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Abstract 
This thesis investigates the classification of default and non-default on companies from the USA over 

the time period 1987-2015. The data is split according to two time horizons and whether market 

variables are included or not. This results in four data sets. The classification is done with the use of 

five different machine learning methods, logistic regression, neural network, linear SVM RBF SVM, 

and random forest. The models are evaluated by the accuracy and the distribution of type 1 and type 2 

errors, and the ROC curve and its AUC measure. When only taking the accuracy and the distribution of 

the error types into account, the best methods when predicting default on data including accounting and 

market variables are neural network and linear SVM, whereas the best method on the data sets only 

including accounting variables is random forest. When the AUC measure and the ROC curve is taken 

into account, random forest is the best to predict default at all tested data sets. Overall the conclusion is 

that random forest, in general, is the most appropriate method when it comes to the empirical results on 

the data sets used in this thesis. The thesis also investigates variable selection with the use of logistic 

regression and random forest, and it concludes that the two methods are conflicting since random forest 

states some variables as least important variables, while logistic regression includes these in its models. 

 

Finally, the results of the thesis are transferred to non-listed Danish firms with a focus on the capital 

requirement of the credit lender. There are two approaches to calculate the capital requirement, the IRB 

and the standardized approach. The larger credit institutions in Denmark primarily use the IRB 

approach, which uses the credit risk model of the credit lender to calculate values for PD, LGD, and 

EAD, and the approach benefits from setting lower capital requirements. There are other benefits of 

having a more precise credit risk model since it will imply the calculation of provision being more 

accurate and the evaluation of potential customers being more trustworthy and fair. The last part shows 

that the empirical results of the thesis are in accordance with other results from previous default studies.  
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1. Introduction 
Financial institutions are aware that the risk and return are in most cases, closely linked to one another. 

To get an acceptable return, the institution must obtain some type of risk. Since the financial crises in 

2007-2009, risk management has got further attention from governments, regulators, and the financial 

institutions themselves. For credit institutions, the largest corporate risk exposure is the credit risk which 

means they must measure the creditworthiness of the borrowing firm. This is the purpose of default 

prediction for credit lenders to measure and calculate the credit risk. The studies within default 

prediction have been many over the years. It started with univariate analyses where the study of Beaver 

(1966) was the most widely known. Different multivariate analysis, such as Altman’s (1968) Z-score 

and Ohlson’s (1980) O-score followed. There is a great variation in default prediction processes from 

how many and which factors should be considered to which methods should be used to develop the 

model. These multivariate analyses are still developing, and since the ability to use personal computers 

to build models arises, the use of machine learning for predicting default has increased (Gissel, 

Giacomino, & Akers, 2007). 

 

The credit lending institutions need to follow different rule sets and regulations for the benefit of the 

customers and to make sure they keep being solvent. One of them is the financial rules known as the 

Basel accords by the Basel Committee on Banking Supervision (BCBS). By replacing Basel I with 

Basel II, the credit lenders got the opportunity to develop their own models by the IRB approach and to 

use it to measure the credit risk. Therefore, this leads to an increased importance of developing default 

prediction models for credit lenders themselves. In 2013, some years after the Basel II was 

implemented, the larger Danish credit institutions used the IRB approach to calculate the credit risk for 

more than 80% of their loans to other firms (Sørensen, 2013). 

 

This paper contributes to the studies regarding default prediction by using five different machine 

learning models, logistic regression, neural network, linear support vector machine, RBF support vector 

machine, and random forest. These methods create models on four different data sets considering two 

different time horizons and whether market variables are included or not. These models are analysed 

and discussed with a focus on the accuracy, the ability to separate correctly between the classes, and 

with the focus of variables selected. It is found that with accuracy as the evaluation measure, the neural 

network and linear SVM performs best when predicting default on data that includes market variables, 

and random forest performs best on data that exclude market variables. With the other evaluation 

measure, AUC, random forest is at all times the best method to separate correctly between the classes. 

To establish how the theoretical perspective of the paper can be used in practice, the assessment of the 

Danish market for credit lending is investigated regarding how the result can play a role for the credit 
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lender. First, it is found that the credit risk model is used to measure credit risk under the IRB approach. 

The IRB approach is preferred for all larger credit institutions since it lowers the capital requirement 

compared to the standardized approach. Second, it is found how a more precise credit risk model can 

be an advantage for the credit lender within the areas of estimating provision and evaluating a potential 

customer. 

1.1. Motivation 

In the field of finance, we have been taught different ways to determine credit risk, hence default 

prediction. The methods we were taught, such as the Z-score and O-score, are relatively old. Thus, it 

would be interesting to investigate this field to see if we would be able to challenge these methods. 

After an elective in data science, where we got to work with different machine learning models in R, 

our interest in building default prediction models rose. This combination of the elective and the main 

course on our studies then created a motivation to build default prediction models using different 

machine learning methods. 

1.2. Research Question 

In line with the motivation for default prediction, this thesis addresses the following research question:  

Which default prediction method among those tested will be the most appropriate to use 

evaluated by the accuracy and the ability to separate between classes, and how can the credit lender 

benefit from a more precise credit risk model? 

 

To answer this research question, the following sub-questions are to be answered: 

• How can the machine learning models be trained to be more precise in predicting default? 

• Which model has the highest accuracy and AUC, and what do these measures indicate? Which 

of them would be preferred when deciding the most appropriate default prediction model? 

• How do some models use variable selection to determine which variables are most important? 

• Do market variables add any predictive power in the models? 

• How do credit lenders calculate credit risk, and what is the difference between the standardized 

and the IRB approach? 

• How does credit lenders calculate their capital requirement, and what role does the credit risk 

model play? 

• How can the credit risk model help to calculate provision and evaluate a potential customer? 
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1.3. Literature Review 

1.3.1. Introduction 

Through time many studies have focused on the problem of default prediction. Altman (1968), with his 

Z-score, was one of the first to establish a method of predicting bankruptcy with a traditional statistical 

method. He was followed by, among others, Ohlson (1980) and his O-score. In the 90s and onwards the 

technology, hence machine learning, evolved and new methods were introduced such as neural network, 

different forms of support vector machines, and random forest. Some other studies took a different 

approach to predict bankruptcy. Shumway (2001) and Chava and Jarrow (2004) argue for a hazard 

model in contrast to a single-period model. Chava and Jarrow (2004) also investigated other aspects 

such as the importance of industry effects, predicting bankruptcy in financial firms, whether monthly 

observations outperforms yearly observations and the importance of accounting variables as predictive 

variables. Campbell, Hilscher, and Szilagyi (2006) followed by investigating how market ratios can 

improve the model as well as the use of a time lag in bankruptcy prediction. In addition to that, Campbell 

et al. (2006) also investigate the performance of financially distressed firms. 

1.3.2. Mathematical Methods for Predicting Default 

Default prediction started with single-period credit rating models proposed by Beaver (1966) and 

Altman (1968) focusing on accounting variables. Beaver’s (1966) study, including 79 failed and 79 

non-failed firms representing a balanced data set in 38 different industries, examined the predictive 

ability of ratios by univariate analysis. He suggested for future research that multiple ratio analysis 

possibly would predict even better than the single ratios. This leads to Altman (1968), who introduced 

the first multivariate study made of 66 publicly held manufacturing entities where half went bankrupt, 

and the other half did not. This represents a balanced data set. He merged a set of financial ratios into a 

five-factor model. This model is called the Z-score and presents multiple discrimination analyses 

(MDA) that predict bankruptcy if the firm’s score falls within a specific range. So, having a Z-score of 

greater than 2.99 makes the firm falls into the non-distressed category where a Z-score below 1.81 

results in the distressed category. The area between 1.81 and 2.99 is defined as the “zone of ignorance” 

or the “grey area” because of the weakness in classification for this range. The Z-score, with its 79% 

accuracy for the hold-out sample one year before failure, has become one of the most well-known 

bankruptcy prediction models, and it is still today taught at undergraduate as well as postgraduate levels 

all over the world. Since Altman (1968) introduced the “Z-score” model in 1968, many new and more 

complex bankruptcy prediction models have been developed. 
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Ohlson (1980) contributed to the field of default prediction as being one of the first to search for a 

probabilistic output from the bankruptcy prediction model. The model is called the O-score and is a 

logistic regression model with nine different factors where each has a related coefficient. Ohlson (1980) 

did also increase the number of firms included in the data set significantly compared to previous studies. 

The O-score model was built upon data from 2,058 non-bankruptcy and 105 bankruptcy firms in the 

period from 1970 to 1976, representing an unbalanced data set. The O-score uses a maximum likelihood 

function that seeks to give each observation a probability of default. The result of the O-score is not 

immediately interpretable, meaning there is a need for a transformation of the output. To convert the 

output into a probability, the following formula should be used, 𝑝(𝑓𝑎𝑖𝑙𝑢𝑟𝑒) = !!"#$%&'

"#!!"#$%&'
. The O-score 

does not automatically split the observations into the binary classes, “default” or “non-default”. Instead, 

there is a need for a cut-off determining in which probability interval the firm is being classified as 

default. Ohlson (1980) set this cut-off point at 0.038 as this point minimizes the sum of errors. This 

means that firms with a probability of default of 3,8% or higher are being classified as default. This 

leads to an accuracy of 85.1% one year prior to bankruptcy. However, it is possible to increase the 

overall accuracy by reducing the cut-off point. Though, this reduction will come with the cost of a 

higher proportion of type 1 errors. 

 

During the 90s, the use of machine learning evolved, and new methods for classification problems were 

created. These methods could be used to default prediction, where the first method was neural network. 

One of the first to use the neural network method for default prediction was Wilson and Sharda (1994). 

They compared the predictive accuracy of neural network and MDA by using the sample from Moody’s 

Industrial Manuals containing 65 bankruptcy firms and 64 non-bankruptcy firms matching on year and 

industry. This represents a balanced data set. Wilson and Sharda (1994) have five explanatory variables 

and decided to use similar ratios as Altman (1968). The results showed that neural network 

outperformed MDA in predicting accuracy. Neural network achieved an accuracy of 97.5%, while 

MDA only achieved an accuracy of 88.25%. The most accurate prediction result was found when the 

training and the testing sample was balanced. This means that if the sample composition had a higher 

proportion of non-bankruptcy firms, the two methods were worse to predict bankruptcy firms despite 

neural network still had a better result than MDA. 

 

Following up on the evolution of technology, many new methods for classification problems developed. 

Baesens et al. (2003) investigated 17 different state-of-the-art classification methods. The data included 

eight different data sets containing information about consumer loans. Baesens et al. (2003) showed 

that neural network was the best classifier method in four out of the eight data sets while Radial Basis 

Function Least Squared-Support Vector Machine classifier was the best method in two out of the eight 

data sets. Furthermore, the article highlights the percentage correctly classified (accuracy) and the area 
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under the receiver operating characteristic curve (AUC) as different measures to evaluate accuracy. 

Lessmann, Baesens, Seow, and Thomas (2015) updated the article to include 41 different classification 

methods instead of the original 17 methods. Though, the data sets were very similar to the original ones 

from 2003. The study concluded that it was time to move away from logistic regression as the industry 

standard. In addition, it was shown that random forest, multilayer perceptron artificial neural network, 

and hill-climbing ensemble selection with bootstrap sampling were the best classification methods 

depending on different misclassification error cost. 

 

There has also been a test of machine learning methods in comparison with more traditional models to 

predict corporate bankruptcy. Barboza, Kimura, and Altman (2017) investigate the methods, linear 

SVM, RBF SVM, boosting, bagging, random forest, neural network, logit and MDA, as well as their 

individual ability to predict corporate bankruptcy. The comparison was made on data from Compustat 

where the available data were split into two, in 1) a training sample in the period from 1985 to 2005, 

and in 2) a testing sample in the period from 2006 and until 2013. The training sample contained 449 

firms that went bankrupt and the same number of healthy firms, indicating a balanced training sample. 

For the comparison, 11 explanatory variables were chosen where five of them originate from Altman 

(1968), and the remaining six variables originate from other studies. The variables were not normalized, 

so they had the calculated values of the ratios. The results showed that machine learning models 

outperform traditional models. Especially the machine learning methods; boosting, bagging, and 

random forest did well with all having accuracies over 85% for the testing sample. Furthermore, the 

study highlights that machine learning methods might be better to predict bankruptcy, but they do not 

necessarily explain why the company files for bankruptcy. 

1.3.3. New Approaches for Predicting Default 

The development of bankruptcy prediction has also led to aspects with different approaches than the 

traditional statistical method or the machine learning methods. At the beginning of the 00s, Shumway 

(2001) argued that single-period classification models, which he refers to as static models, are 

inappropriate for forecasting bankruptcies due to the nature of bankruptcy data. When applying a single-

period model to predict bankruptcy, as Altman (1968) did, the analyst has to select when to observe 

each company’s characteristics, because the model only considers one set of explanatory variables for 

each firm at a chosen time and as known most firms change from year to year. This may lead to 

unnecessary selection bias into the estimates. Bankruptcy data are multiple periods since bankruptcy 

arises occasionally, and analysts must use information from more than one financial year, for the given 

company, to estimate the models. Of these reasons, Shumway (2001) introduced a multi-period model 

which he refers to as a simple hazard model. The final sample contained 300 bankruptcies in the period 

from 1962 to 1992. The simple hazard model introduced can be thought of as a binary logit model where 
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the dependent variable is the time spent by a firm being in the healthy group. That way, the simple 

hazard model solves the complications of single-period models by explicitly account for time and 

exploit all available data for a given firm. So, the hazard models may produce more efficient out-of-

sample forecasts than single-period models by utilizing much more data. 

 

In the middle of the century, Chava and Jarrow (2004) confirmed the more accurate prediction of 

Shumway’s (2001) hazard model in comparison to Altman’s (1968) static model. This was done with 

the data of U.S. firms in the period from 1962 to 1999 with a total number of 1,461 bankruptcies whereas 

usually, it was no more than 300. This data set with yearly and monthly observation intervals were also 

used to other analyses. Among others, they found that the importance of industry effects appeared to be 

statistically significant in-sample, but it did not radically increase the out-of-sample accuracy. An 

extension of the hazard rate model was applied to financial firms and monthly observation intervals 

instead of the usual yearly observations. It was found that bankruptcy prediction for financial firms is 

more difficult to exercise than it is for non-financial firms, and that monthly forecasting increases the 

accuracy of all models in a statistically significant way. Finally, Chava and Jarrow (2004) demonstrated 

that accounting variables only add little predictive power when market variables are already included 

in the bankruptcy model. 

 

Campbell et al. (2006) have the same starting point as Shumway (2001) and Chava and Jarrow (2004) 

in terms of a logit model with the same five variables. The data in the article is from Compustat with 

the use of monthly observations in the period from 1963 to 2003. It contains more than 10,000 U.S. 

firms. First, Campbell et al. (2006) seek to investigate how well market ratios can improve the model 

where he uses a time lag to examine bankruptcy prediction at long horizons. The result shows, as Chava 

and Jarrow (2004) also found, that market data was more important compared to accounting data. This 

applied particularly when the forecast horizon was increased. The second part of the article investigates 

the return of financially distressed firms. These firms deliver anomalously low average returns, 

according to Campbell et al. (2006), despite their high volatility and betas. In addition, these firms also 

tend to have small market capitalization and high book-to-market ratios which are factors that are 

included in the Fama and French three-factor model (1993). Fama and French (1993) argue that size 

and value stocks deliver abnormal high returns, but Campbell et al. (2006) show that it is not the case 

for financially distressed stocks. 

1.3.4. Conclusion and Thesis Contribution 

The literature review shows that there has been a significant development in the area for bankruptcy 

prediction. Altman (1968) set the standard back in the late 60s, and his method is still learned and used 

worldwide. Ohlson (1980) did also disrupt the field by making a logistic regression model giving each 
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firm a probability of default. The technological evolution and the spreading of personal computers made 

machine learning feasible for everyone. During the 90s and 00s, many new machine learning models 

arose which all tried to beat the previous ones. The accuracy did rise, but throughout the literature, there 

are different opinions on which models perform best. Our contribution to the field is to test five different 

machine learning models; logistic regression, neural network, linear SVM, RBF SVM and random 

forest on a large and realistic data set. The methodology of the thesis is very close to what Barboza et 

al. (2017) did in terms of selection of a balanced training set and testing the machine learning models 

on a more realistic imbalanced testing set. However, the thesis seeks to take the point of view of the 

credit lenders. Therefore, the analysis is also expanded to include a test for private firms where market 

variables are excluded. From our point of view, this would make the thesis more reliable and usable for 

credit lenders. Compared to Barboza et al. (2017), we believe that normalizing the ratios is closer to the 

state-of-the-art data science technique as well as having a more significant number of defaults like 

Chava and Jarrow states (2004). 

 

Some studies had another approach than just being successful in terms of accuracy. Shumway (2001) 

concluded that a multi-period classification model, a simple hazard model, would be a better and more 

preferred method in predicting bankruptcies than a single-period model which was agreed upon by 

Chava and Jarrow (2004). Despite that, it is decided only to have data of one year of each observation 

in this thesis. The reason for this is that the focus of this study is more like a practical test of different 

machine learning models instead of the mathematical development of a hazard model. Chava and Jarrow 

(2004) also found that financial firms were more challenging to predict bankruptcy compared to non-

financial firms. These findings will be used in this thesis to exclude financial firms in default prediction 

to make the prediction more valid for the rest of the companies. Further studies could do the test of 

machine learning models separately for financial firms. Finally, it was found by both Chava and Jarrow 

(2004) and Campbell et al. (2006) that monthly observations yielded better accuracy than yearly 

observations and that accounting variables did not add much predictive power when the model already 

included market variables. 

1.4. Delimitation 

The main delimitations made in the thesis will be described in the following, and minor delimitations 

will be done accordingly in the thesis in the part it fits. First and foremost, this thesis focuses on firms 

rather than individuals. Firms have, all else equal, more variables to analyse than individuals have. 

Furthermore, the firm aspect is more closely related to our academic area than the individual aspect 

concerning the courses we have taken, such as Financial Statement Analysis. Credit rating consists of 

different aspects, though this thesis focuses on a quantitative method to predict default rather than a 

qualitative method that considers the human perspective when determining whether the firm might 
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default or not. The way the quantitative method is carried out in this thesis is by predicting default with 

the use of five different classification machine learning methods; logistic regression, neural network, 

linear support vector machine, RBF support vector machine, and random forest. In machine learning, 

there are many different classifications methods, though the mentioned are chosen since the authors 

have received lessons in these methods and these methods cover most of the methods used by Barboza, 

Kimura & Altman (2017). 

 

The data of the thesis is collected from listed firms in the USA. The reason for this is the possibility of 

obtaining a big data set for our analysis to get a more valid result. It is easier to collect data from listed 

firms due to the statutory requirements to publish financial statements. However, the thesis tends to 

analyse whether accounting data has predictive power to get the perspective from non-listed firms. The 

number of listed firms in Denmark is not that high, so it was decided to obtain data from the USA. The 

thesis collected data in the period from 1980 and up until 2015 to get a big data set. The reason for this 

period is first to obtain a lot of information but also to get it more general and robust. By general and 

robust it means that at least one business cycle is included in the data which will minimize the risk of 

just including data in either a recession or a boom. 

 

Furthermore, the thesis is limited to analyse non-financial industries. The reason why financial sectors 

have been left out is because of the different regulations that are required of them and that they typically 

have very different accounting ratios compared to non-financial firms. This may lead to difficulties 

when predicting whether they default or not, which links to the findings from Chava and Jarrow (2004) 

who argued that financial firms are more challenging to predict default compared to non-financial firms, 

as mentioned in section 1.3. 

 

Finally, the focus of the thesis will only be taken from the perspective of the credit lenders. This is to 

keep it simple concerning the analysis as well as to the interpretation. 
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2. Methodology 
In this section, the methodology of the thesis will be described. The first part focuses on the applied 

theory of science. The second part describes the methodology of the thesis in relation to the data, 

hereunder the data collection and the quality assessment of the chosen methodology. This section ends 

in a third part that describes the structure of the thesis. 

2.1. Applied Theory of Science Method 

The scientific theoretical approach of this thesis depends on its chosen problem. The problem 

determines how the world are acknowledged. Therefore, it determines how the methodology of the 

thesis is arranged to solve the research question. The applied theory of science and its scientific 

theoretical frame is taken the positivistic paradigm as the starting point. The thesis aims at describing a 

concrete phenomenon concerning default prediction and based on the empiricism as well as the 

processing; the thesis aims to be able to place specific argumentation to causal connection. 

 

The reason of the positivistic approach is the wish of describing the connections in the world. The 

positivism contains a realistic ontology. This means that the reality can be found “out there” in its pure 

form in the shape of legality independent of our acknowledge about it and where you should adjust 

yourself to fit. It is relevant for the thesis, due to the different conditions when a credit lender steps into 

a contract with a borrower. The borrower needs to follow the contractual obligations not to default and 

to determine whether this happens some clear frameworks state that. Furthermore, as mentioned in 

section 1.4, the data collected has been on listed firms, and these have several conditions and regulations 

to follow by law. The epistemology of the positivism is objective since the acknowledge of information 

happens without any consideration to who acknowledges it. This means that science is neutral to 

politics, religion, and ethics in the view of positivism which is also the case in this thesis. The described 

ontology and epistemology together result in a quantitative methodology. This can be seen in the thesis, 

where quantitative data collected and processed is obtained to create tests of different machine learning 

methods to predict default in firms. This is to plan causal connections that can be transmitted to 

decisions as choosing the most appropriate machine learning method when predicting one or five years 

prior to default (Holm, 2016, pp. 23-44). 

 

The positivistic approach has made it possible to structure the problem in the thesis to the issues found 

in practice and how these problems can be solved. This is done by analysing and calculating with a 

focus on predicting default and more general use of empirical results. Furthermore, the theory of 

scientific method approach has made it possible to reflect critically in line with the process of the thesis. 

This reflection has made the relevance of the neo-positivistic approach clear. The neo-positivistic 
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approach is taking the basis from the positivistic approach. Though the paradigm of neo-positivism 

considers the aspect of humans as essential and should not be undervalued. On the other hand, for the 

positivism paradigm, the human aspect is not taken into account. This means that the ontology of the 

neo-positivism is limited realistic, and the epistemology is modified objective. The aspect of humans 

will be used in the different set of problems of the thesis because the quantitative results are not enough 

when determining the most appropriate machine learning approach. The quantitative testing results may 

conclude differently than with the view of humans since the measures, such as accuracy or ROC, may 

not give the full picture of the firm defaults or not. Concretely, the theory of science approach will be a 

combination of more than one paradigm. This is despite the opinion of some critics that argues about 

the realism of using more paradigms at the same time (Holm, 2016, pp. 64-74). 

2.2. The Methodology of the Paper 

The thesis makes use of mainly quantitative methods, as mentioned in section 2.1, where data has been 

collected to create machine learning methods to predict default within one or five years. The analysis 

results in quantitative findings that explain patterns by using the inductive procedure. This means using 

empiricism to produce theory such as using the data to determine which method should be applied to 

the prediction of default. 

 

The thesis has used a desk study method since the study is done through research. The data collection 

is based on primary as well as secondary data. The primary data contains an interview with a senior 

analyst in a credit models department in a credit lender institution. This interview was done at the end 

of the process of the thesis. After the theoretical results were found, the interview was to create an 

insight into how to predict default in practice in Denmark. The interview followed a semi-structured 

approach with open questions. This was to not affect the answers of the interviewee and to let him talk 

freely about the credit models in their institution. The secondary data, on the other hand, is found from 

existing sources. It contains quantitative data obtained from Compustat and CRSP as well as qualitative 

data such as different peer reviews, articles, academic reports, and laws. This quantitative data is directly 

collected, cleaned, and prepared for this thesis, which is described further in section 2.2.1. To relate it 

to the theory of scientific method the quantitative part of the secondary data is connected to the 

positivistic paradigm, where the rest are in a more significant degree connected to the neo-positivistic 

paradigm where the human aspect is included. 

2.2.1. Data Collection 
The data used in this thesis is accounting data obtained from Compustat and market data collected from 

CRSP. As described in section 1.4, the period of interest is from 1980 to 2015. The raw data set includes 

the necessary accounting and market data, allowing to calculate the 20 selected variables. Fourteen of 
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the variables are accounting ratios, which only includes accounting data, and the remaining six variables 

include fully or to some extent market data. These variables are not randomly selected but cover the 

variables used in Altman (1968), Ohlson (1980), Shumway (2001), Chava and Jarrow (2004), Campbell 

(2006), and others. For the future prediction of default, these variables will be the explanatory variables. 

The full list of variables can be seen below and will be elaborated after. 

Accounting variables 

Name Calculation 

WCTA Working Capital / Total Assets 

RETA Retained Earnings / Total Assets 

EBTA Earnings Before Interest and Taxes / Total Assets 

SLTA Sales / Total Assets 

CACL Current Asset / Current Liabilities 

NITA Net Income / Total Assets 

TLTA Total Liabilities / Total Assets 

FFOTL Fund from Operation / Total Liabilities 

X.NI Relative change in Net Income [(𝑁𝐼$ −𝑁𝐼$%")/(|𝑁𝐼$| + |𝑁𝐼$%"|)] 

EBITDASL Earnings Before Interest, Taxes, Depreciation, and Amortization / Sales 

OCFTA Operating Cash Flow / Total Assets 

FESL Financial Expenses / Sales 

FDCF Financial debt / Total Cash Flow 

CLTA Current Liabilities / Total Assets 

Market variables 

Name Calculation 

METL Market Capitalization / Total Liabilities 

EXRET Log (Firm return) – Log (value-weighted NYSE, AMEX & Nasdaq return) 

RSIZ Log (Firms Market Capitalization / Total NYSE, AMEX & NASDAQ Market 

Capitalization) 

SIGMA Monthly volatility over the last year (11-12 months) 

NIMETL Net Income / (Market Capitalization + Total Liabilities) 

TLMETL Total Liabilities / (Market Capitalization + Total Liabilities) 

 

WCTA is one of the variables used in Altman’s (1968) Z-score, Ohlson’s (1980) O-score, and in 

previous studies such as Chava and Jarrow (2004). It is a ratio measuring a firm’s ability to cover its 

short-term financial liabilities by comparing the net liquid assets, also called the net working capital, of 

the firm to its total assets. A positive net working capital may indicate that the firm is able to pay its 

Table 2.1: An overview of the accounting and market variables and how they are calculated 
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short-term obligations and then has the potential to invest and grow. A negative net working capital 

may indicate that the firm has problems paying back creditors and in worst scenarios, the firm defaults. 

 

RETA is another ratio used in Altman’s (1968) Z-score and in previous studies such as Chava and 

Jarrow (2004). It is a measure of a firm’s cumulative profitability over time against its assets. A high or 

increased RETA indicates the firm is able to continually retain more earnings increasingly. Since this 

ratio measures the cumulative profitability, the age of the firm is indirectly considered. The reason for 

this is that relatively young firms will probably get a low RETA because they do not have had time to 

build up their cumulative profits. 

 

EBTA is another ratio used in Altman’s (1968) Z-score as well as in studies such as Chava and Jarrow 

(2004). The use of EBIT is to focus attention on all income earned by the firm, operating as well as 

non-operating. This financial ratio compares the EBIT of the firm to its total assets invested in the 

company, which means it measures the true productivity of the firm’s assets independent of any tax or 

leverage factors. The higher the EBTA ratio, the more profitable and effective is the firm to generate 

income from its assets. 

 

SLTA, also called the asset turnover, is another measure used in Altman’s (1968) Z-score and in 

previous studies such as Chava and Jarrow (2004). It measures the firm’s ability to generate sales from 

its total assets. The higher the SLTA, the better the firm is to use its assets efficiently. 

 

CACL, also called the current ratio, is one of the variables used in Ohlson’s (1980) O-score and in 

previous studies such as Chava and Jarrow (2004). It measures the firm’s ability to pay its short-term 

obligations. A low CACL indicates that the firm might not be able to pay its bills on time, while a high 

CACL indicates that the firm has enough cash and other current assets to meet its short term financial 

obligations. 

 

NITA, also called return on assets (ROA), is used in Ohlson’s (1980) O-score as well as in studies such 

as Chava and Jarrow (2004) and Cambell et al. (2006). The ratio measures how effectively assets are 

being used for generating profit. This ratio can be argued to give insight into how the earning of the 

firm is relative to its investments. A high NITA compared to similar firms or to the firm’s required rate 

on return is to prefer since it indicates the firm is earning more on less investment. 

 

TLTA, also called the debt ratio, is another variable in Ohlson’s (1980) O-score and it has also been 

used in studies such as Chava and Jarrow (2004) and Cambell et al. (2006). It measures the financial 

risk of a firm by determining the proportion of a firm’s assets that are financed with the debt of creditors 
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rather than equity. An increasing TLTA ratio indicates that a firm is either unwilling or unable to pay 

back its debt which in the end could lead to the firm defaults at some point in the future. 

 

FFOTL is another measure in Ohlson’s (1980) O-score. It measures the firm’s ability to pay back its 

debt using only funds from operations. A low FFOTL indicates the FFO of the firm can cover a smaller 

percentage of the total liabilities which means the firm needs a longer horizon to cover all its total 

liabilities. A higher FFOTL indicates that the firm is in a stronger position regarding paying back its 

debt from its operating income, and hence the lower will the firm’s credit risk be. 

 

X.NI is a measure used in Ohlson’s (1980) O-score. It measures the relative change in net income, 

indicating the development in net income from one year to another. When X.NI is positive, then the 

firm’s net income is growing and vice versa. This measure gives the credit lender an indication of how 

the trend is in net income for the specific firm. 

 

EBITDASL is a measure comparing earnings before interests, taxes, depreciation, and amortizations 

with its revenue to evaluate a firm’s profitability. This ratio is most preferably when it is high, as it 

indicates the firm’s ability to keep its earnings at a decent level by keeping certain expenses low. 

 

OCFTA measures the firm’s ability to generate operating cash flow from its total assets which means 

the amount of operating cash flow the firm generates for every dollar of assets invested in the company. 

The higher the OCFTA, the more efficiently the firm uses the assets. 

 

FESL measures the proportion of the financial expenses constitute of the sales. The ratio is preferred 

when it is low as it indicates the sales of the firm is greater than the financial expenses. 

 

FDCF measures the firm’s ability to cover its financial debt by the cash flow of the firm. A ratio over 1 

indicates that the total financial debt is higher than the cash flow of the firm from the given year. All 

things being equal, it is preferred to have a ratio as low as possible. 

 

CLTA measures the firm’s ability to cover its short-term financial obligations by comparing the firm’s 

current liabilities with its total assets. Therefore, the higher the CLTA, the greater the risk of the firm 

defaults. 

 

METL is a measure used in Altman’s (1968) Z-score as well as in studies such as Chava and Jarrow 

(2004). It includes an accounting variable as well as a market variable. This ratio measures how many 

times the market value of the firm exceeds the total liabilities. A higher ratio is preferred, all things 

being equal. 
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EXRET is a measure of the excess return of the firm. This measure has been used in Chava and Jarrow 

(2004) and in Cambell et al. (2006). It measures the market return of the firm in comparison to the 

market. Therefore, this measure indicates how the firm is performing compared to the given index. 

 

RSIZ is a measure of the relative size of the firm. This measure has been used in Chava and Jarrow 

(2004) and Cambell et al. (2006). It measures the size of the firm compared to the market. The higher 

the firm’s market capitalization compared to the total market capitalization, the more likely it is for the 

firm to outstand problems that may arise in the future. 

 

SIGMA is a measure of the volatility of the firm’s stock. This was used in Chava and Jarrow (2004) 

and Cambell et al. (2006). It is measured by taking the monthly stock volatility over the last year (11-

12 months), and it indicates how risky the firm is. The higher the volatility, the higher the risk of the 

firm defaults. 

 

NIMETL is used in the paper of Campbell et al. (2006). It is a similar measure to NITA. The difference 

is in NITA net income is divided by the book value of total assets which is the sum of the book value 

of equity and the book value of liabilities, whereas in NIMETL net income is divided by the sum of the 

market value of equity and the book value of liabilities. 

 

TLMETL is a measure used in the study of Campbell et al. (2006). It is a similar measure to TLTA. 

The difference is that in TLTA total liabilities are divided by the book value of total assets, whereas in 

TLMETL total liabilities are divided by the sum of the market value of equity and the book value of 

liabilities. TLMETL measures the per cent of a firm’s valuation that is made of liabilities. 

 

The next part describes how the process has been from having the raw data from the databases to the 

final data, which is used in the rest of the thesis. This process is typically illustrated by a continuous 

process which starts with the raw data and then moves forward to data cleaning, data preparation, and 

afterwards, some kind of modelling of the data. However, the process for this thesis was more like a 

cycle where the data was cleaned, prepared, and afterwards evaluated several times. 
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2.2.1.1. Data Cleaning 

Before data cleaning, the total number of observations was over 193,000. The first thing to do was to 

remove all missing observations. It was found that the variable OCFTA had many empty fields because 

the number for operating cash flow was not reported before 1987. Therefore, it was decided to begin 

the data period in 1987. 

 

The raw data included a code for the industry, which is called the standard industrial classification (SIC-

code). The SIC-code can be divided into ten different industry classes (NAICS Association, n.d.). The 

split between the ten different industries can be seen in appendix A figure A1. As mentioned in section 

1.4, it was decided to remove all observations within the category of financial firms. In addition, it was 

also decided to remove observations within the industry of “Agriculture, Forestry and Fishing”, 

“Construction”, and “Other”. The argument here was that these three industries combined only account 

for around 1.7% of the total observations, and it would be simpler if the number of industries was 

reduced. Finally, the industry “Retail Trade” and “Wholesale Trade” were combined in one industry 

called “Retail & Wholesale Trade”. Figure 2.2 shows the final split of the industries. 

Figure 2.1: Illustration of the data processing 



Page 20 of 119 

 
 

The last process in the cleaning part was to remove all firms, only having one observation. Some of the 

variables, such as the change in NI, requires two observations from different periods from the same firm 

to be able to be calculated. If the variables, calculated on behalf of more observations, could not give a 

valid result, the observation was deleted. 

 

The processing of data cleaning results in a data set with over 92,000 observations including more than 

10,900 firms. Among those, 1,344 firms file for bankruptcy which equals 12.33% of the firms. 

However, the firms that are going to default also have several fiscal years in which they do not default. 

These fiscal years are also included in the data. Overall, it is only 1,46% of the observations that are 

going to default within the next year and 5,33% of the observations that are going to default within the 

next five years. These numbers show how unbalanced the data is regarding “default” or “non-default” 

before the following cleaning step. 

 

It was chosen to get a balanced training set in terms of “default” and “non-default”. This training set is 

used to build a model that should be tested on a realistic unbalanced testing set which is typically done 

in data science. The split of the data set belongs to the process of data preparation, why it will be 

described in section 2.2.1.2. The argument for the balanced training set is supported by the 

complications when running machine learning methods such as support vector machine on a training 

set containing all available data. To create a balanced testing set, all “default” observations were kept 

Figure 2.2: The distribution of the observations divided into industries after the cleaning process 
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and matched by industry and year with “non-default” observations. This procedure follows Barboza et 

al. (2017). It resulted in the same amount of observations in the category “default” as in “non-default”. 

2.2.1.2. Data Preparation 

The first step in the preparation of the data was to calculate the chosen variables. Table 2.1 shows all 

the variables and how these are calculated. Some of the raw data did not have the exact information 

needed, e.g. the data did not contain information about FFO. A proxy was calculated for these variables 

to get a good estimation. A list of the variables where a proxy has been estimated can be seen below. 

𝐹𝐹𝑂 = 𝑁𝑒𝑡	𝑖𝑛𝑐𝑜𝑚𝑒 + 	𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛	𝑎𝑛𝑑	𝑎𝑚𝑜𝑟𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛 

𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙	𝑒𝑥𝑝𝑒𝑛𝑠𝑒𝑠 = 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡	𝑎𝑛𝑑	𝑟𝑒𝑙𝑎𝑡𝑒𝑑	𝑒𝑥𝑝𝑒𝑛𝑠𝑒𝑠 

𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙	𝑑𝑒𝑏𝑡 = 𝑑𝑒𝑏𝑡	𝑖𝑛	𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠, 𝑡𝑜𝑡𝑎𝑙 + 𝑙𝑜𝑛𝑔	𝑡𝑒𝑟𝑚	𝑑𝑒𝑏𝑡, 𝑡𝑜𝑡𝑎𝑙 

𝐶𝐹 = 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔	𝑖𝑛𝑐𝑜𝑚𝑒	𝑎𝑓𝑡𝑒𝑟	𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 − 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡	𝑎𝑛𝑑	𝑟𝑒𝑙𝑎𝑡𝑒𝑑	𝑒𝑥𝑝𝑒𝑛𝑠𝑒𝑠

− 𝑖𝑛𝑐𝑜𝑚𝑒	𝑡𝑎𝑥𝑒𝑠, 𝑡𝑜𝑡𝑎𝑙 − 𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑑𝑠	𝑐𝑜𝑚𝑚𝑜𝑛/𝑜𝑟𝑑𝑖𝑛𝑎𝑟𝑦 

 

The data contained information about which firms default within one and five years as well as a 

bankruptcy date which defines the time the firm defaults. Many firms had a bankruptcy date there were 

more than one year after the last fiscal year of the firm which means that the referred firm did not appear 

with “default” in the field stating whether the firm defaults within the next year or not. Of this reason, 

the same field was changed to be calculated on behalf of the bankruptcy date and the last fiscal year of 

the firm. This methodology resulted in any firms with a bankruptcy date had a “default” in the field for 

the last fiscal period. The same method was applied to the field, stating whether the firm defaults within 

five years or not. This means a defaulted firm might have up to five fiscal periods with “default” in the 

field. However, some of the defaulted firms did not record for the whole time period of five years before 

they defaulted, which means that the average number of fiscal years was lower than five. 

 

To be able to calculate the variables EXRET and RSIZ, additional market data was needed. This data 

was not initially available in the data set. However, it was possible to extract the market return and the 

market capitalization from CRSP for the period 1980-2015. After that, the procedure was to match the 

return and market capitalization to the correct fiscal year for each observation and then calculate 

EXRET and RSIZ. 

 

When creating classification models, it is essential to make models that are robust so they can be used 

in the future. This study follows the normal procedure to split the data into a training and testing data 

set. The training set is from 1987, as the data from 1980 to 1986 was deleted in the data cleaning process, 

to 2005, while the testing set is from 2006 to 2015. This split makes the testing result more reliable 

compared to just testing on the same data, and it results in both the training and the testing set containing 

at least one business cycle. 
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Feature scaling is the method in the preparation process to scale the variables into the same range. The 

reason to do so is the risk of a very large difference in the values for the variables. For instance, if we 

compare the variables WCTA and METL in the data set. WCTA is measured on a scale from -11.6 to 

1.0, while the values for METL are measured on a scale from 2.2 to 1,537,071. The scaling of all the 

explanatory variables can be seen in appendix A figure A2. This means that most machine learning 

methods will give the most focus to the variable with the widest scaling. In addition, some machine 

learning methods calculate a distance and this distance will be dominated by the variables with the 

widest scaling. When doing feature scaling, there are mainly two different methods which are 

normalization and standardization. Normalization has been chosen which uses the following formula: 

𝑥&'()
(+) =

𝑥+ − 𝑥)+&
𝑥)-. − 𝑥)+&

 

By applying this formula to all ratios for each observation, all explanatory variables get values between 

0 and 1. This will cause different variables to be equally weighted in the models. 

2.2.2. Quality Assessment  
The quality assessment is evaluated on validity, reliability and sufficiency. Validity is an assessment of 

what the data and the result can be used to or what it covers (Olsen, 2003). The data has been collected 

from 1980 to 2015. This is a long period taking different decades, hereunder various fluctuations, and 

several business cycles into account. It is as up-to-date as possible from the platforms it is obtained 

from. Though later access to data would be more preferably. Despite this, the validity is high since the 

thesis success to measure what it wanted to. 

 

As mentioned, the primary method is the quantitative approach which demands high reliability. 

Reliability is about the robustness of the data in relation to the way it is collected. It means that the test 

returns in the same outcome on repeated tests (Olsen, 2003; Carmines & Zeller, 1979/2011). This is the 

case because the relevant data is obtained, as mentioned, from Compustat and CRSP. These 

organisations have high credibility because they collect information listed firms have reported at a 

platform. This increases data reliability. Though, some information could not be found at the platforms 

as was elaborated in section 2.2.1. Overall, the data collected will be defined as highly reliable. 

 

Finally, sufficiency is a question of whether the test with its sub-questions is suitable to answer the 

research question (Olsen, 2003). By answering the research question, machine learning methods have 

been trained to give the most precise models for each method. These models have been evaluated based 

on the two evaluation measures, the accuracy and the AUC. Then, some methods can use further 

variable selection to determine which variables are most important for the model. Furthermore, to 

evaluate default methods in terms of credit risk management, it is investigated how credit lender 
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calculate their credit risk, and why they prefer credit risk model which can fit into the regulations for 

the IRB approach. 

2.3. The Structure of the Paper 

The thesis has been divided into seven different sections. Section 1 is the introduction of the thesis, 

including the motivation of writing in this field, the research question, the literature review, and the 

delimitation. Section 2 determines the methodology of the paper, hereunder the applied theory of 

science, and the data collection. The latter has great importance in this thesis since the data is used to 

build machine learnings models to determine the most appropriate default prediction model for the 

different data sets. Section 3 describes the theory used in the thesis. It includes the risk of management, 

among these the regulation in credit risk management and a general description of the machine learning 

models for predicting default. Section 4 determines and analysis the empirical results which are done 

by building machine learning models based on a training data set and then test the model using a testing 

data set. This section is separated into four parts regarding the four different data sets. Every part is 

finished by an analysis of which model performs best on the given data set. Section 5 is a comparison 

of the models found in section 4. The first part of this section includes a general comparison of the 

models by using the evaluation measures. It is followed by a discussion of these measures for evaluating 

the models. The second part includes an analysis and discussion of variable selection, especially with 

the focus of logistic regression and random forest. The third part includes a small discussion of the 

predictive power of market variables in relation to predicting default for non-listed firms. Section 6 

takes the knowledge from the previous sections and transfers it into the credit risk management of credit 

lenders on the Danish market. It includes a part with some of the regulations on the Danish market, as 

well the internal advantages of a better credit rating model. The second part discusses the result of the 

thesis in relation to the literature and whether it is possible to move away from logistic regression as the 

industry benchmark. Finally, section 7 concludes and put the thesis into perspective. 
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3. Risk Management 
Risk management, concerning finance, is a process of identifying, analysing, accepting or modifying 

uncertain situations for the firm here with the focus on credit lenders offering loans to firms. The 

purpose of risk management is to quantify the potential risk for loss and then act in the best interest of 

the firm with that knowledge. The credit analysis is a central part of the risk management for credit 

lenders. In general, there are two approaches to analyse credit. The first one is to look at historical data 

from the borrower as well as the credit portfolio and revealing insight from it. The second one is to 

simulate the expected cash flow from the borrower and on behalf of that analyse the borrower’s 

creditworthiness. There are estimations and judgment in both methods that can be inaccurate, but this 

thesis will focus only on the first approach. 

 

The following consists of two parts. The first part contains a more general view of risk management, 

including some chosen part of the regulation as well as how to determine credit risk. The second part 

includes different methods in determining the probability of default as a measure which is used in risk 

management. This part is separated in two and includes 1) already existing default prediction methods 

such as univariate analysis, Z-score, O-score and credit ratings, and 2) classification methods in machine 

learning such as logistic regression, neural network, support vector machine, and random forest. 

 

3.1. Regulation in Risk Management 
Firms within the finance sector are governed by several different regulations. This prevails especially 

for credit lenders that are subject to requirements, restrictions, and guidelines to create transparency 

between the credit lender institution and the borrower. For most countries, there is a local regulation for 

the credit lenders to follow. However, these regulations are mainly built upon the Basel Accords, which 

sets the international recommendations for credit lender regulation. 

 

The present international regulation is Basel II which is a three-pillar system. The first pillar is the 

requirement and regulation concerning capital, risk coverage, and leverage. The second pillar concerns 

the supervisory review process. The third pillar concerns market discipline. This thesis focuses on the 

first pillar and more specific the risk coverage among these credit risks and how to calculate it (Bank 

for International Settlements). In Basel II there are two main methods to calculate the credit risk, which 

are the standardized approach and the Internal Rating-Based (IRB) approach. The standardized 

approach assigns some risk weights to different credit lenders. These weights typically come from the 

rating assigned by external rating agencies such as S&P. As table 3.1 shows, the better rating the 

borrower has achieved from the rating agencies; the smaller weight is assigned to the credit risk for the 



Page 25 of 119 

credit lender. If the firm does not have a rating, the standard weight will be 100% under the standardized 

approach. The second approach, the IRB, relies on the internal estimates concerning credit risk for the 

credit lenders. The component that should be calculated is the probability of default (PD), the loss given 

default (LGD), exposure at default (EAD), and the maturity of the loan. These four components, 

combined with the correlation between corporate exposure, can be calculated into the credit risk (Bank 

for International Settlements, 2019a). 

 

 

 

 

3.1.1. Credit Risk 
According to Basel Committee on Banking Supervision (2000), the definition of credit risk is: “Credit 

risk is most simply defined as the potential that a bank borrower or counterparty will fail to meet its 

obligations in accordance with agreed terms.” In other words, the credit risk is the risk that the loans 

are not being repaid to the full extent, which will imply a loss for the credit lender. Due to regulation 

and the risk of losing money to bad lenders, the credit lender has an obligation and incentive to analyse 

and measure the credit risk. For banks and other credit lenders, this includes estimating the PD, EAD, 

and LGD. These two estimates seek to evaluate the risk of the borrower not being able to meet its 

contractual obligation as well as to evaluate how much the credit lender risk of losing in case the 

borrower defaults. 

 

The PD is very likely the most important question in the analysis of the credit risk. It is essential to have 

a valid estimate for all loans, but it might also be the most difficult estimate to make. Sometimes external 

conditions interrupt the models which previously gave a good estimate for the PD. However, models 

calculated on historical data are still the most frequent methods to calculate the PD. This will also be 

the method used in this thesis. Some of the models used in the past, and new machine learning methods 

to predict default will be described in section 3.2. 

 

Table 3.1: The table from Basel accords for determining risk weights 

under the standard approach 

Source: CRE 20.17 
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The second thing the credit lender needs to estimate in the analysis of credit risk is the potential losses 

in case a given firm file for bankruptcy. This is known as the LGD which is dependent on two factors 

namely the exposure at default (EAD) and the recovery rate. 

 

First of all, the recovery rate is highly affected by what kind of security the credit lender has in the asset 

from the company. Bank loans are typically safer than other kinds of debt, like bonds, because the loans 

have collateral before the bonds in the liquidation order. Another implication for the recovery rate is 

what type of asset the credit lender has security in. A large proportion of financial assets like cash and 

stocks will imply that the recovery rate will be high. In case the assets are primarily material assets, 

then the recovery rate will drop to a medium level. However, if the defaulted firm has a lot of intangible 

assets, then these assets might be worthless or sold for a very small amount in proportion to what it is 

worth in ”the books”. All these things are worth considering when a credit lender should determine the 

recovery rate for a borrower. The EAD is calculated by the credit lender by taking the outstanding of 

the principal amount. This means, other things being equal, that a loan with a longer term to maturity 

will have a higher EAD compared to a loan with a shorter term to maturity. Finally, the LGD can be 

calculated as the EAD minus the recovery rate for default (Petersen & Plenborg, 2012, pp. 271-297). 

 

 

The thesis focuses on predicting whether a company defaults or not. Therefore, only one component 

from above will be elaborated, namely the PD. The next section includes two parts, a definition of 

already existing default prediction methods as well as different machine learning methods for predicting 

whether a company defaults or not. 

3.2. Predicting Default 

3.2.1.  Default Prediction Methods 

How to measure and analyse the riskiness of the loans is something that has been elaborated extensively 

over time. It has not only been directly on predicting the PD, but the essence has been the same, which 

is giving a valid estimation of how risky the loans of the credit lenders are. Several methods have been 

Figure 3.1: How to calculate loss given default 
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proposed over time. The methods can be categorized as statistical methods that can be used for the 

prediction of corporate defaults by using financial ratios. Default prediction methods allow credit 

lenders to analyse a large number of firms fairly quickly and at a low cost. There are different types of 

default prediction methods used for this purpose that will be elaborated below among others univariate 

analyses, Altman’s (1968) Z-score, Ohlson’s (1980) O-score, and credit rating. 

3.2.1.1. Univariate Analysis 

A univariate analysis is probably the simplest way of analysing financial data. It analyses the predictive 

ability of ratios one at a time. Beaver (1966) is one of the first to study this area. He had 30 ratios which 

were divided into six “common element” groups where only one ratio from each group was selected as 

a focus for the analysis. The purpose was to see which ratios could predict failure and how many years 

in advance, the forecast could be made. The chosen ratios were cash flow to total debt, net income to 

total assets, total debt to total assets, working capital to total assets, current ratio, and the no-credit 

interval which is defined as defensive assets minus current liabilities to fund expenditures for 

operations. 

 

A comparison of mean values of the ratios, called the profile analysis, was computed for the failed firms 

as well as for those of comparable firms that did not fail. This was computed for a period five years 

prior to default. Figure 3.2 shows the level and trend in the six ratios are poor for firm failing relative 

to nonfailing firms. The profile analysis is not a predictive test but rather a convenient way of outlining 

the general relationship between the failed and non-failed firms. Univariate predictions may end up 

giving different forecasts for the same firm depending on the chosen ratios. By using a multivariate 

approach, using several ratios, this may outcome the problem (Beaver, 1966). 
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3.2.1.2. Z-score – a Multi Discriminant Analysis 

Multivariate prediction models add several ratios together to end up with a score. One of the first to do 

so in the field of default prediction was Altman (1968) with his Z-score, which is well-known all over 

the world and is still applied and taught today. The Z-score is a multiple discriminant analysis (MDA) 

used to classify public manufacturing firms into bankruptcy or non-bankruptcy groups. The method 

derives a linear combination of five financial ratios which in Altman’s (1968) opinion best distinguish 

between “default” and “non-default” firms. It uses profitability, leverage, liquidity, solvency, and 

efficiency to predict whether a firm has a high risk of going default. The Z-score looks as follows: 

𝑍 = 1.2𝑋" + 1.4𝑋/ + 3.3𝑋0 + 0.6𝑋1 + 1.0𝑋2 

where 

- 𝑍 = 𝑜𝑣𝑒𝑟𝑎𝑙𝑙	𝑖𝑛𝑑𝑒𝑥 

- 𝑋" = 𝑊𝑜𝑟𝑘𝑖𝑛𝑔	𝑐𝑎𝑝𝑖𝑡𝑎𝑙/𝑇𝑜𝑡𝑎𝑙	𝑎𝑠𝑠𝑒𝑡𝑠 

- 𝑋/ = 𝑅𝑒𝑡𝑎𝑖𝑛𝑒𝑑	𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠/𝑇𝑜𝑡𝑎𝑙	𝑎𝑠𝑠𝑒𝑡𝑠 

- 𝑋0 = 𝐸𝐵𝐼𝑇/𝑇𝑜𝑡𝑎𝑙	𝑎𝑠𝑠𝑒𝑡𝑠 

- 𝑋1 = 𝑀𝑎𝑟𝑘𝑒𝑡	𝑣𝑎𝑙𝑢𝑒	𝑜𝑓	𝑒𝑞𝑢𝑖𝑡𝑦/𝐵𝑜𝑜𝑘	𝑣𝑎𝑙𝑢𝑒	𝑜𝑓	𝑡𝑜𝑡𝑎𝑙	𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 

- 𝑋2 = 𝑆𝑎𝑙𝑒𝑠/𝑇𝑜𝑡𝑎𝑙	𝑎𝑠𝑠𝑒𝑡𝑠 

Figure 3.2: Comparison of mean values of six selected 

financial ratios for bankruptcy firms and non-bankruptcy 

firms five years prior to bankruptcy 

Source: Beaver (1966) 
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Altman (1968) identified two cut-off points, 1.81 and 2.99. A Z-score higher than 2.99 indicates a low 

risk of default, whereas a Z-score below 1.81 indicates a high risk of default. A Z-score in the interval 

between 1.81 and 2.99 is defined as a grey area which leads to further analysis. Since its publishment 

in 1968 has the Z-score been revaluated by Altman several times by analysing other firms in other time 

periods. 

3.2.1.3. O-score – a Logit Analysis 

In MDA models, the standardized coefficients cannot be interpreted as the slopes of a regression, and 

therefore it does not indicate the relative importance of the different variables. With these difficulties 

of MDA models in mind, Ohlson (1980) applied, as one the first, the logistic regression model to the 

studies of default prediction. The logit regression model is used to estimate the probability of default 

based on several predictor variables. In practice, the benefit of the logit model is that it does not need 

the restrictive assumptions that are for the MDA method. Assumptions such as the independent 

variables must be normally distributed, and the variance-covariance matrices should be equal between 

the default and non-default groups. This is often violated when applying to default prediction problems. 

Furthermore, logit models allow working with disproportional samples (Sabato, 2008). The logit model 

fits with the problems of predicting default with a binary dependent variable. A more general description 

of logistic regression will be done in section 3.2.2.1. The O-score defines the probability of default as: 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑑𝑒𝑓𝑎𝑢𝑙𝑡 =
1

1 + 𝑒%3
 

Where e is the base of the natural logarithms, and y is found by the following formula: 

𝑦 = −1,32 − 0,407𝑆𝑖𝑧𝑒 + 6,03
𝑇𝐿$
𝑇𝐴$

− 1,43
𝐶𝐴$ − 𝐶𝐿$

𝑇𝐴$
+ 0,076

𝐶𝐿$
𝐶𝐴$

− 2,37
𝑁𝐼$
𝑇𝐴$

− 1,33
𝐹𝐹𝑂$
𝑇𝐿$

+ 0,285𝑍 − 1,72𝑋 − 0,521
𝑁𝐼$ −𝑁𝐼$%"
|𝑁𝐼$| + |𝑁𝐼$%"|

 

Size is equal to the log of total assets time t divided by Gross National Product price index level, TL is 

equal to total liabilities, and TA is equal to total assets. CA is equal to current assets, CL is equal to 

current liabilities, NI is equal to net income, and FFO is equal to funds from operations. Z and X are 

two dummy variables, where Z equals 1 if a net income is negative for the last two years and 0 otherwise, 

and X equals 1 if total liabilities exceed total assets and 0 otherwise. The score results in a number 

between 0 and 1 where any value bigger than 0.5 implies that the firm is going to default within one 

year (Ohlson, 1980, pp. 119-125). 

3.2.1.4. Credit Rating 

A credit rating system is a calculated evaluation of the creditworthiness of a borrower – the likelihood 

that the borrower will be able and willing to meet its financial commitments and to pay back the loan 

within the terms of the loan agreement. There exist several different credit rating systems all other the 

world but because this paper focuses only on corporations, the credit score systems for individuals and 
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others are not taken into account. The credit rating for determining the creditworthiness of a corporation 

is generally done by a credit rating agency such as Standard & Poor’s (S&P), Moody’s, or Fitch. The 

idea is the same for all the different credit rating systems – to rank the firm concerning its 

creditworthiness. Though, the different credit rating agencies do not necessarily have the same 

interpretation of this creditworthiness. S&P defines creditworthiness as only the probability of default 

where nothing else matters. This means that the recovery rate, the proportion the credit lenders end up 

with after the borrower has defaulted, has not been taken into account. Moody’s, on the other hand, 

defines creditworthiness as the expected losses. Expected losses include the probability of default as 

one part, but it also includes EAD and recovery rate as the second part. This means that one firm may 

have a good credit rating according to S&P but a poor one according to Moody’s (Salmon, 2011). These 

credit ratings affect the opportunity for the firm to be approved for a loan and might also affect the 

interest rate on loans. For the agencies which assign a rating to the firm, different aspects are looked at 

where each aspect is given a subjective weight to its importance. The agency, first of all, considers the 

firm’s history regarding debt and paying off its debts. If the firm has a bad history of paying off debts, 

then the rating will be affected negatively. Second, the agency also considers the firm’s future economic 

potential. In case it looks bright, the rating tends to be high, whereas if the future economic potential 

does not look too positive the rating will fall (Petersen & Plenborg, 2012, pp. 271-297). 

 

S&P has its S&P Global Ratings which is a forward-looking opinion about the creditworthiness. It 

contains letters, numbers, words, or combinations of these in each rating scale to summarize its opinion. 

The general-purpose credit rating, referred to as the “traditional” credit rating, can be either short-term 

or long-term. Short-term issue credit ratings are usually appointed to those obligations considered as 

short-term in the relevant market commonly up to 1 year, and long-term issue credit ratings are assigned 

to the rest. The short-term issue credit ratings consist of six steps going from A-1 (excellent) to C before 

ending up at D, where the latter indicates the firm defaults on one or more of its financial obligations. 

See appendix B table B1 to see the table with definitions. The long-term issue credit ratings, on the 

other hand, consists of nine steps only containing letters starting at AAA (excellent) to C and then D, 

where the latter again indicates the firm defaults on one or more of its financial obligations. See 

appendix B table B2 for definitions (Standard & Poor's, 2019). 

3.2.2. Machine Learning 
Machine learning is an application of artificial intelligence where it is about obtaining knowledge from 

data by measuring patterns in the data of the same category and identifying features that separate the 

data into dissimilar groups. Systems that can learn from data in a manner of being trained are designed 

by computing. With both time and experience, the systems may learn and improve without being 

explicitly programmed. Machine learning methods have been used across a wide range of research fields 
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among others medicine, engineering, advertising, and predicting bankruptcy (Barboza, Kimura, & 

Altman, 2017; Bell, 2014) where the latter will be the focus of this paper. 

 

The machine learning algorithm is either supervised or unsupervised learning, where the latter is not 

relevant for this thesis. Supervised learning is when working with a set of labelled data which means 

that each data point has a class. In this case, the classes are “default” or “non-default” which are used 

to classify the new data points to either one of them. So, for every observation in the data, you have an 

input as well as an output object. The data set is split into a training set and a testing set. A testing set 

should be used to test the algorithm developed from the training set (Bell, 2014). Below will the 

following supervised classification models; logistic regression, neural network, support vector machine 

and random forest be introduced. It is the same methods that afterwards will be tested to predict default. 

3.2.2.1. Logistic Regression 

Logistic regression is a predictive analysis method from the field of statistics that is borrowed by 

machine learning. It is used in the original form for binary classification problems – whether the firm 

defaults or not defaults given a set of explanatory variables. It 

models the probability of belonging in a given class, and 

therefore the final result of each observation in the logistic 

regression model should be between 0 and 1. So, it used a 

logistic sigmoid function which is characterized by an S-

shaped curve. The sigmoid function transforms high negative 

numbers into numbers close to 0 and high positive numbers 

close to 1, which is illustrated in figure 3.3. In addition to that, 

the sigmoid function intercepts the y-axis at 0.5, meaning a 50% probability of default. The full logistic 

regression function inclusive the sigmoid transformation with k explanatory variables can be written as 

𝑝	̂ =
1

1 + 𝑒%(4(#4).)#4*.*#..#4+.+)
 

where 𝑝	̂ is the predicted output, e is the base of the natural logarithms, 𝛽6 is the intercept term, and 𝛽7 

is the coefficient for each input 𝑥7. The coefficients 𝛽6 and 𝛽7 must be estimated from the training data 

set by using the maximum likelihood estimation. The intuition of the maximum likelihood for logistic 

regression is to pursue values for the coefficients that minimize the error in the probabilities predicted 

by the model to optimize the best values from the training data set. It is done by the log-likelihood 

measure (Baesens B. , 2014, pp. 39-42). Another measure to determine the best model in logistic 

regression is the AIC. This is an approach used for model selection. It assumes no model is precise and 

therefore, the goal is to find the one closest to the true model. AIC is relative to other such measures 

which means it can only be used for model selection when the models are estimated on the same data 

set. It estimates the relative amount of information that is lost by a given model where the less 

Figure 3.3: The sigmoid function 
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information lost by a model indicates a better model. The lower value of AIC the better model according 

to the measures (Sakamoto, Ishiguro , & Kitagawa, 1986). Ohlson (1980), with his O-score, is an 

example of the use of logistic regression when predicting default. 

 

Logistic regression models are at the risk of being affected by multicollinearity if some of the 

explanatory variables are highly correlated. This can cause some of the variables to be insignificant and 

to have a wrong sign in the coefficient if the variable is strongly correlated with another variable in the 

model. One way to solve it can be by making a correlation matrix and then exclude the variables that 

are insignificant and correlated (Hastie, Tibshirani, & Friedman, 2009, pp. 122-124). 

 

After the model has calculated all the weights for the variables, the logistic regression model should be 

tested. Here there is a need for a cut-off that separates the classes “default” or “non-default”. Typically, 

it is decided to use 0.5 as the cut-off that separates the classes, but other alternatives can also be used 

(Swaminathan , 2018). 

3.2.2.2. Neural Network 

Neural network was created back in the 1940s, and it was the first method to classify on a larger scale. 

The theory has evolved multiple times, and today is artificial neural network powered by deep learning 

algorithms state of the art when it comes to image and speech recognition. Neural network has its 

inspiration from the human brain, which consists of approximately 100 billion neurons that are 

connected in a network (Freudenrich & Robynne, n.d.). Similarly, neural network has some input 

neurons that are connected in a network with several neurons in the hidden layers which decide the 

result of the output neurons. This output will be the result of the classification, e.g. result in either 

“default” or “non-default”. 

 

Neural network has a black box where several hidden layers occur each with several neurons within. It 

is through these hidden layers and neurons the decisions whether the classification results in “default” 

Figure 3.4: The process from the input neurons through 

a network with several neurons in the hidden layers, 

which decide the result for the output neurons 
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or “non-default” are made. It will, in the following, be elaborated on what happens inside these hidden 

layers and neurons. 

 

The input variables will be the 20 or 14 different variables described in section 2.2.1. In the neural 

network model, these input variables will be more or less activated dependent on what their values are. 

The range between 0 and 1 where 1 is fully activated and 0 is not activated at all. The activation is 

crucial in neural network because the output neuron should either activate the “default” or “non-default” 

neuron. The input variables are all being attached to a weight. The weight is a number that is being 

multiplied by the activation number of the input variable. This weighted sum gives a number of 

activation, which could be both positive and negative numbers. However, neural network wants to limit 

this activation number of the neuron to be between 0 and 1. Therefore a sigmoid function is added, as 

also done in logistic regression, to get the probabilistic output that maps the weighted sum into the range 

between 0 and 1. The last step to be able to calculate the next neuron is to apply a bias. The bias unit 

gives a threshold for when the neuron should be activated. The formula for calculating the next neuron 

will be: 

�̀� = 𝜎(𝑤"𝛼" +𝑤/𝛼/ +𝑤0𝛼0…𝑤&𝛼& + 𝑏) 

where σ is the sigmoid function, w is the weight assigned to the input neuron, α is the activation number 

of the input neuron, and b is the bias. This function is calculated for all neurons in the hidden layer. 

Assuming there are two hidden layers, the result of the first hidden layer will impact the degree of 

activation for the second hidden layer. The last hidden layer will determine the activation of the output 

layer and decide whether the observation is being classified as a “default” or “non-default” (Amini, 

2020). A visualisation of a network with two hidden layers can be seen in figure 3.5. 

 

 

 

 

 

 

 

 

 

 

 

Training of Neural Network 

When training a machine learning model, it is common to have a function to either minimize or 

maximize a factor. For neural network the cost function is the function that should be minimized. For 

every observation, the output layer gives an activation degree between 0 and 1 for both “default” and 

Figure 3.5: The process from the input layer to the output layer through a number of 

hidden layers 
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“non-default”. If the real class is “default”  then it should have 1 in “default” and 0 in “non-default”. 

The full cost function for the whole network can be written as: 

𝐶𝑜𝑠𝑡 =
1
𝑛
e f𝑓f𝑥+;𝑊h, 𝑦+h

&

+8"
 

The term for the predicted output is	𝑓f𝑥+;𝑊h, while 𝑦+ is the actual output for the observation. The 

cost function then finds the average difference between what the neural network predicts and what the 

actual value is. This average should then be minimized by changing the attached weights and bias. 

Neural network seeks the minimum of the cost function with the use of a minimization function which 

can be gradient descent. However, the global minimum can be hard to find if the cost function is 

complicated and has more local minimums (Yiu, 2019). 

 

To reduce the computational calculation in trying to find the minimum of the cost function, an algorithm 

called backpropagation is used in neural network. Simplified, this algorithm starts from the right side 

of the network, the output neurons, and move to the left until it hits the input neurons. Backpropagation 

looks at how the neurons of the last hidden layer should change to correctly classify the observation. 

This can be done by either changing the bias, changing the weight, or change the activation of the 

neuron in the hidden layer. This activation is a function of the previously hidden layer which means we 

then go back one layer and make this process again. This method is backpropagation, also called partial 

derivative, and will help the program to faster find the minimum of the cost function (Raschka & 

Mirjalili, 2017, pp. 412-417). In addition, a term called minibatch can be used to reduce computational 

calculation even further. The training data is divided into several parts, known as batches, where each 

batch has for instance 32 observations which is the most common amount of observations in neural 

network in R. Instead of running through the training set at once and changing the weights and bias on 

behalf of the whole training set the mini batches are used. One time a batch has passed through the 

network and changing the weights and biases, it is called an iteration. When the whole training data has 

passed through the network, it is called an epoch. The number of epochs is a parameter to tune in neural 

network because a higher number of epochs will fit the model closer to the training data (Sharma, 2017). 

3.2.2.3. Support Vector Machine 

The support vector machine has like the neural network a black box where the classification is made. 

The support vector machine aims at splitting classes with a hyperplane which in the primal version is 

written as 

𝐻0:	𝑤9𝑥 + 𝑏 = 0 

Where 𝑤 are the weights on features and 𝑥 is the data points (support vectors). The objective of the 

hyperplane is to maximize the distance to the nearest training data point of any class to minimize the 

risk of misclassification. This is done by solving an optimization problem over w, known as the primal 

problem: 
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒:,<,=
1
2
e𝑤>/
?

>8"

 

where N is the size of the training data. At the nearest training data point of each class, another 

hyperplane occurs, which means there is a hyperplane placed on each side of the main hyperplane. The 

two hyperplanes are written as: 

𝐻1:	𝑤9𝑥 + 𝑏 = +1 

𝐻2:	𝑤9𝑥 + 𝑏 = −1 

H1 indicates the hyperplane at the edge of class 2, where H2 indicates the hyperplane at the edge of 

class 1 as can be seen in figure 3.6. The distance from the first hyperplane, H1, to the origin equals 

|𝑏 − 1|/‖𝑤‖ where ‖𝑤‖ represents the Euclidean norm of w which is calculated as ‖𝑤‖ = l𝑤"/ +𝑤//. 

Similarly, the distance from the second hyperplane, H2, to the origin equals |𝑏 + 1|/‖𝑤‖. The goal is 

to get a function that returns +1 if the result of the function is positive which shows the data point is in 

one class and it returns -1 when the point is in the other class. 

The data points (vectors) that define the hyperplane are called the support vectors, and the distance 

between these and the hyperplane is called the margin. It is a technique that can be done with either a 

hard or soft margin. The difference between the two margins is the strictness of correct classifications. 

The soft margin allows not all individuals to be correctly classified, whereas this is not allowed for the 

hard margin. The strictness of the hard margin leads to the risk of overfitting the training data because 

of no flexibility to do misclassifications. It is known that economic variables are influenced by noise in 

empirical data and are often biased. This is the reason why the soft margin is regularly used. Therefore, 

when using the soft margin, the support vectors that define the hyperplane are those data points within 

the margin on the correct as well as on the wrong side of the hyperplane. The number of support vectors 

depends on how much misclassification is allowed. Allowing a large number of misclassifications will 

give a large number of support vectors and vice versa. Those data points on the correct side of the 

hyperplane but within the margin are support vectors that are correctly classified, but those data points 

on the wrong side of the hyperplane within the margin are support vectors that are misclassified. 

Figure 3.6: The three hyperplanes in SVM 
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Therefore, a large number of support vectors indicate a risk of a large number of misclassifications, and 

a low number of support vectors indicate a chance of a lower number of misclassifications. The soft 

margin will be used for this thesis to get a more robust model by adding an error term to the optimising 

problem over w: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒:,<,=
1
2
e𝑤>/
?

>8"

+ 𝐶e𝑒+

&

+8"

 

C (cost) is the trade-off parameter between maximizing the margin and minimizing the error on the 

data. The larger the C, the more misclassification in the training set will be penalized. The last one is 

an error term, 𝑒+, allowing misclassifications. If 𝑒+ = 0, then the individual i is correctly classified, and 

the second term disappears as if it was with the hard margin. If 0 < 𝑒+ ≤ 1, then i is inside the margin 

but at the correct side of the hyperplane therefore correctly classified. Finally if 𝑒+ > 1, then i is 

misclassified. The support vector machine can be either a linear classification, linear SVM, or a non-

linear kernel classification such as RBF SVM (Baesens B. , 2014, pp. 58-61) (Bell, 2014, pp. 139-144). 

 

The support vector machine classifiers can be written as either a primal or dual version where the latter 

is the most preferred when using kernels. Of this reason, the linear support vector machine classifier, as 

well as the non-linear support vector machine classifier, will be written in the dual version. The linear 

support vector machine classifier written as the dual version is as follows: 

𝑓(𝑥) =e𝛼+𝑦+f𝑥+9𝑥h + 𝑏
?

+8"

 

by solving an optimization problem over 𝛼+, known as the dual problem: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒@e𝛼+

?

+8"

−
1
2
ee𝛼+𝛼>𝑦+𝑦>f𝑥+9𝑥h

?

>8"

?
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where 𝑦 is the measured value, 𝛼+ is the Lagrangian multipliers stemming from the optimization (weight 

between 0 and cost), and 𝑥+ is the training data points, support vectors. Since support vectors are needed 

to construct the classification line, they will have a nonzero 𝛼+ but all other data points have a zero 𝛼+. 

This is often referred to as the sparseness property of SVMs (Zisserman, 2015). 

 

Non-linear support vector machine classification is characterized by a separation between classes that 

cannot directly be separated linearly due to the mix in the observation in each class. To be able to make 

a linear separation between the two classes with a hyperplane, the data should be transformed into a 

feature space by using the RBF kernel function. Thus, the feature space does not have to be explicitly 

specified. The non-linear dual version of a support vector machine can be formulated to learn a kernel 

classifier 
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𝑓(𝑥) =e𝛼+𝑦+𝐾(𝑥, 𝑥+) + 𝑏
?

+8"

 

by solving an optimization problem over 𝛼+: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒@e𝛼+

&

+8"

−
1
2
ee𝛼+𝛼>𝑦+𝑦>𝐾f𝑥+ , 𝑥>h

&

>8"

&

+8"

 

where 𝐾(𝑥, 𝑥+) = exp t− ‖.%.,‖*

B*
u when the kernel is an RBF SVM. Besides C, costs, RBF kernel 

includes an extra parameter to tune, which is 𝛾 (gamma) (Baesens B. , 2014, pp. 61-64; Zisserman, 

2015). 

 

Tuning the Model 

As mentioned, linear SVM has C to tune, and RBF SVM has both C and gamma to tune. The tuning is 

done by the k-fold cross-validation, which is a statistical method used to estimate the skill of the 

machine learning model on new data. The parameter, k, is the number of groups a given data sample is 

to be split into. The most common one is k = 10, which means 10-fold cross-validation. The goal of 

cross-validation is to test the ability of the model to predict new data which was not used to estimate it. 

This is done to minimize the problems of overfitting or selection bias as well as to give an understanding 

of how the model will generalize to an independent testing data set. The cross-validation balances the 

importance of maximizing the margin against minimizing the error on the data to a number as close as 

possible to zero (Brownlee, 2018). 

3.2.2.4. Random Forest 

Random forest is created by a collection of classification trees to create a more robust model. First, a 

short introduction to classification trees will be done to get a basic understanding of how trees work. 

Second, random forest will be described, including an explanation of why the model becomes more 

robust when introducing random forest compared to classification trees. 

 

Classification trees are often used when a data set is labelled, and the question is how new data points 

should be classified. A decision tree contains decision nodes where it starts with a root node, and then 

the data are split in two by using “if” statements. The goal is to pick nodes that give the best split 

possible. To determine the best split, the Gini Impurity can be used to maximize the gain in purity by 

minimizing the impurity. The latter appears when all observations are either one label or the other in 

the split. A higher Gini Gain indicates a better split. This can be done by the weighted decrease in the 

entropy measure: 

𝑚𝑎𝑥(𝑔𝑎𝑖𝑛) = 1 −
𝑚"

𝑚
𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦" −

𝑚/

𝑚
𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦/ 
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where 𝑚7 indicates the numbers of the label, “default” or “non-default”, in the node, 𝑚 indicates all 

observations and 𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦7 is defined by the entropy calculated for each node: 

𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦7 = 𝐸(𝑆) = −𝑝C log/(𝑝C) − 𝑝?C log/(𝑝?C) 

where 𝑝C and 𝑝?C being the proportions of “default” and “non-default” respectively. The next nodes, 

children of the root note, only use data points that would take a particular direction which means to the 

left or the right of the root node. The way of building the next node is in the same way as for the root 

node whereby using the Gini Gain the best split is found. 

The next question that may occur is when to stop creating 

decision nodes, and the answer would be when all data 

points are equally good or if it has a Gini Gain of zero 

because then adding a decision node would not improve the 

decision tree. When this is the case, the node will be made 

as a leaf node which is the end node classifying any data 

point that reaches this node as in the same label. At the time 

when all possible branches in the classification tree end in a 

leaf node, the classification tree has been trained, and it can 

then be tested. So, the purpose in classification trees is to 

split observations into classes or labels of categorical 

dependent variables with a structure that looks like a tree and with as few as possible misclassifications. 

Classification trees suffer from instability because the classification trees may have high variability and 

the risk of overfitting. This instability of classification trees can be solved by introducing random forest 

(Baesens B. , 2014, pp. 42-48) (Zhou, 2019). 

 

The idea behind random forest is to average a collection of classification trees to build a more robust 

model with a better generalization performance and with less risk of overfitting. Random forest creates 

the collection of decision trees using each time a different training sample where each training sample 

is constructed by bootstrapping. Bootstrapping is a random sample with replacement which means that 

an element may appear multiple times in the one sample. This is repeated k times which is typically set 

to 500. Random forest uses the Strong Law of Large Numbers, which shows they always converge so 

that overfitting is not a problem and they produce a limiting value of the generalization error. Instead 

of evaluating all characters to determine the best split at each node, as done in classification trees, 

random forest only considers a random subset of those. In all, these factors may lead to better accuracy 

in random forest compared to a classification tree (Baesens B. , 2014, pp. 65-67) (Breiman, 2001) 

(Zhou, 2019). 

 

Figure 3.7: An example of a classification tree 
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3.2.2.5. General in Machine Learning 

Type 1 and Type 2 Errors and Confusion Matrix 

In machine learning the different methods are first trained on a data set called the training set, and 

afterwards, this model is tested on a data set called the testing set. After testing the model, different 

measures to evaluate the testing can be used. One of these measures is the accuracy as well as the table 

classifying how the prediction went compared to reality which is known as the confusion matrix. The 

accuracy tells the percentage of correctly predicted outcomes. Though, this may not give the complete 

picture of how good the model is. Therefore, the classification table is created to give an overview of 

where the model predicted correctly and most important, where the model predicted incorrectly. When 

the prediction is incorrect compared to the reality, it becomes either a type 1 or a type 2 error. Type 1 

error, also known as false positive (FP), is where the predicted null hypothesis is rejected even though 

it was true. Type 2 error, which is also known as false negative (FN), is where the predicted alternative 

hypothesis is rejected even though it was true in reality. In this thesis, the null hypothesis is belonging 

to the “non-default” group where the alternative hypothesis is belonging to the “default” group. The 

critical error type is type 1 because the prediction tells the firm does not default, but it actually does. In 

this way, the credit lender may borrow money to a firm defaulting and ends up losing a proportion of 

the money. 

Confusion Matrix Reality 

Non-default 

(positive) 

𝑯𝟎 is true 

Default 

(negative) 

𝑯𝑨 is true 

Predicted Non-default 

(positive) 

𝑯𝟎 is true 

Predicted correct  

(True positive) 

Type 1 error  

(False positive) 

Non-default 

(negative) 

𝑯𝑨 is true 

Type 2 error  

(False negative) 

Predicted correct 

(True negative) 

 

 

Relative Operating Characteristic (ROC) 

Another measure of evaluating the models is the relative operating characteristic (ROC) curve and the 

associated area under the curve (AUC). The ROC curve has the false-positive rate, also known as the 

rate of type 1 errors, on the x-axis and the true-positive rate on the y-axis. See figure 3.8 for illustration 

of the ROC curve. Therefore, the x-axis ranks the “default” on behalf of the probability of belonging in 

this class, and the y-axis shows the percentage of “non-default” excluded as a function of “default”.  

 

Table 3.2: Confusion matrix  
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The goal is to have the ROC as far up to the top left corner as possible. This will increase the AUC, the 

area under the ROC curve, which is a measure to summarize the ROC. AUC will be a number between 

0 and 1 where 0.5 indicates a random model and 1 indicates a perfect model that classifies all 

observation correct. If the AUC is 0.8, it tells that the model has an 80% chance of distinguishing 

correctly between the classes (Narkhede, 2018). 

 

The difference between the accuracy and the ROC/AUC is the probability function which is used to a 

greater extent in ROC/AUC. The accuracy and the belonging type 1 and type 2 errors only show how 

the model classifies the observations for a given cut-off. Some of the models do not even need a cut-off 

but just classify the observations to either of the groups. ROC/AUC, on the other hand, plot the 

probabilities of belonging in a given class to visualize how well the model separates the two classes by 

probability and not only by classification. 

 

Overfitting and Tuning 

When training machine learning models, one of the most important aspects are to avoid overfitting. 

Overfitting occurs when a model fits the training data set too well, which means the model discovers 

Figure 3.8: Schematic of a ROC showing how all four quantities of a confusion matrix 

can be identified on a ROC curve. Each region of the x- and y-axes have an 

interpretation with respect to error and success rates for non-defaulting (FP and TP) 

and defaulting (FN and TN) firms.  

Source: Stein (2007) 
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noise and try too hard to capture this in the training data set. It is illustrated in figure 3.9. This becomes 

a problem since the testing data set does not contain the same noise and then the ability of the model to 

generalize regarding a testing data set is negatively impacted. The more complex the model, the higher 

risk of overfitting and therefore a lower accuracy on the test will likely occur. There are different 

procedures to minimize the risk of overfitting and get a more robust model. Some of the procedures are 

to keep the model simple, to use regulation-algorithms, and/or to use cross-validation. By keeping the 

model simple, an approach could be to reduce the number of explanatory variables in the model using 

variable selection. Regulation-algorithms, on the other hand, is used to penalize complexity in the model 

by adding a parameter. Finally, cross-validation can be used when it is not possible to change model 

complexity or the size of the data set. 

 

After training machine learning models, parameter tuning can be a way to build a model to optimally 

solve the machine learning problem. Parameter tuning is the choice of a set of optimal hyperparameters, 

such as the number of epochs in neural network, the cost and the gamma in SVM, and the number of 

trees in random forest. 

 

  

Figure 3.9: The difference between properly fitted and overfitting. The overfitted model is not going to be useful 

unless it is applied to the exact same data set because no other data will fall exactly along the overfitted line. 

Source: Prakash (2018) 
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4. Empirical Results 
This section contains the empirical results of the different models followed by an analysis of these 

results. The first two parts include market as well as accounting variables, where the goal is to determine 

which model is the best when predicting default for listed firms. The two last parts only include 

accounting variables which are to investigate its predictive power and to analyse the impact on the 

market variables of the accuracy. This is to see if the empirical results could be transformed into non-

listed firms. Both the investigation with market variables and the one without is separated in two time 

frames which are one year prior to default and five years prior to default. The time frame one year prior 

to default means that each firm-year is analysed, and the models decide whether the firm will be 

categorised as “default” or “non-default” within the next year. In the same way for the time frame five 

years prior to default it is analysed whether the firm defaults within a five-year period or not. 

Technically the models are fitted to the “non-default” category which means they predict “non-default” 

rather than “default”. However, when dealing with binary classification, in the classes “default” or “non-

default”, the residual of “non-default” will always be “default”. Likewise, when the models state a 

probability, this will be for the “non-default” group. To get the probability of the “default” group is 

simply to take one minus the probability of  “non-default”. 

4.1. One Year Prior to Default Including Market and Accounting 
Variables 

This part of the section contains the empirical results of the models made out of the training data one 

year prior to default, including both market and accounting variables. The training data set used to 

estimate these models includes 2,156 observations, 20 explanatory variables, and a binary dependent 

variable stating “default” one year prior to default and “non-default” otherwise. A correlation matrix 

can help to get an overview of how the variables in the training data are mutually correlated. The 

correlation matrix for this data is shown in table 4.1, and the correlation above |0.5| is shown as the 

number for the given correlation. It can be a problem if too many variables are highly correlated as this 

indicate that the variables contain the same information. Most of the variables are correlated to a lesser 

extent, but there are some cases where the correlation is above |0.5| which are the numbers shown in 

the table. RETA, EBTA, NITA, and OCFTA all have a correlation above |0.5| with one another. These 

variables are mutually correlated, which makes sense since all of them are some kind of earnings over 

total asset ratios. This means that these four variables contain some kind of the same information. 

Especially the correlation at 0.89 between OCFTA and EBTA is very high meaning it will add very 

little extra information power to add both variables in the model. 
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The different machine learning models are then tested on the testing data set containing the same 20 

explanatory variables but with 24,630 observations where 225 categorised as “default” and 24,405 as 

“non-default”. The empirical results of each machine learning method will be elaborated and analysed 

in the next. 

4.1.1.  Logistic Regression 
As known from section 3.2.2.1., logistic regression is a predictive analysis where the goal is to predict 

the probability of default for a firm, in this case, one year prior to default, by solving the binary 

classification problem. 

 

The first model, LR1, is built with all 20 explanatory variables based on accounting variables as well 

as market variables. The model results in 12 statistically insignificant variables with a p-value higher 

than 0.05. The insignificant variables indicate that 12 of the explanatory variables have no significant 

effect on the dependent variable according to the results. A solution to the insignificant variables is to 

make a variable selection by taking out the least significant variable one by one until a model with no 

insignificant variables remaining is left. This may also result in a lower risk of overfitting the model. 

The results of this can be seen in table 4.2. 

 

 

 

 

 

WCTA RETA EBTA METL SLTA CACL NITA TLTA EXRET RSIZ SIGMA FFOTL X.NI NIMETL TLMETL EBITDASL OCFTA FESL FDCF CLTA

WCTA 1 - - - - 0.51 - -0.67 - - - - - - - - - - - -0.74
RETA - 1 0.6 - - - 0.56 - - - - - - - - - 0.67 - - -
EBTA - 0.6 1 - - - 0.86 - - - - - - - - - 0.89 - - -
METL - - - 1 - - - - - - - - - - - - - - - -
SLTA - - - - 1 - - - - - - - - - - - - - - -
CACL 0.51 - - - - 1 - - - - - - - - - - - - - -
NITA - 0.56 0.86 - - - 1 - - - - - - - - - 0.71 - - -
TLTA -0.67 - - - - - - 1 - - - - - - - - - - - 0.66
EXRET - - - - - - - - 1 - - - - - - - - - - -
RSIZ - - - - - - - - - 1 - - - - - - - - - -
SIGMA - - - - - - - - - - 1 - - - - - - - - -
FFOTL - - - - - - - - - - - 1 - - - - - - - -
X.NI - - - - - - - - - - - - 1 - - - - - - -
NIMETL - - - - - - - - - - - - - 1 -0.7 - - - - -
TLMETL - - - - - - - - - - - - - -0.7 1 - - - - -
EBITDASL - - - - - - - - - - - - - - - 1 - -0.78 - -
OCFTA - 0.67 0.89 - - - 0.71 - - - - - - - - - 1 - - -
FESL - - - - - - - - - - - - - - - -0.78 - 1 - -
FDCF - - - - - - - - - - - - - - - - - - 1 -
CLTA -0.74 - - - - - - 0.66 - - - - - - - - - - - 1

Table 4.1: Correlation matrix for the variables in the data one year prior to default including market and accounting 

variables 
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Model Variable(s) included in the model Log- 

likelihood  

AIC # of 

insignificant 

variables  

LR1 WCTA, RETA, EBTA, METL, SLTA, CACL, NITA, 

TLTA, EXRET, RSIZ, SIGMA, FFOTL, X.NI, NIMETL, 

TLMETL, EBITDASL, OCFTA, FESL, FDCF, and CLTA 

-998.711 2039.4 12 

LR2 WCTA, EBTA, METL, SLTA, CACL, NITA, TLTA, 

EXRET, RSIZ, SIGMA, FFOTL, X.NI, NIMETL, 

TLMETL, EBITDASL, OCFTA, FESL, FDCF, and CLTA 

-998.713 2037.4 11 

LR3 WCTA, METL, SLTA, CACL, NITA, TLTA, EXRET, 

RSIZ, SIGMA, FFOTL, X.NI, NIMETL, TLMETL, 

EBITDASL, OCFTA, FESL, FDCF, and CLTA 

-998.773 2035.5 10 

LR4 WCTA, SLTA, CACL, NITA, TLTA, EXRET, RSIZ, 

SIGMA, FFOTL, X.NI, NIMETL, TLMETL, EBITDASL, 

OCFTA, FESL, FDCF, and CLTA 

-998.831 2033.7 9 

LR5 SLTA, CACL, NITA, TLTA, EXRET, RSIZ, SIGMA, 

FFOTL, X.NI, NIMETL, TLMETL, EBITDASL, OCFTA, 

FESL, FDCF, and CLTA 

-999.028 2032.1 7 

LR6 SLTA, CACL, NITA, TLTA, EXRET, RSIZ, SIGMA, 

FFOTL, X.NI, NIMETL, TLMETL, OCFTA, FESL, FDCF, 

and CLTA 

-999.356 2030.7 6 

LR7 SLTA, CACL, NITA, TLTA, EXRET, RSIZ, SIGMA, 

FFOTL, X.NI, NIMETL, TLMETL, OCFTA, FESL, and 

CLTA 

-1000.071 2030.1 5 

LR8 SLTA, CACL, NITA, TLTA, EXRET, RSIZ, SIGMA, 

FFOTL, X.NI, TLMETL, OCFTA, FESL, and CLTA 

-1000.718 2029.4 4 

LR9 SLTA, CACL, TLTA, EXRET, RSIZ, SIGMA, FFOTL, 

X.NI, TLMETL, OCFTA, FESL, and CLTA 

-1001.029 2028.1 3 

LR10 SLTA, CACL, TLTA, EXRET, RSIZ, SIGMA, FFOTL, 

X.NI, TLMETL, OCFTA, and CLTA 

-1002.016 2028.0 3 

LR11 SLTA, CACL, TLTA, EXRET, RSIZ, SIGMA, X.NI, 

TLMETL, OCFTA, and CLTA 

-1004.254 2030.5 1 

LR12 SLTA, TLTA, EXRET, RSIZ, SIGMA, X.NI, TLMETL, 

OCFTA, and CLTA  

-1005.327 2030.7 0 

 

When only focusing on maximizing the log-likelihood measure the first model, LR1, including all 20 

explanatory variables, are the preferred one with a log-likelihood of -998.711. However, this model 

includes 12 insignificant variables that may overfit the model based on the training data, which might 

Table 4.2: Table showing 12 different logistic regression models on the data one year prior to default including 

market variables  
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not give a good general result in terms of the testing data set. Furthermore, this model is also the most 

complex one due to many variables. Another parameter, AIC, which also compare the models, can then 

be taken into account. According to AIC, the best model is LR10 due to the lowest measure of AIC. 

The reason for this is it takes the number of variables into account and the fewer variables, the better 

the model will be. Nevertheless, despite the lower log-likelihood measure compared to LR1 and the 

higher AIC measure compared to LR10, it can be argued that the last model, LR12 with no insignificant 

variables, is the most preferably model estimated out of the training data set. Hence, it has fewer 

explanatory variables and therefore, less complexity. LR12, including nine explanatory variables, can 

be written as: 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑑𝑒𝑓𝑎𝑢𝑙𝑡 = 1 −
1

1 + 𝑒%(4(#4).)#4*.*#..#4-.-)
 

Where  
𝛽! + 𝛽"𝑥" + 𝛽#𝑥#+. . +𝛽$𝑥$

= −6.849 + 2.817
𝑆𝑎𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙	𝑎𝑠𝑠𝑒𝑡𝑠 − 25.761
𝑇𝑜𝑡𝑎𝑙	𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠
𝑇𝑜𝑡𝑎𝑙	𝑎𝑠𝑠𝑒𝑡𝑠

+ 5.228:𝐿𝑜𝑔(𝐹𝑖𝑟𝑚	𝑟𝑒𝑡𝑢𝑟𝑛) − 𝐿𝑜𝑔(𝑀𝑎𝑟𝑘𝑒𝑡	𝑟𝑒𝑡𝑢𝑟𝑛)F

+ 2.019H𝐿𝑜𝑔 I
𝐹𝑖𝑟𝑚	𝑚𝑎𝑟𝑘𝑒𝑡	𝑐𝑎𝑝
𝑀𝑎𝑟𝑘𝑒𝑡	𝑐𝑎𝑝 LM − 3.901𝑆𝐼𝐺𝑀𝐴 + 0.529Δ	𝑖𝑛	𝑛𝑒𝑡	𝑖𝑛𝑐𝑜𝑚𝑒

− 32.277
𝑇𝑜𝑡𝑎𝑙	𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

𝑀𝑎𝑟𝑘𝑒𝑡	𝑐𝑎𝑝 + 𝑇𝑜𝑡𝑎𝑙	𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 + 6.432
𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔	𝐶𝐹
𝑇𝑜𝑡𝑎𝑙	𝑎𝑠𝑠𝑒𝑡𝑠

− 3.365
𝐶𝑢𝑟𝑟𝑒𝑛𝑡	𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

𝑇𝑜𝑡𝑎𝑙	𝑎𝑠𝑠𝑒𝑡𝑠  

Where SIGMA is equal to the monthly volatility over the last year. The model holds five accounting 

variables and four market variables. This model is then tested on the testing data set. With a cut-off 

point of 0.5, the test classified 3,020 observations as “default” and 21,610 observations as “non-default” 

and obtained an accuracy of 88.31%. Though, this does not give a complete picture of how good the 

model is to predict default. A confusion matrix stating the proportion of correctly classified as well as 

those misclassified for each category gives a more fulfilling picture of the test result. Table 4.3 shows 

this confusion matrix. Misclassifications can be split into type 1 and type 2 errors. The model contains 

42 (18.67%) type 1 errors which mean 42 are classified as “non-default” but they actually “default”. 

This is a problem because then the credit lender will lose money in the case they borrow an amount to 

the firm. Type 2, on the other hand, contains 2,837 (11.62%) cases where the model classifies firms to 

default where in reality, the firms did not default. This will result in the credit lender, not borrowing the 

money to firms that actually would be able to fulfil its contractual obligations. The ROC curve of the 

model can be seen in appendix A figure A3, and the AUC equals 0.9092. To decide whether this is a 

good or a bad result, a translation table is made to explain the AUC value for the models. The table can 

be seen in appendix B table B3. Regarding this table, the AUC measure of this logistic regression model 

is a good result. 
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Reality 

Predicted 

Non-default 

𝑯𝟎 is true 

Default 

𝑯𝑨 is true 

Non-default 

𝑯𝟎 is true 

21,568 42 

(18.67%) 

Default 

𝑯𝑨 is true 

2,837 

(11.62%) 

183 

 

4.1.2. Neural Network 
To test the data set with neural network the R package ANN2 is used. The description of this package 

is: “Training of neural networks for classification and regression tasks using mini-batch gradient 

descent” (Lammers, 2020). The package also allows for regularization, which is shortly described in 

section 3.2.2.5. 

 

When the neural network was made, there was a focus on simplicity. This includes only one hidden 

layer with eight neurons within. The network has 20 input neurons in the first layer that indicate one for 

each explanatory variable. The next layer consists of eight neurons in the hidden layer. The last layer 

in the network is the output layer which only has two output neurons, “default” and “non-default”. 

 

One of the parameters to tune in a neural network is the number of epochs. Section 3.2.2.2 defined the 

number of epochs as the number of times the whole training data set has passed through the network. 

The higher number of epochs will result in the model being fitted better to the training data. Figure 4.1 

shows the validation and training loss on the y-axis and the number of epochs on the x-axis. The number 

of epochs should be on the spot of the graph just before the validation loss hits a plateau. The graph 

shows that the validation loss (yellow line) is declining as the number of epochs increase, but after 

epoch number 50, the decline is reduced significantly. It is concluded that the number of epochs should 

not be more than 100 as this will overfit the model. However, it can be discussed whether the number 

of epochs should be 50, 100, or somewhere in between. The chosen number of epochs is 100, which is 

also the most used number in the model. 

Table 4.3: Confusion matric for logistic regression model 

one year prior to default including market variables 
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The test sample was run through the network, and with a cut-off point of 0.5, the test result classified 

2,793 observations as “default” and 21.837 observations as “non-default” with an accuracy of 89.26%. 

The confusion matrix showing the misclassifications is shown in table 4.4. The model has 40 (17.78%) 

type 1 error and 2,605 (10.67%) type 2 errors. The ROC curve of the model can be seen in appendix A 

figure A4 and the AUC equals 0.9047 which is a good result according to table B3 in appendix B. 

Reality 

Predicted 

Non-default 

𝑯𝟎 is true 

Default 

𝑯𝑨 is true 

Non-default 

𝑯𝟎 is true 

21,797 40 

(17.78%) 

Default 

𝑯𝑨 is true 

2,605 

(10.67%) 

185 

  

4.1.3. Support Vector Machine 
To refresh, the goal of SVM is to split the classes with a hyperplane that maximizes the distance to the 

nearest training data point to minimize the risk of misclassification. Two SVM models, the linear SVM 

and the RBF SVM will be estimated in R by installing and using the package e1071. This package is 

the first and most intuitive packages for estimating SVM in R. 

Figure 4.1: Graph showing the validation loss (the yellow line) 

on the data one year prior to default including market variables 

Table 4.4: Confusion matric for neural network model one 

year prior to default including market variables 
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4.1.3.1. Linear SVM 

A linear SVM classification is characterized by a separation between classes that can be directly split 

linearly. As mentioned in section 3.2.2.3, linear SVM has one parameter to tune. This is C (cost) which 

is a trade-off parameter between margin and correct classification. While taking the error rate into 

consideration, it is most preferred to take a low C in a linear SVM model which indicates a lower risk 

of overfitting. A 10-fold cross-validation has been used to tune C. This 10-fold cross-validation balances 

the importance of maximizing the margin versus minimizing the error on the data to as close as possible 

to 0. The linear SVM model is tuned for C = [10%1:1]. It might have been preferred if the linear SVM 

were trained in a wider range for its parameter, C, to return better results. Though this is time-

consuming, since R on a personal computer might not be able to run this, and finally it looks like the 

error is ending up in a local and accepted minimum. 

 

Table 4.5 shows the nine different models in the linear SVM. The best model to choose for linear SVM 

is the one with the lowest error of 0.2087 and a cost of 1. This model includes 1,101 support vectors, 

551 “default” and 550 “non-default”. Recall that support vectors are the number of data points within 

the soft margin of the hyperplane – the ones defining the hyperplane. The amount of support vectors 

depends on how much misclassification is allowed. With a large number of misclassifications, there 

will be a large number of support vectors and vice versa. Around 51% of the data points from the 

training data are support vectors which may indicate a risk of a large number of misclassifications. 

Though, the goal is not to find the lowest misclassification but rather the right number of 

misclassifications for the data being analysed. 

Model Cost Error 

LinearSVM1 0.0001 0.4044 

LinearSVM2 0.001 0.2199 

LinearSVM3 0.01 0.2097 

LinearSVM4 0.1 0.2092 

LinearSVM5 1 0.2087 

LinearSVM6 10 0.2092 

LinearSVM7 100 0.2097 

LinearSVM8 1,000 0.2153 

LinearSVM9 10,000 0.2421 

 

The chosen model, linearSVM5, is then tested by using the testing data set. The test classified 2,865 

observations as “default” and 21,765 observations as “non-default” and obtained an accuracy of 

88.93%. The confusion matrix showing misclassifications can be seen in table 4.6. The model includes 

Table 4.5: Table showing nine different linear SVM models one the data 

one year prior to default including market variables 
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43 (19.11%) type 1 errors and 2,683 (10.99%) type 2 errors. The ROC curve of this model can be seen 

in appendix A figure A5 and the AUC equals 0.9049, which is a good result according to table B3 in 

appendix B. 

 

 

 

 

 

 

4.1.3.2. RBF SVM 

RBF SVM is a non-linear SVM method characterized by a separation between classes that cannot be 

directly split linearly. The data in non-linear SVM methods should be transformed into a feature space 

by using a kernel function, in this case, the RBF kernel function. RBF SVM has two parameters to tune; 

C (cost) which is the same parameter as in linear SVM and gamma, which defines how far the influence 

of a single training example reaches. With a low value of gamma, every data point has a far reach which 

means that it takes the ones far away into consideration and vice versa. For this reason, a relatively low 

gamma would be preferred. The RBF SVM model is tuned for the same value of C as in linear SVM, 

C = [10%1:1], and value of gamma = [2%/:/]. As mentioned above in linear SVM, it might have been 

more desirable to train the model in a wider range for each parameter, but due to the same mentioned 

reasons, this is not done. To tune these parameters, the 10-fold cross-validation is once again used. 

 

This results in 45 different models where the best is RBFSVM21 with a gamma of 0.25, a cost of 1, and 

an error of 0.2139. The best model and the ones around can be seen in table 4.7. To see all 45 different 

models, see appendix B table B5. RBFSVM21 includes 1,381 support vectors, 734 “default” and 647 

“non-default”. These support vectors still depend on how much misclassification is allowed. About 64% 

of the observations are support vectors which can be argued to be, to some extent relatively many 

support vectors. It may indicate a risk of a relatively large number of misclassifications compared to 

the linear SVM model. 
 

 

 

 

 

 

 

Reality 

Predicted 

Non-default 

𝑯𝟎 is true 

Default 

𝑯𝑨 is true 

Non-default 

𝑯𝟎 is true 

21,722 43 

(19.11%) 

Default 

𝑯𝑨 is true 

2,683 

(10.99%) 

182 

Table 4.6: Confusion matric for linear SVM model one year 

prior to default including market variables 
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Model Gamma Cost Error 

RBFSVM17 0.50 0.1 0.2932 

RBFSVM18 1.00 0.1 0.3697 

RBFSVM19 2.00 0.1 0.4559 

RBFSVM20 4.00 0.1 0.5227 

RBFSVM21 0.25 1 0.2139 

RBFSVM22 0.50 1 0.2255 

RBFSVM23 1.00 1 0.2658 

RBFSVM24 2.00 1 0.3094 

RBFSVM25 4.00 1 0.3716 

 

The chosen model, RBFSVM21, is tested by using the testing data set. The test classified 4,628 

observations as “default” and 20,002 observations as “non-default”. The estimated accuracy equals 

81.85%, and the confusion matrix can be seen in table 4.8. The test results in 34 (14,22%) type 1 errors 

and 4,437 (18.18%) type 2 errors. The ROC curve of the model can be seen in appendix A figure A6, 

and the AUC equals 0.8987 which is a good result according to table B3 in appendix B, but it is the 

lowest among the models on the data set. 

Reality 

Predicted 

Non-default 

𝑯𝟎 is true 

Default 

𝑯𝑨 is true 

Non-default 

𝑯𝟎 is true 

20,147 34 

(14.22%) 

Default 

𝑯𝑨 is true 

4,437 

(18.18%) 

191 

 

4.1.4. Random Forest 
To refresh, random forest makes a collection of trees which are built upon various if statements. The 

trees vote for which category the observation should belong to and the majority of the voters decide the 

classification. To test the data set with random forest, the R package “randomForest” is used. This 

package uses an algorithm that can be used for both regression and classification. 

 

Like other machine learning methods, there are parameters to tune in random forest. Two parameters 

should be decided, namely the number of trees (ntree) and the number of variables sampled as 

Table 4.7: Table showing the best RBF SVM model and the models around this on 

the data one year prior to default including market variables  

Table 4.8: Confusion matric for RBF SVM model one year 

prior to default including market variables 
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candidates at each split (mtry). To determine the number of trees, the training data is trained for 500 

trees and plotted against the error rate on the model. Figure 4.2 shows the plot of the error rate (the 

black line), and it indicates that the last 200 trees are not needed for the model. The error rate is lower 

at 300 trees compared to 500 trees. To reduce computational calculation and to get a lower error rate, it 

is decided to use 300 trees in the model. Appendix C output C1 and C2 shows the summary for the 

model with 500 and 300 trees, and it demonstrates how the error rate declined from 19.81% to 19.53%. 

The second parameter to tune is mtry. It is common to set this parameter to the squared root of the 

number of variables. From that number, R can perform a test to see how the error rate will react if mtry 

is increased or decreased. It shows that the error rate will increase if the mtry is increased to 6 or reduced 

to 3. See appendix A figure A7 for the plot of the test. It is therefore decided to keep the mtry to 4 for 

the model which is also the closest number to the square root of the number of variables. 

 

 

 

Since the sample of variables available for each split is different, random forest can give an estimation 

of how important each variable is in the model. Figure 4.3 shows the relative importance of the variables 

in two measures. The first measure is the mean decrease in accuracy, which calculates how the accuracy 

will drop if one of the variables is omitted from the model. The second measure is the mean decrease 

in Gini which measures the average gain purity for the local split which means that it tells something 

about the composition of the trees and which variables have the highest gains in purity. For both 

measures, the more important variables are located to the right of the figure while the less important 

variables are found to the left of the figure. It is, to some extent, the same variables that are important 

independent of the measures. TLMETL and METL are in the top three for both measures and will have 

Figure 4.2: Figure showing the plot of the error rate (the black line) 

of random forest on data one year prior to default including market 

variables 
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the most impact if these variables where excluded. On the other hand, X.NI and SLTA will have the 

slightest impact if these variables were excluded. However, it is also worth mentioning that a high 

degree of correlation between some of the variables can have an impact on this importance plot. As the 

correlation matrix in section 4.1. shows there are variables with a correlation close to 0.9, which will 

have an impact on how they rank the mutual importance. 

 

 

 

The model was run on the testing data set, and it classified 3,737 observations as “default” and 20,893 

observations as “non-default”. The empirical results obtained an accuracy of 85.52%. The confusion 

matrix can be as seen in table 4.9, where it is shown that the model has 32 (12,00%) type 1 errors and 

3,539 (14.50%) type 2 errors. The ROC curve of the model can be seen in appendix A figure A8, and 

the AUC equals 0.9295 which is a very good result according to table B3 in appendix B, and it is the 

highest among the models on the data set. 

 

 

 

 

 

 

Figure 4.3: Figure showing the importance of each variable in 

random forest regarding the accuracy and the Gini index on the 

data one year prior to default including market variables  
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Reality 

Predicted 

Non-default 

𝑯𝟎 is true 

Default 

𝑯𝑨 is true 

Non-default 

𝑯𝟎 is true 

20,916 27 

(12,00%) 

Default 

𝑯𝑨 is true 

3,539 

(14.50%) 

193 

4.1.5. The Machine Learning Methods Compared to One Another  
This part gives a summary of the results between the five models as well as an analysis of which model 

performs best. The test was done on the testing set, which includes 24,630 firm-year observations with 

both accounting and market data as explanatory variables. 

 

 

 

 

 

 

 

 

Table 4.10 shows the most important results between the models. It can be concluded that neural 

network has the highest accuracy at 89.25% closely followed by linear SVM and logistic regression. 

Random forest and RBF SVM have both considerably lower accuracies at respectively 85.52% and 

82.75%. From table 4.10, it is clear to say that type 2 error directs the accuracy percentage. However, 

as section 3.2.2.5 describes the critical ones are type 1 error as this is a situation where the credit lender 

gives credit to a company that defaults within the next year. Random forest is the model with the lowest 

number of type 1 errors at 27, but the range between the highest and lowest number for the models is 

not wide. Linear SVM, as the model with the highest number of type 1 errors, has 43 errors. 

 

To evaluate which model is the best for this data, both type 1 and type 2 errors should be taken into 

account. However, it is fair to argue that the cost of a borrower who cannot pay back the loan is higher 

compared to the opportunity cost for a credit lender, that refuses to give credit to a borrower, who is not 

going to default within the next year. Another implication for this is, even though the borrower is not 

Model Type 1 Type 2 Accuracy AUC 

LR 42 2,837 88.31% 0.9092 

NN 40 2,605 89.26% 0.9047 

LinearSVM 43 2,683 88.93% 0.9049 

RBFSVM 34 4,437 81.85% 0.8987 

RF 27 3,539 85.52% 0.9295 

Table 4.9: Confusion matric for random forest model one 

year prior to default including market variables 

Table 4.10: Summary of the chosen models in each method and their most 

important results of type 1 errors, type 2 errors, accuracy and AUC on the data 

one year prior to default including market variables  
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going to default within the next year, there is still the risk of losing money if the borrower defaults in 

the following years. So, the question is how much more the model should penalize type 1 errors 

compared to type 2 errors. There is no simple answer to this question, and it will also depend on the 

risk appetite for the given credit lender. However, it is possible to analyse which model is the best given 

different weights multiplied type 1 errors which indicate the higher cost of type 1 errors relative to the 

cost of type 2 errors. Figure 4.4 gives an illustration of this. 

 

 

The x-axis is the different weights, and if the weight is equal to ten, then type 1 error is ten times more 

costly compared to type 2 errors. The y-axis shows how each model is doing in terms of the cost of the 

errors compared to logistic regression. If the graph is lower than one, then the model is better than 

logistic regression at the given level of weights, while a graph higher than one means the model is worse 

compared to logistic regression. Logistic regression is chosen as the benchmark because it is the oldest 

and most simple model. The figure shows that neural network is the best model from the beginning 

where the costs of type 1 and type 2 errors are the same. This continues until the weight is equal to 75, 

where it is crossed by random forest. However, it can be argued that 75 times higher cost related to type 

1 error compared to type 2 errors is very high. Therefore, it is decided that neural network is the best 

model to predict default within one year with accounting and market variables available in terms of the 

accuracy and the distribution of the error types. 

 

Regarding the other measure to validate the models, AUC, the difference between the models is smaller 

compared to the accuracy. Random forest is the best model with an AUC of 0.9295, followed by logistic 

regression at 0.9092. RBF SVM is the one with the lowest value of AUC at 0.8987, and it was also the 

model with the lowest accuracy. All the ROC curves can be seen in figure 4.5, where random forest 
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Figure 4.4: Figure showing the error cost relative to the logistic regression model on the data one year prior to 

default including market variables 
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(green line) is the line furthest to the top left corner, which indicates the best model. All the other lines 

follow each other very closely except for RBF SVM, which is below all the lines in the false positive 

rate interval from 0.1 to 0.4. Recall from section 3.2.2.5., that the false positive rate on the x-axis 

indicates the percentage of type 1 errors while the true positive rate on the y-axis indicates the 

percentage of “non-default” correctly classified. 

 

 

4.2. Five Years Prior to Default Including Market and 
Accounting Variables 

The second part of this section contains the empirical results of the models created out of the training 

data five years prior to default, where market and accounting variables are included. The training data 

used for this part to estimate these models contains 8,286 observations, 20 explanatory variables, and a 

binary dependent variable stating “default” five years prior to default and “non-default” otherwise. The 

number of observations in the training set is almost four times as large compared to the training set for 

one year prior to default. The reason for this is, the number of observations which are categorized as 

“default” within the next five years must by nature be higher than within one year. In addition to that, 

the “default” observations were matched with “non-default” observations as described in section 2.2.1. 

which further increase the number of observations. The correlation matrix for the data can be seen in 

Figure 4.5: Figure showing the ROC curves of the chosen models in each method on the data one year prior to 

default including market variables 
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table 4.11. The matrix follows the same method as described in section 4.1. with only showing 

correlation over |0.5| Even though the data is different from one year prior to default, it is almost the 

same pairs of variables that correlate over |0.5|. RETA, EBTA, NITA and OCFTA are still mutually 

correlated with some of the highest correlation among the numbers. The only new variable with a 

correlation above |0.5| is FFOTL, which is now correlated with EBTA and NITA. 

 

 

The testing data set contains 17,843 observations, where 559 of them are categorised as “default” and 

17,284 of them are “non-default”. This testing set is also a bit different compared to one year prior to 

default, as the period has been limited until 2013. The reason for this is that it should be avoided to have 

observations where it was not certain whether the firm defaults or not within the next five years. The 

results for each machine learning method will be elaborated and analysed in the following. 

 

4.2.1.  Logistic Regression 
LR1 is built with all 20 explanatory variables. The model results in nine statistically insignificant 

variables with a p-value higher than 0.05. Variable selection regarding insignificant variables will then 

be used to reduce the risk of overfitting. The results of this can be seen in table 4.12. 

 

 

 

 

 

 

WCTA RETA EBTA METL SLTA CACL NITA TLTA EXRET RSIZ SIGMA FFOTL X.NI NIMETL TLMETL EBITDASL OCFTA FESL FDCF CLTA

WCTA 1 - - - - - - -0.64 - - - - - - - - - - - -0.61
RETA - 1 0.62 - - - 0.59 - - - - - - - - - 0.63 - - -
EBTA - 0.62 1 - - - 0.86 - - - - 0.53 - - - - 0.85 - - -
METL - - - 1 - - - - - - - - - - - - - - - -
SLTA - - - - 1 - - - - - - - - - - - - - - -
CACL - - - - - 1 - - - - - - - - - - - - - -
NITA - 0.59 0.86 - - - 1 - - - - 0.56 - - - - 0.73 - - -
TLTA -0.64 - - - - - - 1 - - - - - - - - - - - 0.61
EXRET - - - - - - - - 1 - - - - - - - - - - -
RSIZ - - - - - - - - - 1 - - - - - - - - - -
SIGMA - - - - - - - - - - 1 - - - - - - - - -
FFOTL - - 0.53 - - - 0.56 - - - - 1 - - - - - - - -
X.NI - - - - - - - - - - - - 1 - - - - - - -
NIMETL - - - - - - - - - - - - - 1 -0.62 - - - - -
TLMETL - - - - - - - - - - - - - -0.62 1 - - - - -
EBITDASL - - - - - - - - - - - - - - - 1 - -0.64 - -
OCFTA - 0.63 0.85 - - - 0.73 - - - - - - - - - 1 - - -
FESL - - - - - - - - - - - - - - - -0.64 - 1 - -
FDCF - - - - - - - - - - - - - - - - - - 1 -
CLTA -0.61 - - - - - - 0.61 - - - - - - - - - - - 1

Table 4.11: Correlation matrix for the variables in the data five years prior to default including market and accounting 

variables 
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Model Variable(s) included in the model Log- 

likelihood  

AIC # of 

insignificant 

variables  

LR1 WCTA, RETA, EBTA, METL, SLTA, CACL, NITA, TLTA, 

EXRET, RSIZ, SIGMA, FFOTL, X.NI, NIMETL, TLMETL, 

EBITDASL, OCFTA, FESL, FDCF, and CLTA 

-5020.168 10082 9 

LR2 RETA, EBTA, METL, SLTA, CACL, NITA, TLTA, EXRET, 

RSIZ, SIGMA, FFOTL, X.NI, NIMETL, TLMETL, 

EBITDASL, OCFTA, FESL, FDCF, and CLTA 

-5020.179 10080 8 

LR3 RETA, EBTA, METL, SLTA, CACL, NITA, TLTA, EXRET, 

RSIZ, SIGMA, FFOTL, X.NI, NIMETL, TLMETL, 

EBITDASL, OCFTA, FESL, and FDCF 

-5020.224 10078 7 

LR4 RETA, EBTA, METL, SLTA, CACL, TLTA, EXRET, RSIZ, 

SIGMA, FFOTL, X.NI, NIMETL, TLMETL, EBITDASL, 

OCFTA, FESL, and FDCF 

-5020.274 10077 6 

LR5 RETA, EBTA, METL, SLTA, CACL, TLTA, EXRET, RSIZ, 

SIGMA, FFOTL, NIMETL, TLMETL, EBITDASL, OCFTA, 

FESL, and FDCF 

-5020.356 10075 5 

LR6 RETA, METL, SLTA, CACL, TLTA, EXRET, RSIZ, 

SIGMA, FFOTL, NIMETL, TLMETL, EBITDASL, OCFTA, 

FESL, and FDCF 

-5020.546 10073 4 

LR7 RETA, METL, SLTA, CACL, TLTA, EXRET, RSIZ, 

SIGMA, FFOTL, NIMETL, TLMETL, OCFTA, FESL, and 

FDCF 

-5021.326 10073 3 

LR8 RETA, METL, SLTA, CACL, TLTA, EXRET, RSIZ, 

SIGMA, FFOTL, NIMETL, TLMETL, OCFTA, and FDCF 

-5022.8 10074 2 

LR9 RETA, METL, SLTA, CACL, TLTA, EXRET, RSIZ, 

SIGMA, FFOTL, NIMETL, TLMETL, and OCFTA 

-5023.751 10074 1 

LR10 RETA, SLTA, CACL, TLTA, EXRET, RSIZ, SIGMA, 

FFOTL, NIMETL, TLMETL, and OCFTA 

-5025.692 10075 0 

 

With the focus of the maximum log-likelihood measure, LR1, including all 20 explanatory variables 

where nine of them are insignificant, is the most prefered model with a log-likelihood of -5020.168. 

Though the model contains the most insignificant variables compared to the other models. The 

insignificant variables may lead to the risk of overfitting the model based on the training data, which 

might not give a good result in terms of the testing data set. Likewise, this model is the most complex 

one because of its many variables. Regarding the other measure, AIC, which compares models on the 

Table 4.12: Table showing ten different logistic regression models on the data five years prior to default excluding 

market variables  
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same training data set, LR6 and LR7 would be the ones to prefer due to the lowest AIC. With this 

information in mind, despite the highest log-likelihood measure, it can be argued that LR10 is the most 

preferred one due to no insignificant variables and then fewer explanatory variables, and still a relatively 

low AIC compared to the other models. LR10 can be written as: 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑑𝑒𝑓𝑎𝑢𝑙𝑡 = 1 −
1

1 + 𝑒%(4(#4).)#4*.*#..#4)).)))
 

Where  
𝛽! + 𝛽"𝑥" + 𝛽#𝑥#+. . +𝛽""𝑥""

= −0.144 − 3.917
𝑅𝑒𝑡𝑎𝑖𝑛𝑒𝑑	𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠

𝑇𝑜𝑡𝑎𝑙	𝑎𝑠𝑠𝑒𝑡𝑠 + 1.472
𝑆𝑎𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙	𝑎𝑠𝑠𝑒𝑡𝑠 + 4.486
𝐶𝑢𝑟𝑟𝑒𝑛𝑡	𝑎𝑠𝑠𝑒𝑡𝑠

𝐶𝑢𝑟𝑟𝑒𝑛𝑡	𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

− 14.932
𝑇𝑜𝑡𝑎𝑙	𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑒𝑠
𝑇𝑜𝑡𝑎𝑙	𝑎𝑠𝑠𝑒𝑡𝑠 + 1.182:𝐿𝑜𝑔(𝐹𝑖𝑟𝑚	𝑟𝑒𝑡𝑢𝑟𝑛) − 𝐿𝑜𝑔(𝑀𝑎𝑟𝑘𝑒𝑡	𝑟𝑒𝑡𝑢𝑟𝑛)F

+ 1.903H𝐿𝑜𝑔 I
𝐹𝑖𝑟𝑚	𝑚𝑎𝑟𝑘𝑒𝑡	𝑐𝑎𝑝
𝑀𝑎𝑟𝑘𝑒𝑡	𝑐𝑎𝑝 LM − 3.273𝑆𝐼𝐺𝑀𝐴 + 7.940

𝐹𝑢𝑛𝑑𝑠	𝑓𝑟𝑜𝑚	𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
𝑇𝑜𝑡𝑎𝑙	𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

− 14.838
𝑁𝑒𝑡	𝑖𝑛𝑐𝑜𝑚𝑒

𝑀𝑎𝑟𝑘𝑒𝑡	𝑐𝑎𝑝 + 𝑇𝑜𝑡𝑎𝑙	𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 − 38.052
𝑇𝑜𝑡𝑎𝑙	𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

𝑀𝑎𝑟𝑘𝑒𝑡	𝑐𝑎𝑝 + 𝑇𝑜𝑡𝑎𝑙	𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

+ 8.462
𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔	𝐶𝐹
𝑇𝑜𝑡𝑎𝑙	𝑎𝑠𝑠𝑒𝑡𝑠  

where SIGMA is equal to monthly volatility over the last year. This model includes 11 explanatory 

variables where six of them are accounting variables, and five of them are market variables. Seven of 

the 11 variables are similar to the ones chosen by the logistic regression model in one year prior to 

default. The four added variables are RETA, CACL, FFOTL and NIMETL, and the ones that have been 

dropped by this model is X.NI and CLTA. LR10 is then tested on the testing data set. The test classified 

3,546 observations as “default” and 14,297 observations as “non-default” with a cut-off point of 0.5. 

The model achieved an accuracy of 81.09%. In table 4.13 is the confusion matrix shown. The model 

results in 194 (34.70%) type 1 errors and 3,181 (18.40%) type 2 errors. It is worth noticing how both 

types of errors had increased compared to one year prior to default. Especially type 1 error has a 

relatively higher percentages increase. The ROC curve of the model can be seen in appendix A figure 

A9, and the AUC equals 0.8185. To decide whether this is a good or a bad result, a new translation table 

is made to explain the AUC value for the models on the five years horizon. The table can be seen in 

appendix B table B4. Regarding this table, the AUC measure of this logistic regression model is a 

merely good result and considerably lower compared to the logistic regression model one year prior to 

default. 
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Reality 

Predicted 

Non-default 

𝑯𝟎 is true 

Default 

𝑯𝑨 is true 

Non-default 

𝑯𝟎 is true 

14,103 194 

(34.70%) 

Default 

𝑯𝑨 is true 

3,181 

(18.40%) 

365 

  

4.2.2. Neural Network 
The design of the neural network at five years prior to default is the same as the neural network at one 

year prior to default with 20 input variables, one hidden layer with eight neurons within, and the two 

output neurons, “default” and “non-default”. 

 

When deciding the number of epochs in the model, figure 4.6 is used. It shows the number of epochs 

concerning the validation loos. It seems like the validation loss (yellow line) flatten out even earlier 

than the ones on the one-year horizon. Therefore, it is decided to use 50 epochs in the model to reduce 

the risk of overfitting as well as to reduce computational time. 

 

 

The test sample was run through the network, and it classified 3,668 observations as “default” and 

14,175 observations as “non-default”. The empirical results obtained an accuracy of 80.57%, which is 

significantly lower than the test on a one-year horizon. However, this is not surprising as it is more 

difficult to predict correctly on a longer horizon. Table 4.14 shows the confusion matrix, where the 

model has 180 (32.20%) type 1 errors and 3,287 (19.02%) type 2 errors. It is worth to notice the high 

Table 4.13: Confusion matric for logistic regression model 

five years prior to default including market variables 

Figure 4.6: Graph showing the validation loss (the yellow line) 

on the data five years prior to default including market variables 
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percentage increase in type 1 error in the five-year horizon. The ROC curve of the model can be seen 

in appendix A figure A10, and the AUC equals 0.8075. This is a merely good result, according to table 

B4 in appendix B, and significantly lower compared to the neural network model one year prior to 

default and the worst on this data set. 

Reality 

Predicted 

Non-default 

𝑯𝟎 is true 

Default 

𝑯𝑨 is true 

Non-default 

𝑯𝟎 is true 

13,995 180 

(32.20%) 

Default 

𝑯𝑨 is true 

3,287 

(19.02%) 

379 

 

4.2.3.  Support Vector Machine 

4.2.3.1. Linear SVM 

This linear SVM model is, as for one year prior to default, tuned for C = [10%1:1] even though a wider 

range again could have been more preferred. The nine different models in the linear SVM can be seen 

in table 4.15. The best model to choose is the linearSVM8 with the lowest error of 0.3212 and a cost of 

1000. This model contains 5,870 support vectors, 2,921 default and 2,949 non-default that are defining 

the hyperplane. Hence, 71% of the 8,296 data points in the training data set are support vectors which 

are considerably higher compared to linear SVM one year prior to default. This may indicate a risk of 

a relatively large number of misclassifications. 

Model Cost Error 

LinearSVM1 0.0001 0.3952 

LinearSVM2 0.001 0.3343 

LinearSVM3 0.01 0.3254 

LinearSVM4 0.1 0.3245 

LinearSVM5 1 0.3248 

LinearSVM6 10 0.3245 

LinearSVM7 100 0.3257 

LinearSVM8 1,000 0.3212 

LinearSVM9 10,000 0.4581 

 

Table 4.14: Confusion matric for network model five years 

prior to default including market variables 

Table 4.15: Table showing nine different linear SVM models on the data 

five years prior to default including market variables  
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LinearSVM8 is then tested by using the testing data set. This test classified 3,058 observations as 

“default” and 14,785 observations as “non-default”, and it obtained an accuracy of 83.57%. The 

confusion matrix, shown in table 4.16, indicates that the model includes 216 (38.64%) type 1 errors and 

2,715 (15.71%) type 2 errors, which is a high increase in the type 1 error rate and a smaller increase in 

type 2 error rate. The ROC curve of the model can be seen in appendix A figure A11 and the AUC 

equals 0.8137 which is a merely good result, according to table B4 in appendix B, and still much lower 

than the linear SVM model one year prior to default. 

 

 

 

 

 

 

4.2.3.2. RBF SVM 

The RBF SVM model has two parameters to tune. It is, as for one year prior to default, tuned for C = 

[10%1:1] and value of gamma = [2%/:/]. With this tuning 45 RBF SVM models are created where 

RBFSVM21 is the most preferred one due to the lowest error of 0.2902. Furthermore, it obtained a 

gamma of 0.25 and a cost of 1. The best model, as well as the ones around this model, can be seen in 

table 4.17. To see all 45 RBF SVM models, see appendix B table B6. RBFSVM21 includes 5,951 

support vectors, where 3,111 of them are categorised as “default” and 2,840 are categorised as “non-

default”. Hence, 72% of the data points in the training data set are support vectors which are similar to 

the amount in linear SVM above and therefore, it also may indicate a relatively large number of 

misclassifications. 

 

 

 

 

 

 

 

 

 

 

 

Reality 

Predicted 

Non-default 

𝑯𝟎 is true 

Default 

𝑯𝑨 is true 

Non-default 

𝑯𝟎 is true 

14,569 216 

(38.64%) 

Default 

𝑯𝑨 is true 

2,715 

(15.71%) 

343 

Table 4.16: Confusion matric for linear SVM model five 

years prior to default including market variables 
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Model Gamma Cost Error 

RBFSVM17 0.50 0.1 0.3308 

RBFSVM18 1.00 0.1 0.3802 

RBFSVM19 2.00 0.1 0.4381 

RBFSVM20 4.00 0.1 0.4937 

RBFSVM21 0.25 1 0.2902 

RBFSVM22 0.50 1 0.2965 

RBFSVM23 1.00 1 0.3106 

RBFSVM24 2.00 1 0.3310 

RBFSVM25 4.00 1 0.3669 

 

The chosen model, RBFSVM21, is then tested against the testing data set. This test classifies 4,809 of 

the observations as “default” and 13,034 of the observations as “non-default”. The test of the chosen 

model results in an accuracy of 74,65%. The confusion matrix seen in table 4.18 shows that the testing 

results in 137 (24.51%) type 1 errors and 4,387 (25.38%) type 2 errors. Both the percentage of type 1 

and type 2 errors have increased relative to the RBF SVM one year prior to default. The ROC curve of 

the model can be seen in appendix A figure A12 and the AUC equals 0.8144 which is a merely good 

result, according to table B4 in appendix B, and close to the other AUC’s five years prior to default. 

Reality 

Predicted 

Non-default 

𝑯𝟎 is true 

Default 

𝑯𝑨 is true 

Non-default 

𝑯𝟎 is true 

12,897 137 

(24.51%) 

Default 

𝑯𝑨 is true 

4,387 

(25.38%) 

422 

 

4.2.4.  Random Forest 
The random forest model is at first being trained with respect to the number of trees (ntree) and the 

number of variables sampled as candidates at each split (mtry). 

 

Table 4.17: Table showing the best RBF SVM model and the models around this on 

the data five years prior to default including market variables  

 

Table 4.18: Confusion matric for RBF SVM model five 

years prior to default including market variables 
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Figure 4.7 shows the first random forest model being trained with 500 trees. At a close look, it is possible 

to see the error rate decreases just after 300 trees and increases before 500 trees. Therefore, it is decided 

to use 400 trees in the random forest model five years prior to default. Mtry is another parameter in the 

model, which is typically the squared root of the number of variables. Mtry is set to four as the starting 

point, and it is tested how the error rate will react if mtry is increased or decreased. Both ways of 

changing mtry resulted in higher error rates which indicate that four is a good number for the parameter. 

The figure of the tuning with respect to mtry can be seen in the appendix A figure A13. 

 

 

 

Figure 4.8 shows the relative importance among the variables included in the model for two measures 

which was described in section 4.1.4. It shows that OCFTA, TLMETL, and METL are all on top 4 for 

both measures of variables importance. On the other hand, X.NI and FDCF are both on the bottom for 

the two measures. One interesting point may also be that some variables are placed significantly 

differently on the importance of one year prior to default compared to the five years prior to default. 

One example is SLTA, which is the second-lowest importance one year prior to default, but the variable 

seems more valuable in this model. 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Figure showing the plot of the error rate (the black 

graph) of random forest on data five years prior to default 

including market variables 
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The random forest model was run at the testing sample and classified 4,565 as “default” and 13,278 as 

“non-default”. This result gave an accuracy of 76,01%, which is nearly ten percentage-points lower 

compared to one year prior to default. The confusion matrix, which can be seen in table 4.19, 

demonstrated 137 (24,51%) type 1 errors and 3,289 (23,97%) type 2 errors. It is worth to notice the 

percentage of type 1 and type 2 errors are close to one another compared to other models on five years 

prior to default. The ROC curve of the model can be seen in appendix A figure A14 and the AUC equals 

0.8367 which is a good result, according to table B4 in appendix B, and especially compared to the 

other AUCs, since it is the best one on this data set. However, it is still considerably lower compared to 

the random forest model one year prior to default. 

Reality 

Predicted 

Non-default 

𝑯𝟎 is true 

Default 

𝑯𝑨 is true 

Non-default 

𝑯𝟎 is true 

13,141 137 

(24,51%) 

Default 

𝑯𝑨 is true 

4,143 

(23,97%) 

422 

 

Figure 4.8: Figure showing the importance of each variable in 

random forest regarding the accuracy and the Gini index on the 

data five years prior to default including market variables 

Table 4.19: Confusion matric for random forest model five 

years prior to default including market variables 
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4.2.5.  The Machine Learning Methods Compared to One Another  
This part gives a summary of the results for the five models built on the data from five years prior to 

default. The part finishes with an analysis of which model performs best on the testing sample. 

  

 

 

 

 

 

 

 

Table 4.20 shows the most important results between the models. It can be concluded that linear SVM 

has the highest accuracy at 83.57%, followed by logistic regression and neural network. All the models 

have accuracies that are considerably lower compared to one year prior to default, but this is to be 

expected. It is much harder to classify all five firms-year correct up to default compared to just classify 

the last firm-year correct. Therefore, it is a fairly decent accuracy of 83,57% for the linear SVM model. 

However, the table also shows that the model with the highest accuracy is also the one that is worst at 

predicting default. Linear SVM has 216 (38,64%) type 1 errors but has the highest overall accuracy. 

Random forest and RBF SVM have both lower accuracies but only respectively 137 and 140 type 1 

errors. 

 

When analysing which model performs best in terms of the distribution of type 1 and type 2 errors, it is 

worth mentioning the difference in the empirical results of one year prior to default compared to five 

years prior to default. First of all, there are more observations in the default category for five years prior 

to default. This is because a firm that is going to default will have up to five firm-year observations 

where it belongs in the category “default”. This implies that the number of firms with type 1 errors are 

considerably smaller than the number of type 1 errors itself. In addition, when analysing the error cost 

of the models, it is better to have four years where the borrower fulfils its payment and one year where 

the firms default, compared to the situation where there is just one year up to default. All this will impact 

the error cost of type 1 errors to be smaller five years prior to default compared to one year prior to 

default. This should be remembered when analysing the error cost of the models. Type 1 errors are still 

more expensive than type 2 errors but not as much as one year prior to default. 

 

Model Type 1 Type 2 Accuracy AUC 

LR 194 3,181 81.09% 0.8185 

NN 180 3,287 80.57% 0.8075 

LinearSVM 216 2,715 83,57% 0.8137 

RBFSVM 137 4,387 74.65% 0.8144 

RF 137 4,143 76.01% 0.8367 

Table 4.20: Summary of the chosen models in each method and their most 

important results of type 1 errors, type 2 errors, accuracy and AUC on the data 

five years prior to default including market variables 
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The error cost of the models is visualized in the same way as in section 4.1.5. The cost of the different 

models is compared to the cost of logistic regression. Different weights are multiplied with type 1 errors 

to adjust for the error type being more expensive compared to type 2 errors. 

 

 

Figure 4.9 shows the loss relative to logistic regression on the y-axis and the weights on the x-axis. 

When the weight is equal to 1, it means that type 1 and type 2 errors are equally costly, and thereby the 

accuracy determines which models are the best. From the beginning of the graphs, linear SVM is the 

best model until the weight equals to 15, where neural network overtakes the position. Neural network 

remains the best model until the weight equals 20, where random forest overtakes the position as the 

best model. It can be difficult to select one model as the best for this test sample, as it depends on how 

hard type 1 errors should be penalized. This comes down to the risk appetite for the credit lender and 

the historical cost of default compared to the opportunity cost of not giving credit to a non-default 

borrower. However, if one model should be selected as the best from this test sample, linear SVM is 

chosen since this model is by far the best model until the weight is equal to 15. Another argument for 

this is that the selected weight for the error cost must be lower at five years prior to default compared 

to one year prior to default, due to the relatively smaller error cost for type 1 errors on the five-year 

horizon. However, if the goal was just to predict “default” correctly random forest would be the most 

preferred model. It could also be argued that linear SVM could not be the best model since the error 

rate for type 1 errors is nearly 39% and another model with a lower error rate for type 1 errors should 

be used instead. Depending on the weights of the different error types, neural network or random forest 

would then be selected as the best model. 

 

Regarding the other measure to validate the models, the AUC, the difference between the models in this 

measure is smaller compared to the accuracy. Random forest is the best model with an AUC of 0.8367, 
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Figure 4.9: Figure showing the error cost relative to the logistic regression model on the data five years prior 

to default including market variables 
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where the rest of the models are within a very little AUC spread. However, all the AUCs have declined 

substantially compared to one year prior to default. All the ROC curves can be seen in figure 4.10. 

Again, the line for random forest (green) is furthest to the top left corner, which indicates the best model. 

However, for a false positive rate over 0.1, the models are very close, and there are some cases where 

other models than random forest are best. This also shows that the highest AUC does not necessarily 

mean that the model is best given all available threshold. 

 

 

4.3. One Year Prior to Default Including ONLY Accounting 
Variables 

The third part of this section contains the empirical results of the models created out of the training data 

set one year prior to default, where only accounting variables are included. The training data used for 

this part holds 2,156 observations similar to the training data in one year prior to default with both 

accounting and market variables. The difference is the fewer explanatory variables which are reduced 

from 20 to 14 since the market variables are excluded. Table 4.21 shows the correlation matrix of the 

remaining 14 variables. The correlation numbers are the same as in section 4.1, with the only difference 

of exclusion of the six market variables. The four earning to asset ratios RETA, EBTA, NITA, and 

OCFTA are still mutually correlated. 

Figure 4.10: Figure showing the ROC curves of the chosen models in each method on the data five years prior to 

default including market variables  
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The binary dependent variable states “default” if the firm is going to default within the next year and 

“non-default” otherwise. The created machine learning models are then tested on the same testing data 

set, as described in section 4.1. The results for each machine learning method will be elaborated and 

analysed in the following. 

4.3.1. Logistic Regression 
LR1 is built with all 14 explanatory variables. This model ends up with nine statistically insignificant 

variables with a p-value higher than 0.05. A variable selection regarding insignificant variables is then 

used to minimize the risk of overfitting. The results of this can be seen in table 4.22. 

 

 

 

 

 

 

 

 

 

 

 

 

 

WCTA RETA EBTA SLTA CACL NITA TLTA FFOTL X.NI EBITDASL OCFTA FESL FDCF CLTA

WCTA 1 - - - 0.51 - -0.67 - - - - - - -0.74
RETA - 1 0.6 - - 0.56 - - - - 0.67 - - -
EBTA - 0.6 1 - - 0.86 - - - - 0.89 - - -
SLTA - - - 1 - - - - - - - - - -
CACL 0.51 - - - 1 - - - - - - - - -
NITA - 0.56 0.86 - - 1 - - - - 0.71 - - -
TLTA -0.67 - - - - - 1 - - - - - - 0.66
FFOTL - - - - - - - 1 - - - - - -
X.NI - - - - - - - - 1 - - - - -
EBITDASL - - - - - - - - - 1 - -0.78 - -
OCFTA - 0.67 0.89 - - 0.71 - - - - 1 - - -
FESL - - - - - - - - - -0.78 - 1 - -
FDCF - - - - - - - - - - - - 1 -
CLTA -0.74 - - - - - 0.66 - - - - - - 1
Table 4.21: Correlation matrix for the variables in the data one year prior to default including only accounting 

variables 
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Model Variable(s) included in the model Log- 

likelihood  

AIC # of 

insignificant 

variables  

LR1 WCTA, RETA, EBTA, SLTA, CACL, NITA, TLTA, 

FFOTL, X.NI, EBITDASL, OCFTA, FESL, FDCF, and 

CLTA 

-1133.822 2297,6 9 

LR2 WCTA, RETA, EBTA, SLTA, CACL, TLTA, FFOTL, X.NI, 

EBITDASL, OCFTA, FESL, FDCF, and CLTA 

-1133.828 2295.7 8 

LR3 WCTA, RETA, EBTA, SLTA, TLTA, FFOTL, X.NI, 

EBITDASL, OCFTA, FESL, FDCF, and CLTA 

-1133.941 2293.9 6 

LR4 WCTA, EBTA, SLTA, TLTA, FFOTL, X.NI, EBITDASL, 

OCFTA, FESL, FDCF, and CLTA 

-1134.312 2292.6 5 

LR5 WCTA, EBTA, SLTA, TLTA, FFOTL, X.NI, OCFTA, 

FESL, FDCF, and CLTA 

-1134.918 2291.8 4 

LR6 WCTA, EBTA, SLTA, TLTA, FFOTL, X.NI, OCFTA, 

FDCF, and CLTA 

-1135.656 2291.3 3 

LR7 WCTA, EBTA, SLTA, TLTA, FFOTL, X.NI, OCFTA, and 

CLTA 

-1136.472 2290.9 2 

LR8 WCTA, SLTA, TLTA, FFOTL, X.NI, OCFTA, and CLTA -1137.272 2290.5 0 

 

When taking the maximum log-likelihood measure into account, the best model is LR1 with a log-

likelihood of -1133.822, including all 14 explanatory variables. When taking the other measure, AIC, 

into account, the best model is LR8 which has the lowest AIC measure. LR8 is the model with the 

lowest log-likelihood measure but with the best AIC measure as well as being the only model without 

any insignificant variables left. Furthermore, LR8 is then the least complex model compared to the 

seven others. So, despite the worst log-likelihood measure, LR8 is chosen to be the best one also because 

the log-likelihood measures do not differ that much from each other. LR8 can be written as 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑑𝑒𝑓𝑎𝑢𝑙𝑡 = 1 −
1

1 + 𝑒%(4(#4).)#4*.*#..#4...)
 

where  
𝛽! + 𝛽"𝑥" + 𝛽#𝑥#+. . +𝛽%𝑥%

= −21.596 + 2.702
𝑊𝑜𝑟𝑘𝑖𝑛𝑔	𝑐𝑎𝑝𝑖𝑡𝑎𝑙
𝑇𝑜𝑡𝑎𝑙	𝑎𝑠𝑠𝑒𝑡𝑠 + 1.972

𝑆𝑎𝑙𝑒𝑠
𝑇𝑜𝑡𝑎𝑙	𝑎𝑠𝑠𝑒𝑡𝑠 − 35.228

𝑇𝑜𝑡𝑎𝑙	𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠
𝑇𝑜𝑡𝑎𝑙	𝑎𝑠𝑠𝑒𝑡𝑠

+ 15.246
𝐹𝑢𝑛𝑑𝑠	𝑓𝑟𝑜𝑚	𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙	𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 + 1.191Δ	𝑖𝑛	𝑁𝑒𝑡	𝑖𝑛𝑐𝑜𝑚𝑒 + 9.906
𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔	𝐶𝐹
𝑇𝑜𝑡𝑎𝑙	𝑎𝑠𝑠𝑒𝑡𝑠

− 4.423
𝐶𝑢𝑟𝑟𝑒𝑛𝑡	𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

𝑇𝑜𝑡𝑎𝑙	𝑎𝑠𝑠𝑒𝑡𝑠  

Table 4.22: Table showing eight different logistic regression models on the data one year prior to default excluding 

market variables 
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This model includes seven explanatory variables where five of them are the same as in the logistic 

regression model in section 4.1.1. The two added variables are WCTA and FFOTL. LR8 is then used 

on the testing data set. The test classifies 5,330 observations as “default” and 19,300 observations as 

“non-default”. The model reached an accuracy of 78.92%. This accuracy is significantly lower 

compared to the one obtained on the similar test including market variables. The confusion matrix 

showing the misclassifications can be seen in table 4.23. The test results in 43 (19.11%) type 1 errors 

and 5,148 (21.09%) type 2 errors. It can be noticed that the number of type 1 errors are similar to those 

in section 4.1.1., but on the other hand, type 2 errors have had a high percentages increase. The ROC 

curve of the model can be seen in appendix A figure A15 and the AUC equals 0.8542 which is a merely 

good result according to table B3 in appendix B, but it is considerably lower compared to the model on 

the same time horizon but including market variables. 

Reality 

Predicted 

Non-default 

𝑯𝟎 is true 

Default 

𝑯𝑨 is true 

Non-default 

𝑯𝟎 is true 

19,257 43 

(19.11%) 

Default 

𝑯𝑨 is true 

5,148 

(21.09%) 

182 

 

4.3.2.  Neural Network 
The design of this neural network is closely related to the previous ones, but this time with only 14 input 

variables since the market variables are excluded. It has one hidden layer with eight neurons within and 

the two output neurons, “default” and “non-default”. 

 

It is tested how the number of epochs will impact the model and whether the number of epochs should 

be reduced to prevent overfitting the model. Figure 4.11 shows the plot of the validation loss (yellow 

line) in relation to the number of epochs. The validation loss is still declining at 100 epochs, indicating 

that the number should not be less than 100. On the other hand, the figure also shows that the declining 

trend is diminishing which implies that 100 epochs are a good number to choose for the model. 

Table 4.23: Confusion matric for logistic regression model 

one year prior to default excluding market variables 
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The test sample was run through the network, and it classified 5,069 observations as “default” and 

19,561 observations as “non-default”. The empirical results obtained an accuracy of 79.91%, which is 

significantly lower than the test on the data, which included market variables. Table 4.24 shows the 

confusion matrix, and the model has 51 (22.67%) observations as type 1 errors and 4,898 (20.07%) 

observations as type 2 errors. It is worth noticing an increase in both type 1 and type 2 errors compared 

to the data including market variables. Especially in type 2 errors which increased by over nine 

percentage points. The ROC curve of the model can be seen in appendix A figure A16 and the AUC 

equals 0.8438 which is merely good according to table B3 in appendix B, but it is still significantly 

lower than the neural network model on the same time horizon including market variables and it is the 

lowest among the tested models. 

Reality 

Predicted 

Non-default 

𝑯𝟎 is true 

Default 

𝑯𝑨 is true 

Non-default 

𝑯𝟎 is true 

19,510 51 

(22.67%) 

Default 

𝑯𝑨 is true 

4,898 

(20.07%) 

174 

  

Figure 4.41: Graph showing the validation loss (the 

yellow line) on the data one year prior to default 

excluding market variables 

Table 4.24: Confusion matric for neural network model one 

year prior to default excluding market variables 
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4.3.3. Support Vector Machine 

4.3.3.1. Linear SVM 

Once again, the linear SVM model is tuned for C = [10%1:1], and nine models are created by the tuning. 

They can be seen in table 4.25. Out of these nine models, linearSVM7 is the best one with the lowest 

error of 0.2445 and a cost of 100. This model includes 1,305 support vectors where 654 are categorised 

as “default”, and 651 are categorised as “non-default”. Thus, 60.53% of the data points in the training 

data set are support vectors. This is somewhat higher compared to the same data including market 

variables why this can indicate a relatively large number of misclassifications. 

Model Cost Error 

LinearSVM1 0.0001 0.4406 

LinearSVM2 0.001 0.2672 

LinearSVM3 0.01 0.2496 

LinearSVM4 0.1 0.2449 

LinearSVM5 1 0.2459 

LinearSVM6 10 0.2463 

LinearSVM7 100 0.2445 

LinearSVM8 1,000 0.2468 

LinearSVM9 10,000 0.2579 

 

LinearSVM7 is then tested using the testing data set. The test classified 4,882 observations as “default” 

and 19,748 observations as “non-default” with an accuracy of 80.75%. The accuracy has decreased 

compared to the same test including market variables. The confusion matrix in table 4.26 shows that 

the testing on the model results in 42 (18.67%) type 1 errors and 4,699 (19.25%) type 2 errors.  Notice, 

that the type 1 errors are completely the same as for the test including market variables, but type 2 

errors, on the other hand, have increased over eight percentages-point. The ROC curve of the model 

can be seen in appendix A figure A17, and the AUC equals 0.8642. This AUC is merely good according 

to the table B3 in appendix B, and it is still lower than the linear SVM on the same time horizon 

including market variables. 

 

Table 4.25: Table showing nine different linear SVM models on the data 

one year prior to default excluding market variables  
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4.3.3.2. RBF SVM 

The RBF SVM method is tuned for C = [10%1:1] and gamma = [2%/:/]. This tuning turns out in 45 RBF 

SVM models where RBFSVM22 is the one to prefer due to the lowest error of 0.2385. This model 

obtained a gamma of 0.50 and a cost of 1. The model and the models around this are shown in table 

4.27. To see all 45 RBF SVM models, see appendix B table B7. RBFSVM22 includes 1,407 support 

vectors where 745 of them lay in the classification “default”, and the other 662 lay in the classification 

“non-default”. Thus, 65.26% of the data points in this training data set are support vectors which is not 

much higher than from the same test including market variables. This can indicate the risk of a relatively 

large number of misclassifications. 

Model Gamma Cost Error 

RBFSVM18 1.00 0.1 0.2937 

RBFSVM19 2.00 0.1 0.3419 

RBFSVM20 4.00 0.1 0.4235 

RBFSVM21 0.25 1 0.2412 

RBFSVM22 0.50 1 0.2385 

RBFSVM23 1.00 1 0.2454 

RBFSVM24 2.00 1 0.2616 

RBFSVM25 4.00 1 0.2871 

RBFSVM26 0.25 10 0.2440 

 

RBFSVM22 is then tested using the testing data set. This test classifies 5,206 observations as “default” 

and 19,424 observations as “non-default”. It results in an accuracy of 79.45%, which is slightly lower 

than the one obtained in the similar test including market variables. The confusion matrix where 

misclassifications are highlighted can be seen in table 4.28. It shows that the testing results in 40 

(17.78%) type 1 errors and 5,021 (20.57%) type 2 errors. Both types of errors have increased slightly 

in percentages compared to the similar test including market variables. The ROC curve of the model 

Reality 

Predicted 

Non-default 

𝑯𝟎 is true 

Default 

𝑯𝑨 is true 

Non-default 

𝑯𝟎 is true 

19,706 42 

(18.67%) 

Default 

𝑯𝑨 is true 

4,699 

(19.25%) 

183 

Table 4.26: Confusion matric for linear SVM model one 

year prior to default excluding market variables 

Table 4.27: Table showing the best RBF SVM model and the models around this on 

the data one year prior to default excluding market variables  
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can be seen in appendix A figure A18 and the AUC equals 0.8713 which is a merely good result 

according to table B3 in appendix B. This AUC is close to the AUC of the RBF SVM model on the 

same time horizon including market variables, and it is also among the highest AUC on the data set for 

the tested models. 

Reality 

Predicted 

Non-default 

𝑯𝟎 is true 

Default 

𝑯𝑨 is true 

Non-default 

𝑯𝟎 is true 

19,384 40 

(17.78%) 

Default 

𝑯𝑨 is true 

5,021 

(20.57%) 

185 

 

4.3.4. Random Forest 
The random forest model is at first being trained with respect to the number of trees (ntree) and the 

number of variables sampled as candidates at each split (mtry). 

 

Figure 4.12 shows a plot of the error rate in relation to the number of trees. It seems like, after 100 trees, 

the error rate does not fall significantly but only has some small movement up and down. Between 300 

and 400 trees, it can be argued that there is some kind of local minimum. Therefore, it is decided to use 

350 as the number of trees in the model. As mentioned in section 4.1.4, it is common to take the square 

root of the number of variables as mtry. With only 14 variables now, it is decided to keep the starting 

point of the test to four mtrys, and then it was increased and decreased to see how the error rate reacts. 

Appendix A figure A19 shows the result that both an increase and a decrease in mtry would increase 

the error rate. 

Table 4.28: Confusion matric for RBF SVM model one year 

prior to default excluding market variables 
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The random forest model can show the importance of variables that are included in the model. Figure 

4.13 shows a plot of the 14 explanatory variables and their importance in the measures mean decrease 

in accuracy and mean decrease in Gini. The most important variable is for both measures TLTA, while 

the least important variables are X.NI, RETA, and SLTA. It is interesting to notice that TLTA has 

overtaken the leading role as the most important accounting variable compared to the data, which 

included market variables. Previously both OCFTA and WCTA were more important than TLTA in 

terms of accuracy, but it is no longer the case when the market variables are excluded. Even though the 

market variables are excluded there is still a risk of the importance of the variables does not give a true 

and fair ranking due to the correlation between the variables. As described in the correlation matrix in 

table 4.21, four of the variables are highly correlated, which will have an impact on their importance 

stated here. 

Figure 4.15: Figure showing the plot of the error rate (the 

black graph) of random forest on data one year prior to 

default excluding market variables 
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The random forest model was run at the testing sample, and it classified 4,155 as “default” and 20,475 

as “non-default”. This result gave an accuracy of 83.70%, which is not far from the previous result of 

85.70% for market and accounting variables. The confusion matrix, which can be seen in table 4.29, 

demonstrates 42 (18.67%) observations as type 1 errors and 3,972 (16.28%) observations as type 2 

errors. This is a high percentage increase in type 1 errors from 12% in the data set including market 

variables to 18.67% in this data set excluding market variables. However, type 1 errors are still among 

the lowest for the tested models. The ROC curve of the model can be seen in appendix A figure A20, 

and the AUC equals 0.8925 which is a good result according to table B3 in appendix B. It is the best 

among the models for this data set. However, it is still lower than the random forest model at the same 

time horizon including market variables. 

Reality 

Predicted 

Non-default 

𝑯𝟎 is true 

Default 

𝑯𝑨 is true 

Non-default 

𝑯𝟎 is true 

20,433 42 

(18.67%) 

Default 

𝑯𝑨 is true 

3,972 

(16.28%) 

183 

Table 4.29: Confusion matric for random forest model one 

year prior to default excluding market variables 

Figure 4.13: Figure showing the importance of each variable in random 

forest regarding the accuracy and the Gini index on the data one year prior 

to default excluding market variables 
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4.3.5. The Machine Learning Methods Compared to One Another 
This part gives a summary of the results for the five models built on data from one year prior to default 

only including accounting variables. The part finishes with an analysis of which model performs best 

on the testing sample. 

Model Type 1 Type 2 Accuracy AUC 

LR 43 5,148 78.92% 0.8542 

NN 51 4,898 79.91% 0.8438 

LinearSVM 42 4,699 80.75% 0.8642 

RBFSVM 40 5,021 79.45% 0.8713 

RF 42 3,972 83.70% 0.8925 

 

Table 4.30 shows the most relevant testing information for the five models. The result shows a small 

difference in the type 1 error where RBF SVM, as the best model, has 40 and neural network, as the 

worst model, has 51. On the other hand, the difference in type 2 errors are significantly larger. The best 

model is random forest which only has 3,972 type 2 errors corresponding to an error rate of 16.28%. 

The worst model between the five tested is logistic regression which has 5,148 type 2 errors 

corresponding to an error rate of 21.09%. It is clear to see that type 2 errors are those that lead the 

accuracy. This means that random forest has the highest accuracy at 83.70% with a sizeable lead over 

linear SVM and neural network at respectively 80.75% and 79.91%. It is worth noticing that especially 

logistic regression, neural network, and linear SVM have lost a significant proportion of their accuracy 

with only accounting variables available. Previously their accuracies were around 88-89% where it now 

is around 79-81%. Random forest, on the other hand, has only “lost” about two percentage-point when 

the market variables were excluded. It is clear to say that the exclusion of market variables affects some 

models more than others. 

 

The same method, as described in section 4.1.5, is used to analyse the best model build on data one year 

prior to default including only accounting variables. Different weights are multiplied with the type 1 

errors to compare how the models manage to classify correctly at different error costs. The result can 

be seen in figure 4.14. 

Table 4.30: Summary of the chosen models in each method and their most 

important results of type 1 errors, type 2 errors, accuracy and AUC on the data 

one year prior to default excluding market variables 
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The figure shows that for this data logistic regression model is the worst model when type 1 and type 2 

errors are equally weighted, which was also demonstrated by the lowest accuracy. The logistic 

regression model is only crossed by neural network when the weight is equal to 35, which means type 

1 errors are 35 times more costly than type 2 errors. On the other hand, random forest seems to be the 

best model through all weights up to 100. Only RBF SVM comes close when the weight increases as 

this model have the lowest number of type 1 errors and thereby the best model to classify the firms 

defaulting. However, when the model has more than 750 more type 2 errors and only two less type 1 

errors compared to random forest it is fair to select random forest as the best model on the data including 

only accounting variables one year prior to default. 

 

Regarding the other measure to validate the models, AUC, the best models are random forest and RBF 

SVM at respectively 0.8925 and 0.8713. neural network and logistic regression are the worst models 

according to AUC with only 0.8438 and 0.8542, respectively. The AUC also shows a larger spread 

among the models on this comparison relative to the comparison of the models including market 

variables. This also supports the argument that some models are more affected when the market 

variables are excluded. All the ROC curves can be seen in figure 4.15. It shows random forest as the 

best model for all false-positive rates as its green line is furthest to the top left corner at all times where 

RBF SVM is the only model that comes close at the beginning of the graph. 
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Figure 4.14: Figure showing the error cost relative to the logistic regression model on the data one year prior to 

default excluding market variables 
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4.4. Five Years Prior to Default Including ONLY Accounting 
Variables 

The fourth and last part of this section has obtained empirical results for the test of the models that are 

created out of the training data set five years prior to default, where only accounting variables are 

included. The training data set used for this part contains 8,286 observations, like in section 4.2. The 

data has 14 explanatory variables as well as a binary dependent variable that states “default” one year 

prior to default and “non-default” otherwise. As in section 4.2, the observations increased compared to 

one year prior to default because of the number of observations that are categorized as “default” within 

the next five years are by nature higher than within one year. The correlation matrix can be seen in table 

4.31. It only shows the correlation pair with a value above |0.5|. The numbers are similar compared to 

the correlation matrix in section 4.2, though, with the exclusion of the six market variables. The four 

earning to asset ratios RETA, EBTA, NITA and OCFTA are still mutually correlated. 

Figure 4.15: Figure showing the ROC curves of the chosen models in each method on the data one year prior to 

default excluding market variables 
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The test data is as well a bit different for five years compared to one year because of the period has been 

limited until 2013. The empirical results for each machine learning method will be elaborated and 

analysed in the following. 

4.4.1.  Logistic Regression 
LR1 includes all 14 explanatory variables where four of them are statistically insignificant, with a p-

value higher than 0.05. The empirical results of the variable selection regarding insignificant variables 

can be seen in table 4.32. 

Model Variable(s) included in the model Log- 

likelihood  

AIC # of 

insignificant 

variables  

LR1 WCTA, RETA, EBTA, SLTA, CACL, NITA, TLTA, 

FFOTL, X.NI, EBITDASL, OCFTA, FESL, FDCF, and 

CLTA 

-5242.170 10514 4 

LR2 WCTA, RETA, EBTA, SLTA, CACL, NITA, TLTA, 

FFOTL, X.NI, EBITDASL, OCFTA, FESL, and CLTA 

-5242.172 10512 3 

LR3 RETA, EBTA, SLTA, CACL, NITA, TLTA, FFOTL, X.NI, 

EBITDASL, OCFTA, FESL, and CLTA 

-5242.180 10510 2 

LR4 RETA, EBTA, SLTA, CACL, NITA, TLTA, FFOTL, X.NI, 

OCFTA, FESL, and CLTA 

-5243.693 10511 1 

LR5 RETA, EBTA, SLTA, CACL, NITA, TLTA, FFOTL, X.NI, 

OCFTA, and CLTA 

-5244.914 10512 0 

 

WCTA RETA EBTA SLTA CACL NITA TLTA FFOTL X.NI EBITDASL OCFTA FESL FDCF CLTA

WCTA 1 - - - - - -0.64 - - - - - - -0.61
RETA - 1 0.62 - - 0.59 - - - - 0.63 - - -
EBTA - 0.62 1 - - 0.86 - 0.53 - - 0.85 - - -
SLTA - - - 1 - - - - - - - - - -
CACL - - - - 1 - - - - - - - - -
NITA - 0.59 0.86 - - 1 - 0.56 - - 0.73 - - -
TLTA -0.64 - - - - - 1 - - - - - - 0.61
FFOTL - - 0.53 - - 0.56 - 1 - - - - - -
X.NI - - - - - - - - 1 - - - - -
EBITDASL - - - - - - - - - 1 - -0.64 - -
OCFTA - 0.63 0.85 - - 0.73 - - - - 1 - - -
FESL - - - - - - - - - -0.64 - 1 - -
FDCF - - - - - - - - - - - - 1 -
CLTA -0.61 - - - - - 0.61 - - - - - - 1
Table 4.31: Correlation matrix for the variables in the data five years prior to default including only accounting 

variables 

Table 4.32: Table showing five different logistic regression models on the data five years prior to default excluding 

market variables  
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With the maximum log-likelihood measure in focus, the best model is LR1 with a log-likelihood of -

5242.170, which is a slightly better measure than LR2. LR1 is the model with the most statistically 

insignificant variables and hence the most risk of overfitting the model, which may result in poor results. 

When changing the focus to the AIC measure, LR3, on the other hand, are the model to prefer due to 

its lowest measure. Though the AIC measures do not differ much from each model, it can be argued to 

choose LR5 as the most preferred model because it does not have any statistically insignificant variables 

even though it has the lowest log-likelihood measure. LR5 can be written as 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑑𝑒𝑓𝑎𝑢𝑙𝑡 = 1 −
1

1 + 𝑒%(4(#4).)#4*.*#..#4)(.)()
 

Where  
𝛽! + 𝛽"𝑥" + 𝛽#𝑥#+. . +𝛽"!𝑥"!

= −10.916 − 3.760
𝑅𝑒𝑡𝑎𝑖𝑛𝑒𝑑	𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠

𝑇𝑜𝑡𝑎𝑙	𝑎𝑠𝑠𝑒𝑡𝑠 + 3.827
𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠	𝑏𝑒𝑓𝑜𝑟𝑒	𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡	𝑎𝑛𝑑	𝑡𝑎𝑥𝑒𝑠

𝑇𝑜𝑡𝑎𝑙	𝑎𝑠𝑠𝑒𝑡𝑠

+ 1.054
𝑆𝑎𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙	𝑎𝑠𝑠𝑒𝑡𝑠 + 2.862
𝐶𝑢𝑟𝑟𝑒𝑛𝑡	𝑎𝑠𝑠𝑒𝑡𝑠

𝐶𝑢𝑟𝑟𝑒𝑛𝑡	𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 − 3.783
𝑁𝑒𝑡	𝑖𝑛𝑐𝑜𝑚𝑒
𝑇𝑜𝑡𝑎𝑙	𝑎𝑠𝑠𝑒𝑡𝑠

− 22.789
𝑇𝑜𝑡𝑎𝑙	𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠
𝑇𝑜𝑡𝑎𝑙	𝑎𝑠𝑠𝑒𝑡𝑠 + 9.097

𝐹𝑢𝑛𝑑𝑠	𝑓𝑟𝑜𝑚	𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔
𝑇𝑜𝑡𝑎𝑙	𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 + 0.327Δ	in	Net	income

+ 9.225
𝑂𝑝𝑒𝑟𝑎𝑡𝑡𝑖𝑛𝑔	𝐶𝐹
𝑇𝑜𝑡𝑎𝑙	𝑎𝑠𝑠𝑒𝑡𝑠 − 1.876

𝐶𝑢𝑟𝑟𝑒𝑛𝑡	𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠
𝑇𝑜𝑡𝑎𝑙	𝑎𝑠𝑠𝑒𝑡𝑠  

This model includes ten explanatory variables. Compared to section 4.2 with the same time frame but 

including market variables, LR5 contains six of the same accounting variables. LR5 adds four variables; 

EBTA, NITA, X.NI, and CLTA. When comparing to section 4.3 with different time frames but the 

same number of starting explanatory variables, LR5 includes six of the variables. The added variables 

are RETA, EBTA, CACL, and NITA, and the ones that have been dropped by this model is WCTA. 

LR5 is then tested on the testing data set. The test classifies 5,438 observations as “default” and 12,405 

observations as “non-default”. The model obtained an accuracy of 70.69%, which is significantly lower 

than the previously obtained accuracies regarding logistic regression. The test results in 175 (31.31%) 

type 1 errors and 5,054 (29.24%) type 2 errors. These misclassifications can be seen in the confusion 

matrix in table 4.33. The number of type 1 errors are decreased compared to section 4.2.1, while type 2 

errors have increased by more than ten percentage-point. The ROC curve of the model can be seen in 

appendix A figure A21 and the AUC equals 0.7684 which is acceptable according to table B4 in 

appendix B. This AUC is significantly lower compared to the logistic regression model five years prior 

to default including market variables. 
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Reality 

Predicted 

Non-default 

𝑯𝟎 is true 

Default 

𝑯𝑨 is true 

Non-default 

𝑯𝟎 is true 

12,230 175 

(31.31%) 

Default 

𝑯𝑨 is true 

5,054 

(29.24%) 

384 

 

4.4.2. Neural Network 
The design of this neural network is similar to the one in section 4.3.2, with only 14 input variables 

since the market variables are excluded. It has one hidden layer with eight neurons within and the two 

output neurons, “default” and “non-default”. 

 

It is tested for how many epochs the network should run. Figure 4.16 shows a result of the validation 

loss (yellow line) on the y-axis and the number of epochs on the x-axis. It is clear that 100 epochs are 

too many as the validation loss has stagnated long before. Instead, it is decided to use 50 epochs in the 

model as this reduces the risk of overfitting; meanwhile, it is the same number used on five years prior 

to default which included market variables. 

 

 

 

Table 4.33: Confusion matric for logistic regression model 

five years prior to default excluding market variables 

Figure 4.66: Graph showing the validation loss (the yellow 

line) on the data five years prior to default excluding market 

variables 
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The test sample was run through the network, and it classified 5,590 observations as “default” and 

12,253 observations as “non-default”. The empirical results obtained an accuracy of 69.80%, which is 

a significantly lower result compared to the other three networks in this thesis. Table 4.34 shows the 

confusion matrix, and the model has 178 (31.84%) type 1 error and 5,210 (30.14%) type 2 errors. The 

increase in type 2 errors compared to the neural network model five years prior to default, including 

market variables, is worth noticing. The error rate of type 2 errors increased with more than 11 

percentages points, where the error rate for type 1 errors is nearly the same. The ROC curve of the 

model can be seen in appendix A figure A22 and the AUC equals 0.7583 which is acceptable according 

to table B4 in appendix B. The AUC is considerably lower compared to the similar model five years 

prior to default including market variables, and it is the worst among the tested models. 

Reality 

Predicted 

Non-default 

𝑯𝟎 is true 

Default 

𝑯𝑨 is true 

Non-default 

𝑯𝟎 is true 

12,075 178 

(31.84%) 

Default 

𝑯𝑨 is true 

5,210 

(30,14%) 

381 

4.4.3.  Support Vector Machine 

4.4.3.1. Linear SVM 

This linear SVM model is tuned for C = [10%1:1], and it results in nine models which can be seen in 

table 4.35. The most preferred model is linearSVM6 with the lowest error of 0.34551 and a cost of 10. 

This results in 6,572 support vectors where 3,287 of them are “default”, and the rest 3,285 of them are 

“non-default”. Thus, 79% of the data points in the training data set are support vectors which are the 

highest proportion compared to the previous SVM models why it might indicate a relatively large 

number of misclassifications. 

 

 

 

 

 

 

 

 
1 See output in appendix D code D4.3 for the precise decimals 

Table 4.34: Confusion matric for neual network model five 

years prior to default excluding market variables 
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Model Cost Error 

LinearSVM1 0.0001 0.4357 

LinearSVM2 0.001 0.3520 

LinearSVM3 0.01 0.3484 

LinearSVM4 0.1 0.3460 

LinearSVM5 1 0.3455 

LinearSVM6 10 0.3455 

LinearSVM7 100 0.3471 

LinearSVM8 1,000 0.4714 

LinearSVM9 10,000 0.4605 

 

LinearSVM6 is then tested using the testing data set. The test classifies 5,208 observations as “default” 

and 12,635 observations as “non-default” with an accuracy of 71.89% which compared to the previous 

linear SVM tests are significantly lower. The confusion matrix showing the proportion of 

misclassifications can be seen in table 4.36. The table shows the model results in 183 (32.74%) type 1 

errors and 4,832 (27.96%) type 2 errors. Type 1 errors have increased slightly compared to section 

4.2.3.1, while type 2 errors have increased by almost eight percentage-point. The ROC curve of the 

model can be seen in appendix A figure A23 and the AUC equals 0.7650 which is acceptable according 

to table B4 in appendix B. Once again, this AUC is lower compared to the similar model five years 

prior to default including market variables. 

 

 

 

 

 

 

4.4.3.2. RBF SVM 

The RBF SVM model is tuned for C = [10%1:1] and gamma = [2%/:/]. This tuning resulted in 45 RBF 

SVM models where RBFSVM21 is the model to prefer due to the lowest error of 0.3044. It obtained a 

gamma of 0.25 and a cost of 1. This model and the ones around this model can be seen in table 4.37. 

To see all 45 RBF SVM models, see appendix B table B8. RBFSVM21 has 5,890 support vectors where 

3,021 of them are defined as “default”, and the other 2,869 are defined as “non-default”. So, 71% of the 

Reality 

Predicted 

Non-default 

𝑯𝟎 is true 

Default 

𝑯𝑨 is true 

Non-default 

𝑯𝟎 is true 

12,452 183 

(32.74%) 

Default 

𝑯𝑨 is true 

4,832 

(27.96%) 

376 

Table 4.35: Table showing nine different linear SVM models on the 

data five years prior to default excluding market variables  

Table 4.36: Confusion matric for linear SVM model five 

years prior to default excluding market variables 
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data points in the training data set are support vectors which are slightly higher compared to the chosen 

RBF SVM model in section 4.2.3.2. This indicates a risk of relatively large numbers of 

misclassifications. 

Model Gamma Cost Error 

RBFSVM17 0.50 0.1 0.3201 

RBFSVM18 1.00 0.1 0.3301 

RBFSVM19 2.00 0.1 0.3611 

RBFSVM20 4.00 0.1 0.4148 

RBFSVM21 0.25 1 0.3044 

RBFSVM22 0.50 1 0.3046 

RBFSVM23 1.00 1 0.3110 

RBFSVM24 2.00 1 0.3158 

RBFSVM25 4.00 1 0.3279 

 

RBFSVM21 is then tested using the testing data set. This test classifies 4,992 observations as “default” 

and 12,851 observations and “non-default” with an accuracy of 73.41% which is lower than the precious 

results in RBF SVM. The confusion matrix shown in table 4.38 presents the testing results in 156 

(27.91%) type 1 errors and 4,589 (26.55%) type 2 errors. Compared to section 4.2.3.2 type 1 errors 

increase almost by three percentage-point while type 2 errors only increase by 1.5 percentages-point. 

The ROC curve of the model can be seen in appendix A figure A24 and the AUC equals 0.7790 which 

is an acceptable result according to table B4 in appendix B, and it is among the best for this data set. 

However, it is still lower than the similar model five years prior to default including market variables. 

Reality 

Predicted 

Non-default 

𝑯𝟎 is true 

Default 

𝑯𝑨 is true 

Non-default 

𝑯𝟎 is true 

12,690 156 

(27.91%) 

Default 

𝑯𝑨 is true 

4,594 

(26.55%) 

403 

 

4.4.4. Random Forest 
The random forest model is being trained with respect to the number of trees (ntree) and the number of 

variables sampled as candidates at each split (mtry). 

Table 4.37: Table showing the best RBF SVM model and the models around this on 

the data five years prior to default excluding market variables  

 

Table 4.38: Confusion matric for RBF SVM model five 

years prior to default excluding market variables 
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The model is at first being trained with 500 trees. Figure 4.17 shows a plot of the error rate for the model 

on the y-axis and the number of trees on the x-axis. It can be seen that the error rate is declining when 

the number of trees is increased. Therefore, it is decided to keep the number of trees at 500 for this 

model. In relation to mtry it is tested how the error rate will react if mtry were increased or decreased 

from the starting point of four variables as candidates at each split. For both an increase or decrease in 

mtry, the error rate would increase, which means mtry should be four for this model. 

 

 

 

Random forest can show the mutual importance of the variables included in the model. This is visualized 

in figure 4.18 at the two measures, which are the mean decrease in accuracy and mean decrease in Gini. 

If this figure is compared to figure 4.13 based on the model for one year prior to default including only 

accounting variables there are similarities between the top and bottom of the score. TLTA is still the 

most important variable, while X.NI is the least important variable in both random forest models. 

Figure 4.17: Figure showing the plot of the error rate (the black 

graph) of random forest on data five years prior to default 

excluding market variables 
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The random forest model was run at the testing sample for five years prior to default and classified 

4,696 as “default” and 13,147 as “non-default”. This result gives an accuracy of 75.05%, which is not 

far from the previous result of 76% for market and accounting data five years prior to default. The 

confusion matrix, which can be seen in table 4.39, demonstrates 157 (28.09%) type 1 errors and 4,294 

(24.84%) type 2 errors. However, the confusion matrix shows a large percentage increase in type 1 

errors compared to five years prior to default with market variables. This is important as type 1 error is 

the most costly error. The ROC curve of the model can be seen in appendix A figure A25 and the AUC 

equals 0.7988 which is merely good, according to table B4 in appendix B, but the best AUC for this 

data set. However, it is still lower than the similar model five years prior to default including market 

variables. 

Reality 

Predicted 

Non-default 

𝑯𝟎 is true 

Default 

𝑯𝑨 is true 

Non-default 

𝑯𝟎 is true 

12,990 157 

(28.09%) 

Default 

𝑯𝑨 is true 

4,294 

(24.84%) 

402 

Table 4.39: Confusion matric for random forest model five 

years prior to default excluding market variables 

Figure 4.18: Figure showing the importance of each variable in random forest regarding 

the accuracy and the Gini index on the data five years prior to default including market 

variables 
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4.4.5. The Machine Learning Methods Compared to One Another 
This part gives a summary of the most important results for the models built on data five years prior to 

default only including accounting variables. The part finishes with an analysis for which model is best 

on the data. 

Model Type 1 Type 2 Accuracy AUC 

LR 175 5,054 70.69% 0.7684 

NN 178 5,210 69.80% 0.7583 

LinearSVM 183 4,832 71.89% 0.7650 

RBFSVM 156 4,589 73,41% 0.7790 

RF 157 4,294 75.05% 0.7988 

 

Table 4.40 shows type 1 and type 2 errors, the accuracy, as well as the AUC for the models. Regarding 

type 1 errors, it is random forest and RBF SVM which performs best with respectively 157 and 156 

type 1 errors. Regarding type 2 errors, it is also random forest and RBF SVM which performs best with 

respectively 4,294 and 4,594 type 2 errors. Therefore, the accuracy of these two models is the highest 

compared to all five models. It is worth to notice how the accuracy of logistic regression and neural 

network has changed significantly compared to section 4.2.5. For the data, including accounting 

variables, these two models had the highest accuracies among the five models. Now, when the data does 

not include market variables, these two models have the lowest accuracies. Both models had dropped 

around ten percentage-points in accuracy when the market variables were excluded. For random forest 

and RBF SVM, the drop in accuracy is only around two percentage points when the market variables 

were excluded. 

 

The same method, as described in section 4.1.5, is used to analyse the best model on data five years 

prior to default only including accounting variables. The discussion in section 4.2.5 about the cost of 

type 1 errors compared to the cost of type 2 errors is also relevant in this part. So, even when type 1 

errors are more costly than type 2 errors, the effect is greater one year prior to default compared to five 

years prior to default with or without market variables. Different weights are multiplied to type 1 error 

to compare how the models mutually manage to classify correctly. The result can be seen in figure 4.19. 

Table 4.40: Summary of the chosen models in each method and their most 

important results of type 1 errors, type 2 errors, accuracy and AUC on the data 

five years prior to default excluding market variables 
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The figure shows that random forest is the model with the lowest error cost among the five tested models 

up to weight equal to 100.  The only one that gets close is RBF SVM when the weight is increased since 

the model has one less type 1 error. On the other end of the scale, logistic regression and neural network 

have the highest error cost when the weight is equal to one. When the weight is increased to over 30 

linear SVM crosses logistic regression and becomes the model with the second-highest error cost. When 

the weight is higher than 70 linear SVM becomes the model with the highest error cost among the 

models. Therefore, it can be discussed which model is worst at classifying “default” and “non-default” 

for this data. However, it is not difficult to select the best model for five years prior to default only 

including accounting variables. Random forest has the highest accuracy, and it is the model with the 

lowest error cost up to type 1 errors are 100 times more costly than type 2 errors. This means random 

forest will be selected as the best model for this data in terms of the distribution of type 1 and type 2 

errors. 

  

Regarding the other measure to validate the models, AUC, the best models are random forest and RBF 

SVM at respectively 0.7988 and 0.7790. This means that random forest has a nearly 80% chance of 

separating correct between the classes. Neural network is the worst model, according to AUC, with only 

0.7583. All the methods have their lowest AUC on this data set compared to the previous ones. This 

indicates the lack of market variables and the long horizon make it harder to separate between the 

classes. All the ROC curves for this data set can be seen in figure 4.20. Again, the line for random forest 

(green) is furthest to the top left corner, indicating the best model. RBF SVM is the only model that 

comes close at a false-positive rate around 0.2 

0,7

0,8

0,9

1

1,1

1,2

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Error	cost	relative	to	LR

LR NN SVM-LIN SVM-RBF RF

Figure 4.19: Figure showing the error cost relative to the logistic regression model on the data five years prior to 

default excluding market variables 
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4.5. Sub Conclusion 
This section analysed the empirical results of five different machine learning methods on four different 

data sets. First, it was found when predicting default one year prior to default based on data including 

accounting and market variables that two models were found to be the best depending on which measure 

to use. In terms of the distribution of type 1 and 2 errors, neural network is the best model until a weight 

of around 70, where random forest becomes the better one. When looking at the ROC curve and the 

AUC random forest is the model to prefer. Second, when predicting default five years prior to default 

based on data including accounting and market variables, the best methods changes. When looking at 

the distribution of type 1 and 2 errors, linear SVM, with the highest accuracy, is the best model until a 

weight of 15 where neural network becomes the best model until a weight of 20. With a weight higher 

than 20, random forest ends up as the best model. When looking at the ROC curve and the AUC, random 

forest is the best model. Third and fourth, when predicting default excluding market variables random 

forest is the best method in every aspect. It has the highest accuracy, the best distribution of type 1 and 

type 2 errors, and the best AUC for both the one year and fives years horizon. 

 

Figure 4.20: Figure showing the ROC curves of the chosen models in each method on the data five years prior to 

default excluding market variables 
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This shows that the choice of measure to determine the best model has an impact on which model is 

chosen. The accuracy and distribution of type 1 and type 2 errors change the method of the best model 

when using different data sets whereas the ROC curve and the AUC indicate the whole time that random 

forest is the best model. Further elaboration and discussion of this can be found in the following. 
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5. Comparing the Machine Learning Models 
This section makes an overall analysis and discussion of the models. The first part compares the models 

between data sets by looking at the accuracy and distribution of the error types and the ROC curves and 

the AUC. These evaluation measures, accuracy and AUC, are discussed regarding their advantages and 

disadvantages to see which one is the most preferred to use. The second part first separates the financial 

ratios into four categories, and the remaining market variables are in a fifth category called market 

information. This is followed by further analysis and discussion of the variable selection where the 

importance of the variables is discussed from the knowledge given in logistic regression and random 

forest. This part ends with discussing whether the industry levels should have been included in the 

thesis. The third and last part is a short discussion of whether market variables add predictive power. 

5.1. Comparing the Models Between the Data sets 
This part gives an overall comparison of how the five models perform on the four data sets. For every 

model and data set there is different measures for evaluating the performance of the models are created. 

The first part evaluates the models in terms of the accuracy and distribution of type 1 and type 2 errors. 

It is done by making a ranking of the models for each of the four data sets. The second part evaluates 

the models in terms of their AUC and ROC curves. Finally, the last part discusses which measure is the 

most important criteria when evaluating the models. 

5.1.1. Accuracy and Distribution of the Error Types 
The ranking of the models concerning the accuracy and distribution between type 1 and type 2 errors 

can be seen in table 5.1, where 1 indicates the best model and 5 indicates the worst model. The decision 

rule for determining which ranking each model achieves is based on the graph called “Error cost relative 

to LR” in the comparison part of each data set. The weight, which is used, should be lower five years 

prior to default compared to one year prior to default due to the argument that type 1 errors are relatively 

more costly one year prior to default as discussed in section 4.2.5. It is decided to use weights equal to 

30 one year prior to default and weights equal to 10 five years prior to default. The way to get the 

ranking is to find the relevant weight, 10 or 30, and then go up on a vertical line until the first line is 

crossed. The first line and the belonging model will be ranked one, and the second line and the belonging 

model will be ranked two and so forth until it hits the last line. 

 

Table 5.1 summarises this method for all the data sets and gives a total score for each of the five 

methods. For the first data set, neural network is the best method to classify default followed by linear 

SVM. For the second data set, linear SVM is the best model followed by neural network. For the last 

two data sets, it is random forest which is the best method to classify default followed by respectively 
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linear SVM and RBF SVM. However, neural network is the worst and second-worst classification 

method on the last two data sets while being among the best on the first two data sets. On the other 

hand, random forest is the second-worst method in the first two data sets while being the best model in 

the last two data sets. This also shows how some methods are more dependent on the market variables 

to make solid classifications. Neural network, logistic regression, and linear SVM all have significantly 

lower accuracies on the data sets excluding market variables compared to the same horizon including 

market variables. RBF SVM performs very badly on the first two data sets and the accuracy also falls 

on the last two data sets but not as much as the other three methods. Random forest, on the other hand, 

has the most impressive development from the first to the last data sets. The accuracy only fell around 

1-2 percentage-points when the market variables were excluded. In addition, the method was also 

among the best for all data sets to classify defaulted firms correct and thereby reduce type 1 errors. 

 

Linear SVM is the method with the total lowest score indicating the best performing model, which is 

seen in table 5.1. Therefore, it could be argued that it is the best overall method in terms of accuracy 

and the distribution between type 1 and type 2 errors. One argument that speaks against this is the 

investigation on how close or far the models are from each other. This indicates how much the error 

cost will fall from changing from one model to a better one. One example is one year prior to default 

excluding market variables, illustrated in figure 4.14, where four of the models are relatively close while 

random forest is by far the best model. At the weight equal to 30, random forest is more than 11 

percentage points better than the second-best model, which in this case is linear SVM. On the other 

hand, the situation is the opposite five years prior to default including market variables, where it is linear 

SVM which is the best model. This is illustrated in figure 4.9, and it shows that the model is only around 

four percentage points better than the second-best model. All this together shows that linear SVM might 

not be the best model even though the method has the lowest total score. The distances between the 

models are not shown in the simple ranking meaning some models can be “lucky” to get a better ranking 

but with an error cost very close to a worse ranked model.  All this together shows that there is not one 

classification method that is superior on all data sets, and therefore, the best method changes between 

the data sets. 

Model One year incl. Five years incl. One year excl. Five years excl. Total 

LR 3 3 5 4 15 

NN 1 2 4 5 12 

LinearSVM 2 1 2 3 8 

RBFSVM 5 5 3 2 15 

RF 4 4 1 1 10 

Table 5.1: Table summarising the ranking of the models on each data set with the focus on the accuracy and the 

distribution of type 1 and 2 errors. This summarising ends in a total score for each of the five methods  
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5.1.2. Best Model in terms of ROC and AUC 
The other measure to validate the models is the AUC which is defined as the area under the ROC curve. 

All the AUCs for the five models on the four data sets can be seen in table 5.2. The result shows that 

random forest is the best method for all the data sets in terms of AUC. All the other methods seem to 

have AUCs close to each other with only neural network having a notable lower AUC on the two last 

data sets. 

Model One year incl. Five years incl. One year excl. Five years excl. 

LR 0.9092 0.8185 0.8542 0.7684 

NN 0.9047 0.8075 0.8438 0.7583 

LinearSVM 0.9049 0.8137 0.8642 0.7650 

RBFSVM 0.8987 0.8144 0.8713 0.7790 

RF 0.9295 0.8367 0.8925 0.7988 

Average 0.9094 0.81816 0.8652 0.7739 

 

However, recall figure 4.10 from section 4.2.5, which shows all the ROC curves in one diagram, the 

result might not be so unambiguous. From section 3.2.2.5 it was learned that the x-axis shows the false 

positive rate which is equal to the percentage of type 1 errors, and the y-axis shows the true positive 

rate which is equal to the percentage of “non-default” correctly classified. The graph shows that for 

some values of type 1 error rates the other models would have the same percentage of “non-default” 

classified correctly. From a type 1 error rate between 10% and 25%, all the models are fairly close to 

each other. Random forest seems to have the edge over the other models in the very small values for 

the type 1 error rate, which results in the highest AUC among the models. 

 

In the analysis of the accuracy of the models, it was found that some methods were more affected when 

the market variables were excluded compared to others. This can also be shown by the ROC curves of 

the models. Figure 5.1 shows the ROC curves of random forest and neural network including and 

excluding market variables. The red and the green lines are the ROC curves including market variables 

for respectively neural network and random forest. Likewise, the pink and dark green lines are the ROC 

curves excluding market variables for neural network and random forest. If a type 1 error rate equals to 

20% is used, the red and green lines are pretty close to one another. This means that the models are 

equally good at classifying “non-default” correct at roughly 90%. However, the result of the models is 

not the same on the data set excluding market variables. If the same type 1 error rate equals to 20% is 

used, the pink line is well below the dark green line. This indicates that random forest is significantly 

better than neural network at classifying “non-default” correct at this rate. It seems like the drop in type 

1 error rate, from including to excluding, is twice as large for neural network compared to random 

Table 5.2: Table summarising the AUC of the models on each data set  
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forest. This difference is larger for lower values of type 1 error rates but will diminish when the type 1 

error rate is extremely high. In general, the distance from the pink line to the red line is larger than the 

distance from the dark green line to the green line. All this together shows that neural network as a 

method is affected significantly more when the market variables are excluded. 

 

 

5.1.3. Discussion of the Difference between Accuracy and AUC 
The previous two parts showed that the result is different, whether the accuracy or the AUC is used to 

evaluate the models. In the ranking of the models in terms of accuracy and the distribution of type 1 

and type 2 errors, linear SVM had the lowest total score indicating the best method on average. 

However, the model did also have some of the highest percentages of type 1 errors. On the other hand, 

random forest had the highest AUC for all the four data sets but had some of the lowest accuracies for 

the first two data sets. It can be difficult to select the best model as it might change from one data set to 

another, and it is not consistent between evaluation measures. However, there is more to say to this 

subject if the evaluation measures are investigated further. 

 

There are some fundamental differences between accuracy and AUC, which lead to the different results 

of the best model. Basically, the accuracy focus on the total error rate, where the AUC focuses on the 

average error rates for type 1 and type 2. The accuracy is pretty simple as it gives the percentage 

correctly classified observations, but this accuracy percentage is only a snapshot of the truth at a given 

Figure 5.1: Figure showing the ROC curves of neural network and random forest, each method 

shows two ROC curves – one including market variables and another excluding market variables. 

NOTE: the ROC curves are on the same time horizon, one year prior to default.  
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cut-off. If the cut-off is changed, the accuracy would also change. In fact, it is only in logistic regression 

where the cut-off is explicitly set. For the other methods, the program chose the cut-off itself. However, 

it is possible to change the cost of the error types before the classification. This will change the result 

of the accuracy and thereby, the distribution of type 1 and type 2 errors. In this thesis, there has been a 

huge focus on the difference between type 1 and type 2 errors. The weights were added to give a more 

realistic total error cost of the model. In addition, the added weights also worked as penalisation to the 

models which tend to classify more observation as “non-default”, when they actually “default”, and 

thereby increase type 1 error. All this helps to give a more advanced view on which models were the 

best. However, it is worth noticing that all this effort to add weights to type 1 errors are made with the 

same cut-off. The accuracy does not tell anything about how the method performs if the cut-off is 

changed since it is a snapshot of one possible outcome. 

 

The combination of the ROC curve and the associated AUC measure is very different compared to 

accuracy. Recall figure 4.5 from section 4.1.5, which illustrated all ROC curves one year prior to default 

including market variables. The graph illustrates the percentage of “non-default” correctly classified as 

a function of different type 1 error rates. An increase in the type 1 error rate will increase the percentage 

of “non-default” correctly classified. This also means that the “default” and “non-default” group are 

equally weighted in the ROC curve even though the data set is imbalanced. The test data for one year 

prior to default consist of 225 observations in the “default” group and 24,405 observations in the “non-

default” group. This means that a one per cent change in the “non-default” group is equal to around 244 

observations while one per cent change in the “default” default group is equal to around 2.3 

observations. The ROC curve has rates in the axis, which means that the classes are equally weighted 

when the AUC is calculated. Said in another way, the “non-default” group on the y-axis in the ROC 

curve mainly determines the accuracy but the “default” group on the x-axis is equally important when 

it comes to the AUC measure. All this together explains the difference between accuracy and AUC and 

how the measures can result in different results. 

  

The next question that arises is, what is the most important measure to evaluate the methods? It was 

elaborated on how the accuracy and the AUC resulted in different methods being the best among those 

tested. In addition, it was discussed why the measures had different results for the same models. Is the 

accuracy or the AUC the most important criterion when evaluating the models? 
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One of the advantages of ROC and AUC over the accuracy and type 1 and type 2 errors is the amount 

of information contained in the ROC curve. It shows all possible error rates split into the two classes. 

The accuracy only shows one possible outcome. Another advantage of ROC and AUC is the 

interpretation of a specific threshold. If the credit lender only allows having 10% of the “default” group 

being misclassified, the best model is the one which gives the highest true positive rate. In figure 5.2, 

the model will be random forest as this model has the line located above all the other at a type 1 error 

rate equal to 0.1. 

 

  

On the other hand, one may argue that AUC has some large disadvantages. First of all, the highest AUC 

might not be the most preferred model. For instance, when looking at the same graph, it seems like for 

type 1 error rates over 20%, all the models, except for RBF SVM, have roughly the same per cent of 

“non-default” correctly classified. The difference in the AUC comes from the very low values of type 

1 error rates where random forest faster achieves a higher true positive rate. If the credit lender is not 

interested in having a model with such a low rate of type 1 error, the other models are just as good as 

random forest. In addition, the shaping of the ROC should be more decisive due to the fact there might 

be a situation where the highest AUC is not necessarily the best model for the credit lender. If ROC 

curves for two models cross each other, one model might be the best for one false positive rate, while 

the second model might be the best for a different false positive rate. The second disadvantage is that 

the AUC tells very little about the percentage of correctly classified observations when the data set is 

imbalanced. The last disadvantage of the AUC and also the ROC curve is the lack of easy interpretability 

compared to the accuracy. It takes some time to learn to interpret the ROC curve correctly and how to 

understand the AUC measure. 

Figure 5.2: Figure 4.5 from section 4.1.5. with an illustration of a threshold of 10% 
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The accuracy and the distribution of type 1 and type 2 errors have some of the opposite advantages and 

disadvantages. The measure is easy to interpret since most people can understand the percentage of 

correctly classified. In addition, the distribution of type 1 and type 2 errors gives a good overview of 

how the errors are distributed. One of the disadvantages is the accuracy only shows one possible 

outcome of the model. Another disadvantage is the focus on one class if the data set is imbalanced. A 

high accuracy does not necessarily mean that the model performs well since it might just predict more 

observation in the large class. This is especially the case if the error cost for one type is higher than the 

other. The advantages and disadvantages of the two measures are summarized in table 5.3. 

 Advantages Disadvantages 

ROC & AUC 

It contains a lot of information in the 

ROC curve. 

Hard to interpret  

Classes equally weighted  Highest AUC might not be the best model. 

ROC curve shows the relation 

between TP and FP. 

Do not show the percentage correctly 

classified. 
   

Accuracy 

Easy to interpret Lack of information – only one snapshot of 

the potential outcome. 

Overview of the absolute distribution 

of type 1 and type 2 errors 

The highest accuracy might not be the best 

model.  

 

There is no clear answer on which measure is the best to evaluate the models. The two measures 

complement each other and give different information about the result of the model. However, the 

accuracy might be the one that needs the most additional information to support the measure. Especially 

in the case, like this thesis, where type 1 errors are more costly compared to type 2 errors. 

5.2. Variable Selection 
The goal of this thesis is to make a multivariate rather than a univariate analysis regarding default 

prediction. As Beaver (1966) mentioned, the use of more ratios in one analysis may outcome the 

problem of univariate analysis where the prediction may end up giving different classifications for the 

same firm depending on the ratio chosen. Though, it is important to emphasize that the aim should not 

be to select too many variables why the variable selection is important. It is a way to keep the model 

simple, hence minimize the risk of overfitting when training the model. The following separates the 

financial ratios in four main categories and one category for the market information which are not 

categorised as financial ratios. Then a further variable selection is analysed and discussed with the main 

focus of the methods, logistic regression and random forest, that gives an indication of the importance 

Table 5.3: Summary of the advantages and disadvantages of the two evaluation measures, AUC and accuracy 
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of the selected variables. Finally, the part ends with a discussion of the predictive power of market 

variables. 

5.2.1. All Selected Variables 
The starting point of the two data sets that includes market and accounting variables is 20 explanatory 

variables. These have been selected with the information from previous research studies regarding 

default prediction as described in section 2.2.1. The 20 variables are separated into 14 accounting 

variables and six market variables. Therefore, the two data sets, which only include accounting variables 

has 14 explanatory variables since the six market variables are excluded. 

5.2.1.1. Financial Ratios 

All 14 accounting variables, as well as three of the market variables, are calculated as financial ratios. 

A ratio by itself does not yield much information about the health of the firm. Though, when the ratios 

are compared to ratios from similar firms, to the firm’s previous ratios, or to the required rate of the 

firm’s return, they yield a wealth of information. The ratios of the thesis are split into four main 

categories: 1) profitability ratios; 2) liquidity ratios, 3) leverage rates, and 4) efficiency ratios. 

 

Profitability Ratios 

Profitability ratios are used to demonstrate a firm’s ability to generate earnings relative to its revenue, 

operating costs, balance sheet assets, and shareholder’s equity. In this thesis, the following six 

profitability ratios have been chosen: 

- RETA (Retained earnings to total assets) 

- EBTA (Earnings before interest and taxes to total assets) 

- NITA (Net income to total assets) 

- X.NI (Relative change in net income) 

- EBITDASL (Earnings before interest, taxes, depreciation, and amortization to sales) 

- NIMETL (Net income to the sum of market capitalization and total liabilities) 

These ratios are put in this category since they are giving information about the future existence of the 

firm as well as the ability of the firm to ensure a satisfying return to shareholders. 

 

Liquidity Ratio 

Liquidity ratios are used to demonstrate a firm’s ability to pay its short-term financial obligations, also 

known as total current liabilities, without raising external capital. In this thesis, three liquidity ratios 

have been chosen: 

- WCTA (Working capital to total assets) 

- CACL (Current asset to current liabilities) 

- CLTA (Current liabilities to total assets) 
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These ratios are put in this category since they relate to the availability of cash and other current assets 

that can be converted into cash fast and cheap to cover current liabilities such as accounts payable, 

short-term debt, and other current liabilities. 

 

Leverage Ratio 

Leverage ratios are used to demonstrate a firm’s ability to meet its financial obligations by looking at 

how much capital comes in the form of debt to finance its operations. In this thesis, the five following 

leverage ratios have been chosen: 

- TLTA (Total liabilities to total assets) 

- FFOTL (Funds from operations to total liabilities) 

- FDCF (Financial debt to total cash flow) 

- METL (Market capitalization to total liabilities) 

- TLMETL (Total liabilities to the sum of market capitalization and total liabilities) 

These ratios are put in this category since they evaluate the financial risk of the firm on a longer time 

horizon. Firms rely on a combination of equity and debt, and knowing the proportion of debt held by a 

firm is useful when evaluating whether it can pay back its debt as it comes due. 

 

Efficiency Ratio 

Efficiency ratios are used to demonstrate a firm’s ability to use its assets and to manage its liabilities 

effectively in the existing period. In this thesis, the three following efficiency ratios have been chosen: 

- SLTA (Sales to total assets) 

- OCFTA (Operating cash flow to total assets) 

- FESL (Financial expenses over sales) 

These ratios are put in this category since they measure the time it takes to generate cash or income in 

relation to the total assets of the firm. This is not completely the case for FESL. Though FESL is put 

into this category since it did not match with any other categories, and the ratio shows how efficient the 

company is to generate revenue in relation to its financial expenses. 

 

Common for all the financial ratios is that they are hard to use across industries since they have different 

conditions – they do not have the same asset base, same capital structure nor the same level of revenue 

in relation to its size. 

5.2.1.2. Market Information 

The data sets including market variables have six variables added to the originally 14 accounting 

variables. Three of them are mentioned above since they are categorized as financial ratios, whereas the 

other three market variables are categorized as market information: 

- EXRET 
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- RSIZ 

- SIGMA 

These variables give each an indication on how the firm performs in terms of return, size and volatility 

in relation to the market. 

 

All these variables should be seen as a whole when combining them rather than each separately since 

the use of multivariate analysis has been used in this thesis. 

5.2.2. Further Variable Selection 
To discuss the variable selection, the attention is turned towards logistic regression. All the models, 

except logistic regression, includes all the explanatory variables in the given data set. It is only the p-

value of the coefficient in logistic regression that brings insight into whether a specific variable is 

significant. The chosen p-value of 0.05 has been used to determine whether the variable should be 

included or excluded from the model. The final logistic regression models for each data set can be seen 

in table 5.4. 

Model # of 

variables 

Variables included 

One year incl.  

 

9 SLTA, TLTA, EXRET, RSIZ, SIGMA, X.NI, TLMETL, OCFTA, 

and CLTA 

Five years incl.  11 RETA, SLTA, CACL, TLTA, EXRET, RSIZ, SIGMA, FFOTL, 

NIMETL, TLMETL, and OCFTA 

One year excl.  7 WCTA, SLTA, TLTA, FFOTL, X.NI, OCFTA, and CLTA 

Five years excl.  10 RETA, EBTA, SLTA, CACL, NITA, TLTA, FFOTL, X.NI, 

OCFTA, and CLTA 

 

All the four models have three similar variables: two efficiency ratios, SLTA and OCFTA; and one 

leverage ratio, TLTA. Recall, that the prediction in R predicted “non-default” rather than “default” why 

the signs are opposite of the intuition in logistic regression. The variables are multiplied by a coefficient 

to show the weight of the variable in each equation and hence their predictive power in the model. 

Though, it should be remembered that the data is normalized which means that the coefficients cannot 

be interpreted directly regarding the real numbers. SLTA is multiplied with a coefficient between 1.054 

and 2.817, TLTA is multiplied by a coefficient between -35.228 and -14.932, and OCFTA is multiplied 

by a coefficient between 6.432 and 9.906. It can then be argued that these variables have a general 

predictive power when predicting default, and TLTA is the one with the highest impact on the model, 

all things being equal since the weight is so high compared to the others. Though, among these three 

Table 5.4: Final logistic regression models for each data set showing number of variables and which variables are 

included in the final model 
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variables, TLTA and OCFTA are highly correlated with respectively two and three other variables in 

all the data sets which can be seen in the introduction of each empirical result. TLTA is negatively 

correlated with WCTA and positively correlated with CLTA, whereas OCFTA is positively correlated 

with RETA, EBTA and NITA. 

 

When comparing the two models based on the data including accounting and market variables, there 

are some similarities in the chosen variables aside from the three mentioned above. There are 

additionally four similar market variables with the same signs: three market information, excess return 

(EXRET), relative size (RSIZ), and volatility (SIGMA); and one leverage ratio, TLMETL. Excess 

return is multiplied by 5.228 and 1.182, relative size is multiplied by 2.019 and 1.903, volatility is 

multiplied by -3.901 and -3.273, and finally, TLMETL is multiplied by -32.277 and -38.052. These four 

variables can then be argued to have a general predictive power in predicting default when market 

variables are available. Recall that TLMETL is similar to TLTA with the difference in the use of the 

market value of equity instead of the book value of equity when calculating total assets. TLTA is still a 

part of both models even though market variables are included, and therefore TLMETL is available. 

TLMETL followed by TLTA have the highest impact in their models regarding the coefficient. This is 

an indication of the importance of the knowledge about the capital structure when predicting default on 

data where market variables are included. Furthermore, in the logistic regression model created on the 

data set one year prior to default including market variables, CLTA is included even though it is highly 

positively correlated with TLTA which is also included in the model. See the correlation table 4.1 in 

section 4.1. These are the only variables that are mutual highly correlated for that model. For the logistic 

regression model build on the data set five years prior to default including market variables, OCFTA is 

highly positively correlated with RETA, while TLMETL is highly negatively correlated with NIMETL. 

See the correlation table 4.11 in section 4.2. 

 

When comparing the models excluding market variables with the models including market variables on 

the same time horizon, there are some similarities regarding the chosen variables aside from the 

previously mentioned ones. The two models, one year including market variables and one year 

excluding market variables, has two additional similar variables with the same sign: one profitability 

ratio, X.NI; and one liquidity ratio, CLTA. X.NI is multiplied by 0.529 and 1.191, and CLTA is 

multiplied by -3.365 and -4.423. In the model, one year prior to default excluding market variables, 

TLTA is highly correlated with WCTA as well as CLTA. See the correlation table 4.21 in section 4.3. 

The other two comparable models, five years including market variables and five years excluding 

market variables, have three similar additional variables: one profitability ratio, RETA; one liquidity 

ratio, CACL; and one leverage ratio, FFOTL. RETA is multiplied by -3.917 and -3.760, CACL is 

multiplied by 4.486 and 2.862, and FFOTL is multiplied by 7.940 and 9.097. In the model five years 

prior to default excluding market variables, TLTA is highly positively correlated with CLTA, and 



Page 103 of 119 

OCFTA is highly correlated with RETA, EBTA, and NITA. Therefore, this model is in the risk of being 

affected by multicollinearity. See the correlation table 4.31 in section 4.4. Both models excluding 

market variables have three similar variables, FFOTL, X.NI, and CLTA. Therefore, it can be argued 

that these have a general predictive power when predicting default on data excluding market variables. 

Recall that TLTA is highly correlated with CLTA, and since TLTA is one of the variables that are 

included in all the logistic regression models, the inclusion of CLTA can be discussed. One of the 

assumptions in logistic regression is that the variables should not be highly correlated, which is not fully 

fulfilled in this paper. However, this is neither fully fulfilled in papers such as Barboza et al. (2017). 

 

As mentioned, random forest includes all the explanatory variables that are in the given data set. 

Though, the importance of each variable can be analysed and discussed since it gives the mean decrease 

accuracy and the mean decrease Gini. Comparing all four models the profitability ratio, X.NI is the 

variable with the lowest importance of each model in relation to the accuracy as well as the Gini except 

the model five years prior to default excluding market variables which placed X.NI second-lowest 

according to the accuracy. Therefore, the importance of the variable can be discussed, whether it brings 

something to the model or not. However, this variable is included in the three out of four models in 

logistic regression, and it is not highly correlated with any of the other variables in the data sets. The 

correlation can have an impact on the importance of each variable. It can be argued not to make sense 

to exclude this from the data set since the models should on a be built on the same information. 

 

With the above in mind, it can be discussed whether the methods that do not have the option to determine 

the importance of each variable or to define the variables which are insignificant, should have had an 

additional variable selection. Too many variables in the model may lead to overfitting and then a lower 

accuracy for the model. Though, the accuracies have been somewhat satisfying. When predicting 

default one year prior to default, the accuracies are between 78.92% and 88.97%, and when predicting 

default five years prior to default, the accuracies are lowered to be between 69.81% and 81.09% because 

of the higher uncertainty. 

5.2.3. Industry Level 
As it is shown until now, different methods are to prefer when different data sets are studied, which 

means no method is the best for every case it studies. This is also the case in different industries. The 

industries can be so different in the way the capital structure, asset base, etc. are. Therefore, it can be 

discussed whether each industry in the thesis mentioned in section 2.2.1.1 should have each its own 

model, or if they could have been divided further into different groups. The senior analyst (2020) in a 

credit lender institution described their credit models as many different models. The reason for this is 

that the lenders belong to different industries such as services, manufacturing, and retail. They cannot 

be compared in relation to financial ratios and the risk they are bearing since it is not the same. 
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Furthermore, historical information regarding paying back the loans as well as the manager’s economic 

situation are taken into account. These different investigations result in the need for different models. 

5.3. Including or Excluding Market Variables 
This part sums up the comparison of those models including market variables and those models 

excluding market variables. The performance of all the models decreases when the market variables are 

excluded. This gives an indication of the relatively high predictive power of market variables. When 

looking at the accuracy and the distribution of the error types in section 5.1.1, it can be seen that methods 

that are best for predicting default when market variables are included are not necessarily the best ones 

for predicting default when market variables are excluded, and vice versa. Recall that the performance 

of neural network becomes a lot worse and random forest becomes relatively better when market 

variables were excluded. Overall regarding the data sets in this thesis, the power of market variables is 

concluded to be relatively high. 

 

Though, market data is only available for listed firms, and since the biggest part of all firms in Denmark, 

and the world for that matter, are non-listed, models without market variables are needed for analysing 

the creditworthiness of the firm. These models only include accounting data, and the approach to collect 

this data is different from this thesis. They are in the need for the borrower to share given financial 

ratios which means there is a direct connection between the borrower and the credit lender institution 

regarding the needed information (Analyst, 2020). Therefore, data used to create the models are in 

practice internal information, the credit lender itself has collected through time rather than public 

statistical information. 

5.4. Sub Conclusion 
This section analysed and discussed the empirical results in section 4 regarding the measure to 

determine the best performing model, variable selection, and whether market variables have predictive 

power. First, it is found that linear SVM has the best overall ranking in terms of accuracy, but this result 

does not show every aspect since the method is only barely the most accurate model for one data set. In 

terms of the AUC and the ROC curve, random forest is the best model for all the data sets. It is also 

found that there are some fundamental differences between accuracy and AUC that leads to different 

results when deciding the best performing model. There is no clear answer on which measure to use 

when evaluating models. They complement one another by giving different information about the result 

of the model. Though, the accuracy might be the one that needs the most additional information to 

support the measure. Particularly, when the data set is imbalanced, and the type 1 errors are more costly 

compared to type 2 errors, as is the case for this thesis, or the other way around. 
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Second, it was found that the chosen ratios could be split into four different financial ratios containing 

the accounting variables and three of the market variables, and one group for the remaining market 

variables called market information. This is followed by a further variable selection. The different 

logistic regression models are compared in relation to the variables used. Here it is found that the 

accounting variables SLTA, OCFTA, and TLTA are selected for all the logistic regression models. It is 

also found that when market variables are included in the data set, the models include EXRET, RSIZ, 

and SIGMA. Though, when the market variables are excluded, the models add more accounting 

variables to compensate for the missing market variables. Second, the random forest models are 

compared in relation to the importance of the variables. Though, this importance can be discussed 

whether it brings some information about the models, since X.NI, the least important variable in three 

models in random forest, is included in three out of four models in logistic regression. Finally, the use 

of variables used on models for different industries is discussed since the ratios should be compared 

with firms within the same industry. The reason for this is that industries can be very different in the 

way the capital structure, asset base, etc. are. 

 

Lastly, it is found that market variables have relatively high predictive power. The biggest part of all 

firms in the world are non-listed, and therefore they do not have market data available. Hence, models 

without market variables are needed for analysing the creditworthiness of the firm in practice. These 

models are created on the use of internal information the credit lender itself has collected. 
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6. Danish Market for Credit Lending 
This section focuses on the Danish market for corporate credit lending. The empirical results of this 

thesis come on behalf of data from listed firms in the USA. Even though firms in the USA have different 

characteristics compared to Danish firms, the conclusions of the empirical results will still be transferred 

to the Danish market. It is assumed, when random forest was the best performing method on the data 

sets built upon USA firms, the result would be the same if the empirical result was built upon Danish 

firms. The focus will also be narrowed down to the data sets excluding market variables since most 

companies in Denmark do not have market variables available. 

6.1. Power and Calibration for Credit Risk Models 
This part takes the empirical results and reflect them to the risk management of the credit lender. The 

focus is on credit risk as this type is typically the most important risk measure for credit lenders. For 

the largest bank in Denmark, Danske Bank, the credit risk accounts for more than 70% of the total 

solvency requirement in 2018 (Danske Bank Group, 2018). As described in section 3.1.1, credit risk is 

the risk that the loans are not being repaid to the full extent, which will imply a loss for the credit lender. 

The banks in Denmark has an obligation to measure their credit risk since it determines the capital 

requirement, which should cover potential losses. The riskier the loans are in terms of credit risk, the 

more capital is needed for the bank. 

 

In this thesis, the focus has been on testing the ability of different machine learnings methods to classify 

correct between “default” and “non-default”. However, the probabilistic output of the models has not 

been elaborated much. According to Stein (2007), there are two different main categories when it comes 

to model evaluation. These categories are power and calibration. The power is the ability of the model 

to separate between the classes which have been the primary focus of this thesis. The measures to 

evaluate the power of the model are the accuracy including the confusion matrix and the ROC curve 

including the AUC measure. The second category, the calibration of the model, is the matching and 

comparison of predicted probabilities of “default” with the observed indicators for “default” of the given 

classes (Nehrebecka, p. 4). The calibration is typically measured by the log-likelihood, which was seen 

in the result part of logistic regression. However, if the true calibration measure should be compared, 

the log-likelihood should be measured on the testing data instead of the training data. With only a minor 

change to SVM, all the methods result in a probabilistic output which can be used to test the calibration 

of the model. However, it would be very extensive work to include a test of the calibration of all the 

models. Therefore, it is assumed that the model with the better result in power also would have a better 

result in calibration. This is reasonable to assume since these models are already the best at separating 

among the classes. The assumption is supported by Stein (2007). 
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”This implies that a more powerful model will be able to generate probabilities that are more 

accurate than a weaker model, even if the two are calibrated perfectly on the same data set. This 

is because the more powerful model will generate higher probabilities for the defaulting firms 

and lower probabilities for non-defaulting firms due to its ability to discriminate better between 

the two groups and thus concentrate more of the defaulters (non-defaulters) in the bad (good) 

scores.” 

 

The perfect calibration of the model can only be as good as the power allows it. Therefore, it is fair to 

assume that if the model has high power, it is also possible to calibrate the model well. With this in 

mind, the empirical results will be used to discuss the implication of risk management of the banks and 

more specific the credit risk. The result from the data set one year prior to default excluding market 

variables will be used since one year is the most common horizon to predict on, and the Danish market 

is dominated by non-listed firms. 

 

A good model to predict “default” and “non-default” accurately has several benefits for the bank. 

Therefore, the credit risk models of banks are also a competition parameter. The next part focuses on 

two areas, namely capital requirements, including the use of IRB models as well as a more internal 

focus of the credit lender in terms of the advantages of a more accurate model. 

6.1.1. Capital Requirement and the IRB Approach 
As described in section 3.1, there are two different approaches for calculating the capital requirement 

concerning credit risk for the credit lender, which are the standardized approach or the IRB approach. 

For both approaches, the object is to calculate the risk-weighted asset (RWA). The RWA is used to 

calculate the capital requirement for both approaches. The current Basel accord states that total capital 

must be at least 8% of the RWA excluding a core equity conservativism buffer of 2,5% of RWA 

according to chapter 20.1 in BIS regulations (Bank for International Settlements, 2019c). The 

standardized approach calculates RWA on behalf of some predetermined weights multiplied the 

outstanding of the loans. The IRB approach calculates RWA on behalf of a specified formula and 

internally calculated values of PD, LGD, and EAD according to chapter 31.4 in BIS regulation (Bank 

for International Settlements, 2019b). Some would argue that credit lenders can use the standardized 

approach to calculate RWA and thereby, the capital requirement of the firm. If doing so, the credit 

lender should not bother finding a model that is both accurate and fulfilling the demands of an IRB 

model according to the Danish FSA. However, all five Systemically Important Financial Institutions 

(SIFI) use primarily the IRB approach (Erhvervs-, Vækst- og Eksportudvalget, 2018). When this is the 

case, there must be some kind of advantages using the IRB over the standardized approach. 
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In Denmark, most corporates have no external rating from any of the rating agencies. This means that 

the RWA will be 100% of the outstanding of the loan, under the standardised approach, since the 

standard weight for unrated corporates is 100% according to chapter 20.17 in BIS regulations (Bank for 

International Settlements, 2019a). According to a Danish expert group, the average weight under the 

IRB approach for larger risk exposures is around 40% (Erhvervs-, Vækst- og Eksportudvalget, 2018). 

This means that the capital requirement for corporates credit exposure under the standardized approach 

will be 2,5 times higher compared to the IRB approach. It might not be so drastic for other types of risk 

exposures. However, according to Sørensen (2013), the implementation of the IRB approach would 

make the RWA half the value after several years compared to continuing with the standardized 

approach. The decreased RWA from the IRB approach will lower the capital requirement for the credit 

lenders. This will allow the credit lenders to either have less capital reserved as a buffer or have a higher 

amount of lending, which will probably result in more earnings for the credit lender. However, there 

are several requirements needed to get permission from the Danish FSA to use the IRB approach. 

 

One of the requirements is to have documentation of the rating system and the underlying model. This 

includes having data from a whole business cycle, documentation of validation, calibration, and 

validation methods for the model (The European Parliament and the Council of the European Union, 

2013). In addition, other documentation like management reports and stress tests of the model is needed 

before the Danish FSA can allow the credit institution to use the IRB approach to calculate credit risk. 

Once the credit institution receives approval for the IRB approach, there is still demands to update and 

maintain the model (Analyst, 2020). However, it is nevertheless worth spending time on this since all 

SIFIs in Denmark use the IRB approach. In this thesis, it is shown how some models were more accurate 

compared to others. For the data set one year prior to default excluding market variables random forest 

was the best model while logistic regression was the worst model among those tested. From figure 4.14, 

it can be seen that random forest is significantly better than logistic regression for all given weights. If 

we assume the result can be transferred to the Danish credit institution market, the next question which 

may arise is whether this implies that the credit lenders are only allowed to use the model with the most 

accurate model validation. From the result of this thesis, it would be random forest since it reported a 

significantly better result. However, given the regulation from the Danish FSA, there are other 

conditions to take into account than just the model validation. 

 

According to EU regulation for credit institutions, a statistical model must meet the following 

requirements. “The model shall have good predictive power and capital requirements shall not be 

distorted as a result of its use. The input variables shall form a reasonable and effective basis for the 

resulting predictions” (The European Parliament and the Council of the European Union, 2013, Article 

174, a). The focus in this thesis is on the last part, which states that the input variables shall form a 

reasonable and effective basis for the result prediction. Recalling section 3.2.2 where the different 
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classification methods for predicting default were elaborated, it was found that several of the methods 

had a black box that determines the class of the observations. The black-box was investigated, which 

means that some kind of understanding is acquired of what happens inside the black-box. However, 

there is still no clear form of how the input variables produce a reasonable and effective bias for 

predicting correctly. The predictions are good and accurate, but it is very difficult to see how the 

different input variables affect the model as a whole. Only logistic regression shows a real measure for 

how the input variables affect the model as described in section 5.2.2. Neural network and SVM have 

a black box that makes it hard to find the true impact of each variable. For random forest the variables 

available for each split is different, which implies that there is no clear form for how the input variables 

produce the result of the predictions. Though, the output shows the importance of the variables 

according to the accuracy and the Gini. All this together shows, that even though random forest is 

significantly better as a model, it might not fulfil the technical requirements for statistical models to 

calculate the credit risk. 

6.1.2. Internal Advantages of a Better Credit Risk Model 
The last part discusses the result of the models in terms of the capital requirement with a focus on the 

difference between the IRB and the standardized approach. However, there are more areas where the 

credit risk model is used within the credit institution. This part discusses some of these areas, namely 

provision and the evaluation of a potential customer of the credit lender. 

 

When lending corporates money there will be bad payers in all large portfolios. This means that the 

credit lender has some expected credit losses every year. It is the situation where the loan has been 

granted, but the borrower fails to fulfil its contractual obligation. The credit lender must be prepared for 

these losses, and it is exactly what the loan-loss provision does. It prepares the credit lender for borrower 

defaults on a proportion of the portfolio and set aside an amount for impairment losses. The credit risk 

model is also important when it comes to the size of the loan-loss provision for each year. The 

calculation for expected credit loss builds upon the PD and LGD for the portfolio. This means that a 

credit risk model that has a more accurate value for the PD gives the credit lender a more precise 

estimate for expected credit loss. Given the assumption that the best model in terms of power also will 

be the best model in terms of calibration, as discussed in section 6.1, random forest will generate more 

robust estimates for the probability of default. This will also imply that the expected credit loss for a 

better model will be more accurate compared to a worse model. Even though the accuracy is “only” 

about five percentage-point better for random forest compared to logistic regression, it would still make 

a great difference and give the credit lender a more accurate estimate for the loan-loss provision of the 

period. 
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Another area where the credit lender has an advantage with a better credit model is the evaluation of a 

potential customer before the loan will be granted. First of all, a more accurate model will imply the 

credit lender to give loans to the correct companies. It is essential for reducing the impairment losses to 

accept loan applications from good payers and reject loan applications from bad payers. This is very 

difficult to be certain about before the loan is paid off, but a more accurate model will help the procedure 

to evaluate potential customers and thereby reduce impairment losses. The goal for the credit lender is 

not to reduce the bad payers down to zero since the credit institution has its justification of existing to 

take risks. Though, the credit lender must have a transparent and accurate measure for its risk and here 

an accurate credit risk model can help to achieve it. 

 

One last point where the credit lender can make use of a more accurate credit risk model is in the pricing 

of the loans. It is common to set the interest rate matching the risk of the firm borrowing the money. 

This means that a higher PD or LGD will result in higher interest for a potential customer. The estimates 

for PD and LGD are then crucial to be accurate to give a fair evaluation of the potential customer. 

6.2. Results of the Thesis into the Perspective of the Litterature 
This part puts the empirical results of the thesis into the perspective of the literature of similar studies. 

It will also give reasons why credit lenders might not be so ready to change their credit risk model to 

new and more accurate machine learning methods for predicting default. 

 

In the literature, logistic regression is stated as the industry benchmark for credit scoring while new 

machine learning methods are being tested up against logistic regression (Lessmann, Baesens, Seow, & 

Thomas, 2015). Throughout this thesis, the classification result of logistic regression, neural network, 

linear SVM, RBF SVM, and random forest has been analysed on different data sets. For every data set, 

a comparison of the error cost is made with logistic regression as the benchmark of the analysis. Section 

4.3.5 and 4.4.5 show how logistic regression has considerably higher error cost compared to primarily 

random forest. The error cost of random forest is nearly 20 percentage points lower than logistic 

regression in the data one year prior to default excluding market variables at the weight equal to 30. 

The AUC and the ROC curve show the same result and dominated logistic regression in all given 

thresholds for the same data set. These results are aligned with the ones in the literature where random 

forest is standing out as a very solid classification method (Lessmann, Baesens, Seow, & Thomas, 2015; 

Barboza, Kimura, & Altman, 2017). Lessmann et al. (2015) also argued that on behalf of their result, it 

is time to move away from logistic regression as an industry standard and instead towards new state-

of-the-art classification methods. So, why do some Danish credit institutions not use random forest in 

its credit risk model? There might be two answers to this question – tradition and regulation. Credit 

institutions, and especially larger banks, are typically older organizations where experienced methods 
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are highly valued. This means that there might be a great aspect of tradition when determining the credit 

risk model. In addition, organisations like the Danish FSA, which must accept the credit risk model, are 

also influenced by tradition. However, in the past decade, several credit institutions have been through 

a digital transformation which means that the institutions are aware of the possibilities in machine 

learning. Nonetheless, the regulation is still a straitjacket when it comes to the flexibility of credit risk 

models. As discussed in section 6.1.1, there are requirements for the models of how the input variables 

should form reasonable bias for the result. In random forest the variables used at each split are different, 

and therefore it is questionable whether the method can be used as a credit risk model. On the other 

hand, logistic regression has some strong advantages when it comes to interpretability and how the input 

variables affect the result of the model as described in section 5.2.2. This implies that the credit 

institution might not change its credit risk method significantly before the regulation change. 

6.3. Sub Conclusion 
The previously parts show that larger credit institutions prefer the IRB approach over the standardized 

approach for measuring the credit risk on corporate exposure. In the IRB approach, the credit lender 

produces values for PD, LGD, and EAD from its credit risk model. The most important reason to use 

the IRB approach is the lower RWA which implies the credit lender with a lower capital requirement. 

There are several requirements in the implementation and use of the IRB approach. One of them is that 

the model should be valid and calibrated well. 

 

It is shown that there more examples for the credit lender to benefit from a solid and accurate credit risk 

model. The credit institution needs to have a precise measure for the credit risk since it is the largest 

risk exposure for the firm. The credit risk model generates estimates which are used in several areas 

such as in the calculation of provision, evaluation a potential customer in terms of accepting the loan 

application and adjusting the interest rate, so it matches the risk. 

 

The last part discussed how the literature plays a role in the findings of the thesis. It is shown that the 

literature with several articles also has random forest as one of the most solid classification methods. It 

is discussed why logistic regression cannot be rejected as the industry-standard even though other state-

of-the-art classifiers outperform logistic regression numerous times. In this thesis, random forest also 

heavily outperformed logistic regression especially when it comes to the last two data sets which imply 

that the Danish credit institution can achieve a more accurate credit risk model by using this method. 

However, the traditions in the credit institutions and the regulation might prevent this from happening. 
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7. Conclusion 
With the use of theory from finance and data science, the thesis performs a test on different machine 

learning methods to predict default. The test is built upon accounting and market data from firms in the 

USA from 1987 to 2015. The tested methods were logistic regression, neural network, linear SVM, 

RFB SVM, and random forest. The test was split into four different data sets regarding different time 

horizon and including or excluding market variables. The first data set tests the ability of the methods 

to predict default one year prior to default including market variables. The thesis finds that neural 

network is the best model in terms of accuracy and the distribution of type 1 and type 2 errors while 

random forest is the best model in terms of the ROC curve and AUC. For the second data set, linear 

SVM has the highest accuracy while random forest is still the best model in terms of the ROC curve 

and AUC. For the third and fourth data set excluding market variables, random forest is the best 

performing model in both the accuracy, the distribution of type 1 and type 2 errors, the ROC curve, and 

the AUC. The thesis thereby concludes that there is no method which is best in all data sets when it 

comes to the accuracy and the distribution of type 1 and type 2 errors. On the other hand, random forest 

is the best model in the ROC curve and AUC for all four data sets which means this model is the most 

preferred one if the goal is to separate correctly between the two classes. Overall the conclusion is that 

random forest, in general, is the most appropriate method when it comes to the empirical results on the 

data sets used in this thesis.  It is also found that some methods are more affected when the market 

variables are excluded. This relates especially to logistic regression, neural network, and linear SVM. 

Random forest, on the other hand, does not lose much accuracy when the market variables are excluded. 

This indicates that this method might be better at predicting default for non-listed companies. The thesis 

also discussed the different measures to evaluate model performing, namely, accuracy and AUC. It is 

found that there is no clear answer on which measure to use since the two measures contain different 

information and complement one another. However, the accuracy is probably the measure which has 

the most problem standing alone, especially if the error cost of type 1 and type 2 errors are not equal. 

 

It is also found that the variables in the model can be separated into five different categories, and some 

of the methods can measure the importance of the specific variable in the model. Especially in logistic 

regression, the model clearly explains how the individual variable contributes to the model and shows 

how some variables are consistently important among all four data sets. Furthermore, when market 

variables are excluded, the models seek to compensate for the missing variables by adding more 

accounting variables. Random forest shows the importance of the variables in the model. Though, this 

importance can be discussed, since it is found that X.NI in random forest has the least importance in 

three out of four models, but in logistic regression, it is included in three out of four models. 

Furthermore, it was found that the performance of all the models decreases when market variables are 

excluded, which gives an indication of the relatively high predictive power of market variables.   
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In the last part of the thesis, the focus shifted towards the Danish market for credit lending with the 

focus on non-listed firms. Of this reason, it is argued how the result from the models with data set 

excluding market variables can be transferred to the Danish market. It is found that due to the 

implementation of Basel II credit institutions prefer using the IRB approach over the standardized 

approach for calculating credit risk on its corporate portfolio. Both approaches are used to calculate the 

capital requirements for the credit lender, which is a function of the risk-weighted asset. The IRB 

approach uses its own credit risk model to calculate values for PD, LGD and EAD, while the 

standardised approach uses predetermined weights assigned to the outstanding of the loans. To do so, 

the credit lenders can reduce the total risk-weighted asset, which implies a lower capital requirement 

for the credit institution. However, it is shown that the implementation of the IRB approach has stringent 

regulatory demands. The section also discussed how the credit lender can benefit from a more precise 

credit risk model in other areas for instances when calculating the provision or evaluate a potential 

customer. A more precise credit risk model will imply that the calculation of provision would be more 

accurate, and the evaluation of a potential customer would help the credit lender to decide whether the 

loan application should be accepted and what the interest rate should be. Random forest had 

substantially lower error cost compared to logistic regression on the relevant data sets for the Danish 

market. This means that there might be great benefits to use this method to calculate its credit risk, and 

thereby determining the capital requirement, provision, and evaluation of the customer. Lastly is was 

discussed how the findings are put into perspective from the literature of default prediction. It is found 

that there are several examples in the literature of random forest being one of the best methods to predict 

default which also is the case in this thesis. This could support the statement as it is time to move away 

from logistic regression as the industry benchmark according to some papers in the literature. However, 

the regulation requires the input variables to form a reasonable and effective basis for the resulting 

predictions. This makes it difficult for credit institutions to use new state-of-the-art classifiers, like 

random forest, for predicting default, since it is not clear how the single input variables affect the result 

of the model. 

 

The thesis has engaged in the field on how models can predict default for firms. As the results show, 

there is not one of the tested models which manage to classify all firms correct. An explanation of this 

could be that the accounting and market variables obtained for this thesis cannot predict all defaults. 

Sometimes there are market manipulation, accounting fraud, or external chocks, which make it very 

difficult to predict the future. During the first half of 2020, the COVID-19 crises have overtaken most 

parts of the world. This is a health crisis which is starting to be an economic crisis due to the lockdown 

of the world, resulting in an enormous chock to the global economy. The default rate has already 

increased, and it is expected to continuously grow (Fitch Ratings, 2020). Some would argue that the 

credit risk models have no possibilities to predict these firms going default under the COVID-19 crises 
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since the explanation of the default is primarily an external chock. Furthermore, there is no doubt that 

it would be harder to use the same historical models under the crises. However, the result of this thesis 

also accounts for a large crisis in the test result. The financial crisis in 2007-2009, which is considered 

as the most serious crisis since the great depression, is part of the testing sample in the thesis. This 

means that the result of the thesis is already affected by the most serious crisis since the great depression. 

Whether the present crisis is going to exceed the financial crisis is difficult to tell. However, it shows 

that the credit risk model should be able to predict well regardless of being in a boom or depression. 
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