportional	to	the	variance	of	the	asset	returns	(Plesner,	2016.).		

Black	and	Litterman	did	not	specify	a	mathematical	explanation	of	the	Ω	in	their	paper.	Thus,	the	

question	 of	 how	 to	 specify	 the	 diagonal	 parameters	 of	Ω	 is	 yet	 not	 answered.	 Therefore,	 the	

covariance	can	be	computed	in	several	ways.	

	Proportional	uncertainty,	Ω	

He	 and	 Litterman	 (1999)	 applied	 a	 computational	 method	 that	 used	 proportionality	 to	 the	

variance	of	the	prior,	∑.	This	assumes	that	the	variance	is	uncorrelated	by	each	other.	The	ratio	

of	𝛺/𝜏is	equal	to	the	variance	of	the	view	denoted	by	the	following	expression	(Walters,	2007):	

𝛺 = 𝑑𝑖𝑎𝑔(𝑃(𝜏𝛴)𝑃M, 𝑤ℎ𝑒𝑟𝑒	 	 	 (Equation	3.4.5)	

𝑤\,, = 𝑃(𝜏𝛴)𝑃M	𝛬𝑖	 = 	𝑗	

𝑤),, = 0			𝛬𝑖 ≠ 𝑗	

For	each	of	the	m	expressed	views,	Ω	is	an	m	×	m	diagonal	covariance	matrix	of	the	error	that	

represents	 the	uncertainty	 in	each	view.	As	described	 in	e.g.	 Idzorek	(2005)	(and	many	other	

places):	
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He	and	Litterman	describe	the	diagonal	element	of	Ω	as	a	function	of	(tau).	

Meucci	(2010)	applies	Ω	differently	and	ignores	the	diagonal	of	the	matrix.	This	is	computed	as	

𝛺 =
1
𝑐
𝑃∑𝑃/	

Where	c	represents	overall	confidence	in	the	views.	

Confidence	interval,	Ω	

One	intuitive	way	of	calculating	the	covariance	is	to	specify	a	confidence	interval	of	the	estimate	

of	the	expected	return.	This	could,	for	example,	be	stated	as:	“It	is	expected,	with	a	95%	probability,	

that	the	stock	lies	between	a	confidence	interval	of	[0%;2%].”	Since	the	Black	Litterman	framework	

assumes	 normality,	 the	 confidence	 interval	 can	 be	 translated	 into	 standard	 deviation,	 as	 the	

covariance	is	the	uncertainty	of	the	estimate	of	the	mean.	As	the	probability	can	be	translated	into	

standard	deviation,	in	this	example,	the	standard	deviation	is	2%.	

3.4.2.2.2	Tau	

The	𝜏	is	originally	introduced	in	He	and	Litterman	as	a	constant,	where	they	mention	it	should	be	

close	 to	 0.	 Tau	 is	 associated	 with	 the	 uncertainty	 of	 view	 hence	 also	 the	 uncertainty	 of	 the	

investor’s	prior	estimation	of	equilibrium	returns,	which	would	say	the	uncertainty	of	CAPM.	τ	is	

as	 described	 previously,	 the	 measure	 of	 the	 investor’s	 confidence	 in	 the	 prior	 estimates.	 It,	

therefore,	shows	the	constant	of	proportion	between	∑(𝜇)	and	∑.		

“Because	the	uncertainty	in	the	mean	is	much	smaller	than	the	uncertainty	in	

the	return	itself,	τ	will	be	close	to	zero.	The	equilibrium	risk	premiums	together	

with	τΣ	determine	the	equilibrium	distribution	for	expected	excess	returns.	We	

assume	this	information	is	known	to	all;	it	is	not	a	function	of	the	circumstances	

of	any	individual	investor”.	(He	and	Litterman,	1992)	

He	 and	 Litterman	 (1999)	 propose	 considering	 τ	 as	 the	 ratio	 of	 the	 sampling	 variance	 to	 the	

distribution	variance,	and	thus	it	is	1/t.		They	use	𝜏=	0.05	since	it	corresponds	to	the	confidence	

level	of	the	prior	CAPM	if	they	applied	20-year	of	historical	data.		
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	“...corresponds	to	using	20	years	of	data	to	estimate	the	CAPM	equilibrium	returns.”		

The	value	should	be	close	to	0	because	the	uncertainty	of	 the	mean	should	be	 lower	than	the	

uncertainty	of	 the	variables	argued	by,	He	and	Litterman.	Following	the	work	by	Satchell	and	

Scowcroft	 (2000)	and	Meucci	 (2010),	 the	alternative	 reference	model,	 they	apply	a	 setting	of	

𝜏equivalent	 to	11	 and	 therefore	 it	does	not	 appear	 in	 the	 final	model	 (Walters,	2013).	Walter	

(2010)	mention	three	different	approaches	to	obtain	𝜏.		

3.4.2.3	Posterior	distribution	

When	 combining	 the	 prior	 distribution	 following	 the	 framework	 of	 Black-Litterman,	 the	

posterior	 distribution,	 containing	 the	 new	 combined	 return	 distribution,	 is	 generated	 and	

denoted	as	a	normally	distributed	variable	with	a	mean	Π� 	 and	a	 covariance	𝑀.%.	This	 is	 also	

widely	known	as	the	Black	Litterman	asset	allocation	model.	The	investor’s	views	and	expected	

returns	 from	 the	 Bayesian	 prior	 both	 contain	 normally	 distributed	 random	 vectors	 and	

combining	these,	assuming	that	𝜖(:)and	𝜀(Q)	are	independent,	the	following	is	obtained	(He	and	

Litterman,	1999(b)):	

S𝜖
:

𝜖QT ∼ 𝑁 S0, �
𝜏𝛴 0
0 Ω�T		

This	 gives	 conditional	 distribution	 where	 the	 expected	 returns	 are	 normally	 distributed	

𝑁(	𝛱� ,𝑀.%),	where	the	mean		𝛱� 	and	the	covariance	matrix		∑� ,	denoted	as	𝛴� = 𝛴 +𝑀.%	,	is	given	

as	the	following	

Π� = [(𝜏𝛴).% + 𝑃M𝛺.%𝑃].%[(𝜏𝛴).%	𝜋 + 𝑃M𝛺.%𝑄]	 	 (Equation	3.4.6)	

Equation	3.4.3	mainly	consists	of	two	elements.	The	first	element	of	the	equation	functions	as	a	

risk-scaled	weighted	average	of	the	excess	equilibrium	return	and	view	returns.	(𝜏∑).%is	the	

scaled	inverse	matrix,	(𝑃M𝛺.%)	by	the	confidence	of	the	views	(He	and	Litterman,	1999(b)).	The	

equilibrium	can	be	written	as	(derivation	can	be	seen	in	Appendix	1)	

	𝛱� = 𝛱 + 𝜏∑𝑃M[(𝑃𝜏∑𝑃M) + 𝛺].%[𝑄 − 𝑃𝛱]		 	 (Equation	3.4.7)	

And	for	the	covariance	matrix	of	the	returns	

 
1 According to Walter (2014), Satchell and Scowcroft (2000) proposes “point estimates” as opposed to regular 
distributions, which is why the parameter tau is allowed to be set to 1.  
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𝑀.% = ((𝜏𝛴).% + 𝑃M𝛺.%	𝑃).%	 																																													(Equation	3.4.8)	

And	the	posterior	covariance	is	given	the	covariance	matrix	of	return	as	well	as	the	prior	

covariance	

∑� = ∑ +𝑀.% = ∑+ ((𝜏𝛴).% + 𝑃M𝛺.%	𝑃).%	 	 	(Equation	3.4.9)	

The	derivations	of	these	can	be	seen	in	Satchell	and	Scowcroft	(1997).	The	mean	equation	takes	

both	volatility	and	correlations	into	consideration	when	computing	the	expected	returns,	and	it	

is	clear	that	the	mean	is	estimated	with	uncertainty.	This	expected	return	is	the	return	suggested	

to	obtain	the	most	optimized	portfolio.		

(𝜏∑).%=	confidence	on	CAPM	

𝛺.%=	investors	confidence	on	the	view	

The	mean	equation,	Equation	3.4.6,	looks	fairly	complicated,	however,	the	formula	comes	with	

specifications	regarding	the	investor.	If	the	investor	does	not	hold	any	view	on	the	market,	the	

equilibrium	is	used,	which	then	leads	to	the	market	portfolio	as	the	implied	equilibrium	return,	

given	by	the	formula	�̅�.	When	switching	the	approach	towards	Black-Litterman,	the	methodology	

is	the	same,	just	instead	assuming	that	Equation	3.4.6	contains	P	=	0	(showing	that	the	investor	

does	not	have	specific	views	about	the	market).	This	leads	to		

[(𝜏𝛴).%].%[(𝜏𝛴).%𝜋] = 𝜋	
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FIGURE	8:	THE	BLACK-LITTERMAN	MODEL	(SATCHELL	AND	SCOWCROFT,	2000)		

	
Figure	8	simply	illustrates	the	Black-Litterman	approach,	and	the	inputs,	suggested	by	Satchell	

and	Scowcroft	(2000).	The	prior	distribution,	generated	from	the	 implied	market	equilibrium,	

will	be	combined	with	the	view	distribution	arising	from	the	premium	prediction	models.	This	

finally	provides	us	with	the	new	combined	distribution	used	in	the	optimization	process.	

3.4.2.4	Unconstrained	optimal	portfolio	

In	equilibrium,	all	investors	hold	the	market	portfolio	𝑤3,	and	the	equilibrium	return	is	optimal	

in	the	sense	that	the	demand	for	these	assets	equals	the	supply	(Black,	1989)	(He	and	Litterman,	

1999).	However,	 it	 can	be	quite	 challenging	 trying	 to	understand	 the	mathematical	 intuitions	

looking	 at	 the	 equations.	 In	 simplicity,	 the	 optimization	 process,	 in	 similarity	 with	 other	

traditional	optimization	cases,	seek	to	account	for	the	relationship,	the	return	and	volatility	of	the	

assets.	 The	 portfolio	 expected	 returns	 can	 be	 modified	 by	 applying	 relative	 volatility	 and	

correlations,	since	that	simply	would	create	a	more	sophisticated	portfolio.	Thus,	looking	at	the	

optimal	 portfolio	 weight,	 instead	 of	 directly	 the	 expected	 returns,	 we	 can	 get	 a	 better	

understanding	 of	 the	 transition	 from	 view	 to	 the	 optimal	 portfolio.	 If	 an	 investor	 had	

unconstrained	optimal	portfolio,	it	could	be	represented	as	the	risk	aversion	equivalent	to	𝜆	(He	

and	Litterman,	1999(b)).		
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The	unconstrained	optimal	portfolio,	that	was	derived	in	Section	3.2.6,	the	expected	returns	were	

random	variables	 that	had	 to	be	estimated.	Therefore,	 the	expected	returns	do	not	 follow	the	

initial	distribution,	𝑁(�̅�, 𝛴	),	meanwhile	the	return	distribution	is	now	given	as	follows:		

	

𝑟 ∼ 𝑁(�̅�, 𝛴�)	

	

Where	the	covariance	is	denoted	as	𝛴� = 𝛴 +𝑀�.%.		

	

After	the	posterior	mean	of	the	expected	returns	and	the	posterior	covariance	is	estimated,	they	

are	applied	in	the	application	of	the	optimal	portfolio	weights.	If	returning	to	the	optimal	portfolio	

weights	where	the	objective	was	to	maximize	the	utility	(He	and	Litterman,	1999):	

	

𝑤∗ = (𝜆∑).%�̅� =
1
𝜆
𝛴.%𝑢�	

	

Where	𝛱 = 𝜇	̄ 	if	the	investor	is	certain	about	his	views.	An	alternative	way	of	deriving	this	can	be	

seen	in	Appendix	2	(also	He	and	Litterman,	1999(b)).	

	

The	unconstrained	optimal	portfolio	in	Black	Litterman	is	the	market	equilibrium	portfolio	𝑤3	

and	including	a	weighted	sum	of	portfolios	that	comes	from	the	investor’s	views	which	are	scaled	

by	the	factor	𝜏,	to	adjust	for	uncertainty	in	the	CAPM	equilibrium.	In	other	words,	the	sum	of	the	

portfolio	weights	will	not	summarize	to	100%,	like	the	equilibrium	weights,	due	to	the	scaling	

factor	 %
%I]

	.	Because	of	the	Bayesian	approach	of	being	uncertain	in	the	prior,	they	do	not	want	to	

invest	100%	of	the	wealth	in	risky	assets.		

	

The	interpretation	of	Formula	3.4.9.	can	be	stated	as	the	more	robust	the	view	of	an	investor,	the	

more	allocation	is	towards	the	optimal	portfolio.	This	can	either	be	in	terms	of	a	higher	expected	

return	or	a	lower	degree	of	uncertainty.	Furthermore,	the	formula	also	shows	the	weights	of	the	

covariance	of	the	investor’s	view	and	the	market	portfolio,	which	is	being	taken	into	account.	This	

is	because	the	covariance	of	the	investor’s	view	of	a	portfolio	combined	with	the	market	portfolio	

indicates	that	the	view	has	less	new	information	(He	and	Litterman,	1999(b)).		
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Comparison	of	Mean-Variance	and	Black	Litterman		

The	differences	of	the	models	are	illustrated	in	TABLE	1:	

	

	 Mean-variance	optimization	 Black-Litterman	approach	

Asset	mean	 Mean	of	historical	asset	returns	 Blended	asset	return	from	prediction	

models	and	equilibrium	returns	

Asset	Covariance	 Covariance	of	historical	returns	 Covariance	of	historical	asset	returns	

and	estimation	of	uncertainty	of	the	

asset	returns	

TABLE	1:	DIFFERENCES	OF	THE	MODELS		

	
Overall,	the	MV	applies	historical	returns	for	the	mean	and	covariance.	The	BL	model	combines	

the	equilibrium	returns	with	the	views	for	the	asset	mean,	and	for	the	covariance,	the	approach	

blends	the	covariance	of	historical	assets	with	the	uncertainty	of	the	asset	returns.	This	will	be	

further	elaborated	in	the	analysis.	

	

	
FIGURE	9:	COMPARISON	OF	BLACK	LITTERMAN,	CAPM	AND	MPT	(WALTERS,	2014)	

	

Figure	 9	 illustrates	 the	 position	 of	 the	 respective	 portfolios	 used	 in	 the	 analysis.	 The	 point	

showing	the	Black-Litterman	investor	with	no	views	can	be	interpreted	as	the	CAPM	equilibrium.	

When	 views	 are	 introduced,	 i.e.	 when	 the	 investor	 have	 opinions	 about	 the	 future	 asset	

movements,	the	Black-Litterman	portfolio	will	deviate	from	this	point.	Including	the	uncertainty	

parameter,	𝜏,	 the	efficient	frontier	will	move	slightly	to	the	right	as	we	are	investing	less	than	

100%	in	risky	assets.	This	is	adjusted	later	on	by	scaling	upwards	to	100%	(Walters,	2014).		
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4.	Data	and	methodology	

4.1	Data	description	
The	data	description	reports	how	data	is	screened	and	which	criteria	that	has	been	chosen	for	

the	data	sample	throughout	this	study.	Besides,	it	also	presents	the	methodology	of	the	data	of	

indices,	bond-and	stock	predictability,	benchmark	and	the	risk-free	rate.				

4.1.1	Data	on	portfolio	allocation	

4.1.1.1	Data	sample	

The	performance	of	MV-model,	CAPM	and	BL-model	will	be	compared	in	a	simple	 investment	

universe.	 Several	 methods	 can	 be	 applied	 to	 available	 data	 to	 construct	 a	 well-diversified	

portfolio.	However,	this	project	is	restricted	to	apply	a	simple	U.S.	multi-asset	portfolio,	consisting	

of	U.S.	Equity	Index	and	U.S.	Treasury	bonds.	The	asset	classes	in	the	data	are	represented	by	an	

equity	index	and	a	bond	index.	It	has	been	decided	to	use	American-domiciled	indices	as	a	data	

reference	in	this	study.	Initially,	this	is	also	discussed	in	Section	2.3,	where	literature	has	shown	

that	many	examinations	have	concerned	the	US.	market.	The	decision	regarding	the	selection	of	

the	investment	universe	has	been	made	on	the	basis	of	one	factor;	literature	found	on	prediction	

variables.	Literature	has	shown	that	the	prediction	of	U.S.	equity	and	bonds	is	relatively	robust	

evidence.	 It	was	 suggested	 from	Munk	 (2019)	 that	 the	 application	 of	 asset	 classes	was	more	

robust	 in	 terms	 of	 predicting	 future	 returns,	 since	 these	 where	 less	 sensitive	 towards	

unsystematic	risk.	Since	the	aforementioned	Black	Litterman	model	requires	view	generation	of	

assets,	the	prediction	of	the	multi-asset	portfolio	seems	to	provide	the	most	statistical	evidence.	

4.1.1.2	Database	

The	data	of	the	equity	and	bond	index	are	extracted	from	the	Bloomberg	database.	Bloomberg	is	

a	 database	 that	 provides	 financial	 news,	 analysis,	 and	 real	 pricing	 data	 of	 financial	 data,	

furthermore,	 the	database	 is	highly	applied	by	practitioners	 in	 the	 financial	 industry.	 It	offers	

possibilities	to	obtain	high-quality	data	on	practically	any	financial	asset	traded.	Using	data	from	

this	database	has	 some	advantages	 that	ultimately	 enhances	 the	 reliability	of	 the	 conclusions	

drawn	in	this	paper.	The	main	advantage	is	that	Bloomberg	is	one	of	the	leading	data	providers	

within	asset	management.	Also,	Bloomberg	is	a	trusted	data	source	that	seeks	to	deliver	high-

quality	data.	Thus,	 the	data	extracted	 is	representing	the	accurate	data	on	portfolio	allocation	

desired.	
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4.1.1.3	Sample	period	

The	relationship	between	stock	and	bonds	is	quite	relevant	and	influences	the	asset	allocation	of	

the	portfolios.	Since	the	late	1900s,	it	has	been	widely	known	that	the	correlation	between	stocks	

and	long-term	bonds	has	mostly	been	positive,	i.e.	increasing	stock	prices	resulted	in	rising	bond	

yields	(Shiller	and	Beltratti,	1992;	Campbell	and	Ammer,	1993).	Recent	studies	show	variation	in	

the	 stock-bond	 correlations	 is	negative	 in	 some	periods,	 also	pointed	out	by	 Ilmanen	 (2003),	

Cappiello,	Engle,	and	Sheppard	(2006),	and	Andersson,	Krylova,	and	Vähämaa	(2008).	Periods	

with	financial	uncertainty,	causes	an	opposite	shift	in	the	prices	of	stock-bond	correlation,	due	to	

investors	changing	from	stocks	to	bonds.		

	

FIGURE 10: VARIATION IN THE STOCK-BOND CORRELATIONS 

FIGURE 10	 represents	the	correlation	from	the	year	1976-2016.	The	correlation	 is	based	on	a	

three-year	 rolling	 window	 of	 the	monthly	 returns	 on	 the	 S&P	 500	 and	 the	 U.S.	 Treasury.	 In	

general,	 the	 stocks-bonds	 have	 had	 a	 positive	 correlation	 from	1980	 to	 2000,	while	 negative	

correlation	had	been	 observed	 from	2000.	A	 positive	 correlation	means	 for	 the	 stocks-bonds	

relationship,	 that	 when	 stock	 prices	 reduce,	 oppositely,	 the	 bond	 prices	 increase.	 In	 the	 last	

decade,	 accordingly,	 low	 positive	 or/and	 negative	 correlation	 appeared	 during	 stock	market	

turbulence,	 indicating	 that	 stock	 and	 bond	 diversification	 of	 each	 other	 is	 better	 during	 a	

recession	than	over	expansionary	economy.	Aiming	the	study	within	this	specific	period	makes	it	

possible	 to	 compare	 different	 sub-periods	 and	 distinguish	 between	 opposite	 correlations	 in	

stock-bonds.	 Since	many	 asset	management	 algorithms	 are	 based	on	 the	 fact	 that	 stocks	 and	

bonds	 were	 positively	 correlated	 back	 then,	 this	 project	 analyses	 both	 perspectives.	 In	 this	

specific	study,	the	sample	period	follows	from	1980	-	2019.	This	period	includes	economic	cycles	

in	terms	of	strong	bull	and	bear	trends,	high/low	volatility	periods,	and	stagnating	periods,	which	
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should,	to	a	great	extent,	give	the	ability	to	capture	the	short-term	market	circumstances.	Since	

portfolio	allocation	depends	on	these	states	of	the	market,	it	is	essential	to	include	these	different	

economic	cycles.	Furthermore,	the	period	is	split	into	different	sub-periods	from	the	years	1980	

-	2000	to	model	in-sample	estimates	and	the	years	2000	-	2019	to	predict	pseudo-out-of-sample.	

This	gives	 the	ability	 to	generate	prediction	by	applying	 the	 first	 sub-period	as	an	estimation	

window	and	then	the	second	sub-period	to	estimate	out-of-sample	to	observe	the	allocation	in	

2000	based	on	the	historical	data.		

	

Time	series	analysis	requires	available	historical	information	over	time.	It	is	often	troublesome	

to	select	the	best-fitted	frequency	of	the	data	set	because	it	highly	depends	on	the	hypothesis	of	

the	analysis	and	what	you	want	to	investigate.	Various	obstacles	could	interrupt	the	results	of	the	

analysis	during	the	period	of	the	data.	Common	disturbance	in	daily	data	is	often	related	to	time	

zone	 delay,	 different	 currency,	 structural	 breaks,	 etc.	 To	 eliminate	 some	 of	 the	 disturbance,	

monthly	data	will	be	applied	adjusted	for	closed	trading	days,	etc,	since	these	noises	will	even	be	

evened	out	in	a	monthly	scheme	over	a	daily.	Monthly	observations	are	often	sufficient	enough	

to	capture	information,	according	to	literature.	Primarily,	the	benefit	of	using	monthly	returns	

instead	 of	 weekly	 returns	 is	 that	 the	 returns	 are	 approximately	 normally	 distributed.	

Furthermore,	long-horizon	returns	tend	to	approximate	closer	to	normal	distribution	compared	

to	short-term	returns	(Campbell	et	al.,	1997).	However,	daily	observation	has	the	benefit	of	giving	

more	accurate	and	precise	covariance	matrix.	Nevertheless,	due	to	the	lack	of	available	daily	and	

weekly	data	in	the	10-yr	treasury	index,	monthly	frequency	is	used.			

4.1.2	Portfolio	allocation	

4.1.2.1	S&P	500	

For	this	study,	the	equity	index	is	simply	covered	by	the	S&P	500.	This	index	tracks	the	500	most	

prominent	companies	in	the	U.S.	and	indicates	the	stock	market’s	performance	by	applying	the	

return	and	risk	from	the	companies	in	the	index.	The	index	has	approximately	80%	coverage	of	

the	available	market	capitalization,	thus,	gives	a	broad	representation	if	used	as	a	proxy	of	the	

total	market	(Bloomberg).	The	index	applies	a	market	capitalization	weight	which	gives	a	higher	

allocation	for	those	companies	with	a	larger	market	capitalization.	The	S&P	500	index	is	probably	

the	most	commonly	referenced	U.S.	equity	benchmark,	and	many	regards	it	as	the	single	best	way	

to	track	the	overall	performance	of	the	largest	and	most	dominant	American	companies.	The	data	

extracted	covers	the	period	01/01/1980	to	31/12/2018	and	is	provided	on	weekly	prices	but	

resampled	into	a	monthly	scheme	instead.	
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																							FIGURE	11:	S&P	500	PRICES		 	 																		 			FIGURE	12:	S&P	500	RETURN		

	

For	S&P500,	the	level	data	exhibit	rising	prices	of	the	whole	sample	period.	From	1980	to	2000	

the	index	appears	to	have	a	substantial	rise	from	approximately	1996	-	2000.	Nevertheless,	this	

is	followed	by	a	period	with	declining	prices	in	2000	and	2009	due	to	respectively,	the	dot	com	

bubble	and	financial	crisis.	The	stock	index,	however,	appeared	to	have	reversed	again	to	a	bear	

market.	Looking	apart	from	this,	 the	stocks,	generally,	have	risen	during	the	years.	The	stocks	

have	 performed	 superior,	 especially,	when	 looking	 at	 2010	 to	 2018.	 The	 overall	 boost	 in	 the	

market	seems	to	be	a	result	of	fuelling	from	the	tech	companies	and	uncertainties.	In	the	past	

years,	 since	 2013,	 the	 index	 S&P	 500	 has	 led	 to	 its	 best	 performance	 besides	 looking	 at	 the	

decrease	in	2018.	This	decrease	was	a	result	of	fear	of	economic	slowdown	along	with	Brexit	and	

a	slowdown	in	the	Chinese	economy.	From	the	beginning	of	2018,	the	stock	index	experienced	a	

decrease	due	to	market	uncertainties,	which	had	not	been	seen	for	many	years	(since	the	financial	

crisis).	FIGURE	12	shows	the	return	on	the	S&P	500,	which	indicates	higher	returns	during	the	

beginning	of	the	1980s.	During	the	1990s	the	returns	appeared	to	be	small	and	up	towards	the	

2100th	century,	the	returns	began	to	show	a	higher	degree	of	volatility	clustering.			

4.1.2.3	10-yr	U.S	Treasury		

To	represent	 the	10-year	U.S.	Treasury,	 the	 investment-grade	bond	 -	Bloomberg	Barclays	U.S.	

Treasury	Index	-	is	applied.	The	Treasury	index	is	an	index	based	on	the	action	of	the	U.S.	Treasury	

bills	and	is	commonly	used	as	a	benchmark	when	determining	interest	rates.	The	index	measures	

U.S.	dollar-denominated,	fixed-rate,	nominal	debt	issued	by	the	U.S.	Treasury.	It	is	often	common	

for	 the	 10-year	 U.S.	 Treasury	 to	 be	 used	 as	 a	 benchmark.	 Since	 the	 Treasury	 securities	 are	

considered	to	be	a	riskless	investment	that	is	guaranteed	and	credited	to	the	U.S.	government,	the	

securities	are	evaluated	as	a	risk-free	return.	The	data	extracted	cover	the	period	01/01/1980	to	
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31/12/2018	based	on	a	weekly	horizon.	However,	from	1980	to	1994,	the	index	is	only	provided	

monthly,	and	therefore	the	data	is,	as	a	whole,	resampled	into	monthly	data.	

	

FIGURE	13:	10-YEAR	TREASURY	PRICES	 	 							FIGURE	14:	10-YEAR	TREASURY	RETURNS		

	

Figure	13	shows	the	price	level	of	10-year	Treasury	over	a	horizon	of	1980	-	2019.	The	prices	of	

the	 Treasury	 have	 risen	 during	 the	 years,	 due	 to	 the	 fallen	 bond	 yields.	 The	 Treasury	 index	

appears	to	have	been	in	a	bear	market,	with	a	trend	of	rising	prices	and	the	bull	market	as	a	result	

of	decreasing	bond	yield.	The	downward	trend	of	bond	yields	has	been	observed	since	the	early	

1980s,	where	 the	U.S.	 Federal	Reserve	 raised	 interest	 rates	with	 the	 commitment	 to	beat	 the	

inflation	as	the	inflation	peaked	in	the	early	1980s.	The	steadily	decrease	in	Treasury	yields	is	

one	of	 the	most	 lasting	effects	 in	 finance.	Also,	 in	2008	during	the	 financial	crisis,	 the	Federal	

Reserve	brought	back	bonds	which	increased	prices	and	decreased	the	yields.	The	returns	on	10-

year	Treasury	shows	that	the	returns	have	been	quite	high	during	the	1980s,	and	with	a	more	

stable	outcome	of	returns.		

4.1.2.2	Descriptive	statistics	

The	analysis	aims	to	identify	the	portfolio	returns,	and	therefore	the	prices	are	transformed	into	

returns.	The	returns	are	given	as	the	change	simple	return	of	each	market	index	price:	

	

𝑟)," = 𝑙𝑛	(𝑃),"/𝑃),".%) − 1		

	

Where	Pi(t)	is	the	monthly	adjusted	closing	price	of	stock	i	at	day	t.	
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The	descriptive	statistics	will	be	provided	in	a	table	to	compare	the	indices.	

	

Descriptive	Statistics				Mean	 Std.dev	 Observations	 Sharpe	ratio	 Kurtosis	 Skewness	

S&P	500	 7.9368%	 14.9549%	 467	 53.0715%	 3.3596	 -0.9234	

10-year	Treasury	 7.0008%	 5.4331%	 467	 128.8546%	 2.3717	 0.3713	

TABLE	2:	DESCRIPTIVE	STATISTICS	OF	ASSET	ANNUAL	RETURNS	(FULL	SAMPLE)	
	

Table	2	provides	an	overview	of	the	descriptive	of	the	S&P	500,	and	10-yr	U.S	Treasury	provided	

on	an	annual	basis,	giving	the	overview	of	the	full	data	sample	presented	in	this	paper.	For	the	

stocks,	the	sample	mean	is	on	average	7.9369	%	compared	to	bonds	where	the	average	return	

has	been	7%.	In	general,	the	stocks	do	not	contain	a	much	larger	return	compared	to	the	bonds	

during	this	sample	period.	The	standard	deviation	of	14.96%	on	stocks	indicates	high	volatility,	

compared	 to	 bonds,	 where	 the	 standard	 deviation	 is	 5.43%.	 Stocks	 tend	 to	 follow	 trends	 of	

volatility	clustering,	and	therefore,	it	is	natural	for	the	stocks	to	have	a	higher	standard	deviation	

compared	 to	bonds,	having	 lower	exposure	 towards	 risk.	The	Sharpe	 ratio	on	 stocks	 is	53	%	

which	have	been	considerably	lower	than	bonds	with	a	Sharpe	ratio	of	128.85	%.	Often,	many	

financial	data	are	now	to	exhibit	non-normal	distribution,	which	is	not	the	case	for	this	specific	

sample.	Assumptions	on	the	mean-variance	and	Black-Litterman	requires	returns	to	be	normally	

distributed,	therefore	describing	the	kurtosis	and	the	skewness.	Kurtosis	describes	the	tails	in	a	

probability	 distribution	 and	 with	 positive	 values	 of	 3.3596	 on	 stock	 and	 2.3717	 on	 bonds,	

compared	to	a	kurtosis	on	3	of	the	normal	distributions,	indicating	for	the	distributions	to	be	a	

nearby	normal	distribution.	For	the	skewness	of	the	returns,	it	is	normally	observed	for	them	to	

deviate	from	0,	although,	they	are	close	to	being	symmetrical.	A	rule	of	thumb	for	an	acceptable	

skewness	 is	a	range	within	[-1,1],	and	anything	outside	this,	 is	considered	as	a	highly	skewed	

distribution	(George	&	Mallery,	2010;	Ryu,	E,	2011;	Bachman,	2004).	The	returns	of	S&P	500	are	

displaying	negative	skewness	with	a	value	of	-	0.17	and	indicates	for	most	of	the	returns	tends	to	

be	negative.	The	Treasury	is	showing	positive	skewness,	which	represents	for	the	bonds	to	be	

positive	mostly.	 If	 very	well-known	 that	 returns	 rarely	 display	 normality	 and	 therefore,	well	

accepted.	

	

Stock	volatility	varies	over	time	also	shown	by	the	volatility	of	the	descriptive	statistics	and	is	an	

anomaly	defined	by	Mandelbrot	(1963)	as:	“large	changes	tend	to	be	followed	by	large	changes,	of	

either	 sign	 or	 small	 changes	 tend	 to	 be	 followed	 by	 small	 changes”.	 	 In	 other	words,	 volatility	
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clustering	 indicates	 that	 large	 or	 small	 returns	 often	 come	 together	 in	 periods,	meaning	 that	

volatility	is	non-constant	over	time.	This	means	significant	autocorrelation	for	all	lags	in	returns.	

When	observing	fairly	short	horizons,	stock	returns	tend	to	have	positive	autocorrelation,	also	

known	as	short-term	momentum.	Usual,	negative	autocorrelation	appears	on	 longer	horizons,	

which	 is	 called	 long-term	 reversal	 or	mean-reversion.	DeBondt	 and	Thaler	 (1985),	 Fama	and	

French	(1988),	 Jegadeesh	and	Titman	(1993,	2001),	Campbell,	Lo,	and	MacKinlay	(1997),	and	

Cochrane	(2005)	all	discuss	prediction	in	returns.	Overall,	it	can	be	said	that	past	positive	returns	

predict	returns	in	the	near	future,	whereas	negative	returns	predict	returns	later	into	the	future	

(Munk,	2019).		

	
FIGURE	15:	AUTOCORRELATION	FOR	S&P500	AND	10-YR	TREASURY	

	

FIGURE	15	displays	the	autocorrelation	for	the	S&P	500	and	10-yr	Treasury.	For	the	absence	of	

autocorrelation,	it	appears	to	be	within	a	range	of	-0.2	and	0.2	hence,	the	autocorrelation	is	not	

said	to	be	strong	for	the	indices.	This	suggests	no	significant	autocorrelation	(>0.2)	present	at	

time	t	and	up	to	40	months	behind.	Black	(1976)	observed	for	stock	volatility	to	have	a	negative	

correlation	with	the	return,	meaning	that	high	volatility	is	present	in	periods	with	low	returns	

and	 the	 other	 way	 around.	 The	 autocorrelation	 appears	 to	 be	 decreasing	 towards	 negative,	

mostly	 for	 stock.	 The	 returns	 exhibit	 oscillating	 movement	 between	 positive	 and	 negative	

autocorrelation.	However,	it	cannot	be	said	whether	these	have	momentum	or	mean-reversion	

since	none	of	them	has	persistently	positive	or	negative	autocorrelation.	Though,	stock	returns	

appear	 to	 have	 more	 negative	 autocorrelation,	 which	 might	 indicate	 mean	 reversion	 during	

longer	horizons.	Times-series	momentum	has	been	documented	for	stocks,	bonds,	among	other	

securities,	 where	 returns	 over	 12	months	 have	 positively	 predicted	 the	 returns	 for	 the	 next	

month	(Moskowitz,	Ooi,	and	Pedersen,	2012).	The	methodology	on	predictability	on	stocks	and	

bonds	will	be	mentioned	further	in	Section	4.2.2.	
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4.1.4	Data	on	risk-free	rate	
The	risk-free	rate	 is	often	known	as	 the	rate	at	which	 the	 investor,	as	a	minimum,	expects	 to	

receive	 on	 an	 investment	 that	 carries	 zero	 risks.	 The	 rate	 is	 often	 proxied	 by	 the	 short-term	

interest	rate,	which	is	the	rate	that	is	short-term	borrowed	or	short-term	issued/traded.	Short-

term	interest	rate	 is	often	based	on	three-month	rates	(OECD,	2020).	Accordingly,	 for	 the	US-

market	the	3-month	Treasury	bill	is	often	used	as	a	benchmark	for	the	risk-free	rate.	

	

For	this	reason,	the	3-month	Treasury	Bill:	Secondary	Market	Rate	(TB3MS),	extracted	from	the	

Federal	Reserve	Bank	of	St.	Louis	(FRED),	is	used	as	the	benchmark	for	the	risk-free	rate,	also	

applied	by	Goyal	&	Welch	(2007).	The	treasury	bills	are	associated	with	low	exposure	towards	

financial	 risk	 since	 these	 are	 issued	by	 the	U.S.	Government,	with	no	 incentives	 to	default	 its	

bonds.	 The	 risk-free	 rate	 applied	 in	 the	 sample	 and	 spans	 from	 01-01/1980	 to	 31-12/2018	

containing	468	observations.		

	

The	 rate	 is	 given	 in	 yearly	 observation	 and	 therefore,	 reformulated	 to	 monthly	 log-rate	

consistently	aligned	with	the	comparable	data’s	

	

𝑟;,3 =
𝑙𝑛+1 + 𝑟;,

12
	

	

where	𝑟;,3is	the	monthly	risk-free	rate.	

	

The	risk-free	rate	is	required	in	order	to	calculate	the	excess	return	on	the	assets	in	the	portfolio.		

4.1.5	Data	on	premium	prediction	

4.1.5.1	Data	on	equity	premium	prediction	

Goyal	&	Welch	(2007)	provides	an	updated	data	set,	which	presents	data	on	the	fourteen	different	

regressors.	This	will	be	used	to	explain	the	monthly	changes	of	the	excess	returns	of	the	equity	

index	S&P	500	in	the	time	period	01/1980	to	12/2018.	The	excess	returns	are	constructed	as	the	

total	rate	of	return	minus	the	short-term	interest	rate.	This	empirical	analysis	requires	the	use	of	

continuously	compounded	excess	returns	of	the	S&P	500,	combined	with	a	data	frame	consisting	

of	the	predictive	variables	from	01-01/1980	to	01-12/2018.		
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The	 data	 frame	 collected	 from	 Goyal	 consists	 of	 the	 following	 14	 variables:	 (1)	 the	 sum	 of	

dividends	on	the	S&P	500	index,	(2)	risk-free	rate	reflected	by	the	treasury	bill,	(3)	earnings,	(4)	

stock	return	variance,	(5)	cross-sectional	premium,	(6)	book	value,	(7)	corporate	issue	activity,	

(8)	 Treasury	 bills,	 (9)	 long-term	 yield,	 (10)	 returns	 on	 corporate	 bonds,	 (11)	 inflation,	 (12)	

investment	 to	 capital	 ratio,	 (13)	all	 variables	mentioned	above	and	 (14)	 consumption/wealth	

ratio	(income	ratio).	The	dividend,	earnings	and	net	equity	expansions	are	computed	as	the	12-

month	moving	sum,	while	the	stock	return	variance	is	calculated	as	the	sum	of	(daily)	squared	

returns	on	the	S&P	500	index.	Further	description	and	origin	of	the	data	frame	can	be	further	

explored	 in	Goyal	and	Welch	(2007).	This	section	of	our	paper	seeks	 to	replicate	 the	study	of	

Rapach	et	al.	(2007).	However,	it	required	some	adjustments	to	make	it	applicable	in	our	analysis.	

Accurately,	 the	 variables	 applied	 in	 our	 analysis	 from	Goyal’s	 dataset	 is	 presented	 as	 follows	

(Description	of	these	in	Appendix	3):	2	

	

● Dividend	Price	ratio	(DPlog)*	

● Dividend	Yield	(DYlog)*	

● Dividend	Payout	ratio	(DElog)	*	

● Earnings	Price	ratio	(EPlog)*		

● Book	to	market	ratio	(b/m)		

● Stock	return	variance	(svar)	

● Yield	spread	(yieldspread)*	

● T-bill	rate	(tbl)	

● Long	term	yield	(lty)	

● Net	equity	expansion	(ntis)	

● Inflation	(infl)	

● Long	term	return	(ltr)*	

● Term	Spread	(tms)*	

● Default	return	spread	(drs)*		

	

The	graphs	of	 single	 variables	 are	 shown	 in	Appendix	4.	Due	 to	 a	 lack	of	 observations	 in	 the	

dataset,	the	variable	Cross-Sectional	Premium	(csp)	had	to	be	excluded.		

 
2 Variables containing * are calculated variables described in Appendix 2 
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4.1.5.2	Data	on	bond	premium	prediction	

The	data	 applied	 in	 the	 bond	premium	prediction	 is	 given	 by	The	New	York	 Fed	 economists	

Adrian,	Crump,	and	Moench	 (ACM-model).	They	present	 term	premia	estimates	 for	maturities	

from	one	to	ten	years,	with	corresponding	fitted	yields	and	expected	short-term	rates	(New	York	

Fed).	The	data	is	updated	daily	and	re-estimated	every	month	to	ensure	that	the	data	is	reflected	

on	the	most	recent	information.	The	data	is	employed	in	a	monthly	setting	and	spans	the	period	

01-01/1980	to	31-12/2018,	i.e.	a	total	number	of	475	observations.	For	each	date,	the	yield	is	

provided	per	annum	in	percent.	

	

In	 this	 study,	 only	 the	 term	 premia	 estimate	 for	 the	 10-year	 maturity	 point	 is	 applied	 to	

investigate	the	prediction	power	of	the	10-year	term	premium.	Although	this	data	is	given	for	a	

longer	horizon,	this	project	only	seeks	to	apply	data	from	1980	since	earlier	historical	data	should	

not	be	longer	than	our	sample	period	and	be	a	possible	explanation	of	the	view	generation	of	the	

BL-model.		

	

Names	 Description	 Transformation	 Source	 Frequency	

ACTP10	 Term	premia:	t10yr-t3m	 Level	 ACM	 Percent	

LUATTRUU	 10-year	Treasury		 Returns	 Bloomberg	 Percent	

rf	 3-month	T-bill	 Level	 FRED	 Percent	

TABLE	3:	DATA	ON	BOND	PREMIUM	

	

To	apply	to	bond	premium	prediction,	the	excess	return	is	computed	as	

	

𝑟"^_2` − 𝑟; = 𝑙𝑜𝑔 S a)
a)"#

T,	

	

where	rt	-	rf	is	the	excess	return	on	the	10-year	bond	while	yt	is	the	10-year	treasury	index.			

	

The	 term	premium	 is	 applied	 on	 level	 data,	 see	Appendix	 5.	 The	difference	 between	 the	 risk	

neutral	yield	and	the	model-implied	fitted	yield	is	the	definition	of	the	term	premia	according	to	

ACM,	 where	 their	 model-implied	 yield	 is	 obtained	 from	 their	 five-factor-model,	 also	 the	 no-

arbitrage	term	structure	model.		
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4.1.6	Market	portfolio		
A	market	cap	allocation	is	widely	applied	in	the	real	world	among	portfolio	managers,	to	obtain	

the	optimal	return	through	the	exposure	of	a	diversified	portfolio	consisting	of	equity	and	fixed	

income.	This	allocation	is	composed	of	60%	equities	and	40%	fixed	income	(Chaves	et	al.,	2011).	

It	 has	 been	 confirmed	 that	 the	 equity	 weights	 in	 the	 U.S	 vary	 over	 time,	 but	 the	 positive	

correlation	has	seen	to	be	present	throughout	the	earlier	year.	Therefore,	the	portfolio	of	60:40	

has	 shown	 to	 provide	 a	 favourable	 diversification.	 Roll	 (1977)	 states,	 the	 market	 portfolio	

definitions	in	the	theoretical	CAPM,	is	an	index	of	multi-asset	classes,	for	example,	equities,	bonds,	

etc.	Since	the	CAPM	is	a	capitalized	weighted	index;	hence,	the	CAPM	allocation	should	use	the	

weights	of	the	market	cap	between	stocks	and	bonds.	

	

Theoretically,	 the	 definition	 of	 the	 market	 portfolio	 is	 widely	 understood.	 However,	 the	

computation	of	the	market	portfolio	is	very	restricted,	due	to	the	challenging	way	to	obtain	all	the	

comprehensive	 data	 required.	 To	 characterize	 the	market	 portfolio	 in	 the	U.S.	market	 by	 the	

application	of	the	stock/bond	setting,	we	define	the	market	capitalization	of	equity	by	S&P500	

and	the	market	capitalization	of	bonds	by	U.S.	Treasury.		

	

		
FIGURE	16:	MARKET	ALLOCATION	OF	BONDS	AND	EQUITIES	FROM	2003	–	2019	

	

The	graphs	in	Figure	16	illustrate	the	global	market	allocation	and	is	proxied	by	Bloomberg	World	

Exchange	 Market	 Capitalization	 (WCAUWRLD	 Index)	 and	 Bloomberg	 Barclays	 Global	 multi-

currency	benchmark	(LEGATRUU	Index).	 In	general,	 the	allocation	between	equity	and	bonds	
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fluctuates	around	60:40,	like	the	standard	allocation	of	bonds	and	equities.	There	appear	to	be	

periods	with	a	higher	market	capitalization	in	stocks	and	periods	with	less,	correspondingly	the	

same	is	observed	for	bonds.	This	indicates	that	it	is	valid	to	use	the	standard	allocation	to	proxy	

the	market	capitalization	in	order	to	obtain	equilibrium	weights	of	the	Black-Litterman	model.	

Even	though	this	market	capitalization	is	shown	globally,	this	approximation	is	also	used	for	the	

U.S.	market.	Due	to	the	lack	of	data	for	the	stock	index	before	2003,	the	allocation	of	60:40,	in	

respectively	stocks	and	bonds,	will	be	applied	constantly	throughout	the	analysis	as	a	proxy.	

4.2	Methodology	
The	methodology	of	this	study	is	based	on	a	quantitative	approach,	which	is	based	on	the	times	

series	of	financial	data.	The	main	content	of	the	methodology	concerns	the	specification	of	the	

regression	models,	combined	with	the	approach	of	the	portfolio	generation	and	the	evaluation	of	

the	 performance.	 To	 evaluate	 the	 regression	models,	 error	 measures	 will	 be	 presented.	 The	

conclusion,	on	how	to	create	the	most	established	portfolio	allocation,	can	be	drawn	from	the	

performance	 of	 these	 portfolio.	 Finally,	 the	 theory	 presented	 above,	 is	 considered	 crucial	 to	

construct	the	portfolios.	

4.2.1	Portfolio	estimation	
In	 order	 to	 investigate	 the	 workings	 and	 the	 performance	 of	 the	 mean	 variance	 and	 Black-

Litterman	model,	 the	 portfolios	will	 be	 evaluated	 using	 two	 different	methods.	 The	 first	 two	

allocation	models	are	based	on	the	in-sample	period,	providing	us	with	one	set	of	optimal	weights	

to	invest	our	wealth	in	at	the	beginning	of	the	out-of-sample	period.	Furthermore,	this	will	be	

used	to	investigate	the	workings	of	the	different	models.	However,	there	is	a	possible	weakness	

of	the	approach,	based	on	constructing	the	model	parameters	over	a	long	period,	as	it	may	lead	

the	covariance	matrix	to	estimation	errors.	If	there	is	an	indication	of	time-varying	covariance,	a	

change	 in	 the	 correlation	 matrix	 or	 other	 parameters	 during	 our	 in-sample	 period,	 these	

estimation	errors	might	appear.	Due	to	the	fear	that	the	relation	in	the	indices'	returns	may	vary	

over	time,	a	rolling	estimate	will	be	applied.				
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Model	 Description	 Estimation	period	 Window	(H)	
Abbreviatio

n	

i	 Mean-variance,	unconstrained	portfolio	 01-01-1980	to	01-12-1999	 In-sample	period	 MVs	

ii	 Black-Litterman,	unconstrained	portfolio	 01-01-1980	to	01-12-1999	 In-sample	period	 BLs	

iii	
Mean-variance,	unconstrained	rolling	

portfolio	 01-01-1980	to	01-12-2018	 72	
MV		

iv	
Black-Litterman,	unconstrained	rolling	

portfolio	 01-01-1980	to	01-12-2018	 72	
BL	

TABLE	4:	DESCRIPTION	OF	THE	PORTFOLIOS	AND	ESTIMATION	PERIODS	

	

A	central	part	of	the	following	analysis	is	the	application	of	rolling	estimates	to	capture	the	change	

in	 movements	 of	 the	 indices.	 This	 is	 done	 by	 splitting	 the	 data	 frame	 into	 multiple	 sub-

samples/periods,	hopefully	providing	a	more	accurate	presentation	on	how	the	variables	behave	

within	these	periods	since	the	approach	only	takes	into	account	the	most	recent	information.	It	

is,	 furthermore,	possible	that	this	method	will	give	a	more	precise	allocation,	due	to	a	shorter	

estimation	period.	The	model	will,	possibly,	have	better	performance	because	it	is	estimated	on	

more	recent	data,	which	could	eliminate	some	estimation	errors,	especially	if	the	relations	of	the	

index	returns	vary	over	time.	

	

In	this	paper,	we	use	monthly	observations	of	the	return	processes	of	the	assets,	however,	it	is	

entirely	possible	to	use	more	frequent	data	observations	to	obtain	a	more	precise	estimate	of	the	

expected	return	vector	and	covariance	matrix.	The	procedure	of	rolling	estimation	follows	the	

approach	applied	by	DeMiguel	&	Uppal	(2009),	and	will	be	carefully	explained:	

	

1. We	select	a	window	with	the	length	H=72,	reflecting	a	window	of	six	years	using	monthly	

data.	

2. The	initial	starting	point	will	be	T=	H+1		

3. For	 each	 observation	 t,	 the	 expected	 return	 vectors	 and	 covariance	 matrix	 will	 be	

estimated	on	the	last	H	observations	as	illustrated	in	Figure	17.		
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FIGURE	17:	ILLUSTRATION	OF	THE	ROLLING	WINDOW	ESTIMATE	

	

4. This	provides	227	total	estimated	observations	to	further	apply	in	the	optimization	

processes	to	implement	the	given	allocation	strategies.		

4.2.2	Testing	the	out-of-sample	performance	
The	 portfolios’	 out-of-sample	 performance	 will	 be	 evaluated	 using	 multiple	 performance	

measures.	 The	 out-of-sample	 models	 will	 also	 be	 split	 into	 different	 sub-periods,	 to	 further	

investigate	the	models	performs	better	in	some	particular	periods.	In	addition	to	the	assessment	

of	the	cumulative	portfolio	return	in	the	out-of-sample	period,	we	will	evaluate	the	performance	

of	our	models,	k,	based	on	the	Sharpe	Ratio	(SR),	M-squared	and	the	Certainty	Equivalent	(CE)	

explained	by	DeMiguel	and	Uppal	 (2009)	and	Bodie	et	al	 (2014).	Lastly,	 the	 t-statistics	of	 the	

portfolio	will	be	computed.	

	

The	 out-of-sample	 performance	will	mainly	 be	 evaluated	 by	 the	 portfolios	 respective	 Sharpe	

Ratios.	The	Sharpe	Ratio	provides	us	with	a	measure	of	the	risk-return	relationship	for	each	of	

the	 portfolio	 allocation	 approaches,	 denoted	 as	 k	 (Munk,	 2019).	 It	 allows	 to	 compare	 if	 one	

portfolio	 is	 better	 than	 another	 and	 evaluate	 if	 some	 periods	 provide	 better	 performance	 in	

contrast	to	other	periods.	The	formula	is	defined	as	the	out-of-sample	excess	return,	𝝁�b ,	divided	

by	the	out-of-sample	standard	deviation	𝜎�b .	The	formula	is	presented	followingly:	

	 	 	

	𝑆ℎ𝑎𝑟𝑝𝑒	𝑅𝑎𝑡𝑖𝑜	(𝑆𝑅)	b =
Ac*.?!	
Rc*

			 		 (Equation	4.2.1)	
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The	 statistical	 significance	 of	 the	 out-of-sample	 Sharpe	 Ratio	 is	 tested	 using	 the	 approach	 of	

Jobson	&	Korkie	(1981).	In	order	to	test	the	Sharpe	ratios	in	one	sub-period	relative	to	another,	

we	propose	the	following	approximate	Sharpe	ratio	estimator	to	adjust	for	any	observation	bias:	

	

𝑆𝑅� d∗ =
(𝝁c*.?!)	

Rc
	 ∗ > %

%IV+,,-. X
@																 	 (Equation	4.2.2)	

	

The	approach	is	applied	on	both	allocation	models,	and	sub-periods,	to	establish	their	individual	

performance	 assessment	 (out-of-sample).	 Further,	 the	 statistical	 performance	 of	 the	 Sharpe	

ratios	will	be	 tested	using	the	procedure	suggested	by	 Jobson	&	Korkie	(1981).	The	 following	

hypothesis	tests	the	portfolios:	

𝐻O:	𝑆𝑅b# − 𝑆𝑅b$ = 0,	

	

where	it	is	assumed	that	𝑆𝑅b 	~	𝑁	 �
(𝝁c*.?!)	

Rc
	 , S%

#
T >1 + � Ac*

$

(R*
$�@�.	

	

The	transformed	difference	for	Sharpe	measure		

𝑆ℎ�)4 = 𝑠4�̅�) − 𝑠)�̅�4	

	

The	Sharpe	statistics,	the	variance	is	given	as:	

𝜃 =
1
𝑇
[2𝜎)(𝜎4( − 2𝜎)𝜎4𝜎) +

1
2
𝜇)(𝜎4( +

1
2
𝜇4(𝜎)( −

𝜇) , 𝜇4
2𝜎)𝜎4

(𝜎)( + 𝜎)(𝜎4(	

	

The	Certainty	equivalent	will	serve	as	a	measurement	for	the	utility	score	of	an	investor	(Bodie	

et	al.,	2014),	used	to	investigate	the	rank	of	the	portfolio	return	accounted	for	the	risk,	in	addition	

to	the	risk	aversion.	According	to	DeMiguel	and	Uppal	(2009),	the	investor	is	willing	to	take	on	a	

risk-free	rate	of	this	measure	(CE)	instead	of	the	given	risky	portfolio	allocation.	The	measure	is	

defined	as	

	

	𝐶𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦	𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡	(𝐶𝐸))b 	= 𝝁b − 0,5𝜆	𝜎b(	 	 (Equation	4.2.3)	

	

where	𝝁b 	 is	the	excess	return	on	each	portfolio	k,	𝜆is	the	risk	aversion	and	𝜎b 	 is	the	standard	

deviation	of	the	return	process	for	each	portfolio.		
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As	 a	 final	 performance	 measure,	 we	 will	 look	 at	 the	 M-squared	 measure.	 The	 measure	 was	

originally	developed	by	Modigliani	and	Modigliani	(1997)	seeking	to	find	a	better	measure	for	

performance	interpretation	than	what	can	be	assumed	and	seen	from	the	Sharpe	Ratio.	The	M-

Squared	is	given	as	follows;	

𝑀 − 𝑆𝑞𝑢𝑎𝑟𝑒𝑑b = 𝝁b S
R(
R*
T + 𝑟; >1 − S

R(
R*
T@									 	 		(Equation	4.2.4)	

	

This	computation	uses	the	market	portfolio	volatility	so	that	the	portfolios	and	a	risk-free	asset	

are	weighted	with	the	proportion	𝑤 = R(
R*
	and	1 − 𝑤 = 1 − R(

R*
	respectively.	This	makes	it	possible	

to	assess	the	performance	with	the	risk	taken	(Munk,	2019).		

	

The	statistical	significance	of	the	portfolios	has	to	be	tested,	because	it	is	not	sufficiently	reflected	

by	 the	measures	described	above.	This	 is	done	by	calculating	 the	respective	 t-statistics	of	 the	

assets	and	portfolios	the	following	way:	

t − statistic = 𝝁b · √𝑇/𝜎b 	

	

4.2.2	Regression	models	
OLS	 regressions	 are	 computed	 in	 order	 to	 specify	 investor’s	 views	 on	 the	 Black	 Litterman	

portfolios.	The	predictive	power	of	 the	variables	 is	explored	 in	order	to	obtain	the	premiums.	

Regression	 analysis	 is	 an	 important	 statistical	 tool	 to	 investigate	 and	 establish	 if	 a	 chosen	

variable,	 or	 multiple	 variables,	 have	 an	 impact	 on	 the	 future	 movement	 of	 another	 variable	

(Enders,	 2014).	 The	 regression	 models	 are	 based	 on	 historical	 data	 by	 applying	 time-series	

modelling.	The	models	will	be	tested	to	detect	out-of-sample	prediction	of	the	views,	meaning	

that	from	the	period	1980	to	2000	will	be	used	as	an	estimation	window	to	get	a	model	that	can	

explain	out-of-sample	for	2000	and	further.		

4.2.2.1	Equity	premium	prediction	

Multiple	regression	models	will	be	used	to	explain	the	change	in	tomorrow's	return	on	the	S&P	

500	index.	A	general	prediction	model	for	equity	excess	return	is	given	as	

	

																																𝑟"I% = 𝛼 + 𝛽𝑥),"	 + 𝜖"I%			 	 	 		(Equation	4.2.5)	
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where	rt+1	is	the	premium	of	an	equity	index,	xi,t	are	the	fourteen	different	variables,	presented	by	

Goyal	and	Welch	(2007),	that	supposedly	have	predictable	features	over	the	index	in	question	

and	𝜀"I%	is	the	error	term	of	the	model.		

	

The	forecast	analysis’	will	follow	a	large	part	of	the	methodology	of	Rapach	et	al.	(2007)	to	predict	

the	fourteen	variables,	and	weighted	them	together	in	a	combination	forecast,	using	an	average	

of	 the	 predictor	 variables.	 Goyal	 and	Welch	 (2007)	 and	Rapach	 et	 al.	 (2007)	 use	 a	 recursive	

estimation	 window.	 However,	 we	 will	 apply	 linear	 OLS	 regressions	 based	 on	 the	 in-sample	

forecast	 to	 predict	 out-of-sample	 forecast	 for	 the	 S&P	500.	This	means,	 that	 constants	model	

coefficients,	alpha	and	betas	are	carried	out	as	estimates	to	forecast.		

	

After	performing	 the	described	procedure	on	all	mentioned	variables	 above,	 the	 combination	

forecast	suggested	by	Rapach	(2007)	is	applied	to	produce	a	forecast	of	the	premium	on	the	S&P	

500	 index	 using	 the	 fourteenth	 predictor	 variables.	 Rapach	 et	 al.	 (2007)	 present	 multiple	

suggestions	on	how	to	calculate	a	premium	forecast	that	consistently	outperforms	the	historical	

average.	However,	we	chose	 to	use	 the	 following	simple	averaging	method	presented	 in	 their	

paper:	

�̂�P,"I% = ∑ 𝜔),"�̂�),"I%+
)$% 	 	 																				(Equation	4.2.6)	

	

The	equation	is	based	on	the	results	arising	from	the	N	individual	prediction	models	estimated	in	

Equation	4.2.6	above	and	the	equation	 is	based	on	the	forecasted	returns	of	 the	SP	500	index	

rather	than	the	actual	realized	returns.	This	approach	uses	the	mean	average	approach	providing	

us	with	wi,t	=	1/N	for	 i	=	1,..,	N	 for	each	monthly	observation	t.	Further,	we	use	the	estimated	

expected	excess	return,	𝑟),"I%,	for	all	monthly	observations	t	in	our	out-of-sample	period.		

4.2.2.1	Bond	premium	prediction	

The	methodology	of	the	bond	premium	prediction	is	based	on	the	economists	from	New	York	Fed	

(ACM)	where	the	bond	yield	prediction	is	explained	by	OLS	linear	regression.	Following	three-

step	regressions	for	the	parameters	of	the	model:	

	

1. The	bond	premium	is	estimated	applying	ordinary	least	squares	decomposed	into	the	in-

sample	period.		

2. The	 excess	 returns	 are	 regressed	 on	 a	 constant	 and	 a	 lagged	 pricing	 factor,	 i.e.	 term	

premia	according	to	the	regression	model	
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𝑟"^_2` − 𝑟; = 𝛼 + 𝛽𝑇𝑃".% + 𝜀"	 	 	 (Equation	4.2.7)	

	

Where	the	𝑟" − 𝑟;	is	the	excess	bond	premium,	and	TP	is	the	term	premia	given	from	

ACM.		

	

The	model	applies	the	coefficient	of	the	OLS-regressions		

[𝛼�		𝛽�]	

and	store	the	model	coefficients,	alpha	and	beta.	

	

3. The	regression	model	is	now	used	to	the	application	of	the	out-of-sample	dataset,	to	

predict	the	excess	return	based	on	the	in-sample	a	linear	forecast.	
	
In	 the	real	estimation	of	 the	 term	structure,	ACM	applies	a	 five-factor	model	as	 their	baseline	

specification,	in	which	they	compare	the	four-factor	model	known	from	Cochrane	and	Piazzesi.	

They	notice	that	the	risk-free	short-term	rate,	including	other	pricing	factors,	provides	them	with	

the	 estimates	 of	 the	 zero-coupon	 yield	 without	 observing	 the	 curves.	 Generally,	 the	 term	

premium	 is	 said	 to	 reflect	 compensation	 for	 holding	 long-term	 bonds,	 but	 in	 reality,	 several	

factors	 influence	 the	 bond	 yield	 being	 the	 expectations	 and	 term	 premium	 components.	 One	

should	note,	 that	 the	methodology	of	ACM	estimates	 the	bond-yield,	while	we	 in	 fact,	 tries	 to	

estimate	the	bond	price.		

	

The	 regressions	 require	 that	 the	 term	premium	will	 have	 some	 information	about	 the	 excess	

return	 in	 the	 long-term	bonds.	However,	 this	 is	 already	 found	 to	 be	 accurate,	 since	 the	 term	

premia	is	based	on	their	the	five-factor	model	of	ACM,	which	fitted	the	data	of	zero-coupon	yield	

provided	by	Gurkaynak,	Sack,	and	Wright	(2007)	exceptionally	well.	As	shown	in	APPENDIX	6,	the	

term	 premium	 has	 been	 positive	 for	 many	 years,	 and	 based	 on	 the	 fact	 that	 this	 study	 is	

estimating	the	term	premia	from	1980	–	2000,	is	expected	to	have	positive	regression	of	the	bond	

premium	mostly	of	the	out-of-sample.		

4.2.3	Further	empirical	procedure	
To	 further	 assess	 the	 validity	 of	 our	 prediction	 models,	 measurements	 have	 to	 be	 applied.	

Regularly,	prediction	models	can	either	be	validated	through	information	criteria	 like	AIC	and	

BIC,	or	else	𝑅(.	We	apply	error	metrics	to	assess	the	models	with	the	error.		
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The	most	commonly	applied	residuals	statistics	to	evaluate	the	prediction	are	MAE,	RMSE	or	MSE.	

These	are	used	to	measure	the	magnitude	of	the	error	in	the	prediction	models.	MSE	shows	the	

mean	squared	error	and	computes	how	close	the	predicted	values	are	to	the	true	values.	Many	

works	of	literature	propose	to	use	the	same	measures	MAE,	RMSE	or	MSE.	MAE	has	been	cited	

for	 being	 the	 primary	 measure	 for	 comparing	 forecasting	 out-of-sample	 (Chen,	 Twycross	 &	

Garibaldi,	2017).		The	measure	is	the	average	over	the	out-of-sample	of	the	absolute	differences	

between	prediction	and	actual	values.	MSE	is	defined	as		

	

𝑀𝑆𝐸	 =
1
𝑁
∑(𝑦 − 𝑦�)(	

	

where	y	is	the	true	value	and	𝑦�	is	the	predicted	value.		

	

RMSE	(Root	Mean	Square	Error)	is	the	standard	deviation	of	the	residuals.	RMSE	measures	how	

the	prediction	errors	are	spread	out,	and	how	the	data	is	fitted,	also	defined	as	the	measure	of	the	

difference	values	between	the	predicted	values	and	actual	values	observed.	An	RMSE	value	of	0	

indicates	a	perfect	fit	to	data,	and	it	will	always	be	an	achievement	to	aim	for	the	lowest	prediction	

error	(Chen,	Twycross	&	Garibaldi,	2017).	

𝑅𝑀𝑆𝐸 = )'(𝑦�" − 𝑦")(
#

"$%

			

	

Eventually,	the	models	with	the	lowest	implied	MSE	and	RMSE	are	preferred,	since	they	provide	

the	lowest	errors	of	predicted	values	relative	to	the	true	values.	The	method	takes	into	account	

the	estimated	bias	but	also	takes	in	the	estimate	variance	(Chen,	Twycross	&	Garibaldi,	2017)	

(Enders,	2014).		

	

Another	model	implied	statistics	measure	of	error	is	the	R-squared,	which	measures	how	close	

the	data	are	to	the	regression.	In	other	words,	it	is	defined	as	the	proportion	of	the	variation	in	

the	dependent	variable	that	is	predictable	from	the	independent	variable.	The	measure	is	also	

known	as	the	coefficient	of	determination:	

	

𝑅( = :f!8@)4:'	Q@?)@")94
"9"@8	Q@?)@")94

= 1 − ∑(a&.ag)$

∑(a&.ah	)̄$
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The	R-squared	is	always	in	between	the	value	of	0%	and	100%,	where	0%	means	that	the	model	

explains	no	variability	around	the	model	mean.	In	comparison,	100%	indicates	that	the	model	

explains	all	the	variability	around	the	mean.	In	general,	a	higher	R-squared	proposes	for	a	higher	

fitting	model	(Tsay,	2002).		

	

The	regression	model	is	estimated	on	the	in-sample	dataset,	which	is	then	used	to	forecast	the	

out-of-sample	period.	The	coefficients	of	the	regression	models	will	subsequently	be	provided	in	

addition	to	the	test-statistics,	𝑡 = P9:;
7"'	:??9?

	and	the	𝑅(.	Similar	to	the	approach	of	Rapach	et	al.	

(2007),	the	historical	average	is	applied	as	a	benchmark	�̄� = %
+
· 	∑	𝑌.	
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5.	Empirical	analysis	
In	this	section,	the	empirical	findings	will	be	presented,	and	outcomes	of	all	relevant	models	will	

be	revealed.	The	results	will	be	conferred	separately	and	 in	comparison,	with	one	another,	 in	

addition	to	computing	rolling	results	as	opposed	to	a	one-period	estimation	window,	given	as	the	

in-sample	period,	to	illustrate	the	aspects	of	the	various	models.	The	computation	of	the	models	

requires	historical	data	as	presented	in	Section	4.1.2,	and	the	estimates	are	presented	as	monthly	

annualized	figures.			

5.1	Initial	description	of	the	portfolios	
The	empirical	analysis	applies	a	mean-variance	portfolio,	given	as	the	tangency	portfolio,	and	a	

Black-Litterman	portfolio,	as	explained	in	the	theoretical	framework.	Both	allocation	models	(the	

mean-variance	model	and	the	Black-Litterman	model)	consist	of	a	simple	investment	universe	

represented	by	two	assets;	the	S&P	500	index	and	the	10-Year	Treasury	index.		

	

A	common	feature	of	the	portfolios	is	the	estimates	of	the	covariance	matrices,	while	the	expected	

return	 vectors,	 𝜇,	 varies	 across	 the	 allocation	 models.	 This	 means	 that	 the	 optimal	 active	

allocation	 is	 based	 on	 the	 investors’	 estimate	 of	 the	 expected	 return	 and	 covariance.	 The	

covariance	matrices	will	only	be	presented	in	Section	5.2.	However,	the	same	matrices	will	be	

continuously	applied	throughout	the	three	different	models;	Mean-Variance,	CAPM	and	Black-

Litterman.	

	

The	 results	 will	 be	 presented	 using	 two	 different	 estimation	 methods.	 Firstly,	 the	 portfolio	

allocation	will	be	constructed	using	the	in-sample	period	running	from	1980	-	2000	for	model	

parameter	estimation.	Throughout	this	first	part	of	the	analysis,	we	aim	to	present	the	reader	

with	examples	of	the	generation	of	the	models.	Secondly,	an	investigation	of	a	rolling	estimation	

scenario	for	each	observation	t	 is	applied	based	on	an	estimation	window	of	six	years	(H	=	72	

months).	A	rolling	approach	gives	the	possibility	to	compare	a	fixed	rolling	scheme	throughout	

the	sample,	hence	compare	different	periods.	For	asset	allocation,	 it	 is	desirable	to	use	out-of-

sample	 back-testing	 to	 evaluate	 the	 performance	 of	 the	 portfolio.	 The	 allocation	 is	 based	 on	

historical	 information,	 and	 forecasts,	 of	 the	 asset	 returns.	We	 do	 this	 to	 investigate	what	 an	

investment	 today	 (year	 2000)	 would	 be	 worth	 in	 the	 future,	 i.e.	 throughout	 our	 investment	

horizon.	It	is	also	worth	noticing	that	we	allow	short	selling	in	our	optimization	process;	thus,	

negative	weights	can	appear	in	the	solution.	
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5.2	Model	estimation	based	on	the	full	in-sample	period	
This	 section	 focuses	 on	 getting	 familiarized	 with	 the	 model	 building	 approach	 and	 possible	

aspects	to	be	aware	of	going	forward	with	the	rolling	estimation.	The	optimization	methods	are	

all	 estimated	 on	 the	 in-sample	 subset,	 and	 thereby	 a	 brief	 discussion	 of	 the	 out-of-sample	

performance.	 The	 risk	 allocation	 of	 the	 two	 models	 will	 also	 be	 presented	 to	 illustrate	 the	

probable	difference	between	the	two	models.	

5.2.1	Mean-Variance	

In	order	 to	optimize	 the	risk-return	relationship,	 it	 is	desired	 for	a	mean-variance	analysis	 to	

apply	the	tangency	portfolio	to	create	the	optimal	allocation.	The	mean	estimates	of	the	in-sample	

optimization	 are	 based	 on	 the	 application	 of	 historical	 data.	 This	 procedure	 requires	

mean/averaged	estimates	generated	from	the	past	realizations	of	the	assets.		

	

		 Return	 Excess	Return	 Standard	deviation	

SPX	Index	 12.83%	 6.27%	 15.20%	

LUATTRUU	Index	 9.45%	 2.90%	
	

6.07%	

TABLE	5:	MEAN	ESTIMATES	BASED	ON	THE	IN-SAMPLE	PERIOD	(1980	-	2000)	
	

TABLE	 5	 provides	 an	 overview	 of	 the	 annualized	 return,	 excess	 return	 and	 volatility	 for	 the	

indexes.	The	annualized	average	return	for	the	stock	index	is	12.83%,	and	for	bonds,	the	return	

is	9.45%.	Stocks	have	in	the	past	been	known	to	generate	higher	returns	than	bonds,	but	they	

have	also	been	associated	with	higher	risk	as	observed	in	the	table.	The	average	excess	return	on	

the	stock	index	is	estimated	to	6.27%,	suggesting	that	we	might	want	to	allocate	more	in	the	stock	

index	when	 assuming	 that	 the	 investor	wants	 to	maximize	 his/hers	 return	 and	wealth.	 This	

indication	will	quickly	change	when	we	introduce	the	investor's	risk	aversion.	When	we	account	

for	the	risk	we	take	on,	the	volatility	on	the	bond	index	is	estimated	to	6.07%.	This	is	actually	

providing	us	with	a	higher	Sharpe	ratio,	due	to	a	lower	volatility	in	the	past	realizations	of	the	

asset.	 Bonds	 experienced	 a	 strong	 performance	 due	 to	 inflation	 influence,	 which	 lead	 to	 a	

rough/rash	repricing	in	the	1970s	to	the	1980s.	This	phenomenon	stabilized	during	the	1990’s,	

however	bond	performance	has	been	relatively	good	since.	This	will	be	further	discussed	when	

looking	at	the	rolling	window	estimation	below.	As	mentioned,	this	allocation	model	assumes	that	

the	 future	returns	will	 look	 like	 the	historical	returns	on	average,	and	that	may	not	be	a	very	

intuitive	and	accurate	assumption	in	reality.		
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The	expected	Sharpe	ratio	is	a	quite	important	parameter	in	the	tangency	portfolio	optimization	

process,	as	it	seeks	to	maximize	this	measure	to	scale	the	returns	with	the	respective	risk	on	every	

asset.		

	

		 SPX	Index	 LUATTRUU	Index	

Sharpe	ratio	 41.5790%	 47.5133%	

TABLE	6:	MONTHLY	ANNUALIZED	SHARPE	RATIO	
	

It	appears	from	TABLE	6	that	the	Sharpe	ratio	is	41.58%	and	47.51%,	respectively,	for	the	stock-	

and	the	bond	index.	The	Sharpe	ratio	for	the	bond	index	is	higher	than	the	equivalent	for	the	stock	

index,	which	might	 indicate	 that	 the	mean-variance	 investor	will	allocate	a	greater	amount	 in	

bonds	relative	to	stocks.	When	risk-adjusting	the	asset	returns,	there	is	more	attractiveness	in	

owning	bonds	than	equities,	when	bonds	have	a	higher	Sharpe	ratio.		

	

The	next	 estimate	we	need	 for	 the	optimization	process	 is	 the	 correlation.	As	mentioned,	 the	

correlation	among	the	assets	does	also	play	a	central	role	in	diversifying	the	risk	of	the	portfolio,	

and	therefore	it	could	be	that	the	allocation	preference	changes	due	to	the	relation	of	the	assets.	

	

Correlation	 SPX	Index	 LUATTRUU	Index	

SPX	Index	 1	 0.2559857	

LUATTRUU	Index	 0.2559857	 1	

TABLE	7:	CORRELATION	(1980	-	2000)	

	

TABLE	7	 presents	 the	 correlation	 between	 the	 two	 assets.	 As	 a	 quick	 reminder,	 a	 correlation	

coefficient	of	zero	means	that	there	is	no	linear	dependence	between	the	assets,	while	the	sign	of	

the	coefficient	indicates	in	which	direction	they	move	against	one	another.	The	table	illustrating	

the	correlation	of	the	assets	shows	that	there	is	a	positive	relation	between	stocks	and	bonds	over	

the	in-sample	period.	The	positive	correlation	coefficient	indicates	that	stocks	and	bonds	to	some	

extent	move	in	the	same	direction.	This	means	that	if	we	have	an	increase	in	the	return	of	one	

asset,	it	would	lead	to	an	increase	in	the	other	asset.	However,	the	correlation	coefficient	is	not	

especially	high,	and	therefore,	the	assets	are	said	to	have	a	weak	positive	relationship.	
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Moving	on	from	the	correlation	matrix,	we	estimate	the	covariance	matrix	based	on	the	in-sample	

period,	which	also	obviously	suggests	that	there	is	a	positive	covariation	among	the	stock-	and	

bond	indices.	The	covariance	is	estimated	as	a	2	x	2	matrix,	due	to	the	fact	that	our	portfolios	only	

contain	two	assets.	

∑ = >
σ%(		 𝜌𝜎%	𝜎(
𝜌𝜎%𝜎( σ((

@	

Covariance	 SPX	Index	 LUATTRUU	Index							

SPX	Index	 0.001896	 0.000196	

LUATTRUU	Index	 0.000196	 0.000310	

	

Inverse	Covariance	 SPX	Index	 LUATTRUU	Index	

SPX	Index	 564.1353346	 -356.630847	

LUATTRUU	Index	 -356.630847	 3453.6916992	

TABLE	8:	COVARIANCE-	AND	INVERSE	COVARIANCE	MATRIX	

	

TABLE	8	displays	the	covariance	of	the	historical	returns	of	the	stocks	and	bonds,	which	show	that	

there	is	a	positive	relationship	of	0.2%.	This	fits	well	with	what	we	observed	in	the	data	section	

(Section	4.1.1.1),	where	it	was	mentioned	that	the	two	assets	had	a	positive	correlation	in	the	past	

century.	 To	 obtain	 the	 optimal	 portfolio,	 this	 requires	 an	 inverse	 covariance	 matrix	 (mean-

variance	optimization).	

	

To	create	the	mean-variance	efficient	portfolio,	auxiliary	constants	are	computed	for	simplicity.	

The	mathematical	computations	of	these	were	mentioned	in	Section	3.1.3.1.	These	calculations	

are	 applied	 further	 to	 obtain	 the	 portfolio	 weights,	 returns	 and	 standard	 deviation	 of	 the	

tangency.	However,	the	constants	are	not	required	in	order	to	calculate	the	tangency	portfolio.	

The	measures	are	viewed	in	Table	9.	

	

	

	

	

	

TABLE	9:	AUXILIARY	CONSTANTS	

	 Constants	

A	 0.2187244	

B	 26.61548796	

C	 3304.56533944	
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The	execution	of	the	mathematical	procedure	described	provides	the	following	weight	allocation	

towards	the	SPX	index	and	the	LUATTRUU	index:	

	

		 SPX	Index	 LUATTRUU	Index	

Weights	 24.54%	 	76.10%	

TABLE	10:	WEIGHTS	

	

TABLE	10	shows	the	notional	optimal	weights	of	the	portfolio	which	is	dominated	by	76.10%	to	

bonds,	followed	by	24.548%	left	in	stocks.	An	overweight	in	the	allocation	of	the	bond	index	was	

to	some	extent	anticipated	when	we	looked	at	the	model	input	and	the	Sharpe	ratio,	as	bond	in	

general	did	observingly	well	 in	the	period	from	1980	to	2000,	without	being	too	volatile.	 It	 is	

assumed	that	we	invest	all	our	wealth	in	risky	assets,	and	therefore	the	weights	sum	up	to	1.	From	

the	perspective	of	investing	our	wealth	in	the	year	of	2000,	this	portfolio	allocation	is	preferred	

in	a	mean-variance	setting	based	on	the	monthly	observation	scheme.		

	

The	observation	arising	from	the	Sharpe	ratio	calculations	suggests	an	allocation	of	the	assets	

close	to	50:50,	which	is	not	what	the	weight	allocation	proposes.	To	correct	the	portfolio	weights	

for	 the	 risk	 associated	with	 each	 asset	 and	 get	 a	 sense	of	where	 the	 risk	originates	 from,	we	

compute	the	risk	allocation.	The	risk	allocation	is	calculated	as	𝜔) ∗ 𝜎) ,	and	thereafter	scaled	to	

derive	 the	respective	risk	weights.	TABLE	11	shows	 that	 the	risk	allocation	 is	actually	close	 to	

50:50	during	this	period,	due	to	lower	volatility	in	the	bond	index.		

	

		 SPX	Index	 LUATTRUU	Index	

Notional	risk	allocation	 3.7295%	 	4.6191%	

Risk	allocation	(weighted)	 44.67%	 55.33%	

TABLE	11:	RISK	ALLOCATION	IN	THE	ASSETS	

	

The	risk	allocation	of	the	portfolio	weights	shows	how	the	risk	is	justified	in	the	portfolio.	Since	

a	majority	of	the	notional	weight	allocation	is	observed	in	bonds,	the	risk	allocation	of	the	equity-	

and	bond	index	does	not	deviate	a	lot.	Holding	76.10%	in	bonds	provides	a	risk	of	4.61%,	while	

putting	24.54%	in	equities	gives,	respectively,	a	risk	of	3.73%.	The	risk	allocation	provides	an	

intuitive	sense	of	how	risky	our	portfolio	allocation	is	towards	the	assets;	therefore,	the	portfolio	

risk	will	be	dominated	by	bonds	by	a	small	margin.	
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		 	 Annualized	

Returns	 	 10.1592%	

Volatility	 	 6.5984%	

TABLE	12:	EXPECTED	EXCESS	RETURN	AND	VOLATILITY	OF	THE	TANGENCY	PORTFOLIO	

	

TABLE	12	shows	that	the	annual	expected	portfolio	return	obtained	from	the	allocation	strategy	is	

10.16%	combined	with	the	risk	of	6.6%,	which	reflects	the	best	trade-off	between	risk	and	return	

of	the	tangency	portfolio.	The	portfolio	returns	and	risk	is	a	combination	which	is	providing	the	

most	efficient	portfolio	based	on	the	in-sample	empirical	estimates.	As	all	of	the	wealth	is	invested	

in	risky	assets,	 it	 is	 fair	to	state	that	the	tangency	portfolio	is	the	optimal	portfolio	of	all	risky	

assets,	which	was	also	clarified	in	the	theoretical	framework.		

	

The	 tangency	 portfolio	 is	 the	 points	where	 the	 Capital	Market	 Line	 is	 tangents	 to	 the	mean-

efficient	frontier	of	risky	asset	as	seen	in	Figure	18.		

	

	
FIGURE	18:	EFFICIENT	FRONTIER	OF	RISKY	ASSETS	(ANNUALIZED)	

	

The	efficient	 frontier	exhibits	 the	combinations	of	 the	risk-return	approaches	of	all	 the	mean-

variance	efficient	portfolios.	Since	an	investor	aims	for	the	highest	expected	return,	the	investor	

would	always	be	investing	in	the	efficient	frontier.	The	mean	efficient	portfolio	including	risk-free	

and	 risky	 assets,	 is	 a	 combination	 of	 the	 tangency	 portfolio,	 the	 portfolio	with	 the	maximum	

Sharpe	ratio,	and	a	risk-free	asset	which	is	illustrated	above	in	Figure	18.	The	capital	allocation	

line	is	calculated	following	equation	3.3.2.	
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The	slope	of	the	portfolio	is	equivalent	to	the	expected	Sharpe	ratio		

	

Sharpe	ratio	(portfolio)	=	(10.1592%	-	6.5761%)/6.59%	=	54.37%	

	

The	annually	in-sample	Sharpe	ratio	of	the	portfolio	is	given	as	54.37%.	Since	the	expected	return	

is	higher	than	the	risk-free	rate,	the	requirement	of	maximum	Sharpe	ratio	is	fulfilled.		The	Sharpe	

ratio	of	the	portfolio	is	larger	than	the	Sharpe	ratio	of	bonds,	in	addition	to	being	higher	than	the	

Sharpe	 ratio	of	 equity.	The	portfolio	 allocation	 is	much	better,	 than	 just	 investing	 in	 stock	or	

bonds	only,	providing	a	more	diversified	allocation.	

	

To	measure	 the	performance	of	 the	one-period	model	 out-of-sample,	 the	weights	 are	 applied	

consistently	with	no	rebalancing,	 indicating	 that	we	 invest	$1	at	each	 t	with	 the	weights	held	

constant.		

	

	
FIGURE	19:	CUMULATIVE	PORTFOLIO	RETURNS	USING	CONSTANT	PORTFOLIO	ALLOCATION	

	

The	realized	performance	of	the	one-period	model,	gives	a	portfolio	return	of	130.97%,	based	on	the	

asset	allocation	of	the	mean-variance	investigated	over	an	out-of-sample	period.	The	graph	showed	

overall	a	steady	increase	in	the	cumulative	return,	with	a	small	dip	in	2009	being	the	small	allocation	

we	have	in	equity.	Allowing	rebalancing,	which	will	be	shown	later,	one	would	expect	for	the	mean-

variance	to	provide	better	portfolio	returns	at	the	end	of	2018.	

5.2.2	Black-Litterman	
The	Black-Litterman	approach	is	applied	 in	contrast	to	the	mean-variance	optimization	to	see	

how	the	model	is	constructed	based	on	a	one	period	model.	This	simple	method	will	demonstrate	

how	to	construct	the	Black-Litterman	portfolio	for	one	finite	period.		
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5.2.2.1	Implied	excess	returns	

It	 was	 previously	 shown	 that	 the	 Black-Litterman	 equilibrium	 returns	was	 derived	 from	 the	

CAPM	relation.	This	was	specifically	done	by	backing-out	the	equilibrium	returns	 in	a	reverse	

optimization,	using	capitalized	weights	of	60:40	in	respectively	stocks	and	bonds.		The	derivation	

of	the	market	portfolio	can	be	reviewed	in	Section	4.1.6.1.		

	

The	computation	of	 the	equilibrium	excess	return	applied	the	risk-aversion,	 the	capitalization	

weights	and	the	covariance	of	historical	observations.	The	covariance	matrix	is	equivalent	to	the	

one	applied	in	the	mean-variance	optimization,	shown	and	described	in	Section	5.2.1.		

	

		 SPX	Index	 LUATTRUU	Index	

Equilibrium	excess	
returns	

2.9718%	 0.5951%	

TABLE	13:	EXPECTED	EQUILIBRIUM	EXCESS	RETURNS	(1980	-	2020)	

	

The	expected	equilibrium	return,	given	a	risk	aversion	of	2,	provides	an	expected	return	on	the	

stock	 index	of	2.9718%	and	similarly	a	 return	on	 the	bonds	equalling	0.5951%,	based	on	 the	

historical	performance.	It	was	stated	in	Section	3.4.2.1	that	the	risk	aversion	coefficient	usually	

lies	between	1	and	3,	which	is	why	we	pursuit	with	the	average	of	these	throughout	the	paper.	

	

Tau		

The	 parameter	 τ	 often	 influences	 the	 variance	 described	 by	 Ω	 in	 the	 diagonal	 elements	 in	

Equation	 3.4.5,	 but	 the	 parameter	 also	 appears	 in	 the	 posterior	 return	 distribution	 and	 the	

posterior	 covariance	 matrix	 like	 the	 proportional	 factor,	 which	 will	 be	 shown	 later.	 It	 was	

previously	 mentioned	 that	 He	 and	 Litterman	 (1999)	 applied	 a	 tau	 =	 0.05	 and	 the	 same	

assumption	will	be	followed	for	this	study.	When	using	a	tau	of	0.05	it	corresponds	to	obtaining	

portfolio	 weights	 of	 95.23%	 corresponding	 to	 the	 allocation	 investing	 in	 risky	 assets.	 The	

parameter	tau	is	created	as	a	constant	proportionality	and	will	therefore	be	applied	unchanged	

throughout	the	analysis.		

5.2.2.2.	View	distribution	

When	generating	the	implied	returns,	the	reference	starting	point	is	the	CAPM	expected	returns	

as	previously	shown.	The	second	step	is	to	incorporate	how	the	investor’s	expectation	about	the	

future	excess	returns	can	be	included	in	the	model.	As	the	Black-Litterman	model	includes	these	
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views	using	the	Bayesian	approach,	they	can	be	translated	into	a	distribution	and	subsequently	

be	merged	with	distribution	of	the	implied	returns.	We	translate	the	view	applying	simple	steps	

to	demonstrate	the	context	of	the	model.	

	

To	determine	the	views	of	the	view	matrices,	we	propose	a	relative	view	and	apply	input	data	

using	only	1	view.	One	view	will	give	vectors/matrix	estimates	shown	as	follows:	

	

P	=	[N	x	K]	=	2	x	1	

Q	=	[1	x	K]	=	1	x	1	

Ω	=	[K	x	K]	=	1	x	1	

	

We	further	want	to	specify	our	views	using	risk-return	relationship	measures	in	order	to	develop	

the	views.	Since	this	section	investigates	the	model	based	on	a	finite	period,	the	views	will	be	

assessed	from	historical	risk-return	relationship.	Later,	it	will	be	showed	how	prediction	models	

can	be	used	to	generate	the	beliefs	of	an	investor	instead	of	applying	historical	data.	To	determine	

the	view,	we	observe	the	performance	of	bonds	relative	to	stocks,	which	 is	based	on	the	risk-

adjusted	return	(Sharpe	ratio).	Furthermore,	the	relationship	will	be	defined	through	a	relative	

view	showing	how	the	assets	perform	in	comparison	to	each	other.	By	doing	so,	the	P	matrix	being	

the	weighted	views	should	sum	up	to	100%	in	order	to	obtain	portfolio	weights	equivalent	to	

investing	100%	in	risky	assets.	An	indirect	objective	is	to	incorporate	the	view	of	an	investor,	

which	 is	 made	 at	 the	 time	where	 we	 expect	 to	 invest	 in	 the	 asset	 allocation.	 The	 views	 are	

determined	from	the	risk-adjusted	return,	followingly	shown	in	Table	14.		

	

		 SPX	Index	 LUATTRUU	Index	

Sharpe	ratio	 41.5790%	 47.5133%	

	

TABLE	14:	ANNUAL	SHARPE	RATIO	

	

The	Sharpe	ratio	shows	a	risk-adjusted	return	where	the	bond	index	has	outperformed	the	stock	

index	in	terms	of	the	historical	observations.	Due	to	this	observation,	we	generate	the	views	so	

that	we	allocate	more	towards	the	bond	index	compared	to	the	stock	index.	The	views-inputs	are	

presented	in	Table	15-17.		
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P	

	 SPX	Index	 LUATTRUU	Index	

Bond	>	stocks	 -1	 1	

TABLE	15:		P	VECTOR	

	

	 Q	

Target	return	 2.43%	

																							

	TABLE	16:	Q	 	 	 	 	 TABLE	17:	Ω	

	

The	P	vector,	shown	in	Table	15,	simply	illustrates	the	direction	we	want	to	(relatively)	weigh	

our	views	towards.	As	mentioned	above,	the	annual	average	Sharpe	ratio	for	the	bond	index	have	

been	higher	than	the	equivalent	for	the	stock	index,	which	leads	to	underweighting	the	equities	

by	100%	and	overweighting	bonds	by	100%.	The	effect	of	 the	view	on	stocks,	 is	 the	same	as	

multiplying	our	target	return	viewed	in	Table	16,	Q,	by	-1	and	correspondingly	multiplying	Q	by	

1	for	the	bond	index.	The	P	vector	just	exhibits	the	views,	and	this	does	not	mean	that	the	stock	

index	 should	 have	 negative	weights,	 but	 hopefully,	 that	 the	weight	 of	 the	 stock	 index	 should	

decline	from	the	capitalization	weights.		

	

The	Q	matrix	is	the	target	return	of	the	view	and	will	show	the	relative	performance	of	how	bonds	

will	outperform	the	stocks.	The	Q-vector	is	quantified	as	the	monthly	returns.	Since	bonds	have	

had	higher	risk-return	relationship,	we	use	the	expectation	that	the	difference	of	the	two	Sharpe	

ratios	to	obtain	a	target	return	where	the	view	defines	that	bonds	have	outperformed	equity.	This	

is	 calculated	as:	𝐸[𝑅F] − 𝐸[𝑅>],	where	E[R]	 corresponds	 to	 the	 risk-adjusted	 return	on	either	

equity	 or	 bonds	 depending	 on	 which	 one	 outperforming,	 in	 this	 specific	 case	 with	 	 𝑄	 =

	𝐸[𝑅j94'] − 𝐸[𝑅:k\)"a].	In	other	words,	the	risk	adjusted	return	difference	can	be	stated	by	𝑄	 =

	𝑟𝑖𝑠𝑘(𝑤:k\)"a) · 𝑟:k\)"a − 𝑟𝑖𝑠𝑘(𝑤j94') · 𝑟j94' ,		where	the	risk	weight	=	𝜎lm.%.	The	𝜎lm 	is	explained	

as	the	long-run	volatility3.		

	

 
3 The long-run volatility is approximated as the full-sample volatility. Normally, the long-run volatility can be estimated through 
GARCH models, however, this is not the focus of the study, therefore assuming volatility as the sample volatility.  

	 Ω	

Uncertainty	 6.11%	
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Lastly,	Ω	reflects	the	uncertainty	of	the	views	illustrated	in	Table	17.	Normally,	the	covariance	

matrix	is	often	applied	in	a	diagonal	direction,	but	as	the	view	only	contains	one	parameter,	the	

matrix	is	only	a	[1	x	1].	 In	other	words,	the	value	will	be	constant.	Therefore,	we	want	to	risk	

weight	each	variance	in	relation	to	the	long	run	variance	of	each	asset.	The	variance	is	therefore	

calculated	as		

	

𝛺 = 𝜎lm.%(𝑒𝑞𝑢𝑖𝑡𝑦) · 	𝑣𝑎𝑟	𝑒𝑞𝑢𝑖𝑡𝑦	 +	𝜎lm.%(𝑏𝑜𝑛𝑑) · 	𝑣𝑎𝑟	𝑏𝑜𝑛𝑑𝑠	

5.2.2.3.	Combined	distribution	

After	both	the	view	distribution	and	market	portfolio	are	described,	the	two	information	inputs	

will	 now	 have	 to	 be	 combined	 to	 get	 the	 future	 excess	 returns.	 The	 two	 distributions	 are	

described	as	two	probability	distributions,	in	which	there	still	is	uncertainty.		

	

If	we	are	looking	at	a	case	where	the	investor	is	uncertain	about	his	views,	the	following	returns	

are	obtained	below:	

	

	
FIGURE	20:	EQUILIBRIUM	RETURNS	VS	POSTERIOR	RETURNS	

	

	 Prior	 Posterior		 	Difference	

SPX	Index	 2.971812	%	 4.03239%	 -1.06059	%	

LUATTRUU	Index	 0.595104	%	 0.5342747	%	 -0.608293%	

	
TABLE	18:	DIFFERENCE	EQUILIBRIUM	RETURNS	VS	POSTERIOR	RETURNS	
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The	posterior	 return	of	 stocks	has	moved	 slightly	both	 for	 stocks	 and	bonds.	Actually,	 only	 a	

minor	difference	in	bonds	is	observed	when	calculating	the	change	in	returns	based	on	annual	

terms,	on	0.6%.	For	stocks	a	slightly	higher	difference	of	the	prior	returns	is	observed	over	bonds,	

of	1.06%.	These	differences	are	affected	by	the	correlation,	since	 it	has	an	 impact	on	how	the	

assets	allocate,	which	is	also	shown	in	the	equation	posterior	return.	These	minor	changes	come	

as	a	result	of	the	small	changes	in	the	P-link	matrix	combined	with	the	higher	uncertainty	on	the	

view.	The	returns	do	not	have	a	large	impact,	and	actually,	changing	these	views	does	not	seem	

to	provide	a	significant	change.	This	 is	why	the	model	does	not	directly	fit	as	a	passive	model	

applied	 based	 on	 historical	 data.	 The	 model	 will	 appear	 in	 a	 rolling-setting,	 where	 we	 will	

investigate	the	difference	prospect	of	the	view	matrices	to	see	which	impact	the	largest	values	of	

the	view	have	for	the	posterior	returns.	Normally,	it	is	known	that	the	application	of	a	relative	

view	comes	in	small	proportions,	which	is	verified	from	above.		

	
Sigma	Posterior,	∑� 	

	

		 SPX	Index	 LUATTRUU	
Index	 	

		 SPX	Index	 LUATTRUU	
Index	

SPX	Index	 0.001925	 0.000209	 +	 SPX	Index	 0.000096	 0.00001	
LUATTRUU	
Index	 0.000209	 0.000307	

	

LUATTRUU	
Index	 0.00001	 0.000015	

HISTORICAL	COVARIANCE	MATRIX		 											 		POSTERIOR	COVARIANCE	MATRIX	

∑� 	=	∑	+	M		

	

		 SPX	Index	 LUATTRUU	Index	

SPX	Index	 0.002121	 0.000219	

LUATTRUU	Index	 0.000219	 0.000322	

TABLE	19:	COMBINED	(POSTERIOR)	COVARIANCE	MATRIX	

The	posterior	covariance	matrix	is	a	combination	of	the	historical	covariance	and	the	covariance	

matrix	of	the	returns.	Looking	at	the	posterior	covariance	matrix	of	the	excess	return	it	becomes	

clear	that	the	covariance	matrix	does	not	provide	a	large	impact	on	the	combined	covariance.	The	

combined	covariance	matrix	will	always	be	larger	than	the	historical	covariance	matrix,	due	to	

formula	3.4.7,	which	states	that	the	posterior	covariance	of	excess	return	is	added	on	top	of	the	

historical	 covariance.	 Additionally,	 a	 larger	 variance	 and	 covariance	 means	 increasing	

uncertainty	in	proportion	with	the	τ.	In	other	words,	larger	values	of	τ	will	increase	the	variance	
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of	the	view	and	therefore	also	the	combined	covariance	matrix.	Furthermore,	larger	value	of	the	

scalar,	 τ	would	mean	 higher	 volatility	 and	 thereby	 also	 higher	 return,	 if	 following	 the	 CAPM	

relationship	of	risk-return.	Since	τ	is	a	scalar	factor,	it	also	affects	the	sum	of	the	portfolio	weights,	

as	we	become	more	uncertain	in	the	risky	assets.	The	expectation	is	a	lower	value	in	the	sum	of	

the	portfolio	weights.		

	
	Weights	 Posterior	 Equilibrium	

SPX	Index	 58.93%	 60%	

LUATTRUU	Index	 41.07%	 40%	

TABLE	20:	COMBINED	(POSTERIOR)	COVARIANCE	MATRIX	

	

	
	

	FIGURE	21:	EQUILIBRIUM	WEIGHTS	VS.	POSTERIOR	WEIGHTS	
	

The	plot	shown	in	FIGURE	21	is	displaying	an	adjustment	of	the	weight	allocations,	both	for	stocks	

and	bonds.	The	stocks	have	changed	the	weights	towards	58.93%	while	the	bonds	have	increased	

to	41.07%.	The	view	stated	a	relative	view,	where	the	view	showed	a	bullish	view	on	bonds	and	

a	bearish	view	on	stocks.	The	changes	were	quite	intuitive	and	led	to	a	decrease	in	the	stock	index	

of	-1.07%	and	correspondingly,	an	increase	in	the	weights	on	1.07%.	The	change	in	the	weights	

does	not	appear	to	be	of	significant	nature,	and	this	might	indicate	the	view	distribution	is	not	

prominent	enough	to	have	a	huge	impact.	However,	since	this	allocation	is	based	on	a	monthly	

setting,	it	seems	fairly	reasonable.	The	weights	of	Black	Litterman	changed	in	the	same	direction	

of	the	view,	although	the	magnitude	was	small.	This	may	be	also	due	to	the	uncertainty	of	the	

view,	since	it	was	said	to	be	around	6%,	indicating	to	some	extent	a	quite	noticeable	uncertainty.		
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The	weights	are	obtained	from	the	same	optimization	as	seen	in	the	mean-variance	setting,	but	

since	taking	into	account	the	risk-aversion,	the	weights	do	not	allocate	100%	in	risky	assets.	The	

weights	before	scaling	was	given	as	56.12%	on	the	stocks	and	39.11%	towards	the	bonds	only	

summing	up	to	95.24%	equivalent	to	the	scale	factor	1/(1 + 𝜏).	When	multiplying	the	weights	

against	(1 + 𝜏),	the	asset	allocation	is	in	a	position	in	which,	100%	is	invested	in	risky	assets.	

	

We	calculate	the	risk	allocation	of	the	assets	as	shown	in	Section	5.2.1.	The	risk	allocation	for	the	

Black-Litterman	in	Figure	21	shows	to	have	a	large	overweight	in	stocks.	Since	stock	naturally	

carry	more	risk	than	bonds,	it	also	means	that	allocating	higher	weights	in	stock	results	in	more	

risk.	Even	tough	the	views	stated	relative	underperformance	towards	stocks,	the	views	were	not	

prominent	enough	to	make	a	noteworthy	difference.	This	 illustrates	 that	 the	risk	allocation	 is	

more	uneven	in	the	Black-Litterman	model,	compared	to	the	mean-variance	scenario.		

	

	 SPX	Index	 LUATTRUU	Index	

Risk	allocation	 2.5663%	 	0.7228%	

Risk	allocation	(weighted)	 78.02%	 21.98%	

TABLE	21:	RISK	ALLOCATION	IN	THE	ASSETS	

	

	
FIGURE	22:	CUMULATIVE	PORTFOLIO	RETURNS		

	

The	out-of-sample	 of	 the	 one	period	performance	of	 the	 cumulative	portfolio	 returns	 show	a	

worse	performance	when	comparing	it	to	the	mean-variance	one-period	analysis,	which	makes	

good	sense.	The	Black-Litterman	model	 is	an	active	allocation	model,	hence	 it	makes	minimal	
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sense	to	estimate	a	weight	allocation	and	further	assume	that	our	views	will	not	change	over	an	

18-year	period.		

	

Overall,	 the	 Black	 Litterman	 model	 blends	 the	 equilibrium	 excess	 return-	 and	 the	 view	

distribution	of	the	model,	affected	by	the	scalar	tau	and	risk	aversion.	This	is	leading	to	changed	

expected	returns,	which	again	influences	the	weight	allocation	of	the	model.	When	allocating	a	

large	part	of	the	portfolio	towards	equity,	as	observed	in	this	model,	the	portfolio	returns	will	

also	follow	a	larger	part	of	the	market	turbulences.		

5.2.3	Sub-conclusion	
The	main	intention	of	the	first	section	is	to	present	the	workings	of	our	respective	models,	making	

it	easier	to	cope	with	the	rolling	estimate	scenario	in	the	next	section.	The	one-period	estimation	

of	 the	 mean-variance	 analysis	 provides	 weights	 dominated	 by	 76.10%	 towards	 bonds	 and	

25.54%	in	equities.	The	portfolio	allocation	using	the	mean-variance	approach	is	optimized	by	

the	Sharpe	ratios,	which	is	shows	higher	values	of	bonds	over	stocks.	Therefore,	the	allocation	is	

expected	to	be	higher	for	bonds	in	contrast	to	stocks	when	observing	the	historical	estimates.	In	

the	 two-asset	 case	 between	 stocks	 and	 bonds,	 the	 intuitive	 interpretation	 has	 been	 quite	

meaningful	when	looking	at	the	historical	observations.	In	reality,	bonds	have,	in	terms	of	risk-

adjusted	return,	performed	 fairly	well	 in	 the	period	running	 from	1980	 to	2000.	 It	was	 lastly	

displayed	that	the	mean-variance	portfolio	almost	unveiled	a	50:50	allocation	of	the	risk	between	

the	indexes.		

	

The	 60:40	 allocation	 approximated	 the	 market	 capitalization	 used	 in	 the	 Black-Litterman	

analysis.	The	annual	expected	return	on	stocks	and	bonds	proposed	by	CAPM	was	quite	lower	

than	 the	mean-variance	portfolios	 expected	 returns.	 This	means	 that	 actually	 placing	22%	 in	

stock	compared	to	60%	and	76%	in	bonds	instead	of	40%	gives	a	higher	expected	return	for	the	

portfolio.	Since	the	market	portfolio	is	a	reference	point	of	the	Black	Litterman,	this	might	indicate	

a	higher	return	for	the	MV-optimization	over	the	BL-optimization,	unless	the	views	are	having	a	

significant	 large	 impact	 on	 the	 equilibrium	portfolio,	 also	 affected	 by	 the	 risk	 aversion	 and	 a	

scaling	factor.	The	investor’s	view	of	the	assets	was	generated	from	the	historical	observations,	

where	it	was	observed	for	the	bonds	to	have	higher	risk-adjusted	return	over	stock,	indicating	to	

have	a	positive	view	of	bonds	and	relative	underperformance	of	stocks.	The	investor	view	was	

implied	towards	bonds	outperforming	stocks	by	2.43%,	with	an	uncertainty	factor	of	6.11%.	The	

BL	model	compared	to	the	MV,	over	weighted	relative	more	stocks	than	bonds,	and	indicate	that	

BL	performs	better	 in	 expansions	while	MV	 in	 recession.	Overall,	 the	mean-variance	 analysis	
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seems	to	provide	superior	performance	in	terms	of	expected	returns	outperforming	both	CAPM	

and	BL	based	on	a	one-period	model.	

5.3	Rolling	model	estimation		
This	 section	 will	 focus	 on	 a	 rolling	 estimation	 scenario.	 The	 procedure	 is	 explained	 in	 the	

methodology	section,	where	we	define	the	rolling	window,	H,	to	measure	six	years.	The	purpose	

of	this	section	is	to	find	empirical	evidence,	and	explanations	in	the	data,	of	which	model	that	

provides	 the	best	 results	when	 re-estimating	 the	 expected	 returns	 and	 the	 covariances	 every	

month	using	the	previous	window	H	as	the	estimation	period.		

	

A	 construction	of	 historical	 returns	based	on	 rolling	 sample	windows	 is	used	 to	 estimate	 the	

expected	 return,	 μt,	 and	 covariance	 matrix,	 ∑,	 at	 each	 time	 t.	 At	 each	 time	month,	 t+1,	 new	

information	is	incorporated	and	updated	for	the	next	periods	allocation.	Based	on	the	estimate,	

the	optimization	problem	 is	updated	each	month	and	 the	portfolio	weights	 are	 computed	 for	

every	first	day	of	each	month.	Thereby,	a	monthly	rebalancing	is	applied	to	construct	a	portfolio	

that	 takes	 into	 account	 the	 changes	 in	 the	 risk-return	 trade-off	 continuously	 through	 the	

investment	horizon.	The	idea	is	pretty	straightforward,	and	can	be	thought	of	as:	if	our	investment	

starts	 today,	how	should	 the	portfolios	be	 rebalanced	at	 each	month	 t,	 in	order	 to	 follow	 the	

newest	contained	information	for	the	allocation?	This	out-of-sample	period	spans	from	2000	to	

2018.	This	specific	time-period	is	applied	in	order	to	obtain	allocation	estimates	from	the	start	of	

2000,	 since	 the	 rolling	 window	 requires	 six	 years	 of	 historical	 data	 for	 the	 first	 allocation	

estimate.	 	This	sample	period	contains	periods	with	both	booming	and	recession	cycles	of	the	

economy,	which	 is	 an	 important	 reason	 to	 choose	 the	 shorter	window	 for	 the	 continuous	 re-

allocation.		

5.3.1	Mean-variance	portfolio	allocation	

The	 mean	 estimates	 of	 the	 tangency	 portfolio	 are	 generated	 as	 described	 in	 Section	 5.2.1;	

however,	they	are	re-estimated	at	each	t	observation,	using	information	contained	from	the	last	

six	years.	
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FIGURE	23:		RETURNS	 	 	 	 FIGURE	24:	EXCESS	RETURNS	

	

FIGURE	23	provides	an	overview	of	the	monthly	annualized	returns	of	the	multi-asset	portfolio.	

The	 returns	 of	 the	 stock	 index	 show	 up	 and	 down	 movement	 of	 the	 returns,	 additionally,	

indicating	periods	with	both	positive	and	negative	returns.	It	is	important	to	keep	in	mind	that	

the	estimate	at	each	observation	t	is	generated	based	on	the	historical	information	from	the	past	

six	years	when	interpreting	the	graph.	The	expected	returns	of	stocks	have	following	indicated	a	

bear	market	from	the	start	of	the	out-of-sample	estimation	period,	where	the	financial	turbulence	

from	the	dot	com	bubble	 turned	the	market	upside	down	followed	by	the	economic	effects	of	

9/11.	A	bear	market	appeared	around	2008,	which	means	that	the	past	six	years	of	information	

experienced	 decreasing	 returns.	 However,	 since	 2009	 the	 expected	 returns	 appear	 to	 have	

increased	 until	 the	 beginning	 of	 2015,	 indicating	 a	 bull	 market.	 The	 returns	 of	 bonds	 are	

presented	 to	 be	more	 stable	 over	 time,	 however,	with	 a	 declining	 trend	 the	 last	 years	 of	 the	

horizon.	The	excess	returns	of	stocks	and	bonds	are	exhibited	 in	FIGURE	24.	The	 two	plots	are	

almost	 equal	 despite	 the	 calculation	 of	 the	 risk-free	 rate.	 As	 can	 be	 observed,	 no	 returns	 are	

constant	over	time	and	these	are	quite	fluctuating.	The	excess	return	indicates,	for	stocks	to	be	

overweight	in	the	model	from	2000	until	2002	and	again	from	2014	to	2018.	The	model	implies	

higher	 allocation	 in	 bonds,	 based	 on	 the	 excess	 return	 remaining	 years.	 However,	 these	

considerations	might	disappear	when	adjusting	for	the	risk.	
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FIGURE	25:		ROLLING	STANDARD	DEVIATION	OF	EXCESS	RETURNS	

	

The	time-varying	variance,	illustrated	in	FIGURE	25,	shows	a	quite	different	scenario	for	the	two	

assets	classes.	For	bonds,	it	indicates	a	pretty	persistent	volatility	over	time,	which	is	quite	low	

and	measures	 approximately	 5%	 on	 average.	 From	 2015	 and	 further,	 the	 volatility	 has	 been	

decreasing	to	a	risk	below	4%,	which	indicates	that	the	six	years	before	2015	had	a	declining	

volatility.	In	reality,	the	interest	rate	has	been	declining	since	2015,	which	in	fact,	means	for	the	

bonds	to	normally	react	stronger	and	thereby	be	more	volatile	for	changes	in	the	environment.	

Although,	the	rolling	method	does	not	take	this	into	account,	therefore,	showing	lower	volatility	

on	 bonds.	 For	 low-volatility	 stocks,	 they	 tend	 to	 benefit	 from	 the	 declining	 interest	 rate.	

Observing	the	graph,	the	volatility	of	the	stock	decreases	in	2015,	where	high-volatility	stocks	

often	have	a	higher	exposure	for	changes	in	the	interest	rate.	The	elevated	risk	is	not	surprising,	

as	the	volatility	tends	to	increase	during	market	turndowns.	Increasing	stock	allocation	at	these	

times,	will	also	increase	the	exposure	towards	risk.	

	

The	rolling	Sharpe	ratio,	computed	from	the	mean	and	standard	deviation	above,	are	illustrated	

in	 FIGURE	 26.	 As	 mentioned,	 the	 Sharpe	 Ratio	 serves	 as	 a	 fine	 indicator	 of	 how	 our	 assets,	

preferably,	should	be	allocated	when	the	objective	is	to	maximize	this	measure.	
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FIGURE	26:	ANNUALIZED	MONTHLY	SHARPE	RATIOS	(2000	-	2018)	

	

The	stocks	appear	to	have	quite	moving	Sharpe	ratios,	which	have	similar	patterns	associated	

with	the	excess	return,	even	after	adjusting	for	the	risk.	The	volatility	of	the	stock	index	appears	

to	be	considerably	large,	particularly	between	2001	to	2005	and	again	from	2009	to	2015.	The	

same	 period	 registered	 decreasing	 Sharpe	 ratios	 for	 the	 treasury.	 From	 2014	 until	 2018	 the	

Sharpe	ratio	for	the	stock	index	has	been	increasing	and	peaked	in	2015	and	2018	around	125%.	

For	bonds,	the	patterns	of	the	Sharpe	ratio	are	to	some	extent	showing	similar	patterns	related	

to	 the	 excess	 returns.	 Overall,	 the	 Sharpe	 ratio	 of	 bonds	 has	 been	 somewhat	 steady.	 The	

expectation	of	the	Sharpe	ratio	must	be	that	there	will	be	more	allocation	in	bonds	relative	to	

stocks	in	periods	where	the	Sharpe	ratio	of	bonds	is	over	the	Sharpe	ratio	of	stocks.	Consequently,	

the	allocation	is	indicating	an	overweight	towards	bonds	from	2002	to	2014	and	overweight	in	

equities	from	2000	to	2001	and	again	from	2014	to	the	end	of	2018.	

	

As	previously	mentioned	 in	Section	5.2,	 the	two	assets	have	correlated	positively	towards	the	

2100th	 century.	 According	 to	 the	 information	 prior	 to	 the	 year	 2001,	 it	 appears	 that	 the	

correlation	exhibits	a	negative	relation.	Around	times	of	crisis,	 the	correlation	between	stocks	

and	 bonds	 have	 been	 fluctuating,	 consequently,	 consistent	 in	 terms	 of	 negative	 sign.	 Thus	

negative	 correlation	 implies	 that	 bonds	 can	 be	 applied	 for	 hedging	 towards	 stocks	when	 the	

economy	is	in	a	recession.	This	negative	correlation	is	extremely	beneficial	as	opportunities	to	

diversify	are	effective,	making	portfolio	loss	minimal.		
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FIGURE	27:	ROLLING	CORRELATION	AND	COVARIANCE	BETWEEN	SPX	&	LUATTRUU	

	

The	purpose	of	FIGURE	27	is	to	illustrate	how	the	equity-	and	the	bond	index	covary	over	time.	It	

is	quite	clear	that	both	the	rolling	correlation	and	the	rolling	covariance	is	time-varying.	The	in-

sample	period	estimate	confirmed	a	weak	positive	covariance	between	the	indices,	while	the	out-

of-sample	period	indicates	signs	of	negative	covariance.	Overall,	this	illustrates	the	fact	that	the	

covariation	has	switched	from	a	positive	to	a	negative	sign	around	the	year	2000	(a	bit	earlier	

due	to	the	fact	that	it	is	estimated	on	the	past	six	years	from	this	point).	This	was	also	described	

in	Section	4.1.1.1,	where	the	bonds	and	equity	showed	negative	correlation	for	the	past	20	years.		

	

The	significant	shift	 from	positive	to	negative	correlation	during	this	sample	could	change	the	

whole	way	our	portfolio	should	be	optimally	constructed.	It	is	typical	issues	like	this	we	try	to	

avoid	using	rolling	estimation	windows	so	that	we	have	a	more	recent	estimate	of	the	relationship	

between	our	indexes.	Hopefully,	 this	gives	a	stable	representation	of	the	current	relationships	

among	the	assets.	If	the	calculated	weights	of	our	model	were	based	on	the	one-period	model	and	

not	rolling	estimates,	it	could	lead	to	misleading	or	spurious	investing,	due	to	the	transformation	

in	 the	 relationships	 among	 our	 assets.	 Doing	 this,	 we	 could	 be	 in	 danger	 of	 making	 a	 lousy	

allocation,	since	we	assume	that	the	relation	in	the	future	is	going	to	be	the	same	as	the	historical	

relation.	

	

Moving	 forward,	 the	 mean-variance	 setting	 is	 applied	 in	 a	 closed-form	 solution.	 Therefore,	

auxiliary	constants	are	created	for	each	observation	t	using	the	rolling	window	to	obtain	the	A,	B	

and	C	coefficients	over	time	to	generate	the	mean-variance	efficient	portfolio.		
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FIGURE	28:	EXPECTED	RETURN-TANGENCY				 	FIGURE	29:	VOLATILITY-TANGENCY		

	
The	monthly	annualized	expected	returns	are	displayed	in	FIGURE	28,	while	FIGURE	29	presents	

the	expected	risk	of	the	tangency	portfolio.	This	shows,	on	expectation,	how	the	portfolio	returns	

and	 risk	 are	 developing.	 The	 portfolio	 allocation	 indicates	 expected	 return	 on	 the	 tangency	

portfolio	to	produce	a	high	return	at	the	beginning	of	2000,	actually	as	high	as	20%.	This	is	also	

linked	to	high	volatility	measuring	to	approximately	16%	at	the	same	point	in	time.	This	indicates	

that	turbulence	might	have	happened	right	before	the	century	shift.	The	expected	return	on	the	

tangency	portfolio	is	followingly	decreasing	and	varies	around	a	more	constant/consistent	level	

further	on.	The	volatility	of	the	portfolio	is	also	exponentially	decreasing	towards	a	steadier	state,	

then	what	we	observed	around	the	starting	point.	However,	the	volatility	still	 illustrates	some	

periods	with	higher	risk	(for	instance,	around	the	oil-	and	financial	crisis).	The	expectation	of	the	

volatility	is	lower	for	the	latter	year	compared	to	the	beginning	of	the	investment.	Another	factor	

is	 also	 a	 previously	 positive	 correlation	 between	 bonds	 and	 equity	 compared	 to	 our	 out-of-

sample	period,	which	appeared	to	change	to	a	negative	relationship	from	the	start	of	the	out-of-

sample	period	to	the	end.			

	

It	was	earlier	described	the	calculation	regarding	how	to	optimally	generate	balanced	portfolio	

weights	using	Markowitz.	These	are	created	manually;	therefore,	short	selling	has	been	allowed.	

This	means	that	negative	weights	will	be	present	in	different	periods,	and	the	negative	weights	

will	indicate	a	short	sale	where	we	gain	profit	from	actual	negative	returns	in	the	indices.	This	

means	 for	 every	 rolling	 estimation	 window;	 we	 obtain	 the	 optimal	 weights	 of	 the	 tangency	

portfolio.	

	

The	plot	below	displays	the	weights	that	are	rebalanced	every	month	until	2020.	Besides	looking	

at	the	time	horizon	and	financial	goals,	asset	allocation	is	a	crucial	decision	when	constructing	a	

portfolio.	The	way	assets	are	allocated	is	the	primary	determinant	of	the	risk-return	trade-off	for	
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a	portfolio.	When	investing	over	time,	the	portfolio	construction	will	generate	investments	that	

contain	different	returns	and	thereby	move	further	away	from	the	initial	asset	allocation.	Thus,	

the	 risk	 and	 returns	 may	 likely	 be	 inconsistent	 with	 the	 investor’s	 goals	 and	 preferences.	

Therefore,	portfolio	rebalancing	is	especially	essential	because	of	the	ability	of	the	investors	to	

maintain	their	asset	allocation	target.	Using	the	monthly	rebalancing,	the	investors	can	eliminate	

the	 tendency	 of	 portfolio	 drift,	 and	 reduce	 their	 exposure	 to	 risk	 relative	 to	 the	 portfolio	

allocation.	

	

	
FIGURE	30:	MEAN	VARIANCE	WEIGHT	ALLOCATION	OUT-OF-SAMPLE	

	
In	general,	there	is	overweight	in	bonds	compared	to	stocks,	besides	in	the	beginning	of	2000,	

where	the	allocation	briefly	preferred	short	positions	in	the	bond	index	and	a	long	position	in	the	

stock	index.	This	may	be	because	of	a	positive	correlation	in	the	beginning,	combined	with	a	high	

Sharpe	ratio	of	the	stock	index	before	the	year	2000.		It	was	previously	shown	that	bonds	have	

had	the	highest	Sharpe	ratios	over	the	investment	horizon.	This	indicates	that	the	volatility	of	

stock	has	had	a	large	impact	on	the	weights	concerning	the	correlation	as	well	as	the	Sharpe	ratio.	

Regardless	of	the	economic	cycle,	almost	every	period	shows	a	higher	preference	for	allocation	

towards	 bonds.	 Periods	with	 shorted	 stock	 are	 present,	 especially	 right	 around	 the	 financial	

crisis,	meaning	 that	 the	bond	allocation	 is	 in	overweight.	As	 a	 result,	 a	period	experiencing	a	

recession,	such	as	the	financial	crisis,	does	not	affect	the	portfolio	that	much.	The	mean-variance	

optimization	 seems	 to	 capture	 the	 post-effect	 of	 the	 financial	 crisis,	 which	 indicates,	 for	 the	

portfolio	to	provide	substantially	good	results	when	stocks	are	affected	by	the	economic	crisis’.	

Due	 to	higher	volatility	 in	stocks,	 increasing	variance	means	 that	 there	 is	more	attractiveness	

investing	in	bonds.		
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FIGURE	31:	RISK-ALLOCATION	OF	STOCKS-BOND	

	

Table	31	illustrates	the	risk	allocation	of	the	portfolio	over	time.	In	risk	terms,	it	appears	that	the	

equity	risk	is	dominating	the	portfolio	during	the	first	year	of	the	investment	horizon,	due	to	a	

significant	 allocation	 towards	 stocks.	 However,	 from	 year	 2002	 to	 2014,	 the	 risk	 is	 heavily	

allocated	towards	bonds,	which	is	also	linked	to	an	overweight	in	bonds	during	this	period.	It	can	

be	observed	that	there	is	a	few	points	in	the	graph	that	indicates	that	the	portfolio	risk	is	allocated	

close	 to	 50:50.	 In	 periods	 where	 the	 Sharpe	 ratio	 of	 bonds	 and	 equities	 are	 approximately	

equivalent,	around	2001	to	2002	and	2014,	the	risk	allocation	seems	to	be	crossing	according	to	

the	plot	of	Sharpe	ratios	seen	in	Figure	26.	When	the	Sharpe	ratio	of	stocks	is	higher	than	it	is	for	

bonds,	 it	becomes	clear	 that	most	of	 the	volatility	 is	 coming	 from	equities,	 and	 therefore,	 the	

notional	allocation	will	still	allocate	a	large	part	in	bonds	due	to	the	risk.	In	periods	where	the	

bonds	have	a	higher	Sharpe	ratio	than	equities,	even	a	larger	allocation	in	notional	weights	of	

bonds	is	observed.		These	are	then	becoming	more	desired,	as	the	risk	of	the	portfolio	will	mainly	

follow	the	risk	of	bonds.	The	maximization	of	the	Sharpe	ratio,	combined	with	wanting	a	minimal	

risk	exposure	and	superior	returns,	leads	the	notional	allocation	to	a	majority	in	bonds.	

	

To	 show	 how	 the	 evolution	 of	 the	 weight	 would	 have	 performed	 in	 reality,	 the	 cumulative	

portfolio	returns	are	being	calculated,	according	to	Equation	3.1.1.	The	cumulative	returns	will	

be	provided	for	comparison	in	relation	to	the	Black	Litterman	approach	and	CAPM	during	the	

comparison	of	the	models.	
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FIGURE	32:		CUMULATIVE	REALIZED	RETURN	

	
Observing	 the	 graph	 above,	 it	 provides	 us	 with	 the	 cumulative	 return	 based	 on	 a	 monthly	

rebalancing	scheme.	Using	a	fixed	window	of	six	years,	we	allow	our	portfolio	to	update	based	on	

the	newest	information.	The	portfolio	returns	show	how	the	performance	of	the	re-optimization	

will	be,	only	applying	a	shorter	period	of	historical	data	to	optimize	the	portfolio	in	the	future.	If	

rebalanced	 every	 month,	 we	 increase	 the	 return	 over	 100%	 of	 the	 initial,	 if	 looking	 at	 an	

investment	 horizon	 over	 20	 years	 based	 on	 stocks	 and	 bonds.	 The	 cumulative	 return	 for	 the	

rebalanced	 portfolio	 is	 110.58%	 in	 2019.	 The	 portfolio	 allocation	 during	 the	 financial	 crisis	

seemed	to	be	robust,	probably	due	to	an	overweight	 in	bonds,	which	showed	to	perform	well	

during	the	recession	in	the	economy.	The	portfolio	is	fairly	satisfactory.		

5.3.2	Black-Litterman	asset	allocation	

5.3.2.1	Implied	equilibrium	returns	

The	 CAPM	market	 implied	 return	 is	 treated	 in	 the	 Black	 Litterman	 model,	 hence	 the	 CAPM	

allocation	 model	 will	 be	 described	 (also	 for	 the	 purpose	 of	 using	 it	 as	 a	 benchmark	 when	

estimating	 performance	 measures).	 The	 CAPM	 strategy	 uses	 another	 approximation	 of	 the	

expected	excess	return	apart	from	the	traditional	CAPM	equation	(explained	in	theory),	instead	

applying	 the	 expected	 capitalized	 excess	 return	 of	 the	 BL-framework,	 providing	 us	 with	 a	

reference	point	for	the	views	of	investors.		
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FIGURE	33:	ANNUALIZED	EXPECTED	RETURNS	

	
The	expected	equilibrium	excess	return	arising	from	CAPM,	provided	by	BL	model,	is	plotted	in	

FIGURE 33	for	the	rolling	estimation	scenario.	We	observe	a	surprisingly	small	amount	from	the	

bond	index	even	though	placing	40%	allocation.	From	2010	to	2015	negative	expected	returns	

for	bonds	are	observable,	however	these	are	not	especially	large.	Overall,	the	expected	return	of	

the	 bonds	 is	 quite	 consistently	 fluctuating	 around	 zero.	 Stock	 performance	 shows	 higher	

expected	returns	compared	 to	 the	bonds.	There	are	high	returns	 in	 the	beginning	of	 the	year	

2000,	which	declines	from	2003	towards	the	financial	crisis.	The	stock	return	is	rising	again	after	

the	financial	crisis	between	2009	to	2013,	and	in	2014	the	equilibrium	returns	are	decreasing.	

The	 expected	 returns	 of	 the	 market	 portfolio	 show	 similar	 observations	 in	 relation	 to	 the	

historical	standard	deviation.	This	implies,	that	the	variance-covariance	matrix	has	a	quite	large	

impact	on	the	expected	return	over	the	capitalized	market	weights,	although	the	expected	return	

computation	 also	 takes	 into	 account	 the	 risk	 aversion.	Overall,	 the	 expected	 return	 is	mainly	

dominated	by	the	stock.		

	

The	allocation	consisting	of	60:40,	is	approximated	as	the	market	portfolio.	The	weights	are	used	

to	construct	the	cumulative	returns	of	CAPM,	to	observe	what	the	realization	has	been	during	in	

reality.	 This	 will	 serve	 as	 the	market	 portfolio	 and	 will	 be	 used	 to	 compare	 how	 the	 Black-

Litterman	portfolio	is	deviating	from	the	market	portfolio.		
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FIGURE	34:	CUMULATIVE	CAPM		

	
The	portfolio	return	for	CAPM	gives	a	cumulative	realized	return	of	125.74%	at	the	end	of	2018.	

Holding	60%	equity	during	the	times	with	recession	shows	quite	a	downward	movement	in	the	

realized	return	of	the	CAPM,	which	is	implied	by	the	dot	com	bubble	as	well	as	the	financial	crisis	

in	2008.	Since	equity	 is	mostly	dominated	 in	 the	market	portfolio,	 this	will	also	have	a	 larger	

impact	of	changes	in	return	compared	to	the	effects	of	the	changes	in	bond	return.	From	2009	

going	 forwards,	 it	 appears	 that	 the	 market	 portfolio	 regularly	 has	 been	 performing	 quite	

properly,	and	stock	returns	have	been	rapidly	increased	after	the	crisis.	An	increased	allocation	

towards	bonds	would	have	smoothen	the	drops	in	the	downward	market	cycles.		

5.3.2.2	View	distribution	

To	generate	 the	view	of	 the	Black	Litterman,	 as	previously	mentioned,	prediction	models	 are	

implemented.	Looking	at	the	in-sample	estimation	of	the	Black	Litterman	model,	we	described	

the	views.	This	will	be	equivalent	to	the	rolling	period	as	well.	For	each	time	t,	we	will	only	apply	

one	relative	view.	Although	this	means	we	have	228	specific	views	at	time	t	since	rolling	gives	

228	periods.	All	periods	use	a	relative	view,	but	it	will	be	different	whether	stock	or	bonds	will	

be	weighted	negative	or	positive.	Due	to	this	assumption,	there	will	only	be	applied	one	view	as	

input	to	the	view,	illustrated	in	Section	5.2.3.2.	The	approach	and	format	of	the	view-distribution	

estimates	are	generated	in	the	same	manner	as	previously.			

	

Subsequently,	the	prediction	models	will	be	described	and	analysed,	giving	input	variables	in	the	

view	distributions	and	following	how	the	views	have	been	determined.	
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5.3.2.2.1	Prediction	models	

In	this	section	the	statistical	evidence	for	out-of-sample	measures	will	be	provided	of	the	equity-	

and	bond	premium	at	a	one	month	forecast	horizon.	It	should	be	noticed	that	the	realized	return	

in	 a	 period	 often	will	 diverge	 considerably	 from	 the	 prediction	 at	 the	 start	 of	 the	 prediction	

period.		

	

Equity	premium	

Based	on	the	approach	and	methodology	of	Rapach	et	al.	(2007),	described	in	Section	4.2.3.1,	the	

equity	premium	forecast	is	estimated	using	fourteen	single	predictor	variables,	which	all	have	

shown,	 according	 to	 literature,	 to	 some	 extent	 having	 predictive	 power	 related	 to	 the	 equity	

premium.	The	purpose	is	to	find	out	whether	these	in	reality	do	have	predictive	power	out-of-

sample,	and	if	the	combination	forecast	of	all	these	variables	is	able	to	verify	this.	

	
	

		 In-sample:	1980	-	2000	 		

Predictor	models:	 		 Coefficient	 t-stat	 R2	

Dividend-Price	ratio	 alpha	 -0.018	 -0.712	 0.004	

	 beta	 -0.0066	 -0.92	 	

Dividend-yield	ratio	 alpha	 0.0056	 1.382	 0.000	

	 beta	 -0.0106	 -0.161	 	

Earnings-price	ratio:	 alpha	 -0.0066	 -0.326	 0.001	

	 beta	 -0.0043	 -0.584	 	

Dividend-pay-out	ratio	 alpha	 -0.0032	 -0.274	 0.002	

	 beta	 -0.0114	 -0.734	 	

Stock-variance	ratio	 alpha	 0.0069	 2.215**	 0.009	

	 beta	 -0.8608	 -1.433	 	

Book-to-market	 alpha	 0.0107	 1.798*	 0.005	

	 beta	 -0.0111	 -1.072	 	

Net	equity	expansion	 alpha	 0.0073	 2.238**	 0.008	

	 beta	 -0.2011	 -1.383	 	

T-bill	 alpha	 0.0198	 2.77***	 0.021	
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	 beta	 -0.2162	 -2.241**	 	

Long-term	yield	 alpha	 0.027	 2.443**	 0.018	

	 beta	 -2.464	 -2.051**	 	

Long-term	return	 alpha	 0.0042	 1.402	 0.006	

	 beta	 0.0991	 1.148	 	

Term	spread	 alpha	 0.0003	 0.058	 0.006	

	 beta	 0.231	 1.1789	 	

Default	yield	 alpha	 0.0062	 0.861	 0.000	

	 beta	 -0.0937	 -0.162	 	

Default	return	spread	 alpha	 0.0052	 1.853	 0.024	

	 beta	 0.629	 2.409**	 	

Inflation	 alpha	 0.0141	 3.337***	 0.033	

	 beta	 -2.7654	 -2.854***	 	

	
TABLE	22:	IN-SAMPLE	EQUITY	PREMIUM	RESULTS4	

	
Table	 22	 shows	 the	 regressions	 model	 output	 and	 provides	 the	 coefficients	 for	 each	 single	

predictor	 variable.	 Overall,	 the	 single	 predictor	 variables	 display	 insignificant	 coefficient	

estimates,	consequently	giving	poor	regression	results.	Same	observations	are	 found	by	Goyal	

and	Welch,	which	explains	the	individual	predictor	variables	perform	poorly,	both	in-sample	and	

out-of-sample.	However,	it	can	be	observed	that	both	the	inflation,	the	long-term	yield	and	the	

risk-free	rate	indicate	significant	coefficient	estimates.		

	

The	𝑅(	of	the	prediction	models	indicates	that	some	of	the	variables	to	have	better	explanatory	

power	than	others,	i.e.	does	not	manage	to	explain	a	lot	of	the	variation	in	the	model.	The	default	

yield	and	dividend-yield	ratio	indicate	no	explanatory	element.	Therefore,	these	could,	perhaps,	

be	considered	to	be	removed	from	the	model,	as	none	of	 them	contributed	satisfactory,	when	

observing	 the	 performance	 reflected	 by	 the	 test-statistics.	 Inflation	 is	 the	 predictor	 variable	

containing	 the	highest	 explanatory	model,	 followed	by	 the	default	 return	 spread.	 In	 addition,	

inflation	also	show	statistical	significance	at	a	1%	level	on	both	the	alpha	and	beta	coefficients.	

Overall,	 it	would	often	be	 the	 case	 that	 the	R2	measures	of	 the	magnitude	we	observe	 in	 our	

 
4 The number of stars *, **, *** corresponds to significance levels respectively equalling 10%, 5% or 
1% 
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results,	are	considered	low	within	statistics.	This	is,	however,	not	necessarily	the	case	in	finance,	

where	lower	values	actually	are	considered	quite	satisfactory.	

	
Recalling	 the	 findings	 from	 our	 literature	 review,	 we	 mentioned	 that	 some	 papers	 found	

predictive	power	in	some	valuation	ratios	such	as	the	price-dividend,	the	book-to-market	and	the	

earnings-price,	at	 least	 in-sample.	According	to	our	 finding,	 this	does	not	apply	 to	our	sample	

period,	where	we	find	that	at	least	some	of	these	predictors	are	not	statistically	significant,	even	

in-sample.		

	

We	want	to	observe	the	out-of-sample	mean	squared	prediction	errors	to	evaluate	if	the	predictor	

models	 in	 fact	 does	 provide	 linear	 prediction.	 For	 such	 models,	 the	 evaluation	 of	 the	

parsimonious	possibility	that	the	predicted	y	is	true	to	the	real	value	of	y	has	to	be	assessed.	The	

out-of-sample	error	prediction	measures,	 illustrated	 in	Table	23,	provides	an	overview	of	 the	

calculated	measures.	In	general,	a	lower	error	measure	is	favourable.		

	

Error	measures	 MSE	 RMSE	

Predictor	models:	 	 	

Dividend-Price	ratio	 0.001872	 0.043273	

Dividend-yield	ratio	 0.001823	 0.042705	

Earnings-price	ratio	 0.001843	 0.042931	

Dividend-pay-out	ratio	 0.001866	 0.033220	

Stock-variance	ratio	 0.001756	 0.041907	

Book-to-market	 0.001851	 0.043032	

Net	equity	expansion	 0.001888	 0.043454	

T-bill	 0.002000	 0.044720	

Long-term	yield	 0.002017	 0.044907	

Long-term	return	 0.001811	 0.042551	

Term	spread	 0.001826	 0.042730	

Default	yield	 0.001816	 0.042612	

Default	return	spread	 0.001881	 0.043369	

Inflation	 0.002025	 0.045003	

Combination	forecast:	
Mean	 0.001837	 0.042862	

	
TABLE	23:	FORECAST	ERRORS	
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The	MSE	for	the	single	predictor	model	and	the	combination	forecast	of	mean,	indicate	close	to	

similar	 errors	 being	 around	 0.17	 %-	 0.21%.	 The	 highest	 forecast	 error	 is	 coming	 from	 the	

inflation,	 long-term	 yield	 and	 the	 t-bill,	 which	 was	 the	 individual	 predictors	 coefficient	 that	

provided	most	explanatory	power.	The	combination	forecast	also	yields	a	MSE	of	0.18%,	which	

is	close	to	the	values	of	the	single	predictor	models.	The	RMSE	shows	more	persistent	values	for	

all	of	the	variables,	and	the	combination	forecast	yields	a	value	of	4.29%.	Overall,	it	appears	that	

the	level	of	the	error	measures	is	fairly	low,	where	the	highest	error	of	4.5%	is	coming	from	the	

inflation	regression.	

	

When	averaging	the	fourteenth	single	predictor	model	into	a	combined	forecast	and	comparing	

it	against	the	benchmark,	we	find	that	the	combination	forecast	is	persistently	outperforming	the	

historical	 average.	 Interestingly,	 the	 combination	 forecast	 is	 able	 to	 consistently	 beat	 the	

historical	average,	which	is	also	supported	by	the	similar	empirical	findings	of	Rapach,	Strauss	&	

Zhou	 (2010).	 The	 forecast	 performs	 poorly	 for	 the	 individual	 predictor;	 however,	 the	

combination	forecast	is	providing	significant	outperformance	of	the	constant	mean.		

	

	

FIGURE	35:	EQUITY	PREMIUM	PREDICTIONS	OUT-OF-SAMPLE	
	

The	predictions	arising	from	the	combination	forecast	mean	over	time	is	shown	in	Figure	35.	The	

forecast	 seems	 to	 show	 moderate	 prediction.	 In	 Section	 4.1.2.2,	 we	 described	 that	 mean-

reversion	often	appears	investigating	longer	horizons.	The	stock	appeared	to	have	a	slightly	more	

negative	autocorrelation,	which	could	indicate	some	sort	of	mean-reversion.	However,	it	seems	

to	fail	predicting	a	lot	of	the	variation/volatility	that	is	observed	in	the	realized	return	of	S&P	500.		
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Bond	premium	

The	 term	premium	 computed	 by	 ACM	 is	 said	 to	 have	 a	 strong	 predictive	 power	 of	 the	 bond	

premium,	simply	because	the	term	premia	is	given	as	the	difference	in	the	long-term	yield	and	

expected	 short-term	 rate.	 Based	 on	 the	 regression	model,	we	 can	 find	 out	whether	 the	 term	

premium	is	able	to	forecast	the	bond	premium.		

	

The	obtained	regression	model	estimates	are	given	as	following:	

	

	 In-sample:	1980	-	2000	 		

Predictor	models	 		 Coefficient	 t-stat	 R2	

Term	premia:	 alpha	 -0.0002	 -0.03245 0.000	

		 beta	 0. 0004	 0.07998	 		

TABLE	24:	REGRESSION	MODEL	OUTPUT5	

	

Table	24	above	provides	an	overview	of	the	regression	model.	The	coefficient	estimate,	𝛼�,	gives	a	

value	of	 -0.02%,	 and	 the	𝛽�-estimate	 a	 value	of	 0.04%,	 in	which	none	 appears	 to	be	 statically	

significance.	 The	 regression	 model	 output	 shows	 that	 the	 linear	 relationship	 is	 positive,	

represented	by	the	beta	coefficient.	This	is	not	aligned	with	findings	of	ACM,	as	they	find	highly	

significant	 predictive	 power	 of	 the	 term	premium.	ACM	 find	 that	 the	monthly	 term	premium	

explains	over	75%	of	the	yield	looking	at	short	horizons,	and	more	than	90%	for	longer	horizons.	

Our	 regression	 model	 implies	 an	 𝑅(	 of	 0.0%,	 indicating	 that	 the	 model	 fails	 to	 explain	 the	

variation	in	the	bond	return.		

	

As	in	equity	premium,	we	want	to	evaluate	the	prediction	based	on	the	error	metrics	described	

in	Section	4.2.3,	to	assess	whether	the	prediction	models	lie	close	to	the	true	observations.	These	

are	shown	in	TABLE 25.	

	

Error	measures	 MSE	 RMSE	

Term	premium	 0.00017	 0.1302	

TABLE	25:	FORECAST	ERROR	

	

 
5 The number of stars *, **, *** corresponds to significance levels respectively equalling 10%, 5% or 
1% 
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The	mean	squared	error	for	the	term	premium	is	given	by	0.017%	which	is	seems	to	be	quite	low	

compared	to	those	presented	in	equity	premium.	Intuitively,	an	error	less	than	1%	seems	to	be	

relatively	small.	 In	 terms	of	RMSE,	 the	error	computed	 is	1.30%,	also	 indicating	a	small	error	

term.	 Thus,	 the	 error	 seems	 satisfactory,	 since	 the	 small	 error	 terms	 means	 that	 the	 bond	

premium	lies	close	to	the	true	values	of	the	bond	premium.	Even	though	the	regression	model	did	

not	provide	any	explanatory	power,	the	linear	regression	seems	to	capture	the	true	values	of	the	

bond	premium.	

	
FIGURE	36:	PREDICTION	OF	THE	BOND	PREMIUM		

	

The	 out-of-sample	 prediction	 of	 the	 bond	 premium	 is	 exhibited	 in	 FIGURE	 36.	 Based	 on	 the	

regression	model,	the	bond	premium	is	following	the	fluctuations	of	the	term	premia	as	shown	in	

Appendix	5,	which	is	mostly	expected	as	this	variable	is	the	only	one	used	to	predict	the	excess	

returns	of	bonds.	The	bond	premium	is	showing	a	downward	trend,	which	is	reflecting	a	decrease	

in	the	term	premium,	since	the	regression	model	implied	a	positive	beta	coefficient.	In	reality,	the	

10-year	yield	 is	represented	by	 the	10-year	 forward	term	premia,	 thus	should	also	be	able	 to	

forecast	the	yield.	In	this	setting,	the	term	premium	is	expected	to	forecast	the	bond	prices,	and	

therefore,	it	is	natural	for	the	bond	premium	to	follow	the	term	premium.	From	the	graph	above,	

the	returns	in	bond	premia	seems	like	there	is	an	indication	of	mean-reversion,	as	it	is	shifting	

between	periods	of	low	negative	or	high	positive	returns,	but	this	cannot	be	verified.	

	

The	bond	premium	overall	seems	to	reflect	a	larger	part	of	the	magnitude,	compared	to	the	equity	

premium.	These	spikes	may	appear	large	when	these	are	employed	into	the	prediction	models	of	

the	investor.	In	this	paper	it	is	argued	that	bond	premiums	are	predictable	thus	the	point	is	to	
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apply	the	bond	premium	out-of-sample	forecast	to	generate	the	investor	views	required	in	the	

Black	Litterman	model.	Hence,	it	will	be	used	to	compare	the	performance	of	stocks	relative	to	

bonds.		

	

P	matrix		

The	prediction	models	of	 the	return	premiums	shown	above	has	 to	be	 further	computed	 into	

relative	views.	Since	stocks	in	reality	do	have	a	higher	return	than	bonds,	we	want	to	look	at	the	

values	 when	 adjusting	 for	 risk.	 If	 we	 do	 not	 adjust	 for	 risk,	 then	 the	 equity	 premium	 just	

outperforms	the	bond	premium	for	many	horizons.	After	accounting	for	the	risk,	we	get	a	clearer	

picture	 of	 the	 actual	 risk-adjusted	 performance	 of	 the	 respective	 assets.	 The	 P-matrix	 will	

describe	the	views	of	the	model	based	on	a	monthly	rebalancing	scheme,	meaning	the	P-matrix	

is	adjusted	every	beginning	of	the	month.	Further,	it	will	illustrate	in	which	direction	we	want	to	

modify	the	assets	returns,	i.e.	when	the	risk-adjusted	measure	of	bonds	is	higher	than	stocks,	we	

want	to	adjust	a	higher	allocation	towards	bonds.		

	
As	described	 in	methodology,	 the	premium	 for	 stocks	 and	bonds	 is	 forecasted	 for	 the	out-of-

sample	period	based	on	our	monthly	dataset.	Standing	 in	2000,	 regression	models	were	built	

from	 the	 in-sample	 period	 to	 predict	 the	 out-of-sample	 forecast.	 FIGURE	37	 below	 shows	 the	

forecasted	premium	for	bonds	and	equity	accounted	for	the	risk.	The	predicted	premium	of	bonds	

is	illustrated	in	the	green	graph,	while	equities	are	illustrated	by	the	blue	graph.	It	is	observable,	

for	many	periods,	that	bond	and	stock	cross	each	other,	which	is	the	shift	where	either	under-	or	

overperformance	of,	respectively,	stocks	or	bonds	is	taking	place.	When	stocks	are	below	bonds,	

it	 is	desired	to	allocate	the	view	positively	in	bonds	and	negatively	in	stocks.	Contrary,	during	

periods	where	 stocks	 are	 above	bonds,	 the	 view	 should	be	weighted	positively	 in	 stocks	 and	

negatively	in	bonds.	In	general,	stocks	indicate	a	somewhat	persistent	risk-scaled	return,	whereas	

actually	bonds	forecast	quite	volatile	risk-scaled	returns.	The	spikes	in	the	graph	illustrate	how	

much	that	is	over-	or	undervalued	in	relation	to	each	other.	Normally,	equities	are	associated	with	

having	more	risk,	which	is	not	the	same	for	our	forecast	models.	It	can	be	the	case	that	much	of	

the	 magnitude	 of	 the	 equity	 returns	 are	 removed,	 since	 the	 combination	 forecast	 uses	 an	

averaged	mean,	which	smoothens	the	equity	more	than	the	bonds.	Another	way	of	illustrating	

this	fact	is	by	calculating	the	difference	between	the	predicted	values	of	equity	and	bonds,	which	

is	 shown	 in	 Figure	 37.	 When	 the	 difference	 process	 goes	 below	 zero,	 the	 bond	 premium	

outperforms	the	equity	premium,	which	will	indicate	that	these	are	points	in	time	where	we	want	

to	adjust	our	view-vector.		
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FIGURE	37:	PREMIUM	PREDICTIONS	FOR	SP500	AND	TREASURY	+	DIFFERENCE	PROCESS	

	

Q	vector	

The	Q-vector	 expresses	 the	 relative	 change	 in	 the	performance	of	 the	view,	 i.e.	Q	 shows	how	

stocks	outperforms	bonds	by	X%,	oppositely	the	same	thing	when	bonds	outperforms	stock	at	

each	month.	As	expressed	earlier,	Q	contains	 the	value	of	return	 in	relative	performance.	The	

approach	is	the	same	as	previously.		

	

	
FIGURE	38:	TARGET	RETURN		

	
For	relative	performance	the	Q	represents	the	value	that	one	asset	is	outperforming	the	other	

value	with.	Figure	38	exhibits	the	target	returns	of	the	views,	calculated	from	the	difference	of	

the	 risk-scaled	 stock	 and	 bonds.	 Looking	 at	 the	 graph,	 it	 cannot	 be	 observed	 which	 asset	 is	

outperforming	the	other	since	it	only	tells	us	about	the	return	of	the	(over/under)	performance,	

i.e.	 the	 P-matrix	 is	 important	 for	 the	 interpretation.	 Depending	 on	 the	 P-values,	 the	 negative	

weight	of	P	x	Q	gives	the	performance	of	the	asset	negatively	weighted	while	the	positive	weights	

of	P	x	Q	give	the	performance	of	the	positively	weighted	asset.	This	is	also	represented	through	
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Equation	3.4.4.	Furthermore,	the	target	returns	seem	to	vary	a	lot	over	time	and	indicating	that	

there	are	not	always	significant	target	returns.	If	Q	is	close	to	zero,	none	of	the	are	performing	

much	better	than	the	other.	The	highest	target	returns	appear	to	be	around	the	end	of	2008	and	

2016	measuring	to	approximately	70%.	It	is	expected	that	the	target	returns	at	these	periods	will	

have	a	large	impact	on	the	expected	returns.	

	

Ω	vector		

The	 Ω-vector	 represents	 the	 uncertainty	 of	 each	 view	 or	 explained	 as	 the	 variance	 of	 the	

covariance-matrix	of	 the	view.	The	view	distribution	only	contains	one	specific	view;	hence	 it	

cannot	be	applied	diagonal.	Therefore,	uncertainty	will	be	risk-weighted	in	regard	to	the	variance	

likewise	shown	earlier.	The	Ω	were	computed	as	the	sum	of	1/LR	vol	 ·	risk	premium	for	both	

assets.	

	
FIGURE	39:	OMEGA	

	
The	uncertainty	of	the	view	is	very	similar	to	the	distribution	expected	return	of	CAPM	and	also	

very	closely	related	like	the	mean-variance	standard	deviation,	as	it	applies	the	long-run	volatility	

(also	approximated	as	the	full	sample-volatility).	When	risk	weighting	the	uncertainty	of	the	view,	

it	 is	 closely	 following	 the	 stock	 rather	 than	 the	bond	volatility,	 since	bonds	did	not	 show	any	

significant	volatility,	most	of	the	risk	is	weighted	from	the	stock.	The	volatility	of	the	bonds	was	

relatively	low,	around	5%,	and	seemed	to	be	very	persistent	over	time,	the	uncertainty	of	the	view	

has	just	decreased	with	the	proportionality	of	bond	risk.	Since	the	uncertainty	is	very	similar	to	

the	expected	return,	it	may	imply	that	we	are	very	uncertain	when	high	volatility	is	present	and	

becomes	more	confident	when	the	expected	return	is	 low.	Each	view	is	 independent,	which	is	

why	normally	the	variance-covariance	is	applied	diagonal.	The	confidence	level	of	the	investor	

view	is	represented	through	the	inverse	of	omega	𝛺.%.	
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The	matrix	Ω	 is	 employed	with	 the	 scalar	 tau	 (which	was	 discussed	 earlier),	which	 is	 a	 very	

controversial	part	of	the	BL	model.	Since	Ω	is	the	uncertainty,	the	scalar	tau	will	measure	it	to	be	

smaller	as	 tau	scales	 the	view	distribution	 lower	as	we	are	 less	 confident	 in	 the	view.	This	 is	

employed	in	the	posterior	distribution	of	returns.		

5.3.2.3	Posterior	distribution	

For	the	posterior	distribution	both	the	combined	expected	returns	and	covariance	matrices	are	

input	variables	to	the	Black-Litterman	optimization.	These	are	therefore	calculated,	and	further	

applied	in	the	optimal	portfolio	to	look	at	how	the	asset	allocation	are	going	forward	in	time.		

	

Posterior	returns	

The	 posterior	 returns	 are	 generated	 using	 Equation	 3.4.7.	 The	 posterior	 returns	 when	

rebalancing	monthly	is	displayed	where	the	blue	and	green	line	represent	the	returns	of	stocks	

and	bond,	respectively.		

	

PRIOR	 	 	 	 	 	 POSTERIOR	

	 	
FIGURE	40:	EXPECTED	EXCESS	RETURNS	

	

The	prior	and	the	posterior	returns	are	showing	to	have	very	similar	patterns,	perhaps,	because	

we	are	more	confident	in	the	prior	distribution	compared	to	the	view	distribution.	Some	periods	

illustrate	a	bit	lower	return	on	stocks,	than	observed	from	the	prior.	This	is,	however,	not	always	

the	case.	 In	general,	 the	posterior	stock	returns	have	more	variation	compared	to	the	 implied	

returns.	The	posterior	bonds	return	seems	to	approximately,	fluctuate	around	the	same	level,	but	

also	view	some	minor	deviations.		
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Combined	Posterior	Covariance	

The	simple	Black-Litterman	example	in	Section	5.2.3,	showed	how	the	combined	covariance	was	

computed.	 This	 was	 done	 by	 combining	 the	 historical	 covariance	 and	 the	 covariance	 of	 the	

posterior	returns.	The	covariance	of	the	rolling	approach	(as	seen	in	the	MV	analysis)	and	the	

covariance	matrix	of	the	expected	returns	from	the	Black-Litterman	model	is	applied	in	the	same	

formula.	This	is	done	to	obtain	the	covariance	matrix	for	the	posterior	distribution.	We	know	for	

a	fact,	that	the	posterior	covariance	is	higher	than	the	covariance	of	the	expected	returns,	since	

the	two	covariance	were	merged	together.	However,	there	is	not	a	tremendous	deviation	as	the	

changes	are	minimal.	The	posterior	covariance	contains	the	covariance	of	the	excess	expected	

return	and	 furthermore,	does	also	contain	 the	variances	 for	each	asset	shown	 in	 the	diagonal	

elements	of	the	matrix.		

	

Optimal	portfolio	weights	

From	the	theory	section	previously	described,	the	optimal	unconstrained	portfolio,	derived	from	

mean-variance	 optimization,	 requires	 the	 inputs	 of	 the	 covariance	matrices	 and	 the	 expected	

excess	return	vectors.	The	weights	are	the	last	part	which	follow	the	same	step	of	the	optimization	

portfolio,	to	obtain	the	portfolio	allocation.		

	

	
FIGURE	41:	PORTFOLIO	WEIGHTS	

	
FIGURE	 41	 plots	 the	 monthly	 allocation	 weights	 of	 the	 Black-Litterman	 optimization.	 The	

allocation	of	the	Black-Litterman	portfolio	indicates	fluctuating	portfolio	weights,	mainly	having	

a	higher	allocation	in	stocks	over	bonds.	The	weights	appear	to	deviate	from	the	reference	point,	

particular	 after	 2014,	 showing	 considerably	 higher	 allocation	 towards	 stocks.	 In	 2015	 and	

further,	the	weights	allocate	a	short	position	in	bonds	and	long	position	in	stocks.	On	expectation,	



 105 

the	portfolio	returns	should	be	high	if	having	long	position	in	stocks	when	the	market	cycle	shows	

expansions.	The	allocation	weights	show	small	crossovers	around	2002	and	2008.	In	addition,	it	

is	also	observed	that	the	allocation,	on	some	points,	are	close	to	50:50.	These	weights	appear	to	

quickly	revert,	probably	due	to	changes	in	the	views.	It	was	previously	seen	the	mean-variance	

weighted	more	towards	bonds	as	opposed	to	the	Black-Litterman	model,	which	is	allocating	more	

in	stocks.	

	

	
FIGURE	42:	RISK	ALLOCATION		

	

The	risk	allocation,	appearing	in	Figure	42,	show	that	the	equity	risk	is	overrepresented	in	the	

portfolio	throughout	the	whole	period.	From	2000	to	2008,	it	can	be	proxied	that	around	80%	of	

the	 risk	 of	 the	 portfolio	 is	 resented	 by	 equities	 and	 respectively	 20%	by	 bonds.	 In	 2008	 the	

notional	allocation	weight	in	bonds	is	75%,	and	25%	in	equity,	which	seems	to	provide	a	50:50	

allocation	in	terms	of	risk.	The	risk	allocation	for	bonds	is	declining	consistently	from	2008,	which	

is	 naturally	 because	 of	 the	 notional	weight	 allocation	 is	 lower.	 Correspondingly,	 the	 opposite	

appears	for	equities	which	is	followed	by	an	increasing	risk.	This	risk	allocation	is	also	strongly	

related	to	the	views	of	the	model,	as	the	periods	where	stocks	is	outperforming	bonds	is	reflected	

by	a	heavier	 risk	allocation	 in	 stocks.	 It	 appeared	 that	bonds	were	underweighted	 relative	 to	

stocks	in	2014,	looking	at	the	notional	weight	allocation.	This	corresponds	to	the	same	period	

experiencing	a	steady	decrease	in	the	observed	risk-allocation	towards	bonds.	As	opposed	to	the	

mean-variance	optimization,	seeking	to	maximize	the	Sharpe	ratio,	the	risk-allocation	in	Black-

Litterman	 is	 influenced	 by	 the	 views.	 Overall,	 the	 two	models	 show	 quite	 contradicting	 risk-

allocations.		
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Going	further,	we	want	to	look	at	the	cumulative	performance	of	the	generated	portfolio	if	we	

invest	our	wealth	in	the	year	2000.		

	

	
FIGURE	43:	CUMULATIVE	BLACK-LITTERMAN	RETURNS	

	
The	cumulative	returns	in	FIGURE	43	shows	the	performance	of	the	asset	allocation,	which	have	

shown	 similar	 patterns	 as	 the	 cumulative	 returns	 of	 CAPM.	An	 explanation	 could	 be	 that	 the	

Black-Litterman	weights	does	not	diverge	that	much	from	the	CAPM	allocation.		This	is	at	least	

the	case	until	2015,	where	the	cumulative	returns	have	almost	shown	an	exponential	effect.	The	

returns	will	in	the	ending	period	be	189.3%,	based	on	an	investment	today.	The	investor	views	

provide	effective	results,	in	periods	where	the	change	is	large	enough.	Since	2016	the	returns	are	

doubled,	perhaps	because	the	views	are	heavily	weighted	with	a	lower	uncertainty	towards	the	

view.	This	 is	 clear	 for	 the	optimal	portfolio	weights,	where	both	 long	and	 short	positions	are	

observed.	The	posterior	returns	also	show	quite	a	deviation	from	2016,	again,	as	a	result	of	the	

lower	uncertainty	of	the	views.		

5.4	Out-of-sample	comparison	of	the	allocation	models	
After	presenting	and	discussing	the	rolling	estimates	of	our	two	allocation	models,	the	models	are	

compared	 and	 evaluated	 for	 their	 out-of-sample	performance	 and	 statistical	 significance.	The	

out-of-sample	Sharpe	ratio	will	be	the	main	measurement,	while	the	M-squared,	the	Certainty	

Equivalent	and	the	T-statistics	will	be	assessed	to	support	the	findings	arising	from	the	Sharpe	

ratios.				
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FIGURE	44:	CUMULATIVE	LOG-RETURNS	ON	THE	PORTFOLIOS	

	

Figure	 44	 illustrates	 the	 out-of-sample	 cumulative	 realized	 return	 performance	 of	 the	mean-

variance-,	the	CAPM-	and	the	Black-Litterman	portfolio.	Our	mean-variance	portfolio	appears	to	

perform	quite	well	throughout	the	out-of-sample	period	and	does	not	have	as	significant	negative	

drops	around	periods	such	as	the	financial	crisis	etc.,	as	it	appears	to	have	on	the	Black-Litterman-	

and	CAPM	portfolio.	Actually,	the	BL	and	MV	portfolios	are	almost	equivalent	in	2013,	looking	at	

the	cumulative	returns	for	the	respective	portfolios.	The	mean-variance	is	consistently	increasing	

in	terms	of	cumulative	returns,	without	any	major	spikes.	Further,	an	observation	of	the	Black-

Litterman	portfolio	indicates	to	follow	the	fluctuations	of	CAPM	portfolio	quite	narrowly,	at	least	

until	2013.	The	Black-Litterman	portfolio	significantly	outperforms	the	two	other	portfolios	after	

2013	in	terms	of	cumulative	realized	returns	based	on	the	allocation	to	the	respective	portfolios.		

	

The	BL	portfolios	deviation	from	the	CAPM	portfolio	observed	after	this	can	be	traced	back	to	the	

weights	presented	in	Figure	41.	Up	until	year	2009,	we	observed	that	the	BL	portfolio	only	has	

small	deviation	from	the	60:40	market	capitalization	allocation.	After	this,	the	estimated	weights	

are	 changing	 more	 significantly	 for	 each	 t,	 with	 an	 increasing	 allocation	 towards	 stocks.	 In	

combination	with	high	realized	returns	on	the	stock	index,	this	give	us	a	good	performance	on	

the	BL	portfolio	the	latter	years.	The	high	allocation	towards	stocks	in	both	the	BL-model	and	the	

CAPM	also	explains	why	we	previously	observe	the	negative	spikes	at	some	points	in	the	graph	

when	the	stock	index	has	periods	of	negative	returns.	This	is	especially	the	case	in	times	of	crisis	

and	recession.	At	the	end	of	2018,	the	summarized	return	for	the	mean-variance	is	110.58%,	and	

the	corresponding	values	for	CAPM	and	BL	is,	respectively,	125.74%	and	200.51%.	Actually,	the	

BL	model	has	almost	doubled	the	return	compared	to	MV	in	terms	of	cumulative	returns	at	the	
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end	of	the	horizon.	This	indicates	that	changing	views	over	time	can	possibly	provide	effective	

results,	especially	when	stocks	perform	well.		

	

		 Asset	Statistics	 Portfolio	Statistics	

	 S&P	500	 Treasury	10-yr	 MV	 CAPM	 BL	

Arithmetic	mean	 3.101	%	 4.395	%	 4.065	%	 4.658	%	 6.096	%	

Excess	return	 1.522	%	 2.816	%	 2.486	%	 3.079	%	 4.517	%	

Volatility	 14.683	%	 4.540	%	 5.285	%	 8.316	%	 9.660	%	

Sharpe	Ratio	 10.365	%	 62.036	%	 47.035	%	 37.026	%	 46.757	%	

Adjusted	SR	 10.331	%	 61.831	%	 46.880	%	 36.905	%	 46.603	%	

M-squared	 2.454	%	 6.820	%	 5.553	%	 4.707	%	 5.529	%	

Certainty	equivalent		 -0.634	%	 2.610	%	 2.207	%	 2.388	%	 3.584	%	

t-statistics	 1.562*	 9.347***	 7.087***	 5.579***	 7.045***	

Observations	 227	 227	 227	 227	 227	

TABLE	26:	ANNUALIZED	DESCRIPTIVE	SUMMARY	STATISTICS	OF	THE	RETURN	PROCESS	AND	THE	PORTFOLIOS	
(OUT-OF-SAMPLE)6	

	
TABLE	26	presents	the	descriptive	statistics	of	S&P	500	index	and	treasury	index	in	the	out-of-

sample	 period,	 combined	 with	 the	 portfolios	 respective	 out-of-sample	 statistics	 and	

measurements.	The	parameters	will	be	used	to	compare	the	overall	performance	of	the	models	

over	the	out-of-sample	period.		

	

When	just	observing	the	statistics	of	the	individual	assets,	it	appears	for	bonds,	illustrated	by	the	

10-yr	treasury,	to	have	performed	surprisingly	well	compared	to	the	stock	index.	This	is	in	fact	

ultimately	well-described	by	looking	at	the	out-of-sample	Sharpe	ratios	of	the	respective	assets.	

This	comes	from	the	fact	that	bonds	have	performed	well	in	terms	of	excess	returns	in	this	period,	

combined	 with	 the	 fact	 that	 the	 volatility	 has	 been	 relatively	 low.	 Looking	 at	 the	 certainty	

equivalent,	it	appears	that	an	investor,	with	a	risk	aversion	of	2,	would	rather	invest	in	a	negative	

risk-free	asset	than	the	S&P	500	index	during	this	out-of-sample	period.		

 
6  The number of stars *, **, *** corresponds to significance levels respectively equalling 10%, 5% or 
1%. 
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For	 further	 assessment,	 we	 can	 observe	 the	 M-squared	measure,	 which	 in	 relation	 with	 the	

Sharpe	 ratio	 tells	 us	 something	 about	 the	 risk-return	 relationship	 of	 the	 assets.	 Lastly,	 the	

computed	t-statistics	(with	its	respective	significance	level)	tells	us	that	the	excess	return	on	the	

bond	 index	 is	 statistically	 significant	 on	 a	 1%	 level,	 while	 the	 S&P	 500	 index	 shows	 to	 be	

statistically	 significant	 on	 a	 10%	 level.	 This	 is	 probably	 an	 important	 note	 to	why	 the	mean-

variance	portfolio	shows	a	nice	and	steady	increase	in	the	portfolio	return	over	time,	due	to	a	

general	 overweight	 in	 the	 allocation	of	 bonds	 compared	 to	 stocks.	The	 rolling	mean-variance	

weights	in	Figure	30	shows	that	the	model	assigns	a	quite	significant	weight	to	bonds,	probably	

due	to	the	Sharpe	ratio	performance	relative	to	stocks	(in	combination	with	other	things	such	as	

correlation	etc.).		

	
Further,	 we	 want	 to	 look	 at	 the	 overall	 out-of-sample	 performance	 of	 the	 three	 portfolios	

generated.	Even	 though	 it	 appears	 from	Figure	43	 that	 the	mean-variance	portfolio	performs	

better	during	the	(approximately)	first	13	years	of	the	investment	horizon,	we	see	that	the	Black-

Litterman	 portfolio	 had	 a	 higher	 arithmetic	 mean	 and	 excess	 return	 overall.	 It	 can	 also	 be	

mentioned	that	the	CAPM	portfolio	also	had	a	slightly	higher	arithmetic	mean	and	excess	return	

over	the	total	period	than	the	mean-variance	portfolio.	However,	when	scaling	for	the	respective	

volatilities,	we	see	that	the	CAPM	portfolio	provides	a	lower	score	in	terms	of	Sharpe	ratio	than	

the	two	remaining	portfolios.	The	Black-Litterman	portfolio	provides	us	with	the	second	highest	

Sharpe	ratio	over	the	out-of-sample	period,	nonetheless	a	significant	amount	of	 the	returns	 is	

accumulated	 at	 the	 end	 of	 the	 investment	 horizon.	 This	 is	 lastly	 confirmed	 by	 the	 certainty	

equivalent,	which	claims	that	an	investor	would	be	willing	to	invest	at	a	risk-free	rate	at	3.58%,	

where	the	accepted	rate	for	the	MV	and	CAPM	portfolio	is	a	bit	lower.	The	bond	index	and	the	

remaining	portfolios	all	show	positive	measures,	although	the	MV	portfolio	outrival	the	CAPM-	

and	BL	portfolio	by	a	small	margin	overall.		

	

That	being	said,	we	know	that	the	mean	measures	calculated	over	the	total	out-of-sample	period	

suffers	 from	 a	 lot	 of	 variation	 in	 the	 returns	 and	 risk	 over	 time.	 This	 fact	 compromises	 the	

preciseness	of	 the	mean	results,	and	as	mentioned,	 the	portfolios	appear	 to	perform	better	 in	

some	sub-periods	 than	others.	As	pointed	out	by	Munk	(2019),	 this	 is	ultimately	 the	problem	

when	working	with	averaged	values	over	a	given	 time	period.	When	working	with	arithmetic	

means,	it	is	usually	the	case	that	having	a	long	period	of	observations	is	better	than	having	too	

few.	Having	a	minimal	number	of	return	observations	can	therefore	result	 in	 less	 informative	

estimates.	Further,	when	regressing	the	market	portfolio	on	a	return	process	of	a	given	strategy	
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or	allocation	model,	it	is	rarely	the	case	that	the	alpha	obtained	from	the	regression	is	statistically	

significant.		

	

As	pointed	out	when	computing	the	weight	allocations	for	the	mean-variance	model,	we	noticed	

that	 the	bonds	provided	a	higher	expected	Sharpe	ratio	 in	 the	beginning	of	 the	out-of-sample	

period.	 This	 led	 the	 objective	 to	maximize	 the	 portfolio	 allocation	 towards	 an	 overweight	 in	

bonds,	which	by	looking	at	the	realized	returns	gave	us	a	nice	and	steady	gain	over	the	first	years	

of	the	investment	horizon.	The	first	six	years	also	showed	us	that	the	CAPM	capitalized	weights,	

which	have	an	overweight	towards	stocks,	performed	poorly.	The	deviation	from	these	weights	

were	 not	 substantial	 in	 the	 Black-Litterman	model,	 which	 also	 led	 this	 portfolio	 with	 a	 bad	

performance	 during	 the	 first	 years.	 To	 illustrate	 the	 split	 in	 the	 series,	 we	will	 compute	 the	

equivalent	measures	as	above	by	dividing	the	total	out-of-sample	into	two	subsets.	This	will	be	

done	by	splitting	the	sample	in	the	changing	point	of	2009	and	2010.	Lastly,	we	will	have	a	look	

at	the	performance	for	the	six	last	years	(approximately)	of	the	out-of-sample	period	where	we	

observe	an	exceptional	performance	of	the	Black-Litterman	portfolio.	

	

		
Annualized	descriptive	portfolio	statistics	

		 2000-01-01	to	2009-12-01	 2010-01-01	to	2018-12-01	 2013-01-01	to	2018-12-01	

	 MV	 CAPM	 BL	 MV	 CAPM	 BL	 MV	 CAPM	 BL	

Arithmetic	mean	 4.080	%	 2.295	%	 3.004	%	 4.048	%	 7.261	%	 9.502	%	 2.958	%	 6.771	%	 9.598	%	

Excess	return	 1.438	%	 -0.346	%	 0.363	%	 3.650	%	 6.863	%	 9.104	%	 2.407	%	 6.220	%	 9.047	%	

Volatility	 6.461	%	 9.253	%	 8.805	%	 3.583	%	 7.110	%	 10.475	%	 3.376	%	 6.130	%	 11.267	%	

Sharpe	Ratio	 22.264	%	 -3.739	%	 4.121	%	 101.876	%	 96.524	%	 86.906	%	 71.289	%	 101.469	%	 80.302	%	

Adjusted	Sharpe	Ratio	 22.126	%	 -3.716	%	 4.095	%	 101.173	%	 95.859	%	 86.306	%	 70.554	%	 100.423	%	 79.474	%	

M-squared	 4.523	%	 2.325	%	 2.990	%	 9.006	%	 8.554	%	 7.741	%	 6.575	%	 9.125	%	 7.336	%	

Certainty	equivalent		 1.021	%	 -1.202	%	 -0.413	%	 3.521	%	 6.357	%	 8.006	%	 2.293	%	 5.844	%	 7.778	%	

t-statistics	 2.439**	 -0.410	 0.451	 10.587***	 10.031***	 9.031***	 6.049***	 8.610***	 6.814***	

Observations	 120	 120	 120	 108	 108	 108	 72	 72	 72	

TABLE	27:	DESCRIPTIVE	STATISTICS	FOR	VARIOUS	OUT-OF-SAMPLE	PERIODS7	
 

7 The number of stars *, **, *** corresponds to significance levels respectively equalling 10%, 5% or 
1%. 
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It	appears	from	TABLE	27	that	the	portfolios	indeed	have	performed	quite	unstable	over	different	

time	periods	of	the	out-of-sample	period.	As	explained,	we	adjust	the	measures	to	account	for	

observation	bias	when	comparing	different	time	periods.	For	the	first	split,	running	from	2000-

01-01	to	2009-12-01,	we	observe	that	the	mean-variance	portfolio	outperforms	the	CAPM-	and	

BL	 portfolio	 in	 terms	 of	 Sharpe	 ratio	 and	M-squared.	 It	 can	 also	 be	 observed	 that	 the	 utility	

measure	suggests	that	an	investor	would	rather	take	on	negative	risk-free	assets	than	invest	in	

the	CAPM-	and	BL	portfolio.	In	fact,	the	CAPM	portfolio	appears	to	have	a	negative	Sharpe	ratio	

due	 to	 negative	 excess	 returns	 in	 this	 specific	 sub-period.	 The	 BL	 portfolio	 has	 a	 positive,	

however,	very	low	Sharpe	ratio.	Further,	it	can	be	observed	that	both	the	CAPM-	and	BL	portfolio	

suffers	from	insignificant	t-statistics	based	on	the	levels	we	test	on.	On	the	other	hand,	the	MV	

portfolio	provides	a	statistical	significance	at	a	5%	level.	We	see	that	the	portfolio	returns	have	

been	relatively	low	on	average	during	this	period,	which	can	be	partially	explained	by	negative	

returns	 on	 the	 stock	 index,	which	 have	 been	 assigned	 the	most	weight	 in	 the	 CAPM-	 and	BL	

portfolio	allocation	in	this	period.		

	

The	story	is	quite	different	for	the	CAPM	and	BL	portfolio	in	the	next	sub-period	running	from	

2010-01-01	 to	 2018-12-01.	 This	 period	 provides	 us	with	 considerably	 higher	 returns	 on	 the	

CAPM	and	BL	portfolio.	All	portfolios	view	high	Sharpe	ratios,	yet	the	CAPM	and	MV	outperforms	

the	BL	portfolio	in	this	period	as	well,	due	to	high	volatility	in	the	BL	portfolio.	Even	though	the	

BL	portfolio	has	the	highest	averaged	return	over	the	period,	it	only	delivers	a	Sharpe	ratio	of	

86.31%,	compared	to	values	closer	to	100%	in	the	two	other	portfolios.	The	volatility	of	the	MV	

portfolio	 has	 contrary	 approximately	 been	 halved.	 The	 return	 on	 the	 MV	 portfolio	 has	 not	

changed	significantly	when	comparing	the	two	first	periods.	This	leads	the	portfolio	to	obtain	a	

Sharpe	ratio	over	hundred,	outperforming	both	the	BL	and	CAPM	portfolio.	The	same	conclusions	

as	seen	in	the	Sharpe	ratio	is	backed	up	by	the	M-square	measure,	which	shows	that	all	portfolios	

seemed	to	perform	well,	but	in	this	period,	the	MV	portfolio	also	marginally	outperformed	the	

others.	Finally,	it	is	observed	that	all	the	portfolios	deliver	significant	t-statistics	in	this	sub-period	

on	a	1%	level.	The	certainty	equivalent	is	the	only	measure	that	argues	in	favour	of	investing	in	

the	BL	portfolio.	

	

Lastly,	we	will	have	a	look	at	the	six	ending	years	of	the	investment	horizon,	running	from	2016-

01-01	to	2018-12-01,	where	the	BL	portfolio	specifically	appeared	to	perform	very	well.	Firstly,	

it	 appears	 to	 be	 quite	 some	 deviations	 in	 the	 arithmetic	 means	 of	 the	 portfolios,	 where	 the	

average	return	of	the	BL	portfolio	is	approximately	three	times	as	high	as	the	equivalent	measure	

of	the	MV	portfolio.	In	exchange	for	this,	we	observe	a	much	higher	volatility	in	the	BL	portfolio	
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compared	 to	 both	 the	 CAPM-	 and	 MV	 portfolio.	 Comparing	 the	 risk-reward	 relationship	

illustrated	in	the	Sharpe	ratio,	we	see	that	the	BL	portfolio	outperforms	the	MV	portfolio,	but	the	

CAPM	portfolio	lastly	provides	the	highest	ratio.	In	addition,	the	CAPM	portfolio	beats	the	MV	and	

BL	portfolio	 in	 terms	 of	M-squared,	 and	 secondly	 gives	 us	 the	 highest	 t-statistic.	 Anyhow,	 all	

portfolios	 show	 significant	 t-statistics	 on	 a	 5%	 level.	 As	 pointed	 out,	 the	 sub	 periods	 contain	

different	numbers	of	observations,	but	according	 to	 Jobson	&	Korkie	 (1981),	 the	Sharpe	ratio	

adjustment	accounting	for	the	observation	effect	works	for	sample	sizes	down	to	12	observations.	

It	appears	that	the	certainty	equivalent	still	favours	the	BL	portfolio,	which	has	been	the	case	for	

all	periods.		
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6.	Discussion	

6.1	Evaluating	results	
From	 the	 empirical	 results,	 the	 Black	 Litterman	 rolling	 portfolio	 outperformed	 the	 market	

portfolio,	CAPM,	and	the	mean-variance	approach	in	terms	of	cumulative	returns.	However,	it	is	

clear	that	the	outperformance	is	not	consistent	for	all	horizons.		

	

The	mean-variance	returns	showed	to	have	consistently	increasing	returns	over	different	time-

periods.	As	aforementioned,	mean-variance	optimization	is	often	leading	to	error-maximization	

(Michaud,	1989;	Fabozzi,	Markowitz,	Kolm,	Gupta,	2012).	Due	to	fixed	investment	horizon	and	

historical	observations	of	assets,	this	could	lead	to	problematic	outputs,	as	the	asset	returns	often	

appear	to	be	a	quite	imprecise	estimate	of	future	asset	returns.	Since	the	MV	is	quite	sensitive	to	

the	input	variables,	this	could	mean	for	the	analysis	to	provide	substantial	wrong	expectations	

and	weights	for	the	portfolio.	This	uncertainty	of	the	MV	optimization	is	pioneered	by	Roll	(1979),	

Jobson	and	Korkie	(1980,	1981),	Shanken	(1985),	Jorion	(1986,	1992).	The	rebalanced	portfolio	

weights	in	our	analysis	do	genuinely	appear	very	satisfactory,	thus	does	not	provide	sustainable	

miscalculated	weights.	This	might	be	to	the	choice	of	applying	rolling	estimation,	giving	only	the	

most	recent	information	within	a	given	time	period,	instead	of	using	a	large	amount	of	historical	

data.	The	portfolio	allocation	seems	to	hedge	itself	against	a	recessionary	economy	but	does	not	

give	substantially	good	returns	in	terms	of	an	expansionary	economy.	Intentionally,	the	allocation	

of	 the	 portfolio	 from	 2013	 should	 have	 been	 allocated	 differently	 in	 order	 for	 the	 MV-

optimization	to	beat	the	BL	and	CAPM.	An	examination	by	Merton	(1980)	found	that	the	expected	

returns	of	the	MV-analysis	are	difficult	to	estimate.	This	is	also	the	case	for	our	findings,	as	the	

tangency	 portfolio	 shows	 to	 have	 a	 significant	 large	 expected	 return	 in	 the	 out-of-sample	

estimation	during	the	beginning	of	the	period,	however,	this	is	not	actually	a	realization	in	the	

true	portfolio	returns.		

	

Moreover,	 a	 two-asset	 case	 also	 gives	 quite	 an	 intuitive	 interpretation	 of	 the	 result,	 but	 for	

instance,	selecting	a	larger	investment	universe	would	also	have	affected	the	expectations	and	

results	 of	 the	 mean-variance	 analysis.	 Simply,	 including	 more	 (low	 correlated)	 assets	 would	

result	in	decreasing	portfolio	variance	because	of	the	diversification	(also	known	as	unsystematic	

risk),	 which	 is	 even	more	 diversified,	 if	 the	 assets	 have	 a	 negative	 correlation.	 Generally,	 an	

important	 key	 factor	 is	 to	 strive	 after	 portfolio	 diversification,	 due	 to	 maximization	 in	 the	

protection	of	the	investments	(Fabizzo,	Markowitz,	Kolm	&	Gupta,	2012).	Increasing	securities	in	
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the	portfolio	result	in	lower	risk	if	the	risk-free	rate	is	maintained	the	same.	Yet,	the	S&P	500	is	

already	well-diversified	and	Meccui	(2009)	specifies	a	well-diversified	portfolio	as	not	heavily	

exposed	to	an	individual	stock.	The	chosen	portfolio	allocation	can,	therefore,	be	argued	to	be	

well-diversified,	but	does	hedge	us	in	terms	of	diversification	if	it	is	going	bad	in	stocks,	not	many	

correlated	assets	are	present	in	order	to	account	for	a	possible	decrease	in	stock	and	the	other	

way	around.		

	

Bessler	and	Wolf	(2015)	investigate	the	effects	of	adding	commodities	into	a	stock-bond	portfolio.	

They	examine	different	portfolios	among	MV-optimization	as	well	as	BL-optimization	on	out-of-

sample	data.	They	conclude	that	the	BL	optimized	portfolio	performs	better	than	the	comparable	

portfolios	measured	by	the	Sharpe	ratio	and	among	other	measurements.	The	same	is	found	in	

our	 study,	 and	 especially	 from	 2016	 -	 2018,	 the	 Sharpe	 ratio	 is	 significantly	 high	 for	 the	 BL	

portfolio	compared	to	the	MV	and	CAPM	benchmark.	Additionally,	research	implied	by	Bessler	

and	Wolf	(2015)	suggests	developing	and	estimate	return	prediction	models.	This	is	carried	out	

for	our	analysis,	where	the	forecast	of	stocks	and	bonds	is	used	in	relation	to	the	views	of	the	

Black	Litterman	model.	This	approach	 indicated	superior	performance	 in	 terms	of	 the	Sharpe	

ratio	 for	all	periods	and	sub-period	besides	2000	-	2009.	Since	the	market	portfolio	performs	

poorly	in	recessions,	observed	in	the	cumulative	portfolio	returns,	the	BL	must	deviate	from	the	

market	 portfolio	 significantly	 in	 order	 to	 have	better	 performance	measures	during	 this	 sub-

period.	 Harries	 et	 al.	 (2017)	 examine	 the	 out-of-sample	 performance	 of	 BL	 compared	 to	 a	

benchmark	strategy	and	native	portfolio.	They	conclude,	under	different	performance	measures,	

that	the	BL	portfolios	outperform	the	benchmark	and	the	native	portfolios.	For	our	overall	out-

of-sample	period,	their	conclusion	is	similar	to	our	findings.	

	

It	 can	be	 argued	whether	 the	 effect	 of	 transaction	 costs,	which	under	 real-world	 scenarios	 is	

included,	would	have	resulted	in	different	conclusions.	Transaction	costs	would	overall	have	an	

impact	on	the	profitability,	but	dependent	on	the	exchanges	as	these	fees	vary.	Throughout	our	

research,	the	transaction	fees	are	excluded.	Though,	including	transaction	cost	would	give	a	more	

realistic	 picture	 of	 the	 profitability,	 since	 many	 of	 these	 transaction	 costs	 are	 based	 on	 the	

percentage	of	 the	amount	 traded.	 In	 fact,	 the	benefits	of	 rebalancing	may	be	smaller	 than	 the	

inclusion	 of	 costs,	 in	 terms	 of	 turnover,	 see	 Davis	 and	 Norman	 (1990)	 for	 a	 mathematical	

explanation,	and	Acharya	&	Pedersen	(2005)	for	empirical	study.	There	have	been	discussions	on	

the	 role	 of	 the	 transaction	 cost	 in	 optimization.	 A	 vast	 majority	 of	 the	 literature	 uses	 the	

transaction	 costs	 ex-post,	 e.g.	 Bollerslev	 (2016)	 and	 Hautsch	 et.	 al	 (2015),	 analyzing	 how	 a	

portfolio	strategy	would	have	performance	 including	transaction	costs	of	a	given	size.	But	the	
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transaction	costs,	in	practice,	are	often	included	ex-ante	so	it	becomes	a	part	of	the	optimization	

problem.	Hautsch	and	Voigt	(2017)	point	out,	including	transaction	costs	is	quite	important	for	

the	reallocation	of	the	portfolios	but	reduces	the	benefit	of	predictive	models.	Since	our	model	is	

applying	a	predictive	model	in	terms	of	views	generation,	we	do	not	wish	for	the	model	to	reduce	

the	explanation	of	the	forecast.		

	

Furthermore,	 the	 discussion	 of	 investor	 views	 can	 be	 important	 and	 is	 rather	 complicated	

determining	the	view	being	the	main	component	influencing	the	views.	Many	investors	just	rely	

on	financial	analysts'	reviews	to	determine	their	views.	A	framework	that	is	more	validated	is	the	

application	of	GARCH-derived	views	proposed	by	Beach	and	Orlov	(2007).	Conclusion	on	their	

analysis,	based	on	a	risk-adjusted	decision,	shows	to	have	beneficial	moments	applying	EGARCH-

M,	giving	the	highest	return	among	the	compared	portfolios.	Another	ambiguous	decision	related	

to	the	views	is	the	application	of	absolute	views	instead	of	relative	views.	A	substantial	part	of	

our	 study	 concentrates	 around	 the	 stock-bond	 relationship,	 hence	 prevalent	 to	 implement	

relative	considerations.	They	apply	absolute	views,	which	also	make	sense	since	GARCH	takes	

into	account	volatility	clustering	which	occurs	when	 large	changes	 in	returns	are	 followed	by	

another	large	change	(in	absolute	terms)	and	oppositely,	small	changes	followed	by	other	small	

returns.	Walter	(2013)	refers,	the	absolute	view	is	giving	larger	improvements	in	the	precision	of	

the	estimate.	It	does	not	appear	for	literature	to	provide	much	information	about	predictions	and	

any	empirical	evidence	in	terms	of	using	absolute	returns.	Mostly,	many	have	applied	a	relative	

view	in	comparing	assets,	just	like	our	empirical	analysis.	The	P-matrix	has	also	been	introduced	

differently.	A	proposal	by	Satchell	and	Scowcroft	(2000)	is	an	equal-weighted	scheme	to	express	

the	weights	of	the	asset	related	to	an	indirect	relative	view,	while	He	and	Litterman	(1999)	apply	

a	market	capitalization	weighting	scheme.	

	

Allaj	(2019)	and	Fabozzi	et	al	(2006)	use	momentum-strategies	to	generate	views	and	compare	

this	out-of-sample	with	respect	to	different	portfolios.	Allaj	(2019)	suggests	that	the	views	are	

derived	by	maximizing	the	expected	value	of	a	quadratic	utility	function	of	the	portfolio	excess	

returns,	where	views	are	generated	by	using	reverse	optimization.	In	particular,	this	means	that	

the	investor	defines	its	own	portfolio	weights,	allowing	the	investors	to	directly	to	express	views.	

They	find	the	superior	performance	of	the	BL	model,	consequently,	public	information	combined	

with	private	gives	benefits	that	have	to	be	 incorporated	in	the	model.	 It	cannot	be	said	which	

proposal	of	the	view	provides	the	best	and	most	accurate	results,	as	no	literature	has	shown	the	

comparison	 of	 these	 different	 approaches,	 though	 it	 can	 be	 said	 that	 the	 forecast	 estimation	

provides	a	more	proper	estimate	rather	than	just	assuming	or	applying	analyst	recommendation.		
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6.2	Suggestions	for	further	research	
Further	 research	 suggested	 the	application	of	 rolling	data	 in	 the	prediction	models,	 to	obtain	

more	consistent	data	throughout	the	analysis,	just	as	the	rest	of	the	analysis.	The	use	of	rolling	

data	 in	 the	prediction	models	 should	give	a	more	precise	 forecast	of	 the	premiums.	Since	 the	

equity	premium	model	consistently	is	outperforming	the	historical	average,	according	to	Rapach	

et.	al	(2008)	and	as	well	as	the	analysis,	the	equity	premium	is	doing	superior	compared	to	how	

the	 returns	 in	 reality	 perform,	 and	 since	 the	 investor	 view	 does	 depend	 on	 these	 regression	

models,	a	more	accurate	picture	of	the	stock	return	predictability	is	desired.	The	bond	premium	

seemed	to	capture	more	of	the	magnitude	behind	the	returns,	hence	it	should	be	provided	with	a	

more	precise	forecast	in	terms	of	the	rolling	window.		

	

Clark	 and	 McCracken	 (2008)	 from	 Federal	 Reserve	 in	 St.	 Louis	 investigates	 the	 terms	 of	

improving	forecast	accuracy	by	combining	recursive	and	rolling	forecasts.	Often,	the	terms	either	

apply	to	the	rolling	window,	because	financial	data	are	known	to	have	long	observations	(Fama	

MacBeth,	 1973),	 or	 recursive	 estimation.	 Their	 findings	 show	 beneficial	 by	 combining	 the	

recursive	and	rolling	forecast,	evaluated	on	a	2.5%	significance	level,	in	order	to	provide	better	

individual	 prediction	 models	 that	 consistently	 improve	 the	 forecast	 accuracy.	 The	 bias	 of	

forecasting	 accuracy	 is	 measured	 in	 terms	 of	 MSE	 and	 RMSE.	 Here,	 in	 line	 with	 Clark	 and	

McCracken	(2008),	one	would	expect	for	the	equity	premium	prediction	models	in	our	analysis	

to	have	been	more	accurate	in	terms	of	forecast,	thus	giving	different	investor’s	views	with	the	

thought	that	the	views	should	have	more	adjusted	of	the	forecast	period,	which	would	result	in	

better	portfolio	returns.	Since	the	BL	model	was	not	able	to	hedge	itself	against	recession,	it	might	

have	been	able	to	improve	this	...	

	

Practically,	implementing	recursive	and	rolling	forecasts	would	imply	to	calculate	combinational	

weights.	 A	 linear	 combination	 of	 the	 recursive	 and	 rolling	 forecast	 is	 equivalent	 to	 the	

corresponding	 estimates.	 The	 linear	 estimation	 combination	 is	 given	 as,	𝛽n," = 𝛼"𝛽m," + (1 −

𝛼")𝛽l," .	This	gives	both	the	ability	to	derive	the	optimal	window	but	also	the	optimal	combining	

weights,	𝛼" ,	in	the	presence	of	a	single	structural	break.	The	optimal	strategy	found	by	Clark	and	

McCracken	 is	 to	 combine	 a	 rolling	 forecast	 using	 post-break	 observations	 with	 a	 recursive	

forecast	that	uses	all	observations.	Overall,	this	would	be	interesting	to	implement	and	could	have	

led	to	more	precise	estimations	of	the	view	generation,	which	might	have	resulted	in	improved	

portfolio	returns	of	the	Black-Litterman	model.	
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A	 large	part	 of	 applying	prediction	models	was	 the	 ability	 to	provide	 a	model	which	 actually	

focused	on	real	financial	data,	instead	of	assuming	data,	hence	these	investor	views.	The	R2	of	the	

regression	models	was	used	as	a	determinant	measure	in	order	to	grasp	the	robustness	of	the	

OLS-regression	on	the	sample	set.	Some	of	the	results	gave	a	poor	coefficient	in	terms	of	R2	but	

was	 still	 applied	 in	 the	 combination	 forecast	 as	 the	 results	of	 the	equity	premium	prediction,	

aware	 that	 the	 R2	 was	 zero	 for	 some	 of	 the	 single	 predictor	 variables	 and	 could	 lead	 our	

conclusion	 of	 prediction	 to	 be	 questioned	 for	 validity.	 Accordingly,	 an	 improvement	 of	 the	

analysis,	a	suggestion	would	be	to	remove	the	predictor	variables	with	zero	explanation	in	the	

equity	premium.	However,	if	these	single	predictor	models	were	removed	from	the	model,	the	

conclusion	 would	 still	 likely	 be	 very	 similar,	 that	 the	 forecast	 combination	 outperforms	 the	

historical	average.		

	

Investigations	 of	 the	 risk-adjusted	 coefficient,	 𝜆,	 or	 the	 scalar,	 𝜏	 can	 be	 analysed	 in	 terms	 of	

sensitivity.	Many	researchers	have	sought	to	establish	these	constants,	but	no	final	statements	

have	been	made.	Practically,	most	people	have	different	risk	aversion	depending	on	the	world-

economy	and	static	 risk	aversion	 is	not	a	 real-world	 implementation.	Further	research	would	

imply	 for	 a	 setup	where	 an	 investor	 is	 very	 risk-averse,	 compared	 to	 the	 opposite,	 less	 risk	

aversion.	 A	 situation	where	 the	 investor	 is	more	 risk-averse	would	 imply	 a	 large	 divergence	

between	the	prior	and	the	posterior.	Various	discussions	regarding	calibration	of	𝜏	have	been	

made.	Black	and	Litterman	(1992)	describe	the	uncertainty	in	the	mean	to	be	smaller	than	the	

uncertainty	of	the	returns,	hence	it	will	be	close	to	zero.	They	propose	in	their	paper	from	1999,	

the	 as	 a	 ratio	 related	 to	 the	 distribution	 variance,	 therefore	 calculated	 as	 1/t.	Walter	 (2013)	

investigates	three	methods	of	selecting,	by	estimating	tau	from	standard	error	of	the	equilibrium	

covariance	 matrix,	 using	 confidence	 intervals	 or	 examining	 the	 investor's	 uncertainty	 as	

expressed	in	their	portfolio.	This	study	uses	the	third	examination,	where	the	𝜏	is	considered	from	

the	view	of	a	Bayesian	investor,	where	their	fraction	of	the	wealth	is	invested	in	1/(1+𝜏)	risky	

asset	and	the	fraction	𝜏/(1 + 𝜏)	 in	risk-free	assets.	Bevan	and	Winkelman	(1998)	estimate	the	

factor	to	be	around	0.5	-	0.7,	while	Satchell	and	Scowcroft	(2000)	use	a	tau	equal	to	1.	
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7.	Conclusion	
The	purpose	of	 this	 thesis	was	 to	 investigate	 the	construction	of	portfolios	using	Markowitz’s	

modern	 portfolio	 theory	 and	 the	 Black-Litterman	 model,	 and	 thereafter	 evaluate	 their	

performance	out-of-sample.	By	estimating	equity-	and	bond	prediction	models,	we	were	able	to	

generate	 our	 investor	 views	 regarding	 the	 multi-asset	 portfolio	 used	 in	 the	 Black-Litterman	

portfolio.		

	

The	 generation	 of	 the	 optimal	 portfolios	 followed	 two	 different	 construction	 methods.	 The	

process	 required	historical	 return	observations	 of	 the	 assets	 to	 generate	 the	 expected	 return	

vectors	in	the	mean-variance	model.	In	contrast,	the	Black-Litterman	model	applied	the	market	

equilibrium	returns	arising	from	the	CAPM	relation.	This	led	to	two	quite	deviating	foundations	

for	the	optimization	process	in	the	allocation	models.	The	common	feature	of	the	models	was	the	

computation	of	the	covariance	matrix,	indicating	the	relationship	among	the	assets.		

	

Furthermore,	the	Black-Litterman	model	required	the	subjective	views	of	the	investor	to	deviate	

from	the	market	equilibrium.	This	was	done	by	estimating	premium	prediction	models	for	the	

stock	index	and	the	bond	index.	It	appeared	from	our	results	that	the	prediction	models	provided	

us	with	views	that	led	to	some	deviation	from	the	CAPM	allocation.	However,	it	did	not	lead	to	

significant	 outperformance	 compared	 to	 the	 other	 portfolios,	 accounted	 for	 risk.	 Overall,	 the	

allocation	overweight	was	in	general	observed	in	the	stock	index,	mainly	fluctuating	around	the	

60:40	 CAPM	 allocation,	 which	 probably	 contained	 an	 optimistically	 high	 allocation	 towards	

stocks,	to	begin	with.		

	

The	optimal	weight	allocation	in	the	rolling	mean-variance	model	was	overall	dominated	by	the	

bond	index,	which	provided	a	steady	portfolio	return	and	a	lower	risk.	This	allocation	made	sense,	

considering	that	the	Sharpe	ratio	was	the	objective	of	the	optimization.	On	the	other	hand,	the	

Black-Litterman	portfolio	provided	an	overweight	towards	the	stock	index,	especially	at	the	last	

years	of	the	investment	horizon.	This	led	to	a	total	opposite	risk	allocation	in	the	two	models,	

where	the	main	risk	in	the	Black-Litterman	portfolio	originated	from	stocks,	while	the	equivalent	

in	the	mean-variance	portfolio	suggested	a	risk	overweight	in	bonds.	The	one	period	estimation	

period	indicated	that	the	risk	allocation	in	the	Black-Litterman	model	was	more	unbalanced	than	

what	we	observed	from	the	mean-variance	model,	where	the	risk	allocation	was	close	to	50:50.			
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When	testing	the	performance	of	the	portfolios	out-of-sample,	we	found	that	the	mean-variance	

allocation	overall	provided	us	with	 the	 superior	portfolio	performance,	when	 testing	by	 their	

respective	 Sharpe	 ratios	 and	 M-squared;	 however	 closely	 followed	 by	 the	 Black-Litterman	

portfolio.	The	Black-Litterman	portfolio	generally	followed	the	CAPM	market	portfolio	allocation	

quite	closely	during	the	first	years	of	the	investment	horizon	without	any	significant	deviations.	

This	lead	the	Black-Litterman	portfolio	to	drop	in	accordance	with	the	CAPM	portfolio,	due	to	a	

high	allocation	towards	stocks	in	bear	markets.	On	the	other	hand,	the	mean-variance	portfolio	

seemed	to	provide	a	steady	increase	in	portfolio	return	without	any	extreme	negative	spikes	in	

periods	of	recession	or	uncertainty.	In	terms	of	cumulative	realized	returns,	the	Black-Litterman	

model	was	the	favoured	model;	however,	it	was	also	the	riskiest	portfolio.		

	

When	 splitting	 the	 out-of-sample	 period	 into	 sub-samples,	 we	 found	 that	 the	mean-variance	

portfolio	significantly	outperformed	 the	Black-Litterman-	and	CAPM	portfolio	 for	many	years.	

The	mean-variance	portfolio	was	the	only	portfolio	with	a	satisfactory	Sharpe	ratio	during	the	

first	ten	years	of	the	out-of-sample	period,	where	Black-Litterman	and	CAPM	obtained	low	(and	

even	negative)	Sharpe	ratios.	The	outstanding	performance	from	the	BL	model	did	not	occur	until,	

roughly,	year	2016.	In	this	period,	the	BL	and	CAPM	portfolio	both	outperformed	the	MV	portfolio	

by	all	measures.		

	

The	mean-variance	 portfolios	 appeared	 to	 have	 performed	 surprisingly	well,	 considering	 the	

mentioned	shortcomings	of	the	model.	It	awarded	a	high	allocation	towards	bonds,	which	made	

it	perform	well	during	recessions,	such	as	we	seen	in	our	sample.	Oppositely,	the	Black-Litterman	

portfolio	 assigned	 higher	 weightings	 in	 stocks,	 which	 were	 penalized	 during	 economic	

slowdowns.	However,	 it	 did	 remarkably	well	 during	 the	 last	 observed	expansion.	 Finally,	 our	

results	do	not	necessarily	mean	that	this	is	consistently	accurate.	It	is	highly	dependent	on	the	

asset	 composition	 and	 the	 selected	 parameters.	 It	 is	 fair	 to	 assume	 that	 a	 different	 use	 of	

parameters	would	have	changed	the	results	significantly.		
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9.	Appendices		

Appendix	1	-	Master	formula	of	Black	Litterman	

A	derivation	for	than	alternative	formula	of	the	Black	Litterman	for	the	posterior	expected	return	

can	be	shown	below	(Chen	et.	al,	2015):	

𝜇∗ = ((𝜏∑).% + 𝑃#𝛺.%).%((𝜏∑).%Π + 𝑃#𝛺.%𝑄)	

= ((𝜏∑).% + 𝑃#𝛺.%).%(𝜏∑).%Π) + ((𝜏∑).% + 𝑃#𝛺.%𝑃).%𝑃#𝛺.%𝑄	

= (𝜏∑ − 𝜏	∑𝑃#(𝑃𝜏∑𝑃# + Ω).%𝑃𝜏∑))(𝜏∑).%Π + ((𝜏∑).% + 𝑃#𝛺.%𝑃).%𝑃#𝛺.%𝑄	

= (Π − 𝜏∑𝑃#(𝑃𝜏∑𝑃# + Ω).%𝑃Π) + ((𝜏∑).% + 𝑃#𝛺.%𝑃).%𝑃#𝛺.%𝑄	

= (Π − 𝜏∑𝑃#(𝑃𝜏∑𝑃# + Ω).%𝑃Π) + (𝜏∑)(𝜏∑).%((𝜏∑).% + 𝑃#Ω.%𝑃).%𝑃#Ω.%𝑄	

= (Π − 𝜏∑𝑃#(𝑃𝜏∑𝑃# + Ω).%𝑃Π) + (𝜏∑𝑃#(𝑃#).%)(Ω(𝑃#).% + 𝑃𝜏∑).%𝑄	

= (Π − 𝜏∑𝑃#((𝑃𝜏∑𝑃# + Ω).%𝑃Π) + (𝜏∑𝑃#)(Ω + 𝑃𝜏∑𝑃#).%𝑄	

Π + (𝜏∑𝑃#((𝑃𝜏∑𝑃# + Ω).%)(𝑄 − 𝑃Π)	

	

	

Appendix	2	–	Optimal	portfolio	alternative	

An	alternative	way	of	writing	this,	after	incorporating	the	new	combined	return	distributed		

𝑤∗ =
1
𝜆
𝛴�	.%𝑀�.%[(𝜏𝛴).%	Π + 𝑃′𝛺.%	𝑄]	

	

Sorting	for	covariance	

	∑�.% 	= (𝛴 +𝑀�.%)	.% = 𝑀� −𝑀�	(𝑀� + 𝛴.%).%𝑀� 	

	∑�.%	𝑀�.%	is	simplified	

	

	∑�.%	𝑀�.% =
𝜏

(1 + 𝜏) �
𝐼 − 𝑃MF"#𝑃	

𝛴
(1 + 𝜏)�

	

Where	𝐴 = o
]
+ &p

(%I])&

M
	(He	and	Litterman,	1999(b)).	Applying	this	rule,	the	optimal	weights	can	

also	be	denoted	as	
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𝑤∗ =
1

(1 + 𝜏)
(𝑤3 + 𝑃′	𝑥	𝐴)	

Where	𝑤3 = (𝜆𝛴).%𝛱	is	the	market	equilibrium	portfolio	and	the	weights	of	each	portfolio	is	

given	by	the	vector	A	defined	as:	

			𝐴 = ]o"#	q
r

− �o
]
+ 𝑃𝛴𝑃M�

.%
𝑃𝛴𝑤3 − �o

]
+ 𝑃𝛴𝑃M�

M
𝑃𝛴𝑃M𝜏𝛺.%	 q

r
							

	

	

Appendix	3	–	Equity	premium	predictor	

All	data	are	provided	by	Goyal	and	Welch	(2008).	The	data	are	available	at	
www.bus.emory.edu/AGoyal/Research.html.		
	
	
Names	 Description	 Source	

CRSP_wv		

The	total	return	of	the	stock	minus	the	risk-free	rate	(T-Bill).	The	
CRSP	value-weighted	index	without	dividends	is	applied.	The	

continuously	compounded	returns	are	applied	for	this	r=ln(Pt/Pt-1)	 CRSP		
Dividend-Price	
ratio	(D/P)		 Difference	between	log	of	dividends	and	log	of	prices		 NBER		

Earnings-Price	
ratio	(E/P)	 Difference	between	log	of	earnings	and	log	of	prices	 Robert	Shiller	

	
Book-to-

Market	ratio	
(B/M)		

	
The	ratio	of	book	value	to	market	value	for	the	

Dow	Jones	Industrial	Average.	

	
	Value	Line	&	Dow	
Jones	Industrial	

Average	
Dividend-
Payout	ratio	

(DE)	 Difference	between	log	of	dividends	and	log	of	earnings	 	
	
Dividend-yield	

(D/Y)	 Difference	between	log	of	dividends	and	log	of	lagged	prices	 	
	
Stock	Variance	

(svar)	 The	sum	of	squared	daily	returns	on	S&P	500	 CRSP	

Net	Equity	
Expansion	
(ntis)		

	
The	12-month	moving	sums	of	net	from	NYSE	listed	stock	divided	

by	total	end-of-year	market	capitalization	of	NYSE	stocks	 NYSE		
Treasury	Bills	

(tbl)		 3-month	Treasury	bill	Secondary	market		 FRED		
Long-term	
yield	
(lty)	 Long-term	government	yield		 Ibbotson		
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Long-term	
return	(ltr)	 Long-term	government	returns	 Ibbotson	

	
Term	Spread	

(tms)		 								Difference	between	long-term	yields	and	treasury	bill		
Default	Return	
Yield	(dfy)	

Difference	between	BAA	rated	bonds	and	AAA	rated	corporate	
bonds	bonds	 FRED		

	
Default	Return	
spread	(drs)		

	
Difference	between	the	long-term	corporate	bonds	and	long-term	

government	bonds	
	

FRED		
	
Inflation	(infl)	 Consumer	Price	index	 Labour	Statistics	
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Appendix	4	–	Graphs	of	single	equity	premium	predictors		
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Appendix	5	–	Graph	of	term	premium		

Term premium from 1980 to 2020.  
 

	
	
	

	

Appendix	6	–	Graphs	of	equity	premium	forecast		
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Appendix	7	–	Regression	statistics	on	bond	premium		
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Appendix	8	–	Black-Litterman	weights	before	scaling	

 

 
 
 
	
 


