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Abstract 

 

The discipline of predicting company defaults is of great economic significance both 

due to the consequences for affected businesses and individuals, and due to the implications 

for investment and lending activity. This thesis investigates the discipline through an academic, 

practical and methodological lens, with the aim of contributing to the improvement of the 

predictive techniques available. The thesis evaluates three hypotheses deducted from the 

pertinent theory. In the first hypothesis, it examines to what extent the classic academic models 

of default probability have discriminative power. In the second and third hypothesis, it 

considers through what measures the practical model of credit risk can be improved. In the 

analysis of to what extent the classic academic models of default probability have discriminative power, the 

thesis applies the original frameworks of Altman, Ohlson, Merton and their respective re-

estimations on a modern portfolio. The portfolio distinguishes itself from the related 

literature with a scope simultaneously covering a wide range of OECD countries and multiple 

industries. This analysis concludes that the classic academic approaches to credit risk do have 

significant discriminative power in a contemporary setting. The subsequent analysis of through 

what measures the practical model of credit risk can be improved is split into two parts. The first is 

academically driven and expand upon the practical model by combining the accounting-

based and market-based paradigms of the field. This framework is labelled the “Default 

Model of Synthesis”, and the thesis finds that it is superior to the model relied upon by 

practitioners. The second is methodologically driven and transcends a machine learning 

algorithm into the sphere of default probability. The research concludes that the practical 

model can be improved significantly by applying a random forest methodology. This finding 

also serves as a platform for discussing the implications of machine learning in the practical discipline 

of default probability. The discussion points toward interpretability and “institutional 

stickiness” as non-exclusive explanations for the neglection of machine learning amongst 

practitioners. Ultimately, the research contributes to the field of default probability both 

practically and academically. First, it conceptualizes a framework that relies on market and 

accounting theory in synthesis. Second, it extends the practical model to default probability 

through the application of a random forest algorithm.  
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List of Abbreviations: Financial Ratios 

 

 

Financial Ratio Calculation Description Origin 

WC/TA “Working Capital” divided by “Total Assets” Altman (1968) 

RE/TA “Retained Earnings” divided by “Total Assets” Altman (1968) 

EBIT/TA “Earnings before Interest and Tax” divided by “Total Assets” Altman (1968) 

MV/DB “Market Value of Equity” divided by “Book Value of Debt” Altman (1968) 

SA/TA “Sales” divided by “Total Assets” Altman (1968) 

Size Log of “Total Assets” divided by “Adj. GNP for OECD” Ohlson (1980) 

TL/TA “Total Liabilities” divided by “Total Assets” Ohlson (1980) 

CL/CA “Current Liabilities” divided by “Current Assets” Ohlson (1980) 

NI/TA “Net Income” divided by “Total Assets” Ohlson (1980) 

FFO/TL “EBITDA” minus “Change in NWC” divided by “Total Liabilities” Ohlson (1980) 

NIChange “NIt” minus “Nit-1” divided by “│NIt│” plus “│Nit-1│” Ohlson (1980) 

LevDummy “1” if “Total Liabilities” > “Total Assets”, “0” otherwise Ohlson (1980) 

NIDummy “1” if “Net Income” < 0 for the past two years, “0” otherwise Ohlson (1980) 

MertonDD “Distance to Default” in Original Merton Framework Merton (1974) 

NaïveDD “Distance to Default” in Naïve Merton Framework 
Bharath & 

Shumway (2008) 

TL/EBITDA “Total Liab.” divided by “Earngs. b. Interest, Tax, Dep. and Amort.” 
Plenborg et al. 

(2017) 

FFO/CAPEX “EBITDA” minus “Change in NWC” divided by “Capital Exp.” 
Plenborg et al. 

(2017) 

FFO/CL “EBITDA” minus “Change in NWC” divided by “Current Liabilities” 
Plenborg et al. 

(2017) 

WC/SA “Working Capital” divided by “Revenue” 
Plenborg et al. 

(2017) 
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1. Introduction 

 

On the 27th of April 2020, the prudent Danish bookstore Arnold Busck filed for 

bankruptcy. This came in the wake of the events facilitated by the Coronavirus disease, which 

to a large extent have paused business activity throughout the globe. While this public health 

crisis has been a shock to the economy and inevitably will carry a recession with it, the 

challenge of predicting what companies that are at risk of going default remains. Why was it 

specifically an illustrious bookstore with a history of more than a century, which was the first 

large company in Denmark to become insolvent?  

 

A corporate failure creates shockwaves that will affect multiple stakeholders; employees 

are discharged, suppliers loose contracts, shareholders’ value disappears and business lenders 

will not be repaid. The negative consequences are widespread. On the other hand, 

bankruptcies are a natural occurrence in the business landscape. To limit the negative 

consequences and make optimal business decisions, a stakeholder need to understand why a 

default happens. For this reason, a quantifiable link needs to be established between the 

intangible external pressures, whether they come in the form of risk inherent in operations 

or force majeure events, and a firm’s ability to withstand these. The stakeholder can obtain 

such quantifiable links through financial statements where the firm’s leverage, solvency or 

liquidity can be assessed, or he can be of a belief that these are already priced by the market 

and examine the firm’s stock price. These two sources of information might be powerful on 

their own, but if employed through a probability of default model then the basis of the 

decision is even more informed. Concerns like this are the center of attention within the 

discipline of default probability, which is an integral department in financial institutions with 

the role of guiding lending activity.  

 

The practical discipline of credit risk is built on top of a vast academic field, which is 

deeply embedded in the corporate finance literature. Both the practical and academic side of 

default probability is heavily influenced by their methodological underpinnings, wherefore 

progressions in statistical analysis drive the development of the field both amongst scholars 

and amongst professionals. However, it is simultaneously a discipline which up until this 

point has been divided in two theoretical trenches facilitating a clash of paradigms. 

Furthermore, the field of credit risk has to a large extent been neglecting the advancements 

of machine learning algorithms. Like scholars before, this thesis will address how progression 
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can be made within default probability, however, we shift the focus to relatively untouched 

lands. We are interested in both the conflict between the two strands of the literature and 

the methodological possibilities of machine learning. In this regard, we answer the following 

research question:  

 

“To what extent does the classic academic approaches to default probability have discriminative power, and 

through which measures can the practical approach to credit risk be improved?” 

 

In answering this, we will showcase the classic scholars of the discipline’s relevance in a 

modern portfolio context. Furthermore, we will scrutinize the practical approach to default 

probability, and formalize how it can be improved upon by looking to both paradigms of the 

literature. Moreover, we will apply techniques from machine learning, in order to establish a 

platform for discussing the neglection of algorithms in practical credit risk. As such, the goal 

of the research is not to induct a new universal methodology, but to conceptualize a 

framework where the practical approach to probability of default can be improved.  

 

1.1 Contribution to the Literature: Why This Thesis is Interesting? 

In the existing literature there is research which considers both the testing of the existing 

default probability models and extensive alterations in order to develop new frameworks. 

This thesis contributes to the literature in five distinct ways, where two are deemed main 

contributions and three considered supporting additions.  

 

First of all, the thesis develops a practical probability of default (PD) framework which 

combines the two academic paradigms within the credit risk literature. Second, it extends the 

practical model of credit risk through the application of a random forest algorithm. 

Supporting these two contributions, the thesis provides an extensive testing of the classic 

academic models within the discipline. Further, the thesis expands the portfolio scope in its 

research compared to the pertinent literature, as the focus for those is more limited in terms 

of both country and industries. Finally, it discusses the precedence of logistic regression in 

the practical field of default probability and provide two plausible explanations herefore. 

 

The thesis at hand is interesting to the default probability discipline both academically 

and practically. First, it is relevant for the academia of credit risk as it reviews the main tenants 

within the field in a modern portfolio, as the scope has been expanded to consider all OECD 
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countries across multiple sectors only constrained by the availability of data. Second, the 

thesis is relevant to the practical discipline of default probability through its conceptualization 

of a new framework which incorporates both the market and the accounting theory of the 

field. Further, the research is relevant to practitioners of PD as it extends the practical model 

through machine learning and additionally discusses the implications of this methodology.  

 

1.2 How the Thesis Will Answer the Research Question 

This thesis will be structured as follows. We start by establishing our philosophy of 

science position, as it is fundamental for how we undertake the academic investigation. 

Hereafter, we introduce the theoretical framework which the research of the thesis builds 

upon. This framework includes both the economic theory underlying the default probability 

field and a review of the pertinent literature. The theoretical framework concludes with the 

formulation of three hypotheses, which are set out to guide the answering of the research 

question. 

 

Table 1.1: Hypotheses Formulated from Pertinent Literature and Theory 

# Hypothesis 

1 The classic academic approaches to default probability have discriminative power on a modern portfolio 

2 The practical model outperforms the academic but is improved through a synthesis of market and accounting theory 

3 The discriminative power of the practical model can be improved through the application of machine learning 

 

Following this, we outline for the methodological applications utilized in the thesis. 

Subsequently, we outline our data collection, operationalization processes, and the 

calculation of financial ratios and model inputs with a basis in the theoretical framework. 

This brings us to our results.  

 

Our results will be testing the three hypotheses formulated in the theory chapter. The 

first entails an application of three classic academic models to the modern portfolio collected 

for this research, with the addition of a re-estimation for each respective model. The second 

consists of introducing the practical approach to default probability and furthermore 

expanding it through a combination of the paradigms in the academic literature. The third 

revolves around extending the practical model utilizing the methodology of machine learning 

algorithms. Then we turn to our discussion.  

 



 
Bridging the Gap Within the Default Probability Discipline: The Default Model of Synthesis │Brandt & Visbjerg 

|12| 

 

We discuss the striking neglection of machine learning in the practical field of default 

probability, reflecting on algorithms’ ability to reach higher levels of predictive accuracy. 

Herefore, we bring two plausible and non-exclusive explanations of interpretability and 

“institutional stickiness”, respectively. This discussion contemplates the findings of the thesis 

and sets the implications of the research into perspective. Next, we reflect on the validity of 

the findings we have made. Ultimately, we conclude the research, present our contributions, 

and suggest avenues for further academic investigation.  

 

Carrying the thesis throughout is its research design, which in the case at hand is two-

fold. It is overarchingly a theory testing design, where it is deductive and applies hypotheses 

to guide the academic endeavor. Yet, it also has an empirical underpinning as it considers the 

practical side of credit risk, which is conceptualized in order for it to be studied in the 

theoretical scope. It further aims to extend the practical discipline through rationalizations 

grounded in the supporting theory. Having outlined the structure and the research design of 

the thesis, we proceed to delimit the scope of the research.  

 

1.3 Delimitation and How We See Probability of Default 

Within the credit risk literature, a distinction is made between the different input factors 

for calculating a stakeholder’s expected loss. These input factors are termed as exposure at 

default, loss given default and probability of default. Of these three elements, the research 

conducted in this thesis will only be devoted to probability of default. We view corporate 

defaults as a dichotomous event, entailing that a firm has either defaulted or is still operating. 

The discriminative power of models employing this as the definition has been shown to be 

equivalent to models employing laxer definitions (Engelmann & Rauhmeier, 2011). When 

referring to defaults we use bankruptcy, firm failure, insolvency and default interchangeably 

and do not consider whether a given firm is restructured and returns to an operating state 

after the event. Similarly, the terms of credit risk and probability of default is used to describe 

the likelihood of the default event for a given firm. Here, probability of default is given as a 

modelled score denoting class belonging that is restricted to the range between zero and one. 

Throughout the thesis the only forecast horizon for which the probability of default is 

modelled is a one year ahead horizon. This is in line with the length of the forecast horizon 

used in practice (ibid.).  
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We further make a distinction between statistical techniques and machine learning. In 

some parts of the machine learning literature, regression models such as the linear and the 

logistic is included (Baesens, 2014). We consider regression models statistical property and 

delimit the machine learning field to consider techniques such as support-vector machines 

(SVM), classification trees (CT) and neural networks (NN). Specifically, we draw the 

distinction between the two fields at the point of where the machine learning paradigm is 

born, following the distinction of Breiman (2001). As such, regression models exist outside 

the context of machine learning, wherefore it is considered a statistical model. Likewise, 

SVM, CT, NN and their likes do not exist outside this context, wherefore those are placed 

within machine learning. Along these lines, we do not differ between algorithms, data 

science, and deep learning, and consider those subfields within the branch of machine 

learning. When denoting the practical approach to default probability, we are referring to 

credit risk departments within banks, lenders and financial institutions, which share the 

characteristic of being supervised by legal authorities. In this regard, the practical approach 

and “practitioners” will be used interchangeably. When choosing the default probability 

frameworks of Altman, Ohlson and Merton as applications in our research, we are aware of 

the neglection of later and more modern scholars that have entered the academic discipline. 

However, those have been chosen deliberately, as we consider them both representative and 

fundamental for the field of credit risk today, both academically and practically.   

 

Furthermore, we delimit ourselves from interpreting on the reasons for why specific 

factors drive company failure, as we are occupied with modelling defaults on a larger scale. 

As such, we will not engage in a discussion of the underlying mechanisms and specific 

financial ratios, as the overarching focus is on discriminative power. Likewise, we will differ 

from some parts of the literature by withstraining from trying to categorize companies in 

rating groups, similarly to credit rating agencies. We do however expand the scope compared 

to large parts of the academic literature, as we consider a broader range of companies. As 

such, we are not delimited to a specific industry sector, country or concise time period. 

Instead, we consider data available from publicly listed companies in the OECD countries 

from 2001 to 2019. It is chosen deliberately, in order to investigate default probability models 

in a wider and more comprehensive setting. In this regard we highlight two perspectives. 

First, we are not evaluating the models chosen from the literature in their original setting. 

Second, we are aware that the implications of PD-models are different for a broad portfolio, 

compared to a limited industry specific range of companies.  
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2. Philosophy of Science 

 

Philosophy of science is a discipline within academic research, which in its essence 

underpins the endeavors of knowledge. As such, our philosophy of science position 

permeates the research of this thesis. Most fundamentally, the discipline considers the nature 

of reality, from which several subfields stem. These include the nature of truth, the availability 

of knowledge and the persistence of science. Those notions are captured by the two main 

concepts of philosophy of science, namely ontology and epistemology. Those two are interlinked 

and furthermore fundamental for how we approach the study of probability of default. 

Ontology is in many ways predominant of the two but also the most abstract. It considers 

the concept of being, or mere building blocks of reality. As such, it asks the question of what 

the world is made of, determining the reality of the world and its availability (Moses & 

Knutsen, 2012). The ontological conception to a large extent leads the epistemology, even 

though it does not decide it completely. Epistemological considerations encapsulate the study 

of knowledge. Thus, it assumes what we as researchers can know and in what ways, revolving 

around the question of what knowledge really is (Marsh & Furlong, 2010).  

 

We identify three major strands within the discipline of philosophy of science, including 

Naturalism, Constructivism, and Critical Realism, where the two former are clearly most 

fundamental to the science itself, as it in many ways have driven it. Here, the three 

frameworks differ in their respective ontology and epistemology, and subsequently in their 

inherent methods for research. We as researchers consider ourselves as critical realists. In 

this regard, we consider the framework to be “worn as a skin rather than a sweater”, as it 

underpins our academic research throughout (Marsh & Stoker, 2010). Thus, we are unable 

to compromise its theoretical presumptions, as it is a skin which cannot be taken off. For 

that reason, it should be introduced in relation to its counterparts.  

 

2.1 Critical Realism 

The critical realism (CR) framework will theoretically form our research conducted 

within the default probability discipline. It is a relatively young strand within philosophy of 

science and originates from Roy Bashkar (1975). In many ways, it places itself in between the 

two classical philosophies of science, naturalism and constructivism, as it draws upon the 

ontological and epistemological assumptions of both. Doing so, critical realism is an 

approach to research which considers reality to be explicit, whereas knowledge is both 
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“limited and fallible” (Scott, 2005). Critical realism draws its ontology from the strand of 

naturalism, which considers reality as being existent, real, and independent of our perception 

of it. This constitutes the realist part of CR. For the research at hand, it means that companies 

exist, operate, report accounts and trade on markets independently from our research of 

them. Similarly, models of default probability are being build and utilized independently from 

our bare knowledge of them. This is in contrast to the ontology of constructivism, which 

perceive the world as being socially constructed, where reality only exists as we give it 

meaning (Moses & Knutsen, 2012). Yet, critical realism takes the notion of reality a step 

further than the naturalist framework, as it considers the world as being both deep and 

stratified denoted the “intransitive” dimension (Buch-Hansen, 2012).  

 

Reality takes place in three distinctive levels, or domains. The first is the actual domain, 

where events are taking place. Here companies experience decreasing sales that lead them to 

defaulting in the ultimate case. Above is the empirical domain, where the actual domain is 

revealed and can be studied. It is in this domain that accounting books are published. 

Underlying both of those levels is the deep domain, in which structures determine the above 

levels. It is in the underlying domain that mechanisms such as consumer behavior shape what 

companies eventually default. For the thesis at hand, our research utilizes observable 

characteristics of the empirical domain to develop models that most accurately predict events 

in the actual domain, and exclusively in the actual domain. As such, we do not claim to be 

capable of modelling what mechanisms and structures that take place in the underlying 

domain, as a PD-model does not predict consumer behavior or the like. Thus, there may be 

interconnecting mechanisms in the deep domain, which is foreign to both the models 

developed and the research itself. Being true to the framework of critical realism therefore 

implies that we can never claim to have found complete or infallible truths within the 

ontological sphere (ibid).  
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This serve as a segway into the epistemology of critical realism. Knowledge is never 

definitive, and truth is not obtained through relationships that remain unproven (Scott, 

2005). As such, CR part ways with the epistemological part of naturalism. On the contrary, 

explanations of events are deducted from plausible justifications of events, and thus attempts 

to describe the world are inherently fallible. This is the critical component of CR. The 

epistemological notion of the framework is not however directly equal to that of 

constructivism, as the latter approach emphasizes context and social creation as 

underpinnings of its concept of knowledge (Buch-Hansen, 2012). Instead, the knowledge 

that research acquires is subject to the properties that the setting and data constitute. Wearing 

critical realism as a skin, our research does not claim to provide PD-models that are superior 

in all empirical settings, but rather models that uncover some of the mechanisms facilitating 

company defaults. Those models can be both convincing and probable given the data set 

applicated in the research, however they can never be considered complete.  

 

2.2 Mode of Reasoning and Appropriateness of Critical Realism 

As noted above, the academic endeavors made in critical realist research is inherently 

shaped by the philosophy of science position. For the thesis at hand, the ontological and 

epistemological assumptions of CR serve as a catalyst for contributing to the literature of 

default probability. First, we have retrieved accounting data and market data for a large 

portfolio of companies, which are observable information current in the empirical domain. 

We utilize this to develop different models of default probability, which are events taking 

place in the actual domain. The mechanisms taking place in the deep domain that influence 

Figure 1.1: The Three Realms of Critical Realism 

Empirical Domain 

Observable accounting and market information 

Actual Domain 

Where events are taking place: Company default 

Deep Domain 

Underlying mechanisms influencing the actual domain 

Source: Personal collection 
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the events of the actual domain, is outside the scope of our research. It could be argued that 

those structures are inherent in the significance of what financial ratios that impact defaulting 

companies the most, however, this avenue of reasoning is not the aim of the research.  

 

Second, our mode of reasoning is that of abductive reasoning which revolves around 

retroduction. This method relates to the epistemological assumptions of critical realism and 

concerns finding the best possible explanation for a relationship given the information 

available. It aspires to acquire more complete knowledge of the reality through constantly 

questioning the application of techniques and the nature of data (Belfrage & Hauf, 2016). 

This proposition comes across in our research, as we search for a PD-model that can explain 

the defaults of the portfolio the better. Third, the CR strand of philosophy of science is 

denoted for allowing any range of research methods. This is an extension of its epistemology 

and the intrinsic quest for more complete knowledge. As such, the CR approach allow us as 

researchers to both apply a collection of statistical models, and subsequently include a 

political theorem that originates in institutionalism to discuss the status quo (Moses & 

Knutsen, 2012). Ultimately, it is central to severely underline that we do not claim to test or 

model all possible explanations for defaults, but rather test, develop, and discuss PD-models 

in the empirical vacuum that our portfolio constitutes.   
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3. Theoretical Framework: A Review of Default Probability in Theory, 

Academia and Practice  

 

The theoretical framework of this thesis will be structured a presentation of the 

fundamental core of the research at hand. The section will be divided into seven parts that 

naturally build upon each other. The first introduces the accounting-ratio approach to 

estimating probability of default, as this approach laid the foundation for the academic 

discipline of default risk. Second, it will cover the structural approach, which introduces a 

market view to the probability estimation. For each of the two approaches, we will first 

present its theoretical underpinnings and secondly review the pertinent literature. The 

theoretical underpinnings will shed light on how the specific school is relevant for evaluating 

firm failure whereas the literature review will concern the methodological developments. The 

third part will outline how the underlying theoretical notions of these two paradigms clash 

with each other, as researchers within the field have failed to agree on one overarching 

approach. The fourth part will have a practical focus and cover the basis for approaching 

probability of default amongst practitioners. The fifth part will cover how inventions in 

machine learning and artificial intelligence algorithms have entered the probability of default 

discipline, as well as the theoretical foundation for practitioners’ models being outperformed 

by machine learning. Lastly, a section will outlay the gaps in the pertinent literature, which 

will serve as a catalyst for a new framework to model credit risk, the “Default Model of 

Synthesis”. The section culminates in the formulation of three hypotheses. These hypotheses 

come on the back of the review of the pertinent literature and theory and are formulated in 

order to guide the overarching research question. 

 

3.1 An Accounting-based Approach to Default Probability 

The cornerstone of the default probability discipline is accounting information, as it 

constitutes the foundation for both the practical and the academic field to build upon. 

Therefore, it is natural to introduce this position first.  

 

3.1.1 The Accounting Theory of Credit Risk 

At the very core of a company is liquidity. Liquidity denotes the given firm’s ability to 

meet its liabilities. As such, if the company is short of liquidity, it will inevitably default 

(Plenborg et al., 2017). A default hurt potential shareholders, equity holders and engaged 

stakeholders of a company. However, those actors have limited knowledge on the individual 
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company’s liquidity and financial information, wherefore authorities have established 

accounting standards. Thus, the purpose of accounting is to minimize the information 

asymmetry between stakeholders. This indicates the relevance of looking to a company’s 

accounting books when evaluating its probability of default.  

 

Along the same line, Beaver defined a company as a reservoir of liquidity, where the 

operation includes in and out-flows of the reservoir. Ultimately, if the reservoir is emptied, 

the firm is defaulting (Beaver 1966). As such, the financial statements are witnessing the 

status of the reservoir. It is a clear illustration of what Plenborg et al. denote as “financial 

health” (2017). The financial statements of a company are testimonial to its financial health, 

wherefore the interest into whether the given company will go bankrupt should start here. 

In its essence, the financial statements contain indications of whether a company will be 

capable of meeting its obligations. It means that both the theoretical motive and the mere 

raison d’etre of accounting underpins the role of financial ratios in probability of default 

modelling. As financial ratios are computed from the raw statements of a given company, 

those are reflecting the company’s financial health in relation to its liabilities. Thus, there is 

a theoretical foundation for basing models of credit risk on financial ratios. An illustration 

of the principle behind an accounting-based model is visualized below.  

 

3.1.2 Literature Review of the Accounting-based Approach 

William Beaver established the discipline of probability of default in an academic 

context, with a univariate approach (1966). According to Beaver himself, the single best ratio 

predicted default as accurate as multi-ratio models, which considered several accounting 

perspectives. The Beaver framework used a methodology where 79 failed and non-failed 

Probability of Default-model 
Predicted solvency 

of firm 

Accounting information 

Figure 3.1: Probability of Default Model: Accounting Theory 

Source: Personal collection 
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firms were matched on asset size and utilized to draw conclusions on what ratios could 

predict defaults. The study found that the cash flow/total liabilities ratio was the single most 

powerful predictor in terms of accurately predicting default in a period of five to one year 

before the distress or non-distress situation. While Beaver’s findings were both simple and 

limited in its scope of work, it pathed an academic highway for scholars to follow and expand 

upon in the coming years. 

  

Those following years were characterized by scholars utilizing a similar approach to 

Beaver, specifically with the methodology of multivariate discriminant analysis (MDA), 

which further allows to combine different financial ratios. These approaches were primarily 

dominated by the work of Altman, who by peers are considered one of the main scholars of 

the discipline, driven by two aspects. One, the simplicity and applicability of his model. Two, 

the several re-visitations of his framework. In his original work, 33 defaulting companies 

were matched with 33 solvent firms and observed over a 20-year period (1968). Like Beaver, 

Altman matched the companies of his study on asset size. Ultimately, his research concluded 

in a model where five accounting ratios multiplied by their respective coefficients gave a “Z-

score”, which popularized his name in the overall finance literature. 

 

Although Altman received wide recognition for formalizing a simple and applicable 

approach to the study of default risk, his research left a wake of criticism to the MDA-

approach and its statistical assumptions, which Altman violated. This criticism materialized 

into the application of new methodologies, specifically conditional profitability models. 

Within this strand of the ratio-focused literature, Ohlson developed a logistic regression 

model based on nine parameters including two dummy variables (1980). Ohlson’s study 

included more than 2,100 firms, whereof only 105 were bankrupt cases. As such, Ohlson 

pioneered the literature in two major ways. First, he introduced a much larger sample size in 

the development of default risk models. Second, he moved away from a sample where the 

number of distressed and non-distressed firms were evenly distributed and matched on asset 

size. Both aspects were enabled by moving away from the MDA methodology. This 

development was levered upon by further scholars of the conditional profitability models 

through the 1980s (Hamer 1983; Keasy & Watson 1986).   
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3.2 A Market based Approach to Credit Risk 

While the accounting ratio-focused approach to modelling credit risk constituted one 

way to model probability of default, a simultaneous market-focused literature on credit risk 

developed with a cornerstone in option-pricing. 

 

3.2.1 The Structural Theory of Credit Risk 

Efforts towards an increased theoretical underpinning of predicting probability of 

default began in the mid 1970’s. This change in paradigm was inspired by the option pricing 

theories of Black and Scholes (1973) and the frameworks are often referred to as contingent 

claims models, market-based models or structural models. A general belief permeating the 

framework is that the market already reflects the information contained in the financial 

statement. Additionally, financial statements are backward looking describing historical 

figures whereas the market is inherently forward-looking and working through future 

expectations (Hillegeist et al., 2004).  

 

A wide range of scholars have employed different varieties of these models including 

the first developed by Merton (1974). The original Merton model and the assumptions 

behind are derived from a firm’s capital structure and the relative market development 

between the assets, equity and liabilities. Merton shows that the probability of default can be 

inferred from the market value and volatility of these two sides of the balance sheet (Merton, 

1974). Following this framework, the market value of a firm’s equity is identical to the price 

of a call option on the assets with a strike price of the face value of debt. This is because 

shareholders are residual claimants on the firm’s assets after debtholders have been paid. 

When the option expires and debt repayment is due, the firm is insolvent if the market value 

of the assets is exceeded by the notional value of debt. The market value of equity will then 

be zero. As the shareholders have in effect sold the assets of the firm to the debtholders, 

they will let the option expire and default if the assets are worth less than the liabilities 

(Löffler & Posch, 2011). The primary assumptions behind the model are questionable in 

practice. The first underpinning of the model is that a firm’s total debt can be viewed as a 

zero-coupon bullet bond. Secondly, a corporation can only default upon maturity of the 

bond (Merton, 1974). An illustration of the principle behind market-based default probability 

models is shown below.  
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3.2.2 Literature Review of the Structural Approach 

As a response towards the naïve assumptions put forward by Merton a series of literature 

emerged. Geske (1977) relaxed the zero-coupon bond assumption and instead put forward 

a framework in which debt is viewed as a compound coupon paying bond. The bond is hence 

no longer viewed as being finite per se, rather to finance the ongoing coupon payments and 

to buy the next option, shareholders are required to issue new equity at each coupon date. 

The firm will default if shareholders decide against selling new equity as coupon payments 

are then not met. Shareholders will fail in raising new equity when the market value of equity 

after the coupon payment is less than the value of the payment (Geske, 1977). In this way, 

Geske still adheres to the timing assumption of Merton in the sense that default occurs at a 

fixed occasion, but instead of default occurring at expiry of the option it now occurs at the 

coupon date.   

  

The timing assumption is also challenged by Black and Cox (1976) as they allow default 

to take place prior to maturity. In this framework debt is still viewed as a perpetual bond 

with coupon payments. However, in their work they introduce the concept of boundaries or 

default barriers. The lower boundary is to be thought of as a level of firm value at which 

default will take place. The default barrier may be given exogenously by the contract with the 

debtholders or decided endogenously by the shareholders as an optimal decision problem 

(Black & Cox, 1976). Following this, the shareholders will choose the default barrier as the 

point in time where outstanding debt is minimized. The reasoning behind is that from the 

shareholders perspective and given the current position of the firm, the value of the option 

is influenced by multiple scenarios in conjunction. These scenarios include the value at 

Probability of Default-model 
Predicted solvency 

of firm 

Market information 

Figure 3.2: Probability of Default Model: Market Theory 

Source: Personal collection 
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maturity if the firm has not defaulted before then, the value if the firm defaults at the upper 

or the lower boundary and the value of the residual claims.   

 

Brockman and Turtle (2003) builds on the default barrier work of Black and Cox and 

argues that the standard view of equity presented by Merton as a path-independent option 

framework is wrong. Path-independency in this sense relates to the fact that the payoff of 

the option only depends on the underlying asset value at maturity, i.e. that default can only 

occur at this fixed point in time. Rather, equity should be viewed as a path-dependent down-

and-out call option on the assets (Brockman & Turtle, 2003). Their option framework 

explicitly incorporates a barrier that causes the termination of the option when breached, i.e. 

directly leading to default. This implies that the specific rise or decline in asset value 

throughout the lifetime of the option affects the payoff and hence how default probability is 

theoretically underpinned. Brockman and Turtle are consequently modelling and empirically 

testing the theoretical notions put forward by Black and Cox.  

 

Bharath and Shumway (2008) examined whether the structural framework provided by 

Merton was a sufficient way to forecast probability of default. Their research came on the 

back of the numerous criticisms related to assumption of the Merton framework. However, 

their way of addressing the assumptions behind the model differed from prior scholars in 

the field. In their paper they hypothesized that if the Original Merton Model was true, then 

it should be impossible to improve its forecasting abilities. They recognized that the 

functional form of Merton’s framework could not be completely reduced to a combination 

of simple variables, but that improvements within the approach are possible. To test this, 

they developed a naïve version of the original model that reduced some of the 

methodological complexities while maintaining the same discriminative power (Bharath & 

Shumway, 2008). The results of their research indicated that the Merton model is an 

important but not complete model, and that the structural approach to default probability 

provides useful guidance for future predictive models.   

 

3.3 The Literature on Probability of Default: A Clash Between Paradigms 

A clash between the two paradigms of the accounting-based approach and the structural 

approach to probability of default exist in the academic literature. This clash is present with 

respect to both the theoretical underpinnings and empirical results of the two approaches 

tested against each other. An array of researchers compares their version of a structural 
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model against the accounting-based models and find that their structural models are superior 

(Tudela et al., 2003; Hillegeist et al., 2004). Another strand of the literature finds that a 

simplified version of the structural models outperforms their deeper theoretically supported 

counterparts (Bharath & Shumway, 2008; Jackson & Wood, 2013). There also exist empirical 

tests of structural models where the accounting-based approaches are superior especially for 

shorter forecast horizons (Reisz & Perlich, 2007).  

  

Researchers advocating for the structural approach being superior have several 

theoretical arguments. Here, Vassalou and Xing (2004) present arguments concerning the 

inputs used in accounting models. As the inputs stem from financial statements they are 

inherently backward-looking, describing either just a snapshot in time of the balance sheet 

or the historical figures of the income statement. This critique is mirrored and further 

expanded in Hillegeist et al. (2004).  They add that financial statements by design is 

formulated on a going-concern basis, why the ability of accounting-based models to predict 

a future event such as bankruptcy is limited. As structural models are based on market data, 

they are aggregating a larger range of information than their counterparts. The academics 

also ascribe the inferiority of the accounting models to the lack of a volatility measure. They 

argue that a strength of the structural models not prevalent in accounting models is their 

ability to vary the weight given to leverage by employing a measure of volatility (Hillegeist et 

al., 2004).  

  

Another range of scholars aim at refuting the above points of critique. They argue that 

the structural models cannot be superior due to their theoretical foundations, as the 

assumptions behind are heavily violated in practice (Duffie & Lando, 2001). Duffie and 

Lando argue that the models rely on the stock market to accurately reflect all the information 

included in the financial statement and suggest that this is not the case in practice. This 

underpins the findings of Reisz & Perlich (2007) that the accounting-based models are 

superior for shorter forecast horizons. They however add, that the natural forward-looking 

characteristic of financial markets is why structural models are outperforming for longer 

forecast horizons. As a contrast to the structural argument regarding the inclusion of a 

volatility measure, Reisz & Perlich implies that structural models tend to overestimate the 

probability of default for highly levered, highly volatile firms and vice versa for non-levered, 

non-volatile firms. Agarwal & Taffler (2008) point out that the main take-away from the 

empirical studies of structural models should not be a relative superiority in performance. 
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Rather, the studies show a poor performance of the accounting models chosen for 

comparison than a convincing performance of the structural models.  

 

3.4 The Practical Approach to Probability of Default 

The practical approach to probability of default is outlined by practitioner Evelyn 

Hayden from BAWAG PSK (Engelmann & Rauhmeier, 2011). She presents two major 

properties of the internal scoring models for corporate exposures. First, the practical 

approach to default probability relies predominantly on financial ratios. As such, the 

practitioner's approach originates from the accounting ratio strand of the literature. Second, 

the primary model utilized in the practical approach is the logistic regression model, which 

stems from Ohlson’s contribution to the field. The logistic regression model enjoys 

precedence in practice, as it is easily interpretable, yields a direct probability of default, and 

enables an easy analysis of the potential explanatory variables (ibid).  

 

It is from the practical side of PD emphasized that the binary classification outcome of 

default versus solvent is a powerful predicting tool. Furthermore, the Basel Committee on 

Banking Supervision underlines that a one-year horizon is a “common habit” in practice and 

is supported from the regulatory side (1999). When building the optimal logistic regression 

for modelling default probability, the practical approach starts by carefully investigating the 

statistical relationships between explanatory variables. Subsequently, it aims to end with a 

parsimonious model of only a few, but highly explanatory, regressors, decided through a 

backward elimination process.  

 

Another contribution to the practical side of credit risk is that of the three big credit 

rating agencies, namely Standard & Poor’s, Moody’s, and Fitch Group. These have through 

their law-cemented dominance within credit rating developed the most sophisticated models 

of default probability. An example hereof is the Moody’s methodology of 2000, which 

combines both the accounting ratio-paradigm and the market paradigm of the PD-literature 

(Sobehart & Stein, 2000). Along these lines, those institutions are considered to be extremely 

advanced in both using the market approach and incorporating machine learning models. As 

such, pushing the methodological boundary in order to constantly maintain the utmost 

advanced position within the discipline (Baldassarri & Chen, 2016). However, we as 

researchers do no not consider the methodologies of the “Big Three” representative of the 

practical approach to default probability. This is explained by them being a different beast 
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compared to the average institution with an internal rating model. Furthermore, these credit 

rating agencies are intermediaries rather than lenders, making them inherently different in 

their approach to credit risk as they are not under legal supervision similarly to banks. Thus, 

we assume the propositions of Hayden in Engelmann and Rauhmeier (2011) to be 

representative of the practical approach to default probability. 

 

3.5 Machine Learning  

The difference between statistical models and machine learning are often given through 

the distinction between their respective purposes. Statistics are used to infer relationships 

between variables, whereas machine learning are used to reach the best predictions (Baesens 

2014). If this distinction is taken for granted, it underlines the relevance of applying machine 

learning in probability of default modelling. In practice, credit risk is a discipline which 

revolves around predicting company defaults most accurately.  

 

3.5.1 Machine Learning Theory  

The theoretical foundation for machine learning is to some extent inspired by the 

functionality of the human mind. It contains the ability to learn from previously observed 

incidents and utilize the experience for future decisions. Like a child learning the harm of 

fire by putting its hand on the flame of a candle. This is what sets machine learning apart 

from statistics (Shalev-Schwartz & Ben-David, 2014). More specifically, methodologies of 

machine learnings are given the ability to learn and adapt accordingly. The process of learning 

from memorization carries over into inductive conclusions. Those conclusions are the 

inference part of machine learning. Furthermore, they are used to make generalizations, 

where a given model’s previous encounters with observations can be utilized for extracting 

knowledge about the data at hand.  

 

On the applicability of machine learning, two theoretical underpinnings are present. 

First, one of the major uses of machine learning is that of supervised learning. It is problems 

where a model is initially given the information on what result to look for, such as finding 

relationships resulting in company default. This application is easily comparable to that of 

building statistical models, as it involves explaining y given some information x. Second, 

within supervised machine learning is classification problems, which is covered by models 

that are yielding categorical responses. Likewise, this application is easily comparable to a 

statistical model such as the logistic one, as it has a binary outcome.  
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Another theoretical property of machine learning is that it is considered applicable when 

a task is too complex to program through traditional computer science (Shalev-Schwartz & 

Ben-David, 2014). This relates to the ability to learn from previous experiences and is utilized 

for instance in online search engines and recommendation systems. This segways into 

machine learning being capable of reaching higher predictive power than its statistical 

counterparts. By these means, the machine learning methodology fits well in the discipline 

of default probability as a portfolio can reach extremely large sizes with numerous 

interconnected relationships. Furthermore, those portfolios might have changing 

characteristics as the economy go through fluctuations, and the need for recognizing new 

patterns arise over time.  

 

3.5.2 Machine Learning in the Credit Risk Discipline 

Despite the fact that machine learning algorithms have a tradition with supervised 

classification problems that spans across several decades, the literature within probability of 

default-modelling is relatively sparse. Charitou et al. built specifically on Ohlson’s logit model 

and expanded the framework by introducing the methodology of neural networks to UK-

based firms (2004). Neural networks consist of inserting input factors, which are broken 

down to an arbitrary number of abstraction layers that each focus on a minor part of the data 

(Baesens 2014). The layers of abstraction connect through previous experiences and give a 

result based on the intended product of the model. With this application, the researchers 

reached an high accuracy on a hold-out sample. However, in their research they utilized a 

limited sample size where distressed and non-distressed firms were equally split. This 

methodology proposes clear limitations, wherefore the implications of the study are 

restricted, although it introduced a new approach in the credit risk literature. The latter is 

showcased by how the approach have been followed by other scholars such as Addo et al. 

(2018) and Petropoulos et al. (2020).  

 

Another strand of machine learning that have gained some precedence within the 

literature of default probability is that of classification trees (Jackson & Wood, 2013). Like in 

the academic endeavor of Charitour et al., the tree models extend the theoretical framework 

of accounting ratios, such as the one of Ohlson (1980). A decision tree come in the visual 

form of a tree, where it from its root node, or starting point, make binary splits of the 

variables in order to segregate the classes, default and solvent, most efficiently. Ultimately, 

decision trees return a cut-off point, which gives the best separation between the two groups, 
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wherefore its methodology overcomes one of the challenges for statistical models within 

default probability. One of the major decision tree contributions to the literature of PD is 

that of Bastos (2008). He achieved above 80% area under the receiver operating characteristic 

curve for some datasets. Similar results are gained by Chang et al., who developed credit risk 

assessment models for short-term defaults (2014). However, three perspectives are present 

for machine learning within the discipline of default probability. First, while data science 

approach to PD is present, it is nonetheless a minor part of the literature compared to the 

traditional accounting and market models. Second, it mainly builds upon the accounting-

ratio tenant of the credit risk literature. Third, it shows to have won relatively little ground in 

the practical approach to PD, even though it is established to show more discriminative 

power.  

 

3.6 Gaps in the Literature 

We have outlined the most central tenants of both the literature and the theory 

underlying the field of default probability. Prior to identifying gaps in the literature and 

clarifying how the research at hand progresses, a summary of the pertinent theory and 

literature is presented. It should be underlined that these scholars highlighted by no means 

represent the field completely. Likewise, they only constitute a minority of the scholars 

reviewed in this thesis. However, we deem them most central to the discipline of PD as a 

whole, wherefore they create the foundation from which we will conduct our research.  

 

Based on both the theory and literature examined in this section, we identify two major 

gaps in the academic and practical approaches to default probability. These gaps present 

areas of the credit risk discipline that is relatively unexposed or awaits further uncovering. 

Table 3.1: Overview of Pertinent Theory and Literature for the Research 

Methodology Theory 

Altman (1968) 

Ohlson (1980) 

Country 

Logistic Regression 

MDA (Linear) 

Accounting 

Accounting US 

2163 

Framework  

Merton (1974) 

Bharath and Shumway (2008) 

Machine Learning PD 

Practical Model (Hayden) 

Portfolio 

Option Pricing 

Simple Option Pricing 

Class. Tree/Neural 

Network 
Logistic Regression 

66 

US 

Market 

Market 

Mostly Accounting 

Accounting 

US 

US 

US/UK 

Local 

No Portfolio 

Not Disclosed* 

Generally small portfolios 

Varying 

*Bharath and Shumway (2008) did not disclose their portfolio size. However, they did present that it consisted of 1,449. defaults. 

Source: Personal collection 
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First, the contrast between the two paradigms of the academic approach PD is continuously 

stark. As such, additions to the literature seem to fall into either the trench of accounting 

ratios or the one of structural models, where little research try to combine the two strands. 

The neglection of such a combination is the first gap. Second, there is gap related to the 

application of machine learning in the default probability discipline, both in an academic and 

practical context. Despite the superior classification properties of this distinct science, it is 

not granted the precedence its results demand. This is the second gap.  

 

3.7 Formulation of Hypotheses 

In order to guide the research question: To what extent does the classic academic approaches to 

default probability have discriminative power, and through which measures can the practical approach to credit 

risk be improved? We formulate three hypotheses to examine both the academic and the 

practical field of PD. Those hypotheses are grounded in both the pertinent literature and the 

theory surrounding this research, wherefore they are a natural extension hereof.  

 

The first hypothesis addresses the initial part of the research question, which considers 

to what extent the classic academic approaches to default probability have discriminative power. This 

hypothesis is drawing upon both the prior literature review and the theory. Here we identify 

the frameworks of Altman, Ohlson and Merton as representative of the classic academic 

approaches within the academic field of PD. The above theoretical framework supports that 

there furthermore is a theoretical foundation for these approaches. However, as these models 

are somewhat ageing, we are motivated to evaluate these frameworks on our portfolio of 

companies, in order to investigate the theoretical classification strength in a modern empirical 

context. Doing so, we both test the frameworks of Altman, Ohlson and Merton in their 

original form and through re-estimations. This part of the research is academically motivated 

and lead us to formulate our first hypothesis: The classic academic approaches to default probability 

have discriminative power on a modern portfolio.  

 

Table 3.2: First Hypothesis Formulated from Pertinent Literature and Theory 

# Hypothesis 

1 The classic academic approaches to default probability have discriminative power on a modern portfolio 

 

Subsequently, we approach the next part of the research question, which contemplates 

through which measures the practical approach to credit risk can be improved. In this regard, the thesis 
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intends to build upon the practical knowledge that supports how the logistic regression 

model is the primary tool for practitioners. Here, it first aims to establish that the practical 

approach to PD-modelling is superior to the academic, as it is not operating within a 

predetermined framework. Having done so, we claim that practitioners can improve the 

discriminative power of their model through a combination of the two strands of the 

probability of default literature, namely the financial ratio approach and the market approach. 

Thus, this claim also builds upon the theoretical framework underlying these approaches. We 

examine the practical model in its traditional form in contrast to one combined with market 

theory, wherefore this part of the research is driven by the practical approach to default 

probability. In doing this, we address the first of the two gaps identified above. As such, we 

formulate our second hypothesis: The practical model outperforms the academic but is improved through 

a synthesis of market and accounting theory.  

 

Table 3.3: Second Hypothesis Formulated from Pertinent Literature and Theory 

# Hypothesis 

2 The practical model outperforms the academic but is improved through a synthesis of market and accounting theory 

 

Ultimately, we investigate another perspective of the second part of the research 

question: through which measures the practical approach to credit risk can be improved. This part of the 

research comes on the back of the evaluation of the classic approaches to credit risk, and the 

subsequent study of the practical model of default probability. Here, we build our research 

on the theory suggesting that machine learning models can achieve superior results in 

comparison to traditional statistical models. We intend to place our research alongside the 

findings of the sparse machine learning applications in the PD-literature by employing a 

random forest algorithm. Overall, this part intends to improve the discriminative power of 

the practical model through an introduction of machine learning, wherefore it is 

methodologically driven. By these means, we confront the second of the two identified gaps 

in the literature, and formulate our third hypothesis: The discriminative power of the practical model 

can be improved through the application of machine learning. 

 

Table 3.4: Third Hypothesis Formulated from Pertinent Literature and Theory 

# Hypothesis 

3 The discriminative power of the practical model can be improved through the application of machine learning 
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As previously mentioned, the hypotheses are formulated in order to guide the research 

of the thesis. While the thesis progresses, the hypotheses will be evaluated and either rejected 

or verified. In total, we have formulated three hypotheses.  

 

Table 3.5: Hypotheses Formulated from Pertinent Literature and Theory 

# Hypothesis 

1 The classic academic approaches to default probability have discriminative power on a modern portfolio 

2 The practical model outperforms the academic but is improved through a synthesis of market and accounting theory 

3 The discriminative power of the practical model can be improved through the application of machine learning 

 

As stated above, the three hypotheses have each of their motivation. Where the first 

relates predominantly to the academic approach in the probability of default discipline. In 

the second hypothesis, the lens shifts to cover the practical approach to default probability. 

For the latter hypothesis, the motivation is primarily methodological. The motivations are 

summarized in the table below. The progression of the thesis is as such that after we have 

examined its three hypotheses, we have established a platform, on which we can discuss the 

further feasibility implications of using machine learning to model default probability in 

practice.  

 

  

Hypothesis 1 Hypothesis 2 Hypothesis 3 

Answering the 

Research Question 

Academically Motivated Practically Motivated Methodologically Motivated 

Figure 3.3: Hypotheses Answering the Research Question 

Source: Personal collection 

Figure 3.3: Hypotheses Answering the Research Question 
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4. Methodological Framework  

 

The methodology chapter of this thesis will be split into six parts and comes on the back 

of the review of the literature and theory section. The first three will present the 

methodologies of Altman, Ohlson, and Merton individually. These are the existing 

theoretical frameworks which the thesis will replicate and re-estimate on its dataset. The 

fourth part will dissect the methodology applied by practitioners to develop logistic 

regression PD models. The fifth section will outline for the machine learning methodology 

of classification trees and random forests, which we will transcend into the default probability 

field. The last section will outline different evaluation metrics that the thesis will utilize to 

compare its models, which are metrics drawn from both the literature and practice.  

 

4.1 The Methodology of Altman: Multivariate Discriminant Analysis and Linear 

Regression 

When Edward Altman initially presented his first model for predicting default of 

companies, his methodology was strongly dictated by the precedence of other scholars, such 

as William Beaver (1966). As such, he developed a five-factor model constituted by chosen 

business ratios, where coefficients were determined through multivariate discriminant 

analysis. Through arranging companies’ features, i.e. their financial ratios, in vectors, the 

methodology assigns the features coefficients such that it segregates the two groups most 

efficiently. The two groups are here a group of non-default and a group of default companies 

respectively. The response variable of Altman’s framework is denominated the Altman Z-

score, which is a result that can be translated into a credit rating. Here, Altman suggest that a 

Z-score of less than 1.81 indicates that a given company is looking into default, whereas it 

alternatively is in the “safe zone” with a score above 2.99. A Z-score in between those 

thresholds indicates red flags for the company (Altman, 1968). The original model of Altman, 

which we will apply to our dataset is the following: 

 

 𝑍 = 1.2 𝑋1 + 1.4 𝑋2 + 3.3 𝑋3 + 0.6 𝑋4  +  0.999 𝑋5 (4.1) 

 

While the MDA-approach shares properties with the linear regression, namely that it 

tries to fit a linear function to the dataset, it is further specifically useful for the purpose of 

separating two groups from each other. The MDA inherently tries to fit the coefficients that 

segregate the defaults from the solvent companies, however, it is also here that the approach 
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meets its limitations. The MDA requires a balanced portfolio of an equal number of default 

and non-default companies. Altman adheres to this property of the methodology by taking 

a sample of 33 bankrupt industrial companies and match them with 33 solvent (ibid). Altman 

matched the companies on asset size, in order to fulfil another inheritance of the MDA. As 

the methodology reduces the dimensionality of two groups to one through fitting a linear 

function, it requires equal variance-covariance of the features in the two groups. Altman 

deliberately violates this assumption, which undermines the approach to some extent - a 

concern which have been raised by other scholars of the credit risk literature (Ohlson, 1980).  

 

In order to overcome the problems inherited by the MDA-approach, we estimate a 

linear regression model on the response variable of default. As such, the Altman Z-score re-

estimation conducted in this thesis will follow a different methodology than the original one. 

It is better suited with the theoretical assumptions of the two statistical models, as our 

portfolio is neither balanced between defaults and non-defaults or is exhibiting equal 

variance-covariance matrices between the groups. However, this linear model approach to 

estimating Altman’s framework is supported by Engelman and Rauhmeier who classifies it 

as a linear regression model (2011). Thus, the re-estimated coefficients of Altman will be 

done following a regression of the type:  

 

 𝑍 = α + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4 + 𝛽5𝑋5 (4.2) 

 

Here, the Z-score also denotes credit score which can be translated into a probability of 

default. However, it will be on a different scale than Altman’s original coefficients, as the re-

estimated model regress a binary response variable of either 0 or 1 onto the financial ratios 

determined by Altman’s framework. However, as the propositions for estimating a binary 

outcome with a linear regression, the response variable can take values outside of the 0 to 1 

range.   

 

This raises another problem, which is shared by both the re-estimated model and the 

original Altman model. The Z-score approach to probability of default aims to estimate a 

credit score, which can be translated into a credit rating, rather than predicting either default 

or solvent. As such, Altman diverts from the classic paradigm within the literature, and also 

the definition of PD-estimation adopted by the research at hand, which treats the dependent 

variable as a dichotomous, discrete and non-overlapping classification (Jackson & Wood, 

2013; Agarwal & Taffler, 2008). Following several scholars of the pertinent literature we 
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overcome this problem by translating the Z-score into a probability of default, through 

inserting it into the logistic cumulative distribution function of the form: 

 

 
𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐶𝑜𝑚𝑝𝑎𝑛𝑦 𝐷𝑒𝑓𝑎𝑢𝑙𝑡 =

1

1 + 𝑒−𝑧
 (4.3) 

 

Following this we also turn around the coefficients of the model, following the 

procedure of other scholars such as Hillegeist et al. (2004). In Altman’s original framework, 

a larger Z-score indicated a more solvent company position, whereas the value of 1 in our 

dataset indicates a defaulted company. Through this operation we organize the coefficients 

so they are more comparable across the two versions of the Altman framework, and to the 

other models developed by the research. Furthermore, we assume that the comparability 

between the two models is uncompromised, although they are estimated through different 

methodological approaches and result in Z-scores on different scales. First, we claim that it 

is rather a question of how the direction of the coefficients of the model impact the 

probability of default than it is the size of the specific coefficient. Second, we underline that 

the ultimate unit of comparison is one model’s ability to classify defaulting companies 

successfully. Third, we highlight that the re-estimation model has been developed from the 

original Altman framework, building solely on the financial ratios as predictors presented 

herein (Altman 1968).  

 

The five financial ratios in Altman’s framework is chosen deliberately to capture 

different aspects of business operation. As such, Altman’s variables are chosen among a 

larger pool of ratios, in which he examines the interrelationship between them (ibid). It is 

done in order to prevent that ratios capture similar effects. The ratios chosen by Altman were 

1) Working Capital/Total Assets, 2) Retained Earnings/Total Assets, 3) EBIT/Total Assets, 4) 

Market Value of Equity/Book Value of Liabilities, 5) Sales/Total Assets, and represented the 

categories of liquidity, profitability, leverage, solvency and activity. Altman indicates a 

direction of each ratio, in terms of which effect it has on the probability of firm failure, where 

each is determined according to economic theory. For all five ratios it rules that it should be 

accompanied by a negative sign, such that an increase in that given ratio should decrease the 

probability of default, ceteris paribus. Exemplified through two companies that operate pari 

passu the one with a larger retained earnings/total assets ratio would be classified as less likely to 

default. By these means, the ratios of Altman including their effect on probability of default 

can be summarized in the following table.  
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Table 4.1: Edward Altman (1968) – Direction of Financial Ratios on Probability of Default 

Increasing Effect Decreasing Effect Divergent Effect 

 
Working Capital / Total Assets 
 
Retained Earnings / Total Assets  
 
EBIT / Total Assets 
 
Mkt. Value of Equity / Bk. Value of Liabilities 
 
Sales / Total Assets 

 

Source: Personal collection  

4.2 The Methodology of Ohlson: Logit Model 

James Ohlson reacted in 1980 to Altman’s original framework by estimating the 

probability of default with a logistic regression. Not only did Ohlson overcome the problems 

inherited by the MDA, he also employed a methodology that is ideal when dealing with a 

dichotomous classification problem (Ohlson, 1980). The logistic regression response variable 

takes the values of either 0 or 1, where a defaulted company should be designated the value 

of 1, and a solvent company should be predicted with 0. In the original framework of Ohlson, 

he built upon Altman even further, as he continued the Z-Score as the product of his own 

model and termed in an O-Score. However, the Z-score equivalent of his framework were 

to be entered into a logistic equation, equal to the one we applied in our re-estimation of 

Altman’s model.  Ohlson further expanded the literature of PD by introducing new ratios, 

including two dummy variables. Thus, he increased the comprehensiveness of the financial 

ratios going into a probability of default model. He estimated the coefficients of the variables 

with a logistic regression function. As such, the Ohlson model’s statistical approach can be 

captured with the following:  

 

 𝑂 = −1.32 − 0.407𝑋1 + 6.03𝑋2 − 1.43𝑋3 + 0.0757𝑋4 
          −2.37𝑋5 − 1.83𝑋6 + 0.285𝑋7 − 1.72𝑋8 − 0.521𝑋9 

(4.4) 

 

 
𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐶𝑜𝑚𝑝𝑎𝑛𝑦 𝐷𝑒𝑓𝑎𝑢𝑙𝑡 =

1

1 + 𝑒−𝑂
 (4.5) 

 

The framework of Ohlson totals nine ratios, or company features, which are utilized for 

predicting corporate default. The nine ratios are: 1) Size, 2) Total Liabilities/Total Assets, 3) 

Working Capital/Total Assets, 4) Current Liabilities/Current Assets, 5) Leverage Dummy, 6) Net 

Income/Total Assets, 7) Funds from Operations/Total Liabilities, 8) Net Income Dummy, 9) Net Income 

Change Ratio. Ohlson measure leverage through a dummy of 1 if total liabilities exceed total 
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assets, and zero otherwise. He likewise introduces a dummy for net income, where the 

variable takes the value of 1 if net income has been negative for the two past years, and zero 

otherwise. On the variable of size, Ohlson introduces a domestic component, such that size 

equals the logarithm of total assets over GDP. It makes the variable universal to companies 

with different national backgrounds. Thus, this operation prevents that the large solid 

Latvian company become penalized in a portfolio with predominantly U.S. companies. 

Ohlson further creates the ratio of net income change, which takes positive value between 0 and 

1 if the firm has experienced an increase in net income, and negative value between 0 and -

1 if it experienced a decrease. This variable adds a dynamic factor to the framework, as it 

indicates in which direction the company is moving.  

 

Generally, Ohlson was less focused on assets while he was more concerned with net 

income. As such, Altman denominated the majority of his ratios by total assets, where 

Ohlson frames a larger aspect of a business’ financials. To take it a step further, Ohlson did 

not prohibit himself from capturing the same influences through utilizing features that 

indicated similar effects, such as net income in three different ratios. He also indicated the 

expected directions of his ratios, which can be summarized in the following table: 

 

Table 4.2: James Ohlson (1980) – Direction of Financial Ratios on Probability of Default 

Increasing Effect Decreasing Effect Divergent Effect 

Total Liabilities / Total Assets 

Current Liabilities / Current Assets 

Net Income Dummy 

Size 

Working Capital / Total Assets 

Net Income / Total Assets  

Funds from Operation / Total Assets 

Net Income Change Ratio 

Leverage Dummy 

Source: Personal collection 

We re-estimate the coefficients of Ohlson’s framework on our dataset with a similar 

methodology to the original one. As such, we build a logistic regression model including all 

the nine variables. Thus, the original Ohlson model will be evaluated based on the original 

coefficients multiplied onto original ratios, whereas the re-estimated will be considered with 

the original ratios but with new coefficients. In building our re-estimated Ohlson, we will 

build it with the maximum likelihood estimation (Agresti & Franklin, 2013).  
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4.3 The Methodology of Merton: The Original and the Naïve  

The structural approaches to modelling probability of default are not statistically 

estimated models like their ratio-based counterparts. Rather they are underpinned by the 

option pricing framework by Black and Scholes (1973) and build upon by Merton (1974) as 

presented in the theoretical framework of this thesis. The structural approaches are in essence 

using economic reasoning to identify conditions under which borrowers are expected to 

default and then estimate the probability that these conditions will take place. For any 

publicly traded firm, the probability of default can be calculated independently and requires 

no coefficient estimates. A variety of structural models and in turn different versions within 

each model exist. This thesis will employ two versions of the European call contingent claim 

approach, specifically the original model derived by Merton and a computationally less heavy 

and contemporary version presented by Bharath and Shumway (2008). The former will be 

referred to as the Original Merton Model and the latter as the Naïve Merton Model. As there 

are no coefficients to re-estimate per se, we refer to the Naïve version as the re-estimated 

model.  

  

The Original Merton model assume a simple capital structure for the firm: debt plus 

equity. In this framework the liabilities consist of one zero-coupon bond with principal L 

maturing in T with no payments up until T (Löffler & Posch, 2011). The basic premise of 

the structural models is that default occurs if the value of the assets has plummeted to a level 

below the firm’s liabilities at maturity. The insight of the Original Merton Model is that the 

payoffs to the shareholders of a firm are very similar to the payoffs they would have received 

had they purchased a call option on the value of the firm’s assets with a strike price given by 

the amount of debt outstanding (Vassalou & Xing, 2004). The European call contingent 

claims models hence view equity as a European call option on a firm’s assets with a strike 

price equal to the face value of its debt liabilities. As such, the option pricing techniques of 

Black and Scholes (1973) may be used to estimate the value of the option and the underlying 

probability of default (Tudela et al., 2003). 

  

The option expires when the debt matures, at which point the equity holders either 1) 

exercise their option and pay off the debt if the value of the firm’s assets is greater than that 

of its liabilities, or 2) let the option expire if the assets are not sufficient to cover the maturing 

debt, i.e. they exercise the walk-away option when the equity value is negative and leave the 

firm to the creditors (Jackson & Wood, 2013). If the option is left to expire, the firm is 
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assumed to default and the residual claim to equity is assumed to be zero. To avoid foregoing 

a benefit from an increase in value, equity holders will wait until maturity before they decide 

whether to default or not (ibid.). This is the conditions under which the contingent claim 

models determine the probability of default. 

  

The probability of default as the probability that, at maturity, the value of the assets is 

below the value of the liabilities can be visualized as seen above. The distribution of the asset 

value at maturity is assumed to follow a lognormal distribution. The annualized variance of 

the logarithmic asset value changes is denoted by 𝜎2. The expected change in logarithmic 

asset values is denoted by 𝜇 −
𝜎2

2
 where 𝜇 is the firm’s expected return. The logarithmic asset 

value in T thus follows a normal distribution with the following parameters (Löffler & Posch, 

2011):  

 
𝑙𝑛 𝐴𝑇  ~ 𝑁 (𝑙𝑛 𝐴𝑇  + (𝜇 −

𝜎2

2
) (𝑇), 𝜎2(𝑇)) (4.6) 

 

 And consequently, the probability of default can be given by the cumulative standard normal 

distribution:  

 
𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 = 𝑁 (−

𝑙𝑛 [
𝐴
𝐿

]  + (𝜇 −
1
2

𝜎2) 𝑇

𝜎√𝑇
) (4.7) 

 

The number of standard deviations the expected asset value 𝐴𝑇 is away from default, 

i.e. the term in brackets, is labeled the distance to default. The face value of long-term 

Market Value of Ln Assets 

Time 

Possible Asset Value Path 

Ln Liabilities 

Probability of Default 

Density of Ln Asset Value 

Ln A 

T 

E [ln At] 

Figure 4.1: Illustration of Default Probability in the Merton Framework 

Source: Personal adaptation of Löffler & Posch, 2011 
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liabilities, L, are directly observable from the balance sheet and time to expiry, T, is in this 

thesis taken to be one year (Löffler & Posch, 2011). The market value of the firm’s assets, 

the asset volatility and the firm’s expected return, are not directly observable and must be 

estimated. As the observable book values may diverge considerably from the market values 

option pricing theory is used to determine the market value and volatility of a firm’s assets 

(Vassalou & Xing, 2004). 

  

The market value of equity for a publicly traded firm is observable given by the number 

of shares outstanding and the share price, and this is used to establish a relationship between 

the assets and equity (Löffler & Posch, 2011). At maturity, the value of equity will be zero as 

long as the asset value is below the value of liabilities. If the asset value is higher than the 

liabilities, then the residual value will flow to equity-holders and the pay-off increases linearly 

with the asset value. This pay-off can be viewed as the pay-off of a European call option: 

 

 𝐸𝑇 = 𝑚𝑎𝑥 (0, 𝐴𝑇 − 𝐿) (4.8) 

 

By assuming that the firm pays no dividend and thus using the standard Black-Scholes 

call option framework, equity is given with the following equations with 𝑟 denoting the risk-

free rate of return: 

 𝐸𝑇 = 𝐴𝑇 ∗ 𝑁(𝑑1) − 𝐿𝑒−𝑟𝑁(𝑑2) (4.9) 

 

 

𝑑1 =
𝑙𝑛 

𝐴𝑇

𝐿
 + (𝑟 +

𝜎2

2
)

𝜎√𝑇
 

(4.10) 

 

 𝑑2 = 𝑑1 − 𝜎√𝑇 (4.11) 

 

The Black-Scholes framework consequently links the unobservable market value of 

assets and asset volatility to the observable market value of equity, E (Löffler & Posch, 2011). 

To solve the equation for equity with two unknowns we use the relationship between the 

volatility of equity and the volatility of asset value: 

 
𝜎𝐸 = 𝜎 𝑁(𝑑1)

𝐴

𝐸
 (4.12) 

 

As we can observe the market value of equity and can estimate the volatility of equity the 

result is two equations, (4.12) and (4.9), with two unknowns that can be solved with 

numerical or iterative routines. The firm’s expected return on assets can then be estimated 
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with CAPM and the probability of default according to the Original Merton Model can be 

determined (ibid.). 

  

The Naïve Merton model simplifies the estimation difficulties of the original model. 

Instead of using the somewhat complex Black-Scholes equations (4.10) and (4.11), and the 

following iterative routines to solve for the unobservable variables, the model makes some 

simplified assumptions. The value of liabilities is now estimated as the sum of current 

liabilities and half of long-term debt. This value is added to the observed market value of 

equity to arrive at an estimate for the market value of assets. Asset volatility is estimated as a 

weighted average of volatility of debt and equity. Here, the volatility of debt is a simple linear 

transformation of the volatility of equity (Bharath & Shumway, 2008; Jackson & Wood, 

2013). The same final equation for calculating probability of default is employed, but the 

parameters are substituted with the ones summarized below with subscript N for Naïve: 

 

 𝐿𝑁 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 + 0.5 ∗ 𝐿𝑜𝑛𝑔 𝑡𝑒𝑟𝑚 𝐷𝑒𝑏𝑡 (4.13) 
 

 𝐴𝑁 = 𝐸 + 𝐿𝑁 (4.14) 
 

 
𝜎𝑁 =

𝐸

𝐴𝑁

𝜎𝐸 +
𝐿𝑁

𝐴𝑁

𝜎𝐷𝑁 (4.15) 

 

 𝜎𝐷𝑁 = 0.05 + 0.25𝜎𝐸 (4.16) 

 

 

4.4 The Practical Modelling Methodology 

The theory section presented how the practical approach to probability of default is 

predominantly carried out with the use of a logistic regression with accounting-based 

variables (Engelmann & Rauhmeier, 2011; De Laurentis et al., 2010; Neisen & Rosch, 2018). 

The logistic model has previously been described in the section regarding Ohlson, however 

this section will emphasize how the modelling procedures are carried out in practice. As such, 

the methodology presented here will serve as a template for the practical derived model 

presented later in this thesis. The steps included in this template comprise of the following: 

1) The considerations to be made regarding the accounting-based inputs prior to conducting 

any modelling procedures, 2) The statistical treatment of these inputs, 3) The input selection 

techniques applied and 4) Deriving an optimal model. To further reflect a contrast between 

the practical model and the two other accounting-based models, we will use a number of 

new financial ratios from Plenborg et al. (2017) in addition to the ones provided by Altman 
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and Ohlson. These are Total Liabilities/EBITDA, Funds from Operations/Capital Expenditure, 

Funds from Operations/Current Liabilities and Working Capital/Revenue. The motivation for 

including these additional ratios are two-fold. First the ratios are often employed when 

conducting a financial credit analysis and secondly, the total number of ratios will then to a 

greater extent reflect the range of ratios available to practitioners.  

  

Financial ratios are structured by being different category labels. Like Altman and 

Ohlson, practitioners also use categories such as leverage and profitability. For each of the 

ratios an initial indication regarding the direction is formulated (Engelmann & Rauhmeier, 

2011). The specific directional indication is to be grounded in economic reasoning such that 

a high degree of leverage is associated with an increased probability of default, par exemple. 

These considerations are all made prior to conducting any modelling steps. Practitioners 

employ few significant rather than many predictors, and this implies that the number of ratios 

to be included has to be reduced to secure the statistical appropriateness of the final model 

(ibid,). The categorization and formulation of directional indications will help with this 

matter.  

  

To reduce the number of covariates the first selection stage involves assessing the 

statistical suitability. This implies that a test of whether the linearity assumption of the logistic 

regression applies to the ratios needs to be carried out. If a ratio is to be included it needs to 

satisfy a linear relationship between it and the log odds, i.e. that it is linearly associated with 

the log odds of probability of default (Engelmann & Rauhmeier, 2011). To check this, we 

aggregate observations for a given predictor into sorted groups. The first group contains the 

top 3% values the next values from 94% to 97% and so forth, resulting in a total of 33 groups 

per predictor. Hayden (2011) suggests that the data is aggregated into 50 groups, however, 

to ensure that each group includes defaulted observations we choose 33 groups. In each 

group we calculate the empirical default rate, i.e. the mean of the dependent default variable, 

the associated logit and the median of the predictor value. To check for linearity the logit 

and median predictor value is then plotted against each other (Hosmer & Lemeshow, 1980; 

Menard, 2010). 

 

If there is evidence against the linearity assumptions, we apply different transformation 

techniques. These include either a quadratic, cubic or logarithmic transformation (Menard, 

2010). The plots of each of the fits will also aid us in confirming the direction, and if the 
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variable exhibits a wrong direction it is excluded. The second variable reduction technique 

involves analyzing a correlation matrix of the remaining variables. Two variables that are 

highly correlated with each other cannot both be included if the coefficients are to be 

statistically unbiased and significant (Engelmann & Rauhmeier, 2011). Variables that are 

highly correlated with each other are grouped and the ones with the lowest Somers’ D is 

excluded. Somers’ D is an evaluation metric that will be explained in a later section.  

  

The initial modelling stage begins with the list of remaining variables. To arrive at the 

optimal model, only variables that are highly significant should be included. To determine 

the final variables to include in model a backward stepwise elimination is carried out. This 

implies estimating a preliminary model including all of the remaining variables, and then 

excluding the least significant variables until all variables exhibit the required significance 

level (Engelmann & Rauhmeier, 2011; Menard, 2010). The variables are excluded one at a 

time, each time estimating a new model prior to excluding the next. All of these steps ensure 

that the final model is including only highly significant and economically plausible variables.  

 

4.5 Machine Learning Methodology 

Having outlined the academic and practical methodologies employed in the paper, we 

turn to the machine learning algorithms considered in the research at hand. We first 

introduce the classification tree methodology and next the random forest algorithm.  

 

4.5.1 Machine Learning Methodology: Classification Trees 

The classification tree machine learning algorithm, which is the decision tree type for 

classification problems, is a rule-based technique that uses “if”-statements based on the 

values of the predictors to create separate and non-overlapping regions in the feature space 

(Lateef & Ruichek, 2019). In a classification setting, the optimal tree is one in which the two 

classes are assigned to their own regions. A tree diagram is a neat visualization of the feature 

space separation that allows the user to follow how the data is split. The tree diagram is 

drawn upside down such that the starting point of a tree is the root node containing all 

observations in the dataset. After the root node the dataset is split in branches defined by 

“if”-statements. Each branch from the root node leads to a decision node, representing a 

new threshold value of a predictor variable. Whenever the data is split by a new node, the 

feature space is further divided into additional regions. From a decision node, the tree can 
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either continue branching down to the next decision node or to a terminal node. A terminal 

node resembles one of the regions and the associated class label for observations belonging 

to this region (Hastie et al., 2014).  

 

The classification tree algorithm will split the data in the root node by using that 

predictor and threshold which separates the data the best. This is defined as the split creating 

the purest nodes where purity refers to optimal separation of classes (Hastie et al., 2008). As 

such, a node is pure if the observations in the corresponding region is all from the same class. 

In other words, the predictor used at the top split should enable us to divide the observations 

into groups that are as different as possible (ibid.). The subsequent splits of the data are made 

by maximizing the gain in purity. We use the Gini index to measure node purity: 

 

 𝐺 = prd(1 − prd) (4.17) 

 

Where prd refers to the proportion of observations in a given region belonging to class 

default. It will take a value of zero or one if all observations in the region belongs to the same 

class. The algorithm thus starts by considering all predictor variables and all possible 

threshold values before choosing the ones that maximizes gain in purity. This process is 

repeated at the next split, but instead of dividing the entire dataset we are dividing a region 

(Hastie et al., 2014). To mitigate the computational infeasibility of considering every possible 

combination of predictors and thresholds, the method employs a greedy top-down splitting 

approach. This implies that the model is deciding the best split at the particular step rather 

than looking ahead for future possibly more pure splits at later stages (Hastie et al., 2008). 

Thus, the classification algorithm is by design potentially foregoing a split that would have 

resulted in a better tree at a future step.  

 

When employing a classification tree for predictions, each observation will receive a 

predicted score corresponding to the proportion of class default training data observations in 

the terminal node in which it belongs (Hastie et al., 2014). As such, if a firm ends in a terminal 

node where the proportion of training data observations from class default was 10%, the 

predicted score will be 0.1. The more decision nodes a tree has the purer the leaves can get, 

and the resulting class separation in the training data will be greater. However, the 
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consequence of having more branches and terminal nodes is that the amount of observations 

within each terminal node decreases. We are therefore at risk of creating a model that is so 

specific to the data it is built with that it overfits on the data we intend to predict on (ibid.). 

This is represented by a trade-off between pure, deep trees and generalization error when 

employing the model for predictions (Hastie et al., 2008). To combat the potential over-

complexity of the classification tree we first construct a large tree and then prune it back to 

obtain a subset of the tree. This implies that branches of decision nodes associated with small 

terminal nodes are removed. To decide the optimal subset of a tree and hence minimum 

number of observations in a terminal node, a repeated 10-fold leave-one-out cross validation 

procedure is carried out. That is, the data is first divided into ten folds and with nine folds 

we test how the subtree fared in prediction on the tenth. This procedure is repeated for 

varying number of minimum observations in a terminal node. The subtree with the lowest 

prediction error rate is chosen as the optimal pruned tree (ibid.).  

 

4.5.2 Machine Learning Methodology: Random Forest 

The discriminative power of the simple classification tree can be improved upon by 

employing the random forest algorithm. This machine learning approach use a collection of 

classification trees to boost the class separation performance. The simple classification tree 

is a high variance algorithm, i.e. it will yield differing results if applied to dissimilar datasets 

(Hastie et al., 2008). To reduce the variance and receive stable generalizable predictions, we 

use the concept of bagging. It is a frequently employed procedure in a classification tree 

setting. The background is that the average of a large set of observations returns a lesser 

variance. Bagging consists of generating a large number of bootstrapped datasets, i.e. 

repeated sampling from the same main dataset, growing a tree for each bootstrap. The 

number of trees needed in the forest relates to the weak law of large numbers as the resulting 

prediction will tend toward a mean value as the number of trees increases. This convergence 

can be seen at 200 trees and it is rarely necessary to construct more than 1000 trees (Hastie 

et al., 2014) why the random forest algorithm applied in this thesis will construct 1000 trees. 

The trees are constructed as deep unpruned trees, and the collection of trees is referred to as 

a forest. The resulting prediction is then the average of all the trees in the forest. 
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The random forest algorithm employs the concept of bagging but adds a refinement to 

the procedure. If there is one overarching predictor separating the classes the best, then the 

far majority of the trees in a bagged forest will use the same predictor at the top split. This 

implies that the predictions stemming from the individual trees will be correlated (Hastie et 

al., 2014). The reduction in variance and increase in ability to accurately generalize from using 

a bagged forest over a simple classification tree will be greater if the individual trees are 

uncorrelated. This is exactly what the random forest algorithm does. The trees are 

decorrelated by constraining which predictors are used at each split. Each time a split is 

considered a random sample among the predictors of size m is chosen and the algorithm can 

only choose among these m predictors. The predictor chosen for the split is still the one that 

maximizes the gain in purity (ibid.). The process is repeated across all trees in the forest and 

each tree will be much more distinct as the predictors at the top splits will differ.  

  

The algorithm can be tuned with respect to the choice of m and minimum number of 

observations in each terminal node across the forest. The optimal number of these 

parameters is found by minimizing the out-of-bag error (Hastie et al., 2014). Each tree in the 

forest is constructed using two thirds of the total observations in the bootstrap. The 

remaining observations in the bootstrap, the out-of-bag observations, is used to calculate this 

error. For a given unique observation across all of the bootstrapped datasets we predict its 

class by using every tree where that observation was out-of-bag. The average of the 

predictions will then be that observations predicted class (ibid.). We repeat this procedure 

for every observation and the resulting out-of-bag error is used as an estimate of the test 

error for the random forest model.  

 

4.6 Metrics for Comparing Models 

For comparing the models developed in our research, we utilize receiver operating 

characteristic (ROC) curves and Somers’ D. To a large extent, the first is the primary metric 

for the academic field of default probability. The latter is somewhat more utilized in the 

practical approach. By these means, those two in combination fit the research of this paper 

particularly well, as it both has an academic and a practical scope. Below, we will uncover the 

two metrics’ respective properties.  
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4.6.1 Receiver Operating Characteristic Curves 

We will utilize the area under the ROC (AUROC), which indicates how efficient a 

classifier of default a given model is (Fawcett, 2006). Fundamentally, the AUROC indicates 

how well a model segregates the two groups in the classification problem in percentage terms. 

A value of 75% AUROC indicates that a randomly drawn default will be scored above a 

randomly drawn non-default, 75% of the times. Thus, a model with no discriminative power 

will have an area under the ROC of 50%, and go from (0,0) to (1,1) in a unit square. As the 

AUROC approaches 100% it will cover more of the unit square and move towards the (0,1) 

corner of the graph.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Receiver operating characteristic curves are useful for comparing models of probability 

of default, as it overcomes the problem of arbitrary cut-off points. Arbitrary cut-off points 

are a topic of discussion within the PD-literature, which have attracted a lot of attention. 

Exemplified through Ohlson’s original logistic regression, where he classified firms with a 

score above 0.038 as defaulting companies; a point which might as well have been anywhere 

between 0 and 1 (Ohlson 1980). The ROC-curve handles this problem by plotting a curve 

according to all cut-off points within the range, and the main focus is then left on the ability 
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to segregate defaulting from solvent businesses across all cut-off points. Thus, it is a 

beneficial methodology for comparing different models that seek to explain the same 

problem. In reality, no PD-model is perfect, and how the AUROC handles misclassifications 

is a strong property of the methodology.  

 

The two types of misclassifications are called false positives and false negatives, 

respectively. The first refers to solvent companies that gets incorrectly classified by the model 

as a default. This type of misclassification is called a type I error. The latter refers to a default 

firm, which gets incorrectly classified as a solvent company. This is termed a type II error. 

In extension hereof are true positives and true negatives, which indicate correct 

classifications by the model (Duan & Shresta, 2011). The type I and II errors are dependent 

on the cut-off point of a given model, which can be summarized in the following confusion 

matrix.  

 

 

 

 

 

 

 

 

The proportion of true positives out of all defaulting companies in a given portfolio is 

termed true positive rate, or sensitivity. Likewise, the proportion of true negatives of all 

solvent companies in the portfolio is termed specificity. The concepts of sensitivity and 

specificity are denoting the x and y-axis of the ROC-curve, respectively. As such, the method 

is useful in comparing classification models, as it considers a tradeoff between both 

misclassified defaults and non-defaults. This is property that gives it strength compared to 

another analytical metric used in the discipline of statistical modelling, accuracy, which only 

considers correctly classified observations out of the total portfolio. To showcase the 

potential misleading the accuracy metric incurs, consider a portfolio of exactly 10% 

defaulting companies. A model that classifies all companies in the portfolio as solvent would 

receive an accuracy of 0.9 or 90%, in spite the fact that it classifies no firms as defaulting. We 

mitigate this problem by sticking to AUROC as our model performance metric, as its 

Actual Observations 

Predicted by Model Solvent Default 

Solvent 

Default 

Score < Cut-off 

(Correct Prediction) 

Score ≥ Cut-off 

(Type I-error) 

Score ≥ Cut-off 

(Correct Prediction) 

Score < Cut-off 

(Type II-error) 

Table 4.1: Theoretical Confusion Matrix 

Source: Personal collection 
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property of emphasizing both sensitivity and specificity make it attractive for skewed class 

distributions (Fawcett 2006).  

 

When examining ROC curves throughout the thesis we will at times refer to the top-left 

point. We examine this point, not as an evaluation metric but to add an analytical layer and 

showcase how a specific model function. The top-left point in the ROC curve is the point 

that maximizes the sum of specificity and sensitivity. Choosing the optimal cut-off point is 

not within the scope of this thesis as it depends heavily on the situation at hand and the 

consequences an incorrect classification has. In a corporate loan setting one can imagine a 

trade-off between foregone profits from loans not given to actual non-defaulters and write-

offs from loans given to actual defaulters. Consequently, we do not claim that this is the 

optimal point but rather give equal weight to specificity and sensitivity to remain unbiased. 

The cut-off value associated with the top-left point on the ROC curve is visualized in a 

generic example below. Here the shaded area on the density plot represents observations 

with a predicted default score above the cut-off value. Observations in the shaded area 

correspond to correctly classified defaulting firms and type II error and vice versa for 

observations in the non-shaded area.  

 

 

 

 

 

 

 

 

 

 

 

 

When using the area under the ROC as our metric for comparing model performance, 

we align ourselves with several of the pertinent fields. First, it is the primary metric within 

the academic PD-literature, as the importance of penalizing models for making too many 

misclassifications in both directions are prioritized when giving default probabilities to firms 

(Jackson & Wood, 2013; Duan & Shrestra, 2011). Second, the AUROC is one of the metrics 
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amongst the preferred in practical credit risk models, due the above properties and its 

intuitive interpretation (Engelman & Rauhaimer, 2011). Third, the AUROC has also gained 

prevalence within the machine learning field, as the primary metric for evaluating 

classification models (Bradley 1997).  

 

4.6.2 Somers’ D 

The other metric for evaluating models that we incorporate in our research is that of 

Somers’ D. It is an evaluation tool provided by Robert Somers, as he identified a need for a 

pair of asymmetric coefficients in contrast to the symmetric measures of ordinality (Somers, 

1962). As such, it captures the ordinal association between two possible response features X 

and Y. Here, the measure takes the value negative one when all pairs of variables disagree, 

and likewise the value of positive one when all pairs of the two features agree. Thus, it is a 

relevant measure in terms of evaluating a PD-model, as the performance of such can be 

dissected into a vector of the actual default or solvency of the observations, and a similar 

vector of the predicted values by the given model. If the observations ordered in terms of 

the latter vector completely segregates the defaults from the solvent firms, the Somers’ D 

would equal one.  

 

More specifically, Somers build his measure around what he denominates concordant 

and discordant pairs respectively. Concordant pairs would be the case of the larger of two 

X-values being associated to the larger of two Y-values. Similarly, the discordant pair occurs 

when the larger of two X-values would be associated with the smaller of two Y-values. The 

value of Somers’ D is ultimately the difference between the two corresponding conditional 

probabilities, under the occurrence of the two X-values not being equal (Newson, 2002).  By 

these means, it is a relevant metric to apply for different default probability models, as it 

evaluates one specific model’s ability to discriminate between the defaulting and solvent 

companies. This property is shared with the AUROC, which it shares numerous assumptions 

with. More accurately, for models with a dichotomous outcome, the Somers’ D has the 

relationship to AUROC of being 𝑆𝑜𝑚𝑒𝑟𝑠′ 𝐷 =  2 ∗ (𝐴𝑈𝑅𝑂𝐶 − 0.5). However, we choose to 

present both measures in our thesis, in order to capture the duality of the research being 

both academically and practically oriented.   
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4.7 Training and Validation 

When evaluating the models in our research, we choose to split our portfolio into 

training and testing data sets respectively. Doing this, we ensure the validity of our models 

being predicting mechanisms of defaulting companies. In its essence, a model is trained on 

the majority of the portfolio, and then a minority of the portfolio is holdout as a testing data 

set, in order to validate how well the given model discriminate between defaulting and solvent 

companies. There are several motivations for adopting the procedure, where most central is 

the prevention of an overfitted model. As such, a PD-model may be capable of correctly 

segregating all companies in the training portfolio, but if it is unable to achieve a higher than 

random discriminative power on new and unknown observations, the model is little useful.  

 

By these means, we evaluate the models of our research on their performance on the 

testing data set, rather than their performance on the training portfolio when comparing our 

models. Furthermore, some models considered in the thesis at hand are already estimated in 

another framework, which we showcase the efficiency of by applying to our portfolio, 

including the original Altman, original Ohlson, and both Merton models. As such, these 

models do intrinsically not need a training and validating process, as they are already 

“trained” in another setting. However, in order to even the battlefield, we evaluate all models 

on the same testing portfolio. Specifically, the testing set is created from a randomly selected 

part of companies that constitute 25% of the original portfolio, which in total amounts to 

around 1500 firms. Furthermore, we check that the proportion of defaults is equal across 

both the training and testing portfolio. By adopting this approach, we not only comply to 

essential statistical properties, we also align with the academic literature of default probability 

(Jackson & Wood, 2013; Hillegeist et al., 2004; Giacosa et al., 2016).  
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5. Data 

 

Multiple factors are driving the data collection design in this thesis. The multiple legs in 

the research question impose several strict requirements on the data behind the analyses. 

These requirements are two-fold. First the thesis seeks to model on a setting reflecting a true 

business environment. This includes considerations related to the number of defaulting 

relative to non-defaulting companies, the range of countries to include, whether certain 

industries should be excluded and a time period that echoes the economic cycle with both 

up and downturns. Secondly the thesis will build, compare and contrast a wide variety of 

both academically and practically motivated models. These differing models have either non 

or only minor overlapping input requirements. This consequently implies that the data 

behind need to be diverse as a prerequisite is that all data points are available for each unique 

observation. The following paragraphs will introduce and describe how the collection and 

preprocessing of the data used in this thesis has been conducted. 

  

5.1 Data collection design 

Corporate defaults are a somewhat rare event when dealing with firm level data. In order 

to obtain a meaningful amount of defaulting firm observations while still maintaining a 

natural relative composition, the data has been compiled as a combination of the “OSIRIS 

Global” and “COMPUSTAT North American” database. Both databases cover a wide range 

of publicly listed companies and corporate defaults. To ensure comparability across national 

accounting principles both databases applies a standardization procedure and have a high 

level of transparency. This facilitates data clarity and enables the researchers to conduct 

cross-border studies on a uniform dataset without sacrificing accuracy. A firm is classified as 

a defaulting firm when a deletion from one of the databases has occurred as a result of either 

a liquidation or bankruptcy corresponding to either a chapter VII or XI bankruptcy (US 

Courts, 2020). The observation of a defaulting firm includes the latest available balance sheet 

and income statement assuming that the observation has defaulted within 12 months. 

 

To further ensure comparability across firms, explicit considerations has been made 

both with respect to nation and industry. This entails that the sample has excluded firm 

observations from countries not part of the OECD nations, which is parameter we choose 

to somewhat uniform the developmental level of companies’ national origin. Additionally, 

the data extraction methodology involves only sampling companies adhering to the same 
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overarching industrial definition. This implies that all companies operating within financial 

services has been excluded. This is done as this type of companies have vastly different 

balance sheets, earnings profiles and ways of reporting and are thus not comparable even 

post standardization efforts. Companies excluded due to this criterion includes banks, 

insurance companies, REITs, brokerages and other financial intermediaries. The exclusion 

of financial service companies is consistent with prior empery (Altman 1968; Ohlson 1980; 

Jackson & Wood 2013, Hillegeist et al. 2004) although we expand the scopes applied in these 

works, in order to evaluate PD models in a broader context than previously studied. The 

data collected is annual data spanning the years 2001 through 2019 representing balance sheet 

and income statement items at the fiscal year end. We have not made any discrimination 

between companies ending their fiscal year at differing months. Neither do we weigh 

companies differently based on the year they are observed. Data is delivered in US Dollars 

for accounting information across all countries. For retrieved market information, the data 

is provided in the native currency of each company. A unique ISO Currency Code represents 

each native currency and all native currencies have been converted to US Dollars using the 

exchange rate at year end 2019. The distribution of companies in the portfolio across 

countries is visualized on the below figure. The dataset is skewed towards countries which 

had a larger proportion of companies in the databases.  

 

  

 

 

 

 

 

 

 

 

 

 

 
 
 

 

5.2 Data cleansing procedures 

Prior to calculating financial ratios, we conduct several operationalizations on our 

portfolio of companies. This is done to reduce the initial 121.000 observations identified for 
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Figure 5.1: Distribution of Companies across Countries 

Countries with above 40 firms in the portfolio. Y-axis capped for formatting purposes. Japan has 1442 solvent 
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Source: Personal collection 
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possible analysis, as observations should only be included if sufficient data is available to 

allow for application of the probability of default models under consideration in this thesis.  

 

We start by engaging in a comprehensive data cleansing. Here, we first remove 

observations that include missing values to ensure that all calculations are possible 

throughout the dataset. Second, we check for any duplicate observations, which fortunately 

was irrelevant due to good quality of data provided by the Compustat and Osiris databases. 

Third, we remove extremely small companies, as we consider those a different species of 

firms. We set thresholds of at least one million dollars in assets, and at least one hundred 

thousand in revenue. While we do this, we acknowledge that companies of this size do exist 

in the business landscape and do indeed have the probability of going default. It is 

nonetheless a measure we take to focus the models we build and ensure generality of the 

coefficients it find. 

 

We then proceed to handle outliers through winsorizing. Winsorizing consists of 

replacing an outlier with “the nearest observation that is not seriously suspect” (Tukey 1962). 

According to several studies such as Dixon (1960; 1980), this approach shows to yield more 

stable results than other methods of dealing with outliers. The version of winsorizing that 

we are employing consists of re-coding every variable above and below the minimum and 

maximum 1% of the portfolio, i.e. having thresholds of 0.01 and 0.99. Specifically, we recode 

these observations to take the value of the threshold percentiles. The winsorizing is 

performed on all ordinary variables in the data set. Prior to the winsorizing process random 

checks of extreme values were looked up in their respective annual reports as a final data 

quality check. This was done to avoid including and giving weight to erroneous data points. 

Examples of companies with suspect values, which however add relevant information, are 

Exxon Mobil that have by far the largest total assets in the portfolio, and General Motors 

that was granted a bailout package of 13.4 billion by the U.S. Government in 2008.  
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Figure 5.2: Data Cleansing Process 
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Finally, we balance the data set to some degree. The raw portfolio suffers from data 

becoming more comprehensive as it approximates 2019, mainly due to the quality of the 

databases.  As such we remove observations, predominantly in the 2012-2019 period, 

through a randomization process. The event of default is treated as a dichotomous variable, 

representing a 1 for default and 0 for non-default, and is coded for the remaining 

observations in the cleansed dataset.  

Figure 5.3: Distribution of Companies across Time 

 

  Source: Personal collection  

5.3 Calculation of input parameters 

There are several sources of financial information which constitute parameters our data 

set must comply with. These stem from the frameworks of Altman, Ohlson, Merton, and 

variables we introduce from Plenborg et al. (2017). The calculation hereof will be presented 

below.  

 

5.3.1 Accounting-based models 

The academic accounting-based models of Altman and Ohlson applied in this thesis 

require specific financial ratios derived from either the balance sheet or income statement of 

each observation included in the final sample. The majority of Altman’s ratio are standard 

financial ratios whereas some of Ohlson’s to a greater extent are unique to his model. A range 

of the ratios can be calculated directly from the corresponding financial items, however some 

require further operationalization. 

 

The only ratio that is recurring in both models is Working Capital/Total Assets. The 

definition used for Working Capital in this thesis is current assets less current liabilities less 
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cash at hand. We recognize that operational cash at hand ideally should be classified as 

working capital, however this separation has not been possible as it is rarely a unique balance 

sheet item. Altman’s ratio of Market Value of Equity/Book Value of Liabilities require us to 

know the market value of equity. This is not an item directly available from the balance sheet 

of a firm. To calculate the market value of equity for each of the more than 6000 unique 

firms in the dataset we need to know both the number of shares outstanding and the share 

price at the end of each observation’s fiscal year. The data required to calculate this is found 

from multiple data extractions from the merged COMPUSTAT/CRSP Global Stock 

database. This type of market data is delivered separately from the database of financials. We 

hence need to be able to pair the data with the correct observation to have one market record 

per company. Each of the observations in our dataset is provided a unique global index key 

that facilitates the pairing and merging of the extracted data.  

 

A range of Ohlson’s input parameters also requires attention in order to ensure the 

correct operationalization. This is due to some of them either not being standard financial 

ratios or because we need to clarify the definition applied in this thesis. These include Size, 

Net Income Dummy, Net Income Change ratio and Funds from Operations/Total Liabilities. In order 

to apply the Ohlson model in a true setting we follow his way of calculating Size. As our 

dataset contains observations from OECD countries rather than solely US firms, we choose 

to scale Size with OECD GDP. From the World Bank Database, we extract both current 

and constant 2010 OECD GDP in the year range of 2001 through 2019. These data 

extractions allow us to calculate a GDP Index comparable with Ohlson’s. This index is added 

to the dataset as a separate column paired with the year of each unique observation. Common 

for both the Net Income Dummy and Net Income Change ratio is that we need Net Income for 

the observed year and one year prior, posing additional data requirements. Funds from 

Operations is not a financial item that was available in the databases for direct extraction. In 

order to ensure that the item is comparable across firms in the portfolio, we have defined 

Funds from Operations as EBITDA less change in Working Capital. This implies that an 

increase in Working Capital between the observed year and the year prior will affect Funds 

from Operations negatively. A consequence of this definition is that we need two years’ 

worth of Working Capital data for each observation.  

 

The practical probability of default model drives the inclusion of additional financial 

ratios worth considering when modeling probability of default. These include among other 
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the two cash-flow based ratios of Funds from Operations/Current Liabilities and Funds from 

Operations/Capital Expenditure as well as the liquidity-based ratio of Working Capital/Revenue. 

To promote comparability across ratios we employ the same definition of Funds from 

Operation and Working Capital as in the above paragraphs. We follow the approximation 

from Plenborg et al. (2017) using Depreciation and Amortization as a proxy for Capital 

Expenditure, as the two over time should converge. In doing this we recognize that the Funds 

from Operations/Capital Expenditure ratio is at risk of reflecting Maintenance Capital 

Expenditure to a higher extent than actual Capital Expenditure for the period.  

 

5.3.2 Structural Models 

The application of the two structural approaches to probability of default is a demanding 

process with respect to data requirements. Part of the input parameters is already accessible 

from the dataset such as the book value of liabilities. Consequently, the main challenges lie 

within the estimation of the unobservable parameters of asset value and asset volatility for 

the Original Merton model. As put forward in the methodological part of this thesis, market 

value of equity and the associated volatility are both observable and can be used to solve for 

the unobservable values. Market value of equity is calculated in the same manner as described 

earlier as number of shares outstanding multiplied with the share price at the end of the 

observation’s fiscal year. On the basis of historical daily stock returns for the entire fiscal 

year we calculate volatility of equity.  However, both structural models applied require the 

annualized volatility. To facilitate this calculation, we convert the daily returns to logarithmic 

returns. The annualized volatility is then found by taking the standard deviation of the daily 

logarithmic returns and multiplying it with the square root of the number of trading days in 

the given year. The market value of equity and the associated annualized volatility is then 

paired with a risk-free rate proxied by the 12-month US treasury rate. For the Original 

Merton model, these inputs are then used to iteratively solve for asset value and asset 

volatility in equation (4.9) and (4.12), and the process is repeated for each of the 6121 

observations in the sample. This computational complexity can be contrasted to the Naïve 

Merton Model as it has a closed form equation that does not require a numerical routine to 

solve for unknown values. The process for calculating market capitalization and volatility of 

equity is identical as above, however all of the remaining input parameters is directly available 

from the already established dataset.  
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5.4 Final Descriptive Statistics 

Table 5.1: Descriptive Statistics of Ratios 
Ratio N Mean St. Dev. Min Pctl(25) Pctl(75) Max 

LevDummy 6,126 0.05 0.21 0.00 0.00 0.00 1.00 
NIDummy 6,126 0.21 0.40 0.00 0.00 0.00 1.00 
WC/TA 6,126 0.19 0.28 -7.08 0.07 0.30 0.97 
RE/TA 6,126 -0.43 4.38 -249.00 -0.07 0.35 2.61 
EBIT/TA 6,126 -0.01 0.37 -5.48 0.01 0.09 13.16 
MV/BD 6,126 3.21 7.66 0.01 0.47 2.79 142.86 
SA/TA 6,126 1.09 0.85 0.01 0.60 1.36 17.88 
Size 6,126 8.07 1.90 3.26 6.80 9.36 12.84 
TL/TA 6,126 0.61 3.20 0.02 0.36 0.68 244.07 
CL/CA 6,126 1.02 10.81 0.01 0.40 0.91 809.804 
NI/TA 6,126 -0.07 1.27 -94.26 -0.02 0.06 10.25 
FPO/TL 6,126 0.11 0.91 -17.42 0.04 0.29 13.91 
NIChange 6,126 -0.01 0.52 -1.00 -0.52 0.24 1.00 
FFO/CAPEX 6,126 30.04 1,262.86 -9,641.98 0.63 4.34 84,947.54 
TL/EBITDA 6,126 7.40 1,653.77 -84,783.47 1.71 8.07 97,543.15 
FFO/CL 6,126 0.26 1.57 -33.25 0.06 0.59 36.83 
WC/SA 6,126 0.44 11.05 -443.56 0.07 0.32 604.12 
NäiveDD 6,126 4.08 9.15 -4.39 1.25 5.97 526.90 

  Source: Personal collection 

The above table summarizes the descriptive statistics for the calculated financial ratios 

for the sample. It is evident that the minimum and maximum values are far from the mean, 

first and third quartile. In statistics, a distinction is made between unusual and influential data. 

Here, unusual refers to data points that lie outside the pattern set by other data and influential 

refers to data points that disproportionately influence the results of a model (Belsley & Kuh, 

1980). In samples an observation may be both unusual and influential as an unusual value of 

a given predictor can have a disproportionate influence on the slope. However, for large 

samples, such as the one in this thesis, we are bound to obtain unusual observations simply 

due to the size of the distribution (Menard, 2010). That is, extreme values occur but the 

frequency is low. We constrained the disproportionally influential data points by first 

ensuring that they were free from measurement errors and then employing a winsorizing 

procedure that restricted rather than removing the values for the upper and lower percentile. 

In doing this we recognized that unusual observations 1) provide important information 

about the phenomenon under examination and 2) that they are valid for the population as 

the sample then reflects the true variability. We therefore deem the conclusions drawn from 

the sample correct. 
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6. Results 

 

The results chapter of this research is split in three parts, which will serve the purpose 

of evaluating the three hypotheses that finalized the theoretical framework of the thesis. As 

such, the first section will be devoted to the academic approach to default probability. The 

second section will revolve around the practical discipline of credit risk. The third and 

concluding section of the results will be expanding upon the practical framework utilizing 

machine learning methodology. We evaluate the discriminative power of each model with 

respect to the AUROC and Somers’ D metrics. These metrics present the overall 

discriminative ability of a model and we emphasize that comparison and evaluation between 

models can only truly be made with these. As such, the models should not be compared or 

evaluated in terms of accuracy at a single cut-off point, a specific threshold value or the 

predicted score assigned to individual firms. These values are model-specific and does not 

facilitate direct comparison. They do however add depth to the analysis of the individual 

model. To illustrate this analytical layer and gain further insights on how the models work 

we conduct two analyses for each. First, we illustrate how a model classifies observations at 

the cut-off point associated with the top-left point of the ROC graph. Secondly, we 

demonstrate throughout the results chapter each models’ classification mechanism with a 

guiding example of the defaulted Thomas Cook Group (TCG). 

 

6.1 The Academic Approach to Default Probability  

The aim of the first section of the results chapter is to answer the thesis’ first hypothesis: 

The classic academic approaches to default probability have discriminative power on a modern portfolio. To 

facilitate a verification of this hypothesis we estimate and subsequently evaluate the six 

different models that we have presented in the prior sections. These models include four 

accounting-based models and two structural models. The accounting-based models are the 

Altman and Ohlson models with their original coefficients and with coefficients re-estimated 

on our dataset respectively. The two structural models are the original Merton model and the 

more recent Naïve Merton model.  

 

6.1.1 Original Framework of Altman 

In Altman’s seminal paper an increasing Z-score was associated with a lower likelihood 

of failure. This implies, that in order to facilitate comparisons between the models we need 

to flip the direction of the coefficients in the Altman model. This approach will not have any 
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influence on the discriminative ability and the choice is purely made to simplify and avoid 

confusion when presenting the results. This alteration entails that a lower Z-score 

corresponds to a lesser likelihood of firm failure. The model will then be given by equation 

(6.1). 

 

 𝑍 = −1.2 ∗ 𝑊𝐶/𝑇𝐴 − 1.4 ∗ 𝑅𝐸/𝑇𝐴 − 3.3 ∗ 𝐸𝐵𝐼𝑇/𝑇𝐴 − 0.6 ∗ 𝑀𝑉/𝐵𝐷 

                         −0.99 ∗ 𝑆𝐴/𝑇𝐴 
(6.1) 

 

Altman’s Z-score framework does not provide us with a probability of default directly 

from the model. To calculate a probability of default from a given Z-score we follow the 

approach outlined in the methodology chapter and use the logistic transformation. By using 

this procedure, the ranking of observations provided by the modelled Z-score is transformed 

to a tangible probability of default.  
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Figure 6.1: ROC-Curve for Original Altman Model 

Source: Personal collection  
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The discriminative ability of the original Altman model is visualized on the ROC graph 

above. To recap, this graph expresses the quality of ranking associated with the classifier, i.e. 

the ability of the model to rank observations by increasing probability of default. In a perfect 

model all defaulting firms would be assigned a larger probability of default than the non-

defaulting firms. The graph summarizes all the possible cut-off points of the model. An 

observation with a probability of default less than the cut-off point is classified as a non-

defaulting firm and vice versa. At each cut-off point the associated sensitivity and specificity 

is mapped. To illustrate the discriminative mechanisms of the first Altman model we will 

zoom in on the top-left point of the ROC graph. The top-left point is displaying the cut-off 

point with the greatest proportion of correctly classified defaulting firms relative to the 

proportion of non-defaulting firms mistakenly classified.  

 

The above density plot visualizes the frequency of the first Altman model’s predicted 

probabilities. By examining the top-left point of the ROC graph we find that the associated 

cut-off point is at 22.4%. Observations above this point will be classified as defaulting firms 

and this is visualized as the observations to the right of the vertical line. The confusion matrix 

beside the density plot tables the predicted classes relative to the actual classes of the firms 

in the testing set. The sum of the columns represents the actual number of defaults (167) and 

non-defaults (1363). Of the 1363 non-defaulting observations the model correctly classified 

1140 and equivalently 115 of the 167 defaulting firms. We can see that the model predicted 

223 false positives (Type I-error) and 52 false negatives (Type II-error). This corresponds to 

a false positive rate of 16.36% and false negative rate of 31.13%. If a false negative is costly, 

Actual Observations 

Predicted by Model Solvent Default 

Solvent 

Default 

1140 

223 115 

52 

Original Altman Model – Top-left Cut-off Point 

Figure 6.2: Confusion Matrix and Density Plot in Original Altman Model 

Source: Personal collection  
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and we want to reduce this number we can choose a cut-off point associated with a higher 

sensitivity. However, this will come at the expense of increasing the number of false positives 

at a faster pace.  

 

To further illustrate the mechanisms of the model, we can see on equation (6.2) and 

(6.3) how the probability of default is calculated for the guiding example of TCG. The 

corresponding Z-score is then transformed to a probability between zero and one using the 

logistic equation. The associated probability of default is 24.18%. If the cut-off point is 

chosen at 22.4% the model will correctly classify TCG as a defaulting firm.  

 

 𝑍 = −1.2 ∗ −0.051 − 1.4 ∗ −0.135 − 3.3 ∗ 0.007 − 0.6 ∗ 0.009 − 0.99 ∗ 1.459 

      𝑍 =  −1.143 
(6.2) 

 

 
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑇𝐶𝐺 𝐷𝑒𝑓𝑎𝑢𝑙𝑡 =

1

1 + 𝑒−(−1.143)
= 24.18% (6.3) 

 

The Altman model has an AUROC of 80.74% and the corresponding 95% confidence 

interval is 76.87-84.61%. The Somers’ D associated with the Altman model is 0.6149 which 

further indicates a positive relationship between predicted probability of default and actual 

default.  

 

6.1.2 Re-estimation of the Altman Model 

As a consequence of the methodological choice of using a linear regression to re-

estimate the coefficients of the Altman model, the ranking provided by the model will have 

only the majority of observations within the interval of 0 and 1. This implies that the size of 

the coefficients are not pairwise comparable between the two models. However, the direction 

and the relative within model size of the coefficients can be compared. The regression output 

for the re-estimated model can be seen in the table 6.1. 
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Default 

 (1) 

WC/TA 
-0.065*** 

(0.016) 

RE/TA 
-0.006*** 

(0.001) 

EBIT/TA 
-0.177*** 

(0.013) 

MV/BD 
-0.003*** 

(0.001) 

SA/TA 
0.038*** 
(0.005) 

Constant 
1.087*** 
(0.008) 

 

 

 

All of the variables including the intercept is significant at the 1% level, signaling that 

the re-estimated model should possess discriminative power. Like in the original Altman 

model, the largest coefficient is the EBIT/TA ratio but the relative size of the remaining 

coefficients has changed. This is for instance reflected in WC/TA being ten times larger than 

RE/TA whereas they are close to identical in the original model. The largest deviation in the 

re-estimated model is related to the SA/TA ratio. This is the only ratio that has changed 

direction, i.e. an increase in the ratio is now associated with an increase in the predicted 

probability of default whereas the opposite was the case in the original model. Intuitively, 

the change in direction does not make sense and would present a sign of caution if the model 

was applied in practice. The Z-scores from the re-estimated Altman model is transformed to 

probabilities between zero and one by employing the logistic equation. The model’s ranking 

ability is summarized in the below ROC graph. At first glance, the two Altman models’ 

discriminative ability is very close to each other. The re-estimated Altman model does 

however seem to cover a greater area than the original as the top-left corner has been 

extended.    

Note: 1) Model Coefficients. 2) Standard errors in parentheses. 

3) *p<0.1; **p<0.05; ***p<0.01 

Source: Personal collection 

Table 6.1: Re-estimated Altman Model 
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As the Z-scores by design was already rather close to values between zero and one prior 

to the logistic transformation, the resulting frequency density plot of the predicted 

probabilities will not look like one shown earlier. This can be seen on the plot below. Our 

initial belief will consequently be that the cut-off point associated with the top-left point of 

the ROC graph will be high. If the cut-off point was low the false positive rate would be 

proportionally too high. We can examine this by looking at the confusion matrix 

corresponding to the aforementioned cut-off point below. The confusion matrix is the result 

of a cut-off point at 75.32%, which, as expected, is higher than the original. The number of 

true default predictions is 131 and the number of wrong non-default prediction is 36. When 

looking at the number of true non-default predictions we observe 1020 and the number of 

mistakenly predicted defaults are 343. These predictions imply that at the top-left cut off 

point, the re-estimated model is more sensitive but less specific than the original.   

 

 

ROC-Curve Re-estimated Altman 
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Figure 6.3: ROC-Curve in the Re-estimated Altman Model 

Source: Personal collection 
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We can illustrate how the re-estimated Altman model works by returning to the example 

of TCG. The critical Z-score value for the cut-off point of 75.32% is 1.12. As TCG’s Z-score 

of 1.145 and corresponding probability of default of 75.86% is above this, the model correctly 

classifies the observation as a default. As with the original model, the predicted probability 

is just above the cut-off point.  

 

 𝑍 = 1.087 − 0.065 ∗ −0.051 − 0.006 ∗ −0.135 − 0.177 ∗ 0.007 

                            −0.003 ∗ 0.009 + 0.038 ∗ 1.459 
                    𝑍 =  1.145 

(6.4) 

 

 
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑇𝐶𝐺 𝐷𝑒𝑓𝑎𝑢𝑙𝑡 =

1

1 + 𝑒−(1.145)
= 75.86% (6.5) 

 

The re-estimated Altman model’s discriminative power, as summarized by the 

evaluation criteria, is slightly better than the original. The AUROC is 81.35% with a 

confidence interval of 77.55-85.15%. The corresponding Somers’ D is 0.6270 

 

6.1.3 Original Framework of Ohlson 

As presented in the methodology section of the thesis, the original Ohlson framework 

consists of nine features with coefficients estimated through a logistic regression. It yielded 

the following equation:  

 𝑂 =  −1.32 − 0.407 ∗ 𝑆𝑖𝑧𝑒 + 6.03 ∗ 𝑇𝐿/𝑇𝐴 − 1.43 ∗ WC/TA + 0.0757 ∗ 𝐶𝐿/𝐶𝐴 
               −2.37 ∗ 𝑁𝐼/𝑇𝐴 − 1.83 ∗ FFO/TL + 0.285 ∗ 𝑁𝐼𝐷𝑢𝑚𝑚𝑦 

                −1.72 ∗ 𝐿𝑒𝑣𝐷𝑢𝑚𝑚𝑦 − 0.521 ∗ NIChange 
(6.6) 

 

Actual Observations 

Predicted by Model Solvent Default 

Solvent 

Default 

1020 

343 131 

36 

Re-estimated Altman Model – Top-left Cut-off Point 

Figure 6.4: Confusion Matrix and Density Plot in Re-estimated Altman Model 

Source: Personal collection 
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As indicated by Ohlson in his paper of 1980, the ratios of TL/TA, CL/CA, and 

NIDummy should contribute to a larger probability of default. Likewise, should increases in 

Size, WC/TA, NI/TA, FFO/TL, and NIChange ratio decrease the probability of default. At 

last, the LevDummy introduced by Ohlson could have a divergent effect on probability. As 

the score of the original framework of Ohlson come in the form of the log odds of default, 

we apply the logistic function to reach the probability of default. Having done so, we can 

create the ROC-curve for the original Ohlson framework seen below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the curve we can find the top-left cut-off point, translated into the corresponding 

threshold value between zero and one. The cut-off equals 44.15%, which indicates that 

companies with a default probability as calculated by Ohlson’s original framework above this 

value is classified as default, and otherwise determined as solvent. At the cut-off point of 

44.15%, we can estimate the following confusion matrix.  
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Figure 6.5: ROC-Curve in Original Ohlson Model 

Source: Personal collection 
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As such, the original Ohlson framework models 213 type I-errors, and 34 type II-errors. 

In total, it predicts 346 defaults, of which 133 are correct. In a similar manner, it predicts 

1184 non-defaults, with 1150 correctly predicted non-defaults. Looking at the density plot 

of the predicted default probabilities, the 167 predicted defaults are the observations in the 

area to the right of the cut-off point. To illustrate the original model of Ohlson, we utilize 

TCG as an example by inserting those specific financial ratios into the framework. When 

applied to the framework, TCG receives a score 0.5242, and after being transformed by the 

logistic function, it is denoted by a probability of 62.81%, well above the cut-off point of 

44.15%. By these means, the original Ohlson framework correctly predicts the default of 

TCG.  

 

 𝑂 = −1.32 − 0.407 ∗ 11.34 + 6.03 ∗ 0.9557 − 1.43 ∗ −0.051 

                              +0.0757 ∗ 1.9981 − 2.37 ∗ −0.0248 − 1.83 ∗ 0.0586 

                              +0.285 ∗ 0 − 1.72 ∗ 0 − 0.521 ∗ −1 

                     𝑂 =  0.5242 

  

(6.7) 

 
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑇𝐶𝐺 𝐷𝑒𝑓𝑎𝑢𝑙𝑡 =

1

1 + 𝑒−(0.5242)
= 62.81% (6.8) 

 

Looking into the performance metrics of the original Ohlson framework, the area under 

the receiver operating characteristic curve equals 86.73% with a confidence interval of 83.27 

- 90.19%. The Somers’ D achieves a score of 0.7345. 
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Original Ohlson Model – Top-left Cut-off Point 

Figure 6.6.: Confusion Matrix and Density Plot in Original Ohlson Model 

Source: Personal collection 
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6.1.4 Re-estimation of the Ohlson Model 

When re-estimating the Ohlson framework on our portfolio of companies, we 

inherently estimate new coefficients for the original features. We do so by building a logistic 

regression model, with the default variable as the regressor, and the identical nine financial 

ratios as regressants. Doing so, we do not consider building a model where all coefficients 

are significant and comply with maximum likelihood estimation. This is reserved for the 

practical approach to default probability, which will be examined in the second part of the 

results. Thus, we stick to solely re-estimating the coefficients in the original framework.  

 

 
Default 

 (1) 

Size 
-0.374*** 

(0.035) 

TL/TA 
2.176*** 
(0.244) 

WC/TA 
-0.021 
(0.252) 

CL/CA 
-0.002 
(0.013) 

NI/TA 
0.353*** 
(0.131) 

FFO/TL 
-0.197*** 

(0.054) 

NIDummy 
1.391*** 
(0.129) 

LevDummy 
-0.097 
(0.253) 

NIChange 
-0.889*** 

(0.129) 

Constant 
-1.223*** 

(0.294) 

 

 

 

Commenting exclusively on the regression of the re-estimation, all coefficients besides 

WC/TA, CL/CA, and LevDummy achieve significance at the 1% level. In terms of indication 

of the coefficients, i.e. the direction of each coefficient, their effect shows relatively good 

alignment with Ohlson’s framework. Of the significant regressants, NI/TA has a reverse 

relationship compared to the original model. It should be underlined that these changes make 

Note: 1) Model Coefficients. 2) Standard errors in parentheses. 

3) *p<0.1; **p<0.05; ***p<0.01 

Source: Personal collection 

Table 6.2: Re-estimated Ohlson Model 
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little economic sense, as a larger ratio of NI/TA should indicate a healthier financial state of 

the company, and thus a lower probability of default. Specifically, the interpretation of the 

variable at hand is that a one unit increase in the ratio equals an increase of 0.353 in the log 

odds of default. Ultimately, the ROC-curve for the re-estimated Ohlson model looks the 

following.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the top-left cut-off point at a threshold of 12.17%, we can examine how the model 

segregates the two classes. This is a substantially different value than from the application of 

the original Ohlson model, which indicates that the re-estimation classifies the observations 

with a lower probability of default score. Below we present the resulting confusion matrix, 

which shows 238 type I-errors and 32 type II-errors. Compared to the original framework, 

the re-estimated Ohlson model correctly predicts two more defaulting companies, at the 

expense of labelling 25 more solvent companies as default. The default predictions are 

indicated on the density plot at the right.  
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Figure 6.7: ROC-Curve in Re-estimated Ohlson Model 

Source: Personal collection 
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In terms of the TCG, the thesis’ guiding example, it showcases how the discriminative 

ability of the Ohlson re-estimation model is different from the original one. This model gives 

the example a probability of default of 7.45%, which is below the cut-off value. This indicates 

that the re-estimated Ohlson model would incorrectly classify TCG as non-default, i.e. a false 

negative.  

 𝑂 =  −1.223 − 0.374 ∗ 11.34 + 2.176 ∗ 0.9557 − 0.021 ∗ −0.051 

                           −0.002 ∗ 1.9981 + 0.353 ∗ −0.0248 − 0.197 ∗ 0.0586 

                           +1.391 ∗ 0 − 0.097 ∗ 0 − 0.889 ∗ −1 

                 𝑂 =  −2.52 

  

(6.9) 

 
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑇𝐶𝐺 𝐷𝑒𝑓𝑎𝑢𝑙𝑡 =

1

1 + 𝑒−(−2.52)
= 7.45% (6.10) 

 

The AUROC equals 87.54% with a confidence interval of 85.2 - 89.88%. As such, in 

spite of the re-estimated framework being unable to predict the default of Thomas Cook, 

the model segregates the two groups well across all possible cut-off values. The value of 

Somers’ D is 0.7508.  

 

6.1.5 The Original Framework of Merton 

We apply the European call contingent claim model through the original Merton 

framework. As stated in the methodology section of the thesis, this framework hypothesizes 

that default occurs if the value of the assets falls below the level of the firm’s liabilities at 

maturity, which would happen through equity holders exercising their walk away option on 

the assets. We apply the framework through calculating market capitalization, stock returns 

and equity volatility to solve equation (4.9) and (4.12) before calculating probability of default 

in equation (6.11).  
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Figure 6.8: Confusion Matrix and Density Plot in Re-estimated Ohlson Model 

Source: Personal collection 
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𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐷𝑒𝑓𝑎𝑢𝑙𝑡 = 𝑁 (−

𝑙𝑛 [
𝐴
𝐿

]  + (𝜇 −
1
2

𝜎2) 𝑇

𝜎√𝑇
) (6.11) 

 

The predicted values of the original Merton model measure the number of standard 

deviations the expected logarithm of asset value is from default, i.e. from the logarithm of 

liabilities. As presented in the methodological part of the thesis, this value is lognormally 

distributed. We can consequently calculate the predicted probability of default. Put 

differently, we can calculate how close it is to the colored region in figure 4.1. The ROC-

curve for the model is presented below:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The top-left cut-off point for the model is 0.05%, which reflects a relatively low 

predicted probability of default mean. It implies, that non-defaulting firms are assigned a 

virtual to nothing probability of default. This is also visible from the ROC plot as the line is 

flat when the false positive rate is above 21%. At this threshold, the Original Merton model 

has 300 type I-errors and 35 type II-errors. As can be seen on the density plot, the predicted 

probabilities are virtually zero for a large part of the observations.  

 

ROC-Curve Original Merton 
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Figure 6.9: ROC-Curve in Original Merton Model 

Source: Personal collection 
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In terms of our example, the distance to default as calculated by the model is 0.78. As 

such, Thomas Cook’s expected asset value in the forecast horizon of one year is 0.78 standard 

deviations from default. This translates into a 21.63% probability of default. At the chosen 

cut-off point, the model correctly classifies Thomas Cook as a default observation and with 

a large margin compared to the previous examples.  

 

                     𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑇𝐶𝐺 𝐷𝑒𝑓𝑎𝑢𝑙𝑡    

= 𝑁 (−
𝑙𝑛 [

7948054.26
8187143.77

]  + (5.91% −
1
2

3.66%2) 𝑇

3.66%√1
) 

                           = 21.63%  
 
 

(6.12) 

The evaluation metrics for the original Merton framework reports that the AUROC is 

equal to 81.71% with a confidence interval of 77.52 - 85.90% and the Somers’ D value is 

0.5981.  

 

6.1.6 The Naïve Approach to the Merton Framework  

In the re-estimated Merton model, or the Naïve approach to the contingent claim model, 

we utilize the computationally less heavy Bharath and Shumway approach (2008). We follow 

the simplifications of the framework put forward in the methodological chapter. This 

includes the value of liabilities now equaling current liabilities plus one half of the long-term 

debt, and the volatility of debt being a transformation of the volatility of equity. Doing this, 

we simplify the complex calculation of the unobservable variables in the original Merton 

framework in equation (6.11) and instead use equation (6.13).  
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Figure 6.10: Confusion Matrix and Density Plot in Original Merton Model 

Source: Personal collection 
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𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐷𝑒𝑓𝑎𝑢𝑙𝑡 = 𝑁 (−
𝑙𝑛 [

𝐴𝑁

𝐿𝑁
]  + (𝜇𝑁 −

1
2

𝜎𝑁
2) 𝑇

𝜎𝑁√𝑇
) (6.13) 

 

Having done the calculation described above, we are capable of calculating the distance 

to default in the Näive Merton framework. With equation (6.13) we transform the distance 

to default to a probability of default and estimate the ROC-curve below, which clearly covers 

a greater area than the original.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The top-left cut-off point is 46.5% from which we estimate the confusion matrix. At 

this threshold, the model has 190 type I-errors and 27 type II-errors. Thus, it correctly 

predicts 140 of the defaulted firms in the portfolio. On the right is the density graph of the 

predicted probabilities, with the indication of the cut-off point and the indication of the 

predicted defaulted companies.  

 

 

ROC-Curve Naïve Merton 
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Figure 6.11: ROC-Curve in Naïve Merton Model 

Source: Personal collection 
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The model’s differing assumptions for the value of assets, asset volatility and debt give 

a very different picture of TCG than we have seen in the prior examples. Following the 

calculation presented below, the predicted probability of default for TCG is 98.74%. This is 

well above the cut-off point and the resulting classification is a clear default. The evaluation 

metrics for the Naïve Merton model include an AUROC of 87.63% with a confidence 

interval of 84.15 - 91.11% and the Somers’ D equals 0.7295.  

 

           𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑇𝐶𝐺 𝐷𝑒𝑓𝑎𝑢𝑙𝑡 
 

= 𝑁 (−
𝑙𝑛 [

70175.81 + 6294893.75
6294893.75

]  + (−88.78% −
1
2

43.35%2) 𝑇

43.35%√1
) 

           = 98.74%  
 

 

(6.14) 

 

6.1.7 Overview and Evaluation of Hypothesis 1 

In the following overview section, we will emphasize the aspects of the six applied 

models, the three fundamental PD-frameworks and their re-estimations, which allow us to 

conclude upon the first hypothesis: The classic academic approaches to default probability have 

discriminative power on a modern portfolio. We will thus neglect some aspects of the specific 

models, and rather frame the focus of the overview on the evaluation parameters of the 

AUROC and Somers’ D.  

 

 

 

Actual Observations 

Predicted by Model Solvent Default 

Solvent 

Default 

1173 

190 140 

27 

Naïve Merton Model – Top-left Cut-off Point 

Figure 6.12: Confusion Matrix and Density Plot in Naïve Merton Model 

Source: Personal collection 
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Table 6.3: Overview of Models 

 Training 
AUROC 

Testing 
AUROC 

Somers’ D 
Solvent 

PD-Mean 
Defaulted 
PD-Mean 

Portfolio 
PD-Mean 

Original Altman 
80.65% 

[ 78.43-82.87] 
80.74% 

[ 76.87-84.61] 
0.6149 13.84% 49.12% 17.69% 

Re-estimated Altman 
80.01% 

[ 77.78-82.24] 
81.35% 

[ 77.55-85.15] 
0.6270 75.01% 76.64% 75.17% 

Original Ohlson 
87.08% 

[ 85.39-88.77] 
86.73% 

[ 83.27-90.19] 
0.7345 20.51% 70.57% 25.97% 

Re-estimated Ohlson 
87.26% 

[ 85.62-88.90] 
87.54% 

[ 85.20-89.88] 
0.7508 8.20% 33.57% 10.97% 

Original Merton 
80.72% 

[ 78.48-82.96] 
81.71% 

[ 77.52-85.90] 
0.5981 2.56% 26.08% 5.13% 

Naïve Merton 
88.74% 

[ 87.02-90.46] 
87.63% 

[ 84.15-91.11] 
0.7295 11.08% 69.89% 17.50% 

Portfolio Total - - - - - 10.95% 

Source: Personal collection  

As emphasized in the table above, all the three academic approaches to default 

probability reach an AUROC above 80% for both the training and testing set. This metric is 

specifically interesting as it allows us to compare the discriminative power between the 

models, which is most interesting on the testing data set, as it gives a real indication of the 

given model’s discriminative power. The AUROC for the training portfolio has two 

properties. First, it is a measure of explanatory power similar to R2 for regression models in 

classical statistics. Second, only minor deviations between training and testing AUROC 

implies a well-fitted model.  However, we reinstate that the ultimate evaluation parameter is 

that of AUROC for the testing portfolio. Of the accounting-based models, the re-estimated 

Ohlson model outperforms it peers with an AUROC of 87.54%. This is however improved 

upon by the Naïve Merton model, which achieves the highest score across all models with 

87.63% AUROC. However, in terms of the Somers’ D, the Naïve Merton performs worse 

in relation to both of the logistic regressions. This indicates that the structural model is 

penalized relative more for having more ties within the predicted values, which prevents it 

from ordering the predictions accordingly.  

 

Within the accounting-based paradigm of the academic approach to default probability, 

both the re-estimation of the Altman and the Ohlson model only slightly increase the 

discriminative power. This is aligned with the research of Hillegeist et al. (2004), which also 

found that the re-estimation of these two frameworks yielded very similar results to the 

original applications. With respect to the Merton model, the Naïve and less computationally 
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heavy approach improve the discriminative power significantly, both in terms AUROC and 

Somers’ D. While it may seem counterintuitive that a simpler model provides better 

segregation of defaults and solvent firms, it is in line with findings of both Bharath and 

Shumway (2008) and Jackson and Wood (2013).  

 

The central aim of the analysis in this section has been to assess the discriminative power 

for all of the six models applied to our modern dataset. The above comparison and 

differentiation of the models with respect to the AUROC metric is consequently based on 

how well each model rank firms. Another evaluation metric independent of a model’s 

discriminative power is calibration. Rather than a measure of ranking, calibration is related to 

what extent the models’ predicted probabilities depart from the in-sample default frequency. 

This is an important point and is related to the interpretable part of probability in probability 

of default. As such, models can be said to have high discriminative power while at the same 

time being poorly calibrated. This has implications for the applicability of a model in a 

corporate loan setting. If a model is to be said to provide the user with a probability in its 

literal sense, it has to be well-calibrated. A poorly calibrated model is consequently providing 

the user with a score rather than a probability per se.  

 

To recognize the importance of this aspect in model evaluation the above table includes 

the mean predicted probability of default. This is included for the testing sample in total as 

well as for the two classes. All the models give a higher mean predicted probability of default 

for the group of actually defaulted firms than they do for the non-defaulted firms. However, 

the actual proportion of defaults in the testing set is 10.95% and it is evident that the majority 

of the models deviate from this proportion. The deviation is clearest for the re-estimated 

Altman model with a mean probability of 75.17%. The model is capable of ranking the 

observations, but it is not well-calibrated and resembles a scoring-model rather than a 

probability-model. The re-estimated Ohlson model is a contrast with a mean probability of 

10.97%. The difference between the two models reflects the two methodological branches. 

As the re-estimated Ohlson model is a result of a logistic regression it is by design calibrated 

to the data.   

 

Ultimately, the findings of the first section of the results indicate that the three academic 

approaches to default probability segregate the classes of default and non-default companies 

well in the testing data set. It is emphasized with all models achieving an AUROC above 
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80%. Furthermore, it comes with the perspective that the re-estimations of the models only 

slightly improve their power, which only underline the strength of the original frameworks. 

As we in this research are interested in the models’ ability to segregate classes rather than 

their ability to present an accurate probability of default, captured in calibration, we are able 

to verify the first hypothesis: The classic academic approaches to default probability have discriminative 

power on a modern portfolio.  

 

Table 6.4: Verification of Hypothesis 1 

# Hypothesis 

1 The classic academic approaches to default probability have discriminative power on a modern portfolio                  

 

 

6.2 The Practical Approach to Default Probability 

The second part of the results chapter will revolve around the practical approach to 

default probability. As such, we will build two models in this part. The first utilizes 

accounting ratios as features exclusively, which is the most exact mimic of the methodology 

used in practice (Engelmann & Rauhmeier, 2011; De Laurentis et al., 2010; Neisen & Rosch, 

2018). The second model will incorporate the structural approach to credit risk modelling, 

and thus establish a “Default Model of Synthesis” within the default probability literature. 

Afterwards, the section will provide an overview and conclude upon the second hypothesis 

of the research: the practical model outperforms the academic but is improved through a synthesis of market 

and accounting theory. 

 

6.2.1 The Practitioners’ Default Probability Model  

As outlined above we intend to estimate a model mimicking one a practitioner will 

employ in a professional setting. As such, the variables used as inputs in the model should 

reflect those available to professionals. We acknowledge that those variables presented by 

Altman and Ohlson are not a complete list of financial ratios. To reflect this and to 

approximate the long-list format of financial ratios we have calculated four additional 

variables that is derived from Plenborg et al. (2017): FFO/CL, WC/SA, FFO/CAPEX and 

TL/EBITDA. We therefore have a long-list of 14 financial ratios and Ohlson’s two dummy 

variables. The model can include a combination of variables from both the Altman and 

Ohlson framework in addition to the new range of variables we have included.  This implies 

that we are now not constrained in terms of the mix of variables used as inputs in the model. 
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We are, however, constrained in terms of whether the individual variables satisfy the specific 

statistical requirements to be included in the final model. The section will consequently be 

driven by the methodological steps of the practical approach presented earlier in this thesis 

and we will in the following paragraphs walk through each to reach the final model. 

 

The logistic model will, like the previous models, employ the binary default label variable 

as the dependent variable. In our preliminary long-list of variables, we assess the expected 

direction of each as the first step. That is, grounded in economic reasoning, the expected 

effect of a predictor will be negative if an increase will influence the probability of default 

downwards, ceteris paribus. This can be exemplified through an expected negative direction of 

the FFO/CL ratio, as a higher ratio indicates that the firm has liquidity to meet its short-term 

payables, which is associated with a lesser likelihood of bankruptcy. We couple the expected 

directions of the newly added variables with the directional relationships already highlighted 

by Altman and Ohlson. These can be seen on the table 6.5. The second pre-modelling step 

involves examining influential cases that will exert a disproportionate influence on the 

estimated parameters. Even though all the financial ratios have been calculated on the 

winsorized data, practitioners emphasize that extreme ratios still present should be removed. 

This is exemplified by the observation of nCoat Inc., which in their defaulting year of 2010 

had total liabilities of 920 million, and -340 thousand in EBITDA, giving them a 

TL/EBITDA ratio of -2,703. By plotting the variables we identify ratios with such extreme 

influential data points. We impose round-numbered cut-off points to exclude these, and 

those together with the following number of removed observations can be found in table 

6.5. In total, we remove 142 outliers, which essentially have no effect on the overall size of 

the portfolio.  
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Table 6.5: Predictor Cut-offs and Direction 

Variable 
Larger Than  

Cut-off 

Less Than  

Cut-off 

Outliers 

Removed* 

Expected 

Direction 

Observed 

Direction 

WC/TA - - - ↓ ↓ 

RE/TA -100.00 - 2 ↓ ↓ 

EBIT/TA - 10.00 1 ↓ ↓ 

MV/DB - 60.00 25 ↓ ↓ 

SA/TA - - - ↓ ↑ 

Size - 15.00 2 ↓ ↓ 

TL/TA - 15.00 2 ↑ ↑ 

CL/CA - 33.00 3 ↑ ↑ 

NI/TA -10.00 - 1 ↓ ↓ 

FFO/TL - - - ↓ ↓ 

NIChange - - - ↓ ↓ 

FFO/CAPEX -200.00 200.00 55 ↓ ↓ 

TL/EBITDA -200.00 200.00 60 ↑ ↑ 

FFO/CL - - - ↓ ↓ 

WC/SA -200.00 200.00 2 ↑ ↑ 

LevDummy - - - ↑↓ ↑ 

NIDummy - - - ↑ ↑ 

 

 

 

The main statistical assumption of a logistic regression is that the logit of y, in our case 

the logit of the probability that the outcome is default, has a linear relationship with the 

predictors. This assumption makes intuitive sense by viewing it through an interpretation of 

the coefficients. If the relationship is linear in the logit, then the change in the logit of default 

for a one-unit change in a financial predictor is constant. If the relationship is non-linear in 

the logit, then the change is not constant and depends on the specific value of the predictor. 

To ensure that this assumption is satisfied we employ the check for linearity procedure 

suggested by Hayden (2011) and originally presented by Hosmer and Lemeshow (1980). For 

a given financial predictor we aggregate observations into groups defined by the value of the 

predictor. The first group contains the top 3% values the next values from 94% to 97% and 

*The elimination of influential values is performed separately from the full data set. Thus, cut-offs in different variables may remove 

the same observations. In total, 142 observations are removed.  

Source: Personal collection 
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so forth, resulting in a total of 33 groups. Hayden suggests that the data is aggregated into 50 

groups, however, to ensure that each group includes defaulted observations we choose 33 

groups. In each group we calculate the empirical default rate, i.e. the mean of the dependent 

default variable, the associated logit and the median of the predictor value. To check for 

linearity the logit and median predictor value is then plotted against each other. The entire 

process is repeated for each individual financial predictor on our long-list and all the plots 

can be seen in Appendix 12.1.  

 

From the plots we detect evidence of non-linearity among some of the predictors. This 

implies that we need to transform the variables in order to approach linearity with the logit 

before we can use them as predictors in the model. We apply a quadratic, cubic and logistic 

transformation before deciding which works best for the specific nonlinear variable. For each 

Figure 6.13: Transformation Plots for MV/BD and NI/TA 

Source: Personal collection 
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transformation the above check-for-linearity procedure is repeated before re-plotting the 

relationship. Examples of such transformations can be seen in figure 6.13. Here we apply a 

logistic transformation to the MV/BD variable and a cubic transformation of the NI/TA 

variable, and the effect is clearly visible. From the plots we can also infer the directional 

relationship. As such, our initial belief that the direction of MV/BD and NI/TA was negative 

is confirmed.  

 

Further following the recipe provided by Hayden, we engage in the variable selection 

process, as the optimal default model in practice is built with few rather than many predictors. 

We remove financial ratios due to four parameters. First, we remove variables with a 

directional relationship not consistent with economic reasoning. Secondly, we remove 

variables that do not satisfy the linearity assumption even after transformation. Thirdly, we 

remove highly correlated predictors. Lastly, we remove predictors with relatively low Somers’ 

Figure 6.14: Linearity Plots for NIChange, SA/TA and TL/EBITDA 

Source: Personal collection 
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D metric (Engelmann & Rauhmeier, 2011). After transformations, the only variable with a 

conflicting directional relationship is the SA/TA ratio, and it is consequently excluded. The 

variables of NIChange and TL/EBITDA did not satisfy the linearity assumption and is also 

excluded. The plots for these three excluded predictors can be seen in figure 6.14.  

 

For each of the remaining 13 variables we calculate the corresponding Somers’ D metric 

which is used for the following two selection procedures. In the correlation matrix in table 

6.6, we group highly correlated variables, that is variables with a correlation of more than 0.5 

(Hayden, 2011). Three of such groups exists: a group related to profitability of RE/TA, 

NI/TA and EBIT/TA; a group related to leverage of WC/TA, CL/CA and TL/TA; and a 

group related to liquidity of FFO/TL and FFO/CL. In each of these three groups, only the 

variable with the largest Somers’ D is included in the next step and all other variables are 

excluded. This implies that we keep RE/TA, TL/TA and FFO/TL. Of the remaining eight 

uncorrelated variables we lastly exclude variables with a Somers’ D below 0.25. The WC/SA 

variable is excluded on this basis.  
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Table 6.6: Correlation Matrix - Practical Model of Default Probability 

Ratio Somers’ D WC/TA RE/TA EBIT/TA MV/BD Size TL/TA CL/CA NI/TA FFO/TL FFO/CAPEX FFO/CL WC/SA 

WC/TA 0.2090 1.00 0.19 0.32 0.22 -0.06 -0.57 -0.53 0.35 -0.04 0 -0.09 0.43 

RE/TA 0.6508  1.00 0.57 -0.02 0.36 -0.31 -0.18 0.56 0.31 0.21 0.27 0.06 

EBIT/TA 0.6454   1.00 0.02 0.37 -0.36 -0.27 0.88 0.39 0.22 0.35 0.01 

MV/BD 0.6526    1.00 0.09 -0.28 -0.16 0.03 -0.03 -0.06 -0.07 0.11 

Size 0.5122     1.00 -0.07 -0.07 0.35 0.21 0.17 0.23 0.11 

TL/TA 0.4802      1.00 0.55 -0.46 -0.04 -0.08 -0.03 -0.24 

CL/CA 0.3852       1.00 -0.31 -0.02 -0.03 -0.01 -0.25 

NI/TA 0.6442        1.00 0.3 0.2 0.27 0.06 

FFO/TL 0.5120         1.00 0.39 0.82 -0.17 

FFO/CAPEX 0.5074          1.00 0.36 -0.07 

FFO/CL 0.5088           1.00 -0.24 

WC/SA 0.2438            1.00 

 

Source: Personal collection
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We are now left with one dummy variable and six financial ratios that all satisfy the 

linearity assumption, exhibit a Somers’ D above 0.25 and capture distinctive effects with 

respect to predicting default. With the remaining predictors the initial modelling can begin 

where the goal is to build a parsimonious logistic regression, using the technique highlighted 

by Hayden. A parsimonious model is one which minimize the number of features while 

capturing the desired level of explanatory power, which in the case of this thesis means 

predicting default within the portfolio most efficiently (Wooldridge, 2016). As it is infeasible 

to model all possible combinations of financial predictors, we start by including all of the 

variables and gradually remove the least significant ratio until all coefficients show 

significance. Thus, it is the methodology of stepwise regression using a backwards 

elimination process (ibid).  

 

 

 
Default 

 (1) (2) (3) 

RE/TA 
-0.040 
(0.081) 

  

FFO/CAPEX 
-0.003 
(0.004) 

-0.003 
(0.004) 

 

MV/BD 
-1.022*** 
(0.057) 

-1.019*** 
(0.057) 

-1.017*** 
(0.057) 

Size 
-0.472*** 
(0.046) 

-0.481*** 
(0.043) 

-0.481*** 
(0.043) 

TL/TA 
1.258** 
(0.532) 

1.219** 
(0.516) 

1.203** 
(0.516) 

FFO/TL 
-0.838*** 
(0.140) 

-0.858*** 
(0.134) 

-0.908*** 
(0.121) 

NIDummy 
0.679*** 
(0.155) 

0.705*** 
(0.146) 

0.704*** 
(0.145) 

Constant 
1.632*** 
(0.539) 

1.642*** 
(0.539) 

1.637*** 
(0.539) 

 

 

 

 

We start by including the remaining seven predictors, which yields a model where the 

FFO/CAPEX variable and the ratio of RE/TA are the only insignificant predictors at a 1% 

significance level. The ratio of RE/TA has the lowest T-statistic, wherefore we remove it 

Note: 1) Model Coefficients. 2) Standard errors in parentheses. 3) *p<0.1; **p<0.05; 

***p<0.01 

Source: Personal collection 

Table 6.7: Practical Model of Default 
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and re-run the logistic model according to our backward elimination methodology. We find 

that FFO/CAPEX is still insignificant. The variable is excluded, and we are left with a 

practical probability of default model including five features that are all significant at the 5% 

level and all beside TL/TA are significant at the 1% level. The elimination procedure can be 

seen on table 6.7 and the associated ROC curve is visualized in figure 6.15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The threshold associated with the top-left point in the ROC graph is 11.32%. Here the 

practical model correctly classifies 111 defaulted observations and 1226 non-defaulted 

observations. By examining the mistakenly predicted classes, the model makes 113 Type I-

errors and 46 Type II-errors.  
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Figure 6.15: ROC-Curve in Practical Model 

Source: Personal collection 
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In terms of the example of TCG, the predicted probability of default according to the 

model is given by equation (6.15) and (6.16): 

 

                       𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐿𝑜𝑔 𝑂𝑑𝑑𝑠 𝑇𝐶𝐺 𝐷𝑒𝑓𝑎𝑢𝑙𝑡 
= 1.637 − 1.017 ∗ −4.759 − 0.481 ∗ 11.34 + 1.203 ∗ 0.985 

                           −0.908 ∗ 0.389 + 0.704 ∗ 0 
                       = 1.86 

 

(6.15) 

 
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑇𝐶𝐺 𝐷𝑒𝑓𝑎𝑢𝑙𝑡 =

1

1 + 𝑒−(1.86)
= 86.48% (6.16) 

 

The observed values used in the calculation are the transformed ratios. We note that the 

corresponding probability of 86.48% is above the cut-off value why the model correctly 

classifies TCG as a defaulting observation.  

 

The final model, built using the practitioners’ methodological steps, cuts the long-list of 

14 financial ratios and two dummy variables to four ratios and one dummy. To evaluate the 

model’s discriminative power, we employ it to classify on the out-of-sample testing set. The 

result is an AUROC of 89.5% with a confidence interval of 86.83 - 92.17% and a Somers’ D 

of 0.79.   

 

6.2.2 The Default Model of Synthesis  

The thesis’ second hypothesis also concerns the clash between the two schools of 

probability of default modeling. The models within each academic school differ in terms of 

theoretical underpinning, ease of application, calculatory complexity and popularity. We 

Actual Observations 

Predicted by Model Solvent Default 

Solvent 

Default 

1226 

113 111 

46 

The Practical Model – Top-left Cut-off Point 

Figure 6.16: Confusion Matrix and Density Plot in Practical Model 

Source: Personal collection 
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recognize that both approaches have strengths and weaknesses and that each school may 

capture different information. In the assessment of the first hypothesis we uncovered that 

on our modern dataset the Naïve Merton model possessed the greatest discriminative power, 

however it was closely followed by the re-estimated Ohlson model. Rather than arguing in 

favor of one school, the thesis seeks to place itself in between this paradigm clash. To achieve 

a greater discriminative power, we will in the following evaluate a model built using the 

practical methodological framework that employs both accounting and market-based 

information. An illustration of this principle is shown below.  

 

By these means, we want to introduce the Naïve Merton to the practical PD-model. We 

choose the Naïve rather than the original Merton framework, as it showed to have a higher 

discriminative power in the first section of our research. Rather than inserting the Naïve 

Merton’s probability of default into the logistic regression model directly, we comply with 

the point presented by Reisz and Perlich (2007) that an independent variable in the form of 

a probability is not consistent with the logistic model. As such, we utilize the NaïveDD, which 

is the value relied upon by the Naïve Merton model to calculate the probability of default. 

The distance to default from the Naïve Merton model is a measure of proximity to default. 

A low value is therefore an indication of default why the expected directional relationship is 

negative. We winsorize the NaïveDD variable prior to utilizing the parameter as a predictor, 

in order to keep it consistent with the remainder of the data set.  

 

Both the linearity assumption and the correlation to other variables is investigated for 

the NaïveDD, in order to ensure the consistency with the properties of the practical approach 

to default modelling (Engelmann & Rauhmeier, 2011). Both investigations show that the 

Probability of Default-model 
Predicted solvency 

of firm 

Market information 

Figure 6.17: Probability of Default Model: The Default Model of Synthesis 

Accounting information 

Source: Personal collection 
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variable is applicable for the desired model. The correlation matrix can be seen in Appendix 

12.2 and it shows correlations below 0.5 between all variables. The predictor shows minor 

evidence against linearity, as the slope is curved towards the middle. We apply a cubic 

transformation to approach a more linear plot. The plots pre and post transformation can 

be seen below.  

 

 

Like in the accounting-focused practical PD-model, we find the parsimonious regression 

model through steps of backward regression. Thus, we take the same starting point as in the 

previous section where we included all seven features. However, now we also include the 

NaïveDD resulting in eight initial predictors. It is visible from table 6.8 that three steps are 

needed to reach the final model. The first estimated model has three insignificant predictors 

and five significant at the 1% level. Among the insignificant predictors we again observe 

RE/TA and FFO/CAPEX as we did in the prior model. We also note that the direction of 

the RE/TA variable has changed such that an increase in the variable is associated with an 

increase in the probability of default, making it inconsistent with economic sense. However, 

most notably the TL/TA ratio is now also insignificant. As the T-statistic for the TL/TA 

ratio is the smallest the first step is to remove this variable. Subsequently, the RE/TA 

coefficient is still insignificant and is consequently removed. In the last step we remove the 

FFO/CAPEX ratio. The final model is reached at the fourth iteration where all variables are 

significant at the 5% level and all beside NIDummy at the 1% level. The fact that the both the 

market-based NaïveDD variable and the four accounting-based variables are significant 

implies that a model including both academic schools is aggregating more information than 

the frameworks individually. This underlines the relevance of the Default Model of Synthesis.  

Figure 6.18: Transformation Plots for NaïveDD 

Source: Personal collection 
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Default 

 (1) (2) (3) (4) 

TL/TA 
-0.289 
(0.535) 

   

RE/TA 
0.117 
(0.085) 

0.129 
(0.082) 

  

FFO/CAPEX 
-0.003 
(0.004) 

-0.003 
(0.004) 

-0.003 
(0.004) 

 

MV/BD 
-0.557*** 
(0.066) 

-0.538*** 
(0.055) 

-0.540*** 
(0.056) 

-0.540*** 
(0.056) 

Size 
-0.431*** 
(0.047) 

-0.430*** 
(0.047) 

-0.401*** 
(0.054) 

-0.402*** 
(0.043) 

FFO/TL 
-0.691*** 
(0.142) 

-0.704*** 
(0.140) 

-0.655*** 
(0.136) 

-0.696*** 
(0.123) 

NIDummy 
0.484*** 
(0.162) 

0.478*** 
(0.161) 

0.383** 
(0.150) 

0.385** 
(0.150) 

NaïveDD 
-0.832*** 
(0.075) 

-0.839*** 
(0.074) 

-0.824*** 
(0.074) 

-0.823*** 
(0.073) 

Constant 
1.334** 
(0.540) 

1.110*** 
(0.347) 

0.887*** 
(0.316) 

0.896*** 
(0.316) 

 

 

 

The practical model employing both accounting and market information achieves an 

AUROC of 90.65% on the testing set with a confidence interval of 87.47 - 93.83% and a 

Somers’ D of 0.813. The discriminative power of the model is an interesting finding in 

multiple ways. Firstly, it represents the influence the synthesis of the two paradigms has on 

the practical model’s discriminative power. Secondly, the AUROC is greater than any of the 

prior estimated single-approach models.  

Note: 1) Model Coefficients. 2) Standard errors in parentheses. 3) *p<0.1; **p<0.05; ***p<0.01 

Source: Personal collection 

Table 6.8: Default Model of Synthesis 
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The ROC curve is visualized above and the classification mechanism of the model at 

the top-left cutoff point of 13.61% can be summarized as follows. The model correctly 

classifies a total of 1336 firms, here 133 of those are correct defaults and 1203 are correct 

non-defaults. Likewise, the number of Type I-errors is 136 and for Type II-errors the number 

is 24.  

 

ROC-Curve Default Model of Synthesis 
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Figure 6.19: ROC-Curve in Default Model of Synthesis 

Figure 6.20: Confusion Matrix and Density Plot in Default Model of Synthesis 

Source: Personal collection 

Source: Personal collection 
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By using the coefficients from the final model and the logistic equation we can calculate 

the predicted probability of default for TCG in equation (6.17) and (6.18): 

 

                       𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐿𝑜𝑔 𝑂𝑑𝑑𝑠 𝑇𝐶𝐺 𝐷𝑒𝑓𝑎𝑢𝑙𝑡 
= 0.896 − 0.540 ∗ −4.759 − 0.402 ∗ 11.34 − 0.696 ∗ 0.388 

                           +0.385 ∗ 0 − 0.823 ∗ −1.307 
                       = −0.29 

 

(6.17) 

 
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑇𝐶𝐺 𝐷𝑒𝑓𝑎𝑢𝑙𝑡 =

1

1 + 𝑒−(−0.29)
= 42.87% (6.18) 

 

The model assigns a probability of default to TCG of 42.87% and as this is above the cut-

off value the classification is correct.  

 

6.2.3 Overview and Evaluation of Hypothesis 2 

To answer the thesis’ second hypothesis, we employed the practical probability of 

default methodology to our modern portfolio. The focus was centered on how a modelling 

procedure, which is unconstrained in terms of the mix of input variables used but instead 

constrained by specific variable requirements, leads to an improved model. Two models were 

built using this framework. The first model consisted only of accounting-based input 

variables and outperformed all prior models with an AUROC of 89.5%. The second model, 

named the “Default Model of Synthesis”, bridged the gap between the competing 

accounting-based and structural schools. By combining the NaïveDD with several 

accounting-based variables the final practical model achieved an even greater AUROC of 

90.65%. The results of the two models confirms the thesis’ second hypothesis.  

 

Table 6.9: Verification of Hypothesis 2 

# Hypothesis 

2 The practical model outperforms the academic but is improved through a synthesis of market and accounting theory   

 

The evaluation metrics of the two practical approaches is shown in comparison to the 

six academic models in table 6.10. Here, it is visualized clearly how the practical model and 

the Model of Synthesis outperforms the frameworks from the prior section.  
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Table 6.10: Overview of Models 

 Training 
AUROC 

Testing 
AUROC Somers’ D Solvent  

PD-Mean 
Defaulted  
PD-Mean 

Portfolio 
PD-Mean 

Original Altman 80.65% 
[ 78.43-82.87] 

80.74% 
[ 76.87-84.61] 0.6149 13.84% 49.12% 17.69% 

Re-estimated Altman 80.01% 
[ 77.78-82.24] 

81.35% 
[ 77.55-85.15] 0.6270 75.01% 76.64% 75.17% 

Original Ohlson 87.08% 
[ 85.39-88.77] 

86.73% 
[ 83.27-90.19] 0.7345 20.51% 70.57% 25.97% 

Re-estimated Ohlson 87.26% 
[ 85.62-88.90] 

87.54% 
[ 85.20-89.88] 0.7508 8.20% 33.57% 10.97% 

Original Merton 80.72% 
[ 78.48-82.96] 

81.71% 
[ 77.52-85.90] 0.5981 2.56% 26.08% 5.13% 

Naïve Merton 88.74% 
[ 87.02-90.46] 

87.63% 
[ 84.15-91.11] 0.7295 11.08% 69.89% 17.50% 

Practical Model 88.30% 
[ 86.54-90.06] 

89.50% 
[ 86.83-92.17] 0.7900 7.05% 35.42% 10.48% 

Model of Synthesis 91.71% 
[ 90.15-93.27] 

90.65% 
[ 87.47-93.83] 0.8130 6.45% 44.91% 10.93% 

Portfolio Total - - - - - 10.95% 
Source: Personal collection  

 

6.3 The Machine Learning Approach to Default Probability 

Having presented the second part of our research which showcased that the practical 

approach to default outperformed the academically founded frameworks, we continue into 

the third section which is concerned with the introduction of machine learning methodology 

to credit risk modelling. The research manifested that the practical approach was indeed 

better than the academic frameworks, however, it was significantly improved upon by 

bridging the two paradigms within the academic sphere of default probability. We labelled 

this the “Default Model of Synthesis”, as it incorporated both the accounting and the market 

approach to the discipline. This is the foundation we build upon in the third section of the 

thesis, which is exclusively methodologically driven, and serve the purpose of evaluating the 

third hypothesis: The discriminative power of the practical model can be improved through the application 

of machine learning. This means that the third section does not aim to build the best possible 

model from all the portfolio’s predictors through a new framework. Instead, it underlines 

how the practical approach to PD can be improved even further through the application of 

machine learning methodology, i.e. only utilizing the exact same features as in the prior 

section. This part will be split in two, where the first introduces the algorithm of classification 

trees, and the second presents its ensemble extension of a random forest, which will 

constitute the final model of the research.  
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6.3.1 A Probability of Default Model using Classification Trees 

As outlined above, we abstain from finding the most optimal predictors for a machine 

learning approach to default probability. Instead we build upon the finding of the second 

section of the thesis relating to the practical approach to default probability, which is the 

starting point of this section. Thus, we already know what predictors to build the initial 

classification tree with. Here we follow the approach outlined in the methodology section, 

where we start with an unconstrained classification tree and then test if we need to apply a 

pruning procedure before arriving at a final model. As such, we build a classification tree on 

the training data set, including the variables of RE/TA, MV/BD, Size, TL/TA, FFO/TL, 

FFO/CAPEX, NIDummy, and NaïveDD.  

 

Figure 6.21: Classification Tree Diagram 

 

The initial tree is visualized above and shows nine terminal nodes, where three is 

indicative of a default prediction and six give a solvent prediction. The single most decisive 

predictor according to the decision tree is that of the distance to default from the Naïve Merton 

framework. The NaïveDD is the root node containing all observations with an initial split 

happening at 0.1847. Firms with a value greater than this are then ordered by Size, where 

those with a Size less than 6 are considered solvent. Observations with a Size greater than 6 

are once again ordered by NaïveDD at a cut-off of 2.5815. Above this value, firms are 

considered solvent, whereas below they are ordered by the MV/BD-ratio at 0.0237. Below 

Source: Personal collection 
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this value, companies are predicted as default, whereas above they are deemed solvent. Going 

out the other branch of the tree, the NaïveDD again splits the tree at a value of -1.0173. 

Above this value, Size is a determining predictor, but only for node purity as both firms with 

a value above and below 7.1536 are considered solvent. Firms with a NaïveDD below -1.1398, 

are split by MV/BD, where companies with a ratio less than 0.049 are considered default. 

Those above are split by the ratio of FFO/CAPEX where firms with a ratio lower than 

1.0175 are default and vice versa.  

 

By inspecting the tree, we can observe that some of the terminal nodes has an interesting 

characteristic that may seem counterintuitive. At the mid splits made by Size the associated 

terminal nodes have the same predicted class. Regardless of the value of Size the response 

classification is the same. However, by including the extra split, the resulting nodes’ purity 

increases corresponding to a better class segregation. Suppose an observation in the testing 

set has a NaïveDD below 0.1847 but above –1.1398. At this point, the node contains 415 

observations with a split of 67.5% non-default and 32.5% default observations. We are more 

likely to make a non-default prediction for observations at this part of the tree, but the risk 

of a misclassification error is notably present. By including Size as a decision node, we can 

improve the class split considerably. As such, if the observation has a Size greater than 7.1535 

then the resulting class split is 85.34% and 14.66%. By examining the terminal nodes further, 

we can highlight some rather pure nodes. Among observations with a NaïveDD below -

1.1398 and a MV/BD below 0.05, 91.8% are defaulting firms. The opposite is true for 

observations with a NaïveDD above 2.58 and a Size above 6 as 99.2% of these are non-

defaulting firms.  

 

Simple classification trees tend to suffer from high variance. As they function by splitting 

data to reach as pure nodes as possible, the data is split multiple times as we go down the 

tree. On the training set this works well as we are continuously narrowing down the data. As 

we go down the tree, and the terminal nodes are further away from the root node, the actual 

predictions will effectively be made by fewer and fewer data points. If the tree is too deep 

and specific to the data it is built with, we will make incorrect predictions for observations 

with slight deviations in financial ratios. A lower tree might generalize better, but at the cost 

of less pure nodes. As we by design have already pre-selected a subpart of the total long-list 

of financial ratios, the risk of overfitting has already been decreased. However, we do check 

if our tree needs to be pruned. We perform the pruning procedure described in the 
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methodology with a 10-fold cross-validation on the training set, which shows that the 

optimal number of terminal nodes is nine. Therefore, the initial classification tree equals the 

optimal one.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Applying the model to the portfolio such that we predict on the testing data, we achieve 

the ROC-curve shown above. From here, we can extract the top-left cut-off point, which 

equals 0.09. At this point, we observe the confusion matrix seen below. At the top left cut-

off point, the classification tree correctly predicts 140 defaulting companies, with 247 false 

positives, i.e. type I-errors. Simultaneously, it predicts correctly 1092 solvent companies, with 

17 false negatives, i.e. type II-errors. If we apply the example of Thomas Cook Group to the 

classification tree, it showcases how it classifies such company as insolvent. TCG has a 

NaïveDD of -2.2304, which is below the models’ initial cut-off point of 0.1849. It is also 

below the second threshold of the same parameter, which the classification tree sets at -

1.0173. The following node considers the ratio of MV/BD, for which a threshold is set of 

0.049. TCG has a MV/BD-ratio of 0.0086, wherefore it ends at its terminal node where it is 

correctly predicted as default.  

ROC-Curve Classification Tree 
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Figure 6.22: ROC-Curve in Classification Tree Model 

Source: Personal collection 
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The discriminative power of the classification tree is summarized with an AUROC of 

90.26%, with the confidence interval of 87.3 - 93.23%. However, the Somers’ D achieves a 

score of only 0.7286. With the given AUROC, the simple classification tree does not 

outperform the Default Model of Synthesis. Additionally, the nine terminal nodes make the 

classification tree inherently discriminate the portfolio into only nine different probabilities. 

The many ties related hereto make the Somers’ D relatively low, compared to the high 

AUROC, which underline why the former is a poor metric to evaluate a classification tree. 

However, there are further challenges related to the classification tree.  

 

6.3.2 Random Forest: Extending the Classification Tree Framework 

To improve the discriminative power, we use the simple tree as a building block for a 

more powerful model. As mentioned earlier, the simple classification trees suffer from high 

variance, i.e. the rule-based split of the training data into as pure nodes as possible generates 

a tree that is too detailed and specific to be effectively applied for classification of new 

observations. If the range of the financial ratios of the in-sample data are different from the 

range of ratios of the out-of-sample data, the discriminative power of the model will not be 

optimal. To mitigate the problem a pruning procedure can be applied, but the top structure 

of the tree remains the same independent of how far up we prune it. In other words, the 

financial ratios towards the top are the same. This implies that if we compare different pruned 

trees, they will tend to be correlated. These challenges are mitigated by methods of ensemble. 

As highlighted in the methodology chapter of the thesis, ensemble methods consist of 

estimating multiple analytical models instead of just one. By these means, we estimate a 

random forest model, which builds many hundreds of classification trees, prioritizing 

different combinations of features and compositions. 

 

The random forest model contrasts the simple classification trees in terms of variance 

as each tree is grown on the basis of a different subpart of the dataset. To ensure that the 

Actual Observations 

Predicted by Model Solvent Default 

Solvent 

Default 

1092 

247 140 

17 

Figure 6.23: Classification Tree Model – Top-left Cut-off 

Point 

Source: Personal collection 
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individual bootstrapped sample contains the same number of defaulted observations we 

choose a stratified bootstrapping procedure. Additionally, for each tree built we decide a 

random sample of m size among the financial predictors as the basis for the splitting criterion. 

By considering only a subset of the total number of financial predictor variables at each split, 

multiple predictors will get a chance to be tested at the upper stages of the tree. We also vary 

the minimum number of observations at each terminal node. This implies that we mitigate 

the weakness of the simple tree. The average of the aggregated collection of trees will yield a 

lower variance, and each tree within the forest will be less correlated which will help us 

achieve a greater discriminative power.  

 

Specifically, we build a random forest model, still solely with the variables of RE/TA, 

MV/BD, Size, TL/TA, FFO/TL, FFO/CAPEX, NIDummy, and NaïveDD. Then, we 

proceed to tune the model, where we estimate the random number of variables utilized for 

each split, and the minimum size of the terminal nodes in terms of observations. Doing so, 

we set the number of trees in each random forest to be 1000, as accounted for in the 

methodology chapter. We find the random number of variables at each split that minimizes 

the out-of-bag error at the value of 4 and 5, at the error rate of 6.15%. We choose to proceed 

with 4, however utilizing 5 should yield similar results. Then, we find that the minimal 

number of observations for each terminal node that minimizes the error rate at 5. This 

minimization process oscillates significantly through the tuning process, due to the 

granularity of changing the parameter with 1 per iteration. These optimizations are visualized 

on the graphs below.  

 

Figure 6.24: Identification of Minimum Error Rate 
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As such, we have our final random forest model. When we apply the random forest 

model to our test set, the predicted class is the average across the 1000 trees in the ensemble.  

 

 

 

 

 

 

 

 

The model correctly predicts 140 of the defaulted companies in the test portfolio. It is 

followed by 233 type I-errors, and 17 type II-errors. As such, the random forest model 

correctly predicts 1106 of the solvent companies. The confusion matrix and the ROC-curve 

can be seen in figure 6.25 and 6.26.  
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Figure 6.25: Random Forest Model – Top-left Cut-off Point 

Figure 6.26: ROC-Curve in Random Forest Model 

Source: Personal collection 

Source: Personal collection 
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The neatly visualized and easily interpretable tree diagram is no longer possible with a 

random forest. As the prediction is based on the average of 1000 trees, we are unable to 

make a single visualization. Furthermore, 1000 different visualization will not add any value 

to the analysis. As a consequence, the financial ratios corresponding to either terminal nodes 

or top decision nodes is not directly known. To examine the relative importance of the 

financial variables in the forest we need to make use of the Gini index. For an individual 

predictor, we add up and average the decrease in Gini index for all splits across the 1000 

trees. A visual representation can be seen below, where the Naïve distance to default again 

is the most important variable.  

 

In terms of the Thomas Cook Group, the properties of the random forest model make 

it unable to exemplify by an equation or diagram how the model arrives at a classification of 

either defaulting or solvent. This make the model somewhat a black box. However, we can 

create a dataset consisting of only the TCG observation, and have the model predict its 

solvency. By using the average across the 1000 trees in the ensemble, the model assigns the 

firm a predicted score of 0.4937, which is above the model’s score threshold of 0.0901, 

wherefore the random forest model correctly classifies TCG as default. These two aspects 
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underline the problems regarding interpretability with machine learning models, which we 

will dissect in relation to the discipline of default probability in the subsequent discussion 

chapter of the thesis.  

 

However, when using the final random forest model to make predictions on the testing 

portfolio, we achieve an area under the receiver operating characteristic curve of 94.14%, 

which is a significant improvement from the classification tree. This AUROC comes with a 

Somers’ D of 0.8786, which constitute a massive improvement compared to the decision 

tree.  

 

6.3.3 Overview and Evaluation of Hypothesis 3 

While the machine learning model of a simple classification tree did not improve the 

area under the receiver operating characteristic curve in comparison to the Default Model of 

Synthesis, we utilized the framework as a building block in an ensemble model. Thus, 

through a random forest model, which optimizes and averages a sample of 1000 classification 

trees, we were able to achieve a discriminative power of 94.14%. This is by far the largest 

AUROC found by the research at hand, and it clearly showcases the power of a machine 

learning methodology in the arena of default probability. Furthermore, this final model 

improved the discriminative power on the portfolio in comparison to the practical approach 

to the credit risk discipline. Through this extension of the practical framework, we address 

the gap identified in both the academic and practical fields of default probability. As such, 

the thesis confirms its third hypothesis.  

 

Table 6.11: Verification of Hypothesis 3 

# Hypothesis 

3 The discriminative power of the practical model can be improved through the application of machine learning           

 

The evaluation metrics of the two machine learning approaches is shown in comparison 

to the academic and practical models in table 6.12. It is shown how the classification tree 

fails to improve on the discriminative power of the Default Model of Synthesis, however the 

random forest model clearly outperforms the other frameworks in the research.  
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Table 6.12: Overview of Models 

 Training 
AUROC 

Testing 
AUROC Somers’ D Solvent  

PD-Mean 
Defaulted  
PD-Mean 

Portfolio 
PD-Mean 

Original Altman 80.65% 
[ 78.43-82.87] 

80.74% 
[ 76.87-84.61] 0.6149 13.84% 49.12% 17.69% 

Re-estimated Altman 80.01% 
[ 77.78-82.24] 

81.35% 
[ 77.55-85.15] 0.6270 75.01% 76.64% 75.17% 

Original Ohlson 87.08% 
[ 85.39-88.77] 

86.73% 
[ 83.27-90.19] 0.7345 20.51% 70.57% 25.97% 

Re-estimated Ohlson 87.26% 
[ 85.62-88.90] 

87.54% 
[ 85.20-89.88] 0.7508 8.20% 33.57% 10.97% 

Original Merton 80.72% 
[ 78.48-82.96] 

81.71% 
[ 77.52-85.90] 0.5981 2.56% 26.08% 5.13% 

Naïve Merton 88.74% 
[ 87.02-90.46] 

87.63% 
[ 84.15-91.11] 0.7295 11.08% 69.89% 17.50% 

Practical Model 88.30% 
[ 86.54-90.06] 

89.50% 
[ 86.83-92.17] 0.7900 7.05% 35.42% 10.48% 

Model of Synthesis 91.71% 
[ 90.15-93.27] 

90.65% 
[ 87.47-93.83] 0.8130 6.45% 44.91% 10.93% 

Classification Tree 92.19% 
[ 90.97-93.58] 

90.26% 
[ 87.30-93.23] 0.7286 n.a.* n.a.* n.a.* 

Random Forest 93.22% 
[ 91.87-94.58] 

94.14% 
[ 92.07-96.21] 0.8786 n.a.* n.a.* n.a.* 

Portfolio Total - - - - - 10.95% 
*Probability of Default means are not relevant for Classification Trees as classification is based on class proportion in 
terminal nodes. 
Source: Personal collection  
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7. Discussion 

 

The discussion of this thesis will revolve around the practical approach to default 

probability, specifically the precedence of logistic regression and the deliberate refutation of 

machine learning methodologies. Thus, we discuss the dichotomy present in the field of 

default probability, which considers it being a field inherently concerned with building the 

most optimal discriminative model but simultaneously abstain from pursuing a practice that 

allow efficiency to reach new levels. By these means, the discussion chapter of the thesis is 

split in three parts. The first reflect upon the current precedence of the logistic regression 

model in the practical PD approach. The following two sections provide each an explanation 

for the current setting within the discipline, which are non-exclusive. The first explanation 

considers interpretability of machine learning models. The second draw upon a framework 

from political theory, which study the continuous adherence to the logistic regression 

through an institutional lens.  

 

7.1 A Reflection on the Neglection of Machine Learning in Practice 

As it was noted in the theoretical framework of the thesis, the research at hand presumes 

the methodology outlined by Hayden in Engelmann and Rauhmeier (2011) as the precedence 

within the practical approach to probability of default. However, confirmation of logistic 

regression as the overarching technique within the field is widespread (Medema et al., 2009; 

Bellini 2019; De Laurentis et al., 2010; Neisen & Rosch, 2018). It is described here that the 

somewhat uncontested precedence of the logistic PD model stems from its high 

interpretability, and foundation for evaluating the “economic sense” in the direction of 

explanatory variables. It is furthermore indicated that the current use of logistic models on 

accounting information consists of a high degree of reliance on historical tendencies. 

However, in a discipline occupied with achieving the clearest and most accurate 

discrimination between default and solvent companies, the devotion to logistic default 

probability models seem puzzling.  

 

It is interesting that practitioners generally withstrain from pursuing other 

methodologies for modelling credit risk, it being both structural models and machine learning 

algorithms. Machine learning is generally acknowledged for being a superior predicting 

methodology, mainly due to its reliance on modelling predictive accuracy rather than 

statistically significant relationships (Breiman, 2001). While the practitioners of PD to a large 
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extent utilize the methodology of using training and testing portfolios, the logistic regression 

technique comes inevitably short to its algorithm counterparts. Here, the explanation is that 

machine learning models are invented for uncovering deeply complex relationships in data 

and is inherently superior in this regard. This proposition is also showcased in the thesis at 

hand, where our research underlines that the practical approach to default probability comes 

short in comparison with a random forest model. Nonetheless, this approach enjoys none to 

very little weight in practical default probability modelling. This research intends to discuss 

some explanations for this environment within the field.   

 

7.2 A Question of Interpretability  

While machine learning excels at solving complex prediction problems it comes at the 

expense of interpretability. The sometimes inadequate interpretability is being expressed 

both theoretically and empirically. In a theoretical context, Doshi-Velez and Kim define 

interpretability as “the ability to explain or to present in understandable terms to a human” (2017). As 

such, the term can be translated into how simple it is to comprehend a model’s motivation 

for a given output. Thus, in relation to this research, it denotes understanding why a company 

is predicted as default or solvent. Where it is preferable to increase discriminative power, it 

becomes less relevant if practitioners are unable to describe why a model predicts default 

rather than non-default for a given firm. For illustration, an economist is rarely capable of 

convincing a politician of a recession if he is unable to explain how the algorithm anticipates 

inverted yield curves.  

 

Related to interpretability is the concept of computational burden, which considers the 

computational complexity in machine learning. It is defined by Goldreich as the “intrinsic 

complexity of computational tasks” (2008). It can be transcribed into how much time a model 

utilizes for finalizing its prediction. While this complexity is dependent on size of data sets 

and also iterations of calculation, it differs across algorithms as they have different costs. Like 

interpretability, computational burden is related to the subsequent discriminative power of a 

model, where a larger predictive accuracy comes hand in hand with more complexity. For 

illustration, a stock trader can be using a complex machine learning model to determine how 

he is rebalancing his portfolio, however, if the algorithm compute the result in multiple 

hours, the investment opportunities may be out the window. In relation to the research of 

this thesis, we present a table below consisting of the interpretability and computational 

burden of the practical and machine learning models developed.  
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Extending this discussion into an empirical context, the field of default probability is a 

discipline which is little constrained by computational burden as time and complexity are not 

at the center of concerns. On the other hand, interpretability is very central to the process. 

Here it is relevant that machine learning methodologies, such as the random forest, often 

can be considered somewhat a black box (Hastie et al., 2014). For practitioners of default 

probability, the inability to interpret credit risk models are problematic. It is pertinent to be 

capable of explaining why a firm is granted or denied a loan. As such, the interpretability of 

a model is forwarded to companies, authorities or other departments of lending institutions. 

This means that the credit risk department of a given bank is being held accountable for their 

models’ prediction by both the supervisory authorities and the department facilitating client 

contact, wherefore it is crucial to have the ability of interpreting the given PD-model.  

 

Our research further showcased these considerations, with the concepts of 

interpretability and computational burden being echoed by the thesis’ illustrative example of 

the Thomas Cook Group. To improve the practical framework, we employed a random 

forest machine learning algorithm and the model greatly outperformed all prior approaches. 

Here, the example of the Thomas Cook Group underlined the drawback related to 

interpretability. The black box design of the random forest algorithm put us in a situation 

where we were unable to explicitly exemplify how the model reached its prediction. A 

byproduct of our research is that the pursuit for a greater discriminative power comes at the 

cost of an increased computational burden and a diminishing degree of interpretability.  

 

7.3 Institutional Stickiness: A Possible Explanation for the Precedence of Logistic 

Regression 

The precedence of logistic regression in the practical field of default probability can be 

explained through the framework of path dependency. Path dependency is a political theory 

framework developed by institutionalists, who claim that “history matters” (North, 1990). 

History matters such that an already established institutions continue to reign although it 

may be suboptimal on a broader scale, which is driven by the fact that changing an institution 

Figure 7.1: Interpretability and Computational Burden 

Logistic Regression Classification Tree 

Interpretability 

Computational Burden 

Random Forest 

High 

Low 

Moderately High 

Moderate 

Low 

High 

Source: Personal collection 
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is related to certain costs. As such, the continuance of the historical institution is path 

dependent, as a result of the neglection of change driven by the cost implications of doing 

so. Within the framework of path dependency is the theorem of institutional stickiness. This 

term is developed within development economics, where it explains the reluctance to change 

an institution as a function of the institution’s reality in the past time period (Boettke et al., 

2008). As a continuation, an institution is going to continue its historical path, unless it is 

stimulated exogenously. While this framework originates in development economics, we can 

transcend it into the field of default probability modelling, where it offers relevant 

explanatory power.  

 

Within the practical approach to credit risk, logistic regression has historically emerged 

as the single most dominant method for modelling due to its usefulness and relatively simple 

application (Engelmann & Rauhmeier, 2011; Neisen & Rosch, 2018). As such, the 

methodology is in fact an institution within the practical discipline. However, it has continued 

to be the main approach through years of emerging machine learning techniques, which are 

capable of outperforming the logistic model both theoretically and empirically, as showcased 

in the thesis at hand. This underlines the path dependent nature of the logistic regression 

within the field, where it has become unfeasible to change the modelling approach, due to 

its widespread recognition and application. In reality, the approach is both taught to new 

employees of the field, and maintained through their tenure in such lending institutions, 

making the logistic approach self-fulfilling, or in fact, path dependent. Furthermore, it has 

from a regulatory perspective been a requirement of further administrative work with the 

relevant supervisory authority, if a given lending institution would applicate another PD 

model than the logistic regression (ibid). These mechanisms make the logistic regression 

methodology embedded in the practical field of default probability. In other words, the status 

quo is inherently difficult to change, and logistic regression continues to exist as the 

overarching model. Thus, it has become a “sticky” institution. In order to change this, the 

institutional stickiness theorem suggests that an “outside entity is required to provide a exogenous 

shock” necessary for institutional change (Boettke et al., 2008). With the topic at hand, it 

would be the Basel Committee providing directions for a new approach to default probability 

modelling, which would have to be materialized into regulations by legislators. However, as 

the current situation witness, the logistic regression model constitutes an institution within 

the practical field of PD, which is dependent to its current path.  
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8. Reflections on Validity and Reliability 

 

Our research concerns default probability modelling utilizing both an academic and a 

practical lens. We engage in an evaluation of the measurement validity, reliability and 

replicability, as well as both the internal and external validity. These reflections are important 

as they underpin the integrity of the findings of the thesis at hand.   

 

8.1 Measurement Validity, Reliability and Replicability 

First in line of these concepts relevant to the implications of the thesis’ results is reliability, 

which refers to the consistency of the findings. In other words, would we be to find the same 

results, if we were to do the research again in another setting (Bryman, 2012). Here, the key 

focus is on the stability of our results, which is clarified through the area under the receiver 

operating characteristic curve that is stable from the training to the testing data set. Thus, 

this speaks to the stability of our findings throughout the research. In terms of reliability, if 

the research were to be performed again, in a different setting for instance, we would not 

necessarily find all the same directions and significance levels of all variables, but the 

hierarchy of discriminative power between the models would be similar.  

 

As an extension of reliability is measurement validity, which encapsulates whether the 

measurements of the findings are true to what they are supposed to reflect. Here, we 

emphasize that the findings of the thesis to a large extent reflect both the theoretical and 

methodological frameworks that they build upon (Bryman, 2012; Thyer, 2001). Specifically, 

the classic academic frameworks do hold discriminative power in a modern setting, the 

practical models outperform the former, we ensure the direction of variables are grounded 

in theory, and finally the machine learning methodology do achieve a higher level of 

predictive accuracy. In this regard, we approached the research by deducting these properties 

from the underlying theory. Thus, the results consist of valid measures, which reflect the 

concepts they were hypothesized to capture.  

 

A somewhat different reflection is that of replicability. It is important in academic 

research, as it further underpins the integrity of our findings and thus place our thesis within 

the pertinent literature. It naturally entails the ability for other researchers to replicate the 

study we have undertaken (Bryman, 2012; Heale 2017). Here, it is rather about making the 

mechanisms behind the research available to others than literally testing colleagues’ work. 
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With this in mind, we highlight that we have clearly and explicitly outlined our methodology 

and data preparatory work, wherefore we believe the replicability of our thesis to be high. 

Additionally, we provide the code scripts from the R-software in a collected code book as 

appendix to the thesis, which further underlines the transparency provided.  

 

8.2 Internal Validity 

The concept of internal validity concerns the issue of causality. Embedded in this is the 

question of whether X causes Y, and whether there is a chance of the opposite. For the thesis 

at hand, we identify internal validity in two levels of the research. The first concerns the 

causality found in specific models, which can be simplified to whether specific ratios truly 

explain default (Thyer, 2001; Bryman, 2012). Here it should be emphasized that the ratios 

reported in the dataset inherently mirror the characteristics that drive companies towards 

default. As such, a low value of a significant ratio in the practical model, funds from 

operations/total liabilities, infers that a company is pushed towards default. Thus, it is not a 

default in the company that drives a low funds from operations. This is consistent in the 

models build in the thesis, where financial information, X, determines the defaults, Y, and 

not the reverse. At the second level, we have the overarching research of classic academic 

approaches, practical default probability and two extensions of the practical framework. Here 

the improvement of credit risk modelling that is showcased throughout the thesis is aligned 

with the theoretical and methodological underpinnings of the framework. As such, these 

improvements are caused by the application of complementary theoretical approaches and 

better methodological techniques, wherefore this relationship also exhibit convincing 

causality. As such, with both of these aspects highlighted above, the internal validity of our 

research is emphasized.  

 

8.3 External Validity 

Finally, we approach the concept of external validity, which entails whether the 

research’s findings provide knowledge outside of the framework of the study itself. In other 

words, whether our results are generalizable to other settings (Heale, 2017; Bryman, 2012). 

Here, a motivation underpinning the overarching research was to contribute to the field of 

default probability and approach a model of credit risk which can be looked towards in other 

settings. We emphasize that the large data set consisting of more than 6000 companies, and 

the long time period of the research that span several economic fluctuations advocate for the 

external validity of the thesis. However, the generalizability is simultaneously subject to the 
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limitations set by the data set, which include the overweight of U.S. companies, and the 

inherent focus on publicly traded companies, par exemple. In spite of this, the overall 

comprehensiveness of both our portfolio, time horizon and the applicated models speak to 

the external validity of our research for OECD countries. Yet, we wish to highlight the field 

of default probability as a dynamic discipline that intrinsically dictates constantly updated 

applications, wherefore the generalizability is characterized with caution. However, the thesis 

at hand have provided research which can be help guide these future applications both 

academically and practically. 
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9. Conclusion 

 

The aim of this thesis was to answer the overarching research question:  

 

“To what extent does the classic academic approaches to default probability have discriminative power, and 

through which measures can the practical approach to credit risk be improved?” 

 

The research question was answered through three hypotheses, which were deducted 

on the back of a theoretical framework containing both the theory and the literature of 

default probability. Here, the thesis identified two major gaps in the literature, which created 

a catalyst for formulating the hypotheses.  

 

The first hypothesis was academically motivated, and thus concerned with testing the 

discriminative power of the default probability models of Altman, Ohlson, Merton and their 

respective re-estimations. Therefore, it addressed the first part of the research question of to 

what extent the classic academic approaches to credit risk have discriminative power. Using 

the original methodologies, the research finds that these models all achieve a high 

discriminative power on a portfolio collected at least forty years after they were developed.  

 

The second hypothesis was practically motivated and revolved around establishing the 

practical model of default probability, and further combine accounting theory with market 

theory. As such, it addressed the second part of the research question of through which measures 

the practical approach to credit risk can be improved. By employing the technique outlined 

by Hayden, the research found that the practical approach outperforms the academic 

frameworks. However, by combining its intrinsic accounting focus with the market theory 

approach to default probability, the thesis creates a superior framework for practical credit 

risk, which it coins the “Default Model of Synthesis”.  

 

The third hypothesis was methodologically motivated and investigated the possible use 

of machine learning in default probability modelling. Thus, it was also directed at the second 

part of the research question, introducing how the practical default model can be improved 

through another measure. By applying the machine learning algorithm of a random forest, the 

research showcased how the practical approach to default probability could be improved 

exclusively by transcending it into a more advanced methodological framework.  
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Through these findings, each of the three hypotheses was verified and can be 

summarized the following.  

 

Table 9.1: Overview of Verified Hypotheses 

# Hypothesis 

1 The classic academic approaches to default probability have discriminative power on a modern portfolio 

2 The practical model outperforms the academic but is improved through a synthesis of market and accounting theory 

3 The discriminative power of the practical model can be improved through the application of machine learning 

 

The third hypothesis holds further implications for the practical discipline of default 

probability, as it showcases how a machine learning methodology could improve its 

discriminative power. Therefore, the research discussed the neglection of machine learning 

in the practical field. The thesis gives two non-exclusive explanations for the current 

prevalence of logistic regression amongst practitioners. First, the low interpretability of 

complex algorithms such as the random forest disables practitioners in explaining why 

certain companies are considered default and others solvent, which is an essential property 

for a discipline that is held accountable both by clients and supervisory institutions. Second, 

the logistic regression methodology is deeply embedded in both the practical field and the 

legal institutions that monitor it, wherefore it has become a “sticky” institution that is path 

dependent. In sum, the discussion finds that the status quo is unlikely to change.  

 

Ultimately, the research of the thesis finds that the classic academic approaches to 

default risk do have discriminative power on a modern portfolio, which underlines their 

relevance in a present setting. Further, the goal of the thesis was not to induct a new universal 

methodology, but to conceptualize a framework where the practical approach to probability 

of default can be improved. The thesis find that it can be improved in two ways: 1) Through 

the application of the Default Model of Synthesis and 2) through the methodological 

application of a random forest algorithm, which however is constrained by its 

interpretability.  

 

  



 
Bridging the Gap Within the Default Probability Discipline: The Default Model of Synthesis │Brandt & Visbjerg 

 

|110| 

 

9.1 Contribution 

The thesis contributes to both the academic literature of default probability and the 

practical field of credit risk. We identify two main contributions of the research at hand, and 

subsequently several supporting additions to the literature. First of the main contributions is 

the Default Model of Synthesis. The model showcases how a combination of accounting and 

market theory can allow for higher discriminative power, utilizing the same methodology as 

the practical approach to credit risk. This fills the gap in the literature facilitated by the clash 

between the two strands in the academic discipline. Second of the main contributions is the 

extension of the practical framework with the introduction of a random forest algorithm. 

This part of the research addresses a void in the literature, as scholars of default probability 

have neglected to grant machine learning a central position within the discipline, in spite of 

its indisputable predictive power.  

 

Additionally, the research at hand has contributed to the field of default probability with 

several supporting elements. It has reviewed the frameworks of the main academic tenants 

in a modern portfolio setting, which underlined their relevance half a century after its origin. 

In comparison to the literature, the thesis has broadened the portfolio scope significantly, 

both in terms of geographical attention and industry focus. Finally, the research has provided 

a discussion of the reluctance showed towards machine learning by the practical side of 

default probability, where it points toward interpretability and “institutional stickiness” as 

explanations of the continued prevalence of logistic regression. The thesis is as such multi-

layered, as it is first theory-testing, and subsequently framework-building both through 

theory and methodology.  

Table 9.2: Overview of Thesis’ Contributions 
 

Contribution Type  Field Relevance 

M
a
in
 Default Model of Synthesis Theory testing & 

Framework-building Practical 

Random forest extension Theory testing & 
Framework-building Practical 

S
u

p
p

o
rt

in
g
 

Review of classic academic models Theory testing Academic 

Expanded portfolio scope Theory testing Academic 

Implications of machine learning in PD Discussion Practical 
Source: Personal collection  
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10. Avenues of Further Research 

 

In order to study probability of default in a more comprehensive setting, the data for 

the research in this thesis consisted of publicly listed firms across OECD countries. A 

heavyweight of the existing academic literature is carried out in settings characterized by 

either a single country or a single sector, or both simultaneously (Jackson & Wood, 2013; 

Altman, 1968; Giacosa et al, 2016; Duan & Shresta, 2011, Tudela et al., 2003). We therefore 

suggest that future research is conducted in such country or sector specific settings to 

facilitate further comparability to the existing academic literature.  As such, it would be 

interesting to see whether our findings are replicated or altered if the Default Model of 

Synthesis is tested exclusively on American energy companies, or Indian manufacturing 

companies, par exemple. Ultimately, the application of the Default Model of Synthesis in 

new portfolio settings would provide a more complete picture of its properties.  

 

Were the investigation of this thesis to be taken even further, several avenues of further 

research exist. Underpinning the default probability models are the company characteristics, 

which the frameworks utilize to predict future insolvency. By these lines, it would be relevant 

to consider an in-depth analysis of which companies the models categorically fail to predict 

as defaulted, i.e. a scrutiny of the models’ misclassifications. While the focus in this thesis is 

on improving the discriminative power of the practical approach with theoretical and 

methodological extensions, we recognize that complementary analyses are possible. As such, an 

analytical focus of the firms misclassified by the models would to a large extend complement 

our research. This potential research is in line with the critical realism position in philosophy 

of science, where it is pronounced to look for quasi-regularities in the characteristics of the 

misclassified firms (Moses & Knutsen, 2012). This infiltration of the deep domain would 

contribute to a research that approach a more complete understanding of what drives 

company default. This however is up to future researchers to contribute.  
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12. Appendices 

12.1 Appendix: Linearity Plots 
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12.2 Appendix: Correlation Matrix from R-software 

 

Correlation Matrix: The Default Model of Synthesis  

Ratio 
Somers’ 

D 
WC/TA RE/TA EBIT/TA MV/BD Size TL/TA CL/CA NI/TA FFO/TL CF/CAPEX CFO/CL WC/SA NaiveDD 

WC/TA 0.2090 1.00 0.19 0.32 0.22 -0.06 -0.57 -0.53 0.35 -0.04 0 -0.09 0.43 0.12 

RE/TA 0.6508  1.00 0.57 -0.02 0.36 -0.31 -0.18 0.56 0.31 0.21 0.27 0.06 0.42 

EBIT/TA 0.6454   1.00 0.02 0.37 -0.36 -0.27 0.88 0.39 0.22 0.35 0.01 0.49 

MV/BD 0.6526    1.00 0.09 -0.28 -0.16 0.03 -0.03 -0.06 -0.07 0.11 0.48 

Size 0.5122     1.00 -0.07 -0.07 0.35 0.21 0.17 0.23 0.11 0.28 

TL/TA 0.4802      1.00 0.55 -0.46 -0.04 -0.08 -0.03 -0.24 -0.45 

CL/CA 0.3852       1.00 -0.31 -0.02 -0.03 -0.01 -0.25 -0.33 

NI/TA 0.6442        1.00 0.3 0.2 0.27 0.06 0.48 

FFO/TL 0.5120         1.00 0.39 0.82 -0.17 0.31 

CF/CAPEX 0.5074          1.00 0.36 -0.07 0.13 

CFO/CL 0.5088           1.00 -0.24 0.31 

WC/SA 0.2438            1.00 0.15 

NaiveDD 0.6864             1.00 
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12.3 Appendix: Code Book 

 

Due to the comprehensiveness of the code in the R-software underlying the research at 

hand, we have created a separate code book, which will be submitted alongside with the 

thesis. 


