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Abstract

Modern portfolio optimization methods have introduced new ways of allocating capital and

have drawn the attention of scholars, practitioners, and the general public alike. The thesis

aims to add to the empirical evidence on the impact and risk-based performance of hierarchical

clustering portfolios in long-only risk-based portfolio optimization. This is achieved by analyzing

and investigating the Hierarchical Risk Parity, Hierarchical Equal Risk Contribution, and Nested

Clustered Optimization methods, and compare these from a risk-based perspective to several

traditional optimization methods. The relative risk-based performance is assessed through Monte

Carlo simulations using synthetic data as well as through a walk-forward backtest applied on

historical S&P 500 data. Together, the methodology provides a broad view of the general

performance, but also more focused insights into potential estimation error reduction and the

impact of different clustering parameters. The combined empirical results do not provide

conclusive support for any general performance gains from hierarchical clustering in portfolio

optimization. The initial positive effects found in earlier studies for Nested Clustered Optimization

are hypothesized to stem from the highly stylized and simplified assumptions applied. The results

given in this thesis suggest that these initial positive effects diminish when applied to more

realistic data. Furthermore, the results for Hierarchical Risk Parity and Hierarchical Equal Risk

Contribution show results in line with previous studies by Raffinot (2018). It is concluded that

they are performing reasonably well but underperform in comparison to several of the traditional

portfolios on most risk-based performance dimensions included. The findings do not indicate any

general increase in risk-based performance, but do, however, show promise in providing more

control over the weight concentration. In conclusion, the authors find that clustering indicates

some promising aspects, but that these are limited given the applied hierarchical methodology,

and further research is warranted to reach more conclusive answers.

Keywords – Asset Allocation, Portfolio Optimization, Hierarchical Clustering, Machine Learning,

Risk-Based Strategies
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1 Introduction

Risk management is an ever-present and highly important topic for finance practitioners and

academics alike. In portfolio optimization, the question of risk and diversification is fundamental

as to how portfolios are formed and evaluated.

Current portfolio optimization techniques are based on the seminal work of Markowitz (1952)

with the introduction of the mean-variance optimization framework. Instead of only focusing on

the returns, Markowitz (1952) instead stated that the optimization problem as a function of the

covariance structure and expected returns of the asset universe. Due to practical challenges of

forecasting returns, many practitioners have turned towards purely risk-based portfolio allocation

methods that solely rely on the covariance matrix as an input. Some of the notable and

more popular risk-based methods include the minimum-variance (Clarke, De Silva, & Thorley,

2006), maximum diversification (Choueifaty & Coignard, 2008), and equal risk contribution

(Maillard, Teiletche, & Roncalli, 2008). However, the covariance matrix estimation exhibits some

practicial challenges and are by no means perfect. Portfolios dependent on estimates of risk and

dependencies between assets have been shown to suffer from an adverse effect of allocating larger

weights to more extreme and often badly estimated components, making the optimization an

“estimation-error maximization” (Michaud, 1989).

DeMiguel, Garlappi, and Uppal (2009) show that optimized portfolios often underperform even

the most naive solution of equal weighting. This due to the estimation error of the covariance

matrix having a larger adverse effect on the performance compared to the positive effect incurred

from the portfolio optimization itself. While covariance matrix estimation error is a well-studied

subject, it is still an issue in portfolio optimization with many mitigations, but no real universal

solution. These mitigations can be divided into two separate regions of research. The first

approach is related to the development of a more robust covariance estimation, with many

proposed solutions, from the well-established shrinkage estimator first introduced by Ledoit and

Wolf (2000), to less covered solutions from the field of Random Matrix Theory. The second

approach is related to ways to circumvent the covariance matrix inversion and reduce estimation

errors using clustering methods to find natural groupings in the data, highlighting common

characteristics within groupings that are not present outside them. Hierarchical clustering

represents a subset of these methods popular in finance that not only find groupings, but

also their inherent hierarchical structures, providing rich information of the structures of the
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underlying data.

Both fields of research mentioned above, provide different ways in how one can find better

estimates of the covariance matrix. As proposed by Papenbrock (2011), clustering also presents

a robust method to improve performance by finding groups of assets that show collective

behavior, increasing the possibility to diversify by allocating according to the groupings. He

further argues that, while there are many methods within finance to categorize groups of assets,

an explorative machine learning method like clustering has the benefit of not requiring any

economic, causal, institutional, or psychological explanation, which are all subject to potentially

erroneous assumptions. The purpose of this thesis is to further investigate this suggested impact

of hierarchical clustering in portfolio optimization and add to the existing body of empirical

evidence.

Many of the more recent studies on the subject of hierarchical clustering in portfolio optimization

has been narrowing in on risk parity, from the Hierarchical Risk Parity (HRP) by López de Prado

(2016) to Hierarchical Equal Risk Contribution (HERC) by Raffinot (2018). However, as shown in

several studies, the risk parity approach is more robust to estimation error as compared to both

minimum variance and maximum diversification (Ardia, Bolliger, Boudt, & Gagnon-Fleury, 2017;

Jain & Jain, 2019; Zakamulin, 2015). Until recently, no empirical studies provide grounds that

this problem could apply to methods more sensitive to estimation errors. López de Prado (2019a)

introduced a novel way to apply clustering-based allocation in the general case, and focuses on the

case of the mean-variance framework, with examples using the global minimum-variance portfolio

and the maximum Sharpe ratio portfolio. This framework, referred to as Nested Clustered

Optimization (NCO), allow for new possibilities in applying hierarchical clustering as a general

tool in portfolio optimization instead of as a separate strategy.

1.1 Problem Discussion

Hierarchical clustering-based asset allocation strategies is a relatively new area of research, and

consequently, the available literature on the subject is sparse. The Hierarchical Risk Parity

method proposed by López de Prado (2016) introduced a new way to apply hierarchical clustering

and has since been followed, among others, by Hierarchical Equal Risk Contribution by Raffinot

(2018), and Nested Clustered Optimization by López de Prado (2019a). These methods have

been shown to provide competitive performance as separate and isolated strategies in comparison
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to several benchmark strategies. It has further been theorized that the NCO framework could

be used to improve traditional portfolio optimization strategies by applying it as a step in the

optimization process. As shown by López de Prado (2019a), the Nested Clustered Optimization

method serves as a powerful tool to decrease the estimation error for the minimum-variance

portfolio, and the potential for similar results using different portfolios with other optimization

objectives could prove fruitful.

The goal of this thesis is to further add to the empirical evidence of clustering-based portfolio

optimization performance in comparison to more traditional techniques. To achieve this, the

theory and applications of long-only hierarchical clustering-based methods are applied and

compared against the long-only minimum-variance, maximum diversification, and equal risk

contribution portfolios. The study provides an analysis and comparison of their relative risk-based

performances using Monte Carlo simulations together with a historical backtest using data on

the S&P 500. The research question of this thesis can thus be formulated as:

• How do hierarchical clustering-based portfolios perform from a risk-based perspective in

comparison to each other and to their non-hierarchical counterparts?

To answer the above-stated research question, several sub-questions are posed to further examine

the possible drivers of the performance, as well as the practical applicability of the methods:

• Can the estimation error of the traditional portfolios be reduced using Nested Clustered

Optimization?

• How do different linkage methods affect the portfolio optimization results?

• How well do the portfolios perform from a risk-based perspective?

• How concentrated are the weights of the different portfolios?

• What level of asset turnover is incurred by the different portfolios?

With these questions, the thesis intends to gather practical and theoretical insights, as well as

to extend the empirical evidence of the effects of said allocation strategies. These insights are

expected to fill the void as to how the positive effects from hierarchical clustering generalize from

the global minimum-variance portfolio to several traditional long-only portfolio strategies. In

addition, the empirical results aspire to provide further grounds for investors planning to apply

hierarchical-clustering based asset allocation strategies to their arsenal.
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1.2 Delimitations

Several delimitations have been imposed in this thesis to create comparable results and to retain

focus on the central questions of the problems presented.

When referring to clustering, only hierarchical clustering is included. Several different varieties

of clustering algorithms exist, and original implementations for the NCO portfolios is originally

implemented using a similar but different method. For the sake of comparability, all clustering-

based portfolios utilize the same algorithm, namely the agglomerative hierarchical clustering

algorithm. Some of the cluster-based portfolios included in the thesis are thus slightly modified

to highlight the differences between the weight allocation methods, and not the clustering quality

itself. The risk-based traditional portfolio optimization methods in this thesis are limited to the

long-only variants of the minimum variance portfolio, equal risk contribution portfolio, and the

maximum diversification portfolio.

When comparing the risk-based performance and return characteristics of the different portfolios,

the point estimates are used, and no confidence intervals indicating formal significance is applied.

In addition, for all computational methods and models, returns are assumed to be independent

and identically distributed (iid). Results provided are not correct for, nor regard for any violations

of these assumptions.

The investment universe used in the thesis utilizes the S&P 500 equity inverse in the U.S. equities

market between January 2nd, 1990 and January 17th, 2020. All price data is comprised of

constituents included in this index, and any other equity or investment asset outside this scope is

not taken into consideration. Besides, once the constituents is included in the asset universe, it is

only removed once it no longer fulfills the criteria, regardless of the inclusion or exclusion decision

by the S&P 500 itself. Also, the study does not consider any effects of market imperfections such

as transaction costs nor is any external tax implications considered.

1.3 Structure

The thesis is divided into five sections, with the first section concluded above. The four following

sections of the thesis are summarized below.
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Section 2 – Theory

In this section, the theoretical framework is presented. It starts by going through the assumptions

and mathematical definitions. Following this, estimation instability of the covariance and

correlation matrix is explored to provide an understanding of estimation errors and its different

underlying sources. Next, the theory and practical application of shrinkage estimation and

hierarchical clustering are introduced as different solutions to mitigate the before mentioned

estimation errors. Finally, the portfolio optimization techniques are presented and discussed,

starting with the more traditional methods such as the MV, MD, and ERC portfolios. Following

this, there is a more in-depth presentation of the hierarchical clustering-based techniques, including

HRP, HERC, and NCO.

Section 3 – Data

The data section aims to provide the reader with a detailed view of the data used in this thesis.

First, the applied sample selection is presented, including the S&P 500 investment universe and

detailed information about the index. Secondly, data collection and data processing methodology

is explored. Thirdly, the proxy for the risk-free rate is presented, and last, the synthetic data

generation is explained to provide the necessary background to how the Monte Carlo simulations

are carried out.

Section 4 – Methodology

In this section, the overarching research methodology is presented. First, the definitions for

returns, volatility, covariance estimation, and shrinkage estimation are presented. Second, the

implementation of the agglomerative hierarchical clustering algorithm is introduced, providing

the practical implementation of the first step of the HRP, HERC, and NCO portfolios. Third, the

practical application and implementation of all portfolios are explained. Finally, the backtesting

methodology is presented and discussed, together with the applied statistical performance metrics.

Section 5 – Empirical Results

In this section, the empirical results are presented following the backtesting methodology presented

in section 4. First, an initial Monte Carlo simulation is carried out, following the methodology as

presented by López de Prado (2019a) to investigate the proposed reduced estimation error from

applying NCO to portfolio optimization. Second, a more extensive Monte Carlo simulation is

carried out to investigate the in-sample to out-of-sample performances of the different portfolios,
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with an emphasis on the choice of linkage method used in the clustering-based portfolios. Finally,

the results from the walk-forward historical backtest using S&P 500 data ranging from 1992-01-02

to 2020-01-17 is presented.

Section 6 – Discussion

In this section, the results of the empirical testing are discussed, focusing on the interpretations

of the empirical findings and their similarities and contrasts to results from prior studies and in

connection to the theoretical framework presented in section 2. Following this, the implications

of the practical applicability and areas of potential further research are presented.

Section 7 – Conclusion

Finally, the thesis is concluded by providing answers and interpretations of the research question

along with the sub-questions.
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2 Theory

This section introduces the theoretical framework used in this thesis. First, the assumptions and

definitions of the theory are presented, followed by stylized facts observed in the correlation matrix.

Secondly, the central problem and potential remedies of estimation errors in the covariance matrix

is discussed. Third and finally, the traditional and hierarchical-clustering based portfolios are

presented.

2.1 Assumptions

All assets included in the asset universe are assumed to be perfectly divisible and perfectly

liquid, where all stocks have willing buyers to pay the closing price, and all shares have a willing

seller who offers to sell at the closing price at any given time. Also, markets are assumed to be

frictionless, where no transaction costs are incurred either from buying or selling assets. Tax

effects on asset returns and dividends are excluded, assuming that before-tax and after-tax

returns are equal for all investors.

The study restricts portfolio allocations to be long-only, meaning that no negative weights (or

differently put, short-sales) are allowed and that the total weight of each portfolio adds to one.

It is further assumed that the investor always reinvests any dividend from an asset back into the

same asset.

2.2 Definitions

For the sake of clarity, definitions concerning mathematical notation and necessary calculations

for the derivation of portfolios are presented. Matrices are presented using bold-face upper-case

letters (e.g. M), and vectors using bold-face lower-case letters (e.g. v).

The investment universe consists of n assets that the investor can allocate weight to at any time

t, t = 0, 1, . . . , T . The prices of these assets are given by

Pi,t for i = 1, . . . , n ∈ t = [0, T ]. (2.1)
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The net return, or simple return, on the asset over the time period t− 1 to t is defined as

ri,t =
Pt − Pt−1
Pt−1

=
Pt
Pt−1

− 1. (2.2)

Thus, the return on any asset is simply the proportional change of its price over a given time

period. The vector of n rates of return is defined as

rt = (r1,t, . . . , rn,t)
>. (2.3)

The average return of asset i over the period t to T can be defined as

r̄i =
1

T

T∑
t=1

rit. (2.4)

The geometric mean is usually preferred over the arithmetic mean given above when measuring

the performance as rate of returns are multiplicative over time rather than additive

µi =

(
T∏
t=1

(1 + rit)

) 1
T

− 1. (2.5)

The second moment of the return distribution of asset i, the variance up until time T is defined

as

σ2i = V ar(ri) =
1

T

T∑
t=1

(rit − r̄i)2. (2.6)

The covariance function gives the covariance of two assets, that is, the co-movement of the two

assets over time. The covariance of the returns of asset i and j are defined as

ρij = cov(ri, rj) =
1

T

T∑
t=1

(ri − r̄i)(rj − r̄j). (2.7)

Hence, the covariance of an asset with itself i = j for any t is simply

cov(ri, ri) = σ2i . (2.8)

The correlation function is the standardized and demeaned covariance function between asset i

and asset j,

ρij = corr(ri, rj) =
σij
σiσj

. (2.9)

By definition, the correlation can vary from perfectly negative (-1) to perfectly positive (1), and
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where the assets are fully uncorrelated when ρij = 0. The portfolio returns at time t are defined

as the relative weighted returns, formally stated as

rP =
n∑
i=1

wiri = w>r, (2.10)

where the vector of all portfolio weights can be defined as

w = (w1, . . . , wn)>. (2.11)

The sum of all weights are stated as a fraction of the entire portfolio, and are required to sum to

one

w>1 =
n∑
i=1

wi = 1. (2.12)

The portfolio variance, or the weights variance can be calculated using

σ2P =
∑
i,j

ρijσiσjwiwj = w>Σw, (2.13)

where Σ represents the population covariance matrix. Since the true population covariance is

not directly observable, it can be estimated from the sample covariance matrix

Σ̂ = T−1X
(
I − T−111>

)
XT , (2.14)

where X denotes an N ×T matrix of T returns on a universe of N stocks. Using matrix notation,

the sample covariance matrix can be expressed as

Σ̂ =


σ211 σ12 . . . σ1n

σ21
. . . . . .

...
...

...
. . .

...

σn1 . . . . . . σ2nn

 . (2.15)

The sample correlation matrix Ĉ can be constructed by centering and normalizing the sample

covariance matrix

Ĉ = diag(Σ)−
1
2 Σ, diag(Σ)−

1
2 (2.16)

where diag(Σ) denotes the diagonal of the covariance matrix, that is, the variances. The

correlation matrix is a symmetric matrix with ρii = 1 in the main diagonal, and the respective
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pairwise correlation in the off-diagonal values, stated in matrix form as

Ĉ =


1 ρ12 . . . ρ1n

ρ21
. . . . . .

...
...

...
. . .

...

ρn1 . . . . . . 1

 . (2.17)

The eigenvalues and eigenvectors of the financial correlation and covariance matrix are of central

importance when discussing the implications of clustering-based portfolios. The eigenvectors

represent linear combination of orthogonal vectors explaining the maximum amount of variance

in the data, ordered in terms of the absolute size of their respective eigenvalues, representing the

explanatory power of the eigenvector (Pasini, 2017). The mathematical derivation of eigenvectors

and eigenvalues is not of importance in this paper. However, an understanding of their properties

and applications will make the following sections easier to follow.

In essence, an eigenvector, v, represents a vector that is unaffected by a linear transformation T .

Applying the linear combination will thus not change the direction, only the magnitude, referred

to as the eigenvalue, λ. More formally, this can be expressed as

T (v) = λv. (2.18)

The method of decomposing a matrix into it’s eigenvectors and eigenvalues is sometimes also

referred to as the Principal Component Analysis (PCA). This is often used in finance to derive and

approximate underlying factors exposures, implying that a common exposure to an eigenvector

corresponds to a common factor exposure (Pasini, 2017).

2.3 Stylized Facts of the Financial Correlation Matrix

In this section, the stylized facts of sample correlation matrices for financial asset returns are

discussed to build intuition around the possible ways to leverage the information contained in the

matrix to its fullest and to set up guides on which to compare the synthetic correlation matrices

to their empirically observed counterparts at a later stage of the study. The discussed list of

stylized facts follows the list outlined by Marti (2019).
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Stylized Fact 1: Positive Pairwise Correlation

The distribution of pairwise correlations between assets is significantly positively shifted. In

other words, the mean correlation is significantly positive (Marti, 2019).

Stylized Fact 2: Marčenko-Pastur Distributed Eigenvalues

Eigenvalues of the empirical correlation matrix are shown to follow the Marčenko-Pastur

distribution but with a very large first eigenvalue that represents the market mode, and a

couple of other large eigenvalues, proposed to represent industries (Laloux, Cizeau, Potters, &

Bouchaud, 2000).

Stylized Fact 3: Perron-Frobenius Property

In the general case, financial correlation matrices have a first eigenvector (defined as the eigenvector

with the largest eigenvalue) with only positive entries. This is in line with the Perron-Frobenius

theorem which asserts that a real square matrix with positive entries has a largest real eigenvalue

with a corresponding eigenvector that have strictly positive components as shown by Perron

(1907) and Frobenius (1912).

Stylized Fact 4: Hierarchical Structure of Correlations

Mantegna (1999) provides evidence of a hierarchical structure in the S&P 500 index correlation

coefficient matrix. With only a few exceptions, the groupings discovered were homogeneous

with regards to industry and often also sub-industry sectors implied by GICS. The detection of

this hierarchical structure in a broad portfolio of stocks traded in a financial market has several

implications. First, different stocks are affected by different factors, and to varying degrees.

Second, in general, groups of stocks that depart early in a hierarchical clustering tree (at higher

values of dissimilarity) are relatively more affected by economic factors specific to that group.

Conversely, when the departure is lower down in the tree, the stocks are more likely to be affected

by economic factors common to all stocks or other groups.

Stylized Fact 5: Scale-Free Property of the Corresponding Minimum Spanning Tree

The minimum spanning tree (MST) network formed by the correlation matrix exhibit a scale-free

property, defined by the distribution of the number of edges of the nodes, P (k) follows a so-called

power-law distribution

P (k) ∼ k−γ (2.19)
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This stylized fact is widely accepted and has been empirically shown in several studies, from

the initial paper by Vandewalle, Brisbois, Tordoir, et al. (2001) over a short time horizon, to

more robust findings by Kim, Kim, Lee, and Kahng (2002), and Bonanno, Caldarelli, Lillo, and

Mantegna (2003).

2.4 Estimation Instability

In this section, the estimation instability of the sample covariance and correlation matrix is

discussed to provide necessary background to the problem, together with its different underlying

sources. With this intuition, potential remedies can later be presented and discussed in more

detail.

Many portfolio optimization techniques rely on the sample covariance matrix for the weight

allocation, and the quality of the input covariance matrix has large significance on the quality of

the weights produced to align with the optimization objective. This has important implications

as more accurate estimations produce weight allocations closer to the optimal solution. More

specifically, the numerical stability of the portfolio optimization dependent on a covariance matrix

is determined by the condition number, defined as the absolute value of the ratio between the

maximum and minimum eigenvalues (López de Prado, 2016). When more correlated assets are

added, the condition number grows, and the matrix becomes more ill-conditioned. As such, the

benefits of diversification by adding more assets are often offset by the estimation errors incurred

by them (López de Prado, 2016). In addition, one should carefully distinguish the empirical

matrices Σ̂ and Ĉ from the true population matrices Σ and C, as the former only estimates the

unknown and unobservable latter. With this estimation, additional noise is produced.

In conclusion, instability in estimating the covariance and correlation matrix mainly stems from

noise due to sampling errors, but also to signal, much through the inherent hierarchical structure

of financial cross-correlations (López de Prado, 2020). These two sources of estimation error are

further examined in the two coming sub-sections.

2.4.1 Noise as a Source of Covariance Instability

In the classical statistical limit, i.e., when the number of observations T → ∞ with a fixed

number of assets N , the law of large numbers implies that the estimator Σ̂ converges towards

the true value of population covariance matrix Σ. However, in the high-dimensional case where
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the assets N and the observations T both are large, Σ̂ is considered a noisy estimator of Σ,

especially in terms of eigenvalues and eigenvectors (Bun, Bouchaud, & Potters, 2017). When

not acknowledging this fact, the in-sample, predicted risk widely underestimates the true risk

over the same period, and even more so the future out-of-sample, realized risk in the consecutive

estimation period (Bun et al., 2017).

The Marčenko-Pastur distribution from Random Matrix Theory is a fundamental tool to analyze

the eigenvalue spectrum of large correlation matrices in this large-dimensional limit, where both

the number of assets N and the number of observations T become large, but with their ratio

q = N/T not being vanishingly small (Bun et al., 2017). This distribution can help to infer the

relationship between the empirical correlation matrix Ĉ and the real correlation matrix C in

terms of the distribution of their eigenvalues. More concretely, the distribution captures the

distortion of the eigenvalue spectrum of Ĉ as an increasing function of the ratio q (Marčenko &

Pastur, 1967), a phenomenon commonly known as the curse of dimensionality. For a correlation

matrix C, the Marčenko-Pastur distribution follow

ρC(λ) =
T

N

√
(λ+ − λ)(λ− λ−)

2πλσ2
(2.20)

where

λ+ = σ2
(

1 +
√
N/T

)2
(2.21)

λ− = σ2
(

1−
√
N/T

)2
(2.22)

The result of this distribution provides information on how the distribution of eigenvalues of a

null hypothesis is affected by the ratio between assets and periods of observations, and can thus

infer meaningful eigenvalues, λ ∈ [λ−, λ+], from noisy ones, λ /∈ [λ−, λ+].

Figure 2.1 shows the probability density function for the null hypothesis C = IN where N = 500.

This shows that even in the case where there are no correlations in the population covariance

matrix, spurious eigenvalues higher than one still exist, increasing the condition number, and

thus decreasing the stability of the covariance matrix. The results from the above case can

be extrapolated to the case of estimating the financial covariance matrix, implying that the

estimation process incur some amount of noise as an increasing function of q. Figure 2.2 depicts

an observed eigenvalue distribution of U.S stock data compared to a null hypothesis of the

identity matrix with the same q, illustrating the distortion of the eigenvalue spectrum from
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Figure 2.1: Sample eigenvalue density under the null hypothesis of C = IN with N = 500

Source: Bun, Bouchaud, and Potters (2017)

estimation errors.

With this in mind, allocation methods using the covariance matrix are in theory increasingly

noisy as the portfolio size increases without a proportional response in the increase of observations

used. Several different methods can be applied in practice to mitigate this estimation problem.

In this thesis, Ledoit-Wolf shrinkage estimation is applied as it has been empirically shown to

produce robust estimation error reduction (Ledoit & Wolf, 2004), later examined in section 2.5.

2.4.2 Signal as a Source of Covariance Instability

A different source of financial covariance instability comes from the structure of the data (López

de Prado, 2020). As cross-correlation between assets affect the condition number of the matrix,

regardless and independent of q, the signal-induced instability cannot be reduced by sampling

more observations alone. Outside the ideal case when there is zero correlations, C = IN , the

condition number is higher than one. In the empirically observed case, non-zero correlations

between assets and between groups of clusters are present, emphasizing that this is not the case

(Mantegna, 1999).

When a subset of assets display a higher correlation among themselves than with the rest of
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Figure 2.2: Eigenvalue distribution of U.S. stock data with N = 406 and T = 1300, compared
to a null hypothesis of C = IN .

Source: Bun, Bouchaud, and Potters (2017)

the asset universe, they can be said to form a cluster. Mantegna (1999) argues that the same

common economic factors drive these subsets as first introduced by Ross (1976) in his seminal

work on the arbitrage theory of capital asset pricing. According to this theory, different assets

are driven by different economic factors to varying degrees. Mantegna (1999) provides empirical

findings on how clusters between assets can be found within the correlation matrix. Assets within

the same cluster are more exposed to a common eigenvector, which implies that its associated

eigenvalue can explain a larger amount of the total variance of those assets. The trace of the

correlation matrix, tr(C), is exactly N , as the diagonal values in the correlation matrix are all

equal to 1. This means that one eigenvalue can only increase at the cost of the other eigenvalues

as the sum of eigenvalues is constant, showed by

tr(C) = N =
N∑
i=1

ρii =
N∑
i=1

λi. (2.23)

This results in a higher condition number as the difference between the highest and lowest

eigenvalues [λ−, λ+] increases in both directions. The implication of this is that a greater intra-

cluster correlation leads to a higher condition number. The condition number is ultimately
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dominated by the cluster with the highest correlation, as this is determined by the most extreme

eigenvalue. López de Prado (2020) suggests mitigating this problem by disassembling the

covariance matrix into smaller covariance matrices and optimize these separately to contain the

instabilities using clustering methods, further explored in section 2.6 and section 2.10.

2.5 Shrinkage Estimation

With the theory from section 2.4 in mind, the empirical covariance and correlation matrix should

be “cleaned” to decrease the estimation error of true and out-of-sample risk to a high degree as

possible, and thus, decrease the probability of the optimization to spuriously respond to noise.

A common way to mitigate these problems is by utilizing a Bayesian method referred to as a

shrinkage estimation that assumes a prior covariance matrix F , and shifts the observed matrix

S towards it

Σ̂ = δF + (1− δ)S. (2.24)

The shrinkage intensity is determined by the shrinkage coefficient parameter δ ∈ [0, 1]. This

method can be applied to increase the accuracy of the inverse covariance matrix by reducing

the condition number (Ledoit & Wolf, 2004). Shrinkage estimation involves the execution of

two steps. First, the shrinkage target F is determined, and second, the shrinkage coefficient δ is

estimated (Ledoit & Wolf, 2004).

2.5.1 Shrinkage Target

The shrinkage target F follows that of Ledoit and Wolf (2004), where a constant correlation

model is used, defined as the average pairwise correlation in the covariance matrix, and thus

assumes that all pairwise correlations are identical. This choice of shrinkage target exploits

the stylized fact that pairwise correlations coefficients between financial assets are significantly

positively shifted, also shown in section 2.3. The average sample correlations are given by

ρ̄ =
2

(N − 1)N

N−1∑
i=1

N∑
j=i+1

ρij . (2.25)

From this, define the constituents f of the correlation matrix F as the average sample correlation

multiplied with the sample covariance for the off-diagonal elements

fii = sii and fij = ρ̄
√
siisjj (2.26)

16



Thus, the shrinkage target covariance matrix can be expressed in matrix form as

F =


s11 f12 . . . f1n

f21
. . . . . .

...
...

...
. . .

...

fn1 . . . . . . snn

 . (2.27)

2.5.2 Shrinkage Constant

Choosing the amount of shrinkage, δ amounts to balancing the bias/variance trade-off. Ledoit

and Wolf (2004) propose a formula to compute the optimal shrinkage coefficient δ∗ that minimizes

the expected distance between the shrinkage estimator and the true covariance matrix (Ledoit &

Wolf, 2004). This is based on a quadratic measure of distance between the true and the estimated

covariance matrices based on the Frobenius norm, which for a symmetric N ×N matrix Z can

be defined as

‖Z‖2 =
N∑
i=1

N∑
j=1

z2ij . (2.28)

The Frobenius norm is used to compute the difference between the shrinkage estimator and the

true covariance matrix, following a quadratic loss function, defined as

L(δ) = ‖δ + F + (1− δ)S −Σ‖2. (2.29)

Under the assumption that N is fixed while T moves to infinity, the optimal asymptotic value of

δ∗ behaves as a constant over T . This constant κ is defined as

κ =
π − ρ
γ

(2.30)

In practice, κ is unknown, and consistent estimators for it has to be found by locating consistent

estimators for its three variables π, ρ, and γ. First, a consistent estimator for π is

π̂ =
N∑
i=1

N∑
j=1

π̂ij with π̂ij =
1

T

T∑
t=1

{(yit − ȳi) (yjt − ȳj .)− sij}2 . (2.31)

Second, an estimator for ρ can be defined as

ρ̂ =
N∑
i=1

π̂ii +
N∑
i=1

N∑
j=1,j 6=i

r̄

2

(√
sjj
sii
ϑ̂ii,ij +

√
sii
sjj

ϑ̂jj,ij

)
. (2.32)
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Third, a consistent estimator for γ is

γ̂ =
N∑
i=1

N∑
j=1

(fij − sij)2 (2.33)

Putting everything together, the estimator of κ can be derived

κ̂ =
π̂ − ρ̂
γ̂

. (2.34)

The estimated shrinkage intensity is then finally computed as

δ̂∗ = max

{
0,min

{
κ̂

T
, 1

}}
. (2.35)

Through the above definition of the shrinkage target and the shrinkage constant, the operational

shrinkage estimator of the covariance matrix Σ is defined as

Σ̂Shrink = δ̂∗F +
(

1− δ̂∗
)
S (2.36)

2.6 Hierarchical Clustering

In this section, hierarchical clustering is introduced to provide intuition about its methodology,

what problem it is proposed to solve, and how it is applied to the hierarchical-clustering portfolio

optimization problem.

Cluster analysis aims to find natural groupings in the data where the subsets can be said to be

more closely related to one another than to objects assigned to other clusters (Hastie, Tibshirani,

& Friedman, 2009). This type of problem appears naturally in finance, throughout many of the

steps in the investment process. Existing literature on clustering in portfolio optimization often

categorizes assets by utilizing clustering and uses the factors to create a portfolio (Papenbrock,

2011). Examples of this include Zhang and Maringer (2009), who present a clustering criterion

that groups assets together to maximize the Sharpe ratio of the portfolio, and Dose and Cincotti

(2005), limiting the number of assets included in the portfolio by considering a subset from each

cluster and then setting the weight according to an optimization process. Other authors use

clustering as a means of filtering and improving parameter estimation, which can be considered a

filtering procedure in which the complexity of the correlation matrix is reduced (Papenbrock,

2011). Furthermore, the author found that portfolio optimization methods applied through
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hierarchical clustering comes with its advantages and disadvantages. For example, Papenbrock

(2011) found that the method provides superior risk-adjusted performance than classic allocation

strategies tested. However, he also find that the portfolio turnover and to some extent the

portfolio concentration for these types of allocation methods seem to increase in comparison to

non-hierarchical methods.

In this study, clustering is used to find and group financial assets within the investment universe

based on a distance derived from the sample correlation matrix. These clusterings are proposed

to reduce the signal-induced covariance instability by reducing the weight allocation task to

several smaller sub-tasks made on smaller and more stable covariance matrices (López de Prado,

2020). Also, it is hypothesized that the cluster-based weight allocation can better account for

the hierarchical structures present in empirical correlation matrices on the S&P 500, as shown by

Mantegna (1999). While there exist several types of clustering algorithms, the focus on this study

is on hierarchical clustering due to its broad application in previous studies (López de Prado,

2016; Raffinot, 2017, 2018).

Figure 2.3: Dendrogram depicting the resulting binary tree from a hierarchical clustering

Hierarchical clustering produces hierarchical representations by either merging clusters create

clusters at each level of the hierarchy at a lower level (agglomerative method) or dividing clusters

at a higher level (divisive method). Regardless of the method used, hierarchical clustering uses

the dissimilarity between groups of observations, defined through a dissimilarity metric. The

dissimilarity metric is the measure of the distance between two entities, usually measured in
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Euclidean terms through a distance matrix. The graphical representation of hierarchical clustering

can be presented using a dendrogram (Figure 2.3), which provides a complete description of the

clustering. This highly interpretable visualization is considered one of the main reasons for the

popularity of the method (Hastie et al., 2009).

2.6.1 Correlation Matrix to Distance Matrix

A distance matrix represents the pairwise distance between objects N based on one or several

similarity or dissimilarity features. The correlation coefficient matrix of asset returns is not

directly applicable to use as a distance metrics as is does not fulfill the three axioms that define a

Euclidean metric (Kraskov, Stögbauer, & Grassberger, 2004). A generalized metric proposed by

Gower (1966) can be defined to transform the pairwise correlations, ρij , into a distance metric

dij .

dij =

√
1

2
(1− ρij) (2.37)

This metric fulfills the aforementioned axioms; that (i) the distance is zero only if the stochastic

process or stochastic processes are exactly aligned, dij = 0 if i = j; (ii) distances are symmetric

as the correlation coefficient matrix is symmetric by definition, dij = dji; and (iii) the triangular

inequality, that the distance between two points in space dij is the shortest path between point i

and point j, dij ≤ dik + dkj . The last axiom is extensively empirically observed by Mantegna

(1999), whereas the first two axioms are true by definition.

The sample correlation matrix Ĉ can thus be converted into a distance matrix D using the

pairwise calculations from equation 2.37.

D =


0 d12 . . . d1n

d21
. . . . . .

...
...

...
. . .

...

dn1 . . . . . . 0

 (2.38)

The Euclidean distance between the pairwise column-vectors of the distance matrix D is then

computed to get the proper distance metric (López de Prado, 2016),

d̃ij = d̃[Di, Dj ] =

√√√√ N∑
n=1

(dni − dnj)2. (2.39)

The difference between the dij and d̃ij is subtle, where the first measures the distance of the
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column vectors of the correlation matrix Ĉ, and where the second measures the distance on the

column vectors of D, that is, a distance of distances (López de Prado, 2016).

This final distance matrix, denoted D̃, is then used in the portfolio construction as a tool to find

correlation clustering within the asset universe through the agglomerative hierarchical clustering

algorithm.

2.6.2 Agglomerative Hierarchical Clustering Algorithm

Of the two possible methods implementing hierarchical clustering, the agglomerative hierarchical

clustering algorithm is used over the divisive hierarchical clustering algorithm due to its broader

academic base and support (Hastie et al., 2009). Agglomerative clustering begins with every

observation representing a singleton cluster, that is, every observation is its own cluster. At

each iteration, the two least different clusters are merged. The process continues until only one

all-encompassing cluster remains. This results in the formation of a the binary tree (dendrogram),

depicting the complete hierarchical structure of the entities.

The criteria of which assets or clusters to merge in each step is determined by the intergroup

distance between clusters. The intergroup distance can be determined using several different

procedures, referred to as linkage methods. Below, four common linkage methods are provided.

2.6.2.1 Single Linkage

Single Linkage defines the distance between two clusters as the shortest possible distance between

them, more concretely, the distance between the two most similar entries between the clusters

dCi,Cj = min
x,y
{D(x, y)|x ∈ Ci, y ∈ Cj} . (2.40)

Bonanno, Lillo, and Mantegna (2001) argues for the use of the Single Linkage as each element

selects the most relevant connection in the set as defined by the connection with the shortest

distance. In other words, it creates the N − 1 edged hierarchical tree that minimizes the sum of

the edge distances. However, it only requires a single dissimilarity dii′ , i ∈ x and i′ ∈ y, to be

small for the groups x and y to be considered close together. This can lead to a chaining effect

that violates the compactness property, i.e., that all observations within each cluster tend to be

similar to each other (Hastie et al., 2009; Raffinot, 2018).
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2.6.2.2 Complete Linkage

Complete Linkage defines the distance between two clusters as the longest possible distance

between their entries within, more concretely, the distance between the two least similar entries

between the clusters.

dCi,Cj = max
x,y
{D(x, y)|x ∈ Ci, y ∈ Cj} . (2.41)

Complete Linkage is at the opposite of the spectrum to a Single Linkage. In this case, two

clusters are only considered close if all of the observations in the union are relatively similar.

Therefore, it tends to produce compact, small clusters. This tendency violates the closeness

property, meaning that it can produce clusters with entries that are closer to other clusters than

they are to some members of their cluster (Hastie et al., 2009).

2.6.2.3 Average Linkage

Average Linkage defines the distance between two clusters as the average distance between the

entries in each cluster

dCi,Cj = mean
x,y
{D(x, y)|x ∈ Ci, y ∈ Cj} . (2.42)

Average Linkage is the middle ground between Single Linkage and Complete Linkage. It represents

a compromise between them and avoids the chaining property of Single Linkage, as well as the

closeness property of Complete Linkage. Thus, it attempts to produce relatively compact clusters

that are relatively far apart (Hastie et al., 2009).

2.6.2.4 Ward’s Method

Ward’s Method merges the pairs of clusters that lead to the minimum increase in total within-

cluster variance after merging (Ward Jr, 1963). The distance is calculated as the increase in the

squared error that would result from when the two clusters Ci and Cj are merged

dCi,Cj =
mimj

mi +mj
‖ci − cj‖2, (2.43)

where the cluster sizes of Ci and Cj are defined as mi and mj , and where ci, cj are the centroids

for each cluster. Ward’s Method is biased towards creating larger clusters, but more robust to

noise and outliers (Raffinot, 2018).

The different linkage methods can be depicted as a scale, illustrated in Figure 2.4, with extremes

ends between naive and symmetrical 1/N clustering and highly asymmetrical Single Linkage
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Figure 2.4: Symmetry properties of clusters derived using different linkage methods

(Papenbrock, 2011). In the empirical results found by Papenbrock (2011), Single Linkage and

Ward’s Method are deemed superior in terms of performance in the portfolio allocation methods

explored. Of these methods, Single Linkage produces high concentration in weight allocation

from the highly asymmetrical clusters but also results in a low correlation between clusters.

Ward’s Method is, on the other end, create high-quality, balanced clusters with low weight

concentrations.

2.6.3 Optimal Number of Clusters

Clustering algorithms provide the actual clusters but do not handle the optimal number of clusters.

As opposed to partitioning-based clustering methods, the hierarchical-based counterparts do not

need to define the number of k clusters as an input, and instead find the cluster structure from

1 to N clusters in the N asset universe. However, this comes at a cost. Clusters are formed

regardless of their reliability, considered a form of overfitting that potentially leads to spurious

clusters being included (Raffinot, 2018).

For data segmentation problems such as correlation clustering, finding the optimal number of

clusters k is a part of the problem. In this case, the cluster analysis is used to provide descriptive

statistics for assigning an unknown number of natural clusterings, defined as k∗. Data-based

methods for estimating k∗ usually examine the within-cluster dissimilarity Wk as a function of

the number of clusters k ∈ {1, 2, . . . , kmax}.

The Gap Statistic Index (GSI) method proposed by Tibshirani, Walther, and Hastie (2001)
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is commonly used to estimate k∗. It compares the logarithm of the empirical within-cluster

dissimilarity logWk with a corresponding curve obtained from uniformly distributed data with

no apparent clusters. The within-cluster distance, Wk can be defined as the pooled within-cluster

sum of squares around the cluster means

Wk =

k∑
r=1

1

2nr
Dr. (2.44)

The sum of pairwise distances for all points in cluster r, Dr is defined as

Dr =
∑
i,i′∈Cr

dii′ . (2.45)

The GSI measures the within-cluster dispersion around the cluster mean which is used to

investigate the relationship between logWk for different values of k compared to a suitable null

reference distribution, E∗n {logWk}. The difference between the distributions infers where the

clustering provides the most information as compared to a distribution with no hierarchical

structures or clusters. Thus, the gaps can be calculated as

Gapn(k) = E∗n {logWk} − logWk. (2.46)

Finally, to account for the dispersion ofWk as a function of the number of clusters, the optimization

function is adjusted using the standard deviation to account for the varying volatility of estimates.

More formally calculated as

sk =
√

(1 + 1/B)σ(k), (2.47)

where B represents the number of iterations of the reference distribution. The suggested number

of clusters k by GSI can finally be inferred as

min
k

Gap(k)

s.t. Gap(k) ≥ Gap(k + 1) + sk+1.

(2.48)

To apply this function, a large number of draws from the reference distribution needs to

be computed to find reliable estimations of the distribution. There is a trade-off between

computational speed and accuracy in this process. As the process of generating the reference

distributions and running the clustering algorithm is computationally expensive, one has to weigh

the reliability of the derived results with the computational costs. Yue, Wang, and Wei (2008)

proposed an alternative function, bypassing the computationally expensive method described
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above by utilizing second-order differencing to find the optimal number of clusters, using the

maximization function defined as

max
k

{Wk − 2Wk+1 +Wk+2}

s.t. 1 ≤ k ≤
√
n.

(2.49)

The results are argued by the author to provide more stable results, less dependent on random

draws, and less computationally expensive as there is no need to compute the reference

distributions.

2.6.4 Optimal Leaf Ordering

For a given hierarchical tree with n leaves, there are 2n−1 linear orderings consistent with the

structure of the tree. Hierarchical clustering algorithms usually employ heuristic methods of

local similarities to generate the global ordering which does not necessarily lead to optimal leaf

ordering (Bar-Joseph, Gifford, & Jaakkola, 2001). By using an optimal leaf ordering algorithm,

the maximum sum of similarities of adjacent elements in the ordering can be achieved. This can

be used to improve the suboptimal heuristic approach, illustrated in Figure 2.5.

Figure 2.5: Dendrograms before optimal leaf ordering (left) and after optimal leaf ordering
(right)

The objective of the algorithm employed, defined by Bar-Joseph et al. (2001), is to find the

ordering of the tree leaves that maximizes the sum of similarities of adjacent leaves

Dφ(T ) =
n−1∑
i=1

S(zφi , zφi+1
) (2.50)

where zφi is the i
th leaf when T is ordered according to φ, and S is the similarity matrix. The
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optimization then find the ordering φ that maximizes Dφ(T ). The increase in granularity of

ordering of leaf-nodes increases the order of diagonalization in the covariance matrix, an essential

feature in the later weight allocation step in the Hierarchical Risk Parity method presented in

section 2.8.

2.7 Traditional Portfolio Allocation Methods

In this section, some of the traditional portfolio allocation methods are introduced, ranging

from Markowitz’s seminal work on Modern Portfolio Theory to the more modern methods of

Maximum Diversification and Risk Parity.

2.7.1 Modern Portfolio Theory

Markowitz (1952) introduced the world to a new way to think about portfolio optimization with

the introduction of the mean-variance framework. The most important part of his paper was the

introduction of mean-variance efficient portfolios constructed as a convex optimization problem.

This theory was expanded on with the publication of his subsequent book (Markowitz, 1959),

where a more general model for portfolio selection, often referred to as Modern Portfolio Theory

(MPT), was developed. Markowitz (1952) formulated the portfolio selection as a problem of

finding a minimum variance portfolio of the assets in the investment universe that yields at least

a target return R of expected return. Mathematically, this formulation can be expressed as the

following quadratic programming problem

min
w

w>Σw

s.t. w>1 = 1

w>µ ≥ R.

(2.51)

where w is the weight of the assets in the portfolio and Σ is the covariance matrix of the assets.

Since variance by definition is non-negative, it follows that the covariance matrix Σ is positive

semidefinite, a critical criterion for Equation 2.51 to be a convex optimization problem (Kwan,

2010).

Markowitz (1952) approach requires the returns to be extremely accurate. While the methodology

of how returns are estimated have become more sophisticated since the inception of MPT, it still

poses a problem today. Braga (2015) highlighted that the approach has a poor out-of-sample
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performance because it favors investing in asset classes with high returns in comparison to the

ones with low variances and negative correlations. Braga (2015) called this an estimation

error optimizer. In general, portfolios constructed through the Markowitz model tend to

produce concentrated weight distributions as the objective of the optimization is to optimize

the diversification of volatility, not weight. This often leads to portfolios with much of the

weight distributed to a relatively small selection of assets (Demey, Maillard, & Roncalli, 2010).

This is a well-documented fact in the existing literature and is often attributed to estimation

errors (Green & Hollifield, 1992). To alleviate some of the estimation errors, many practitioners

have abandoned including expected returns altogether to instead focus on purely risk-based

alternatives, solely using the covariance matrix as input.

2.7.1.1 Minimum-Variance Portfolio

Following the uncertain nature of return assumptions and the focus of risk-based portfolio

optimization methods in this thesis, the global minimum-variance portfolio is further examined.

This portfolio represents the portfolio on the efficient frontier that exhibits the lowest variance

among all portfolios, disregarding any return constraint, effectively not including information

about the expected returns at all (Munk, 2018). Thus, the portfolio can be defined by optimizing

the below given optimization function

min
w

w>Σw

s.t. w>1 = 1.
(2.52)

Following the methodology above, this convex optimization problem can be solved analytically

by restating it as a Lagrangian

L[w, λ] =
1

2
w>Σw − λ(w>1− 1), (2.53)

where the first-order conditions are

∂L[w, λ]

∂w
= Σw − λ1 (2.54)

∂L[w, λ]

∂λ
= w>1− 1. (2.55)
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Setting the first-order conditions to zero and solving for w and λ yields

w = λΣ−11 (2.56)

λ =
1

1>Σ−11
. (2.57)

The problem is finally solved by be solved by substituting in λ into w to get

wMV =
Σ−11

1>Σ−11
. (2.58)

This analytic solution is, however only available for the unconstrained, global minimum-variance

portfolio. With additional constraints and bounds, the optimization problem is usually solved

numerically. The global minimum variance portfolio, shown with its associated expected return,

can be found in figure 2.6 depicted on the efficient frontier.

Figure 2.6: Global Minimum Variance Portfolio on the Efficient Frontier.

2.7.1.2 Long-Only Minimum-Variance Portfolio

In addition to the constraint of the weights summing to one, an additional constraint of long-only

positions is applied to this study. Following the methodology of Munk (2018), the long-only
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minimum-variance portfolio is given by the solution to the following minimization problem

min
w

w>Σw

s.t. w>1 = 1

wi ≥ 0

(2.59)

The optimization problem is thus to minimize the variance of the portfolio, constrained by all

weights summing to one, and all weights having a minimum value of zero. This constrained

optimization problem has no analytical solution, and therefore needs to be solved using numerical

methods.

2.7.1.3 Inverse-Variance Portfolio

The inverse-variance portfolio is a special case of the minimum-variance portfolio, with the

additional assumption that cross-correlations are all equal to zero, implying that the correlation

and therefore also covariance matrix is diagonal. With these assumptions, the problem can be

stated as
min
w

w> diag(Σ)w

s.t. w>1 = 1.
(2.60)

From the above optimization problem, the Lagrange method as applied in equation 2.53 can be

used to arrive at

wIV =
diag(Σ)−11

1> diag(Σ)−11
. (2.61)

2.7.2 Risk Parity

While revolutionary for its time, Modern Portfolio Theory came with some inherent problems,

namely, allocating a large portion of the weight to a relatively small subset of assets within the

portfolio. This means that in case these few assets perform poorly during a period time, the

entire portfolio will perform badly. Qian (2005) argues that risk is the true diversification factor,

meaning that if a substantial portfolio loss can be attributed to a few assets, then the portfolio is

not diversified. Furthermore, he instead suggests an alternative investment approach, namely

Risk Parity.

Risk Parity (RP) is an investment approach that allocates volatility instead of capital. The

method was first introduced to the retail investment market by Bridgewater in 1996, and the

term was coined by Edward Qian in 2005. Qian (2005) argues that the investment portfolio
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should be risk-allocated instead of capital-allocated and that the traditional cross-asset heuristic

approach (traditionally 60% equity, 40% bonds) is sub-optimal in terms of diversification. In

addition, he argues that the risk contribution from stocks in the aforementioned portfolio is

more significant than the risk contribution from bonds, implying that the potential majority loss

would likely come from equities rather than bonds in a downturn. Ilmanen and Villalon (2012)

contributes empirical grounds for this theoretical assumption and shows that the typical 60/40

equity/bonds portfolio has around 90% risk contribution attributed to equities.

By making sure that the loss contribution is the same for all components, the concept of risk

contribution and its economic interpretation thus leads to the development of the Equal Risk

Contribution (ERC) portfolio, which evenly allocates risk among different assets. Qian (2005)

argues that if one subscribes to the philosophy that risk is indeed the true diversification factor,

then the equal risk portfolio is the most diversified portfolio.

2.7.2.1 Equal Risk Contribution Portfolio

To understand the properties of the equal risk contribution (ERC) portfolios, Maillard et al.

(2008) first define the marginal and total risk contributions of the different assets in the portfolio.

They define the marginal risk contribution as the change in total risk if wi increases by a small

amount. Using this definition, the marginal risk contribution of asset i can be expressed as

MRCi =
∂σ(w)

∂wi
=

(Σw)i
2w>Σw

, (2.62)

where (Σw)i is the ith row of the vector from the product of Σ with w (Maillard et al., 2008).

Using this, the total n marginal risk contributions in the vector can be defined as

MRC =
∂w

σ(w)
. (2.63)

Intuitively, the total risk contribution of asset i can then be calculated by how much its risk is

allocated into that asset, multiplied by its marginal risk contribution. The total risk contribution

for asset i can thus be defined as the share of the total portfolio risk

RCi = wi
(Σw)

σ(w)
= wiMRCi. (2.64)

Maillard et al. (2008) asserts that the volatility is a homogeneous function of degree 1 and thus

satisfies Euler’s theorem and can be reduced to the sum of its arguments multiplied by their first

partial derivatives. Following the methodology as presented by Maillard et al. (2008), the total
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risk of the portfolio can be defined as

TR =
∑

RCi = w>
Σw

σ(w)
= Σw>Σw (2.65)

Using the above definitions, the ERC portfolio can be constructed. As equal risk contribution

implies that all assets should contribute an equal amount of risk to the total portfolio, the

allocated capital is going to be determined by how risky the individual assets are. Following

the methodology as presented by Maillard et al. (2008) for a long-only portfolio, the equal risk

contribution portfolio problem must satisfy

wERC =
{
wi ≥ 0 : w>1 = 1, wi(Σw)i = wj(Σw)j ∀i, j = 1 . . . n

}
(2.66)

Maillard et al. (2008) emphasize that the above problem can be solved in different ways depending

on assumptions of volatility and correlations. They consider three different scenarios for a portfolio

of n > 2 assets;

1. Different volatilities but equal correlation

2. Different correlation but equal volatilities

3. Different volatilities and different correlations

In the first scenario, Maillard et al. (2008) assumes that the correlation between all assets are

the same. The total risk contribution of component i can thus be written as

σi(w) =
w2
i σ

2
i + ρ

∑
j 6=iwiwjσiσj

σ(w)
. (2.67)

The Equal Risk Portfolio is defined by σi(w) = σj(w) for all i, j. Using the fact that the

constant correlation verifies that ρ ≥ − 1
n−1 , Maillard et al. (2008) show that this is equivalent to

wiσi = wjσj . Under these assumptions, the portfolio is the inverse-volatility portfolio, with the

weights for asset i derived as

wi =
1/σi∑n
j=1 1/σj

(2.68)

This is an intuitive solution as the weight allocated to an asset is inversely proportional to its

volatility, allocating more weight to lower volatility assets as compared to high volatility assets.

However, in the end, it is a naive solution that ignores any effects of potential cross-correlations.

In the next case, Maillard et al. (2008) assumes that the volatility of each asset is equal, but that

their correlations differ, i.e., σi = σ for all i. By employing the same process as in the previous
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case, they derive the weight of asset i as:

wi =
(
∑n

k=1wkρik)
−1∑n

j=1 (
∑n

k=1wkρjk)
−1 (2.69)

Maillard et al., 2008 propose that because wi is a function in and of itself, there is no clear

solution to the above equation and thus no clear solution to the equal risk portfolio under the

assumption that the volatility between assets is the same and correlations are different.

In the third and final case, Maillard et al. (2008) considers the case where both volatilities and

correlations are different for each asset. The covariance between the return asset i and the return

of the assets in the portfolio is given by

σiw = cov

ri,∑
j

wjrj

 =
∑
j

wjσij . (2.70)

The risk contribution of asset i can thus be expressed as

RCi =
wiσiw
σ(w)

. (2.71)

Maillard et al. (2008) then introduces the beta βi of asset i with the portfolio and defines it

as βi = σiw
σ2(w)

. By combining this with the formula above, the follow expression for the risk

contribution for asset i can be defined as

RCi = wiβiσ(w). (2.72)

Applying the same thought process as in the previous cases, the authors finds that the weight of

each asset in the equal risk portfolio is going to be defined by

wi =
β−1i∑n
j=1 β

−1
j

=
β−1i
n
. (2.73)

The above expression shows that the weight attributed to asset i is going to be inversely

proportional to its beta. The higher the beta, the lower the weight, and vice versa. This implies

that assets with high volatility or high correlation with other assets are penalized. Finding a

solution for the above expression has no known analytical closed-form solution, and instead
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requires a numerical solution to solve the given optimization objective

wERC = argmin f(w)

s.t. w>1 = 0

wi ≥ 0,

(2.74)

where the objective function f(w) is to minimize the variance of the risk contributions, given by

the formula

f(w) =
n∑
i=1

n∑
j=1

(wi(Σw)i − wj(Σw)j)
2 . (2.75)

Spinu (2013) proposes an alternative method to solve the problem, with similar solutions provided

by Bai, Scheinberg, and Tutuncu (2016). In this case, the minimization problem can be reduced

to an unconstrained quadratic optimization problem

x∗ = argmin
x

1

2
x>Σx−

N∑
i=1

bi log(xi), (2.76)

where the marginal risk contributions are defined as

MRCi(x) ≡ bi = 1/n. (2.77)

The above solution optimize the function with regards to the vector x∗. This vector can be

considered the unbounded weights, and the final solution is derived by normalizing it between 0

and 1 through

wERC =
x∗∑n
i x
∗
i

. (2.78)

Qian (2005) found empirical evidence for why one should allocate volatility instead of capital.

While the risk-parity methodology can be applied to a large number of asset classes, the author

chose to focus on how much capital should be invested into Equity/Bonds to demonstrate his

point. Instead of investing 60/40 in Equity/Bonds, they found that by employing the RP

methodology, they would instead invest 23/77 in Equity/Bonds. Table 2.1 further illustrates

these findings.

Russel 1000 Lehman Agg 60|40 Parity Parity (L)
Average 8.3% 3.7% 6.4% 4.7% 8.4%
Standard Deviation 15.1% 4.6% 9.6% 5.4% 9.6%
Sharpe Ratio 0.55 0.80 0.67 0.87 0.87

Table 2.1: Returns Characteristics of Indices and Portfolios: 1983-2004 Source: Qian (2005)

33



As shown, the Sharpe ratio of investing according to capital was lower than the Sharpe ratio of

individual bonds, which they attributed to poor diversification (as the overall portfolio’s Sharpe

is lower than one of its components). It can also be seen that the risk-parity portfolio has a

higher Sharpe than both of the comparative portfolios. As previously discussed, the RP-portfolio

is also trying to solve the problem of loss contribution to the portfolio and uses that as a measure

of diversification. Qian (2005) found that the RP-portfolio’s loss contribution was close to 50%

(48/52 for stocks versus bonds), which shows that this goal has also been achieved.

2.7.3 Maximum Diversification

While Qian (2005) argued that the true measurement of diversification is risk, he did not

offer any suggestion for how one could measure the diversification in said portfolio other than

attributing risk equally to the assets in the portfolio. Choueifaty (2006) introduced the Maximum

Diversification framework to academic literature and provided a ratio for how one could measure

the diversification in the portfolio. Choueifaty and Coignard (2008) expanded on this framework

by developing the maximum diversification (MD) portfolio. Choueifaty and Coignard (2008)

propose that markets are risk-efficient in terms of total risk measured in volatility, in contrast to

the CAPM assumption that only systematic, non-diversifiable risk is priced in. This method is

based on the diversification ratio (DR), serving as an efficient alternative to the minimum-variance

portfolio. Choueifaty, Froidure, and Reynier (2013) define the diversification ratio as the ratio of

the portfolios weighted average volatility to its overall volatility

DR =
w>σ√
w>Σw

, (2.79)

where w> is the vector of asset-weights and σ is the vector of asset volatilities,

n∑
i=1

wiσi = w>σ. (2.80)

This measurement works as a proxy for diversification because, in a long-only portfolio, the

volatility of the assets is less than or equal to the weighted sum of the assets’ volatilities as the

correlations are not perfectly positive. Thus, DR estimates the diversification that is gained by

holding assets that are not perfectly correlated (Choueifaty et al., 2013). It makes intuitive sense

that portfolios where the capital is spread out in a lot of uncorrelated assets also have a high

DR. (Choueifaty et al., 2013) formalize this intuition by decomposing the DR of a portfolio into
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its weighted-correlation and weighted-concentration measures AC and CR

DR =
1√

AC(1− CR) + CR
. (2.81)

AC is defined as the volatility weighted average correlation of the components in the portfolio

AC =

∑
i 6=j (wiσiwjσj) ρi,j∑
i 6=j (wiσiwjσj)

, (2.82)

and CR is the volatility weighted concentration ratio of the portfolio

CR =

∑
i (wiσi)

2

(
∑

iwiσi)
2 . (2.83)

A portfolio consisting of a single long position would have a CR of 1, while an equal volatility

weighted portfolio has the lowest possible CR, equal to the inverse of the number of assets it

contains. The DR of the portfolio therefore has an inverse relationship with AC and CR, and

increases following the decrease in any of the two. The most diversified portfolio is thus be given

by the case where the AC and CR are minimized.

2.7.3.1 Maximum Diversification Portfolio

Following the methodology of Choueifaty et al. (2013), the long-only maximum diversification

portfolio (MDP) can be constructed by maximizing the following problem

max
w

w>σ√
w>Σw

s.t. w>1 = 1

wi ≥ 0

(2.84)

An alternative optimization approach can be utilized, more in line with the minimum-variance

solution. Instead of maximizing the diversification ratio, the problem is instead stated as

min
x

1

2
x>Σ̂w

s.t. x>σ̂ = 1

xi ≥ 0.

(2.85)

The above optimization problem is thus stated as minimizing the variance, subject to the the

weights being non-negative, and the weighted volatilities all summing to one. The unbounded
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weights represented by the x vector is normalized between 0 and 1 by dividing each x by the

sum of the vector,

wMP =
x∑n
i xi

. (2.86)

Choueifaty et al. (2013) define the core properties of MDP:

1. Any stock not held by the MDP is more correlated to the MDP than any of the stocks that

belong to it. Furthermore, all stocks belonging to the MDP have the same correlation to it.

2. The long-only MDP is the long-only portfolio such that the correlation between any other

long-only portfolio and itself is greater than or equal to the ratio of their DR’s.

Consider a portfolio that has been built using Russell 3,000 stocks. The MDP portfolio might

hold 100 of these stocks, but it does not mean that the remaining 2,900 stocks have not been

considered. The reason that the portfolio does not hold more (or less) assets is that the other

stocks are more correlated to the MDP than the stocks it currently holds (Choueifaty et al.,

2013).

2.7.4 Equally-Weighted Portfolio

The equally-weighted portfolio is the portfolio where all assets are given the same weight, that is,

a weighted inverse to the number of assets in the portfolio

wi =
1

n
. (2.87)

The vector consisting of all the portfolio weights is defined as

wEW = (1/n, . . . , 1/n)>. (2.88)

Among others, DeMiguel et al. (2009) found substantial empirical grounds that despite its

simplicity, the equally-weighted portfolio tends to outperform more sophisticated strategies

regularly. More specifically, the authors find that of 14 models evaluated, the equally-weighted

portfolio is consistently a top performer in terms of Sharpe ratio, certainty-equivalent return, and

turnover in out-of-sample backtests. They propose that the gain made from optimal diversification

is more than offset by its estimation error, rendering many methods consistently performing

worse than this purely naive allocation method.
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2.8 Hierarchical Risk Parity

Hierarchical Risk Parity (HRP) proposed by López de Prado (2016) utilizes developments in

machine learning and graph theory to bypass the need for inversion of the covariance matrix,

a leading issue in estimation of weights in portfolio optimization. The source of the problem

can be attributed to the inherently unstable nature of matrix inversion of increasingly large

covariance matrices as the condition number increases from the absolute difference from the two

most extreme eigenvalues, as discussed in section 2.4. By relying on a more intricate algorithm,

HRP manages to avoid inverting the covariance matrix and can create efficient allocations

for ill-conditioned and even singular covariance matrices (López de Prado, 2016) following a

three-step process:

1. Hierarchical clustering

2. Matrix seriation

3. Naive recursive bisection

One should note that the recursive bisection proposed by López de Prado (2016) does not

incorporate any information about the hierarchies of the clustering results, only the ordering of

the leaf-nodes themselves. Thus, the formation of the binary tree produced is determined by the

number of assets and not the clusters or distances inferred by the hierarchical structure of the

binary tree. Therefore, this recursive bisection is referred to as naive recursive bisection.

2.8.1 Hierarchical Clustering

The original method, defined by López de Prado (2016), uses the Single Linkage applied through

the agglomerative hierarchical clustering algorithm. Using this linkage method yields the same

results as the Minimum Spanning Tree (MST), a method derived from graph theory. The original

approach proposed by López de Prado (2016) is enhanced in this paper using the optimal leaf

ordering algorithm introduced in section 2.6 to create more robust clusters in the recursive

bisection step.

2.8.2 Matrix Seriation

Matrix seriation is a statistical method used to reorganize rows or columns of a matrix to

enumerate them in an appropriate order. Eisen, Spellman, Brown, and Botstein (1998) highlights

how a data matrix can be reorganized efficiently using hierarchical clustering methods by
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enumerating the columns according to the order of the leaves. In this way, the seriation method

sorts the correlation matrix using information obtained from the hierarchical clustering method.

Figure 2.7: Illustration of the seriation of a covariance matrix using hierarchical clustering

López de Prado (2016) uses seriation as a way to rearrange the rows and columns of the covariance

matrix into a more diagonalized representation by aligning the highest covariances along diagonal.

In this way, similar investments are placed closer together and dissimilar investments further

apart. The author refers to this structure as quasi-diagonal as higher covariance values are placed

closer to the diagonal, and argues that the inverse-variance allocation is optimal in this case.

Raffinot (2018) propose that this fact also can be expressed as the Equal Risk Contribution

(ERC) defined in section 2.7.2 as it produces the same weight allocation while also relaxing the

assumption of the cross-correlations being zero.

2.8.3 Naive Recursive Bisection

The recursive bisection algorithm uses information from the two previous steps to allocate weights

to the assets in the portfolio. First, a list of items is initialized to represent the clusters

C = {C0} with C0 = {n}n=1,...,N . (2.89)

Next, the between-cluster weights are initialized for each asset to 1

Wn = 1 ∀n = { 1, . . . , N}. (2.90)

The naive recursive bisection method assumes a binary tree where clusters are recursively split

into two equally-sized sub-clusters C1 and C2. Let Σi be the covariance matrix for cluster Ci.
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The cluster variance can then be determined as

Vi = w>i Σiwi, (2.91)

where wi is the vector of wn ∀n ∈ Ci, and where the weight of each asset n is determined by the

intra-cluster inverse-variance allocation

wn =
1/σ2n∑N
j=1 1/σ2j

. (2.92)

The relative weight given to each of the sub-clusters C1 and C2 are determined by a split factor,

α1 and α2, calculated using the inverse-variance allocation between the two clusters, which for

two assets simplifies to their relative variances

α1 = 1− V1
V1 + V2

α2 = 1− α1

(2.93)

where V1 is the cluster variance of C1, and V2 is the cluster variance of C2. The weights in the

sub-clusters, defined as W1 and W2, are then updated according to the split factor

W1 := α1 ×W1

W2 := α2 ×W2.
(2.94)

The procedure is recursively executed from the top cluster that contains all assets until each

asset is in its cluster. In this way, the weights are allocated in a top-down manner, where asset

weights are based on both intra-cluster risk and inter-cluster risk.

In his original paper, it should be noted that the HRP portfolio is computed using the Single

Linkage algorithm. Raffinot (2017) found that the HRP performance deteriorates with the use of

other linkage methods.

2.9 Hierarchical Equal-Risk Contribution

Hierarchical Equal-Risk Contribution (HERC) is a clustering based portfolio allocation method

introduced by Raffinot (2018) aimed to build onto his previous work on the Hierarchical-Based

Asset Allocation (Raffinot, 2017) by augmenting it with the recursive bisection approach presented
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by López de Prado (2016). It follows a similar structure to the HRP method and uses the following

steps:

1. Hierarchical correlation clustering

2. Estimation of optimal number of clusters

3. Hierarchical recursive bisection-based weight allocation between clusters

4. Naive risk parity weight allocation within clusters

In addition to variance-based risk metrics for allocation, Raffinot (2018) extends the HERC

methodology to cover conditional value at risk (CVaR) and conditional drawdown at risk (CDaR).

However, this study only focus on the case with variance-based risk.

The main differentiator between HRP and HERC is how the recursive bisection is carried out.

HRP assumes a naive approach where the dendrogram produced by the clustering step is ignored,

and only the structure of the leaf-nodes is taken into account. HERC extends the naive approach

found in HRP by splitting the bisections according to the dendrogram, thus avoiding splitting

natural clusters up.

Figure 2.8: Assets divided into 2 clusters implied by naive recursive bisection on the left, and
clusters implied by hierarchical recursive bisection on the right

Raffinot (2018) found that the HERC portfolio provides statistically better risk-adjusted

performances than common portfolio optimization techniques. In contrast to the HRP portfolio,

Raffinot (2018) found that Ward’s Method yields the best results for HERC. Below, the four

steps are examined in further detail.
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2.9.1 Hierarchical Clustering

The hierarchical clustering follows the theory outlined in 2.6. The full tree graph is created using

the agglomerative hierarchical clustering algorithm which, is then used to sort the covariance

matrix (equivalent to matrix seriation).

2.9.2 Optimal Number of Clusters

The estimated optimal number of clusters is derived from the Gap Statistic (Raffinot, 2018),

previously examined in section 2.6. The optimal number of clusters determines how deep the

recursive bisection goes in the subsequent recursive bisection step.

2.9.3 Hierarchical Recursive Bisection

The information retrieved from all previous steps is used to allocate weights to the assets in

the portfolio using the recursive bisection. The method is similar to that of HRP, but use the

dendrogram structure to infer the cluster structure instead of a equally-sized approach. First, a

list of items is initialized to represent the clusters

C = {C0} with C0 = {n}n=1,...,N (2.95)

Next, the between-cluster weights are initialized for each asset to 1

Wn = 1 ∀n = { 1, . . . , N}. (2.96)

As previously stated, the hierarchical recursive bisection uses the dendrogram derived from the

hierarchical clustering step to bisect each cluster into sub-clusters C1 and C2 until the optimal

number of clusters k is reached. The cluster weights are calculated according to the ERC

allocation

α1 =
RC1

RC1 +RC2
, α2 = 1− α1. (2.97)

RCi represents the risk contribution of each cluster, defined as the cluster variance

RCi = w>i Σiwi, (2.98)

where wi is the vector of wn ∀n ∈ Ci. The weight of each asset n is determined by the intra-cluster

inverse-variance allocation

wn =
1/σ2n∑N
j=1 1/σ2j

. (2.99)
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The weights W1 and W2 in the sub-clusters C1 and C2 are then updated according to the split

factor.
W1 := α1 ×W1

W2 := α2 ×W2

(2.100)

This procedure is recursively executed from the top cluster that contains all assets until it reaches

the estimated optimal number of clusters k∗ determined by the Gap statistic.

2.9.4 Within-Cluster Weight Allocation

In the last step, the between-cluster weights are multiplied with the within-cluster weights

to derive the weight of each asset. First, define the within-cluster weights wi of each cluster

Ci ∈ [1, . . . , k∗], where wi is the vector of wn ∀n ∈ Ci, and where the weight of each asset n is

determined by the intra-cluster inverse-variance allocation

wn =
1/σ2n∑N
j=1 1/σ2j

. (2.101)

Let W be the vector of all between-cluster weights and w be the vector of all within-cluster

weights, then the weight for each asset can be determined as

wHERC = W ·w (2.102)

2.10 Nested Clustered Optimization

Nested Clustered Optimization (NCO) introduced by López de Prado (2019) is a machine

learning-based approach to tackle the structural problems of covariance instability in modern

portfolio theory. The end-goal of the method is to reduce the ill-conditioned optimization problem

into several smaller and more well-behaved sub-problems. The algorithm can be broken down

into four steps:

1. Correlation clustering

2. Estimation of optimal number of clusters

3. Intra-cluster weight allocation

4. Inter-cluster weight allocation
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2.10.1 Correlation Clustering

López de Prado (2019a) utilizes a K-means clustering algorithm for correlation clustering. For the

sake of comparability between NCO, HRP, and HERC, the agglomerative hierarchical clustering

method is instead applied in this thesis, following the theory outlined in 2.6.

2.10.2 Optimal Number of Cluster

The results from the hierarchical clustering step are used in conjunction with the optimal number

of clusters to split up the covariance matrix into several cluster-based covariance matrices. The

optimal number of clusters are estimated using the method outlined in section 2.6.3.

2.10.3 Within-Cluster Weight Allocation

Each cluster-based covariance matrix derived from the previous step is separately allocated

within-cluster weights according to the applied portfolio optimization method. In the author’s

original example, the unconstrained minimum-variance allocation is used

wi =
Σ−1i 1

1>Σ−1i 1
, (2.103)

where Σi represents the the covariance matrix for cluster i. However, López de Prado (2019a)

states that the allocation method is flexible to the actual underlying allocation method, and

nothing prevents the use of any alternative method outlined in section 2.7, or other portfolio

optimization methods.

2.10.4 Between-cluster Weight Allocation

The third and final step is to compute the inter-cluster weights. Let Σi be the covariance matrix

for cluster Ci. The cluster variance Vi can then be determined as

Vi = w>i Σiwi (2.104)

The within-cluster portfolio variance of each cluster is then used to construct the reduced

covariance matrix

Σ =


V1 v12 . . . v1n

v21
. . . . . .

...
...

...
. . .

...

vn1 . . . . . . Vn

 (2.105)
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where n is the number of clusters and vij is the covariance between cluster i and j. The reduced

covariance matrix is used to compute the minimum-variance allocation from equation 2.103

between the clusters

W =
Σ−11

1>Σ−11
. (2.106)

Let w be the combined vector of within-cluster weights for all assets determined in the previous

step. The within-cluster weights and the between-cluster weights can then be used to compute

the asset weights as

wNCO = W ·w. (2.107)

López de Prado (2019a) argues that since similar assets are reduced to clusters, the reduced

covariance matrix is by construction closer to a diagonal matrix, and thus closer to the optimal

solution of the original convex optimization proposed by Markowitz (1952).
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3 Data

In this section, the applied investment universe is presented, followed the data collection and

data processing procedures to acquire and clean the data. Secondly, the risk-free rate is discussed.

Third and Finally, the synthetic data generation methodology for the Monte Carlo method is

presented.

3.1 Sample Selection

The data selection in this study is based on a sample of 4,677,831 observations of daily pricing

data on U.S. equities featured in the S&P 500 index between the period 1990-01-02 to 2020-01-17.

Once included in the index, the constituents are kept as available assets throughout the timeline

as long as they fulfill the other criteria, described further in section 3.2.

The timeframe was chosen to balance the trade-off being representative of future performance

and to cover different macroeconomic regimes and tail events. The future market expectations

compared to historical returns are found to have higher correlations as the historical returns are

closer to the present time, which warrants a more narrow timeframe to be utilized (Greenwood

& Shleifer, 2014). However, the timeframe between 1990 and 2020 includes several significant

macroeconomic events, including but not limited to the Tech-Bubble around 2000 and the 2008

Financial Crisis, increasing the validation of empirical results over a wider range of market

regimes.

3.1.1 Investment Universe

All historical constituents of the S&P 500 between the beginning of January 1990 to the mid

January 2020 have been included. The main reason to use U.S. equity in general, and the S&P

500 constituents, in particular, is that this market represents the largest and most liquid capital

market in the world. Figure 3.1 illustrate this point by contrasting the relative size of the U.S.

equity market with the eight other largest equity markets around the world.

To research how capital can be allocated efficiently in a more robust and higher performing

fashion, the liquidity and size of the market create a solid foundation upon which empirical

findings can be well-grounded. Another key reason for restricting the study to the U.S. equity
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Figure 3.1: U.S market share of world equity capital markets

Source: Credit Suisse (2020)

market is that it eliminates currency risks and reduces complexity in data-handling of currency

exchange effects.

All historical constituents in the S&P 500 index from January 2nd 1990 until January 17th 2020

are included to mitigate potential survivorship-bias and look-ahead bias. Survivorship bias is

defined as the logical fallacy of concentrating on the stocks that still exist today to predict future

performance. If only current constituents were to be included, the investment universe would be

overrepresented by ‘winners’ as opposed to ‘losers’.

A minimum data requirement of 24 months of data has been applied to take the correlation and

covariance estimation in the portfolio allocation method into account. In addition, for an asset

to be included in the rebalancing, 24 prior months need to be available for the same reason.

3.1.2 S&P 500 General Information

S&P 500 includes the largest 500 listed companies in the U.S. equity market. The index is

capitalization-weighted, meaning that its market capitalization determines the weight of each

asset as a fraction of the total market capitalization of all 500 companies. The S&P 500 covers

46



approximately 80 percent of the total market capitalization of the U.S. stock market, thus

representing the overall U.S. equity market reasonably well.

There are several versions of the S&P 500 index; price return as well as the total return index.

The difference between these two is that the total return index includes total reinvestment of

any cash distributions from the assets. For this thesis, the equally-weighted total return index is

used to assess the actual performance of holding the assets, included as a benchmark portfolio in

the empirical results. To be included in this index, the stocks have to fulfill several criteria that

are included in Appendix A1.

Figure 3.2: Historical Price Fluctuations of the SP 500 Capitalization-Weighted Total Return
Index

Source: Thomson Reuters Eikon (2020)

3.2 Data Collection and Data Processing

The price and return data used were obtained from Compustat North America Security Daily

and cover the asset universe of the total constituents in the index from January 2nd, 1990 to

January 17th, 2020. The gross investment universe was filtered in several steps to get the net list

of assets used. First, companies that changed ticker over the investment horizon was merged

into a single issue. Secondly, companies with several issues of common stocks were reduced to a

single stock, with a heuristic selection process primarily based on the availability of pricing data
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of the issue (number of days with price data) and secondary on the liquidity of the issue based

on trading volume. Thirdly, companies with less than 24 months of available price data were

removed. Finally, missing price data was forward filled from the previous most recent day of

available price data for the same stock.

From the original gross universe of 1620 assets, 688 issues of duplicate listings were removed.

In addition, 3 listings representing the same asset were merged. Finally, 26 listings with less

than 24 months of price data were removed. This results in a net universe of 903 assets. Also,

the price data is adjusted for corporate actions that affect the market price but not the value

of the investment return such as dividends, share repurchases, spinoffs, and stock splits. The

daily adjusted closing price is thus calculated taking the actual closing price and adding back

any effect from above said actions.

3.3 Risk-Free Rate

There is no consensus regarding the choice of the risk-free rate, and the different frequently used

rates for the U.S. market include the 10Y-government bond, 5Y-government bond, 2Y-government

bond, 3-month LIBOR, 1-month LIBOR and the Overnight Index Swap (OIS).

The reason that the 10Y-government bond, 5Y-government bond, or 2Y-government bond are

not used as a proxy for the risk-free rate is because of their time uncertainty. A rate that is 10, 5,

or 2 years down the line is riskier than it would be for the other rates that were mentioned. This

can also be seen by looking at the yield levels for the different interest rates. It is important to

mention that the 10-year yield level is not always higher than the other mentioned bonds. One

metric that is heavily quoted in the media, is that during uncertain times, the 10-year government

bond yield is lower than the 2-year government bond yield, which implies that investors feel like

the short term risk (2 years) is higher than the long term risk (10 years) and thus require higher

compensation. This is also true for the other rates that are mentioned, during times of crisis,

the dynamics for the different rates changes. For example, Duffie and Stein (2015) showed that

during the financial crisis in 2008, the spread between the 3-month Overnight Index Swap and

3-month LIBOR widened.

The 1-month LIBOR is used as a proxy for the risk-free rate in this paper. LIBOR is short

for London Interbank Offered Rate and is an unsecured short-term borrowing rate between

48



banks. The maturity times range from one single day to a year and serve as a reference rate

for transactions throughout the world. LIBOR rates are compiled by asking 18 global banks

to provide quotes estimating the rate of interest at which they could borrow funds from other

banks at 11:00 A.M. UK time. The highest four and lowest four values are discarded, and the

remaining ones are averaged to determine the rate.

3.4 Synthetic Data Generation

In addition to the historical price data from the S&P 500 constituents, additional data are

synthetically created for the Monte Carlo method experiments for robustness tests and theoretical

asymptotic results. The created returns are then fit to follow a multivariate Gaussian distribution

with covariance matrices created in two different ways. First, block-diagonal correlation matrices

are constructed that represents the theoretically true correlation matrix, which is used to measure

the difference in weight allocation between the true and the empirically observed correlation

matrix. Secondly, correlation matrices are generated through a Deep Learning algorithm, trained

using observed correlation structures in the S&P 500 constituent returns to form realistic but

not historically bound correlation structures. The correlation matrices are then used to infer a

covariance matrix used by the portfolio optimization methods.

3.4.1 Block-Diagonal Correlation Matrix

The block-diagonal correlation matrix represents a stylized representation of the true correlation

matrix of the S&P 500, highlighting the hierarchical correlation structure within clusters. This

is achieved by creating one or several clusters of assets that have a non-zero correlation within

the cluster, and zero correlation outside the cluster, and where each block is placed along the

diagonal of the matrix.

In addition to the originally proposed correlation matrix an additional more realistic block-

diagonal correlation matrix is applied. Initially, a random number of clusters between 5 and 10 is

produced of varying sizes that sums to 100 assets. Furthermore, the clusters are placed along the

diagonal to form the correlation matrix with non-zero between-cluster correlations. An example

correlation matrix with 5 clusters is illustrated on the right-hand-side in Figure 3.3.

From the above described correlation matrices, a true covariance matrix can be inferred using the

methodology from López de Prado (2020). First, the columns are randomly shuffled to hide the
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Figure 3.3: Heatmap of a Block-Diagonal Correlation Matrix of 100 assets

cluster structure. Then, the variance applied to the covariance matrix is drawn from a lognormal

distribution fitted to the distribution of volatility of the S&P 500 return data described in section

3.1. Using this method, two highly stylized examples of a financial covariance matrix can be

constructed and used to infer the estimation error in empirical tests.

3.4.2 CorrGAN

Marti (2019) introduced a novel approach to solve the problem of generating realistic financial

correlation matrices, referred to as CorrGAN. The method applies a Generative Adversarial

Network (GAN) to generate artificial but realistic correlation matrices by learning the implicit

general structure of the training sample, which in this case, is the empirical correlation matrices.

To better understand the process, the general methodology of GAN is first examined.

In a Generative Adversarial Network, proposed by Goodfellow et al. (2014), two models are

trained simultaneously by an adversarial process. A generative model G learns to capture the

data distribution, and a discriminative model D learns to tell the real data distribution apart

from the one generated by G. During training, G becomes incrementally better at replicating

the distributions from the training data, while D become better at telling them apart. This

continues until an equilibrium is reached where D can no longer distinguish the real empirical

distributions in the training data from the synthetically created ones.

The empirical correlation matrices used as training data are generated from the S&P 500 returns

sorted using the hierarchical clustering and matrix seriation techniques explained in section 2.7.

The sampling window is reduced from the full timeline to the last 6 years of return data. This

limitation of the timeframe used was made to better reflect the hierarchical structure and the
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stylized facts of correlation matrices by today’s standard. The sample correlation matrices were

generated using 504 days (approximately 2 years) of return data taken from a random starting

time within the sampling window. Within that window, assets with missing return data are

removed, and from that subset, 100 assets are randomly sampled.

From the training data, the CorrGAN algorithm is trained over 13,000 iterations to converge

towards the realistic samples collected. The generated matrices from the model are, however,

not correlation matrices as their diagonal is not precisely equal to one, and the matrices are not

perfectly symmetric. The generated matrices are therefore post-processed using an alternating

projection method to find the “nearest” theoretically correct correlation matrix (Marti, 2019).

This is achieved using the method formalized by Higham (2002) using the notion of nearness

from a weighted Frobenius norm to compute the nearest correlation matrix.

Figure 3.4: Comparison of heatmap of empirically observed correlation matrix to the left and
synthetically created correlation matrix to the right.

Figure 3.4 depicts the side-by-side comparison between an empirical correlation matrix from the

training data (left) and a synthetic correlation matrix generated from the CorrGAN method

(right). From the correlation matrix derived through the CorrGAN method, a covariance matrix

is inferred using the same methodology as described in section 3.4.1, where the columns are

randomly shuffled and a standard deviation is applied from a lognormal distribution fitted to the

observed S&P 500 volatility of returns.
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4 Method

This chapter presents the research approach applied in the thesis Furthermore, the practical

implementation of the theoretical frameworks is described. Finally, the implementation of the

Monte Carlo method and the historical backtesting methodology is illustrated.

4.1 Research Method

4.1.1 Research Approach

A quantitative method was chosen to best investigate the problem of the thesis. The quantitative

research approach emphasize on the quantification the collection and analysis of data, subsequently

used to testing formalized theories and hypotheses (Bell, Bryman, & Harley, 2018). Furthermore,

a deductive approach was applied as a clear hypothesis and theoretical framework could be

formalized, and subsequently tested using gathered empirical data. From this, the research

approach can be broken down into three steps. First, the previous literature was studied. Secondly,

the initial reading of existing theories, an initial hypothesis regarding the result of the study was

developed. Third and finally, the proposed hypothesis was tested following the methodology

presented in this section.

4.1.2 Research Perspective

The paper is aims to replicate the behavior and focus of an institutional investor. Investment

institutions can be entities such as pension funds, banks, among others, that provide financial

services and advice to individuals through a pooled investment vehicle. In practice, several

investment restrictions are implemented to better reflect the nature of the practical applicability

of the investment strategies. All assumptions and restrictions regarding data is presented in

section 3, and the practical implementation of the investment methods are presented further in

the methodology.

4.1.3 Research Model

The research is conducted with an emphasis on the possible benefits of the hierarchical clustering

in portfolio optimization, benchmarked, and contrasted to more traditional non-hierarchical
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methods. The empirical testing and evaluation of the different methods are conducted using

Monte Carlo methods together with a walk-forward historical backtest.

4.2 Calculation Methodology

In this section, the methodology of calculating returns, volatility, and the covariance matrix are

presented. All calculations are implemented using the Numpy and Pandas packages in Python.

The estimated return over any given period is calculated using the multiplicative geometric

return, defined as

rt,n = (1 + rt+1) (1 + rt+2) . . . (1 + rt+n)− 1, (4.1)

where r is the simple rate of return rt = Pt/Pt−1 − 1, and n is the number periods observed.

From this, the average return is defined as

µi =

(
T∏
t=1

(1 + rit)

) 1
T

− 1 (4.2)

where T defines the number of periods. As the observed returns are measured on a daily basis,

this metric would indicate the daily geometric average return. However, it can also be stated in

annualized form as

µi =

(
T∏
t=1

(1 + rit)

) 252
T

− 1, (4.3)

where 252 represents all trading days over a year calendar year. When calculating the variance and

standard deviations, the standard implementation in Python has been implemented. Using this,

the formula provides the maximum likelihood estimate of the variance for normally distributed

variables using the following formula

σ2i = Var(ri) =
1

T

T∑
t=1

(rit − r̄i)2 (4.4)

From this, the standard deviation can be derived, representing the statistical measure of asset

volatility, which measures how widely the prices are deviating from the average price of the

asset. As with variance, the maximum likelihood estimation is applied to the standard deviation
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calculation, and can thus be defined as

σi = Std(ri) =
√
σ2i (4.5)

The covariance matrix is implemented using the following definition

ρij = cov(ri, rj) =
1

T

T∑
t=1

(ri − r̄i)(rj − r̄j). (4.6)

The correlation matrix follows the Pearson product-moment correlation coefficients and can be

expressed as the normalized and demeaned covariance matrix

ρij = corr(ri, rj) =
σij
σiσj

. (4.7)

The shrinkage estimation applied to the covariance matrix follows the theory by Ledoit and

Wolf (2004) and is implemented in Python using the PyPortfolioOpt package using the constant

correlation model assumption.

4.3 Hierarchical Clustering

The agglomerative hierarchical clustering algorithm used for the hierarchical clustering-based

portfolio optimization methods is implemented using the Scipy package in Python, following

the structure outlined by Müllner (2011). This creates all necessary calculations and output in

terms of creating the binary tree and the optimal leaf ordering. However, before computing the

clusters, the sample correlation matrix has to be converted to Euclidean distances

dij =

√
1

2
(1− ρij). (4.8)

The distance matrix is then applied to get the pairwise distances, defined as

d̃ij = d̃[Di, Dj ] =

√√√√ N∑
n=1

(dni − dnj)2. (4.9)

The pairwise distances are subsequently used as input to the hierarchical clustering algorithm.

The linkage methods used in the study are restricted to three of the four methods outlined in

section 2.6, as they are closest to the original implementations:
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• Single Linkage

• Average Linkage

• Ward’s Method

The output of the algorithm is a binary tree that covers all clustering levels from one cluster

covering all N assets, to N singleton clusters, each containing one single asset. However, this

method does not include the estimation of the optimal number of clusters, and the implementation

of this method is therefore described in the following section.

4.3.1 Optimal Number of Clusters

Estimation of the optimal number of clusters k∗ for the hierarchical clustering is computed

using the theory outlined in section 2.6.3. Using this method, the within-cluster distances of the

empirically observed data are computed according to

Wk =

k∑
r=1

1

2nr
Dr,

where the sum of pairwise distances for all points in cluster r, Dr is defined as

Dr =
∑
i,i′∈Cr

dii′ . (4.10)

The pooled within-cluster sum of squares Wk is then subsequently used to compute the optimal

number of clusters. As the original implementation of the Gap statistic is computationally

expensive, the alternative method provided by Yue et al. (2008) is used, using the maximizing

function
max
k

{Wk − 2Wk+1 +Wk+2}

s.t. 1 ≤ k ≤
√
n.

(4.11)

The above method takes the second-order difference to find where the largest gain can be achieved.

This method is used over the original GSI, as the computational cost is considerably lower, and

therefore allows for more robust testing given the timeframe of the study.
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4.4 Traditional Portfolio Allocation Methods

The traditional long-only portfolio allocation methods examined in this study are all solved using

a numerical method (with the exception of the equally weighted and inverse-variance portfolios).

All of the objective functions can be stated as a convex function of the weights given the supplied

covariance matrix is positive semi-definite, and can thus be solved using convex optimization

techniques through the Cvxpy package in Python. The full implementation of all portfolios can

be found in Appendix A3.

4.4.1 Minimum-Variance Portfolio

The long-only constrained minimum variance portfolio is derived using the aforementioned

method using the following objective function

min
w

1

2
w>Σ̂w

s.t. w>1 = 1

wi ≥ 0

(4.12)

The above expression can be summarized to minimize the expected variance of the portfolio, given

the constraints that the weights have to sum to one and that all weights have to be non-negative.

4.4.2 Equal Risk Contribution Portfolio

For the long-only equal risk contribution portfolio, the original constrained minimization problem

can be reduced to an unconstrained quadratic optimization problem

min
x

1

2
x>Σ̂x−

N∑
i=1

bi log(xi), (4.13)

where the marginal risk contributions are defined as

MRCi(x) ≡ bi = 1/n. (4.14)

To find the final weights, the unbounded x vector is normalized between 0 and 1 by dividing

each x∗ by the sum of the vector, defined as

wERC =
x∑n
i xi

. (4.15)
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The above expression can be summarized as finding the long-only portfolio with minimum

variance that satisfies all assets contributing to the same risk, all weights being positive, and

finally, all weights summing to one.

4.4.3 Maximum Diversification Portfolio

The objective of the maximum diversification portfolio (MD) is to maximize the diversification

ratio, DR, using an optimization defined as

max
w

w>σ̂√
w>Σ̂w

s.t. w>1 = 1

wi ≥ 0

(4.16)

To ensure that the problem is solvable using convex optimization, the above maximization

problem is restated as the below given minimization problem.

min
x

1

2
x>Σ̂w

s.t. x>σ̂ = 1

xi ≥ 0.

(4.17)

Just as in the case of the ERC portfolio, the unbounded weights represented by the x vector is

normalized between 0 and 1 by dividing each x by the sum of the vector,

wMP =
x∑n
i xi

. (4.18)

4.4.4 Inverse-Variance Portfolio

The inverse variance portfolio is a simplified form of the minimum variance portfolio, disregarding

any assumption of correlation between assets. This portfolio can be constructed using an

analytical form, following the below given equation

wIV =
tr(Σ̂i)

−1∑
i tr(Σ̂i)−1

, (4.19)

where tr(·) represents the trace operator that isolates the diagonal values of the covariance matrix,

measuring only the variance of each asset.
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4.4.5 Equally-Weighted Portfolio

The equally-weighted portfolio for n assets is implemented using a simple 1/n weighting. For

comparison reasons, it uses the same requirement of 24 months of historical data to be eligible

for being included in the investment universe n at any given time t.

4.5 Clustering-based Portfolio Optimization Methods

The three included cluster-based allocation methods contain many similar or identical methods and

structures. The starting step for all methods includes correlation clustering, with methodology

following section 4.3. After this, the methods diverge. HRP and HERC follow a waterfall

weight allocation approach, where weights are distributed in a top-down manner using the

recursive bisection scheme, further presented in the next sub-section. NCO follow an approach

where both between-cluster and within-cluster allocation is determined traditional portfolio

optimization methods, broken up into sub-problems, and merged into a final allocation. Below,

the implementation for each method are discussed in more detail, and the full implementation in

Python is provided in Appendix A3.

4.5.1 Hierarchical Risk Parity

The Hierarchical Risk Parity (HRP) portfolio is applied through a three-step process, following

the theoretical framework presented in section 2.8. In contrast to the original implementation,

the hierarchical clustering methodology is extended using the optimal leaf ordering algorithm,

applied through the Scipy package. Below, each step is outlined in terms of the implementation

steps.

Step 1: Hierarchical Clustering

First, the correlation matrix is used to form clusters using the agglomerative hierarchical clustering

algorithm, implemented in accordance with section 4.3, including the addition of the optimal leaf

ordering algorithm to ensure the assets within the equally-sized clusters are as similar as possible.

Step 2: Matrix Seriation

Second, the asset order implied by the leaf order from the hierarchical clustering is applied to the

covariance matrix, reordering the portfolio so that more similar assets are placed closer together.
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Step 3: Naive Recursive Bisection

Third, the re-ordered covariance matrix is used in the naive recursive bisection step to allocate

weights by recursively bisecting the covariance matrix into equally-sized sub-clusters until each

asset is in its own unique cluster, following the steps below.

1. The algorithm is initialized by:

(a) Set the list of items C = {C0} with C0 = {n}n=1,...,N

(b) Initialize asset weights as wn = 1,∀n ∈ [1, . . . , N ]

2. If |Ci| = 1 ∀Ci ∈ C, then stop.

3. For Ci ∈ C such that |Ci| > 1

4. Split Ci into subsets C1
i ∪ C2

i , where |C1
i | = int[0.5|Ci|]

(a) Define the in-cluster weights of C(j)
i as w(j)

i = tr[Σ̂
(j)
i ]−1∑

i tr[Σ̂
(j)
i ]−1

(b) Define the variance of C(j)
i as V j

i = w
(j)>
i Σ̂

(j)
i w

(j)
i for j = 1, 2

(c) Compute split factor α1 = 1− V 1
i

V 1
i +V 2

i
, α2 = 1− α1

(d) Re-scale allocations wn ∀n ∈ C1
i by a factor of α1

(e) Re-scale allocations wn ∀n ∈ C2
i by a factor of α2

5. Loop step 2

4.5.2 Hierarchical Equal Risk Contribution

The Hierarchical Equal Risk Contribution (HERC) portfolio is applied through a four-step process.

It involves the similar process as in the HRP implementation, but with the additional step of

implementing the optimal number of clusters, and differs somewhat in terms of the assumptions

regarding the recursive bisection.

Step 1: Hierarchical Correlation Clustering

First, the correlation matrix transformed to a distance matrix. The distance matrix is subsequently

used to form clusters using the agglomerative hierarchical clustering algorithm, implemented in

accordance with section 4.3. The hierarchical structure derived is used in step three to determine

the constituents of each sub-cluster.

Step 2: Optimal Number of Clusters

Second, the optimal number of clusters k∗ is determined using the Gap statistic, outlined in

section 4.3.1. The optimal number of clusters is subsequently used to determine the number of
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clusters to bisect in the following step.

Step 3: Hierarchical Recursive Bisection

Third, the re-ordered covariance matrix is used in the hierarchical recursive bisection step to

allocate weights by recursively bisecting the covariance matrix into sub-clusters according to the

binary tree structure until the optimal number of clusters is reached, following the steps provided

below.

1. The algorithm is initialized by:

(a) Set the list of items C = {C0} with C0 = {n}n=1,...,N

(b) Initialize asset weights as Wn = 1,∀n ∈ [1, . . . , N ]

2. For i = 0 to k∗ − 1

3. For Ci ∈ C such that |Ci| > 1

(a) Split Ci into subsets C1
i ∪C2

i , where C
1
i represents the left sub-cluster and C2

i represents

the right sub-cluster of Ci

(b) Define the in-cluster weights of C(j)
i as w(j)

i = tr[Σ̂
(j)
i ]−1∑

i tr[Σ̂
(j)
i ]−1

(c) Define the variance of C(j)
i as RCji = w

(j)>
i Σ̂

(j)
i w

(j)
i for j = 1, 2

(d) Compute split factor α1 = 1− RC1
i

RC1
i +RC

2
i
, α2 = 1− α1

(e) Re-scale allocations Wn ∀n ∈ C1
i by a factor of α1

(f) Re-scale allocations Wn ∀n ∈ C2
i by a factor of α2

Let W be the vector of weights Wn ∀n ∈ [1, . . . , N ], representing the between-cluster weights for

each asset.

Step 4: Within Cluster Weight Allocation

The between-cluster weighted are finally multiplied with the within-cluster weights, computed

using the inverse-variance allocation. With this, the weights are ensured to sum to 1. Define the

within-cluster weights wi in cluster Ci ∀i ∈ [1, . . . , k∗] as

wi =
tr(Σ̂i)

−1∑
i tr(Σ̂i)−1

(4.20)

Let w be the combined vector of weights wn ∀n ∈ [1, . . . , N ], representing the within-cluster

weights for each asset. The final asset weights can be calculated by multiplying the between-cluster
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weights with the within-cluster weights

wHERC = W ·w. (4.21)

4.5.3 Nested Clustered Optimization

The Nested Clustered Optimization (NCO) portfolio is applied through a four-step process.

Step 1: Hierarchical Correlation Clustering

First, the correlation matrix transformed to a distance matrix. The distance matrix is subsequently

used to form clusters using the agglomerative hierarchical clustering algorithm, implemented in

accordance with section 4.3. The cluster structure is used in the following step to derive the

actual cluster constituents by estimating the optimal number of clusters.

Step 2: Optimal Number of Clusters

Second, the optimal number of clusters is determined using the Gap statistic, outlined in section

4.3.1. The optimal number of clusters ultimately determines the final cluster constituents from

which the cluster covariance is derived.

Step 3: Within-Cluster Weight Allocation

Third, the within-cluster weight allocation is determined using the clusters formed in the previous

step by creating a covariance matrix for the cluster constituents and optimizing using a given

portfolio optimization method. As NCO is considered a framework that can be applied to any

given convex optimization-based portfolio allocation method, all methods considered in section

4.4 is applied and tested in the thesis.

Step 4: Between-Cluster Weight Allocation

Fourth, the reduced covariance matrix is determined by only considering the between-cluster

variances and covariances. From this, the between-cluster weight allocation is calculated using

the same optimization method as in the within-cluster weight allocation step.
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4.6 Backtesting Methodology

In this section, the methodology for the empirical tests are presented. A combination of methods

are used to provide a transparent and robust backtest.

Using past returns to optimize a strategy generally leads to over-optimistic results since the

optimization partly adapts to the particular realization of noise, and is thus unstable over time

(Bouchaud & Potters, 2009). The out-of-sample risk of an optimized portfolio is, in reality, greater

than the in-sample risk, which itself is an underestimate of the true minimal risk (Bouchaud &

Potters, 2009). Furthermore, Arnott, Harvey, and Markowitz (2019) state that one of the worst

cases of backtesting error is false positive conclusions, that is, accepting a null hypothesis that

does not generalize outside the testing environment.

To reduce the likelihood of finding false positive and inflated results, a Monte Carlo backtesting

method is applied in addition to the walk-forward backtest, addressing the limitations of the latter

finite backtesting method (López de Prado, 2019b). By running a large number of simulations,

the results are less likely to be overfitted to a particular stochastic path as opposed to results

solely derived from the standard walk-forward backtest. Through the combination of these two

methods, a higher validity of the empirical findings can be achieved by combining asymptotic

but stylized results of the Monte Carlo method with finite realistic results from the historical

walk-forward backtest.

4.6.1 Monte Carlo Backtest

The Monte Carlo backtest method is implemented for initial backtesting to (1) investigate ways

to mitigate the adverse effects of allocation error due to sampling covariance instability, and to (2)

investigate the performance between the clustering-based portfolios and the traditional portfolios,

with emphasis on the impact of the choice of linkage method. In particular, it is interesting to

explore how the potential benefits of hierarchical clustering affect both cases compared to the

traditionally constructed portfolios, both in-sample and out-of-sample.

4.6.1.1 Estimation Error in Weight Allocation

The first empirical test follows the methodology outlined in López de Prado (2019a) and the

data outlined in section 3.4.1. The goal of the test is to show the effect of estimation noise in the

performance of the portfolio optimization methods where hierarchical correlation structures are
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prevalent.

Using two version of highly stylized block-diagonal correlation matrices presented in 3.4.1, a

population covariance matrix Σ can be constructed. From this, the hypothetical true optimized

portfolio can be computed, representing the case where no estimation error from noise is present.

The weight allocation from the true covariance matrix is then contrasted with the allocations

from a large number of simulated sample covariance matrices, Σ̂, which are simulated using

N = 100 random return series over T = 504 observations from the true covariance matrix Σ

using Gaussian returns.

The above procedure is run over 4,000 simulations for each portfolio, 2,000 using the raw

covariance matrix and 2,000 using Ledoit-Wolf shrinkage with constant correlation shrinkage

target. This methodology achieves the desired effect of producing significant estimation noise,

previously discussed in 2.4.1. Finally, the difference between the weight allocation between the

in-sample case and the true case is measured using the root mean squared error (RMSE) between

the weights

RMSE =

√√√√∑T
t=1

(
wΣ̂,t − wΣ,t

)2
T

(4.22)

4.6.1.2 Risk-Based Out-of-Sample Performance

The second empirical test follows the general methodology by López de Prado (2016) in the

original Hierarchical Risk Parity paper with some modifications and additions to create more

realistically anchored results. This empirical test aims to provide results over how the in-sample

results translate to out-of-sample results, including the impact of the choice of linkage method.

This aims to illustrate how well the portfolio captures the generalized patterns of correlation by

minimizing the effect of spurious noise on the weight allocation.

A non-parametric generative deep learning method presented by Marti (2019) is used to replicate

the highly complex structure of the correlation matrix, not bound by previous historical events.

A large number of synthetic correlation matrices are generated using the CorrGAN approach, to

be later implemented in the multivariate Gaussian return series, following the process thoroughly

described in section 3.4.2. For each iteration, two Gaussian return series following the same

correlation structure is created. The first represents the available and observable in-sample

returns, which are used to allocate weights using the portfolio optimization methods. The second

represents the unobserved out-of-sample returns that the portfolio optimization method has not
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seen. From this, portfolio volatilities, diversification ratios, and portfolio weight concentrations

of the in-sample and out-of-sample time series of returns are calculated.

4.6.2 Historical Walk-Forward Backtest

The walk-forward historical backtesting methodology follows Coqueret and Guida (2020), where

the first step is to split the data into two; the out-of-sample period and the initial buffer period.

Figure 4.1: Historical walk-forward backtesting with rolling rebalancing windows

Source: Coqueret and Guida (2020)

The initial buffer period represents the period from where the first portfolio weights are derived,

equal to the length of the covariance matrix estimation. In this paper, this equates to two years

(T = 504) of daily return data. The out-of-sample returns are calculated by multiplying the

returns derived from the training sample using the portfolio optimization method with the returns

in the out-of-sample period up until the next rebalancing date. The rebalancing frequency chosen

in this paper is once a quarter. The frequency was chosen since this time-frame is widely used in

the industry for rebalancing (Tokat & Wicas, 2007).

4.6.3 Statistical Measures

With the risk-based portfolio optimization focus in this study, several statistical risk-based

performance measures are presented. This includes the Sharpe ratio, Sortino ratio, Maximum

Drawdown, Value-at-Risk, Expected Shortfall, Skewness and Kurtosis, Diversification Ratio, RC

Ratio, Sum of Squared Portfolio Weights, and Portfolio Turnover.
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4.6.3.1 Sharpe Ratio

A common measure for risk-adjusted returns is the Sharpe Ratio, where a high Sharpe ratio is

desirable, all else equal. The ex-ante Sharpe ratio is defined as:

SR =
µ− rf
σ

(4.23)

Where µ represents the average return of the asset for the active trading, rf represents the

risk-free rate, and σ represents the standard deviation of the asset’s excess return (Sharpe, 1964).

Since the population µ and σ has to be estimated, the sample mean and the sample variance is

used instead, which results in Lo’s (2003) definition of the Sharpe ratio:

ŜR =
µ̂− rf
σ̂

(4.24)

4.6.3.2 Sortino Ratio

As previously discussed, the Sharpe ratio uses volatility as the proxy for risk, which has its

inherent problems. One of these problems is that fluctuations in price, whether they are positive

or negative from the mean, are treated equally even though favorable variations are preferred

from the investor perspective. As an alternative to the Sharpe ratio, the Sortino Ratio was

introduced (Sortino & Price, 1994). The Sortino ratio tries to solve this above-mentioned problem

by only using the downside-risk as the proxy for risk instead of the entire asset volatility. The

Sortino ratio is defined as

Sortino Ratio =
r̄ − rMAR

δMAR
(4.25)

where r̄ is the expected portfolio return, rMAR is the minimum acceptable return and δMAR is

the downside risk (van der Meer, Sortino, & Plantinga, 2001)

To be able to calculate this ratio, an investor has first to define what is regarded as minimum

acceptable return. Any fluctuation above this return is then seen as positive volatility, and any

return that is below this return is seen as negative volatility. This negative volatility is then used

to calculate the standard deviation of the downside risk, defined as

δMAR =

√√√√ T∑
t=1

1

T
min (0, rt − rMAR)2 (4.26)

In this study, the risk-free rate is used as the minimum acceptable return, rMAR = rf .
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4.6.3.3 Maximum Drawdown

Many people consider the maximum drawdown as the most important measurement of risk in a

portfolio. Chekhlov, Uryasev, and Zabarankin (2005) defined the maximum drawdown as:

Maximum Drawdown = max
τ∈[0,t]

(Wτ −Wt) (4.27)

Where Wt is defined as the lowest value of the portfolio in the interval [0, T ]. Important to note

from the formula is that the maximum price value has to happen before the drawdown. The

maximum relative drawdown instead provide a normalized value between -1 and 0, depicting the

percentage loss from the all-time high to the all-time low

Maximum Relative Drawdown =
maxτ∈[0,t] (Wτ −Wt)

Wτ
. (4.28)

This ratio should remain small; otherwise, a portfolio cannot recover. Remember, if the maximum

drawdown reaches -50%, the portfolio has to grow 100% to compensate for the previous loss. If

we assume that the maximum price of a stock A is 75 USD and that the stock then falls for 1

year down to 5 USD. The maximum drawdown would then be (75 − 70)/75 = 93%. To then

recuperate these losses, the stock has to have a 1/(1− 0.93) = 14.9 fold price increase. If the

annual growth rate is assumed to be 15%, it would take 19 years to get back to the all-time

high of 75 dollars. The maximum drawdown does not come without limitations. For example,

the maximum drawdown does not take the time or frequency of drawdowns into account. If

stock B is assumed to have the same price movement (75 USD to 5 USD), but for 4 months,

the maximum drawdown would indicate that these two stocks are equally risky. As such, it is

important to be aware of the limitations when comparing this metric over different assets.

4.6.3.4 Value-at-Risk

Value-at-Risk (VaR) evaluates the downside risk of a portfolio as the possible maximum potential

change in the value of a portfolio of financial instruments with a given probability over a particular

horizon. When assuming normally distributed returns, VaR at a given confidence level α ∈ (0, 1)

can be described as the probability that the loss does not exceed the level inferred by the metric.

More formally, it can be defined as

VaR(α) = µ+ σr ×N−1(α), (4.29)
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where N−1(α) represents the cumulative probability density function up for the confidence level

α. Intuitively, this can be defined as the (1− α) quantile of the return distribution. However, as

the distribution of returns does not necessarily follow normal distribution, the VaR can instead

be calculated using historical distribution X over a given time as the α quantile of returns over a

given time period, defined as

VaR(α,X) = − inf{x ∈ R : FX(x) > α} (4.30)

where FX represents the cumulative distribution of X (Föllmer & Schied, 2011). This method is

applied in the paper, as it better captures the risk given the assumption non-normality in the

asset return distribution.

4.6.3.5 Expected Shortfall

Value-at-Risk calculates the chance of a loss given a confidence level α. However, it does not

conclude anything about the magnitude of losses at investors would like to know what the

loss would be in those cases. As a compliment to Value-at-Risk, Expected Shortfall (ES), or

sometimes referred to as the Conditional Value-at-Risk (CVaR), can be used to quantify the tail

risk of the returns better. Munk (2018) formalize Expected Shortfall as the average of the values

beyond the VaR, defined as

CVaR(α) =
1

α

∫ α

0
VaR(α,X) dx. (4.31)

4.6.3.6 Diversification Ratio

Choueifaty et al., 2013 developed the diversification ratio as a measurement for the diversification

in the portfolio. Recall from section 2.7.3; the diversification ratio is defined as the ratio of the

portfolios weighted average volatility and its overall volatility

DR =
w>σ√
w>Σw

, (4.32)

where w> is the vector of asset-weights and where σ is the vector of asset volatilities is equal to

n∑
i=1

wiσi = w>σ. (4.33)
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The measurement thus quantifies the diversification that is gained by holding assets that are not

perfectly correlated (Choueifaty et al., 2013).

4.6.3.7 Risk Contribution Ratio

The risk contribution ratio aims to measure how equally the risk contributions are diversified

in the portfolio. This is calculated through the ratio between the portfolio RMSE from the

equal-risk contribution case, divided by the same metric calculated using the equally-weighted

portfolio (ew). The RC Ratio for portfolio p can thus be calculated as

RC Ratio =
RC RMSEp
RC RMSEew

(4.34)

where

RC RMSE =

√√√√∑T
t=1

(
RCit −

√
w>Σw
n

)2
T

. (4.35)

The denominator is used to make the comparison between portfolio’s easier, as both the nominator

and denominator will generally be exceedingly small. The risk contribution RCi for asset i is

determined using the same definition as in section 2.7.2.

4.6.3.8 Skewness and Kurtosis

The third and fourth moments of the return distribution, skewness, and kurtosis, can be analyzed

to better understand the behavior of the returns, both under normal circumstances, but also in

more extreme tail events.

Skewness is a measure of the symmetry in the distribution. A symmetrical dataset has a skewness

equal to 0. Essentially, one could say that skewness measures the relative size of the two tails. If

a distribution has negative skewness, it implies that there is a greater chance for large negative

returns. Wheeler (2011) defines skewness as:

a3 =
∑ (xi − x̄)3

ns3
(4.36)

Where n is the sample size, xi is the ith x value, x̄ is the average, and s is the sample standard

deviation. Skewness represents the third standardized central moment of the distribution, seen

in the exponent of the numerator and denominator in the above expression. To adjust for
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non-asymptotic sample sizes, the adjusted kurtosis is used

Skewness =
n

(n− 1)(n− 2)

∑ (xi − x̄)3

s3
=

n

s3(n− 1)(n− 2)
(Sabove − Sbelow ) . (4.37)

The difference between these two formulas becomes negligible when the sample size is large. In

this paper, the latter definition is used even though the difference is negligible as the sample

sizes in most calculations are large.

The fourth moment of the distribution, the kurtosis, can be described as the thickness of the tails.

Fat tails imply that the probability of extreme outcomes is higher. Thompson (2013) showed

that the return distribution in the market has higher kurtosis due to sudden drops or spikes in

prices. This is important to note as a fatter upside implies that there are significant returns on

the market that can be captured by an asset manager, while a fatter downside implies that there

are larger risks in trading on the market as well (Thompson, 2013). Westfall (2014) defines the

kurtosis as:

a4 =
∑ (xi − x̄)4

ns4
(4.38)

Where n is the sample size, xi is the ith x value, x̄ is the average and s is the sample standard

deviation. The exponent, in this case, is 4 as the kurtosis is often referred to as the "fourth

standardized central moment for the probability model" (Westfall, 2014). In practice, the

following formula is used in this thesis

Kurtosis =

{
n(n+ 1)

(n− 1)(n− 2)(n− 3)

∑ (xi − x̄)4

s4

}
− 3(n− 1)2

(n− 2)(n− 3)
. (4.39)

This formula does two things differently. First, just as in the case of skewness, it takes the sample

size into account. Secondly, it also deducts 3 from the kurtosis, making the central point align

with that of the standard distribution. If a distribution has a positive kurtosis, it means that

it has fatter tails than a normal distribution. Conversely, if a dataset has negative kurtosis, it

means that it has thinner tails than the normal distribution.

4.6.3.9 Sum of Squared Portfolio Weights

The degree of weight diversification is measured using the the squared sum of portfolio weights,

presented by Raffinot (2018) as

SSPW =
1

F

F∑
t=2

N∑
i=1

w2
i,t, (4.40)
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where F represents the number of portfolio rebalancing periods. The metric ranges from 0 to 1,

with lower values representing higher weight diversification. This is also presented by Goetzmann

and Kumar (2008) as the approximate deviation from the market portfolio weights, argued as

the weight of each security in the market portfolio is very small.

4.6.3.10 Portfolio Turnover

Portfolio turnover is a measure for how often and to what degree assets in the portfolio are

being bought and sold. Investors are often interested in portfolio turnover, as trading involves

transaction costs. There are many ways of calculating the turnover; in this paper the definition

given by Raffinot (2018) is used, defined as

TO =
1

F

F∑
t=2

|wi,t − wi,t−1| , (4.41)

where F represents the number of portfolio rebalancing periods. The portfolio turnover is used as

a proxy for the theoretical implications of transaction costs on the profitability of the investment

strategy. While it is not possible to do an one-to-one comparison, the portfolio turnover still

provides valuable insight as a high turnover rate incurs higher costs in comparison to a low

turnover rate when evaluating different strategies and portfolios.
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5 Empirical Results

In this chapter, the main empirical results are presented. Each of the three tests aims to answer

the questions investigated in the thesis. The first test, presented in section 5.1, investigate

how and if clustering-based portfolio optimization can improve traditional risk-based portfolio

optimization techniques in terms of reduced estimation error. The second test, presented in

section 5.2, investigates how the in-sample risk-based performance generalizes to the out-of-sample

case of the different portfolios, with emphasis on the impact of different linkage methods. The

third and final test, presented in section 5.3, aims to show how the performance translates to

real historical data on the S&P 500 in terms of risk-based performance, portfolio concentration,

and portfolio turnover.

5.1 Monte Carlo Backtest: Estimation Error

This section presents results from the first Monte Carlo backtest, covering the impact of

hierarchical clustering techniques on estimations error. Using the approach described in section

4.6.1 together with the two versions of stylized correlation matrices described in section 3.4.1, a

true covariance matrix is constructed. Following this, 100 random multivariate Gaussian return

time-series of length 504 are generated, fitted to the true covariance matrix. The sample covariance

matrices are then constructed by estimating the covariance of the aforementioned Gaussian

returns. The difference between the weights assigned to the sample covariance matrix and the

true covariance matrix uncovers the effect of estimation error on the optimization objective. This

is calculated using the root mean squared error (RMSE) of their relative differences.

A Monte Carlo method is used to find a robust estimation of the above problem. The simulation

is repeated for 2,000 iterations with and without shrinkage estimation for each optimization

objective, including the minimum-variance, equal risk contribution, and maximum diversification.

First, the test is run using the block-diagonal correlation matrix to replicate the findings by

López de Prado (2019a) in the original NCO paper. Secondly, the test is repeated using a more

realistic approach by implementing the stochastic variant, as described in section 3.4.1.
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5.1.1 Minimum Variance

In this section, the weight distributions of the MV portfolio is examined together with the NCO

portfolio using minimum-variance as the objective function.

MV Single Linkage Average Linkage Ward’s Method
Sample Covariance 0.0074 0.0037 0.0037 0.0037
Ledoit-Wolf Shrinkage 0.0065 0.0036 0.0036 0.0036

Table 5.1: RMSE for the long-only minimum variance portfolios using the block-diagonal
correlation matrix

From Table 5.1, it is apparent that the original MV portfolio is a less efficient approximation of

the true MV weights compared to NCO. The MV portfolio created from the sample covariance

matrix shows a RMSE of 0.0074, while the NCO-based portfolios have an estimation error of

0.0037, representing a 50% reduction in the estimation error. These results are in line with the

original study performed by López de Prado (2019), demonstrating that the long-only minimum

variance portfolio exhibits the same pattern of underperformance in comparison to the equivalent

NCO portfolio in terms of estimation error.

When the sample covariance matrix is preprocessed using constant correlation Ledoit-Wolf

shrinkage, the empirical results show a uniform improvement as compared to their non-

preprocessed counterparts. The minimum variance portfolio is affected the most with a 12%

reduction of RMSE, followed by a smaller, but still consistent, reduction of the estimation error of

NCO of 4%. These findings follow the fact that the minimum variance portfolio is highly sensitive

to estimation errors, but also shows that the NCO is quite resilient in the same regard. Next,

the same Monte Carlo simulation is repeated using the randomized block-diagonal correlation

matrix.

MV Single Linkage Average Linkage Ward’s Method
Sample Covariance 0.0619 0.0586 0.0585 0.0586
Ledoit-Wolf Shrinkage 0.0619 0.0587 0.0587 0.0587

Table 5.2: RMSE for the long-only minimum variance portfolios using the randomized block-
diagonal correlation matrix

As displayed in Table 5.2, the different linkage methods now produce similar but slightly different

results, due to the more complex correlation matrix creating a situation where the clustering

method sometimes wrongly estimates the optimal number of clusters. In this case, the estimation

error, as measured by the RMSE, is noticeably higher for all portfolios. The gap between
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the NCO portfolios and the MV portfolio in estimation error is reduced, with a reduction in

estimation error of only 5% as compared to the 50% reduction in the more simplified scenario.

This puts the previous findings into question regarding the robustness of the NCO method to

achieve lower estimation errors.

5.1.2 Equal Risk Contribution

Next, the ERC portfolio weight distributions together with that of the NCO portfolio using the

equal risk contribution objective function is examined.

ERC Single Linkage Average Linkage Ward’s Method
Sample Covariance 0.0015 0.0046 0.0039 0.0028
Ledoit-Wolf Shrinkage 0.0014 0.0048 0.0039 0.028

Table 5.3: RMSE for the long-only equal risk contribution portfolios using the block-diagonal
correlation matrix

Table 5.3 illustrate that the ERC portfolio appears to be quite robust as compared to the

MV portfolio, indicated by the comparatively low estimation error of 0.0015 in its original

implementation. With this said, the NCO-based method shows little promise for this objective

function, as opposed to the case of the MV portfolio, consistently increase the estimation error

both with and without shrinkage. This indicates, even using the most basic assumptions, that

NCO does not seem to provide any benefit in terms of reduced estimation error for the equal

risk contribution objective. To further examine the above results, the same test is run on the

stochastic block-diagonal correlation matrix.

ERC Single Linkage Average Linkage Ward’s Method
Sample Covariance 0.0006 0.0054 0.0054 0.0055
Ledoit-Wolf Shrinkage 0.0006 0.0054 0.0054 0.0055

Table 5.4: RMSE for the long-only equal risk contribution portfolios using the randomized
block-diagonal correlation matrix

As shown in Table 5.4, the estimation error for the ERC portfolio reduced in size, from 0.0015

to 0.0006, providing some empirical grounds for the portfolio being resilient to estimation error

when faced with more complex structures. Again, the same pattern is repeated, with a relatively

large increase in estimation error for all NCO portfolios as compared to the ERC portfolio. An

interesting finding is that shrinkage does not seem to alter the results noticeably for any of the

portfolios examined, implying that the portfolio optimization objective of equal risk contribution
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is reasonably robust to the estimation noise as compared to the MV portfolio, leaving little room

for any gains to be made using the shrinkage method applied.

5.1.3 Maximum Diversification

Last, the MD portfolio is examined and compared to the NCO portfolios using the maximum

diversification objective function.

MD Single Linkage Average Linkage Ward’s Method
Sample Covariance 0.0115 0.0031 0.0031 0.0031
Ledoit-Wolf Shrinkage 0.0102 0.0027 0.0027 0.0027

Table 5.5: RMSE for the long-only maximum diversification portfolios using the block-diagonal
correlation matrix

In the results provided in Table 5.5, the MD portfolio exhibits the highest RMSE of all original

portfolios examined, indicating a high sensitivity to estimation noise. Again, NCO shows a

significant reduction in the estimation error, from 0.0115 in the original MD portfolio to 0.0031

for NCO. This represents a 73.0% reduction in estimation error, the largest gain achieved by

NCO compared to its original optimization function in all the tested portfolios.

When the sample covariance matrix is preprocessed using constant correlation Ledoit-Wolf

shrinkage, the empirical results again show improvement as compared to their non-preprocessed

counterparts. The estimation error of the maximum diversification portfolio is reduced by 11%,

while the estimation of NCO is reduced by 13%. The decrease in estimation error comparing

MD and NCO suggest that this is the most sensitive optimization method to estimation error.

In conclusion, the results indicate that NCO using the long-only, the maximum diversification

optimization objective is superior to the traditional long-only MD portfolio in terms of the effects

of estimation error to the weight distribution. However, the method is re-examined using the

more complex correlation matrix, reported below.

MD Single Linkage Average Linkage Ward’s Method
Sample Covariance 0.0172 0.0115 0.0119 0.0111
Ledoit-Wolf Shrinkage 0.0157 0.0111 0.0116 0.0108

Table 5.6: RMSE for the long-only maximum diversification portfolios using the randomized
block-diagonal correlation matrix

Table 5.6 display the results given by the same test performed using the stochastic block-diagonal

correlation matrix. Again, the same pattern can be discerned from the previous portfolios,
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indicating that the reduction in estimation error is diminishing when applying more complex

correlation patterns. With this said, there still seems to be some reduction in the estimation

error, although less prominent compared to the previous case.

The results from this Monte Carlo backtest applied to the NCO portfolios show inconclusive

evidence of any estimation error reduction from hierarchical clustering. The gains are reducing

as a function of the complexity in the correlation matrix, putting into question if the results hold

up in a realistic setting. This is further investigated in the two subsequent sections.

5.2 Monte Carlo Backtest: Risk-Based Performance

In this section, the performance of the different portfolios is examined, with a focus on investigating

the effect of the choice of linkage method in the hierarchical clustering-based portfolios. From a

practitioner’s viewpoint, it is interesting to see how the cluster-based portfolios perform in the

realized out-of-sample case, and how different linkage methods affect the results. Similar to the

previous section, a Monte Carlo method is used to investigate to the stated problem.

First, a large number of synthetic correlation matrices are generated using CorrGAN, which

are implemented on multivariate Gaussian return series, following the methodology outlined in

section 3.4.2. The return series are constructed using 504 return observations, equivalent to 2

years of daily data. Second, the portfolio weight allocations are constructed using the in-sample

return series. Third, the weights are then applied to the out-of-sample Gaussian return series over

252 days, equivalent to 1 year of daily return data. Each simulation is run over 2,000 iterations.

For the hierarchical clustering-based portfolios, the simulation is executed once for each linkage

method discussed in section 2.6.2. Several linkage methods are used to investigate their relative

performances, potentially adding to the body of evidence of their performances applied to the

different hierarchical clustering-based portfolios.

The main emphasis is placed on the portfolio’s objective function metrics, with the other metrics

seen as secondary. For the MV portfolio the objective function is represented by the volatility, for

the MD portfolio, by the diversification ratio (DR), and for the ERC portfolio, the RC Ratio. In

addition, the SSPW is measured to provide intuition about the portfolio weight concentration

in the respective portfolios.
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5.2.1 Minimum Variance

First, the results for the minimum-variance portfolio and the NCO portfolio using the minimum-

variance objective function are presented.

MV Single Linkage Average Linkage Ward’s Method
In-Sample Volatility 10.3% 10.4% 10.8% 10.8%
Out-of-Sample Volatility 10.6% 10.7% 11.1% 11.1%
In-Sample DR 2.20 2.15 2.13 2.13
Out-of-Sample DR 2.14 2.11 2.10 2.09
In-Sample RC Ratio 4.5 4.3 4.0 4.0
Out-of-Sample RC Ratio 4.6 4.4 4.0 4.0
SSPW 0.12 0.11 0.10 0.10

Table 5.7: Performance Statistics for Minimum-Variance Portfolios

As shown in Table 5.7, the in-sample volatility for the Single Linkage portfolio is the lowest

observed among the NCO portfolios, with a value of 10.4% annualized in-sample volatility,

increasing to 10.7% out-of-sample. This can be compared to the original MV portfolio with a

slightly lower out-of-sample volatility of 10.6%. For Average Linkage and Ward’s Method, the

volatility out-of-sample were both 11.1%.

In terms of DR, the MV portfolio slightly outperformed the NCO portfolios, both in-sample

and out-of-sample. The observed DR for the NCO portfolios exhibit very similar ratios, with

somewhat better performance of Single Linkage. The results illustrate that all of the NCO

portfolios decrease the RC Ratio, indicating that the equality in risk contribution is somewhat

increased, regardless of the linkage method applied. The results of the SSPW metric shows that

the weight distribution is most concentrated in the original portfolio, with consistently better

performance from all different NCO portfolios, with the most diversified portfolio being produced

using Ward’s Method.

In summary, the results show that all portfolios exhibit similar performance in terms of the

portfolio risk metrics discussed, with slightly better results from the original MV implementation.

However, as some of the best results are found in the NCO portfolios, further investigation into

the risk-based performance of the NCO is warranted using historical data.
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5.2.2 Equal Risk Contribution

In this section, the results of the ERC portfolio together with the NCO with the equal risk

contribution objective function is examined.

ERC Single Linkage Average Linkage Ward’s Method
In-Sample Volatility 17.0% 16.8% 16.0% 17.1%
Out-of-Sample Volatility 17.0% 17.1% 16.3% 17.2%
In-Sample DR 2.02 2.06 2.13 1.99
Out-of-Sample DR 2.02 2.03 2.11 1.99
In-Sample RC Ratio 0.0 7.0 3.2 1.4
Out-of-Sample RC Ratio 0.3 7.1 3.3 1.4
SSPW 0.01 0.10 0.04 0.02

Table 5.8: Performance Statistics for Equal Risk Contribution Portfolios

The goal of the equal risk contribution portfolio is to minimize the RC Ratio. As displayed in

Table 5.8, the traditional ERC portfolio performed better than its NCO counterparts, displaying

an out-of-sample RC Ratio of 0.3. In terms of the NCO portfolios, the Ward’s Method produced

the lowest RC Ratio, while Single Linkage produced the highest value. The discrepancy between

the values indicate that the choice of linkage method affects the target objective to a large degree,

with the out-of-sample RC Ratio value varying between 1.4 and 7.1.

The ERC portfolio display a volatility of 17.0%, both in-sample and out-of-sample. From this

perspective, the Average Linkage portfolio performed best out of all portfolios, with somewhat

lower volatilities. The other linkage methods display similar performance to the case of the original

ERC portfolio. However, in terms of weight diversification according to the SSPW metric, the

original ERC portfolio shows a better diversification, closely followed by Ward’s Method and

Average linkage. Thus, all NCO portolios underperform in terms of the objective function of

equal risk contribution, and seem to produce more concentrated portfolios. In this case, Ward’s

Method produced the results closest to the ERC portfolio, with fairly similar results across the

board.

5.2.3 Maximum Diversification

Next, the MD portfolio is examined and compared with the NCO counterparts using the maximum

diversification objective function.

As seen in Table 5.9, the portfolio with the highest DR is the traditional MD portfolio, both
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MD Single Linkage Average Linkage Ward’s Method
In-Sample Volatility 13.1% 16.0% 15.3% 15.7%
Out-of-Sample Volatility 13.7% 16.5% 15.7% 16.0%
In-Sample DR 2.67 2.14 2.25 2.17
Out-of-Sample DR 2.51 2.09 2.20 2.13
In-Sample RC Ratio 3.9 8.3 5.5 3.7
Out-of-Sample RC Ratio 4.1 8.4 5.7 3.7
SSPW 0.07 0.13 0.07 0.04

Table 5.9: Performance Statistics for Maximum Diversification Portfolios

in-sample and out-of-sample. Out of the clustering-based portfolios, the Average Linkage portfolio

shows the most promising results, both in terms of volatility and DR, however, still consistently

less so than the traditional MD portfolio. Ward’s Method produce somewhat higher volatility

but looks to reduce the weight concentration and increase the RC Ratio, both relative to the

other NCO portfolios and the MD portfolio.

The above findings indicate that NCO consistently fails to provide lower risk and diversification

in the case of the maximum diversification, albeit with somewhat more weight diversification and

even risk contribution resulting from Ward’s Method. This comes at no surprise as the objective

function aims to find the most diversified portfolio among all assets, implying that a larger asset

universe is more likely to contain assets with less correlation. The empirical results further back

this point as the more balanced linkage methods of Average Linkage and Ward’s Method resulted

in higher diversification metrics. In summary, Average Linkage exhibits the highest DR, while

Ward’s Method exhibits the lowest weight concentration and most equal risk contribution.

5.2.4 Hierarchical Risk Parity

In this section, the results for the HRP portfolios are presented and contrasted to the closest

non-hierarchical counterpart, the IV portfolio. The HRP portfolio is mainly assessed in terms of

the volatility and the RC Ratio.

As shown in table 5.10, the best performing portfolio both in terms of volatility and DR is the

Single Linkage portfolio, in agreement with the existing evidence gathered by (Raffinot, 2018).

It displays an in-sample volatility of 15.1%, increasing to 15.2% out-of-sample, indicating that

the performance generalizes from in-sample to out-of-sample performance quite well. However,

the results from the other linkage methods are very close, with Average linkage and Ward’s
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IV Single Linkage Average Linkage Ward’s Method
In-Sample Volatility 16.1% 15.1% 15.2% 15.2%
Out-of-Sample Volatility 16.1% 15.2% 15.2% 15.3%
In-Sample DR 1.92 2.05 2.04 2.04
Out-of-Sample DR 1.92 2.04 2.04 2.03
In-Sample RC Ratio 0.8 3.6 3.6 3.6
Out-of-Sample RC Ratio 0.9 3.5 3.6 3.5
SSPW 0.01 0.02 0.02 0.02

Table 5.10: Performance Statistics for Hierarchical Risk Parity Portfolios

Method producing close to identical results in terms of all metrics used. Since HRP only relies on

hierarchical clustering to determine the order of the assets, one can infer that these two linkage

methods produce similar orderings, and thus, similar results.

The weight concentration and RC Ratio inferred show no clear difference between the

implementations, indicating that the weight concentration produced is independent of the

linkage method. This can be attributed to the fact that the recursive bisection is allocating to

equally-sized sub-cluster, independent of the hierarchical structure inferred by the linkage method.

The weight concentration is, however, somewhat higher than that of the non-hierarchical IV

portfolio, indicating that even the most symmetrical of recursive bisection methods induce some

concentration to the weight allocation, all else equal.

5.2.5 Hierarchical Equal Risk Contribution

In this section, the results for the HERC portfolios are examined and contrasted to the closest

non-hierarchical counterpart, the IV portfolio. Like HRP, the HERC portfolio is referred to as

a risk parity portfolio. However, it also use the inverse-variance allocation, indicating a goal

of minimizing the variance. Therefore, the most relevant metrics are assessed to be both the

volatility and the RC Ratio.

Table 5.11 indicates that all of the HERC portfolios seem to perform on a similar level. The

volatility is slightly lower for Average Linkage, but the RC Ratio is lowest for Ward’s Method.

In terms of risk contributions, these findings are in line with the original study by Raffinot

(2018). The results indicate that the HERC portfolios consistently outperform the benchmark IV

portfolio in terms of volatility and diversification ratio. However, the IV portfolio show lower

weight concentrations and more even risk contributions.
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IV Single Linkage Average Linkage Ward’s Method
In-Sample Volatility 16.1% 15.2 % 14.9 % 15.5 %
Out-of-Sample Volatility 16.1% 15.5 % 15.0 % 15.5 %
In-Sample DR 1.92 2.07 2.08 2.00
Out-of-Sample DR 1.92 2.04 2.07 2.00
In-Sample RC Ratio 0.8 6.0 2.3 1.3
Out-of-Sample RC Ratio 0.9 6.0 2.3 1.3
SSPW 0.01 0.09 0.03 0.02

Table 5.11: Performance Statistics for Hierarchical Equal Risk Contribution Portfolios

Again, the recursive bisection seems to induce higher weight concentrations compared to the

case of the IV portfolio. In this case, and in contrast to the HRP case, the concentration can

be linked to the linkage method, indicating that the dendrogram used in the recursive bisection

indeed has major significance in the weight concentration. The results are somewhat inconclusive

of the effectiveness of HERC to achieve the different objectives, and a more in-depth testing

using historical data is warranted.

5.3 Historical Backtest

In this section, the results of the historical walk-forward backtest on the S&P 500 investment

universe are presented. All dividend proceedings are assumed to be reinvested, and

the performance is evaluated in terms of risk-based performance metrics, portfolio weight

concentration, and portfolio turnover. Furthermore, Ward’s Method is applied as the linkage

method for the cluster-based portfolios, with the exception of the HRP portfolio, using Single

Linkage following the methodology by López de Prado (2016). This will increase the comparability

between the NCO portfolios, and reduce the number of portfolios used, decreasing potential data

mining bias. The results from other linkage methods are included in Appendix A5, but are not

further discussed in this section.

5.3.1 Returns & Volatility

This section presents the observed returns and volatility of the tested portfolios. Figure 5.1

presents the cumulative return of the different portfolios. Initially, it can be observed that the

cumulative return of the MD portfolio is significantly higher than the rest of the portfolios,

followed by the NCO MD counterpart. These portfolios are the only one’s that produce higher
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returns than the EW benchmark in this setting. These results are in line with previous findings

by (DeMiguel et al., 2009), illustrating that under most circumstances, the EW portfolio is hard

to beat on a pure return basis. Furthermore, the results suggest that the MV portfolio and the

NCO MV portfolio are producing the lowest cumulative returns over the period, but also seem to

exhibit the lowest volatility. The ERC, NCO ERC, IV, HRP, and HERC portfolios show similar

performance, and all fall in-between the EW and MV portfolios.

Figure 5.1: Cumulative Portfolio Returns

As previously stated, Figure 5.1 does not provide a full picture of the assessed performances of

the different portfolios, as the returns are not a part of the portfolio optimization objective. As

such, the subsequent sections dig deeper into the risk-based characteristics of the portfolios.

In Table 5.12, it can be inferred that the NCO MV portfolio and the MV portfolio display the

lowest yearly volatility. This indicates that they both are efficient in terms of allocating weights

to achieve the lowest variance, even out-of-sample. However, the NCO MV portfolio performs

worse in terms of the risk-adjusted returns, as the yearly return is lower in comparison to the

traditional MV portfolio while displaying almost identical volatility. A similar pattern can be

discerned for the MD and NCO MD portfolio, with the NCO MD portfolio lower returns the

traditional counterpart, while also demonstrating higher volatility. The same is also true in the

case of ERC, where the NCO and the traditional portfolio display the same levels of volatility
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Yearly Return Yearly Volatility
EW 16.3% 18.1%
MV 13.4% 10.0%
NCO MV 12.7% 10.0%
MD 18.0% 13.5%
NCO MD 16.1% 15.2%
ERC 15.6% 15.9%
NCO ERC 15.4% 15.9%
IV 14.8% 15.1%
HRP 15.2% 14.4%
HERC 14.8% 14.3%

Table 5.12: Return and Volatility of Portfolios

but somewhat lower returns. In summary, there seems to be no noticeable reduction in the

volatility of the NCO portfolios, a finding along the lines with the results from the Monte Carlo

backtest performed in section 5.2. The HRP and HERC portfolios exhibit almost identical

volatility estimates, both of which outperform the IV benchmark with a noticeable reduction in

the volatility, in line with previous findings of the Monte Carlo backtest.

Figure 5.2 provides a more in-depth view of the portfolio volatilities using a 24-month rolling

average. As shown, the distribution of the volatility over time seem to consistently favor the

minimum-variance portfolios, along with the non-hierarchical MD portfolio. It comes as no

surprise that all portfolios display an increase in volatility during times of financial distress, and

the results indicate that the volatility spread tends to increase between the portfolios during

these conditions. This is most noticeable in the volatility spike during the Financial Crisis around

2008 up until 2011, where the volatility of the MV portfolios is significantly lower in comparison

to the other portfolios, providing further evidence that it generally produces low-variance results.

Furthermore, as seen from Figure 5.2, no general difference between the NCO portfolios and their

traditional counterparts can be discerned, implying that there is little benefit to choosing one over

the other in this regard. Again, HRP and HERC show a pattern of consistently outperforming

the IV portfolio in terms of volatility. This indicates that the hierarchical clustering together

with the recursive bisection method seems to benefit from the implied hierarchical structure of

the assets in reducing volatility, even in distressed market conditions.
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Figure 5.2: 24-Month Rolling Volatility

5.3.2 Daily Return Distribution & Descriptive Statistics

In this section, the characteristics of the returns for the different portfolios are presented, providing

a deeper picture of the return distribution and its implication of the portfolio risk.

Figure 5.3 shows the distribution of returns for the different portfolios. The results indicate

that the portfolios are fairly similar in terms of their return distribution across the board. The

minimum variance portfolios are clear outliers, depicted by lower volatility as compared to the

other portfolios, meaning that more of the return probability distribution is located near the

center. On the other end of the spectrum, the EW portfolio shows the widest return distribution,

and in between these two ends, the other portfolios show fairly similar distributions.

Table 5.13 provide detailed results over the descriptive statistics of all portfolios. The MV

portfolios exhibit the smallest percentile daily movement, further validating that they are

fulfilling their objective of producing low variance results, regardless of the direction of the return

movement. The kurtosis levels of the portfolios ranges between 6.53 and 13.11. The highest

kurtosis is can be found in the MD portfolio, indicating higher probability of extreme return

events. On the other end, the low kurtosis of the EW portfolio indicates less tail probability.

However, the relatively high volatility of said portfolio makes it hard to compare to the other

83



Figure 5.3: Distribution of Daily Returns

portfolios in absolute terms, as the kurtosis is highly dependent on the level of the volatility.

The IV, HRP, and HERC portfolios display similar results in all metrics of the descriptive

statistics, suggesting that both HRP and HERC retain much of the same base characteristics as

the IV while providing lower volatility, as shown in Table 5.12. All portfolio display a skewness

between -0.25 and 0.22, illustrating that the daily returns for all different portfolios are fairly

symmetrical. The MD and MV portfolios are the only two displaying a positive skewness,

indicating slightly more probability of positive than negative returns on a daily basis.

5.3.3 Risk-Based Performance

In this section, the risk-based performance measures for each of the portfolios included are

examined using the metrics provided in Table 5.14, including the maximum drawdown, the

annualized VaR (5%), the annualized CVaR (5%), the Sharpe ratio, and the Sortino ratio.

The two MV portfolios exhibit lower downside risk as measured by the maximum drawdown, VaR

(5%), and CVaR (5%). These metrics indicate lower values for all metrics with a wide margin.

On the other end, the EW portfolio performed worst across the same metrics, highlighting the
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Skewness Excess Kurtosis Max Min 5th percentile 95th percentile
EW -0.19 6.53 11.13% -9.94% -1.68% 1.65%
MV 0.09 12.39 8.74% -6.27% -0.93% 0.98%
NCO MV -0.11 11.33 8.72% -6.50% -0.91% 0.96%
MD 0.22 13.11 12.77% -7.92% -1.22% 1.26%
NCO MD -0.21 7.51 11.38% -8.68% -1.41% 1.40%
ERC -0.21 8.15 10.89% -9.10% -1.47% 1.42%
NCO ERC -0.25 10.07 12.46% -9.85% -1.45% 1.41%
IV -0.16 8.51 10.69% -8.71% -1.40% 1.35%
HRP -0.20 8.35 10.35% -8.25% -1.35% 1.29%
HERC -0.24 9.88 11.02% -8.63% -1.31% 1.30%

Table 5.13: Distributions of Portfolio Returns

Max Drawdown VaR (5%) CVaR (5%) Sharpe Ratio Sortino Ratio
EW -55.7% 26.6% 43.1% 0.67 0.97
MV -30.2% 14.0% 23.0% 0.88 1.31
NCO MV -31.3% 14.4% 23.2% 0.88 1.29
MD -51.2% 19.3% 30.6% 0.99 1.47
NCO MD -50.6% 22.5% 35.9% 0.77 1.11
ERC -52.5% 23.3% 37.9% 0.72 1.04
ERC NCO -53.9% 23.0% 37.7% 0.71 1.03
IV -49.9% 22.3% 36.1% 0.72 1.05
HRP -49.3% 21.5% 34.4% 0.78 1.12
HERC -49.6% 20.9% 34.1% 0.75 1.09

Table 5.14: Risk-based performance

fact that low weight concentration does not necessarily equate to high risk diversification. The

MD portfolio exhibits the highest value for both the Sharpe ratio and the Sortino ratio, with

values of 0.99 and 1.47 respectively. Although the NCO MD provided the second highest returns,

the returns seem to have a proportional response in the risk, indicated by the comparably lower

estimates of the Sharpe and Sortino ratios of 0.77 and 1.11. Furthermore, the MV and NCO

MV portfolios display comparably high Sharpe and Sortino ratios, implying that the risk-based

returns for these two portfolios are competitive, even after considering their relatively low returns.

The HRP indicated the second-best Sharpe and Sortino ratios of the clustering-based portfolios,

followed closely by NCO MD, and HERC. However, the metrics are fairly similar, with the

Sharpe and Sortino ratio between 0.71 to 0.78, and 1.02 to 1.12, respectively.

Finally, when assessing the risk-based performance metrics above, it is evident that the EW

portfolio’s comparably high returns come at a cost, as it consistently displays poor performance
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across all metrics, outperformed by all the included portfolios across the board. This indicates

that all portfolios constructed provide better risk-adjusted performance as compared to the most

naive solution of equal weighting.

5.3.4 Portfolio Weights and Portfolio Turnover

In this section, the portfolio weight distribution and the portfolio turnover characteristics are

examined in detail. This is an important aspect as portfolios with good risk-based results

might still prove impractical to implement due to prohibitive high weight concentrations or high

transaction costs from portfolio turnover between rebalancing periods.

Portfolio Turnover SSPW Avg. Max Weight
EW 2.6% 0.0017 0.2%
MV 46.5% 0.0593 12.3%
NCO MV 61.4% 0.0477 10.5%
MD 49.2% 0.0357 8.4%
NCO MD 111.8% 0.0228 5.9%
ERC 6.6% 0.0021 0.69%
NCO ERC 45.9% 0.0034 1.2%
IV 7.7 % 0.0027 0.9%
HRP 26.7% 0.0034 1.7%
HERC 47.8% 0.0050 2.1%

Table 5.15: Portfolio Weights and Portfolio Turnover Metrics

Table 5.15 indicate that both the MV portfolios and the MD portfolios are holding few assets,

concentrating much of the weight to a small subset of assets, a finding confirming previous

findings of (Choueifaty et al., 2013). This is highlighted by the weight concentrations shown by

SSPW together with the average maximum weight an a single asset. The MV and the NCO MV

portfolios have an SSPW of 0.0593 and 0.0477 respectively, the largest among the portfolios

tested.

The HRP and the HERC portfolios produce among the lowest SSPW , in accordance with

previous results by Raffinot (2018), indicating that these portfolios produce relatively well-

diversified portfolios in terms of weight concentration. However, they all show higher values than

the ERC, NCO ERC, and IV portfolios, backed by findings in the Monte Carlo backtest presented

in section 5.2. In addition, the results imply NCO accomplishes lower weight concentrations

compared to their MV and MD counterparts. Again, validated by the Monte Carlo backtest,
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indicating that hierarchical clustering using Ward’s Method can potentially be used to decrease

weight concentration for portfolios with high weight concentrations.

Figure 5.4: Sum of Squared Portfolio Weights per Rebalancing Period

Figure 5.4 provide the sum of squared portfolio weights, SSPW , depicted at each rebalancing

period. This highlights the stability of weight concentrations in the portfolios. Again, NCO

show promise in providing lower weight concentrations for the NCO portfolios in comparison to

their counterparts for the minimum variance and maximum diversification objectives, albeit with

somewhat higher intertemporal fluctuations.

In Table 5.15, the results indicate that all NCO-based portfolios produce higher average portfolio

turnover in comparison to their counterparts. This is true in all cases, where the portfolio

turnover increase close to between 20% and 60% respectively per rebalancing when applied using

the NCO method. As the portfolio’s in this backtest are rebalanced quarterly, the difference in

their yearly portfolio turnover can be considered quite substantial. A large portfolio turnover is

a problem as it indicates that the cost of maintaining the portfolio is higher than for comparable

portfolios. Of the clustering-based portfolios, the HRP portfolio exhibits the lowest portfolio

turnover, followed by NCO ERC and HERC.

As seen in Table 5.15, the EW, ERC, and IV portfolios exhibit the lowest levels of average
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turnover, indicating stable weight allocations. Of the traditional portfolios, MV and MD display

the highest levels of turnover. Considering this, their strong risk-based performance does seem

to come at a cost of higher portfolio turnover.

Figure 5.5: 12-Month Rolling Average Portfolio Turnover

Figure 5.5 shows the portfolio turnover as a function of time. This display how the turnover

differs among the portfolios terms of their level and variability. On the more stable and low end,

the EW, ERC, and IV portfolios can be found. These represent the most intertemporally stable

portfolios in terms of weight allocations, also supported by their low weight concentrations. HRP

show the same level of stability in turnover over time, but at a consistently higher level. However,

the level is still consistently lower than that of the other clustering-based portfolios.

On the other end, the portfolio with the most volatile and largest portfolio turnover is the NCO

MD portfolio, followed by the NCO MV portfolio. These portfolios show volatile behavior over

time, indicating that even if they were to provide good risk-based performance, some hesitation

should be taken before applying these in practice. In between these extremes, the NCO ERC,

MV, MD, and HERC portfolios show somewhat volatile intertemporal turnover.
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6 Discussion

In this chapter, the findings from the empirical results are discussed to provide insights into the

implications and practical applicability of the methods researched. The following sections are

structured according to the different backtests, thus following the same structure as in chapter 5.

Finally, the practical implications and proposed topics of further research are discussed to provide

an analysis of the strengths and weaknesses of the methods for the use in practical portfolio

allocation scenarios.

6.1 Monte Carlo Backtest: Estimation Error

From the empirical test following the methodology of López de Prado (2019), there initially

seems to be significant gains to be made from clustering in reducing the estimation error in

portfolio optimization. For the NCO portfolios using the minimum-variance and maximum

diversification objectives, the results are at first promising. However, it is hypothesized that much

of the decrease in estimation error can be explained by the simple stylized correlation matrix

not corresponding to a realistic scenario. As such, estimation noise in the correlation matrix

together with non-uniform and non-zero correlations would make it harder for the hierarchical

clustering algorithm to find the optimal number of clusters and increase the condition number of

the reduced covariance matrix. This suspicion is confirmed when applying the more irregular,

and somewhat more realistic, stochastic block-diagonal correlation matrix. All portfolios tested

show significantly higher estimation errors as measured by the RMSE. Besides, the gap in

performance between the original portfolios compared with their NCO counterparts is almost

closed, indicating small to non-existent gains from these portfolios in terms of estimation errors.

This implies that the more simplified assumption used in the original study by López de Prado

(2019a) produce preferable results in favor of the clustering-based methods, possibly explained

by two factors.

First, as the between-cluster correlation is zero, the clusters are well separated and easily

distinguishable for the clustering algorithm. Indeed, as reported in the empirical results, all

different linkage methods successfully find the correct number of clusters in all of the iterations

of the simulation. This is confirmed as all linkage methods produce identical results, indicating

that they have no trouble finding the correct number of clusters.
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Secondly, the same assumption about between-cluster correlation produces a close to diagonalized

reduced covariance matrix for the between-cluster weight allocation step in the NCO. This would

typically not be the case in a real setting, as there are significant positive correlations present

between clusters. In other words, the gains made in terms of reduced estimation error from the

structure of the correlation matrix, are theorized to be vastly overstated in this stylized example.

Again, this is confirmed when applying the more complex stylized correlation matrix, indicating

that less reduction in the condition number can be achieved than first anticipated.

In summary, the empirical findings show how hierarchical clustering theoretically can reduce

estimation error by breaking the optimization problem up in several more well-behaved sub-

problems, given the right circumstances. However, as explored further using the more realistic

stochastic block-diagonal correlation matrix, this pattern does not seem to hold up very well,

suggesting that the application of clustering to reduce estimation error lack robustness in its

current form. Besides, results from the other empirical tests in the thesis provide further evidence

that this is true, discussed in detail in the next two sections.

6.2 Monte Carlo Backtest: Risk-Based Performance

The Monte Carlo backtest applied to infer the in-sample and out-of-sample performance of the

different portfolios provides further empirical evidence that NCO shows little to no additional

gains in regards to several risk-based metrics applied. From the results, it is hard to infer

that any specific linkage method is superior, and the different methods seem to fit better with

different optimization objectives. This can be attributed to the nature of the linkage methods,

where Ward’s Method produces the most well-balanced clusters, and Single Linkage produces

the least well-balanced clusters. As the between-cluster weight allocation does not account for

the difference in the relative size of the clusters, more uneven clusters produced by the clustering

algorithm likely result in more dense weight concentrations in the portfolio. This pattern is

easily discerned, where linkage methods with more chaining behavior produce more concentrated

weight allocations, whereas more balanced ones produce well-balanced weight allocations. This

finding is further supported by previous results shown by Papenbrock (2011). An exception to

this rule can be found regarding the HRP portfolio due to its implied dendrogram structure

being independent of the linkage method applied. As such, the HRP portfolio always produces

perfectly well-balanced clusters. The empirical findings in section 5.2 support this as it exhibits

low portfolio concentration as measured by SSPW , regardless of the linkage method applied.
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The choice of linkage method can thus arguably be seen as a strategic issue and should be

chosen with considerations to the combined choice of portfolio optimization method and strategic

objective of the portfolio allocation. As explored by Papenbrock (2011), Single Linkage can be

applied opportunistically and potentially gain from a few diversified stocks. On the other end,

Ward’s Method can be applied to produce lower weight concentrations, and thus more stable

results. In between these extremes, Average Linkage can be applied as a middle-ground solution.

Both the HRP and HERC portfolios show promise in reducing the risk and allocating to more

diversified sources as compared to the inverse-variance portfolio but does not seem to hold up in

comparison to many of the convex optimization solutions, with consistent underperformance in

regards to the risk-based performance metrics applied in this thesis.

The empirical findings from this Monte Carlo backtest show how the linkage method used can

affect the outcome of both the risk-based performance in terms of the portfolio’s optimization

objective, but also the weight concentration. For a more in-depth analysis, the same methods

were applied to the historical backtest, discussed more in the next section.

6.3 Historical Backtest

The findings in the historical backtest further support the results of the Monte Carlo backtest,

again indicating that the potential gain from NCO is limited. Any increase in the risk-based

performance made is considered either small or unstable, implying that this method does not seem

to provide an increase in the assessed performance with any degree of certainty. López de Prado

(2019a) suggests to apply and use NCO as a general method to increase the performance in

portfolio optimization. The findings in section 5.3 provide further empirical evidence contradicting

this, as the NCO exhibits unstable allocations and no clear pattern of any risk-based performance

increase. In the historical backtest, the NCO portfolios are at best performing at the same level

as their traditional counterpart, or at worst considerably worse than its counterpart.

The results for the HRP and HERC portfolios are in line with the results from the previous

Monte Carlo backtest and Raffinot (2018), further validating the findings that these methods

indeed utilize the hierarchical structure to reduce risk in comparison to the IV portfolio. In

comparison to the IV and ERC portfolios, both the HRP and HERC portfolios exhibit higher

Sharpe and Sortino ratios and also indicate lower VaR, CVaR and Maximum Drawdowns. As

such, this shows some promise in their relative performances, but as discussed below, the impact
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of weight concentration and portfolio turnover has to be reviewed to get a more nuanced image

of their applicability.

When accounting for portfolio turnover between rebalancing periods, the findings show that the

practical applicability of the clustering-based methods is somewhat limited using the methodology

applied in this thesis, especially true for the NCO method. Regardless of the linkage method

applied, the clusters seem to be more or less unstable over time, implied by the substantial

weight differences between rebalancing periods. This is evident when looking at the portfolio

turnover of the NCO and HERC portfolios compared to their benchmarks, putting into question

if the potential gain in risk-based performance can justify the increase in transaction costs. It

remains unclear if more stable correlation clusterings can be achieved by using another clustering

approach or another covariance matrix pre-processing method, a topic proposed to be further

investigated in future research.

In the end, the empirical results from both the historical backtest and the second Monte Carlo

backtest show that the traditional long-only minimum-variance, equal risk contribution, and

maximum diversification portfolios perform best out-of-sample. Both in terms of their investment

objectives, but also with regards to many of the risk-based statistical performance measures.

6.4 Practical Applications

From the different tests conducted in section 5, there seems to be little to no benefit of applying

the hierarchical portfolios from a risk-based perspective when accounting for the portfolio turnover

incurred. The portfolios outperformed the traditional portfolios in section 5.1, but when applying

more realistic assumptions, these results quickly diminished. From this, the estimation error

reduction is hypothesized to be diminishing when moving closer to the highly complex structure

that is found in a correlation matrix produced from real financial data. This is supported by

the findings from the two subsequent tests, using data with less well-formed clusters and with

real historical data. The clustering-based portfolios might still reduce the estimation error,

but to a smaller degree than first anticipated by the initial results. Considering this, using

hierarchical clustering solely to reduce estimation error is likely to not yield any major benefit

for practitioners.

Already in section 5.2, it becomes evident that the NCO portfolios are performing worse or only
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marginally better than their classical counterparts in terms of volatility, DR, and SSPW . Only

the HRP and HERC portfolios provide competitive results in comparison to their benchmark

portfolio. If there was any doubt, section 5.3 further concludes the prior results, again indicating

that when accounting for instability in the hierarchical clusterings, weight concentrations, and

portfolio turnover, these portfolios can be considered to underperform in relation to the traditional

benchmark portfolios. The results imply that the clustering-based portfolios are not only generally

under-performing in comparison with many of the traditional portfolios included; they also

generally incur higher portfolio turnover, and depending on the linkage method, higher weight

concentrations.

From a practitioner’s view, the caveats of these portfolio optimization methods should be carefully

considered before applied in a live portfolio at this stage. In particular, the NCO portfolios

seem to be dominated across most metrics by their traditional benchmarks. The traditional

portfolios consistently provide more robust performance, and should, for this reason, be premiered.

However, there seems to be no optimal option across all metrics, and the strategies applied should

fit the investment objective first and foremost. As such, when looking for low volatility, even in

stressed market conditions, the MV portfolio continues to show the most considerable promise.

On the other end, the MD portfolio showed excellent risk-adjusted returns over the researched

period, suggesting to be riskier, but also more rewarding in terms of returns, indicated by high a

Sharpe and Sortino ratio. In between these two extremes, the ERC portfolio produces somewhat

worse risk-based performance, but also implied excellent weight diversification and low portfolio

turnover. From this perspective, the best portfolio to implement depends on the characteristics of

the practitioner’s goals, including but not limited to; risk tolerance, diversification requirements,

and transaction costs.

6.5 Further Research

The interpretation of the empirical results of this thesis is that a large part of the cluster formation

instability can be attributed to the misspecification of the correlation matrix. Considering this,

it is not clear how robust the correlation clustering is to estimation noise. Therefore, further

research could help to identify potential covariance pre-processing methods to reduce noise, and

thus increase the validity of clusterings used over time. It would mainly be interesting to further

look into variants where the market mode could be reduced even more, potentially producing more

distinguished clusterings, as well as more diagonalized results in the between-cluster allocation
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step used in the NCO method.

Much research is yet to be made regarding the optimal clustering algorithm for financial correlation

clustering. Hierarchical clustering is one of many alternatives to be applied, and although it is

popular in finance, several other methods could prove more fruitful. Further research on the

intertemporal cluster stability produced by different methods could help determining the most

suitable method, as this instability is assessed to be one of the most significant shortcomings of

hierarchical clustering found in this thesis. In addition, alternative data sources for the generation

of clusterings could prove less unstable. As clustering methods are agnostic to the distances

used, other sources of financial data could be utilized, potentially producing more robust clusters

over time. Furthermore, additional research into the impact of different rebalancing schemes

and optimal rebalancing for hierarchical clustering-based portfolio methods is highly relevant.

High portfolio turnover is one of the main drawbacks seen across all aforementioned allocation

methods, and reducing it could make them more competitive and applicable in practice.

With the findings of this thesis, it is hard to provide results that generalize over all different

market regimes. Therefore, further research is warranted to further investigating how the results

and potential benefits from hierarchical clustering change under different market periods. With

the COVID-19 crisis, the world is again reminded that markets are highly unpredictable and that

before implementing a strategy in practice, careful considerations should be taken to consider

potential pitfalls that can occur during stressed markets. As such, a topic of further research

could be to investigate how the cluster quality changes during different market modes and to

assess how robust these methods are in finding true relationships between assets and clusters.
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7 Conclusion

The objective of this thesis is to provide further evidence and findings over how hierarchical

clustering portfolios perform from a risk-based perspective in comparison to each other and their

equivalent non-hierarchical benchmarks. To answer the research question, several sub-questions

were posed. In the concluding part of this thesis, the overarching conclusion is presented, and

each sub-question is answered separately.

In conclusion, this study finds that hierarchical clustering-based portfolio optimization techniques

underperform the traditional method benchmarks in most risk-based dimensions. Nested Clustered

Optimization shows limited applicability, while Hierarchical Risk Parity and Hierarchical Equal

Risk Contribution provide competitive results in comparison to their inverse-variance benchmark.

The main drawbacks are assessed to be the intertemporal instability of weight allocations, depicted

by high portfolio turnover. However, the overall performance can be said to be fair, and more

research is needed to reach more general conclusions. Below, the research questions are answered

to conclude the thesis.

Can the Estimation Error of the Traditional Portfolios be Reduced using

Nested Clustered Optimization?

The findings from the first Monte Carlo backtest, featured in section 5.1 shows inconclusive

results regarding the potential benefits of hierarchical clustering to reduce estimation error

through the NCO method. At first, using a simple stylized correlation matrix, the method

indicates substantial gains. However, these benefits are found to be diminishing with more

realistic financial data, suggesting that the method is non-robust using the implementation as

provided in this thesis.

How do Different Linkage Methods Affect the Portfolio Optimization Results?

The empirical findings indicate that the choice of linkage method has material implications

on the weight allocation characteristics of the portfolios, especially on the NCO and HERC

portfolios. The results further imply that the linkage method has a different impact depending

on the optimization objective. Therefore, no general guidelines can be inferred from this thesis.

However, in the general case, linkage methods that produce more well-balanced clusters show

more promise in providing lower weight concentrations in the portfolio construction. As such,
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Ward’s Method produces the most diversified portfolios in terms of weight concentration, while

Single Linkage produces the most dense weight concentrations.

How well do the Portfolios Perform from a Risk-Based Perspective?

The empirical findings indicate that the traditional portfolios are superior in terms of their own

optimization objective. From the empirical results, it was found that the different NCO portfolios

underperformed the traditional portfolios in terms of their optimization objective and many

of the risk-based performance metrics. The results were consistent between the Monte Carlo

backtest and the historical backtest, increasing the validity of said findings. Both the HRP and

HERC portfolios displayed competitive performance and outperformed their closest benchmark

in terms of volatility and in all included risk-based performance metrics. However, the overall

best performing portfolios from a risk-based perspective are assessed to be the MV and MD

portfolios, indicating high Sharpe and Sortino ratios, while also displaying competitive levels of

the Maximum Drawdown, Value-at-Risk (VaR), and Conditional Value-at-Risk (CVaR).

How Concentrated are the Weights of the Different Portfolios?

The diversification in terms of weight concentration measured by SSPW indicated that the

hierarchical clustering-based portfolios are flexible, and that the choice of linkage method is the

most substantial contributor to the weight concentration. This was illustrated in the Monte

Carlo backtest as Ward’s Method consistently provided low weight concentrations, regardless

of the optimization objective. Most weight diversification was, as expectedly, achieved by the

EW portfolio as it has perfect weight diversification by definition. Following this, the ERC, IV,

NCO ERC, HRP, and HERC portfolios produced well-diversified portfolios. The highest weight

concentration was found in the MV portfolios followed by the MD portfolios.

What Level of Asset Turnover is Incurred by the Different Portfolios?

Previous studies have highlighted the fact that clustering-based portfolios tend to incur higher

turnover rates. The empirical findings of this thesis are in agreement with the previous results,

providing further evidence that this is one of the downsides in applying these methods. In

the historical backtest, the NCO portfolios show higher rates compared to their traditional

counterparts. In addition, the HRP and HERC portfolios show a higher turnover rate than the

IV portfolio but are still competitive in comparison to the traditional MV and MD portfolios.
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Appendix

A1 S&P General Information

1. Files 10-K annual reports

2. The U.S. portion of fixed assets and revenues constitutes a plurality of the total, but need

not exceed 50 percent. When these factors are in conflict, fixed assets determine plurality.

Revenue determines plurality when there is incomplete asset information. Geographic

information for revenue and fixed asset allocations are determined by the company as

reported in its annual filings.

3. The primary listing must be on an eligible U.S. exchange.

The following list of exchanges are considered eligible primary listings:

1. New York Stock Exchange (NYSE)

2. New York Stock Exchange - Arca

3. New York Stock Exchange - American

4. NASDAQ Global Select Market

5. NASDAQ Select Market

6. NASDAQ Capital Market

7. CBOE BZX

8. CBOE BYX

9. CBOE EDGA

10. CBOE EDGX

Source: “SP U.S. Indices Methodology” (2020)

A2 Stylized Facts of Correlation Matrix

A3 Code – Portfolio Implementations

from datetime import datetime

import time

from tqdm import tqdm
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import numpy as np

import pandas as pd

import math

import random

import matplotlib as mpl

from matplotlib import pyplot as plt

import matplotlib.dates as mdates

import matplotlib.ticker as mtick

import seaborn as sns

import scipy.cluster.hierarchy as hierarchy

from scipy.spatial.distance import pdist

from pypfopt.risk_models import risk_matrix

from scipy.linalg import block_diag

from sklearn.utils import check_random_state

import cvxpy as cp

\end{}

\subsubsection{Minimum Variance Portfolio}

\begin{minted}[breaklines]{python}

class MinimumVariance:

def __init__(self):

self.weights = None

def allocate(self, cov, long_only=True):

cov = pd.DataFrame(cov)

n = len(cov) # number of assets

w = cp.Variable(n) # initialize weights

risk = cp.quad_form(w, cov) # portfolio variance

prob = cp.Problem(cp.Minimize(0.5 * risk), [cp.sum(w) == 1, w >= 0])

prob.solve() # solve problem
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self.weights = pd.Series(w.value, index=cov.index)

return self.weights

A3.1 Equal-Risk Contribution Portfolio

class InverseVariance:

def __init__(self):

self.weights = None

def allocate(self, cov):

cov = pd.DataFrame(cov)

inv_diag = 1 / np.diag(cov.values)

weights = inv_diag * (1 / np.sum(inv_diag))

self.weights = pd.Series(weights, index=cov.columns)

return self.weights

class InverseVolatility:

def __init__(self):

self.weights = None

def allocate(self, cov):

cov = pd.DataFrame(cov)

inv_diag = 1 / np.sqrt(np.diag(cov.values))

weights = inv_diag * (1 / np.sum(inv_diag))

self.weights = pd.Series(weights, index=cov.columns)

return self.weights

class EqualRiskContribution:

def __init__(self):

self.weights = None

def allocate(self, cov):

cov = pd.DataFrame(cov)

n = len(cov) # number of assets

w = cp.Variable(n) # initilize weights
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risk = cp.quad_form(w, cov) # portfolio variance

log_w = cp.sum((1/n)cp.log(w)) # log weights

prob = cp.Problem(cp.Minimize(0.5 * risk - log_w), [w >= 0.0001])

prob.solve() # optimize weights

self.weights = pd.Series(w.value/np.sum(w.value), index=cov.index)

return self.weights

A3.2 Maximum Diversification

class MaximumDiversification:

def __init__(self):

self.weights = None

def allocate(self, cov, long_only=True):

cov = pd.DataFrame(cov)

n = len(cov) # number of assets

w = cp.Variable(n) # initialize weights

vol = cp.sqrt(cp.diag(cov))

w_vol = cp.multiply(w, vol)

risk = cp.quad_form(w, cov) # portfolio volatility

prob = cp.Problem(cp.Minimize(0.5 * risk), [cp.sum(w_vol) == 1, w >= 0])

prob.solve() # solve problem

self.weights = pd.Series(w.value/np.sum(w.value), index=cov.index)

return self.weights

A3.3 Hierarchical Risk Parity

class HierarchicalRiskParity:

def __init__(self):

self.weights = None

self.asset_order = None

self.clusters = None

self.corr = None

self.corr_sorted = None
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# get inverse-variance/volatility weights

def inv_var(self, cov, w_method):

cov = pd.DataFrame(cov)

if w_method == 'vol':

inv_diag = 1 / np.sqrt(np.diag(cov.values))

else:

inv_diag = 1 / np.diag(cov.values)

weight = inv_diag * (1 / np.sum(inv_diag))

weight = weight.reshape(-1,1)

return weight

# create hierarchical clustering

def hierarchical_clustering(self, corr, linkage='single', leaf_order=False):

dist = np.sqrt((1 - corr).round(5) / 2) # calculate distances

p_dist = pdist(dist) # transform to distance matrix

clusters = hierarchy.linkage(p_dist, method=linkage, optimal_ordering=leaf_order) # clustering

return clusters

# sort clustered items by distance

def seriation(self, clusters):

return hierarchy.leaves_list(clusters)

# compute HRP weight allocation through recursive bisection

def recursive_bisection(self, cov, sort_order, w_method):

weight = pd.Series(1, index=sort_order) # set initial weights to 1

items = [sort_order]

while len(items) > 0: # loop while weights is under 100%

items = [i[j:k]

for i in items

for j, k in ((0, len(i) // 2), (len(i) // 2, len(i))) # get cluster indices

if len(i) > 1

]

# allocate weight to left and right cluster
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for i in range(0, len(items), 2):

left_cluster = items[i]

right_cluster = items[i + 1]

# Left cluster

left_cov = cov.iloc[left_cluster, left_cluster]

left_weight = self.inv_var(left_cov, w_method)

left_var = np.dot(np.dot(left_weight.T, left_cov), left_weight)[0,0]

# Right cluster

right_cov = cov.iloc[right_cluster, right_cluster]

right_weight = self.inv_var(right_cov, w_method)

right_var = np.dot(np.dot(right_weight.T, right_cov), right_weight)[0,0]

# Allocate weight to clusters

alpha = 1 - left_var / (left_var + right_var)

weight[left_cluster] *= alpha # weight 1

weight[right_cluster] *= 1 - alpha # weight 2

self.weights = weight

self.weights.index = self.asset_order

# Transform covariance matrix to correlation matrix

def cov2corr(self, cov):

std = np.sqrt(np.diag(cov))

corr = cov / np.outer(std, std)

corr[corr < -1], corr[corr > 1] = -1, 1 # numerical error

return corr

# Allocate weights

def allocate(self, cov, linkage='single', leaf_order=True, w_method='var'):

# Correlation matrix from covariance matrix

self.corr = pd.DataFrame(self.cov2corr(cov))
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# Step-1: Tree clustering

self.clusters = self.hierarchical_clustering(self.corr, linkage, leaf_order)

# Step-2: Seriation (Quasi-Diagnalization)

self.sort_order = self.seriation(self.clusters)

asset_order = list(cov.columns)

asset_order[:] = [asset_order[i] for i in self.sort_order]

self.asset_order = asset_order

self.corr_sorted = self.corr.reindex(index=self.asset_order, columns=self.asset_order)

# Step-3: Recursive bi-section

self.recursive_bisection(cov, self.sort_order, w_method)

return self.weights

A3.4 Hierarchical Equal Risk Contribution

class HierarchicalEqualRiskContribution:

def __init__(self):

self.weights = None

self.asset_order = None

self.clusters = None

self.corr = None

self.corr_sorted = None

# get inverse-variance/volatility weights

def inv_var(self, cov, w_method='var'):

cov = pd.DataFrame(cov)

if w_method == 'vol':

inv_diag = 1 / np.sqrt(np.diag(cov.values))

else:

inv_diag = 1 / np.diag(cov.values)

weight = inv_diag * (1 / np.sum(inv_diag))

weight = weight.reshape(-1,1)

return weight
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# create hierarchical clustering

def hierarchical_clustering(self, corr, linkage, max_k):

# hierarchcial clustering

dist = np.sqrt((1 - corr).round(5) / 2)

dist = pd.DataFrame(dist, columns=corr.columns, index=corr.index)

p_dist = pdist(dist)

clustering = hierarchy.linkage(p_dist, method=linkage)

# cluster levels over from 1 to N-1 clusters

cluster_lvls = pd.DataFrame(hierarchy.cut_tree(clustering),

index=corr.columns)↪→

num_k = cluster_lvls.columns # save column with number of clusters

cluster_lvls = cluster_lvls.iloc[:, ::-1] # reverse order to start with

1 cluster↪→

cluster_lvls.columns = num_k # set columns to number of cluster

W_list = []

# get within-cluster dissimilarity for each k

for k in range(min(len(cluster_lvls.columns), max_k)):

level = cluster_lvls.iloc[:,k] # get k clusters

D_list = [] # within-cluster distance list

for i in range(np.max(level.unique())+1):

cluster = level.loc[level == i] #

cluster_dist = dist.loc[cluster.index, cluster.index] # get

distance↪→

cluster_pdist = pdist(cluster_dist) # flatten and transform to

squared euclidean↪→

D = np.nan_to_num(cluster_pdist.std())

D_list.append(D) # append to list

W_k = np.sum(D_list)

W_list.append(W_k)

W_list = pd.Series(W_list)
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n = corr.shape[0]

limit_k = int(min(max_k, np.sqrt(n)))

gaps = W_list.shift(-2) + W_list - 2*W_list.shift(-1)

gaps = gaps[0:limit_k]

k = gaps.idxmax() + 2

return clustering, k

# sort clustered items by distance

def seriation(self, clusters):

return hierarchy.leaves_list(clusters)

# compute HRP weight allocation through cluster-based bisection

def hierarchical_recursive_bisection(self, cov, linkage, k, w_method):

# Transform linkage to tree and reverse order

root, nodes = hierarchy.to_tree(linkage, rd=True)

nodes = nodes[::-1]

items = pd.Series(data=hierarchy.leaves_list(linkage)) # Get list of

assets↪→

weight = pd.Series(1, index=cov.index) # Set initial weights to 1

# Loop through k clusters

for i in nodes[:k-1]:

if i.is_leaf() == False: # skip leaf-nodes

left = i.get_left().pre_order(lambda i: i.id) # get left

cluster↪→

right = i.get_right().pre_order(lambda i: i.id) # get right

cluster↪→

# Left cluster

left_cov = cov.iloc[left, left]

left_weight = self.inv_var(left_cov, w_method)
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left_var = np.dot(np.dot(left_weight.T, left_cov),

left_weight)[0,0]↪→

# Right cluster

right_cov = cov.iloc[right, right]

right_weight = self.inv_var(right_cov, w_method)

right_var = np.dot(np.dot(right_weight.T, right_cov),

right_weight)[0,0]↪→

# Allocate weight to clusters

alpha = 1 - left_var / (left_var + right_var)

weight[left] *= alpha # weight 1

weight[right] *= 1 - alpha # weight 2

# Get constituents of k clusters

clustered_assets = pd.Series(hierarchy.cut_tree(linkage,

n_clusters=k).flatten(), index=cov.index)↪→

w = pd.DataFrame(np.ones(len(cov.index)), index=cov.index)

# Multiply within-cluster weight with inter-cluster weight

for i in range(k):

cluster = clustered_assets.loc[clustered_assets == i]

cluster_cov = cov.loc[cluster.index, cluster.index]

cluster_weights = pd.Series(self.inv_var(cluster_cov,

w_method).flatten(), index=cluster_cov.index)↪→

weight.loc[cluster_weights.index] *= cluster_weights

return weight

# Transform covariance matrix to correlation matrix

def cov2corr(self, cov):

std = np.sqrt(np.diag(cov))

corr = cov / np.outer(std, std)

corr[corr < -1], corr[corr > 1] = -1, 1 #numerical error

return corr
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# ----------- Output Methods ----------- #

# Allocate weights

def allocate(self, cov, linkage='ward', max_k=10, w_method='var'):

# Correlation matrix from covariance matrix

self.corr = self.cov2corr(cov)

# Step-1: Tree clustering

self.clusters, self.k, = self.hierarchical_clustering(self.corr,

linkage, max_k)↪→

# Step-2: Seriation (Quasi-Diagnalization)

self.sort_order = self.seriation(self.clusters)

asset_order = list(cov.columns)

asset_order[:] = [asset_order[i] for i in self.sort_order]

self.asset_order = asset_order

self.corr_sorted = self.corr.reindex(index=self.asset_order,

columns=self.asset_order)↪→

# Step-3: Recursive Bisection

self.weights = self.hierarchical_recursive_bisection(cov, self.clusters,

self.k, w_method)↪→

return self.weights

A3.5 Nested Clustered Optimization

class NestedClusteredOptimization:

def __init__(self):

self.corr = None

self.corr_sorted = None

self.clusters = None

self.k = None
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self.weights = None

# Minimum-Variance Allocation

def opt_w(self, cov, w_method, long_only=True):

cov = pd.DataFrame(cov)

n = len(cov) # number of assets

# Minimum Variance

if w_method == 'mv':

w = cp.Variable(n) # initialize weights

risk = cp.quad_form(w, cov) # portfolio variance

prob = cp.Problem(cp.Minimize(0.5 * risk), [cp.sum(w) == 1, w >= 0])

prob.solve() # solve problem

weight = w.value

# Equal Risk Contribution

if w_method == 'md':

w = cp.Variable(n) # initialize weights

vol = cp.sqrt(cp.diag(cov))

w_vol = cp.multiply(w, vol)

risk = cp.quad_form(w, cov) # portfolio volatility

prob = cp.Problem(cp.Minimize(0.5 * risk), [cp.sum(w_vol) == 1, w >=

0])↪→

prob.solve() # solve problem

weight = w.value/np.sum(w.value)

# Maximum Diversification

if w_method == 'erc':

w = cp.Variable(n) # initilize weights

risk = cp.quad_form(w, cov) # portfolio variance

log_w = cp.sum((1/n)*cp.log(w)) # log weights

prob = cp.Problem(cp.Minimize(0.5 * risk - log_w), [w >= 0]) #

defined problem↪→

prob.solve() # optimize weights
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weight = w.value/np.sum(w.value)

weight = pd.Series(weight, index=cov.index)

return weight

# create hierarchical clustering

def hierarchical_clustering(self, corr, linkage, max_k):

# hierarchcial clustering

dist = np.sqrt((1 - corr).round(5) / 2)

dist = pd.DataFrame(dist, columns=corr.columns, index=corr.index)

p_dist = pdist(dist)

clustering = hierarchy.linkage(p_dist, method=linkage)

# cluster levels over from 1 to N-1 clusters

cluster_lvls = pd.DataFrame(hierarchy.cut_tree(clustering),

index=corr.columns)↪→

num_k = cluster_lvls.columns # save column with number of clusters

cluster_lvls = cluster_lvls.iloc[:, ::-1] # reverse order to start with

1 cluster↪→

cluster_lvls.columns = num_k # set columns to number of cluster

W_list = []

# get within-cluster dissimilarity for each k

for k in range(min(len(cluster_lvls.columns), max_k)):

level = cluster_lvls.iloc[:,k] # get k clusters

D_list = [] # within-cluster distance list

for i in range(np.max(level.unique())+1):

cluster = level.loc[level == i]

cluster_dist = dist.loc[cluster.index, cluster.index] # get

distance↪→

cluster_pdist = pdist(cluster_dist) # flatten and transform to

squared euclidean↪→

D = np.nan_to_num(cluster_pdist.std())

D_list.append(D) # append to list
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W_k = np.sum(D_list)

W_list.append(W_k)

W_list = pd.Series(W_list)

n = corr.shape[0]

limit_k = int(min(max_k, np.sqrt(n)))

gaps = W_list.shift(-2) + W_list - 2*W_list.shift(-1)

gaps = gaps[0:limit_k]

k = gaps.idxmax() + 2

return clustering, k

# compute intra-cluster weights

def intra_weights(self, cov, clusters, k, w_method):

clusters = hierarchy.cut_tree(clusters, n_clusters=k)

clusters = pd.DataFrame(clusters)

clusters.columns = ['cluster']

clusters.index = cov.index

# get covariance matrices for each cluster

intra_weights = pd.DataFrame(index=clusters.index)

for i in range(k):

cluster = clusters.loc[clusters.cluster == i]

cluster_cov = cov.loc[cluster.index, cluster.index]

weights = pd.Series(self.opt_w(cluster_cov, w_method),

index=cluster_cov.index)↪→

intra_weights[i] = weights

intra_weights = intra_weights.fillna(0)

return intra_weights

def inter_weights(self, cov, intra_weights, w_method):

# inter-cluster covariance matrix

tot_cov = intra_weights.T.dot(np.dot(cov, intra_weights))
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# inter-cluster weights

inter_weights = pd.Series(self.opt_w(tot_cov, w_method),

index=intra_weights.columns)↪→

# determine the weight on each cluster by multiplying the intra-cluster

weight with the inter-cluster weight↪→

weights = intra_weights.mul(inter_weights,

axis=1).sum(axis=1).sort_index()↪→

return weights

# Transform covariance matrix to correlation matrix

# Covariance to Correlation transformation

def cov2corr(self, cov):

std = np.sqrt(np.diag(cov))

corr = cov / np.outer(std, std)

corr[corr < -1], corr[corr > 1] = -1, 1 #numerical error

return corr

# ----------- Output Methods ----------- #

# Allocate weights

def allocate(self, cov, linkage='ward', max_k=10, w_method='mv'):

# Correlation matrix from covariance matrix

self.corr = self.cov2corr(cov)

# Step-1: Tree clustering

self.clusters, self.k, = self.hierarchical_clustering(self.corr,

linkage, max_k)↪→

# Step-2: Determine intra-cluster weights

intra_weights = self.intra_weights(cov, self.clusters, self.k, w_method)
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# Step-3: Determine inter-cluster weights and multiply with

intra-cluster weights↪→

self.weights = self.inter_weights(cov, intra_weights, w_method)

return self.weights

A4 Code – Backtesting

A4.1 Monte Carlo Backtest: Estimation Error

# Correlation and Covariance Transformation

def corr2cov(corr,std):

cov = corr * np.outer(std, std)

return cov

def cov2corr(cov):

std = np.sqrt(np.diag(cov))

corr = cov / np.outer(std, std)

corr[corr < -1], corr[corr > 1] = -1, 1 #numerical error

return corr

# Create block-diagonal correlation matrix with variable sized clusters

def getCovSub(nObs, nCols, sigma, random_state=None):

# Sub correl matrix

rng = check_random_state(random_state)

if nCols == 1:

return np.ones((1,1))

ar0 = rng.normal(size=(nObs,1))

ar0 = np.repeat(ar0, nCols, axis=1)

ar0 += rng.normal(scale=sigma, size=ar0.shape)

ar0 = np.cov(ar0, rowvar=False)

return ar0
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def getRndBlockCov(nCols, nBlocks, minBlockSize=1, sigma=1.0,

random_state=None):↪→

# Generate a block random correlation matrix

rng = check_random_state(random_state)

parts = rng.choice(range(1, nCols-(minBlockSize-1)*nBlocks), nBlocks-1,

replace=False)↪→

parts.sort()

parts = np.append(parts, nCols-(minBlockSize-1)*nBlocks)

parts = np.append(parts[0],np.diff(parts)) - 1 + minBlockSize

cov = None

for nCols_ in parts:

cov_ = getCovSub(int(max(nCols_*(nCols_+1)/2.,100)), nCols_, sigma,

random_state=rng)↪→

if cov is None:

cov = cov_.copy()

else:

cov = block_diag(cov,cov_)

return cov

def randomBlockCorr(nCols, nBlocks, random_state=None, minBlockSize=1):

# Form block corr

rng = check_random_state(random_state)

cov0 = getRndBlockCov(nCols, nBlocks, minBlockSize=minBlockSize, sigma=0.5,

random_state=rng)↪→

cov1 = getRndBlockCov(nCols, 1, minBlockSize=minBlockSize, sigma=1.0,

random_state=rng) # add noise↪→

cov0 += cov1

corr0 = cov2corr(cov0)

corr0 = pd.DataFrame(corr0)

return corr0

# Create block-diagonal correlation matrix with fixed cluster size

def formBlockMatrix(nBlocks, covSize, bCorr):

bSize = int(covSize / nBlocks)
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block = np.ones((bSize, bSize)) * bCorr

block[range(bSize), range(bSize)] = 1

corr = block_diag(*([block]*nBlocks))

return corr

# Take block matrix as input

def formTrueMatrix(corr):

corr = pd.DataFrame(corr)

cols = corr.columns.tolist()

np.random.shuffle(cols)

corr = corr[cols].loc[cols].copy(deep=True)

std = np.random.uniform(0.05, 0.2, corr.shape[0])

cov = corr2cov(corr, std)

return cov

# Simulate Empirical Covariance Matrix

def simCov(cov0, nObs, shrink=False):

x = np.random.multivariate_normal(np.zeros((cov0.shape[0],)), cov0,

size=nObs)↪→

x = pd.DataFrame(x)

if shrink:

cov1 = risk_matrix(x, method='ledoit_wolf_constant_correlation',

returns_data=True)↪→

else:

cov1 = np.cov(x, rowvar=0)

return cov1

# set seed for replicability

np.random.seed(0)

# Variables for True Covariance Matrix

nBlocks = 10

covSize = 100

bCorr = 0.5
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nCols = 100

minBlockSize = 5

random = False # determines the correlation matrix used

# Variables for Monte Carlo

nObs = 504

nSims = 200

# Minimum Variance Portfolios

# Initiate DataFrame for Statistics

stats = pd.DataFrame()

# Get True Weights

w0 = pd.DataFrame(columns=range(nCols), index=range(nSims), dtype=float)

# Initiate DataFrames for estimated weights

w1 = w0.copy(deep=True)

w1_single = w0.copy(deep=True)

w1_average = w0.copy(deep=True)

w1_ward = w0.copy(deep=True)

true_k = []

k_single = []

k_average = []

k_ward = []

# Run for both Raw and with Shrinkage

for shrink in [False, True]:

# Run Monte-Carlo simulations

for i in tqdm(range(nSims)):

nBlocks = np.random.randint(5, 10)
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# Get true covariance matrix and set true weights

if random=True:

corr = randomBlockCorr(nCols, nBlocks,

minBlockSize=minBlockSize)↪→

else:

corr = formBlockMatrix(nBlocks, covSize, bCorr)

cov0 = formTrueMatrix(corr)

w0.loc[i] = mv.allocate(cov0)

# Get sample covariance matrix and set weights

cov1 = simCov(cov0, nObs, shrink=shrink)

#q = nObs/cov0.shape[0]

#cov1 = pd.DataFrame(deNoiseCov(cov1, q, bWidth=.01))

w1.loc[i] = mv.allocate(cov1)

# Single linkage

w1_single.loc[i] = nco.allocate(cov1, linkage='single', max_k=15,

w_method='mv')↪→

k_single.append(nco.k)

# Average linkage

w1_average.loc[i] = nco.allocate(cov1, linkage='average', max_k=15,

w_method='mv')↪→

k_average.append(nco.k)

# Ward's Method

w1_ward.loc[i] = nco.allocate(cov1, linkage='ward', max_k=15,

w_method='mv')↪→

k_ward.append(nco.k)
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# Save estimated number of clusters (k)

true_k.append(nBlocks)

row = []

# Calculate Root-Mean-Square Errors between weights

row.append(np.mean((w1 - w0).values.flatten() ** 2 ) ** 0.5)

row.append(np.mean((w1_single - w0).values.flatten() ** 2) ** 0.5)

row.append(np.mean((w1_average - w0).values.flatten() ** 2) ** 0.5)

row.append(np.mean((w1_ward - w0).values.flatten() ** 2) ** 0.5)

row = pd.Series(row)

stats = stats.append(row, ignore_index=True)

stats.columns = ['MV', 'Single', 'Average', 'Ward']

stats.index = ['Raw','Shrunk']

# Equal Risk Contribution Portfolios

# Initiate DataFrame for Statistics

stats = pd.DataFrame()

# Get True Weights

w0 = pd.DataFrame(columns=range(nCols), index=range(nSims), dtype=float)

# Initiate DataFrames for estimated weights

w1 = w0.copy(deep=True)

w1_single = w0.copy(deep=True)

w1_average = w0.copy(deep=True)

w1_ward = w0.copy(deep=True)

true_k = []

k_single = []

k_average = []
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k_ward = []

# Run for both Raw and with Shrinkage

for shrink in [False, True]:

# Run Monte-Carlo simulations

for i in tqdm(range(nSims)):

nBlocks = np.random.randint(5, 10)

# Get true covariance matrix and set true weights

if random=True:

corr = randomBlockCorr(nCols, nBlocks,

minBlockSize=minBlockSize)↪→

else:

corr = formBlockMatrix(nBlocks, covSize, bCorr)

cov0 = formTrueMatrix(corr)

w0.loc[i] = erc.allocate(cov0)

# Get sample covariance matrix and set weights

cov1 = simCov(cov0, nObs, shrink=shrink)

#q = nObs/cov0.shape[0]

#cov1 = pd.DataFrame(deNoiseCov(cov1, q, bWidth=.01))

w1.loc[i] = erc.allocate(cov1)

# Single linkage

w1_single.loc[i] = nco.allocate(cov1, linkage='single', max_k=15,

w_method='erc')↪→

k_single.append(nco.k)

# Average linkage

w1_average.loc[i] = nco.allocate(cov1, linkage='average', max_k=15,

w_method='erc')↪→
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k_average.append(nco.k)

# Ward's Method

w1_ward.loc[i] = nco.allocate(cov1, linkage='ward', max_k=15,

w_method='erc')↪→

k_ward.append(nco.k)

# Save estimated number of clusters (k)

true_k.append(nBlocks)

row = []

# Calculate Root-Mean-Square Errors between weights

row.append(np.mean((w1 - w0).values.flatten() ** 2 ) ** 0.5)

row.append(np.mean((w1_single - w0).values.flatten() ** 2) ** 0.5)

row.append(np.mean((w1_average - w0).values.flatten() ** 2) ** 0.5)

row.append(np.mean((w1_ward - w0).values.flatten() ** 2) ** 0.5)

row = pd.Series(row)

stats = stats.append(row, ignore_index=True)

stats.columns = ['MV', 'Single', 'Average', 'Ward']

stats.index = ['Raw','Shrunk']

# ----------------------------------

# Maximum Diversification

# ----------------------------------

# Initiate DataFrame for Statistics

stats = pd.DataFrame()

# Get True Weights

w0 = pd.DataFrame(columns=range(nCols), index=range(nSims), dtype=float)

# Initiate DataFrames for estimated weights
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w1 = w0.copy(deep=True)

w1_single = w0.copy(deep=True)

w1_average = w0.copy(deep=True)

w1_ward = w0.copy(deep=True)

true_k = []

k_single = []

k_average = []

k_ward = []

# Run for both Raw and with Shrinkage

for shrink in [False, True]:

# Run Monte-Carlo simulations

for i in tqdm(range(nSims)):

nBlocks = np.random.randint(5, 10)

# Get true covariance matrix and set true weights

if random=True:

corr = randomBlockCorr(nCols, nBlocks,

minBlockSize=minBlockSize)↪→

else:

corr = formBlockMatrix(nBlocks, covSize, bCorr)

cov0 = formTrueMatrix(corr)

w0.loc[i] = md.allocate(cov0)

# Get sample covariance matrix and set weights

cov1 = simCov(cov0, nObs, shrink=shrink)

#q = nObs/cov0.shape[0]

#cov1 = pd.DataFrame(deNoiseCov(cov1, q, bWidth=.01))

w1.loc[i] = md.allocate(cov1)
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# Single linkage

w1_single.loc[i] = nco.allocate(cov1, linkage='single', max_k=15,

w_method='md')↪→

k_single.append(nco.k)

# Average linkage

w1_average.loc[i] = nco.allocate(cov1, linkage='average', max_k=15,

w_method='md')↪→

k_average.append(nco.k)

# Ward's Method

w1_ward.loc[i] = nco.allocate(cov1, linkage='ward', max_k=15,

w_method='md')↪→

k_ward.append(nco.k)

# Save estimated number of clusters (k)

true_k.append(nBlocks)

row = []

# Calculate Root-Mean-Square Errors between weights

row.append(np.mean((w1 - w0).values.flatten() ** 2 ) ** 0.5)

row.append(np.mean((w1_single - w0).values.flatten() ** 2) ** 0.5)

row.append(np.mean((w1_average - w0).values.flatten() ** 2) ** 0.5)

row.append(np.mean((w1_ward - w0).values.flatten() ** 2) ** 0.5)

row = pd.Series(row)

stats = stats.append(row, ignore_index=True)

stats.columns = ['MV', 'Single', 'Average', 'Ward']

stats.index = ['Raw','Shrunk']
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A4.2 Monte Carlo Backtest: Risk-Based Performance

# Import pre-generated correlation matrices

corr_matrix = pd.read_hdf('dataset/corrgan_corr.h5', 'corr')

# Set size of matrix

n = 100

a, b = np.triu_indices(n, k=1)

# list to store correlation matrices

corr_matrix_list = []

# Iterate through rows of flattened list

for row in corr_matrix.iterrows():

flat_corr = row[1] # get row values

flat_corr = flat_corr[::-1] # revert order of values

corr = np.ones((n, n)) # fill a symmetric one matrix with size n

corr[a, b] = flat_corr # input coefficients to top triangle

corr[b, a] = flat_corr # input coefficients to bottom triangle

corr_matrix_list.append(corr) # append to list

# Define Gaussian returns

def generate_returns_sample(cov, horizon=252):

gaussian_ret = np.random.multivariate_normal(np.zeros(len(cov)), cov,

size=horizon)↪→

return pd.DataFrame(gaussian_ret)

# Shuffle Matrix

def shuffle_matrix(matrix):

matrix = pd.DataFrame(matrix)

cols = matrix.columns.tolist()

np.random.shuffle(cols)

matrix = matrix[cols].loc[cols].copy(deep=True)

return matrix
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# Monte Carlo simulations

def monte_carlo(methods, iterations=10, in_horizon=252, out_horizon=252):

# Initiate summary statistics dataframe

vol = pd.DataFrame()

dr = pd.DataFrame()

ssw = pd.DataFrame()

# Iterate through the methods

for name, method in methods.items():

# initiate return dataframes

in_sample = pd.DataFrame()

out_sample = pd.DataFrame()

# initiate weighted volatility dataframes

in_w_vol = pd.DataFrame()

out_w_vol = pd.DataFrame()

squared_weights = pd.DataFrame()

for i in tqdm(range(iterations)):

# generate in-sample and out-of-sample returns

corr = pd.DataFrame(corr_matrix_list[i])

cov = formTrueMatrix(corr)

in_ret = generate_returns_sample(cov, horizon=in_horizon)

out_ret = generate_returns_sample(cov, horizon=out_horizon)

# Generate in-sample covariance for weight alloaction

cov1 = in_ret.cov()

# allocate weights

if method[1] != None:
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args = method[1]

try:

weights = method[0].allocate(cov1, *args)

except:

pass

else:

try:

weights = method[0].allocate(cov1)

except:

pass

squared_weights[i] = (weights ** 2)

# generate weighted volatilities for diversification ratio

in_w_vol[i] = in_ret.std() * weights

out_w_vol[i] = out_ret.std() * weights

# generate portfolio returns and append to DataFrame

in_sample[i] = (in_ret * weights).sum(axis=1)

out_sample[i] = (out_ret * weights).sum(axis=1)

# Get in-sample statistics

in_vol = in_sample.std() * np.sqrt(252)

in_dr = (in_w_vol * np.sqrt(252)).sum() / in_vol

# Get out-of-sample statistics

out_vol = out_sample.std() * np.sqrt(252)

out_dr = (out_w_vol * np.sqrt(252)).sum() / out_vol

squared_weights = squared_weights.sum()

# Save volatilities

vol[name + ' in'] = in_vol

vol[name + ' out'] = out_vol
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# Save diversification ratios

dr[name + ' in'] = in_dr

dr[name + ' out'] = out_dr

ssw[name + ' in'] = squared_weights

ssw[name + ' out'] = squared_weights

return vol, dr, ssw

# -----------------------------

# Testing

# -----------------------------

methods = {

'MV': [mv, None],

'MD': [md, None],

'ERC': [erc, None],

'IVP': [ivp, None],

'NCO MV': [nco, [linkage, 50, 'mv']],

'NCO MD': [nco, [linkage, 50, 'md']],

'NCO ERC': [nco, [linkage, 50, 'erc']],

'HRP': [hrp, [linkage, True, 'var']],

'HERC': [herc, [linkage, 50, 'var']],

'NCO MV': [nco, [linkage, 50, 'mv']],

'NCO MD': [nco, [linkage, 50, 'md']],

'NCO ERC': [nco, [linkage, 50, 'erc']],

'HRP': [hrp, [linkage, True, 'var']],

'HERC': [herc, [linkage, 50, 'var']],

'NCO MV': [nco, [linkage, 50, 'mv']],

'NCO MD': [nco, [linkage, 50, 'md']],

'NCO ERC': [nco, [linkage, 50, 'erc']],

'HRP': [hrp, [linkage, True, 'var']],

'HERC': [herc, [linkage, 50, 'var']]
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}

# Initiate Summary Stats DataFrame

summary_stats = pd.DataFrame()

# Run Monte Carlo

vol, dr, ssw = monte_carlo(methods, 2000, in_horizon=252*2, out_horizon=252)

# Save Summary Statistics

summary_stats['Vol'] = vol.mean()

summary_stats['DR'] = dr.mean()

summary_stats['SSW'] = ssw.mean()

# Output Summary Statistics

summary_stats

A4.3 Historical Backtest

def rebalance_weights(asset_returns, method, args=None, rebalance=3*21,

window=2*252, testing='out-of-sample', shrink=True):↪→

# Initiate weights

count = asset_returns.reset_index(drop=True) # get integer indice numbers

weights = pd.DataFrame(index=count.index, columns=asset_returns.columns) #

use integer indice for window calc↪→

# get rows used for rebalancing

reb_index = weights.iloc[window::rebalance]

# loop through rebalancing dates

for i in tqdm(reb_index.index):

# Restrict to timeframe and cleanse nan columns

sample = asset_returns.iloc[i-window:i]

sample = sample[sample.columns[~sample.isna().any()]]

if shrink == True:
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cov = risk_matrix(sample, method='ledoit_wolf_constant_correlation',

returns_data=True)↪→

else:

cov = sample.cov()

# allocate with length equal to window

if args == None:

weights.iloc[i] = method.allocate(cov)

else:

weights.iloc[i] = method.allocate(cov, *args)

# forwardfill/backfill to get over rebalancing period

if testing == 'out-of-sample':

weights = weights.ffill(limit=rebalance-1)

else:

weights = weights.bfill(limit=rebalance-1)

# set nan values to 0 for weight calculation

weights = weights.fillna(0)

weights.index = asset_returns.index

return weights

# get dataframe from walkforward

def walk_forward(asset_returns, weights, warmup):

ret = (asset_returns*weights)

ret = ret.iloc[warmup:]

return ret

# Cumulative returns

def cum_ret(returns):

return (returns + 1).cumprod()[-1]

# Average returns
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def avg_ret(returns, freq='yearly'):

if freq == 'yearly': freq = 252

elif freq == 'monthly': freq = 21

else: freq = 1

return (1 + returns.mean())**(freq/1) - 1

# Volatility of returns

def vol_ret(returns, freq='yearly'):

if freq == 'yearly': freq = 252

elif freq == 'monthly': freq = 21

return returns.std() * np.sqrt(freq)

def dr(asset_returns, weights, window=3*21):

w_vol = (weights *

asset_returns.shift(3*21).rolling(window).std()).sum(axis=1).mean()↪→

p_vol = (weights * asset_returns).sum(axis=1).std()

return (w_vol / p_vol)

# Sharpe ratio

def sharpe(returns, rf=0):

return ((returns - rf).mean() / (returns - rf).std()) * np.sqrt(252)

# Lower partial moment of the returns (for Sortino)

def lpm(returns, threshold, order=2):

threshold_array = np.empty(len(returns))

threshold_array.fill(threshold)

diff = threshold_array - returns

diff = diff.clip(0, None)

return (np.sum(diff ** order) / len(returns))

# Sortino ratio

def sortino(returns, rf=0):

return ((returns - rf).mean() / np.sqrt(lpm(returns, 0))) * np.sqrt(252)
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# Value-at-risk

def var(returns, alpha):

sorted_returns = np.sort(returns)

index = int(alpha * len(sorted_returns))

return abs(sorted_returns[index]) * np.sqrt(252)

# Expected Shortfall (cVaR)

def cvar(returns, alpha):

sorted_returns = np.sort(returns)

index = int(alpha * len(sorted_returns))

sum_var = sorted_returns[0] # Calculate the total VaR beyond alpha

for i in range(1, index):

sum_var += sorted_returns[i]

return abs(sum_var / index) * np.sqrt(252) # Return the average VaR

# Maximum Drawdown

def max_dd(returns):

r = returns.add(1).cumprod()

dd = r.div(r.cummax()).sub(1)

mdd = dd.min()

end = dd.idxmin()

start = r.loc[:end].idxmax()

return mdd, start, end

def portfolio_turnover(weights, warmup=252*2):

weights = weights[252*2:]

weights = weights.drop_duplicates()

return (weights - weights.shift(1)).abs().sum(axis=1).mean()

def sspw(weights, rebalancing=3*21):

weights = weights[252*2:]

weights = weights.drop_duplicates()

return (weights**2).sum(axis=1).mean()
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def rolling_sspw(weights, rebalancing=3*21):

weights = weights[252*2:]

weights = weights.drop_duplicates()

return (weights**2).sum(axis=1)

def rolling_pto(weights, warmup=252*2):

weights = weights[252*2:]

weights = weights.drop_duplicates()

return (weights - weights.shift(1)).abs().sum(axis=1).rolling(4).mean()

A5 Full Results Historical Backtest

Average Yearly Return Average Yearly Volatility
MV 13.4% 10.2%
NCO Single MV 13.4% 10.2%
MV Average NCO 12.5% 10.1%
MV Ward NCO 13.7% 10.2%
MD 18.0% 13.5%
MD Single NCO 19.4% 16.5%
NCO Average MD 14.8% 15.8%
MD Ward NCO 16.1% 15.2%
ERC 15.6% 15.9%
ERC Single NCO 18.2% 15.6%
ERC Average NCO 15.4% 15.3%
ERC Ward NCO 15.4% 15.9%
Single HRP 15.2% 14.4%
Average HRP 15.2% 14.4%
Ward HRP 15.3% 14.3
Single HERC 15.1% 14.6
Average HERC 14.8% 13.8%
Ward HERC 14.8% 14.3%
IVP 14.8% 15.1%
EW 16.3% 18.1%

Table A5.1: Return and Volatility for all Portfolios
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Skewness Kurtosis Max Min 5% quantile 95% quantile
MV 0.09 15.39 8.7% -6.3% -0.9% 1.0%
NCO Single MV 0.05 16.94 9.4% -6.2% -0.9% 1.0%
MV Average NCO -0.05 15.79 8.9% -6.5% -0.9% 1.0%
MV Ward NCO -0.14 13.20 8.7% -6.5% -0.9% 1.0%
MD 0.22 16.11 12.8% -7.9% -1.2% 1.3%
NCO Single MD 37.80 18.32 16.4% -10.4% -1.5% 1.5%
NCO Average MD -0.1639 7.9300 0.1247 -8.7% -1.4% 1.5%
MD Ward NCO -0.21 10.51 11.4% -8.7% -1.4% 1.4%
ERC -0.21 11.15 10.90% -9.1% -1.5% 1.4%
ERC Single NCO -35.4 8.03 0.1070 -9.0% -1.4% 1.4%
ERC Average NCO -32.1 11.10 0.1219 -9.4% -1.4% 1.4%
ERC Ward NCO -0.25 13.07 0.1246 -9.9% -1.5% 1.4%
Single HRP -0.20 11.35 0.1035 -8.3% -1.4% 1.3%
Average HRP -0.20 11.14 0.1036 -8.1% -1.4% 1.3%
Ward HRP -0.20 11.03 0.1030 -8.1% -1.4% 1.3%
Single HERC -0.07 15.87 0.1254 -8.8% -1.3% 1.3%
Average HERC -0.25 13.15 0.1065 -8.5% -1.3% 1.3%
Ward HERC -0.24 12.88 0.1102 -8.6% -1.3% 1.3%
IVP -0.16 11.51 0.1069 -8.7% -1.4% 1.4%
EW -0.19 9.53 0.1113 -9.9% -1.7% 1.7%

Table A5.2: Return Distribution of all Portfolios
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Maximum Drawdown VaR (5%) CVaR (5%) Sharpe Sortino
MV -30.2% 14.7% 23.2% 0.94 1.39
NCO Single MV -32.1% 14.8% 23.6% 0.93 1.37
MV Average NCO -33.5% 14.4% 23.6% 0.86 1.25
MV Ward NCO -31.3% 14.7% 23.7% 0.95 1.40
MD -51.2% 19.3% 30.6% 0.99 1.47
MD Single NCO -61.0% 22.2% 35.7% 0.88 1.32
NCO Average MD -63.1% 22.0% 36.2% 0.67 0.98
MD Ward NCO -50.6% 22.5% 35.9% 0.77 1.11
ERC -52.5% 23.3% 37.9% 0.72 1.0444
MD Single NCO -61.0% 23.8% 36.6% 0.89 1.32
ERC Average NCO -55.9% 22.2% 35.7% 0.73 1.05
ERC Ward NCO -53.9% 23.0% 37.7% 0.71 1.03
Single HRP -49.3% 21.5% 34.4% 0.78 1.12
Average HRP -49.2% 21.6% 34.4% 0.77 1.12
Ward HRP -49.0% 21.5% 34.3% 0.78 1.14
Single HERC -54.1% 20.9% 33.3% 0.74 1.08
Average HERC -51.5% 20.2% 32.5% 0.77 1.12
Ward HERC -49.6% 20.8% 34.1% 0.75 1.09
IVP -49.9% 22.3% 36.1% 0.72 1.05
EW -55.7% 26.6% 43.1% 0.67 0.97

Table A5.3: Risk-Based Performance-Metrics for all Portfolios
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Portfolio Turnover SSPW Avg. Max Weight
MV 46.5% 0.0593 12.3%
NCO Single MV 47.4% 0.0551 11.7%
MV Average NCO 60.4% 0.0942 17.3%
MV Ward NCO 61.4% 0.0477 10.5%
MD 49.2% 0.0357 8.4%
MD Single NCO 93.1% 0.0835 15.1%
NCO Average MD 108.7% 0.0521 12.6%
MD Ward NCO 111.8% 0.0228 5.9%
ERC 6.6% 0.0021 0.7%
ERC Single NCO 93.2% 0.0656 14.1%
ERC Average NCO 67.2% 0.0186 7.3%
ERC Ward NCO 45.9% 0.0034 1.2%
Single HRP 26.7% 0.0034 1.7%
Average HRP 27.6% 0.0031 1.1%
Ward HRP 27.5% 0.0031 1.1%
Single HERC 74.7% 0.0638 15.4%
Average HERC 68.2% 0.0317 9.1%
Ward HERC 47.8% 0.0050 2.1%
IVP 7.7% 0.0027 0.9%
EW 2.6% 0.0017 0.2%

Table A5.4: Weight Concentration and Asset Turnover for all Portfolios
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