
Copenhagen Business School

cand.merc.(mat.) - Master’s Thesis

Generating Alpha with Machines:
Applying Artificial Intelligence to Stock-Selection and Portfolio Optimization

Authors:

Peter Nistrup Lind Larsen - 102683

Christoffer Fløe Jensen - 102718

Jeppe Andersen - 102794

Supervisor:

Martin C. Richter

Submission: May 15th 2020

Number of pages: 126, (137 in total) Number of characters (w/o spaces): 230,037



Acknowledgements

The authors would like to express their gratitude to those who have been involved in the process

regarding this Master’s thesis. First, they would like to thank Jakob Biehl Kristo�ersen at Danske

Bank for providing the data needed to build the models. Additionally, they will acknowledge the

supervisor, Martin C. Richter, for providing exceptional assistance throughout the process in devel-

oping the thesis. Finally, a thank you to the authors’ friends and families for their support, as well as

Copenhagen Business School for a memorable time.



Resumé

I statistik og machine learning kombinerer Ensemble metoder 
ere l�ringsalgoritmer, for at opn�a

bedre pr�diktiv performance end hvad man kunne opn�a ved individuelle medlemmer. Dette speciale

unders�ger den relative rentabilitet af en long-only investeringsstrategi, baseret p�a at kombinere en

Ensemble af modeller, for at kunne pr�diktere med h�j kon�dens og identi�cere aktier med h�je

forventede afkast. Strategien udnytter pr�diktioner fra tre forskellige modeller: Extreme Gradient

Boost, Long Short-Term Memory og en faktor-baseret momentum model. Modellerne er tr�net p�a

94 forskellige fundamental data og pris-relaterede variable for omkring 4000 amerikanske aktier, som

g�ar tilbage til december 1997. Modellerne rangerer og inddeler aktier baseret p�a deres tilsvarende

pr�diktionskriterier, og portef�ljer er konstrueret ved at kombinere f�llesm�ngder og delm�ngder

p�a disse grupperinger. Aktiverne i portef�ljerne v�gtes med udgangsunkt i Hierarchichal Risk Par-

ity diversi�kationsmetoden, med fokus p�a at optimere variansstrukturen. Modellerne er efterf�lgende

evalueret i CAPM rammer, med henblik p�a at kunne sammenligne og afg�re hvorvidt de producerer

overskud relativt til popul�re faktor-portef�ljer.

Ud af de tre strategier lykkedes det XGBoost og momentum at overg�a S&P 500-indekset markant

med hensyn til merafkast, volatilitet og Sharpe. Derudover �nder vi, at alle tre strategier klarer sig

v�sentligt bedre, n�ar de er en del af en Ensemble strategi. Vores Ensemble form�aede at overg�a alle

individuelle strategier med hensyn til Sharpe-ratio, inklusiv en replikerende portef�lje best�aende af de

tre individuelle strategier, hvilket indikerer, at helheden er st�rre end summen af dets dele. Vi fandt,

at Ensemble strategien ikke kunne replikeres med popul�re faktorportef�ljer. Endelig er et af de mest

interessante resultater i denne afhandling, at LSTM ikke lykkedes at overg�a markedet i sig selv, men

alligevel indikerede vores analyse, at det bidrog v�sentligt til udf�relsen af 2/3-ensemblet. Vi mener,

at dette fungerer som et godt eksempel p�a, hvordan ensemble-l�ring bruger unikke kompetencer i

andre strategier til at forbedre ydeevnen.



Table of Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Investment Universe and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.3 Investment Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Conceptual Framework 9

2.1 Portfolio Theory and Portfolio Management . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Modern Portfolio Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 The Capital Asset Pricing Model . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Hierarchical Risk Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Technical- and Fundamental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Technical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.3 Factor Investing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.4 Quantitative Investing and A.I. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.5 A.I. and Financial Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Momentum Strategy 36

3.1 Staying Out of a Bear Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Stock Rankings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Position Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 When Do We Sell? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Machine Learning 41

4.1 Introduction to Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.2 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.2 ROC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.3 AUC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Cross Validation of Time-Series Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Bootstrap Aggregation (Bagging) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



5 XGBoost 50

5.1 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Gradient Boost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 The XGBoost Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3.1 The Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3.2 XGBoost: The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Neural Network 61

6.1 The Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.1.1 Training Perceptrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2 The Multilayer Perceptron and Backpropagation . . . . . . . . . . . . . . . . . . . . . 63

6.3 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.3.1 Memory Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3.2 Examples of Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . 67

6.3.3 Training RNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.3.4 LSTM Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7 Methodology 72

7.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.2.1 GICS Sector Classi�cations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.2.2 Data Preproccessing XGBoost . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.2.3 Data Preprocessing for LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.2.4 Target Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.2.5 Balancing Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.3 S&P 500 Investment Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.4 Backtesting Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.5 Construction of the Momentum Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.6 Construction of the LSTM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.7 Construction of the XGBoost Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.8 Hyperparameter Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.8.1 Bayesian Hyperparameter Optimization . . . . . . . . . . . . . . . . . . . . . . 90

7.8.2 Sequential Model-Based Optimization . . . . . . . . . . . . . . . . . . . . . . . 91

7.8.3 Tree-structured Parzen Estimator (TPE) . . . . . . . . . . . . . . . . . . . . . 93

7.9 Investment Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.10 Ensemble Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.11 CAPM Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.11.1 Factor Portfolios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8 Results 101

8.1 Momentum Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.2 XGBoost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.3 Long Short-Term Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



8.4 Comparison of Individual Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.5 Ensemble Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.6 Expanded CAPM Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.6.1 Comparison of Replicated Portfolio . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.6.2 Stability of Estimates for Replicating Portfolio . . . . . . . . . . . . . . . . . . 119

8.6.3 Comparison of Replicated Portfolio w/ Individual Strategies . . . . . . . . . . . 120

9 Conclusion 124

9.0.1 The Individuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.0.2 The Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.0.3 The Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

9.0.4 Collective conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

9.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

10 Appendix 131



1 Introduction Page 1 of 137

1 Introduction

1.1 Motivation

In the last few decades, there has been a massive increase in computer power. With this power, the

ability to build advanced computer software is increasing rapidly. In 1984, The Terminator movie

came out, depicting a post-apocalyptic scenario where an Arti�cial Intelligence (AI) network called

Skynet becomes self-aware, initiate a nuclear holocaust and creates an army of machines. Even though

this science-�ction scenario still seems quite unlikely, AI has been developing very rapidly in the last

few years, since computers are now, more than ever, capable of learning from experience to predict

future outcomes. For example, many are now able to communicate with an AI like Siri or Alexa,

where you can ask them all sorts of questions and ask them to help in your everyday life. In partic-

ular, Machine Learning (ML) is an exciting �eld within AI, as it is becoming industry-standard in

many sectors to have some machine learning methods analyzing their data. The growing adaption of

machine learning all over the world re
ects how e�ectively the algorithms and techniques are able to

solve complex problems quickly. The 2019 Arti�cial Intelligence Index Report from Stanford1 present

some interesting facts. First, the technical performance of AI before 2012 has closely tracked Moore's

Law with computing power doubling every two years. However, post-2012, it has been doubling every

3.4 months. A signi�cant increase. In addition, global investments in AI startups grew from $1.3B in

2010 to $37B in November 2019 with the largest investments in autonomous vehicles (9.9%), followed

by drug, cancer and therapy (6.1%), facial recognition (6.0%) and fraud detection and �nance (3.9%).

In �nance, ML can be used to develop models for prediction and pattern recognition from massive

datasets with limited human interference. For a long time, researchers and investment managers have

sought to generate pro�t in the markets. Because of this, many are now interested in building ma-

chine learning models that are able to predict stock returns (regression), sentiment (NLP) and price

direction (classi�cation) in order to increase pro�ts.

Given the diverse range of AI, it appears to be in the process of transforming into a widespread tech-

nology. Adoption of AI technologies is widely believed to drive innovation across sectors and could

generate major social welfare and productivity bene�ts for countries around the world. Whether di-

rectly or indirectly, AI systems play a key role across businesses and shape the global economy for the

foreseeable future.

The focus of this thesis will be to examine whether the machine learning methods can add signi�cant

value when selecting stocks based on stock price and fundamental data to a combined Ensemble

strategy method.

12019 Arti�cial Intelligence Index Report



1 Introduction Page 2 of 137

1.2 Thesis Statement

The main research question is:

Is it possible to construct portfolios that are able to produce� against the S&P 500 index, by
building viable portfolios utilizing a strategy that combines machine learning models and

traditional investment methods?

The primary purpose of this thesis is to construct an investment decision-making model for investors

that utilizes Ensemble Learning for stock preselection by combining the strategic decisions made by

several di�erent models. In addition, the Hierarchical Risk Parity diversi�cation method is imple-

mented for portfolio construction.

In this respect, the thesis has two primary focuses. First, the primary goal is to develop an Ensemble

Learning decision-making model using several di�erent methods, both machine learning oriented and

"traditional". This decision-making model will provide the system with an initial stock preselection,

where the combined strategies in the ensemble model decides which stocks should be considered based

on their trading signals. A Long Short-Term Memory network will be one of the implemented models

as it considers the long-term dependencies on the 
uctuations of �nancial markets and captures long-

time change patterns of company stocks from the time-series data. In addition, an XGBoost machine

learning model and a traditional momentum strategy will be implemented in our experiments to see

where fundamentally di�erent methods agree.

Secondly, the Hierarchical Risk Parity method will be implemented after the stock preselection to

construct an optimal portfolio. The idea of having a preselection process of stocks before the optimal

portfolio formation is to guarantee high-quality inputs to the portfolio formation. So, unlike the ma-

jority of methods, which aim to improve the existing portfolio management models, this thesis focuses

on the preliminary phase of portfolio construction, i.e. the preselection of assets. Speci�cally, the

systematic approach presented in the thesis is able to help decide which assets should be part of the

portfolio and the value composition of assets in the portfolio.

In an attempt to answer our overall research statement, the following sub-questions will be investigated:

� To what extent is it possible to use XGBoost for predicting price direction and construct port-

folios that outperforms benchmark strategies?

� Is it possible to rank stocks and construct portfolios that outperforms benchmark strategies, by

forecasting cumulative asset returns using a Long Short-Term Memory network?

� How e�ective is Ensemble Learning when combining a traditional Momentum strategy with

XGBoost and LSTM in producing overall better results?

The models are conclusively evaluated in a CAPM framework, where the regressions estimates Alpha

and Beta coe�cients against well-known factor portfolios.



1 Introduction Page 3 of 137

1.3 Limitations

1.3.1 Investment Universe and Data

The investment universe is limited to consist of companies that are US based from December 1997

up until February 2020. In addition, daily log returns are provided for all stocks throughout the

period and lastly, 94 fundamental key-�gures from the companies' �nancial statements are included

as features.

All the stock data for this thesis is provided by Danske Bank Wealth Management, who has extracted

all data from one of their databases. The fundamental key-�gures are originally from a FactSet

database. The historical S&P 500 close prices, which we use as an investment benchmark, has been

retrieved from Yahoo Finance2. Lastly, we gathered 6 Fama-French portfolios3 and the AQR Betting

Against Beta portfolio 4 in order to examine our strategies in a CAPM framework.

1.3.2 Models

The theme of this thesis is to evaluate whether ensemble learning can be applied successfully in a

�nancial setting to construct outperforming portfolios. The following three subsections will provide a

brief introduction of the models that make up the ensemble, and why these models are chosen.

Factor Investing - Momentum

Factor investing is an investment approach where portfolios are constructed given speci�c stock charac-

teristics such as value or momentum. Almost every �nancial institution in the world has factor-based

investment portfolios, and it appears to be increasing in popularity.

We will implement a momentum strategy in order to have something "traditional" that we can use for

reference in the Ensemble strategy. We have chosen momentum, as it is one of the most studied capital

market phenomena; the relation between an asset's return and its recent relative performance history5.

In addition, it is nice to have a model that we can easily interpret. The intuition in momentum is

more clear than for advanced machine learning models, where it's sometimes hard to understand what

the model does or what it �nds.

There are numerous ways to invest with momentum. We have chosen to follow the strategy from

Andreas F. Clenow's book "Stocks on the Move: Beating the Market with Hedge Fund Momentum

Strategies" from 2015. We have chosen this particular strategy as it is relatively simple and it provides

a clear and systematic way for managing a portfolio of momentum stocks. We will, however, deviate

a bit from the exact strategy because of practical data problems. More on this later.

2Yahoo! Finance
3Fama-French Portfolios
4AQR Betting Against Beta Equity Factors
5Asness, Moskowitz & Pedersen (2013)



1 Introduction Page 4 of 137

Machine Learning - XGBoost

In attempt to divert away from traditional �nancial approaches, we have chosen to explore the capa-

bilities of machine learning in a �nancial setting. We hope that our implementation will result in a

model which escapes the chains of saturation and builds portfolios with substantial alphas.

Extreme Gradient Boost combines the well known additive gradient boosting setting with a sophisti-

cated regularization framework. We have chosen this method due to it's great reputation in the ML

community and its computational e�ciency with respect to speed and robustness. In addition to speed

and robustness, XGBoost has proven time and time again to be among the best ML methods when

it comes to processing large complex datasets, as well as coping with poor data quality. Furthermore,

the model provides a dynamic and highly adjustable framework that implements advanced regular-

ization techniques to prevent over-�tting and increase out of sample predictive performance, which is

crucial to the pro�tability of the corresponding portfolios. Finally, it is considered new state-of-the

art machine learning technology, which aligns well with our attempt to divert from traditional theory.

XGBoost will be trained to predict the sign of cumulative returns over a 20 day period. The model

focuses on assets with positive predictions and then makes use of the correspondingcon�dence of

each projection to identify the top 20 stocks in which it is most con�dent that they will increase in

value.

Machine Learning - Long Short Term Memory

Our choice of model regarding the Recurrent Neural Network with Long Short-Term Memory cells

(henceforth simply referred to as 'LSTM') stems from the fact that this has proven to be an e�ective

method for modelling long-term behavior and time-series pattern recognition. Since our data consists

of years of fundamental- as well as price-data this model seemed like an obvious candidate for forecast-

ing. In addition, RNN are easily appropriated for regression problems, which we use in our research to

forecast the actual accumulated return of each stock. Bundled with a classi�cation-based prediction

from our XGBoost implementation we hope to combine the two, to have a framework that tries to

forecast the "amount" of potential upside (return) for each stock as well as a stand-alone indication of

whether the stock is classi�ed as a "BUY" or not. The hopes is then that the models will complement

each other and create more robust predictions.

The LSTM model will as such be trained to predict the actual value of the cumulative returns over

a 20 day period. The strategy will then focus on stocks with a positive predicted 20-day cumulative

return and rank the stocks in order from highest cumulative return to lowest cumulative return and

buy the top 20 assets constructed from that list.

Machine Learning - Ensemble

Ensemble learning combines multiple models to improve overall learning results. In recent times this

has become an increasingly popular approach, as it has proven to signi�cantly increase predictive

performance. In this thesis we implement what is referred to as "parallel ensemble methods" in which

base learners, XGBoost, LSTM and Momentum, are trained independently in parallel. The motivation



1 Introduction Page 5 of 137

behind this approach is to utilize independence between the base learners, in the hopes that each model

can contribute with something unique. Furthermore, averaging and subsetting based on the outputs

of the individual models leads to lower errors in the predictions. In summary the basic motivation

behind the ensemble approach is the assumption that the whole is greater than the sum of its parts.

1.3.3 Investment Strategy

This section provides a brief description of the di�erent investment strategies that will be implemented

throughout the thesis. Common to all of them is that they are long-only strategies. Furthermore,

they will all be limited to hold a prede�ned maximum number of stocks and will attempt to hold

little to no cash during the investment period i.e. be 100% invested. One issue arises regarding the

maximum exposure. The backtesting library Backtrader, which we will talk about in section 7.4, did

not work properly when allowing 100% exposure. For this practical reason, the maximum exposure

will be 95%, so the portfolio always hold some cash.

With regards to stock selection, the general concept behind the strategies is that they utilize subsets

produced by the three models from the previous section e.g. XGBoost returns 20 stocks in which it is

most con�dent that they will increase in value. We will refer to this subsetting concept as preselection.

We introduce the 6 following stock selection strategies and common to the ensemble ones is that they

will either use unions or intersections of the preselected stocks to construct optimal portfolios.

1. Momentum

� Constructs portfolio solely on the predictions of the momentum model

� Holds no more than 20 assets at a time

2. XGBoost

� Constructs portfolio solely on the predictions of the XGBoost model

� Holds no more than 20 assets at a time

3. LSTM

� Constructs portfolio solely on the predictions of the LSTM model

� Holds no more than 20 assets at a time

4. 1/3 Ensemble

� Constructs portfolio on top 10 preselected stocks from each model

� Holds no more than 30 stocks at a time

5. 2/3 Ensemble

� Constructs portfolio on the intersection of top 100 preselected stocks from each model

� At least two models have to agree that a stock is preferable in order for it to be added to

the portfolio



1 Introduction Page 6 of 137

� Holds no more than 100 stocks at a time

6. 3/3 Ensemble

� Constructs portfolio on the intersection of top 250 preselected stocks from each model

� All three models have to agree that a stock is preferable in order for it to be added to the

portfolio

� Holds no more than 250 stocks at a time

It is worth noting that as we implement intersection conditions on the models, we also increase the

number of stocks that each model provides to the ensemble. This is done to reduce the probability

that the intersection set is empty e.g. if each model only preselects 5 stocks and all three models have

to agree on a stock, there is a high probability that the intersection set is empty.

For the sake of intuition behind the ensemble models, consider the illustration in Figure 1, where

each circle represents the set of stocks that each model would urge you to buy:

Figure 1: Venn Diagram of the intuition behind the ensemble strategies

In addition to the various types of stock selection criteria, the strategies also implement two di�erent

algorithms for assigning weights to individual stocks.

1. We use a Naive 1
N approach in which all assets are weighted equally on each rebalancing of the

portfolio.



1 Introduction Page 7 of 137

2. We make use of the Hierarchical Risk Parity (HRP) diversi�cation methodology which is a

popular choice for the construction of portfolios with optimized variance-structure. It is known

to produce expected returns similar to that of the Markowitz Mean-Variance, but provides a

more stable variance structure that e�ectively reduces the risk of the portfolio.

Combining each of the stock selection methods with the two weighting approaches we end up with 12

implementations, which we will compare throughout the thesis.

1.4 Related Work

The general idea of using stock preselection before asset allocation comes from the article "Portfolio

formation with preselection using deep learning from long-term �nancial data" by Wang, Li, Zhang

& Liu. Their goal is to construct a mixed model consisting of LSTM for asset preselection and

Mean-Variance for portfolio formation. In the �rst stage, they �nd that LSTM is able to beat other

benchmark models like Random Forest, Support Vector Machine and ARIMA by a clear margin. In

the second stage, the proposed LSTM + MV model is compared to other baseline strategies, and it is

found to outperform on several metrics like cumulative return per year and Sharpe ratio.

Another piece of related literature is the article "The Return of the Machine" by Deutsche Bank

Research, in which they also employ di�erent Machine Learning methods like Neural Networks and

XGBoost as we do in our thesis. They also implement a N-LASR (Non-Linear Adaptive Style Rotation

Model) and �nd that it provides encouraging returns, both for return-seeking and diversi�cation-

oriented investors e.g. higher Sharpe ratio and lower Max. drawdown / volatility than XGBoost and

the Neural Networks.

1.5 Thesis Structure

The thesis is divided into 9 chapters in order to end up with a conclusion that answers the research

questions mentioned earlier. An overview is as follows:

Chapter 2: Conceptual Framework

The aim of this chapter is to introduce the reader to essential topics from the �nancial world. Specif-

ically, the basic principles of Modern Portfolio Theory and portfolio management will be presented as

well as Hierarchical Risk Parity, which is used for portfolio construction. In addition, the reader will

be introduced to technical- and fundamental analysis and their application. Arti�cial Intelligence will

be brie
y introduced and lastly, an overview of some of the performance metrics used in this thesis is

explained.

Chapter 3: Momentum Strategy

This chapter will provide the reader with an in-depth description of the momentum strategy imple-

mented in this thesis. Speci�cally, each part of the strategy is explained and accounted for. The

momentum strategy follows the strategy from Andreas F. Clenow's book "Stocks on the Move".



1 Introduction Page 8 of 137

Chapter 4: Machine Learning

The aim of chapter 4 is to present the introductory principles of machine learning. Speci�cally, a

simple introduction is included as well as machine learning evaluation metrics. In addition, a few

machine learning concepts is explained.

Chapter 5: XGBoost

Chapter 5 will walk through the Extreme Gradient Boost model by presenting introductory concepts

and laying out the algorithm implemented in this thesis.

Chapter 6: Neural Networks

Chapter 6 will focus on the fundamental theory related to Neural Networks, Recurrent Neural Net-

works speci�cally using LSTM cells.

Chapter 7: Methodology

In this chapter, we will explain our methodology and application of the various theories and techniques

described and introduced in previous chapters.

Chapter 8: Results

In this chapter, all results that we have obtained in the thesis will be presented, including the review

and discussions of these results.

Chapter 9: Conclusion

Finally, an answer to the overall research question will be given. The answer is based upon the theory

and analysis from the preceding chapters. Furthermore, we will look at some future work to assess

any potential adjustments that could have improved the performance of our results.



2 Conceptual Framework Page 9 of 137

2 Conceptual Framework

The aim of this section is to examine the basic approaches that can be conducted when an investor

determines which assets to buy or sell. First, the thesis will present the fundamentals of Modern

Portfolio Theory. The goal is to introduce the Capital Asset Pricing Model and Hierarchical Risk

Parity to set the framework for the investment strategies. Second, this chapter overlays the world

of Technical-and Fundamental Analysis. This framework precedes modern machine learning and will

serve as an introduction to the principles of this type of investing. Lastly, a brief introduction to some

of the performance metrics used in the thesis.

2.1 Portfolio Theory and Portfolio Management

Modern portfolio theory was proposed by Markowitz in 1952. It is an important foundation for port-

folio management, which is a well-studied subject but not yet fully conquered. Portfolio management

is a decision-making process in which an amount of fund is allocated to multiple �nancial assets. The

allocation weights are constantly changed to maximize return and restrain risk. The expected return

on an asset is a crucial factor in the portfolio optimization process. It means that a preliminary

selection of assets is essential to portfolio management. Asset selection is a di�cult issue in the �-

nancial investment area and traditional statistical methods are not e�ective in dealing with complex

multi-dimensional and noisy time-series data6. In addition, early machine learning methods such as

support vector machine and principal component analysis are not well suited for dealing with �nancial

time series data over a long period7. This is why we have di�culties when preselecting �nancial assets.

Investors are usually interested in knowing the changes in their investment returns today, the possible

trends in the returns tomorrow and which measures to adopt to help in constructing the best portfolio.

Incorporating forecasting in the portfolio optimization process is therefore useful when investing.

However, forecasting �nancial time series is incredibly challenging because of the nonlinear, unstable

and complex nature with long-term 
uctuations of the �nancial market. A reliable investment decision

should thus be based on long-term observations and behavioural patterns of asset data.

2.1.1 Modern Portfolio Theory

As mentioned before, Markowitz (1952) proposed the mean-variance (MV) methodology to solve the

portfolio selection issue. This initiated the foundation of Modern Portfolio Theory (MPT). Markowitz

quanti�ed investment return and risk by expected return and variance respectively. The main idea

is to either maximize expected return keeping variance unchanged or to minimize variance keeping

6Baek & Kim 2018
7Bao, Yue & Rao 2017



2 Conceptual Framework Page 10 of 137

expected return unchanged. Speci�cally, the MV model can be described by the following:

Min wi ;:::;w n � n
i =1 � n

j =1 wi wj � ij

Maxwi ;:::;w n � n
i =1 wi � i

Subject to:

8
<

:
� n

i =1 wi = 1

0 � wi � 1; 8 i = 1 ; :::; n

(1)

Where wi and wj are the initial values invested in the portfolio of asset i and assetj . � ij speci�es

covariance between asseti and assetj and � i is expected return on asseti . In addition, a variable called

the risk aversion coe�cient, � , is included in the model to depict the investor's behavior corresponding

to risk preferences. This provides a collective model as seen below:

Min wi ;:::;w n � [� n
i =1 � n

j =1 wi wj � ij ] � (1 � � )[� n
i =1 wi � i ]

Subject to:

8
<

:
� n

i =1 wi = 1

0 � wi � 1; 8 i = 1 ; :::; n

(2)

An investor chooses a portfolio at timet � 1 that produces a stochastic return at time t. The models

assumes risk aversion (choosing to preserve capital rather than potentially higher than average return)

and when choosing portfolios, investors only care about the mean and the variance of their one-period

investment return.

This provides the investor with an e�ective frontier, a group of optimal portfolios, so the investor can

select a portfolio among possible solutions according to their risk aversion.

In this setting, the core of portfolio selection for investors is to decide which portfolio is the best, based

on risk and expected returns. Rational investors would prefer low-risk portfolios with unchanged ex-

pected returns or high expected return with an unchanged risk level. To solve this issue, a set of

optimal solutions is generated which is called an e�cient investment frontier.

Here, we are faced with the problem of optimizing a portfolio subject to inequality conditions, which

is a lower and upper bound for each portfolio weight, and an equality condition, which is that the

weights sum to one. There is no analytical solution to this, so some kind of optimization algorithm is

needed. Markowitz developed a computing method called thecritical line algorithm (CLA). CLA is

speci�cally designed to optimize general quadratic functions subject to inequality-constrained portfolio

optimization problems and guarantees that the exact solution is found after a number of iterations8.

In addition, CLA does not only compute a single portfolio, but the entire e�cient frontier.

However, a number of practical problems makes CLA solutions unreliable. Small deviations in the

forecasted returns could cause CLA to produce very di�erent portfolios and given that forecasted re-

turns rarely provide signi�cant accuracy, many have decided to drop them and focus on the covariance

8Bailey and L�opez de Prado, 2013



2 Conceptual Framework Page 11 of 137

matrix 9. This has led to asset allocation approaches that are risk-based. However, this does not solve

the instability issues alone. The reason is that quadratic programming methods requires inverting a

positive de�nite covariance matrix, where all eigenvalues must be positive. The inversion often comes

with large errors when the covariance matrix has a high condition number, which is the absolute value

of the ratio between it's maximal and minimal eigenvalues. These instability issues are addressed in

the Hierarchical Risk Parity allocation method.

2.1.2 The Capital Asset Pricing Model

The seeds for MPT and factor investing were also developed in the 1960's with the Capital Asset

Pricing Model (CAPM) and the theory was laid out by William Sharpe and John Lintner. It says

that every stock has some kind of sensitivity to market movements, measured as beta. The �rst basic

factor model suggested that market exposure drives the risk and return of a stock. CAPM suggest

that beyond the market factor, only company-speci�c drivers like accounting issues, CEO changes

and positive or negative earnings remain to explain a stock's return. It o�ers powerful and intuitively

pleasant predictions about how to measure risk and the relation between expected return and risk.

However, the empirical record of the model is poor10. The record is even poor enough to invalidate the

way it is used in applications. It could stem from the fact that it includes many simplifying assump-

tions, but also by di�culties in implementing valid tests for the model. As an example, the model says

that the risk of a stock should be measured relative to a broad market portfolio, which in principle

also could include real estate and human capital. Even if we limit ourselves to �nancial assets, should

we limit the market portfolio further to only US stocks or include bonds or even other assets around

the world? Wherever the weakness lies, the struggle of CAPM implies that most applications of the

model could be invalidated.

Speci�cally, the CAPM add two key assumptions to the Markowitz model. The �rst assumption is

that investors are in complete agreement. It means that investors agree on the joint distribution of

asset returns fromt � 1 to t. This distribution is also the true one, meaning that it is the distribution

from which the returns we use to test the model are drawn. The second assumption is that we can

borrow and lend at a risk-free rate. It is the same for all investors and is una�ected by the amount

borrowed or lent. The �gure below provides an overview of the CAPM framework.

9L�opez de Prado 2015
10 Fama-French (2004)



2 Conceptual Framework Page 12 of 137

Figure 2: The CAPM story. Fama-French (2004)

The horizontal axis shows portfolio risk measured by standard deviation of the portfolio return, � (R),

and the vertical axis show expected return,E (R). The curve spanned by points abc is called the

minimum variance frontier and it detects combinations of � (R) and E(R) for portfolios of risky assets

that minimizes the return variance at di�erent levels of expected return. Note that these portfolios

do not include risk-free borrowing and lending. Determining the tradeo� between risk and return is

intuitively clear from this �gure. Investors who are seeking high returns at point a must be willing to

accept high volatility and risk. Investors who seek low risk at point b must be willing to accept lower

expected return. At point T, investors have intermediate expected return with lower volatility. When

you are not allowed to borrow or lend at the risk-free rate, only portfolios aboveb and along abcare

mean-variance e�cient. This is because these portfolios also maximize expected return, given their

return variance.

As we can see, if risk-free borrowing and lending is possible, it turns the e�cient set into a straight

line. We will now consider a portfolio that invests a proportion x of funds in a risk-free security

and 1 � x in some portfolio g. If all funds are invested in the risk-free security (meaning that they

are loaned at the risk-free rate) the result will be the point Rf in the �gure above. It is a portfolio

with zero variance and a risk-free rate of return. Portfolios combining risk-free lending and positive

investments in g will plot the straight line between Rf through g. To the right of g we see portfolios

borrowing at the risk-free rate with the proceeds from the borrowing used to increase investments in

portfolio g. Speci�cally, the return, expected return and standard deviation of return on portfolios of

the risk-free assetf and a risky portfolio g vary with x, which is the proportion of funds invested in



2 Conceptual Framework Page 13 of 137

f , as:

Rp = xR f + (1 � x)Rg;

E (Rp) = xR f + (1 � x)E(Rg);

� (Rp) = (1 � x)� (Rg); x � 1:0

Together, this implies that the portfolios plot along the line from Rf through g. To obtain the mean-

variance e�cient portfolios available with risk-free borrowing and lending, you set a line from Rf in

the �gure up and to the left until you reach the tangency portfolio T.

The derivation of the CAPM model is now straight forward. We have complete agreement on distri-

bution of returns, all investors see the same opportunity set like in the �gure above and they combine

the same risky tangency portfolio T with risk-free borrowing and lending. Each risky asset's weight

in T, which will now be called M for "market", must be the total market value of all outstanding

units of the assets, divided by the total market value of all risky assets. This is because all investors

hold the same portfolio T of risky assets, so it must be the value-weighted market portfolio of risky

assets. In addition, the risk-free rate must be set so it can "clear" the market for risk-free borrowing

and lending. To sum up, these CAPM conditions imply that that the market portfolio M must be

on the minimum variance frontier if the asset market is to clear. The algebraic relation that holds for

any minimum variance portfolio must also hold for the market portfolio 11. Speci�cally, for N risky

assets, this amounts to a minimum variance condition forM :

E(Ri ) = E(RZM ) + [ E (RM ) � E (RZM )]� iM ; i = 1 ; :::; N (3)

Here, E(Ri ) is the expected return on asseti . � iM is the market beta of asseti and the covariance of

its return and market return, divided by the variance of the market return:

(Market beta) � iM =
cov(Ri ; RM )

� 2(RM )
(4)

The �rst right-hand side term, E(RZM ), from (3) is the expected return on assets that have market

betas equal to 0, which means that their returns are uncorrelated with the market return. The second

term is the risk premium. I.e. the market beta of asseti times the premium per unit of beta, which

is the expected market return, E (RM ), minus E(RZM ).

One interpretation of the market beta is that it measures sensitivity of the asset's return to variation

of the market return. This is because the market beta of asseti is also the slope in the regression of its

return on the market return. Another interpretation is that the risk of the market portfolio, measured

by the variance of its return and the denominator of � iM , is a weighted average of the covariance

risks of the assets inM and the numerators of � iM for di�erent assets. This means that � iM is the

covariance risk of asseti in M measured relative the covariance risk of assets, which is the variance

of the market return. So if x iM is the weight of asseti in the market portfolio, then the variance of

11 Fama-French (2004)



2 Conceptual Framework Page 14 of 137

the portfolios return is

� 2 (RM ) = cov ( RM ; RM ) = cov

 
NX

i =1

x iM Ri ; RM

!

=
NX

i =1

x iM cov (Ri ; RM )

� iM is then proportional to the risk that each dollar invested in asset i contributes to the market

portfolio. Both interpretations are correct.

The last thing we need to do in order to �nd the Sharpe-Lintner CAPM model is to use the assumption

of risk-free borrowing and lending to "nail down" the expected return on zero-beta assets,E (RZM ).

A risky asset's returns are uncorrelated with the market return, i.e. when beta is zero, then the average

of the asset's covariance with the returns of the other assets o�sets the variance of the asset's return

itself. A risky asset like this is riskless in the market portfolio as it doesn't contribute to the variance

of the market return. So, when there is risk-free borrowing and lending, the expected return on assets

with zero beta, E (RZM ), must equal the risk-free rate,Rf . The �nal relation between expected return

and beta is then combined in the Sharpe-Lintner CAPM model:

E (Ri ) = Rf + [ E(RM ) � Rf ]� iM ; i = 1 ; :::; N (5)

In words, this formula �nds the expected return on any asset i to be the risk-free rate plus a risk

premium, which is the asset's market beta times the premium per unit of beta risk.

The e�ciency of the market portfolio is based on several unrealistic assumptions. They include

complete agreement and either unrestricted risk-free borrowing and lending like in Sharpe-Lintner

CAPM or unrestricted short selling of risky assets like in Fischer Black CAPM, which is a development

of CAPM without risk-free borrowing and lending. Many extensions and variations of the original

CAPM have been developed as researchers began to uncover variables like size, various price ratios

and momentum which all added to the explanation of average returns provided by beta. Despite its


aws, CAPM is still a theoretical force to be reckoned with and is still taught widely as a fundamental

concept in portfolio theory and asset pricing.

2.1.3 Hierarchical Risk Parity

When we add correlated investments to a correlation matrix, the condition number rises. At some

point, the condition number will become so high that numerical errors can make the inverse matrix

too unstable and small changes to any entry will lead to potentially completely di�erent matrix in-

verses. This is what L�opez de Prado12 calls Markowitz' curse. For highly correlated investments, the

need for diversi�cation becomes even higher and unstable solutions are more likely to occur. However,

the diversi�cation is often o�set by estimation errors. The instability concerns have been discussed

thoroughly and most methods are derived from classical mathematics such as geometry, calculus and

linear algebra.

12 L�opez de Prado 2015



2 Conceptual Framework Page 15 of 137

Correlation matrices are linear algebra objects and they measure the cosines of the angles between

any two vectors in the vector space, formed by the return series13. Quadratic optimizers can be

unstable because the vector space is modelled as a complete, fully connected graph. Every node in

the graph can potentially substitute each other. The �gure below visualizes these relationships in a

50x50 covariance matrix which gives 50 nodes and 1225 edges.

Figure 3: Correlation matrix represented as a complete graph (L�opez de Prado 2015)

Inverting the matrix means looking at the partial correlations across the complete graph and estima-

tion errors are magni�ed, leading to incorrect solutions and the graph is not very comfortable to look

at. In addition, it lacks the notion of hierarchy, since each investment is substitutable with another.

In contrast, tree structures incorporate hierarchical relationships, as we will see. The lack of hierarchy

of such structures as the one above becomes an obvious problem when investing. If an investor wants

to build a portfolio consisting of a large amount of di�erent stocks, bonds, real estate, etc., he will

run into a problem since some investments are similar, hence closer substitutes, and other investments

seem more complementary to each other. Stocks could then be grouped in groups such as industry,

size and region, where they all compete for allocation within a given group.

When deciding how to allocate a large tech stock like Apple, we should consider balancing the allocation

to another large tech stock like Google, and not a small Danish tech company or a German real estate

holding. To a correlation matrix, all investments are potential substitutes to each other, and so

correlation matrices lack hierarchy. This allows weights to vary freely in unintended ways and this

is the root cause of Markowitz' CLA instability. In the �gure below, we see a tree structure that

incorporates hierarchical relationships.

13 L�opez de Prado 2015



2 Conceptual Framework Page 16 of 137

Figure 4: Hierarchical tree structure (L�opez de Prado 2015)

It introduces some valuable features: 1) It only hasN � 1 edges to connectN nodes. This means that

weights are only rebalanced among peers at the di�erent hierarchical levels. 2) The weights are dis-

tributed top-down, which is also what many asset managers do when building portfolios e.g. from asset

class to sector to individual security. Hierarchical structures leads to both stable and intuitive results.

In this thesis, we will follow L�opez de Prado's paper and implement Hierarchical Risk Parity (HRP) for

portfolio allocation. HRP comes from graph theory and machine learning and uses information from

the covariance matrix without the requirement of inversion or positive-de�nitiveness. It can actually

construct a portfolio from a singular covariance matrix (meaning a square, non-invertible matrix or if

it has determinant of 0). Three stages will be explained: Tree clustering, quasi-diagonalization and

recursive bisection.

Stage 1: Tree clustering

We are considering aT � N matrix from observations X , which could be a return series ofN variables

and T periods. The goal in this step is to allocate downstream through a tree graph and in order to

do so, we need to combineN column-vectors into a hierarchical structure of clusters.

At �rst, we need to compute a symmetric N � N correlation matrix with elements � = f � i;j gi;j =1 ;:::;N ,

where � i;j = � [X i ; X j ]. We will also de�ne a distance measure:

d : (X i ; X j ) � B ! R 2 [0; 1]; di;j = d[X i ; X j ] =

r
1
2

(1 � � i;j ); (6)

where B is the product of instances in f 1; :::; i; :::; N g. This gives us an opportunity to compute a

N � N distance matrix called D = f di;j gi;j =1 ;:::;N . This distance matrix is a proper metric space,

which means that it has advantageous characteristics. It has non-negativity,d[X; Y ] � 0, it has co-

incidence, d[X; Y ] = 0 , X = Y , it has symmetry, d[X; Y ] = d[Y; X ], and it has sub-additivity,

d[X; Z ] � d[X; Y ] + d[Y; Z]. Let's look at a simple example:

Example 1



2 Conceptual Framework Page 17 of 137

Suppose we have a correlation matrix with entries� i;j = � [X i ; X j ]:

f � i;j g =

2

6
4

1 0:6 0:4

0:6 1 � 0:3

0:4 � 0:3 1

3

7
5

Using formula (6), we compute the distance measures for the distance matrix,D , as:

f � i;j g =

2

6
4

1 0:6 0:4

0:6 1 � 0:3

0:4 � 0:3 1

3

7
5 ! f di;j g =

2

6
4

0 0:4472 0:5477

0:4472 0 0:8062

0:5477 0:8062 0

3

7
5

Second, we also need to compute the Euclidean distance between any two column-vectors fromD, as

ed : (D i ; D j ) � B ! R 2 [0;
p

N ]; edi;j = ed[D i ; D j ] =
q

� N
n=1 (dn;i � dn;j )2 (7)

We note the di�erence between (6) and (7): di;j is de�ned as column-vectors ofX and edi;j is de�ned

as column-vectors ofD , providing a distance of distances. edi;j is then a distance de�ned over the

entire metric space ofD and each instance ofedi;j is a function of the entire correlation matrix and not

a speci�c cross-correlation pair (a correlation between two entries of two random vectorsX and Y).

If we continue the example from before, we get the Euclidean distance of correlation distances, using

(7), as:

f di;j g =

2

6
4

0 0:4472 0:5477

0:4472 0 0:8062

0:5477 0:8062 0

3

7
5 ! f edi;j gi;j = f 1;2;3g =

2

6
4

0 0:6832 0:8537

0:6832 0 1:1445

0:8537 1:1445 0

3

7
5

Next, we need to cluster together the pair of columns (i � ; j � ) so that ( i � ; j � ) = argmin (i;j ) f edi;j g, i 6= j .

This cluster will be denoted asu[1]. In our example, u[1] becomes:

f edi;j gi;j = f 1;2;3g =

2

6
4

0 0.6832 0:8537

0:6832 0 1:1445

0:8537 1:1445 0

3

7
5 ! u[1] = (1 ; 2)

We also need to updateedi;j by de�ning the distance between this newly formed clusteru[1] and the

unclustered entries. This will be done by a "nearest point algorithm", where we de�ne the distance

betweeni from edi;j and the new cluster as _di;u [1] = min[ f edi;j gj 2 u[1]]. Continuing the example, we get:

u[1] = (1 ; 2) ! f _di;u [1]g =

2

6
4

min[0; 0:6832]

min[0:6832; 0]

min[0:8537; 1:1445]

3

7
5 =

2

6
4

0

0

0:8537

3

7
5

The matrix edi;j is then updated by appending _di;u [1] and dropping the clustered columns and rows



2 Conceptual Framework Page 18 of 137

j 2 u[1]. In the example, this leaves us with:

f edi;j gi;j = f 1;2;3;4g =

2

6
6
6
6
4

0 0:6832 0:8537 0

0:6832 0 1:1445 0

0:8537 1:1445 0 0:8537

0 0 0:8537 0

3

7
7
7
7
5

f edi;j gi;j = f 3;4g =

"
0 0:8537

0:8537 0

#

Finally, the last few steps allow us to appendN � 1 clusters to matrix D recursively. The �nal cluster

will then contain all of the original entries and the clustering algorithm comes to an end:

f edi;j gi;j = f 3;4g =

"
0 0.8537

0:8537 0

#

! u[2] = (3 ; 4) ! Stop

All of this allowed us to create a linkage matrix, which is a (N � 1) � 4 matrix. It has the structure:

Y = f (ym;1; ym;2; ym;3; ym;4)gm=1 ;:::;N � 1, which has one 4-tuple per cluster. The items in this struc-

ture represents the following: (ym;1; ym;2) represents the constituents,ym;3 = edym; 1 ;ym; 2 represents the

distance betweenym;1 and ym;2, and ym;4 � N represents the number of original items included in

cluster m.

Stage 2: Quasi-Diagonalization

The second stage will look at reorganizing the rows and columns in the covariance matrix. The largest

values will be along the diagonal. The quasi-diagonalization has a useful property in that similar

investments will be placed together and dissimilar investments are far away from each other. A few

simple steps forms this algorithm. We know from stage 1 that each row of the linkage matrix merges

two branches into one. We then replace the clusters in (yN � 1;1; yN � 1;2) with their constituents recur-

sively, until no clusters remain and these replacements preserve the order of the clustering. The �nal

output is a sorted list of the original unclustered items.

Stage 3: Recursive Bisection

Stage 2 provided a quasi-diagonal matrix and we now use the fact that inverse-variance allocation is

optimal for a diagonal covariance matrix14. We can use this fact in two di�erent ways: 1) we can

de�ne the variance of a continuous subset as the variance of an inverse-variance allocation (bottom-up

method) or 2) we can split allocations between adjacent subsets in inverse proportion to their aggre-

gated variances. Stage 3 is the �nal and the most important step of this algorithm, where the actual

weights are assigned to the assets in our portfolio. A few steps constructs this algorithm:

Step 1 ) The algorithm is initialized:

a) Set the list of items (or assets):L = f L 0g, where L 0 = f ngn=1 ;:::;N

b) Assign an initial unit weight to all items: wn = 1 ; 8 n = 1 ; :::; N

14 Lop�ez de Prado 2015



2 Conceptual Framework Page 19 of 137

Step 2 ) If the list jL i j = 1 ; 8 L i 2 L, then stop the algorithm.

Step 3 ) For each L i 2 L such that jL i j > 1:

a) Bisect L i into two subsets calledL (1)
i [ L (2)

i = L i . Here, jL (1)
i j = int[ 1

2 jL i j] and we can preserve

the order. At the end of the tree-clustering step, we were left with one single cluster of all items. So

in this step we break each cluster into two sub-clusters by starting with the top cluster and bisect in

a top-down manner. Here, HRP makes use of Step-2 to quasi-diagonalize the covariance matrix and

uses this new matrix for recursing into the clusters.

b) The tree clustering constructs a binary tree where each cluster has a left and right child cluster.

For each of these, we can de�ne the variance ofL (j )
i ; j = 1 ; 2 as a quadratic form:

eV (j )
i � ew(j )0

i V (j )
i ew(j )

i (8)

V (j )
i is the covariance matrix between the entries of the bisection inL (j )

i and

ew(j )
i =

diag[V (j )
i ]� 1

tr[diag[V (j )
i ]� 1]

; (9)

where diag[.] and tr[.] are diagonal and trace operators, respectively.

c) We then compute a new weighting split factor from the new covariance matrix:

� i = 1 �
eV (1)

i

eV (1)
i + eV (2)

i

(10)

It should be done so that 0� � i � 1

d) Now we re-scale the allocationswn by a factor of � i ; 8 n 2 L (1)
i

e) Lastly, we can re-scale the allocationswn by a factor of (1 � � i ); 8 n 2 L (2)
i

Step 4 ) The algorithm will loop back to step 2) in order to check the condition and either stop or

run again until all weights are assigned to the assets.

The algorithm takes both advantages mentioned earlier into account. Step 3.b by bottom-up quasi-

diagonalization because it de�nes the variance ofL (j )
i using inverse-variance weightings fromew(j )

i .

Step 3.c by top-down quasi-diagonalization because it splits the weight in inverse proportion to the

cluster's variance. The algorithm also makes sure that allocations 0� wi � 1; 8 i = 1 ; :::; N (non-

negativity) and that � N
i =1 wi = 1 (full investment), since we at each iteration split the weights received

from higher hierarchical levels.

Since the weights are allocated in a top-down manner based on the variance within a sub-cluster, we

gain the advantage that only assets within the same group compete for allocation with each other,

rather than competing with all the assets in the portfolio.

These three steps conclude the HRP algorithm from Lop�ez de Prado, which solves an allocation

problem. HRP will be used later in combination with di�erent investment strategies.



2 Conceptual Framework Page 20 of 137

2.2 Technical- and Fundamental Analysis

2.2.1 Fundamentals

In the �nancial world, we often hear about the term " fundamentals" or " key �gures". Analysts and

investors appear on various media to talk about the fundamentals of a stock. Some talk about how

a stock has strong fundamentals, some proclaim that fundamentals doesn't really matter anymore

because the market is e�cient, meaning that all stock prices are adjusted for all relevant information

at all times, and some turn to "technical" measures instead.

Generally, fundamental analysis, or value investing, involves looking at data which is expected to

impact the price of a stock, excluding the trading patterns of the stock itself. "Fundamentals" then

means that you are getting down to the basics and try to develop a portrait of a company, thus

buying or selling the stock based on the information gathered from the fundamental value of the

company's shares. A fundamentals analyst examines the companies' economic and �nancial reports,

which includes all qualitative and quantitative information in order to calculate the value of a company.

For simplicity, let's say that a fundamentals analyst were to buy a PC in an electronics shop. The

analyst will focus on the the actual PC and it's basics. They would strip down the PC and look at it's

hard disk, memory card etc. In the stock markets, this would correspond to calculating abook value

or something similar. They would also measure the PC's performance, like the processing power or

the ability to run a certain video game. This corresponds to forecasting earnings or dividends that

you can observe from a company's income statement. Another key focus is the quality of the PC, is

it going to last or will it break down within a few years? The analyst will look at the speci�cations,

the manufacturer's warranty and read consumer reviews. Similarly, an analyst will check a company's

balance sheet for �nancial stability. After all this, the analyst will calculate an intrinsic value, a value

independent of the current price, and determine whether to buy the PC or not. If the intrinsic value

is higher than the sale price, the analyst will buy the PC in the belief that prices will go up and if not,

they will either sell the PC if they already own it or wait for the price to fall before buying additional

PCs.

Fundamentals analysts usually use either or both the following approaches15:

i) Top-down approach: The analyst examines both international and national economic indicators like

GDP growth rate, energy prices, in
ation and interest rates. Determining a great asset then comes

down to analyzing total sales, price levels and foreign competition in a particular sector in order to

identify the best company of this sector.

ii) Bottom-up approach: The analyst starts the analysis within a speci�c sector regardless of its in-

dustry or region.

The analysis is then carried out with the aim of predicting a company's future performance. The

15 The Fundamental Analysis: An Overview, 2013



2 Conceptual Framework Page 21 of 137

belief is that the market price of an asset tends to move towards the "real value" or the intrinsic value.

One of the �rst things the analyst should consider, is the company's earnings. This is a quick way to

answer the question: How much money is the company making, and how much is it likely to make

in the future?16 Earnings are then pro�ts, so an analyst should look out for the company's earnings

report every quarter. If the report says that earnings are on the rise, it generally contributes to a

higher stock price and vice versa. However, earnings alone cannot provide a complete picture, other

tools have to be included. Some of these tools include ratios of various fundamentals, which can be

easily calculated e.g.Earnings per share (EPS) combines earnings and the number of shares and is a

common ratio for these types of analysis. Speci�cally, EPS is calculated by dividingNet Income with

Average of Outstanding Shares, EPS = NI
AOS and it shows how much pro�t is assigned to each share of

stock. For EPS, it is important to look at the level of equity necessary to generate the corresponding

earnings/net income. If two di�erent companies have the same EPS, the most e�cient company is

the one which requires less capital to attain the same EPS. Competitive advantages like these are

important, since the company with competitive advantage are more likely to generate higher earnings

and hence higher EPS.17 Another example could be thePrice-to-earnings ratio, which compares the

current stock sales price to its per-share earnings. And the list goes on...

This all sounds like hard work and it probably is. But the hard work could be a source of appeal. If

you have the time and skill to dig into a company's fundamentals, the analyst can possibly estimate

when the stock price is over- or undervalued. Investors will then be able to spot mistakes in the market

and make a pro�t. However, if the fundamental analysis shows that a stock is undervalued relative to

the calculated intrinsic value, it doesn't guarantee that the price will trade at the intrinsic value in

the near future. Things are, unfortunately, not that simple. There is no magic formula for �guring

out intrinsic value and in reality, the real share price behavior questions most stock holdings and a

lot of investors can doubt the bene�t from fundamental analysis. If the stock market is booming,

fundamental analysts can easily fool themselves into believing they have a talent for picking stock

winners. The bottom line is that these analysts can learn a lot about a company by looking at the

�nancial statements and gain con�dence in picking better stocks, but just like everyone else, they

cannot see the future stock prices.

2.2.2 Technical Analysis

Unlike its cousin fundamental analysis,technical analysis is the study of �nancial market action. It fo-

cuses on the trading and price history of a stock or any security with historical trading data, displayed

in a graphic form called charts. Technical analysts will evaluate investments and identify trading

opportunities by analyzing statistical trends that they gather from the trading and price history of

stocks. The validity of technical analysis comes from the perception that the collective actions, buying

and selling, of all market participants re
ect all relevant information that refers to a traded security

and that these collective actions continually will.18Only shocking news like natural disasters or acts

16 the balance
17 Bu�et and Clark (2008)
18 CFI



2 Conceptual Framework Page 22 of 137

of God are not re
ected in the price. The emphasis here is on things like price movement patterns

and trading signals like trends and momentum that could help clarify where a security's strengths

and weaknesses lies. Watching �nancial markets, these patterns repeat in a somewhat similar pattern

over time. The charts are mirrors of the mood of the crowd. Thus, technical analysis is the analysis

of human mass psychology and therefore, it is also called behavioral �nance.19

Back in the PC purchase example, a technical analyst will ignore the actual PC and instead look at

the other customers buying PCs. If most customers buys MacBooks, the technical analyst would buy

as many MacBooks as possible, betting that a growing demand on MacBooks will push the prices up.

Technical analysis tries to scale down, or even eliminate, ego and emotions as they determine far

more of investors' stock market decisions than most would be willing to admit. Investor are subject

to following the crowd and other irrational mistakes. The human element, including a range of

emotions like fear and greed, plays a bigger role in the decision-making process than most investors

realize.20Investors can act opposite to the wisdom of buying low and selling high based on predictable

emotional responses to an increase or decrease in stock prices. Falling prices can generate fear of loss

at low prices where opportunities are the greatest. Rising prices that appear to be good opportunities

to sell, lead to greed-induced buying at higher levels, thus replacing reason with emotion.

Investors who are able to diverge from the crowd and their own emotions are better positioned to earn

money in the �nancial markets.

Figure 5: Buy! Sell! - By Kaltoons

An investor's ability to make more money in the �nancial market can be hindered by greed (opti-

mism) when buying and fear (pessimism) when selling. The �gure above show that when buying
19 Credit Suisse Technical Analysis
20 Credit Suisse Technical Analysis



2 Conceptual Framework Page 23 of 137

based on con�dence or optimism, they buy near the top and likewise, investors who act on concern

or pessimism will sell near the bottom. Mistakes are made when investors are constrained by their

bullish market impression of the recent uptrend beyond the price top and vice versa when they remain

pessimistic under the bearish market impression from the past downtrend beyond the market bot-

tom. The purpose of technical analysis (and quantitative investing) is to help investors identify these

market turning points which they cannot see themselves because of psychological factors. Investors

must gain con�dence in buying when they are fearful or pessimistic and sell when they are euphoric

or optimistic. Without technical analysis, this can be hard to achieve.

Countless technical indicators exist for these analysts. Some of them includeMoving Averages,

Bollinger bands, Relative-Strength-Index etc. They all have the same purpose of searching to un-

derstand trends and patterns. A technical analyst will implement such tools, analyze price charts and

attempt to make price movement predictions. The basic charts that analysts could use includes bar

charts and line charts with simple indicators like support, resistance and trendlines. Bar charts are

the most widely used chart types. For open-high-low-close (OHLC) charts, a single bar shows the

high and the low of the trading period and a vertical bar is used to connect high and low. In addition,

horizontal lines shows the opening price (left of the vertical bar) of the trading period and the closing

price (right of the vertical bar) at the end of the trading period.

Line charts are the simplest charts and is constructed by joining together closing prices of each period,

for example daily closings. Resistance lines are horizontal lines starting at a price peak with the line

pointing horizontally into the future price and support lines are similarly horizontal lines starting at

a correction low. Uptrends will then continue as long as the most recent peak is surpassed. The resis-

tance levels can also be drawn by uptrending or downtrending lines. Trendlines are simply a straight

line drawn between at least a few points. They must include all of the price data available, meaning

that it connects all the highs in a downtrend and all the lows in an uptrend. The trendline becomes

more powerful as the number of price extremes that can be connected through a single line increases.

The trend is broken when the price is below the uptrend line or above the downtrend line. Looking

at all these types of charts requires perspective. It is important to di�erentiate between short-term,

medium-term and long-term trends, but generally, the best investment results are achieved when all

three time-horizon trends point in the same direction. Examples for these kind of charts are seen below.



2 Conceptual Framework Page 24 of 137

Figure 6

Typically, these charts will be used in coherence with more advanced technical indicators. One such

popular example is the Moving Average (MA). The goal is to smooth out market price 
uctuations

to make it easier to determine underlying trends. In addition, MA should signal signi�cant price

direction changes as early as possible to give the investor a chance to stay ahead. This is a great way

to detect momentum, which means that if a price is moving in one direction, it is likely to continue

in that direction. The Simple Moving Average (SMA) is the most common variation:

�pSMA =
pM + pM � 1 + ::: + pM � (n� 1)

n
=

1
n

n� 1X

i =0

pM � 1; (11)

which is the (unweighted) mean of the previousn closing prices. A 5-day SMA is simply the sum of

the last 5 closing prices, dividing them by 5 and you then add each new closing price and skip the

oldest, so the sum of closing prices remain constant at 5 days.



2 Conceptual Framework Page 25 of 137

Figure 7: 5-day and 21-day Simple Moving Average (Credit Suisse 2010)

As seen above, the MA is usually plotted together with a chart with price movement. A change in

trend or price direction can then be indicated by crossovers of SMAs. A buy signal is generated when

a price rises above the MA and a sell signal is likewise when a price falls below the MA. We can also

see that MA tends to lag behind price movement and that this sensitivity is determined by the time

span. As seen above the 5-day MA is more sensitive and will react quicker to price changes than the

21-day MA. However, comparing the two, the 5-day MA is likely to give false signals, the 21-day MA

gives signals later and su�ers from opportunity loss. Multiple MAs are normally illustrated on a single

daily chart. The best performance is achieved when a short-term MA is rising above a medium-term

MA and when they are both rising above a long-term MA. Signals are given when the price crosses

MAs, when the MAs themselves changes direction and when the MAs cross each other.

As with fundamental analysis, market behavior is generally unpredictable. There is no guarantee that

any form of analysis will be accurate, so traders should use a range of indicators and analysis tools

to get the highest level of predictive power. Investors may use one or both of the above-mentioned

approaches or combine both of them. Fundamentals investors could implement technical analysis to

�nd entry and exit points and technical investors could use fundamentals to restrict their portfolios

to only having good and �nancially healthy companies. The choice between the two basic approaches

is really up to the individual investor's personal beliefs about how the stock market works.

2.2.3 Factor Investing

Factor investing relates somewhat to fundamental and technical analysis. With this type of investing,

you pick securities on speci�c attributes associated with higher returns. The two main types of factors

are macroeconomic factors and style factors, with focus on the second type in this Thesis. In short,

the �rst type captures broad macroeconomic risks across asset classes like in
ation and aims to explain



2 Conceptual Framework Page 26 of 137

returns and risks within asset classes21. Equity factor-based investing is a form of active management

where the goal is to achieve a speci�c risk or return objective through systematic rule-based strategies

to be used in portfolio construction.

As mentioned earlier, CAPM was the seed for factor investing. After CAPM, Stephen Ross introduced

an extension to CAPM in 1976 called arbitrage pricing theory (APT). It suggested a multiple-factor

model in order to explain stock returns better. Later, Fama & French found that besides the market

factor, the size of a company and its valuation are also important when looking at stock price move-

ments. New factors are said to be anomalies, since they deviate from the e�cient market hypothesis.

It says that it is impossible to consistently outperform the market over time because stock prices im-

mediately includes and re
ect all information. Investment managers and quantitative investors have

employed these factors since their birth, always seeking new ways to generate pro�t and spend a lot

of time �nding new factors or new market anomalies.

Harvey et al. identi�es over 316 documented factors explaining stock returns in 201522. 316 factors

is beyond the scope of this Thesis, so only a hand-full of popular factors will be explained. Harvey et

al. reports a dramatic increase in factor discoveries during the last decade. Up until the beginning of

the 90's, only about one factor was discovered per year and in the last 9 years up to 2015, the number

was about 18 per year. McLean and Ponti� (2015)23 report that portfolio returns becomes 58% lower

post-publication of the new factor. It shows that certain stock market anomalies are less anomalous

after being published. Harvey et al. �nds that the average mean return for truly signi�cant factors

is 6.6% per year with an annual Sharpe ratio of 0.44. It is very di�cult to �nd factors with great

return and performance. Many of the factors they found to be statistically true factors have tiny

Sharpe ratios. Around 70% of them have a Sharpe ratio less than 0.5 and many of the historically

discovered factors were deemed "signi�cant" by chance. Our choice of only describing Value, Quality,

Momentum and volatility were made with these things in mind. They are also some of the oldest

factors still widely used today24. It will always be discussed whether factors "work" or not, but you

cannot deny the fact that a lot of people still build real investments strategies based on these factors.

� Size

Investors can capture size by looking at the market capitalization of a stock and historically,

portfolios consisting of small-cap stocks exhibit greater returns than portfolios with only large-

cap stocks. Fama & French demonstrated in their �rst factor that a return premium exists for

investing in small companies, which could be due to their riskier nature.

This e�ect was also caught by Banz in 1981. However, since the mid-80s there has not been any

signi�cant size e�ect 25. The �gure below shows two Fama-French (1993) model strategies: The

small stocks minus big stocks (SMB) and high book-to-market stocks minus low book-to-market

21 Investopedia
22 Harvey et al. 2015
23 McLean & Ponti� 2015
24 Fidelity Investments
25 Ang, Andrew 2014



2 Conceptual Framework Page 27 of 137

stocks (HML) strategies are shown for a $1 investment from 1965 to 2011. The SMB returns

clearly reach a maximum around 1984 right after Banz' studies.

Figure 8: SMB and HML $1 investments (Asset Management 2014)

� Value

Fama & French's second factor suggest that inexpensive stocks should outperform more expensive

ones and stocks with high book-to-price ratios outperformed stocks with lower ratios. Value

investing is, as mentioned earlier, commonly tracked by looking at fundamentals like price-to-

earnings, dividends and free cash 
ow, thus aiming to capture excess returns from a security

that has a low price relative to their fundamental value. From the Figure above, it is easily seen

that value has produced gains for the last couple of decades, substantially outperforming the size

strategy. We can also see notable losses at the last few recessions like the late 2000s' Internet bull

market or the �nancial crisis of 2007-2008. Comparing this case to the size strategy, it shows that

although value outperforms in the long run, value stocks underperform growth stocks in these

periods and in this sense, value is riskier. Value is a negative feedback strategy, meaning that

stocks with declining prices eventually falls enough to be considered value stocks. In this case,

value investors buy them when they have declined enough to be considered attractive again. One

view is that value works because stock prices follow the company's earnings over time. Many

popular indexes still emphasise this. However, there are many ways to de�ne value. As a value

investor, you could look at earnings, sales or cash 
ows to judge whether a stock is inexpensive

and the choice have impacts on performance.

� Quality

Quality investing looks at fundamental �nancial metrics like return-to-equity and debt-to-equity.

You can then de�ne the quality by low debt, stable earnings, consistent growth and the likely.

It is hard to de�ne "quality", but it is suggested that companies with higher earnings quality



2 Conceptual Framework Page 28 of 137

or lower accruals have outperformed over time26. In addition, higher pro�tability, stable income

and cash 
ow, and a lack of excessive leverage indicates quality companies. These companies

must have some competitive advantage towards their peers and when they do, they are able

to earn higher pro�ts than their peers over long periods of time. Companies that generate

exceptional pro�ts, strong balance sheets and stable cash 
ows should be able to consistently

outperform over time. Quality is also determined by the company's management, since a good

management is able to capitalize on pro�table opportunities.

� Momentum

Another standard investment factor is momentum also called "trend" investing, as in "the trend

is your friend". Momentum investors believes that stocks that have outperformed in the past

will also have strong returns in the future. Empirical evidence for this momentum anomaly was

discovered by Jegadeesh & Titman in 1993, where they found that stocks that have outperformed

in the medium turn would continue to do so, and vice versa for stocks that performed poorly27.

The strategy could be to buy stocks that have gone up in the past six months (the winners)

and short stocks with the lowest returns over the same period (the losers). Like size and value,

momentum is a cross-sectional strategy, which means that it compares one group of stocks

against another in the cross section, rather than looking at a single stock over time. The two

groups, winners and losers, are relative - they win or lose relative to each other and the market

as a whole can go up or down. In the �gure below, a WML (past winners minus past losers)

strategy is shown for the $1 investment. The �gure speaks for itself; momentum signi�cantly

outperforms size and value. It is also observed in all asset classes like international equities,

commodities, bonds and real estate28.

Figure 9: WML, SMB and HML $1 investments (Asset Management 2014)

26 Fidelity Investments (2016)
27 Jegadeesh & Titman (1993)
28 Asness, Moskowitz and Pedersen (2013)



2 Conceptual Framework Page 29 of 137

Momentum is a positive feedback strategy, where stocks with high past returns are attractive.

This means that momentum investors continue to buy them and the stocks continue to go up.

This positive feedback strategy is exposed to periodic crashes, which is clear on the �gure at the

2007-2008 crisis. The losing stocks were big �nancial institutions like Citi, Goldman, Morgan

Stanley and Bank of America. In the momentum setting, losing stocks tend to keep losing

and they probably would have if it wasn't for the US government. Their bailouts put a 
oor

underneath the stock prices of these institutions and they suddenly skyrocketed. Since the

momentum strategy shorted these stocks, the momentum investors had large losses when these

stocks increased in value.

� Low-Volatility

The primary objective is to own stocks with lower risk or return volatility than the broader

market. Empirical research suggests that stocks with low volatility earn greater risk-adjusted

returns than high-volatility assets or the broader market29. As an example, take two streams of

returns. One generates 7% annually and the other alternates between years of 24% gains and

10% losses. Both of them averages 7% per year, but the consistent stream have the potential

to compound quicker than the volatile stream, thus leaving the consistent stream with higher

returns in the long run. However, this is only a hypothetical example, and some say that this

is not the case. Regardless, the strategy can still be compelling to some. By investing this way,

low-vol investors could generate returns similar to the market over time, but with a less bumpy

ride, eliminating irrational acting on fear or other emotions. This type of investment approach is

designed to perform best when market volatility is high and decline rapidly, since lower volatility

stocks could hold better in bearish times when uncertainty is elevated.

The Fidelity Investments article referred to here have a �gure from FactSet showing that these �ve

key factors can be compelling additions to a portfolio, as they can potentially perform well over

time. However, no factor works all the time and tend to be cyclical. Small-caps can underperform

large-caps as seen during the tech bubble in the late 90's. Swift changes in market directions can be

harmful to momentum strategies (momentum crashes) as seen in the tech bubble in 2000 as well. The

good news is that most factors are not very correlated, since they are driven by di�erent anomalies.

By de�nition, value and momentum are completely di�erent, since value investors buy stocks cheap

recently declined stocks whereas momentum investors buy stocks that have been on the rise for some

time. They therefore tend to pay o� at di�erent times.

2.2.4 Quantitative Investing and A.I.

Quantitative investing is an investment approach that bene�ts from advanced mathematical modelling,

computer systems and data analysis with the aim of calculating the optimal probability of executing a

pro�table trade. High-frequency trading, algorithmic trading and statistical arbitrage thrives in this

setting. The strategies are typically run by highly educated teams and use models to increase their

ability to pro�t from the market. In the past, quantitative trading has been relatively exclusive to

high-end hedge funds with access to immense amounts of expensive data. But due to development in

computational power, data storage and availability, it has become more common and you can with
29 Fidelity Investments (2016)



2 Conceptual Framework Page 30 of 137

relative ease set up your own quantitative investments strategies at home with tools such as machine

learning, advanced mathematical modelling and factor-based investing. Some investors take a pure

quantitative investment approach, eliminating human decision making and some use it as a supple-

ment. Even if the computer makes the buy/sell decision, thus removing all emotional response, a

human is still "behind the curtain". A model is only as good as the person who develops it. The

developers are called quants, and there are probably as many complex mathematical models as there

are quants. Morgan Stanley30 found that investors keep pumping cash into factor- and quantitative-

based strategies. In fact, the pool of assets in these strategies has surged to $1.5 trillion and is growing

17% annually. In addition, over the past 20 years, 65% of a global equity manager's relative returns

is driven by broad market factors.

Quantitative trading start out by building a mathematical model of a proposed strategy. Then it is

backtested using historical market data. This framework is susceptible to over�tting, where the model

works well in the speci�c time period or market conditions but underperforms when made live. The

model is implemented in a computer algorithm in which it learns how to select stocks.

This thesis focus on a fundamental quantitative investing method. The aim is to �nd systematic trends

by analyzing the fundamental key-�gures for each company available, combining statistical analysis

and economic and �nancial theory for the data.

Machine Learning (ML) and Arti�cial Intelligence (AI) have attracted a lot of attention in the last

few decades and a vast amount of research have been conducted using the various methods included

in this �eld. The AI interest in the �nancial world has also been rapidly growing. The amount of

data is forever increasing and �nancial institutions are speculating whether computers are better than

humans when it comes to making money in the markets. Common for both quantitative investing

and AI strategies is that they need access to massive databases with structured data, which could be

fundamentals, historical prices or news sentiments.

Arti�cial Intelligence gives us the possibility to train machines. The aim is for machines to learn

from experiences, improve their knowledge and perform tasks based on their experiences. OECD's AI

Experts Group (AIGO) explains that an AI system is a 31:

machine-based system that can, for a given set of human-de�ned objectives, make predictions, recom-

mendations or decisions in
uencing real or virtual environments. It uses machine and/or human-

based inputs to perceive real and/or virtual environments; abstract such perceptions into models (in

an automated manner e.g. with ML or manually); and use model inference to formulate options for

information or action. AI systems are designed to operate with varying levels of autonomy.

The AI landscape has evolved signi�cantly since Alan Turing in 1950 who asked the question of

whether machines can think. In the last two decades, breakthroughs in Machine Learning, which is a

30 Morgan Stanley Research (2017)
31 OECD (2019)



2 Conceptual Framework Page 31 of 137

statistical AI subset, have been improving machines ability to make predictions from historical data.

In the �nancial world, private equity investments have been soaring in the last few years. It doubled

from 2016 to 2017, reaching $16 billion, and in the �rst half of 2018, AI start-ups attracted 12% of

worldwide private equity investments32.

AI is applicable in practically all sectors. In the transport sector, AI can provide cost, safety and

environmental bene�ts through autonomous vehicles. In health care, AI systems can help prevent

diseases and outbreaks early on, discover treatments and detect diseases through pattern recognition.

Lastly, �nancial services can detect fraud, assess credit-worthiness and automate trading with AI.

In 2015, Alphabet's DeepMind machine launched AlphaGo to play the game of Go. It used an arti�cial

neural network that was trained on thousands of human players to learn how to play. Then in 2016,

AlphaGo beat the world's best player at the time, four games to one. AlphaGo's developers then let

the program play itself over and over again using trial and error. It was developed into AlphaGo Zero,

a faster system that was able to beat the original AlphaGo by 100 to 0. This was done without any

human interaction, using no historical data, only by self-play33.

The availability of big data, cloud computing, computational development, storage capacity and Ma-

chine Learning have dramatically increased the power, availability, growth and impact of AI in recent

years. AI can be divided into several groups. Some of them include Machine Learning, natural lan-

guage processing, arti�cial general intelligence and robotics. In section 4, this thesis will dive into the

�eld of Machine Learning and ultimately implement several of these methods with the goal optimizing

portfolio construction.

2.2.5 A.I. and Financial Data

As we have stated, machine learning and A.I. in general is highly applicable in all sorts of sectors

and areas and a 2017 Bloomberg event found that only 16% of �rms have incorporated any kind of

machine learning into their investment strategies. The rest is either researching ways to do it (24%),

would like to learn how to do it (26%) or haven't thought about doing it yet (32%) 34. Recent ad-

vances have made Alexa and Google Photos work well, but for some reason, these methods struggle

when it comes to predicting �nancial data and asset returns in particular. Many papers, however,

show great results using all kinds of di�erent machine learning methods35, but you should always view

those results with some skepticism. If it was "that easy", you could simply follow the strategies and

implementations from these papers and start making money immediately. Harvey et al. also argues

that "low-hanging fruit" has already been picked. In addition, if these methods were that great, they

wouldn't be available online for everyone to use them. Methods that potentially work and/or generate

great pro�t are probably kept secret or kept with the development team who build the model and

as mentioned earlier, McLean and Ponti� (2015) �nd that portfolio returns fall by a great amount

after publication, so people will for example keep new factors for themselves. One method that have

32 OECD (2019)
33 David Silver (2017)
34 Bloomberg
35 ITNEXT



2 Conceptual Framework Page 32 of 137

helped increase the e�ectiveness of quantitative strategies that rely on document analysis, is Natural

Language Processes, which have shown to be a rare bene�t of deep learning models in �nancial market.

One of the main obstacles for machine learning in �nance is the fact that �nancial markets are in-

herently unpredictable and thus contain a high level of noise. It is well known that noise can limit

the performance of prediction techniques on time series and e�ective methods are currently still lack-

ing behind when it comes to noisy time series forecasting. It is practically impossible to predict for

humans, so we cannot expect machines (made by humans) to break out and surpass human ability

(yet). Data tend to show non-stationarity, which basically tells us that things change a lot: pattern

recognition is great, until the pattern changes.

A crucial issue is data distribution. As an example, take image recognition. In this setting, we expect

the distribution of pixel weights in the training set for a car-class to be similar to the distribution

of pixel weights in the test set for the car-class. Put di�erently, car images will contain cars in both

the training- and test set. So to state the obvious, car images have to contain cars. This property

is not present in all �nancial data, so what you see in the future can (and often will) be completely

di�erent from the data you have seen historically and trained your models on. Another issue could

be small sample sizes. You often have to make predictions from small sample sizes. If you work in a

big company, this is mostly not an issue. However, newer stocks will have a limited amount of data

and some data is only registered weekly, monthly or quarterly like unemployment rates and �nancial

reports from companies, making it harder to make predictions. There is simply not enough history.

What many end up doing, including this thesis, is to combine less frequent statistics, like company

fundamentals, with frequent data like stock returns. However, doubt about the quality of the model

is not removed by this. In contrast, particle physics normally create trillions of new observations for

an experiment, which is impossible in �nance. One could also argue that the timeline of the history of

�nancial markets is incredibly long, where most of it is un-quanti�able. If we, for example, completely

understood what happened at the Great Depression in the 30's, it is di�cult to convert this knowledge

into something usable for machine learning models.

It could also simply be an issue of complexity. Many di�erent things drive prices at di�erent scales;

high-frequency trading drives prices at short intervals less than a day, news and rumors drive multi-day

and mid-term price 
uctuations and value investing and economic cycles have high impact in the long

term. This is overly simpli�ed, and it is extremely di�cult to build models that takes everything into

account.

What the models can do though, is to provide an ability to unemotionally spot patterns and act on

them. Un-emotionality can be a double-edged sword though, since it sometimes help and sometimes

it does not. The simple patterns in stock returns have already been exhausted long ago. So the

�nancial market is self-correcting. Unlike most prediction tasks, �nancial markets are build to correct

for any easy pro�table predictability. This is the e�cient market hypothesis. If it was easy, someone

else would have already done it, where doing it refers to taking advantage of a predictable pattern,

exploiting it until the price corrects and at this point, the pattern does not exist anymore.



2 Conceptual Framework Page 33 of 137

2.3 Performance Metrics

This section will examine the portfolio performance metrics as well as statistical performance measures

used in this Thesis. It is inherently important to be able to evaluate the models you implement. If

not, you could easily be fooled by the performance of your model and falsely conclude on the claims

you make. Of course it is great �rst step to build at model that generates positive annual returns.

However, if for example, the Sharpe ratio turns out to be 0.1, you have not built a great model. You

have to account for risk as well, since two investments with the same expected returns could have

dramatically di�erent levels of risk.

Sharpe ratio

In the beginning of Modern Portfolio Theory, people started to propose varieties of summary statistics

to capture a single number that expressed the quality of an investment. Expected returns was not

enough, because it does not take risk into account. Everyone agreed that the solution should be

something like "Expected return / risk", but the details weren't there. In 1966, William Sharpe

proposed a risk/reward ratio which he called the "reward-to-variability ratio" or "R/V ratio" 36:

Expected Return � Risk Free Rate
Standard Deviation of Return

=
E(Rp � Rf )

� p
(12)

Thirty years later, Sharpe himself renamed it the "The Sharpe Ratio", as the former name does not

quite roll o� the tongue, and it is now the common term used today. The concept is quite simple;

Sharpe ratio is simply trying to measure the risk/reward quality of a wide range of real-world invest-

ments in order to help understand the return of the investment. When we subtract the risk-free rate

from the expected return, it allows an investor to better isolate the pro�ts associated with risk-taking

activities. As mentioned earlier, the risk-free rate is the return on an investment with zero risk. It

could, for example, be the yield for a US Treasury bond. Generally, the greater the Sharpe ratio the

better, since the risk-adjusted return is considered more attractive.

One implication is that Sharpe ratio uses standard deviation of returns in the denominator, repre-

senting total portfolio risk. This implies that returns are normally distributed. However, �nancial

asset returns are generally skewed away from the average because of the relatively large number of

surprising jumps or drops. Additionally, standard deviation assumes that price movements are equally

risky in either direction 37

Sortino ratio

The Sortino ratio is a variation of Sharpe ratio, where harmful volatility is di�erentiated from total

overall volatility. It uses the asset's standard deviation of negative portfolio returns (downside risk)

instead of the total standard deviation of portfolio returns (upside + downside risk). The focus on

the negative deviation of a portfolio's return from the mean, gives a better view of a portfolio's risk-

adjusted performance since positive volatility is attractive. Just like before, a higher Sortino ratio is

36 Sharpe (1966)
37 Investopedia Sharpe Ratio



2 Conceptual Framework Page 34 of 137

considered attractive:

Expected Return � Risk Free Rate
Standard Deviation of Downside

=
E(Rp � Rf )

� d
(13)

Value-at-Risk and Expected Shortfall

Value-at-Risk (VaR) and Expected Shortfall (ES) are developed as attempts to quantify investment

risks. Typically in �nance when evaluating risk, you want to focus primarily on big loss scenarios,

which can have a signi�cant e�ect on your portfolios. This is where both VaR and ES comes in handy,

as they posses more information regarding the "tail-scenarios" in comparison to other well known risk

measures, such as volatility. The intuition behind VaR is that it functions by working with an estimate

of the underlying distribution of the asset in question. Utilizing density functions and probability mea-

sures VaR can then, for a given probability, estimate how much you may stand to lose on an investment.

Risk managers use VaR to measure and control the level of �nancial risk exposure, which can be

within the �rm, a portfolio consisting of any type of asset or a speci�c position and thus be used to

gauge the asset value needed to cover possible losses.

If L is a loss distribution or potential loss with some horizonT and a continuous distribution function

FL , then the VaR(�; T ) measure is given by:

VaR� (L ) = inf f c : P(L > c ) � 1 � � g (14)

This is just a fancy way of saying that the VaR measure is the biggest lower boundaryc, where the

probability that the loss L is bigger than this c is less than or equal to 1� � . For a continuous loss

distribution this is equivalent to:

Pf L � VaR(� )g = � (15)

A typical conclusion is then that \with 95% probability, the investor will not lose more than VaR( � =

0:95)". To best illustrate how VaR works, we have included an example inspired by a NASDAQ

experiment from Investopedia38:

38 Investopedia Value-at-Risk



2 Conceptual Framework Page 35 of 137

Figure 10: Simple VaR illustration

The graph displays the distribution of daily returns on the NASDAQ 100 index, where the orange

bars on the left represent the 5% most negative daily returns. Given this distribution, we can con-

clude that there is a 5% chance (� = 0 :95) that you will lose more than 4% of your investment in a

day if you buy the NASDAQ 100 index. A more venturesome investor could use the 1% quantile as

a risk measure, and evaluate that there is a 1% chance that he would lose more then 7% on a given day.

Regarding VaR, most people are concerned about what happens \in the last 5%" (or 1%), at the

extreme edge of the normal distribution curve from before. The fact that you are not likely to lose

more than a certain amount 95% of the time tells you nothing about what could happen the other 5

percent of the time. You could lose $50 million | no big deal. It happens. You could also lose billions

and go out of business. VaR has no way of measuring which it will be. The cause of the extreme losses

is what Nassim Taleb calls \fat tail" or \black swan" events 39. It means that we don't know when or

how a black swan might appear, a surprising event that the observer could not have anticipated; like

the Dot-com bubble in the late 90s or the �nancial crisis in 2007{2008.

An alternative to VaR is Expected Shortfall (ES). Expected Shortfall is de�ned as the tail expected

loss given that the � -VaR estimate is exceeded:

ES(� ) = E [L j L � VaR� (L )] (16)

ES(� ) =

R�
0 Var 
 (L ) d


�
(17)

The latter is the expected value of VaR
 (L ) over all 
 that are less than or equal to � . Related to

the typical VaR conclusion from above, one could instead ask \What is the expected loss incurred in

the � worst cases over a horizonT?". This question implies that ES takes the entire tail distribution

into consideration when computed. ES compliments VaR, and if the two risk measures are combined,

39 Nassim Taleb (2007)



3 Momentum Strategy Page 36 of 137

we have a good estimate of an asset's or a portfolio's risk. In summary VaR informs us where the

boundary is, and ES tells us how bad it can get if we cross this boundary.

Maximum Drawdown The max. drawdown of a portfolio or asset is the maximum observed loss

from a peak to a low point. Additionally a drawdown period is the period from which a sudden loss

has been experienced till the loss have been recovered. The metric indicates downside risk over a

speci�ed time period. It is expressed as a percentage and the formula is:

Max. Drawdown =
Trough Value � Peak Value

Peak Value

It is important to note that it only measures the largest loss, not considering the frequency of large

losses. It is preferred to have low max. drawdown as this indicates that losses from the investments

were small. A max. drawdown of 0% means that the investment never lost anything and a max. draw-

down of 100% means that the investment is worthless. It can be used to assess the relative riskiness

of a portfolio strategy against another, as it focuses on capital preservation. Two strategies can have

the same outperformance and volatility against some benchmark, but their maximum drawdown can

be much di�erent. If you have a capital preservation strategy, where the goal is to preserve capital

and prevent loss in a portfolio, maximum drawdown is particularly important, since you can see the

biggest losses and �nd out how long it took to recover.

Alpha

Alpha ( � ) is also referred to as excess return and abnormal rate of return and it is used to evaluate a

strategy's ability to beat the market, or what is called it's "edge". We can use alpha as a measure of

performance for our investments against a market index or some other benchmark. Then the excess

return of our investment relative to the return of the benchmark is our investment's alpha. It can be a

positive or a negative value and is represented by a single number. Often, alpha is mentioned together

with beta � , which is the market's or the benchmark's overall volatility or risk, called systematic risk.

Utilizing the CAPM framework we can write:

r i = r f + � i;m (rm � r f ) (18)

In order for us to compare performance of di�erent strategies and to determine their similarities, we

can replacer f with benchmark returns. Linear regression is then used to �nd coe�cients and evaluate

whether our model generates alpha.

3 Momentum Strategy

This section describes a few general principles of our implemented momentum strategy - a single

trading strategy which can generally be described as "buy stocks that move up". As mentioned in

section 2.2.3, the underlying concept in these kinds of strategies is that a stock that has been moving

up strongly for a while is likely to continue doing so a little bit longer. It follows the strategy made by

Andreas F. Clenow in his book "Stocks on the Move: Beating the Market with Hedge Fund Momen-



3 Momentum Strategy Page 37 of 137

tum Strategies". We will provide a short overview of the arguments for this kind of implementation.

In chapter 7.6, we will further explain how we speci�cally adopted this framework.

Investing with a momentum strategy is a traditional way to manage your money. The problem with

it is that it can quickly become a very complicated construction. It is di�cult to �nd a solid set

of rules for how the pick the stocks, when to buy them, how much to buy and when to sell them.

The construction of a realistic market simulation of your momentum strategy leads to very complex

models. So how can we handle this? We should probably use some technical analysis indicators. We

could say that we only look at stocks where the 50 day Moving Average is above the 100 day Moving

Average. Moving Average (MA) is a popular trend-following technical analysis indicator that helps

smooth out price actions by �ltering out the "noise" from random short-term price 
uctuations. The

two most common MAs are simple moving average (SMA) and exponential moving average (EMA).

SMA is just the simple average of a security over a de�ned number of time periods and EMA is the

same, but it gives greater weight to more recent prices. The SMA is de�ned as:

SMA =
A1 + A2 + ... + An

n
; (19)

where A is the average in periodn, which is the number of time periods. We will only consider SMA.

Moving averages actually lag behind the current price action. This is because they are based on past

prices and the longer the time period for the MA, the greater the lag. A 200-day MA will thus have

a greater degree of lag than a 50-day MA. Determining this length depends on the trading objective,

so short MAs is for short-term trading and long MAs is for long-term trading. MAs can be trading

signals on their own or when two averages cross over. If the MA goes up, the security is in an uptrend

and vice versa in a downtrend. In addition, upward momentum is con�rmed with a bullish crossover,

where a short-term MA crosses above a longer-term MA and vice versa for downward momentum.

So, with this information, choosing stocks where the 50-day MA is above the 100-day MA could still

leave many stocks to choose from and it does not provide a clear guideline for which stocks to buy in

itself. Even this method may leave a discretionary and random element. Instead, we could measure

the distance between these two MAs. By doing so, we will have a quanti�able measure of momentum.

Even simpler, we could measure the distance between the price and a MA and compare the percentage

distances for a large group of stocks. This way, we have a rudimentary stock ranking method. We

could then just start buying from the top of the rankings. However, several questions remain: how

much of each stock do we buy and for how long? When do we replace the stocks? We do not have a

complete strategy of course, but we do have a start. We also have to look at the size of the purchase.

A simple method of spending 5% of our capital on buying 20 shares is a common example. It is also

not a good idea to hold momentum stocks during a bear market. This is easy to say, but we need

a plan for how and when to increase or decrease our overall portfolio risk; when to buy momentum

stocks and when to sell them. When we have looked into these things, we will have a quanti�able

trading strategy that can be tested historically with our data.



3 Momentum Strategy Page 38 of 137

3.1 Staying Out of a Bear Market

The easiest way to improve the performance of a model is to not buy stocks in a bear market. When

it comes to stocks, one indicator that is more important than most others is the index. Sometimes it

appears as if stocks are moving independently by its own force. This is partially an illusion. Almost

all stocks are impacted by the overall state of the market40. In a bull market, most stocks move up

and momentum stocks are likely to move up more than other stocks, but most of them in the same

direction. In bear markets, it sometimes does not matter which stocks to hold in your portfolio, but a

matter of degree. If the markets turn down, everything turn down and correlations seems to approach

1. We thus need to �nd out whether or not we are in a bear market.

3.2 Stock Rankings

We also need some way of ranking our stocks, because we have a lot of them. Since momentum

essentially is about �nding stocks that gain the most, we could just naively rank stocks based on their

gains. However, this is too simple and not the best way. The problem with this method is that it

does not account for volatility. This will lead to picking stocks with the highest volatility. Looking

at volatility is important, since the stock picking game is not only about picking the highest absolute

returns, it is about who has the highest return per unit of volatility. Volatility can be seen as the

currency which we buy performance with, and simply looking at returns with the risk aside is pure

gambling and not what we are interested in.

In addition, this method does not look at how the stock came to their gains. A massive event, like a

potential takeover, could move the stock to the top of the rankings. We thus need to �nd a method

that �nd stocks that moves up in a nice and orderly fashion - smooth signi�cant gains over time. We

will take both momentum and volatility into account.

For momentum, you can use exponential regression. Simple linear regression is a way of �tting a line

over a series of values. In this setting, it is about �nding the best �tting line on a time series of

prices. You calculate an intercept and a slope, which is where the line starts and in what direction

it goes, respectively. The slope is the interesting part, since it shows the direction the stock moves.

The slope will tell us how many dollars and cents the line should move up or down per day and this

a straight line. The problem with simple linear regression in our case, is that the slope is expressed

in dollars and cents. If we have two stocks, where one is priced at $10 and the other $100. The linear

regression could tell us that they both move up by two dollars. However, this is way more signi�cant

for the $10 stock. This is why we should use exponential regression. It is expressed as a percentage

and will tell us how many percent the stocks move in either direction. This number can be hard to

relate to. As an example, an exponential regression slope for a stock could be 0.00006. It doesn't

make much sense, so the solution is to annualize it. With 250 trading days, this amounts to 16% in

a year, which is easier to understand. This number tells us how much the stock should move in a

year if it continues the same angle, which it probably does not. We do not expect that this return

will be realized. It could be much higher or much lower, but it puts the recent past into perspective

40 Stocks on the Move, 2015



3 Momentum Strategy Page 39 of 137

and makes it easier to understand. If a stock gain $20 in a year, it does not mean anything without

proper context. However, if a stock gain 20%, we know what it means. It is important to note that

we do not actually expect that this return will be realized. It is only used to put the recent past into

perspective and to rank the stocks.

Another thing we need to account for is that we do not care about the �t yet. If a stock has gone

sideways for some time and suddenly rises 50% from a takeover or something else, only to go back to

being sideways, it should not be a momentum stock and could mess up our ranking. We are interested

in stocks that has smooth gains. These stocks are real momentum stocks and not just stocks with

crazy jumps. The solution is that since we are using regression maths, a method to measure how well

our price data �ts the regression line already exits. It is the coe�cient of determination, or R2. It is

a number between 0 and 1, where 0 is a terrible �t to the regression line and a value of 1 is a perfect

�t to the line. Given these two values, annualized slope of the stock andR2, we will simply multiply

them. If the �t is low, the value will go down and if the �t is high, the value will not decrease much.

This leaves us with a pure momentum measure and then "punish" stocks for volatility. The ranking

list should still look quite similar 41, but stocks with extreme �ts will make large shifts in the ranking.

Speci�cally, stocks which had a substantial gain with high volatility will be pushed far down the list,

giving us a more stable and smooth ranking.

3.3 Position Size

Now that we have decided which stocks to buy, it is time to determine the size of our positions and

how they change over time. It is important to note that for position sizes, we are allocating risk, not

money. An approach is simply to have 20 stocks in your portfolio and buy 5% of each stock. Holding

20 stocks seems good on the surface when it comes to diversi�cation. The problem is that it includes

randomness to the portfolio risk, and it shifts the portfolio towards stocks with higher volatility. If

all the stocks in your portfolio have about the same risk, then this is not an issue. However, this is

unlikely. We know that some stocks are likely to move up or down more than others. If we combine

these stocks in a portfolio and allocate equally, the volatile stocks set the direction for the portfolio

and the performance of less volatile stocks will not matter su�ciently.

The solution in the book is something called risk parity allocation. This method scales the positions

of each stock by looking at their volatility. The aim is then to buy smaller positions in volatile stocks.

This way, each stock has a theoretical ability to impact the bottom line of our portfolio. This elim-

inates the fact that one dollar in one stock is not the same risk as one dollar in another and so the

normal volatility of each stock is considered. Many di�erent measures of volatility exist, some more

advanced that others. Stocks on the Move uses 20-day Average True Range (ATR) which is a measure

for how much a security tends to move daily and uses the maximum of the day's high to low or the

move from the previous day.

However, we do not have access to high-low data, so we are forced to deviate from the strategy laid

out in the book. Since we are interested in looking at Hierarchical Risk Parity for portfolio allocation,

41 Stocks on the Move, 2015



3 Momentum Strategy Page 40 of 137

we will �rst implement a strategy with simple 1 =N position size. Speci�cally, this is done by looking

at the top 20 stocks, so

Size =
1

Top 20

This size is implemented for reference. Better methods for position size de�nitely exist and the goal

in this thesis is to use the Hierarchical Risk Parity method in addition to see whether this method

makes the investment strategies perform better than the simple 1=N.

3.4 When Do We Sell?

What is left to discuss is when we stop holding a stock i.e. when do we sell them again? Trend followers

normally implement a trailing stop. Having a trailing stop means that as long as the position does not

move down a certain distance, you hold it. If we implement a trailing stop in our strategy, it would

introduce an obvious problem. Stocks could potentially move sideways during the entire period in our

data. Since we are investing with a limited amount of cash, this is not optimal. In addition, even if a

stock is moving up, we would continue to hold it even if other stocks performs better. Trailing stops

does not account for this and we would then end up with a "boring" underperforming strategy.

What we can do instead is to remember how we are putting our portfolio together in the �rst place.

We will base the sell criteria on the same logic, which is to base it on the best performing stocks. In

the previous section, we determined how we should balance our positions. On a portfolio level, we

have a similar task to perform, which is then portfolio rebalancing. Remember how we ranked stocks

earlier? What if we perform the portfolio rebalance so that each stock in the portfolio must be in the

top of the stocks in our universe for it to remain. This would imply that we keep a stock as long it

remains a strong stock under our criteria. This alone is not enough, because what if all stocks are in

a downward trend? We are certainly not interested having this concern. So in addition to this, we

need a failsafe. Adding a trend indicator is simple, so we should remove stocks from our portfolio if

they are no longer in our top of stocks or if it is trading below some moving average criteria.



4 Machine Learning Page 41 of 137

4 Machine Learning

4.1 Introduction to Machine Learning

Machine learning has become an integral part of many commercial applications and research projects,

in areas ranging from medical diagnosis and treatment to �nding your friends on social networks.

However, this �eld is not exclusive to large companies with extensive research teams anymore. Even

as a beginner, you can learn practical ways to build your own machine learning solutions. With all the

data available today, machine learning applications are endless and only limited by imagination. This

section will introduce elementary machine learning concepts, initially explaining general concepts and

later introduce speci�c methods used in this thesis.

Machine learning is about extracting knowledge from data. It is a research �eld at the intersection of

statistics, arti�cial intelligence, and computer science and is also known as predictive analytics or sta-

tistical learning. The application of machine learning methods has in recent years become ubiquitous

in everyday life. From automatic recommendations of which movies to watch or which products to buy,

to personalized online radio and recognizing your friends in your photos, many modern websites and

devices have machine learning algorithms at their core. When you look at a complex website like Face-

book or Amazon, it is very likely that every part of the site contains multiple machine learning models.

Outside of commercial applications, machine learning has had a tremendous in
uence on the way

data-driven research is done today. The di�erent tools have been applied to diverse scienti�c problems

such as understanding stars, discovering new particles and providing personalized cancer treatments.

4.1.1 Supervised Learning

Supervisedmachine learning is one of the most commonly used and successful types of machine learn-

ing. Supervised learning is used whenever you want to predict a certain outcome from a given input,

and you have examples of input/output pairs. You build a machine learning model from these in-

put/output pairs, which comprise your training set. The goal is to make accurate predictions for new,

never-before-seen data. Supervised learning often requires human e�ort to build the training set, but

afterward automates and often speeds up an otherwise laborious or infeasible task.

There are two major types of supervised machine learning problems, called classi�cation andregres-

sion. In classi�cation, the goal is to predict a class label, which is a choice from a prede�ned list

of possibilities. Classi�cation is sometimes separated intobinary classi�cation , which is the special

case of distinguishing between exactly two classes, andmulti-class classi�cation, which is classi�cation

between more than two classes. You can think of binary classi�cation as trying to answer a yes/no

question. Classifying emails as either spam or not spam is an example of a binary classi�cation prob-

lem. In this binary classi�cation task, the yes/no question being asked would be \Is this email spam?".

An example of a multi-class classi�cation problem is predicting what language a website is in from

the text on the website. The classes here would be a pre-de�ned list of possible languages.



4 Machine Learning Page 42 of 137

For regression tasks, the goal is to predict a continuous number, or a
oating-point number in pro-

gramming terms (or real number in mathematical terms). Predicting a person's annual income from

their education, their age, and where they live is an example of a regression task. When predicting

income, the predicted value is an amount, and can be any number in a given range.

An easy way to distinguish between classi�cation and regression tasks is to ask whether there is some

kind of continuity in the output. If there is continuity between possible outcomes, then the problem is

a regression problem. If you think about predicting annual income, there is a clear continuity in the

output. Whether a person makes $40,000 or $40,001 a year does not make a tangible di�erence, even

though these are di�erent amounts of money; if our algorithm predicts $39,999 or $40,001 when it

should have predicted $40,000, we do not mind that much. By contrast, for the task of recognizing the

language of a website (which is a classi�cation problem), there is no matter of degree. A website is in

one language, or it is in another. There is no continuity between languages, and there is no language

that is between English and French.

In supervised learning, we want to build a model on the training data and then be able to make

accurate predictions on new, unseen data that has the same characteristics as the training set that we

used. If a model is able to make accurate predictions on unseen data, we say it is able to generalize

from the training set to the test set. We want to build a model that is able to generalizeas accurately

as possible. Usually we build a model in such a way that it can make accurate predictions on the

training set. If the training and test sets have enough in common, we expect the model to also be

accurate on the test set. However, there are some cases where this can go wrong. For example, if we al-

low ourselves to build very complex models, we can always be as accurate as we like on the training set.

The only measure of whether an algorithm will perform well on new data is the evaluation on the test

set. However, intuitively we expect simple models to generalize better to new data. Building a model

that is too complex for the amount of information we have, is calledover�tting . Over�tting occurs

when you �t a model too closely to the particularities of the training set and obtain a model that

works well on the training set but is not able to generalize to new data. On the other hand, if your

model is too simple, then you might not be able to capture all the aspects of and variability in the

data, and your model will do badly even on the training set. Choosing too simple a model is called

under�tting . The more complex we allow our model to be, the better we will be able to predict on

the training data. However, if our model becomes too complex, we start focusing too much on each

individual data point in our training set, and the model will not generalize well to new data. There

is a sweet spot in between that will yield the best generalization performance. This sweet spot is

illustrated below42.
42 Introduction to Machine Learning with Python: A Guide for Data Scientists



4 Machine Learning Page 43 of 137

Figure 11: Trade-o� of model complexity against training and test accuracy (M•uller
& Guido 2016)

It is important to note that model complexity is intimately tied to the variation of inputs contained

in your training dataset: the larger variety of data points your dataset contains, the more complex a

model you can use without over�tting. Usually, collecting more data points will yield more variety, so

larger datasets allow building more complex models.

4.1.2 Unsupervised Learning

The second family of machine learning algorithms that we will discuss is unsupervised learning algo-

rithms. Unsupervised learning subsumes all kinds of machine learning where there is no known output,

thus no teacher to instruct the learning algorithm. In unsupervised learning, the learning algorithm

is just shown the input data and asked to extract knowledge from this data.

We will look into two kinds of unsupervised learning: transformations of the dataset and clustering.

Unsupervised transformationsof a dataset are algorithms that create a new representation of the data

which might be easier for humans or other machine learning algorithms to understand compared to

the original representation of the data. A common application of unsupervised transformations is di-

mensionality reduction, which takes a high-dimensional representation of the data, consisting of many

features, and �nds a new way to represent this data that summarizes the essential characteristics with

fewer features. A common application for dimensionality reduction is reduction to two dimensions for

visualization purposes. Another application for unsupervised transformations is �nding the parts or

components that \make up" the data.

Clustering algorithms partition data into distinct groups of similar items. Consider the example of

uploading photos to a social media site. To allow you to organize your pictures, the site might want to

group together pictures that show the same person. However, the site does not know which pictures

show whom, and it does not know how many di�erent people appear in your photo collection. A

sensible approach would be to extract all the faces and divide them into groups of faces that look



4 Machine Learning Page 44 of 137

similar. Hopefully, these correspond to the same person, and the images can be grouped together for

you.

A major challenge in unsupervised learning is evaluating whether the algorithm learned something

useful. Unsupervised learning algorithms are usually applied to data that does not contain any label

information, so we do not know what the right output should be. Therefore, it is very hard to say

whether a model \did well". For example, our hypothetical clustering algorithm could have grouped

together all the pictures that show faces in pro�le and all the full-face pictures. This would certainly

be a possible way to divide a collection of pictures of people's faces, but it is not the one we were

looking for. However, there is no way for us to \tell" the algorithm what we are looking for, and often

the only way to evaluate the result of an unsupervised algorithm is to inspect it manually.

As a consequence, unsupervised algorithms are often used in an exploratory setting, when a data sci-

entist wants to understand the data better, rather than as part of a larger automatic system. Another

common application for unsupervised algorithms is as a preprocessing step for supervised algorithms.

Learning a new representation of the data can sometimes improve the accuracy of supervised algo-

rithms, or can lead to reduced memory and time consumption.

In this thesis, we will exclusively focus on supervised learning as it is the method that our machine

learning models take advantage of.

4.2 Evaluation Metrics

Evaluating a machine learning algorithm is an essential part of any project. The model may provide

satisfying results when evaluated using a metric like accuracy score, but may give poor results when

evaluated against other metrics. Most of the time, you use classi�cation accuracy to measure the

performance of a model. However, it is not always enough to truly evaluate the model. In this section,

we will cover a few di�erent types of evaluation metrics.

4.2.1 Confusion Matrix

In binary classi�cation methodology, a confusion matrix is a table with 2 rows and 2 columns that

reports the number of true positives, false positives, false negatives and true negatives. It is a vi-

sualization tool which provide further information into what kind of errors a given predictive model

creates.

Figure 12: Confusion matrix



4 Machine Learning Page 45 of 137

As seen in the table, the matrix contains 4 entries, which we will describe in real life scenarios:

1. True Positive (TP): the model predicted a stock to rise in value, and the stock appreciated.

2. True Negative (TN): the model predicted a stock to rise in value, and the stock depreciated.

3. False Negative (FN): the model predicted a stock would decrease in value, and the stock appre-

ciated.

4. True Negative (TN): the model predicted a stock would decrease in value, and the stock depre-

ciated.

Depending on what sort of data the model intends to predict, the data from the matrix can be used

in various manners. In the stock selection setting, false positives are directly costly for the portfolio,

as the model informs us to buy before the market falls. False negatives on the other hand, results in

a sort of "o�er cost", since when following the strategy of the model we intentionally choose not to

buy before the market rises in value.

Additional performance measures can be deduced from the matrix:

1. Recall = TP
TP+FN

Recall describes how well the model predicts true positive outcomes.

2. Precision = T P
T P + F P

Precision describes how well the model predicts, when it predicts positive outcomes.

3. Accuracy = T P + T N
T OT AL

Accuracy describes the total number of successfully classi�ed trials out of all classi�cations.

In a stock setting, Recall is the number of correctly predicted positive returns out of all positive re-

turns. For a no-short strategy, this measure is of great importance, as the only non-coincidental way

to make money is to correctly classify true positives.

Precision describes the number of correctly predicted positive returns out of all predicted positive

returns.

Accuracy is a widely used evaluation metric and it measures the number of correct predictions out

of all predictions. This is an intuitively appealing measure which provides insight into how well the

model classi�es observations on a general scale.

4.2.2 ROC

A natural extension to the confusion matrix analysis is the "Receiver operating characteristic" or

ROC. The ROC is a graphical representation of the true positive rate vs the false positive rate.

True positive rate (TPR) =
True positive

True positive + False negative

False positive rate (FPR) =
False Positives

False positives + True negatives



4 Machine Learning Page 46 of 137

To better illustrate how the measures are used we implement the following visualization:

Figure 13: ROC

The x-axis represents the False positive rate i.e. the rate at which observations are classi�ed as posi-

tives, when they are in fact negative. The y-axis represents the rate at which observations are classi�ed

as positives, when they are in fact positive samples.

In general you input a variety of parameter values into the models, and evaluate both the individual

and the relative performance of the models based on the true- and false positive rates.

Points along the blue line means that the proportion of correctly classi�ed true samples are equal to

the proportion of incorrectly classi�ed false samples. As with the confusion matrix the graphs provide

insight into what sort of errors the model produces.

The ideal solution for ones model is a value as close to (x; y) = (0 ; 1) as possible. A result such as this

means that the model classi�es all true samples as true, and all false samples as false. In practice, a

lower limit can be set for the "True positive rate", and the solution furthest to the left (lowest false

positive rate) will be chosen.

In practice, the ROC methodology can be implemented when optimizing hyper-parameters or when

comparing various models i.e. the graph compares a Logistic Regression model with that of a Random

Forest. We observe that the random forest has greater values than the logistic regression at all points,

indicating that the random forest is the superior model. However, one can easily imagine that the

curves cross on multiple occasions complicating the conclusion process. In the following subsection,

we will introduce a more advanced view on the ROC curve, and how it contributes to evaluating the

models.



4 Machine Learning Page 47 of 137

4.2.3 AUC

A more sophisticated approach to the ROC is the "area under the curve" evaluation metric AUC. It

builds on the idea that the TPR and the FPR have corresponding density functions. Utilizing the

density functions this approach produces a quantitative measure of how "far up to the left" a model

generally scores on the ROC graph. The AUC provides a framework in which the performance of

multiple models can easily be compared on the size of a single output. In general when comparing

models, the one which produces the greatest AUC is chosen.

4.3 Cross Validation of Time-Series Data

Cross-validation (CV) is a popular technique for tuning hyper-parameters and producing robust mea-

surements of model performance. Two of the most common types of cross-validation arek-fold

cross-validation and hold-out cross-validation. When dealing with time series data, traditional cross-

validation (like k-fold) should not be used for two reasons:

� Temporal Dependencies

With time series data, particular care must be taken in splitting the data in order to prevent

data leakage. To accurately simulate the real world forecasting environment, in which we stand

in the present and forecast the future43, the forecaster must withhold all data about events that

occur chronologically after the events used for �tting the model. So, rather than usek-fold

cross-validation, for time series data we utilize hold-out cross-validation where a subset of the

data (split temporally) is reserved for validating the model performance.

� Arbitrary Choice of Test Set

To address this, we use a method called Nested Cross-Validation. Nested CV contains an outer

loop for error estimation and an inner loop for parameter tuning. The inner loop works exactly

as discussed before: the training set is split into a training subset and a validation set, the model

is trained on the training subset, and the parameters that minimize error on the validation set

are chosen. However, now we add an outer loop which splits the dataset into multiple di�erent

training and test sets, and the error on each split is averaged in order to compute a robust

estimate of model error. This is advantageous as: "A nested cross-validation procedure provides

an almost unbiased estimate of the true error." 44

Instead we propose the following three methods of creating data-splits for cross-validation:

43 Tashman (2000)
44 Varma and Simon 2006



4 Machine Learning Page 48 of 137

Figure 14: 6 splits across� 5 years of trading data using rolling- forecast-origin
recalibration.

Notice how the �rst two iterations are missing from Figure 14. This is due to the fact that we have

put a minimum requirement for the length of training data. The limit for training data in Figure 14 is

Training min = 2 � 252, where 252 is the approximate amount of trading days in a year. The validation

set is set to Validationlength = Training min
4 , i.e. approximately 20% of the smallesttotal dataset in any

iteration.

Figure 15: � 5 years of trading data in 4 blocking time-series splits.

In Figure 15 we notice the immediate drawback of this method of data-splitting; there is only enough

data for 4 iterations, and this is after reducing the length of the training split to Training length = 252.

The largest bene�t of this method is the clearly separated datasets i.e. you would expect no bias at all

between any models as there is no possibility of data leakage from future data to any model trained

on these sets.



4 Machine Learning Page 49 of 137

Figure 16: 6 splits across� 5 years of trading data using rolling- forecast-origin
recalibration with �xed training sets sizes.

Figure 16 exempli�es our proposed method of splitting data for cross-validation. This methods limits

the size of each dataset, reducing computation, while keeping a large number of iterations with in-

dependent validation sets. In addition this method is very scalable since you would be expected to

retrain your models as you get new data and as such your training-time would not su�er as you get

more data.

4.4 Bootstrap Aggregation (Bagging)

After each individual algorithm is tested and evaluated, the bootstrap aggregating algorithm is ap-

plied in order to assemble the prediction results of di�erent algorithms with the goal of improving

stability and accuracy. Bootstrap aggregation is a simple and widely used meta-algorithm for aggre-

gating predictive models. It is also the algorithm used in Random Forest for aggregating results from

individual decision trees into a �nal output. Bootstrap aggregation can be used for both regression

and classi�cation tasks. For regression tasks, the average of the outputs from all models is taken as

the aggregated output. For classi�cation tasks, the class with the majority vote is taken.

In this thesis, bootstrap aggregation is used on the rankings of stocks produced by each model. A

stock is selected for inclusion in the portfolio if the majority of the algorithms includes the stock in

their de�ned top-rankings. This is also called majority voting.



5 XGBoost Page 50 of 137

5 XGBoost

Extreme Gradient Boosting or XGBoost is a decision/regression-tree based ensemble machine learn-

ing method, which uses the gradient boosting optimization framework. It has become very popular

in the ML community due to its predictive performance and computational speed. Furthermore, it

is a 
exible and robust tool which handles both regression and classi�cations problems well, whilst

allowing for user-de�ned objective functions and much more.

Due to the sheer size and complexity of the XGBoost machinery, we have dedicated the following

subsections to introduce some of the fundamental drivers of the algorithm. More speci�cally, we will

lightly cover the basic concepts of decision trees and gradient boost to gain better understanding of

how these are applied in the XGBoost algorithm.

5.1 Decision Trees

The decision tree algorithm is a supervised machine learning algorithm which is used for both clas-

si�cation and regression tasks. It has a 
owchart-like structure which resembles that of a tree, and

some of the main elements of the structure are appropriately named roots, branches and leaves. For

the sake of introduction, we will focus on decision trees and how they come about.

Figure 17: Tree structure

Common terms typically used with Decision Trees:

� The root node: the initial node as the top of the structure

� Internal nodes: The blue nodes which split into other nodes or leaves

� Splitting: The process of dividing a node into more nodes or leaves

� Branches: The decision rules from each node. E.g. ifx then yes, else no

� Leaf: A node which does not split. Contains outputs, both categorical and numerical



5 XGBoost Page 51 of 137

� Stump: A structure with a root node and two leaves.

The tree is built constructing classi�cation rules, which separate the observations in an optimal man-

ner, using an "impurity" measure. Many decision tree based models measure the similarity between

observations that are grouped together in the same leaves, and use the information to update the

classi�cation rules.

Standard decision trees uses Entropy and Gini Index to measure similarity.

� Entropy measures the amount of information needed to accurately describe a sample. If the

sample is homogeneous, the entropy is 0, and if the sample is equally divided, the entropy is 1.

Entropy = �
nX

i =1

pi log(pi ) (20)

pi being the probability of each class.

� Gini Index measures inequality in a sample:

Gini index = 1 �
nX

i =1

p2
i (21)

pi being the probability of each class, where lower values suggest a homogeneous sample and

visa versa.

In the decision tree algorithm, nodes represent features, branches represents decision rules and leaf

nodes represent the outcome. To illustrate how the method is implemented with the impurity measure,

we have conducted an experiment with the following data and outcome.

Figure 18: Observations decision tree example



5 XGBoost Page 52 of 137

Figure 19: Gini impurities decision tree example

In this example, we have constructed a data gathering and target creation scenario. The three columns

contains price-related and fundamental data on a single stock, and the target variable is whether the

price of the stock is increasing over the next 20 business days. The rows represent di�erent business

days observations and the corresponding "yes" and "no" indicates whether levels are high or low and

whether the price increases or decreases respectively.

Typically in �nance, the associated features have a numerical nature, which in practice results in the

models calculating barriers which best separates data. In this example, we implement a pseudo-barrier

for each feature which indicates whether the level of the feature is high or low.

If we look into the Size level root node, we see that the total number of observations for this variable

is:

Total observation Size level = 115 + 33 + 34 + 125 = 307

it is worth noting that the total number of observations for each feature varies, which is a result of

missing observations in the dataset. This portrays one of the strengths of tree-based models: they

function well with data of poor quality. In practice, the algorithm calculates the pseudo-barriers on

the data which is available, and constructs corresponding rules. Obviously, if data quality is too poor,

one would have to supplement the model with data enriching techniques, but this is beyond the scope

of this thesis.

Focusing on the Sizelevel stump, we see that the left leaf represents the samples which have cor-

responding high Sizelevels, in which 115 cases resulted in an increase in the price the following 20

business days, and 33 resulted in lower prices.

Utilizing the Gini impurity formula from the previous page, we can calculate the Gini impurities and

determine that Momentum level grants the lowest score. Remembering that lower scores indicate



5 XGBoost Page 53 of 137

greater performance, we would then set the Momentum feature in the root node, and iterate through

the tree testing the remaining features.

From this example, we see that decision trees posses a dynamic nature which works well with both

numeric and categorical data, and handles missing observations well. Furthermore, it is simple, intu-

itively appealing and produces transparent "white-box" models, which can often be a challenge with

Machine Learning models.

Depending on what sort of data the model aims to describe, it can either implement decision trees or

regression trees. There are two fundamental di�erences between decision trees and regression trees.

The former constructs decision rules into classes e.g. binary "yes":1 or "no":0, whereas the latter

is used when the response variable is numeric. In practice, classi�cation problems are solved with a

majority vote from decision trees, whereas regression tasks average regression tree outputs.

We have chosen to utilize the classi�cation approach, as we intend to build a model which can predict

the sign of the cumulative returns over a 20 day period, and evaluate the con�dence of the prediction.

However, both decision- and regression trees are infamous for over-�tting to their training data, and

are rarely used stand-alone, as they produce models which perform poorly on "out of bag" data.

Intuitively, as the trees grow larger, they begin to describe very speci�c behaviour which results in

predictions with high variance. However, this does not mean that decision trees are irrelevant and we

will introduce a very popular decision/regression tree-based concept in the following section.

5.2 Gradient Boost

Gradient boosting is a supervised ensemble machine learning algorithm, widely used for both classi-

�cation and regression. It functions by utilizing collections of weak predictors or weak learners and

combines them into one strong learner in a iterative process. The updating process is based on a

di�erentiable loss function and the corresponding gradient, from which the method gets its name.

The de�nition of the loss function is crucial to the performance of the model, and its dynamic nature

has given rise to a wide variety of di�erent gradient-based boosting algorithms e.g. XGBoost.

In this section we will introduce the basic mathematical concepts of gradient boost, to gain insight

into the fundamental parts of XGBoost.

Given a training data set and a di�erentiable loss function:

df = f (x i ; yi )gn
i =1 , L (y; F (x)) ; (22)

where x i , yi are a given set of observed features and targets respectively and F(x) is the function

which maps features to predictions, the gradient boost algorithm dictates that we initialize the model



5 XGBoost Page 54 of 137

with a constant guess, which minimizes the loss function:

F0(x) = arg min



nX

i =1

L(yi ; 
 ) (23)

It is worth noting that the initial guess varies depending on what type of loss function that is being

used e.g. if the loss functionL(y; 
 ) = 1
2(y � 
 ) where y is the observed value and
 is the prediction,

then:

@L(y; 
 )
@


= 2
1
2

(y � 
 )( � 1) = � (y � 
 ) (24)

Which in this case is just a negative residual. Then we take the sum and use the �rst order condition

to �nd:

nX

i =1

@L(y; 
 )
@


= 0

nX

i =1

� y + 
 = 0


 =
1
n

nX

i =1

y

(25)


 then becomes the average of the observed values. This example provides insight into how the method

uses the gradient in the optimization problem.

Then begins the iterative procedure of constructing trees built on previous predictions. We will letm

indicate an individual tree and M the total number of trees.

For m = 1 to M :

1. Compute pseudo-residuals

r i;m = �
�

@L(yi ; F (x i ))
@F(x i )

�

F (x)= Fm � 1 (x)
, i = 1 ; :::; n (26)

Where i refers to a certain leaf andm refers to a certain tree.

On �rst iteration Fm� 1(x) = F0(x) = 
 , which we insert into the explicit expression for the

gradient that we derived in the previous step (27).

Furthermore, we refer to this as "pseudo-residuals" since this size depends on the loss function

and is not to be confused with the residuals we know from linear regression.

2. Fit a regression tree to the pseudo-residuals using the datasetf (x i ; r i;m )gn
i =1 and create terminal

regionsRj;m for j = 1,..., j m where j refers to a single leaf.

An essential element of the algorithm is that the trees are built to predict previous errors on

each iteration, minimizing the errors in a stepwise fashion.



5 XGBoost Page 55 of 137

3. Compute output values for the leaves
 j;m by computing:


 j;m = arg min



X

x i 2 R i;j

L(yi ; Fm� 1(x i ) + 
 ) (27)

This step is similar to the initial prediction process. However, this time the optimization accounts

for the previous prediction as well. Furthermore, the optimal values are calculated for each

individual leaf in m, as we have multiple terminal regions now.

4. Update the model with new predictions:

Fm (x) = Fm� 1(x) + �
JmX

j =1


 j;m I (x 2 Rj;m ) (28)

� being the learning rate, which controls how much each tree in
uence the predictions.

With the new predictions in place, we can produce pseudo-residuals anew and repeat step 1-4

until M trees has been made.

In summary, Gradient Boost builds individual trees to predict pseudo-residuals or errors of previous

trees and utilizes the gradient to iteratively minimize the errors and eventually combines and weights

the ensemble of trees into one single prediction model.

In the following section, we will see how gradient boost relates to our method of choice, XGBoost.

5.3 The XGBoost Framework

To gain better understanding of the XGBoost framework, we have divided it into subsections.

5.3.1 The Objective Function

XGBoost is a supervised learning algorithm, which trains models to predict observed target values in

an optimal manner. A requirement for training the model is to de�ne a function which measures how

well the model �t the training data. We refer to this function as the objective function. The function

looks like this:

Obj( � ) = L(� ) + 
( � ) (29)

Where L(� ) is known as a loss function and 
( � ) is referred to as a regularization function.

We are familiar with L from linear regression, and a typical choice of loss function could be:

L (� ) =
X

i

(yi � ŷi )2 (30)

The regularization function controls the complexity of the models, and ensures that they do not over-

�t to their training data. Especially tree-based algorithms are susceptible to this kind of behaviour,



5 XGBoost Page 56 of 137

which makes 
( � ) absolutely crucial for the overall performance. To best illustrate the e�ect of 
( � ),

we make use of the example from the XGBoost documentation site.45

Figure 20: Points/Type

� Upper right corner: We observe the model succeeds at describing the data. However, it has

trained to describe very speci�c behaviour and the variance of the predictions is high.

� Lower left corner: The model has low 
. However, it has not accounted for L and the split has

been done ine�ciently resulting in low predictive capabilities.

� Lower right corner: A balance betweenL and 
 has ensured the model only does one split, and

it does it so e�ciently.

5.3.2 XGBoost: The Algorithm

Initial guess and similarity scores

As with traditional gradient boost, XGBoost initializes the algorithm with a guess. By default, the

guess is 0.5 both for regression and classi�cation. The corresponding residuals are calculated for each

observation, and the �rst tree is constructed using the following similarity score:

Similarity score =
(
P t

i =1 yi � yp)2

nresiduals + �
(31)

Where yp is the prediction associated with the p'th leaf. It is worth noting that this is the squared

sum and not the sum of squared residuals. Furthermore, we introduce� which is a regularization

45 Introduction to Boosted Trees



5 XGBoost Page 57 of 137

parameter that we will talk more about later.

Splitting and Pruning

When XGBoost decides whether or not it should split a node, it calculates a gain score. Imagine a

stump with a root node, a left leaf and a right leaf. The corresponding gain from splitting is then

calculated by:

Gain = Left Similarity + Right Similarity � RootSimilarity (32)

The rule dictates that if gain is positive, the split is executed. However, to prevent the model from

performing too many splits, another regularization related parameter is introduced,
 .


 acts a lower boundary for how much gain is required for a split to be executed e.g. if
 = 40, gain

has to be greater than 40. In other words
 e�ectively eliminates potential splits and reduces the

complexity of the tree with the overall purpose of preventing over-�tting.

When the pruning process is completed, the algorithm then calculates the optimal output values for

each leaf.

Optimal output values

To gain better understanding of how the optimal values come about, we give a brief formal introduc-

tion of the XGBoost optimization process.

For a given datasetD = f (x i ; yi )g; (jD j = n; x i 2 Rm ; yi 2 R) XGBoost utilizes ensembles of additive

trees to make make �nal predictions expressed by the formula:

ŷi = � (x i ) =
KX

k=1

f k (x i ); f k 2 F (33)

where F = f f (x) = wq(x)g(q : Rm �! T; w 2 RT ) is the collection of trees.

q is a function which represents the structure of the tree, and utilizes the decision rules to map ob-

served features to its corresponding leaf index.T is the number of leaves in the tree andf k represents

a singular tree with the structure q and the corresponding output valuesw. Using this overall struc-

ture, �nal predictions are then made by summing w's for each individual tree using the decision rules

accounted for by q.

To determine whether or not the trees do a good job predicting data, XGBoost uses the following

objective function structure:

L (� ) =
X

i

l (ŷi ; yi ) +
X

k


( f k ) (34)


( f ) = 
T +
1
2

� jjwjj2 (35)

Where l is a loss function in the traditional sense that it evaluates how well the model �ts the data.



5 XGBoost Page 58 of 137


 is a regularization function which penalizes the complexity of the model to prevent over-�tting. This

is where XGBoost di�ers from traditional gradient boost algorithms, as it implements functionality

which prevents the trees from growing to predict very particular behaviour.

There are some important observations to make from this equation:

� For � > 0, the 
( f ) functions depends positively on the size of the outputs inw. Thus, when

minimizing the objective function for � > 0, the optimal output values are shrunk towards 0,

making the model's predictions less sensitive to individual observations. This is exactly what a

regularization parameter is supposed to do.

� For � = 0, the optimization problem becomes equal to that of the traditional gradient boost

algorithm.

Implementing this objective function, the trees are then constructed in an additive manner, using the

predictions of the previous tree:

L (t ) =
nX

i =1

l (yi ; ŷi
(t � 1) + f t (x i )) + 
( f t ) (36)

Given the calculations made at t-1, we add a function or a tree at iteration t, which minimizes the

objective function.

Finding a closed-form solution for the objective function is a non-trivial task, thus XGBoost imple-

ments a second-order Taylor approximation, which utilizes the gradients of the loss function.

L (t ) �
nX

i =1

�
l (yi ; ŷi

(t � 1)) + gi f t (x i ) +
1
2

hi f 2
t (x i )

�
+ 
( f t ); (37)

where gi = @l(yi ;ŷi
( t � 1) )

@̂yi
( t � 1) and hi = @2 l (yi ;ŷi

( t � 1) )
@(ŷi

( t � 1) )2 , and where t represents an iteration and 2 denotes the

second order di�erential.

At each step, the optimization problem is to �nd the output weights w, which minimizes the loss

function given the prediction made at the previous step. Looking back at the Taylor approximation,

we can then removel(yi ; ŷi
(t � 1)) as it does not depend on and has no in
uence on the weightsw(t )

calculated at iteration t :

~L (t ) =
nX

i =1

�
gi f t (x i ) +

1
2

hi f 2
t (x i )

�
+ 
( f t ) (38)

And if we expand ~L (t ) we get:

~L (t ) =
nX

i =1

�
gi f t (x i ) +

1
2

hi f 2
t (x i )

�
+ 
T +

1
2

�
TX

j =1

w2
j (39)

To optimize output weights across all the leaves in a tree, we de�ne instance sets for each leaf:

I j = f i jq(x i ) = j g , which refers to the instance set of leafj (40)



5 XGBoost Page 59 of 137

Using the structure function q, the algorithm allocates sets of observations to their corresponding

instances sets.

We can then rewrite the modi�ed objective function to:

~L (t ) =
TX

j =1

2

4

0

@
X

i 2 I j

gi

1

A wj +
1
2

0

@
X

i 2 I j

hi + �

1

A w2
j

3

5 + 
T; (41)

which we can optimize using the FOC by di�erentiating with respect to the weights and set equal to

0:

@
@wj

0

@
X

i 2 I j

gi

1

A wj +
1
2

0

@
X

i 2 I j

hi + �

1

A w2
j = 0

X

i 2 I j

gi +

0

@
X

i 2 I j

hi + �

1

A wj = 0

w�
j = �

P
i 2 I j

gi
P

i 2 I j
hi + �

(42)

And the corresponding optimal value of the function becomes:

~L (t ) (q) = �
1
2

TX

j =1

� P
i 2 I j

gi

�

P
i 2 I j

hi + �
+ 
T (43)

In summary, depending on what our choice of loss functionl is, we evaluate the optimal output value

for each leaf in the tree, and summarize this to minimize the objective function.

For the sake of example we investigate a typical result for XGBoost regression. If the loss function is

l = 1
2(yi � ŷi )2 the corresponding gradients become:

gi =
@

@̂yi

1
2

(yi � ŷi )2 = � yi + ŷi (44)

hi =
@2

@̂yi
2

1
2

(yi � ŷi )2 = 1 (45)

Thus, the optimal output of the various leaves becomes:

w�
j =

P
i 2 I j

gi
P

i 2 I j
hi + �

=

P
i 2 I j

Residuali
n + �

(46)

The optimal values of the leaves can then be calculated using the residuals.

Splitting and pruning revised

Some pruning algorithms are initiated in the root node and the splits are evaluated according to

aforementioned equation. However, this approach comes with a 
aw: imagine a branch with 5 splits

in which the lower splits provides signi�cant gain. If the pruning process is processed top down, the



5 XGBoost Page 60 of 137

branch would be eliminated early in the process and valuable information would be lost.

So in practice the pruning process is initialized in the terminal regions/leaves, and iteratively evaluates

the gain of each split throughout the tree. If a split contributes less to gain than 
 , the branch is

removed. This approach ensures that even though a given split does not immediately provide su�cient

gain, it keeps the branch if it does so at a later time.

In practice XGBoost uses the following implementation in the pruning process.

We de�ne the sum of �rst order gradients:

Gj =
X

i 2 I j

gi (47)

H j =
X

i 2 I j

hi (48)

and de�ne an instance setI = I L [ I R , and utilize the result from (43) then the contribution to loss

given by a split is:

Gain =
1
2

�
G2

L

HL + �
+

G2
R

HR + �
�

(GL + GR )2

HL + HR + �

�
� 
 (49)

The formula can be decomposed into the gain acquired from making a split is equal to the gain of the

left leaf + the gain of the right leaf - the score of the original leaf. Furthermore, we see that gain from

making the split has to be greater than 
 , and if we do not add the branch.

In summary, XGBoost:

1. Makes an initial prediction

2. Fit a tree to predict the pseudo-residuals of previous trees using modi�ed similarity scores

3. Prune tree bottom up

4. Calculate optimal output values

5. Repeat the process for M trees, updating pseudo-residuals at each iteration

6. Combine and weight individual trees into one great predictor



6 Neural Network Page 61 of 137

6 Neural Network

This chapter will introduce and explain the concept of neural networks and the LSTM cells used in

this thesis. The �gures and parts of theory in this chapter is appropriated from the brilliant book

"Hands-On Machine Learning with Scikit-Learn and TensorFlow" by Aurelien Geron.

6.1 The Perceptron

When introducing Neural Networks, the Perceptron46 is a natural starting point as it is one of the

simplest Arti�cial Neural Network (ANN) architectures in existence. It is based on the arti�cial

neuron - as depicted in Figure 21 - called athreshold logic unit47 (TLU). Contrary to the earliest

constructed arti�cial neurons and logic-gates which used 0's and 1's for all input and output, the

inputs and output of the Perceptron are numbers instead of binary values. Additionally, each input

connection is associated with an accompanying weight. The TLU thus computes a weighted sum of

its inputs as: z = w1x1 + w2x2 + � � � + wnxn = x> w, then applies a step function to that sum and

outputs the result as: hw (x) = step( z), where z = x> w.

Figure 21: Threshold Logic Unit (TLU): an arti�cial neuron which computes a
weighted sum of its inputs then applies a step function

The two most common step functions used by Perceptrons are theheavisideand the sign step functions

(see Equation 50).

heaviside(z) =

8
><

>:

0 if z < 0

1 if z � 0
sign(z) =

8
><

>:

� 1 if z < 0

0 if z = 0

+1 if z > 0

(50)

The simplest example of the application of a TLU is for linear binary classi�cation. It computes a

linear combination of the inputs, and if the result exceeds a threshold, it outputs the positive class.

Otherwise it outputs the negative class (just like a linear Support Vector Machine (SVM) classi�er or

Logistic Regression). For example, using a single TLU to make some binary classi�cation based on

two input features x1 and x2 with an extra bias feature x0 = 1, the training of the TLU would be

done by �nding the right values for the weights w0, w1, and w2.

46 Invented by Frank Rosenblatt in 1957
47 Alternatively called a linear threshold unit (LTU)



6 Neural Network Page 62 of 137

Traditionally, a Perceptron is composed of a single layer of TLUs,48 with each TLU connected to

all the inputs. This type of layer is called a fully connected layer, or a dense layer. The inputs of

the Perceptron are fed to pass through neurons calledinput neurons, which can be thought of as

"gateways", communicating whatever input they are given. The input neurons then form the input

layer. Generally, an extra bias feature is added (x0 = 1): typically represented using a type of neuron

called a bias neuron, which outputs 1 at all times. Figure 22 depicts a multi-output Perceptron

classi�er with tree outputs from two inputs. This Perceptron employs three TLUs, making it able to

classify instances simultaneously into three di�erent binary classes.

Figure 22: Architecture of a Perceptron with two input neurons, one bias neuron,
and three output neurons

This is closely related to generalized linear models in which the link function has been replaced by

a step function. Consider the algebraic Equation 51 below, which makes it possible to e�ciently

compute the outputs of a layer of arti�cial neurons for several instances at once:

hW ;b (X ) = � (XW + b) (51)

Where:

� X represents the matrix of input features. One row per observation / instance and one column

per feature.

� W (the weight matrix) contains all the weights from neuron to neuron except for the ones from

the bias neuron. One row per input neuron and one column per arti�cial neuron in the layer.

� b (the bias vector) contains all the connection weights between the bias neuron and the arti�cial

neurons. One bias term per arti�cial neuron.

� The function � is the activation function (a step function when the arti�cial neurons are TLUs).

6.1.1 Training Perceptrons

The Perceptron training algorithm proposed by Rosenblatt - the inventor of the Perceptron - was

largely inspired by Hebb's Rule49. It is e�ectively translated to the fact that the connection weight

48 The term "Perceptron" is sometimes used to mean a tiny network with a single TLU.
49 Donald Hebb suggested - in his 1949 bookThe Organization of Behavior : "When a biological neuron triggers another

neuron often, the connection between these two neurons grows stronger"



6 Neural Network Page 63 of 137

between two neurons tend to increase when they �re simultaneously. This later became known as

Hebbian learning. The training of Perceptrons are using a variant of this rule that accounts for

the error made by the network when making predictions; the Perceptron learning rule reinforces

connections that help reduce the error. More speci�cally, the Perceptron is fed one training instance

at a time, and for each instance, it makes its predictions. For every output neuron that produced a

wrong prediction, it reinforces the connection weights from the inputs that would have contributed to

the correct prediction.50 The rule is shown in Equation 52:

w(next step )
i;j = wi;j + � (yj � ŷj ) x i (52)

Where:

� wi;j is the connection weight between thei th input neuron and the j th output neuron.

� x i is the i th input value of the current training instance.

� ŷj is the output of the j th output neuron for the current training instance.

� t j is the target output of the j th output neuron for the current training instance.

� � is the learning rate.

The decision boundary of each output neuron is linear, and as such, Perceptrons are incapable of

learning complex patterns (just like Logistic Regression classi�ers). However, if the training instances

are linearly separable, Rosenblatt demonstrated that this algorithm would converge to a solution. This

is the Perceptron convergence theorem.

Notice that the Perceptron learning algorithm strongly resembles Stochastic Gradient Descent. In

fact, the Perceptron learning algorithm is equivalent to the algorithm of a Stochastic Gradient De-

scent classi�er using the hinge loss function, a constant learning rate of 1 and no regularization.

Note that, contrary to Logistic Regression classi�ers, Perceptrons do not output a class probability.

Rather, they make predictions based on a hard threshold. This is one reason to prefer Logistic

Regression over Perceptrons.

6.2 The Multilayer Perceptron and Backpropagation

An MLP consist of one (passthrough) input layer, one or more layers of TLUs calledhidden layers,

and a �nal layer of TLUs called the output layer (see Figure 10-7). Every layer except the output

layer includes a bias neuron and is fully connected to the next layer.

50 Aur�elien G�eron (2019)



6 Neural Network Page 64 of 137

Figure 23: A Multilayer Perceptron with two inputs, one hidden layer of four
neurons, and three output neurons (the bias neurons are usually implicit)

The signal in this model 
ows only in one direction; from inputs to outputs, meaning that this is a

feedforward neural network (FNN).

When a network contains a large number of hidden layers, it is called adeep neural network(DNN).

The de�nition is not set in stone. However, a network with two hidden layers in 1990 would have been

considered deep, but now it is common to see deep neural networks with hundreds of hidden layers. As

such, the networks that we employ in this thesis are not considered deep learning by modern standards.

The algorithm used for training traditional neural networks is called backpropagation. At its most

basic, it is similar to Gradient Descent using an e�cient technique for computing the gradients auto-

matically: in just two passes through the network (one forward, one backward), the backpropagation

algorithm is able to compute the gradient of the network's error with regard to every single model

parameter. In other words, it can �nd out how each connection weight and each bias term should be

tweaked in order to reduce the error. Once it has these gradients, it just performs a regular Gradient

Descent step, and the whole process is repeated until the network converges to the solution.

In order for this algorithm to work properly, the step function needs to be replace with the logistic

(sigmoid) function, � (z) = 1 / (1 + exp({z)). This is essential because the step function contains only


at segments, so there is no gradient to work with (Gradient Descent cannot move on a 
at surface),

while the logistic function has a well-de�ned nonzero derivative everywhere, allowing Gradient Descent

to make some progress at every step. Backpropagation also works well with other activation functions,

not just the logistic function. Two popular alternatives are the Tanh and ReLU functions:

� The hyperbolic tangent function: tanh(z) = 2 � (2z) { 1

The tanh function is S-shaped, continuous, and di�erentiable, but its output value ranges from {1

to 1 (instead of 0 to 1 in the case of the logistic function), which makes each layer's output more

or less centered around 0 at the beginning of training, which often helps speed up convergence.

� The Recti�ed Linear Unit function: ReLU(z) = max(0, z)

The ReLU function is continuous but not di�erentiable at z = 0, and its derivative is 0 for z



6 Neural Network Page 65 of 137

< 0. In practice, however, it works very well and has the advantage of being fast to compute, so

it has become the default. Also, the fact that it does not have a maximum output value helps

reduce some issues during Gradient Descent.

Activation functions are needed due to the fact that chaining several linear transformations together

results in another linear transformation. This is solved by introduce nonlinearity between the layers in

the form of activation functions. This also implies that a large enough DNN with nonlinear activation

functions can theoretically approximate any continuous function.

The activation functions and their derivatives are plotted in Figure 24.

Figure 24: Activation functions and their derivatives

6.3 Recurrent Neural Networks

Contrary to feedforward neural networks, where the activations 
ow only in one direction, from the

input layer to the output layer, a recurrent neural network also has connections pointing backward.

A depiction of the simplest possible RNN, composed of one neuron receiving inputs, producing an

output, and sending that output back to itself, is shown in Figure 25 (left). At each time step t, this

recurrent neuron receives the inputsx(t ) as well as its own output from the previous time step,y(t {1) .

Since there is no previous output at the �rst time step, it is generally set to 0. We can represent this

tiny network against the time axis, as shown in Figure 25 (right). This is called unrolling the network

through time (it's the same recurrent neuron represented once per time step).

Figure 25: A recurrent neuron (left) unrolled through time (right)

Additionally you can easily create a layer of recurrent neurons such that at each time stept, every

neuron receives both the input vectorx(t ) and the output vector from the previous time step y(t {1) , as

shown in Figure 26. Note that both the inputs and outputs are vectors now. When there was just a

single neuron, the output was a scalar.



6 Neural Network Page 66 of 137

Figure 26: A layer of recurrent neurons (left) unrolled through time (right)

Each recurrent neuron has two sets of weights: one for the inputsx(t ) and the other for the outputs

of the previous time step,y(t {1) . Let's call these weight vectorswx and wy . If we consider the whole

recurrent layer instead of just one recurrent neuron, we can place all the weight vectors in two weight

matrices, W x and W y . The output vector of the whole recurrent layer can then be computed as

shown in Equation 53 (b is the bias vector and� (�) is the activation function (e.g., ReLU51).

y (t ) = �
�

W >
x x (t ) + W >

y y (t � 1) + b
�

(53)

Just as with feedforward neural networks, we can compute a recurrent layer's output in one shot for

a whole mini-batch by placing all the inputs at time step t in an input matrix X (t ) :

Y (t ) = �
�
X (t )W x + Y (t � 1)W y + b

�

= �
��

X (t ) Y (t � 1)
�

W + b
�

with W =

"
W x

W y

#

(54)

Where:

� Y (t ) is an m � nneurons matrix containing the layer's outputs at time step t for each instance in

the mini-batch ( m is the number of instances in the mini-batch andnneurons is the number of

neurons).

� X (t ) is an m � ninputs matrix containing the inputs for all instances (ninputs is the number of

input features).

� W x is an ninputs � nneurons matrix containing the connection weights for the inputs of the current

time step.

� W y is an nneurons � nneurons matrix containing the connection weights for the outputs of the

previous time step.

� b is a vector of sizenneurons containing each neuron's bias term.

� The weight matrices W x and W y are often concatenated vertically into a single weight matrix

W of shape (ninputs + nneurons ) � nneurons (as seen in Equation 54).

51 Note that many researchers prefer to use the hyperbolic tangent (tanh) activation function in RNNs rather than the
ReLU activation function. For example Vu Pham et al.'s 2013 paper \Dropout Improves Recurrent Neural Networks for
Handwriting Recognition". ReLU-based RNNs are also possible, as shown in Quoc V. Le et al.'s 2015 paper \A Simple
Way to Initialize Recurrent Networks of Recti�ed Linear Units".



6 Neural Network Page 67 of 137

� The notation [X (t ) Y (t � 1) ] represents the horizontal concatenation of the matricesX (t ) and

Y (t � 1) .

Notice that Y (t ) is a function of X (t ) and Y (t � 1) , which is a function of X (t � 1) and Y (t � 2) , which is a

function of X (t � 2) and Y (t � 3) , and so on. This makesY (t ) a function of all the inputs since time t =

0 (that is, X (0) , X (1) , . . . , X (t ) ). At the �rst time step, t = 0, there are no previous outputs, so they

are typically assumed to be all zeros.

6.3.1 Memory Cells

Since the output of a recurrent neuron at time step t is a function of all the inputs from previous

time steps, you could say it has a form of memory. A part of a neural network that preserves some

state across time steps is called a memory cell (or simply a cell). A single recurrent neuron, or a layer

of recurrent neurons, is a very basic cell, capable of learning only short patterns (typically about 10

steps long, but this varies depending on the task). Later in this chapter, we will look at some more

complex and powerful types of cells capable of learning longer patterns (roughly 10 times longer, but

again, this depends on the task).

In general, a cell's state at time stept, denoted h (t ) , is a function of some inputs at that time step

and its state at the previous time step: h (t ) = f (h (t � 1) ; x (t ) ). Its output at time step t, denoted y (t ) ,

is also a function of the previous state and the current inputs. In the case of the basic cells we have

discussed so far, the output is simply equal to the state, but in more complex cells this is not always

the case, as shown in Figure 27.

Figure 27: A cell's hidden state and its output may be di�erent

6.3.2 Examples of Recurrent Neural Networks

Sequence-to-sequence networks

This type of RNN can simultaneously take a sequence of inputs and produce a sequence of outputs (see

the top-left network in Figure 28). This type of network is especially useful for forecasting time-series

data like in our case; stock prices. In this scenario you feed the network the prices over the last N

days, and it will then forecast the prices shifted by one day into the future (i.e., from N { 1 days ago

to tomorrow).

Sequence-to-vector network

This type of RNN takes in sequences of inputs and then ignores all outputs except for the last one



6 Neural Network Page 68 of 137

(see the top-right network in Figure 28). This is the case for the networks used in this thesis. We feed

the network a sequence of fundamental and price-driven asset data, and the network would output a

single regression value based on the trained target-variable.

Other networks

Other types of RNN includes vector-to-sequence networks (see bottom-left network of Figure 28)

and Encoder{Decoder networks (see the bottom-right network of Figure 28).

Figure 28: Seq-to-seq (top left), seq-to-vector (top right), vector-to-seq (bottom
left), and Encoder{Decoder (bottom right) networks

6.3.3 Training RNNs

To train an RNN, you unroll it through time and apply regular backpropagation (see Figure 29). This

strategy is simply called backpropagation through time(BPTT).

Figure 29: Backpropagation through time

Just like in regular backpropagation, there is a �rst-forward pass through the unrolled network (rep-

resented by the dashed arrows). Then the output sequence is evaluated using a cost function C(Y (0) ,

Y (1) , . . . , Y (T ) ) (where T is the max time step). Note that this cost function may ignore some out-

puts, as shown in Figure 29 (for example, in a sequence-to-vector RNN, all outputs are ignored except

for the very last one). The gradients of that cost function are then propagated backward through the

unrolled network (represented by the solid arrows). Finally, the model parameters are updated using



6 Neural Network Page 69 of 137

the gradients computed during BPTT. Note that the gradients 
ow backward through all the outputs

used by the cost function, not just through the �nal output (for example, in Figure 29 the cost func-

tion is computed using the last three outputs of the network, Y (2) , Y (3) , and Y (4) , so gradients 
ow

through these three outputs, but not through Y (0) and Y (1) ). Moreover, since the same parameters

W and b are used at each time step, backpropagation will do the right thing and sum over all time

steps.

6.3.4 LSTM Cells

Data is continuously lost while traversing an RNN since some information is last at each time step.

This means that after some time the RNN's state contains no "memory" of the �rst inputs. This is

a problem when trying to capture true long-term patterns. One way to remedy this issue is to use

LSTM-cells.

The Long Short-Term Memory (LSTM) cell was proposed in 199752 by Sepp Hochreiter and J•urgen

Schmidhuber and gradually improved over the years by several researchers, such as Ha�sim Sak53, and

Wojciech Zaremba54. If you consider the LSTM cell as a black box, it can be used very much like a

basic cell, except it will perform much better; training will converge faster, and it will detect long-term

dependencies in the data.

The architecture of an LSTM cell is shown in Figure 30.

Figure 30: LSTM cell

From the outside, the LSTM cell looks exactly like a regular cell, except that its state is split into two

vectors: h (t ) and c(t ) (\c" stands for \cell"), where h (t ) is considered the short-term state andc(t ) the

long-term state.

52 Sepp Hochreiter and J•urgen Schmidhuber (1997)
53 Ha�sim Sak et al (2014)
54 Wojciech Zaremba et al. (2014)



6 Neural Network Page 70 of 137

The primary intuition behind the cell is that the network can learn what to store in the long-term

state, what to throw away, and what to read from it. As the long-term state c(t � 1) traverses the

network from left to right, it �rst goes through a forget gate, dropping some memories, and then it

adds some new memories via the Addition operation (which adds the memories that were selected by

an input gate). The result c(t ) is sent straight out, without any further transformation. So, at each

time step, some memories are dropped and some memories are added. Moreover, after the Addition

operation, the long-term state is copied and passed through the tanh function, and then the result is

�ltered by the output gate. This produces the short-term stateh (t ) (which is equal to the cell's output

for this time step, y (t ) ).

First, the current input vector x (t ) and the previous short-term state h (t � 1) are fed to four di�erent

fully connected layers. They all serve a di�erent purpose:

� The main layer is the one that outputs g(t ) . It has the usual role of analyzing the current inputs

x (t ) and the previous (short-term) state h (t � 1) . In a basic cell, this is the only layer, and its

output goes straight out to y (t ) and h (t ) . In contrast, in an LSTM cell this layer's output most

important parts are stored in the long-term state and the rest is dropped.

� The three other layers aregate controllers. Since they use the logistic activation function, their

outputs range from 0 to 1. Their outputs are fed to element-wise multiplication operations, so

if they output 0s they close the gate, and if they output 1s they open it. Speci�cally:

{ The forget gate (controlled by f (t ) ) controls which parts of the long-term state should be

erased.

{ The input gate (controlled by i (t ) ) controls which parts of g(t ) should be added to the

long-term state.

{ Finally, the output gate (controlled by o(t ) ) controls which parts of the long-term state

should be read and output at this time step, both to h (t ) and to y (t ) .

As such the idea is that the LSTM cell can learn to recognize important inputs, store it in the long-

term state, save it for as long as it is needed, and extract it whenever it is needed. This is exactly what

we hope to capture using the LSTM layers and cells in our Recurrent Neural Network in this thesis,

i.e. to capture long-term patterns in our time-series data and use to to predict future cumulative

return values.

Equation 55 summarizes how to compute the cell's long-term state, its short-term state, and its output



6 Neural Network Page 71 of 137

at each time step for a single instance (the equations for a whole mini-batch are very similar).

i (t ) = �
�

W >
xi x (t ) + W >

hi h (t � 1) + b i

�

f (t ) = �
�

W >
xf x (t ) + W >

hf h (t � 1) + b f

�

o(t) = �
�

W >
xox (t ) + W >

hoh (t � 1) + bo

�

g(t) = tanh
�

W >
xgx (t ) + W >

hgh (t � 1) + bg

�

c(t ) = f (t ) 
 c(t � 1) + i (t ) 
 g(t )

y(t) = h (t ) = o(t ) 
 tanh
�
c(t )

�
(55)

Where:

� W xi , W xf , W xo , W xg are the weight matrices of each of the four layers for their connection to

the input vector x (t ) .

� W hi , W hf , W ho, and W hg are the weight matrices of each of the four layers for their connection

to the previous short-term state h (t � 1) .

� b i , b f , bo, and bg are the bias terms for each of the four layers. Note that initializing b f to a

vector full of 1s instead of 0s, prevents forgetting everything at the beginning of training.

As such the framework for our Recurrent Neural Network will consist of Long Short-Term Memory-

layers in which the parameters of the cells will be initialized and tuned during training while the choice

of hyperparameters will be tuned usingBaysian Hyperparameter Optimization explained in a future

section.



7 Methodology Page 72 of 137

7 Methodology

7.1 Data Description

Finding the relationship between past and future data for �nancial time-series is a massive challenge,

but the longer the sample data is, the more likely it is to capture historical information. Furthermore,

when training machine learning models ideally you want as much data as possible, which enables the

model to obtain the required information. This section will provide a description of the data received

and used in this thesis.

In collaboration with Danske Bank, we have gained access to a subset of their FactSet database, in

which we have acquired stock data on approximately 4200 small- as well as large cap US based stocks.

The data ranges from December 1997 to February 2020 and consists of 94 di�erent numerical variables

as well as stock log returns. In addition to numerical values, the data contains 7 text variables which

hold information regarding currency, country, region, industry, FactSet-id, shortname and company

name. The �rst 4 text variables have a corresponding numerical variable and will not be used actively

in the training of the models. As various �nancial databases utilizes di�erent indexing, we will use

the shortname and the company name variables to constructs links between them.

The numerical variables contains both price-related and fundamental data. In this section, we will

present some of the more well-known variables, and the rest can be found in the appendix.

1. 'EQ RETURNS': The most well known variable in the �nancial world. This data describes the

day to day changes of the underlying asset expressed in percentage.

2. 'EQ BOOK VALUE': The total value of the company's assets that shareholders would theoret-

ically receive if the company liquidated all of it's assets.

3. 'EQ DIV SHARE': The sum of dividends issued by a company per share.

4. 'EQ INTANGIBLES SHARE': Share of the company invested in intangible assets.

5. 'EQ VOL 3M LOC': Rolling volatility window of return variable.

We see that some of the variables are "vanilla" type variables which have been around for a long time.

However some of them, such as "EQINTANGIBLES SHARE", are more modern variables which are

becoming increasingly popular due to cultural changes in the �nancial industries. The fundamental

variables contain information regarding equity, liabilities, asset allocation, income, GICS classi�ca-

tions and much more.

The data types within each variable varies between percentages, numerical- and categorical values.

The latter is represented by integers, where each integer refer to a certain category, much like the

approach you would use when constructing design matrices in traditional statistics.

In order to evaluate the quality of the data we have calculated some basic characteristics of the dataset:



7 Methodology Page 73 of 137

Table 1: Data characteristics

Number of stocks with more than 252 observations 4065

First observation date 31/12/1997

Last observation date 03/02/2020

Average years of observations per share 12.85

Ratio of missing fundamentals observations 51%

Number of features 94

Return frequency Daily

Fundamental frequency Monthly

Stocks with GICS classi�cation 3179

In summary, when using stocks with a least 1 year of data, our database contains price- and funda-

mental data information on 4065 stocks in the period 31/12/1997 to 03/02/2020. On average, we

have almost 13 years of data on each asset, in which we have daily return observations and monthly

fundamentals. Due to sub-optimal data quality, we are on average missing every second fundamental

data, which in theory means we have an observation every two months. Among the 4065 stocks, 3179

of them have a corresponding GICS classi�cation, which is an important observation to make, as the

machine learning models will implement sector separation to optimize the training algorithm.

Finally, the data has observations for 94 di�erent features, in which the data type varies across

numerical, ratio and categorical data.55

7.2 Data Preprocessing

Data preprocessing relates to step in which data is prepared and transformed so that our models can

translate it and use it for whatever their respective purpose is. It is inherently to understand and

prepare data, so this section will describe some of the measures taken in this thesis.

Pseudo Close Price

First of all, the dataset does not contain a price variable. It only contains log returns, so it has

therefore been necessary to construct a pseudo-price using the returns variable in the dataset.

p0 = 1

pt = p0 � Exp[� t � 1
i =1 (1 + r i )]

The initial price is set to 1 and the development of the price is solely based on the sum of the daily

log returns.

Forward Fill

Due to discrepancies in frequencies of observations i.e. some monthly, some daily, it has been neces-

sary to make assumptions regarding the nature of the data. In �nance, making assumptions can be a

dangerous task, and this subsection will introduce the thought process that goes into justifying said

55 Characteristics for individual features can be found in appendix 4



7 Methodology Page 74 of 137

assumptions.

Our models train primarily on two types of data, fundamentals and price-related. Price-related data

is easy to come by, and usually have daily observations, whereas fundamentals primarily have monthly

observations. We have chosen to solve this problem by implementing a "forward �ll" approach.

The forward �ll method constructs a dataset with daily observations. It does so by �lling each day's

observation with the most recent observation, until newer information is acquired e.g. if we have 2

observations on a feature on 01/01/2010, 01/02/2010: the entire month of January would have the

same observations from 01/01/2010 on each day.

In practice, this means that during the period where new fundamentals data has not yet been ac-

quired, the only things that changes in the data are price-related variables. This gives rise to some

concern, as we intend to utilize whatever information the fundamental data may hold, and not build

a price-movement based model alone.

However, we argue that the level of the fundamental data (which will hold constant throughout the

month) and it's interaction with the price, might describe a di�erent dynamic than if you were to use

price alone i.e. certain features might play a bigger role when prices are relatively high or relatively

low. Furthermore, the majority of our models bene�t greatly from large amounts of data, thus even

though the forward �ll might not contribute signi�cantly with respect to information it can help in-

crease the accuracy of the models.

Another intuitively appealing approach would be to �t a linear regression to each fundamental feature,

and utilize the slope to predict the daily changes in between observations. This approach however, is

somewhat biased as it assumes that there is a linear development in fundamental data over time. In

the end we stuck with the forward �ll method, as it seems the least biased and most realistic user case.

Technical Indicators

In addition to the 94 company fundamentals, we have constructed at few popular price-driven techni-

cal indicators to help predict price movement and returns:

1) Relative Strength Index (RSI)

The �rst indicator is RSI, which is a momentum indicator that measure the magnitude of recent price

changes. It is used to evaluate overbought or oversold conditions in e.g. a stock. It is displayed as an

oscillator, which is a line graph that moves between two extremes. RSI is valued between 0 and 100

and normally, values above 70 indicates that the stock is overbought or overvalued and values below

30 indicates an oversold or undervalued stock. Values above 70 could mean that the stock is moving

towards a trend reversal or a pullback in price.



7 Methodology Page 75 of 137

RSI is calculated with:

RSI = 100 �

"
100

1 + Average of upwards price change
Average of downward price change

#

The RSI line is then normally plotted below the asset's price chart.

2) Moving Average (MA)

This indicator is the Simple Moving Average (SMA) that was described in section 3.

3) Exponential Moving Average (EMA)

The exponential moving average is an extension of the traditional moving average where a weighting

factor is applied, which decreases the value exponentially. As such, the EMA for a seriesX may be

calculated recursively:

St =

(
X 1; t = 1

� � X t + (1 � � ) � Si � 1; t > 1
(56)

Where:

� � is a value between 0 and 1 which is responsible for discounting / decreasing older observations

faster.

� X t is some value at timet.

� St is the EMA value at time t.

In a traditional EMA, � is set to 2
N +1 , where N is the "window" of the moving average.

4) Smoothed Moving Average (SMMA)

Smoothed Moving Average (or Wilder's Moving Average) is another extension. This time of EMA,

the di�erence being that � = 1
N , where N is the "window" of the moving average.

We use the di�erent methods to construct several price-driven technical indicators to aid our models

in learning.

7.2.1 GICS Sector Classi�cations

The Global Industry Classi�cation Standard (GICS) is an industry taxonomy widely used in the �-

nancial world. The GICS structure consists of 11 sectors, 24 industry groups, 69 industries and 158

sub-industries, in which lower levels of classi�cation are nested within each sector, industry group and

so on.

A common problem when working with large datasets across sectors and industries, is that key �gures

can be di�cult to compare e.g. you would not have the same expectation to a health-care company

as you would with an IT-company. Thus, when utilizing prede�ned comparison parameters such as



7 Methodology Page 76 of 137

book-to-market value or size, certain companies will always look preferable simply due to the nature of

the company. In an attempt to construct somewhat monotone groups, the assets are typically divided

into sectors, which allows the analyst to identify and utilize whatever preferable characteristics the

groups may display. GICS provides a framework, which divides assets into monotone groups, in which

their performance characteristics can be more fairly compared.

In our case, one can easily imagine that the XGBoost model could assign higher weight to certain

fundamental data types and along with it select assets which score highly within these types. If the

model trains itself to prefer certain parameters it might end up constructing a portfolio of somewhat

monotone assets, which eventually results in what we refer to as "sector bets". To prevent this sort of

behaviour, we have divided the training dataset based on the GICS sector classi�cations. This results

in 11 data-sets, in which all assets within a given set has identical sector classi�cations. In addition

to the separation of data, we have trained 11 models, each one �tted to match a given sector.

We believe that this provides a setting in which the model can more easily compare numerical values

across assets which in the end should leader to greater predictive capabilities, both with respect to

accuracy and robustness.

Finally, it is worth noting that the GICS framework is not perfect, and companies which are classi�ed

identically can have very di�erent characteristics e.g. General Electrics have always been in industrial

and manufacturing, however, a large share of GE's revenue comes from its �nancial businesses, so how

do we classify it?

Despite it's 
aws we have chosen to use the GICS classi�cation framework, due to it's popularity and

reputation within the �nancial industry. Furthermore, we are aware that there might exists structures

which outperforms GICS, but identifying them is not within the scope of this thesis.

7.2.2 Data Preproccessing XGBoost

The XGBoost model is trained to predict the sign of the cumulative returns over the following 20

business days using a set of price- and fundamental data on a given day.

Due to the nature of the gradient boosting approach, in which it can be di�cult to process data across

time simultaneously, we have enriched the dataset with additional features.

First and foremost, we have added the technical indicators which were presented in a previous section,

in the hope that they can provide the model with su�cient historical price-related information to

produce adequate predictions. In addition to the technical indicators, we have added lagged versions

of each individual feature. The lagged features are variables which contains data on a given feature

from a previous time step in the time series. More speci�cally, we have added 3 lagged versions of each

variable, with a lag of 5, 10 and 20 business days, which contains a week, a month and two month old

data, respectively.

We utilize this approach, as we believe the model will construct better results by having more data



7 Methodology Page 77 of 137

available for each prediction. Furthermore, the intent is also that the model will be able to pick up

time-series interdependency in which lagged features have some sort of correlation with present values.

7.2.3 Data Preprocessing for LSTM

Contrary to the requirements of XGBoost, a recurrent neural network is structured in such a way

as to speci�cally accommodate sequences of data. As suchlaggedvariables are not necessary in the

same way. Instead the network is fed a 3-dimensional dataset with dimensions being Batch Size�

Time Steps� Features as exampli�ed in Figure 31:

Figure 31: Structure of time-series sequences

Like with XGBoost, we are adding additional price-driven technical indicators as described in a pre-

vious section. These serve as a stepping stone for the model and allows a lower degree of complexity

instead of relying solely on the model to construct these and �nd these interdependencies in the evo-

lution of the price. These sequences are constructed at each time-stept such that at time t the model

is fed data from t0; t � 1 : : : t � [number of time-steps] .

For our RNN LSTM network, we chose the size of 120 time-steps (� 6 months of data). The downside

of this from a computer-science perspective is memory. You will e�ectively increase the size of your

data by a factor of the number of time-steps you choose to feed the network. Traditionally when

training a neural network (or any machine learning model for the matter), your computer will load

the training and validation data in memory (RAM). However, consider the size of our dataset of about

� 2GB and then multiply that by 120. Unfortunately none of our hardware sports 240 GB of RAM,

so to overcome this, we employ a number of di�erent techniques; namely splitting data into GICS

classi�cations and using rolling- forecast-origin re-calibration with �xed training sets sizes. However,

this is still not enough to reduce the size to a point that is manageable. As such, we resort to generating

the sequences in parallel with the model training, utilizing the GPU for training and validation and

the CPU for constructing sequences to feed the model without overloading our memory capacity.



7 Methodology Page 78 of 137

7.2.4 Target Creation

Our thesis implements LSTM and XGBoost which are both supervised learning algorithms. Super-

vised models train by utilizing input data x i to make corresponding predictionsyi . The existence

of the "true" y values is what separates supervised from unsupervised learning, and their values are

essential to the functionality of the model.

For the XGBoost algorithm the target variable for a given set of observations x is the sign of the

cumulative return the following 20 business days, where negative and positive returns are mapped

according to f� ; + g : f 0; 1g

For the LSTM model the target variable for a given sequence of observationsx is the is the value of

the cumulative return the following 20 business days. As such the LSTM model is using a regression

approach compared to the classi�cation approach by XGBoost.

7.2.5 Balancing Dataset

XGBoost utilizes binary classi�cation and the target classes are thus 0 and 1. To eliminate bias in the

model, we have modi�ed the training set such that there are an equal number of observations for each

class. This is done by randomly removing observations from the dominating class until a balanced

dataset is reached.

With the purpose of e�ectively visualizing and evaluating our models, we decided to perform the

procedure on the validation set as well. This is done to prevent misleading coincidental performance-

indicators. Imagine the model is biased towards "buy" signals, and the validation set consists primarily

of "buy" signals. The result of this behaviour would be a model which performs extremely well on the

validation set, which would lead us to believe that the model describes general behaviour extremely

well.

7.3 S&P 500 Investment Universe

As mentioned, we have received data on approximately 4200 assets. We are not able to describe or

determine what the investment universe is, other than "4200 random US stocks" and that it consists

of all US stocks in the Danske Bank database. We will use most of the data for training the machine

learning models. However, for the validation period from 01-01-2014, we will only consider stocks in-

cluded in the S&P 500. We have pulled S&P 500 constituents from Wharton Research Data Services

through Compustat Capital IQ, which is a suite of databases from Standard & Poor's.

In this regard, we ran into a problem in which all our Danske Bank assets is named by a sedol code

and the S&P 500 constituents data uses tickers and company name. Our data also includes ticker and

company name as a text variable. However, far from all sedols have a ticker or a company name. We

have not found any way of translating all sedols into a ticker, so it might be the case that we have

data for all S&P 500 constituents from 1997, but we cannot know for sure. For this reason, we will



7 Methodology Page 79 of 137

try to �nd as many tickers as possible by looking at overlapping company names. We can look at how

many S&P 500 tickers we have over the entire history:

Figure 32: Number of stocks in S&P 500 compared to our universe - complete
history

As we can see, our universe is far from completing the S&P 500. However, the validation period will

be from 01-01-2014, so it is not important to have a full S&P 500 universe before 2014, as we will not

be trading. The �gure below show how close our universe is from 2014.

Figure 33: Number of stocks in S&P 500 compared to our universe - from 2014

From 2014 and onward, a total of 15 S&P 500 tickers does not have a sedol code in our data. We have

not successfully been able to �nd these sedols online. But, as we can also see, towards the end of the

backtesting period there is only 1 missing, which is a ticker we do not have data for. That is as close

as we get.

Regarding survivorship bias, this is avoided by checking the historical data regarding S&P 500 con-

stituents at each time t and buy only when the stock is in the list of S&P 500 constituents at that

same timet. Likewise we sell when we detect that a stock we're holding moves out of the list of S&P

500 constituents.



7 Methodology Page 80 of 137

7.4 Backtesting Library

A very important part of any such venture as the one we embark on (that is to test several hypothe-

ses on historical data), is backtesting. Creating a robust and reliable way of backtesting strategies

is an entire �eld of research in itself. This is why we have chosen to employ the Python library

" Backtrader 56" for our backtesting. This library o�ers a wide range of features well-suited for our

needs, including:

� 0-based indexing.

This enables us to always know what data was fed to the algorithm at what time. Furthermore,

to access "future" data (which is a big no-no when backtesting) one must explicitly pass a

positive index value to a given array. Additionally, we can access "old" data by using negative

index values, i.e. -1 would be the data fed and calculated at timet � 1.

� Event-based and Vectorized functions.

The algorithm (trading logic) and the simulated broker are always run on an event-by-event

basis. This enables us to run everything inevent-only mode with no data pre-loaded, just like

if things were live, preventing any Look-Ahead Bias57. Additionally, most indicator calculations

are vectorized by default.

� Mutable Data Feeds.

Support for any number of simultaneous data feeds only constrained by memory, including

support for multiple timeframes for di�erent data feeds. Build-in support for several sources:

.csv, Database-Souces, Pandas DataFramesetc.

� Simulated broker.

Supporting multiple order types including: Market, Limit, Stop, StopLimit, StopTrial, Long,

Short selling, etc. Customized commission schemes and credit interest - useful for simulating

speci�c brokers, i.e. Nordnet; 15USD or 0.1% for US Equity, whichever is higher. Custom

Slippage and more.

� Trading Logic.

Automatic warm-up period calculation before operating. Multiple Strategies (against same

broker) can run in parallel. Multiple order generation methods (buy/sell, order target xxx,

automated signals). Event noti�cation for: Incoming Data, Data Feed provider, orders, trades,

timers.

� And more.

The library sports a plethora of tested and validated indicators, performance analyzers and much

more.

Our choice of usingBacktrader enables us to focus our attention on testing our hypotheses, building

our models and training our algorithms instead of worrying about a data-leak in our home-brewed

backtrading engine. Lastly, the code is also completely open-source, well-documented and tested.58.
56 A feature-rich Python framework for backtesting and trading
57 Look-ahead bias occurs by using information or data in a study or simulation that would not have been known or

available during the period being analyzed.
58 Backtrader Documentation



7 Methodology Page 81 of 137

7.5 Construction of the Momentum Model

The framework laid out by Andreas Clenow from section 3 gives a general idea as to how you can

construct a simple and understandable momentum strategy. Here, we will look at the speci�c adaption

made for this thesis.

Market Filter

What we will do is to declare the market bearish if the S&P 500 index is below its 200-day MA, which

is a long-term �lter. With this approach we can immediately identify if the market is in a bear trend

or not. Actually, the S&P 500 index with a 200-day MA shows that the index has been above this

long-term average most of the time since 198059. So most of the time, it is a good idea to buy stocks.

Why are we not buying when the index moves below the MA? Well that is a whole di�erent trading

strategy. It is both much more di�cult and risky. We will only use the MA here as an indicator for

the market, which is less risky. We use it to determine whether the market is going up or down. We

should also note that this index MA approach has no direct implication on the trading part; it does

not tell us whether to buy or sell. The important part is that we do not allow any new positions when

the index is below its long-term MA and thus don't buy stocks in a bear market.

Stock Ranking

As we have explained earlier, it is preferable to use exponential regression, as it is expressed as a

percentage. We do not expect the percentage gain or loss to actually realize, but is used to put the

recent past into perspective and provide us with a stock ranking. In addition, we will be looking for

a medium term momentum ranking, so the regression calculation are done using the past 90 trading

days. This should be a reasonable time period without addressing optimization. So, if we now cal-

culate exponential regression slopes for all stocks, annualize the number and sort them based on this

number, we will have a simple momentum ranking method. The stock with the highest exponential

slope will be at the top of the list.

One last thing has to be included when we pick our stocks. We want our stocks to be trading above

their 100-day moving average. If it is not above, we will not consider it a momentum stock for this

strategy. When markets are relatively normal, most of the stocks on the top of the ranking list should

already be above their 100-day moving average. This is only to make sure that we do not buy stocks

that are moving sideways or down just because there are no available stocks moving up.

In conclusion, our stock picking comes down to two things:

� Annualized 90-day exponential regression, multiplied byR2

� Only consider stocks above their 100-day moving average

Selling Stocks

We mentioned in chapter 3 that the sell criteria should be based on the same logic as the rankings,

so that it is based on the best performing stocks. We will only consider the top 20 stocks in our

59 Stocks on the Move, 2015



7 Methodology Page 82 of 137

exponential regression ranking. It could also be any other cuto�, but 20 stocks is generally what you

would prefer to hold, depending on who you are. So, we will rebalance with a top 20 cuto�. However,

this alone is not enough, because what if all stocks are in a downward trend? We are certainly not

interested in having this concern. So in addition to this, we need a failsafe. Adding a trend indicator

is simple, so we should remove stocks from our portfolio if they are no longer in our top 20 of stocks

or if it is trading below a 100-day moving average criteria.

Lastly, we need to consider what happens to excess cash from selling stocks. If a stock has been sold

because of one the criteria from before, we are left with some cash. We will then simply let the circle

repeat. Start by checking if the S&P 500 is above it's 200-day moving average and so on... If, however,

the S&P 500 is in a bearish period, we are not allowed to buy. We don't replace stocks when they are

sold in this situation.

The Complete Momentum Strategy We have discussed these building blocks in detail, and we

will now lay out the entire equity momentum strategy, so that we can construct a solid set of rules for

our algorithm. Building an algorithm like this o�ers great advantages, since we have developed actions

for several situations. Trading decisions is not made by our mood of the day or by randomness. This

is our list of rules:

� Rank all stocks based on volatility adjusted momentum:

We will rank all the stocks in our investment universe based on momentum. This is done with

annualized exponential regression slopes multiplied withR2, both calculated on the last 90 days. If a

stock is trading below it's 100-day moving average, it is disquali�ed.

� Check the S&P 500 index �lter:

We are only allowed to open new positions if the S&P 500 index is above it's 200-day moving average.

Otherwise, we are considered to be in a bear market and will not consider new purchases.

� Calculate position sizes:

We calculate the positions sizes either by naive allocation 1=N or with HRP.

� Construct an initial portfolio:

We will start buying stocks from the top of our ranking list. If the �rst stock is not disquali�ed by

being under it's 100-day moving average, we buy and continue down the list until we run out of cash.

� Rebalance the portfolio once a week:

We are rebalancing our portfolio once a week on Mondays by checking if any stocks need to be sold.

If the stock is no longer in top 20 of our universe based on the ranking or above it's 100-day moving

average or it left the investment universe, we sell it. After the sell-o�s, we can look at buying other

stocks with remaining cash using the same logic as mentioned above.



7 Methodology Page 83 of 137

� Trade only once a week:

As mentioned, we are only trading once a week on Mondays, where we are also rebalancing the

portfolio. We are constructing a long-term strategy with the aim of beating the stock market. We are

thus not interested in acting too fast, so this reduces workload and trading frequency. This doesn't

mean that we are working with weekly data. Calculations are still made with daily data. A 
owchart

of the strategy is seen below:

Figure 34: Momentum strategy 
owchart.

7.6 Construction of the LSTM Model

As with the construction of any neural network model, the initial setup is as follows:

1. Construct the simplest model �tting your hypothesis

2. Increase model complexity to increase accuracy / performance

3. Measure robustness to reduce risk of over�tting

4. Reduce / Increase model complexity based on results from step 3)



7 Methodology Page 84 of 137

Figure 35: (From left to right): Simple RNN with a single LSTM layer; Medium
sized RNN with an LSTM layer, a Dropout and aBatchNormalization layer; Large

RNN with an LSTM layer, multiple Dropout and Dense layers and a
BatchNormalization layer

1. Constructing the simplest model �tting your hypothesis.

In our case the simplest Recurrent Neural Network model we can construct using Long Short-Term

Memory cells is a 2 layer model with input shapes ([Number of observations in a sequence], [Number

of features in a sequence])

In Figure 35 (left) the length of each sequence is 90 days and the number of features, price-driven or

fundamental are 68. Note that the number of features di�er from each GICS classi�cation and thus,

di�ers in the individual models created. The "?" in Figure 35 (left) is the number of batches being

supplied to the model at each step during an epoch, this is largely a parameter that is limited by your

hardware when training the model. Larger batches can also result in slightly unpredictable behaviour

during training. We found that 256 batches worked nicely. This means that at each step during an

epoch the model above is fed: 256� 90� 68 = 1:566:720 points of data. The number "256" in Figure

35 is not referring to the batch-size, but of the number of units / neurons in the LSTM layer. This

is simply a starting value which will change during hyperparameter-optimization. The optimal size

is usually cited to be between the input size and output size of a neural network, since our input is

90 � 68 = 6120 and output is 1 we have a lot of values to explore, though generally a neuron-count

above 512 is not normal.

2. Increasing model complexity to increase accuracy / performance.

After we observed that our model trained successfully using the simple model in Figure 35 (left)

it's time to add methods to prevent over�tting and increase training performance, this is done using

Dropout and BatchNormalization layers. This cadence of LSTM ! Dropout ! BatchNormalization



7 Methodology Page 85 of 137

is quite popular and will serve as a "meta-layer" for our model construction, see Figure 35 (middle).

Finally it is sometimes common practice to add an additional Dense layer to "condence" / "
atten"

/ reduce dimensionality of the output before the �nal single-neuron Dense output layer. As with

our other layers, a Dropout layer is added to prevent over�tting here as well. Thus we arrive at the

following:

3. & 4. Measuring robustness to reduce risk of over�tting and reducing / increasing

model complexity based on results

The model in Figure 35 (right) will serves as our "default" model for hyperparameter tuning, where

number of neurons, Dropout rate, number of "meta-layers", learning rate etc. will be optimized

using Bayesian Hyperparameter-Optimization. By the end of BHO we arrive at a model with the

following parameters (Note that the following summary only includes output shapes as the input

shapes depends on the number of features fed to the network), here 120 is the length of each sequence

fed to the network:

Layer (type) Output Shape Param #

=================================================================

LSTM Layer 1 (Input) (None, 120, 128) 101888

_________________________________________________________________

Dropout Layer 1 (None, 120, 128) 0

_________________________________________________________________

Batch Normalization 1 (None, 120, 128) 512

_________________________________________________________________

LSTM Layer 2 (None, 120, 128) 131584

_________________________________________________________________

Dropout Layer 2 (None, 120, 128) 0

_________________________________________________________________

Batch Normalization 2 (None, 120, 128) 512

_________________________________________________________________

LSTM Layer 3 (None, 128) 131584

_________________________________________________________________

Dropout Layer 3 (None, 128) 0

_________________________________________________________________

Batch Normalization 3 (None, 128) 512

_________________________________________________________________

Dropout Layer 4 (None, 128) 0

_________________________________________________________________

Dense Layer 1 (Output) (None, 2) 258

=================================================================

Total params: 366,850

Trainable params: 366,082

Non-trainable params: 768



7 Methodology Page 86 of 137

The plot in Figure 36 shows one of the results after doing 35 trails of Baysian Hyperparameter

Optimization:

Figure 36: Parallel coordinates plot of the relations between hyperparameter values and the score of the model

7.7 Construction of the XGBoost Model

Unlike LSTM, there is no need to rede�ne the overall structure of the XGBoost framework. It is

already well de�ned and have a great number of hyper parameters which can be modi�ed to increase

model performance. We utilize it to predict price direction and report the corresponding con�dence

scores of the predictions.

In this section, we will give a brief description as to how XGBoost produces its predictions with the

following setup:

1. Booster parameters

2. Learning parameters

3. Extract prediction con�dence

4. Rank stocks

5. Calibrated booster parameters

1. Hyper parameters

Modifying XGBoost to produce great results is all about adjusting its countless "Booster parameters"

optimally. Booster parameters are similar to hyper parameters and we will introduce some of the basic

types and their typical values. Remembering that XGBoost is based on a decision tree approach, we

have a whole tree structure in which we can modify branches, leaves and much more. Furthermore,

another obvious candidate for modi�cation is the learning rate from the gradient boost framework.

1. eta [default = 0.3]

� Analogous to learning rate in classic models, scale contribution of each individual tree

� Contributes to robustness, as it weights the contribution of each individual prediction.

� search range: [0.01:0.2]

2. min child weight [default = 1]

� De�nes the minimum sum of weights of all observations required in a child.

� Used to control over-�tting. Higher values prevent a model from learning relations which

might be highly speci�c for certain trees.



7 Methodology Page 87 of 137

� Too high values can lead to under-�tting.

� search range: [0:20]

3. max depth [default = 6]

� The maximum depth of a tree.

� Used to control over-�tting as higher depth will allow model to learn very speci�c relations.

� search range: [3:10]

4. n estimators

� Number of additive trees or iterations in the model.

� Search Range = 100

5. gamma [default = 0]

� A split is made only when the split contributes to reducing the loss function. Gamma

dictates a lower boundary as to how much the split needs to contribute for it to be made.

� Search range: [1:20]

6. subsample [default = 1]

� Denotes the fraction of observations to be randomly sampled for each tree.

� Lower values prevents over-�tting but too low might cause under-�tting.

� Search range: [0.5:1]

7. colsamplebytree [default = 1]

� Denotes the fraction of columns to be randomly sampled for each tree.

� Search range: [0.5:1]

8. lambda [default = 1]

� Regularization parameter.

� Handles the regularization part of XGBoost. Reduces the complexity of the trees thus

preventing potential over-�tting.

� Search range: [0:1]

In the next section "Hyperparameter Optimization" we will dive into detail as to how these values are

calibrated. The general idea is that we initialize the model with a default set of hyperparameters values,

and evaluate the overall performance of the model. Given the search range provided to the model, the

algorithm changes the values iteratively and the combination which provides the best results is chosen.

Hyperparameters are parameters which helps the model learn. Examples could be the number of trees

that the model should construct in the learning process, or the maximum depth of the individual trees.

These parameters are crucial to the performance of the model, as it sets the base for how the model



7 Methodology Page 88 of 137

calibrate its structures.

2. Learning parameters

Learning parameters de�ne the objective metrics which are calculated at each iteration or step. Ex-

amples of this could be the speci�c loss function which is used when calculating optimal leaf output.

In our implementation we have used the logistic regression function for binary classi�cation.

Another learning parameter could be the evaluation metric that the model uses when evaluating per-

formance on the validation set. We have used the Area Under the Curve AUC parameter for this.

3. Extract prediction con�dence

Tree-based models provide a great setting for evaluating the con�dence of predictions. Imagine a

calibrated decision tree, in which observations have been allocated to their corresponding leaves. The

con�dence of a given classi�cation is then the fraction of samples in the leaf which belong to the same

class. For example if 10 stocks are assigned to the same leaf as a result of decision rules made by the

tree, and 9 of them belong to the same class the con�dence of such a classi�cation is 90%.

In our thesis we utilize binary classi�cation and extract the con�dence and uses these as a stock-

selection criteria.

4. Ranking stocks

The XGBoost model takes in a set of fundamental- and price-related data on a given day, and produces

predictions and con�dence levels. The model then subsets to the stocks which have positive predic-

tions. From these stocks the algorithms ranks them from largest to smallest based on the con�dence

associated with the prediction. This results in a vector where the �rst element in the vector is the

most preferable stock according to the model.

5. Calibrated Booster parameters
learning rate min child weight max depth n estimators gamma subsample colsamplebytree reg lambda

10 0.09 15.0 8.0 100.0 4.66 1.0 0.80 0.07

15 0.11 0.0 5.0 100.0 11.69 1.0 0.84 0.28

20 0.12 9.0 10.0 100.0 5.82 1.0 0.91 0.30

25 0.10 18.0 10.0 100.0 17.14 1.0 0.61 0.62

30 0.05 3.0 5.0 100.0 11.14 1.0 0.67 0.23

35 0.14 13.0 4.0 100.0 17.86 1.0 0.85 0.92

40 0.07 17.0 10.0 100.0 6.08 1.0 0.73 0.67

45 0.05 3.0 6.0 100.0 15.93 1.0 0.65 0.57

50 0.16 4.0 5.0 100.0 17.46 1.0 0.72 0.29

55 0.17 2.0 5.0 100.0 7.03 1.0 0.62 0.45

60 0.14 3.0 6.0 100.0 7.03 1.0 0.62 0.45

Each row represents the booster parameters for a given sector indexed by the outer left column. We

notice that the majority of the di�erent calibrations agree on relatively low learning rates and trees

with a max depth lower than 10, indicating that the regularization terms work.



7 Methodology Page 89 of 137

7.8 Hyperparameter Optimization

Common to most machine learning models is the term of "Hyperparameters", which are parameters

whose values are set before the training of the model, in contrast to the model's other parameters

which are tuned and derived during the training process. Examples from a Neural Network could be:

"Number of layers" and "Number of neurons pr. layer". Some of the �gures from this section is taken

from a Towards Data Science article called "A Conceptual Explanation of Bayesian Hyperparameter

Optimization for Machine Learning".

Hyperparameter optimization is represented in equation form as:

x? = arg min
x2 �

f (x) (57)

Here f (x) represents an objective score to minimize| such as RMSE or error rate| evaluated on the

validation set; x? is the set of hyperparameters that yields the lowest value of the score, andx can

take on any value in the domain� . In simple terms, we want to �nd the model hyperparameters that

yield the best score on the validation set metric.

This process of �nding the optimal parameters plays a huge part in the �nal performance of your

model and as such, a proper framework needs to be employed to be e�cient about it. Taking the

example above and de�ning some values to check; "Number of layers": [1, 2, 3, 4, 5], "Number of

neurons pr. layer": [8, 12, 16, 20, 24, 28, 32, 36]. This would result in 5 x 8 = 40 models to train in

order to check all combinations. This approach is called "Grid Search".

A popular alternative to this method is "Random Search", in which a range is passed and a random

value is selected from that range. The upside of using "Random Search" as compared to "Grid Search"

quickly becomes apparent when you overlay a grid with an underlying distribution illustrating the score

of the model with each value, see Figure 37.

Figure 37: Comparison of Grid and Random search



7 Methodology Page 90 of 137

Notice that due to the rigorous methods in "Grid Search", it never even tries the "Optimal" value of

the x-axis parameter, which the "Random Search" does. The intuition is clear when looking at Figure

37. "Grid Search" tries the same value for each hyperparameter multiple times (albeit in combination

with other values from other hyperparameters) whereas "Random Search" picks random values for

each hyperparameters completely independent from the other hyperparameter values.

The problem with hyperparameter optimization is that evaluating the objective function to �nd the

score is extremely expensive. Each time we try di�erent hyperparameters, we have to train a model on

the training data, make predictions on the validation data, and then calculate the validation metric.

With a large number of hyperparameters and complex models such as ensembles - in our case, XGBoost

- or deep neural networks - like our LSTM model - with 150.000 combinations each taking 15min to

train, it would take more than 4 years of 24/7 training to completely exhaust the possible combinations,

thus it is simply not feasible to use Grid Search. Random Search could be argued for, because we

could limit the amount of combinations to train randomly across the search space. However, due to

the size, it is incredibly unlikely that we would �nd a true optimal set of hyperparameter values using

this random approach. Grid and Random Search are completely uninformed by past evaluations (i.e.

they do not choose the next hyperparameters to evaluate based on previous results), and as a result,

it often spend a signi�cant amount of time evaluating \bad" hyperparameters. Instead, let's explore

the realm of Bayesian hyperparameter optimization.

7.8.1 Bayesian Hyperparameter Optimization

The fundamental idea behind Bayesian hyperparameter optimization is to build a probability model

of the objective function and use it to select the most promising hyperparameters to evaluate in the

true objective function.

The most popular implementation of this is using Sequential Model-Based Optimization (SMBO) with

the Tree Parzen Estimator (TPE).

Bayesian approaches, in contrast to random or grid search, keep track of past evaluation results, which

they use to form a probabilistic model mapping hyperparameters to a probability of a score on the

objective function:

P(scorejhyperparameters) (58)

In the literature, this model is called a \surrogate" for the objective function and is represented as

p(yjx). The surrogate is much easier to optimize than the objective function, and Bayesian methods

work by �nding the next set of hyperparameters to evaluate on the actual objective function, by

selecting hyperparameters that perform best on the surrogate function. In other words:

1. Build a surrogate probability model of the objective function

2. Find the hyperparameters that perform best on the surrogate

3. Apply these hyperparameters to the true objective function



7 Methodology Page 91 of 137

4. Update the surrogate model incorporating the new results

5. Repeat steps 2{4 until max iterations or time is reached

The aim of Bayesian reasoning is to become \less wrong" with more data, which these approaches do

by continually updating the surrogate probability model after each evaluation of the objective function.

At a high-level, Bayesian optimization methods are e�cient because they choose the next hyper-

parameters in an informed manner. The basic idea is: spend a little more time selecting the next

hyperparameters in order to make fewer calls to the objective function. In practice, the time spent

selecting the next hyperparameters is inconsequential compared to the time spent in the objective

function. By evaluating hyperparameters that appear more promising from past results, Bayesian

methods can �nd better model settings than random search in fewer iterations.

As a good visual description of what is occurring in Bayesian Optimization, take a look at Figure 38

(left) and Figure 38 (right). Figure 38 (left) shows an initial estimate of the surrogate model | in

black with associated uncertainty in gray | after two evaluations. Clearly, the surrogate model is a

poor approximation of the actual objective function in red:

Figure 38

Figure 38 (right) shows the surrogate function after 8 evaluations. Now the surrogate almost exactly

matches the true function. Therefore, if the algorithm selects the hyperparameters that maximize the

surrogate, they will likely yield very good results on the true evaluation function.

Conclusively, we form an initial view of the world (called a prior) and then we update our model based

on new experiences (the updated model is called a posterior). Bayesian hyperparameter optimization

takes that framework and applies it to �nding the best value of model settings.

7.8.2 Sequential Model-Based Optimization

Sequential model-based optimization (SMBO) methods are a formalization of Bayesian optimization.

The "sequential" part refers to running trials one after another, each time trying better hyperparam-

eters by applying Bayesian reasoning and updating a probability model (surrogate).

There are �ve aspects of model-based hyperparameter optimization:

1. A domain of hyperparameters over which to search



7 Methodology Page 92 of 137

2. An objective function which takes in hyperparameters and outputs a score that we want to

minimize (or maximize)

3. The surrogate model of the objective function

4. A criteria, called a selection function, for evaluating which hyperparameters to choose next from

the surrogate model

5. A history consisting of (score, hyperparameter) pairs used by the algorithm to update the sur-

rogate model

There are several variants of SMBO methods that di�er in steps 3{4. Namely, how they build a

surrogate of the objective function and the criteria used to select the next hyperparameters. Several

common choices for the surrogate model are Gaussian Processes, Random Forest Regressions, and

Tree Parzen Estimators (TPE) while the most common choice for step 4 is Expected Improvement.

In this post, we will focus on TPE as put forward in the paper \Algorithms for Hyper-Parameter Op-

timization" 60 and Expected Improvement. The surrogate function, also called the response surface, is

the probability representation of the objective function (like RMSE) built using previous evaluations.

This is sometimes called a response surface because it is a high-dimensional mapping of hyperparam-

eters to the probability of a score on the objective function.

Domain

In the case of random search and grid search, the domain of hyperparameters we search is a grid. An

example for a random forrest model is show below:

hyperparameter gr id = f

' n es t ima to rs ' : [ 100 , 200 , 300 , 400 , 500 , 600 ] ,

' max depth ' : [ 2 , 5 , 10 , 15 , 20 , 25 , 30 , 35 , 4 0 ] ,

' m in samp les lea f ' : [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ]

g

For a model-based approach, the domain consists of probability distributions. As with a grid, this lets

us encode domain knowledge into the search process by placing greater probability in regions where

we think the true best hyperparameters lie. If we wanted to express the above grid as a probability

distribution, it may look something like this:

Figure 39 Figure 40 Figure 41

60 Bergstra et al. (2011)



7 Methodology Page 93 of 137

Here we have a uniform, log-normal, and normal distribution.

Selection Function

The selection function is the criteria by which the next set of hyperparameters are chosen from the

surrogate function. The most common choice of criteria is Expected Improvement:

EI y? (x) =
Z y?

�1
(y? � y)p(yjx)dy (59)

Here, y? is a threshold value of the objective function, x is the proposed set of hyperparameters,y

is the actual value of the objective function using hyperparametersx, and p(yjx) is the surrogate

probability model expressing the probability of y given x. Thus the aim is to maximize the Expected

Improvement with respect to x. This means �nding the best hyperparameters under the surrogate

function p(yjx).

If p(yjx) is zero everywhere so thaty < y ?, then the hyperparametersx are not expected to yield any

improvement. If the integral is positive, then it means that the hyperparameters x are expected to

yield a better result than the threshold value.

7.8.3 Tree-structured Parzen Estimator (TPE)

The Tree-structured Parzen Estimator builds a model by applying Bayes rule, which provides us with

a way to update our beliefs, based on the arrival of new, relevant pieces of evidence. Instead of directly

representingp(yjx), it instead uses:

p(yjx) =
p(xjy) � p(y)

p(x)
(60)

p(xjy), which is the probability of the hyperparameters given the score on the objective function, in

turn is expressed:

p(xjy) =
�

`(x) if y < y ?

g(x) if y � y?
(61)

where y < y ? represents a lower value of the objective function than the threshold. The explanation

of this equation is that we make two di�erent distributions for the hyperparameters: one where the

value of the objective function is less than the threshold,̀ (x), and one where the value of the objective

function is greater than the threshold, g(x).

Consider the threshold constructed in the results from a Random Forest model in Figure 42 (left),

next consider the two probability distributions for the number of estimators in Figure 42 (right), one

using the estimators that yielded values under the threshold and one using the estimators that yielded

values above the threshold:



7 Methodology Page 94 of 137

Figure 42

Intuitively, it seems that we want to draw values of x from `(x) and not from g(x) because this

distribution is based only on values ofx that yielded lower scores than the threshold. This is also

what the math says. With Bayes Rule, and a few substitutions, the expected improvement equation

becomes:

EI y? (x) =

y ?`(x) � `(x)

Ry?

�1 p(y)dy


` (x) + (1 � 
 )g(x)
/ (
 +

g(x)
`(x)

(1 � 
 )) � 1 (62)

Notice the right-hand term, which explains that Expected Improvement is proportional to the ratio

`(x)=g(x) and therefore, to maximize the Expected Improvement, this ratio should be maximized.

The Tree-structured Parzen Estimator works by drawing sample hyperparameters from̀ (x), evaluat-

ing them in terms of `(x)=g(x), and returning the set that yields the highest value under `(x)=g(x)

corresponding to the greatest expected improvement. These hyperparameters are then evaluated on

the objective function. If the surrogate function is correct, then these hyperparameters should yield a

better value when evaluated.

The expected improvement criteria allows the model to balance exploration versus exploitation.̀ (x)

is a distribution and not a single value, which means that the hyperparameters drawn are likely close,

but not exactly, at the maximum of the expected improvement. Moreover, because the surrogate is

just an estimate of the objective function, the selected hyperparameters may not actually yield an

improvement when evaluated and the surrogate model will have to be updated. This updating is done

based on the current surrogate model and the history of objective function evaluations.

History

Each time the algorithm proposes a new set of candidate hyperparameters, it evaluates them with

the actual objective function and records the result in a pair (score, hyperparameters). These records

form the history. The algorithm builds `(x) and g(x) using the history to come up with a probability

model of the objective function that improves with each iteration.



7 Methodology Page 95 of 137

If we are using better-informed methods to choose the next hyperparameters like Baysian Hyperparam-

eter Optimization and TPE, it means that we can spend less time evaluating poor hyperparameter

choices. This means that by the end of optimization we have a closer approximation ofx? in the

equation:

x? = arg min
x2 �

f (x) (63)

7.9 Investment Strategy

This section will give a brief introduction to the investment strategy used for backtesting all the pro-

posed methods and their strategies. It is important to assign a few more words to the investment

strategy and speci�cally the parameters used. For momentum, the ranking period is set to 90 days,

the index MA is 200 days, the stock MA is 100 days and for the ML strategies, the prediction con-

�dence cuto� is 60% for XGBoost and 0 for LSTM. In addition, the top ranking stocks will be 20

stocks, the maximum holding period is 20 days and the maximum exposure is 95%. We have used

these parameters without making any kind of optimization on them.

Choosing parameters is di�cult, since it almost always will have some kind of bias attached to it.

These parameters also have some bias, since some has been chosen to be almost the same as Andreas

Clenow's in Stocks on the Move, knowing that they perform pretty well. The numbers de�nitely

makes sense, but so do other numbers and we should not focus too much on these speci�c numbers.

A well constructed trading strategy should be solid enough to avoid being sensitive to small changes

in parameters. The concept is the key, and if the strategy only worked with these speci�c parameters

(which is not the case) it would be a terrible strategy.

As mentioned, we will backtest 6 strategies with two di�erent allocation methods. All of them follow

a few simple steps:

If it is a Monday:

1. Create rankings

For momentum, this is done by sorting the 90-day momentum indicator. For XGBoost and

LSTM, this is done by setting a prediction threshold, which, respectively, is 0.6 and 0, and sort

after these. This is because XGBoost is a binary classi�cation model where all predictions are

between 0 and 1 and LSTM is a future returns regression model where all predictions are natural

numbers, so that prediction above 0 is BUY signals. In addition, there should be at least 100

observations and the stock must be a S&P 500 constituent at the given point in time. This

coincides with the requirement for 100 days of data to compute the 100-day moving average

of each stock used in the Momentum strategy as well as a 100 days of data to compute the

correlation matrix between the stocks for use in the HRP calculations.

2. Sell stocks

A position is sold if it is 1) older than the max. holding period of 20 days, 2) if it has fallen out

of the speci�c top ranking, or 3) if the stock is no longer in the S&P 500. At the �rst point in



7 Methodology Page 96 of 137

time, this is not possible, as there are no stocks to sell. So, the strategy will of course buy �rst,

but after the �rst Monday, sell conditions will be evaluated �rst.

3. Buy stocks with either HRP or Naive

For the Naive allocation, we will 1) check if there is any cash available and 2) the amount to

buy is determined by Naive allocation and scaled down by max. exposure of 0.95 to prevent

using all of the cash. For HRP, the framework is the same, but the method needs a return

dataframe. So, a returns dataframe is constructed with the previous 100 days returns and the

weight calculations comes from this dataframe if there is more than one column. Stocks are

bought if they exist in the HRP weight series. The positions are also scaled down by max.

exposure.

A few di�erences are included in the Ensemble strategies. The rankings are made simply by counting

if a stock lies in either 1, 2 or 3 of the individual strategies. If, say, a stock is in the top ranking for

both XGBoost and LSTM, it is bought in the 1/3 and 2/3 strategy. The top rankings will be 10,

100 and 250 for 1/3, 2/3 and 3/3, respectively. The "top stocks" variable determines the amount of

stocks in each ranking list for each method. For 3/3 ensemble, the set we create our subset from must

be larger. If we only considered top 20 stocks, it will only generate 2-3 BUY signals over the period

because it is rarely the same stocks that lies in top 20 of each strategy.

7.10 Ensemble Learning

Using the input of multiple people or experts has been common practice throughout the history of

human civilization, especially as it serves the foundation of a democratic society. Researchers in the

machine learning environment have studied schemes that share such a joint decision procedure for

some time. These schemes can be referred to asensemble learningand the methods are known to

reduce variance and improve the decision system's robustness and accuracy61. This section aims to

examine what ensemble learning is and how it is used to generate better results.

If we had an expert whose predictions are always true, we would not need another decision maker

and thus no need for ensemble-based systems. No such expert exist, so every decision maker has an

imperfect past record. Put di�erently, the accuracy of each decision maker's decisions has a nonzero

variability. Normally, classi�cation error is examined by two controllable components; bias, which is

the accuracy of the classi�er, and variance, which is the precision of the classi�er when trained on

di�erent training sets. We know that averaging normally has a smoothing or variance-reducing e�ect.

The goal of ensembles is then to create several classi�ers with relatively �xed or similar bias in order

to combine their outputs to reduce the variance, for example by averaging.

This method can be thought of as reducing the high-variance noise in data, using a moving average

�lter so that each sample is averaged by a neighbor of samples around it62. If the noise in each

sample is independent, the noise will be averaged out and information that is common to all models

is una�ected. Averaging is but one method and combining classi�er outputs does not necessarily lead

61 Zhang & Ma (2012)
62 Zhang & Ma (2012)



7 Methodology Page 97 of 137

to a guaranteed better classi�cation performance than the best classi�er in the ensemble. Rather, it

reduces the likelihood of choosing a classi�er with poor performance. An illustrative example is shown

below.

Figure 43: Ensemble learning for classi�er models using di�erent subsets of training
data (Zhang & Ma (2012)

We can see that the 3 models make di�erent predictions, but the ensemble is able to make a decision

boundary from the collection of these models.

In general, three steps have to be considered when building an e�ective ensemble learning system. 1.

Data sampling/selection, 2. training member classi�ers and 3. combining classi�ers:

1. It is important that the models produce di�erent errors and di�erent results. If all ensemble

members provide the same output, there will be no bene�ts from their combination. We therefore

need diversity in the decisions of the ensemble members, which in the case of this thesis, is two

machine learning methods and a momentum strategy that all generate BUY and SELL signals.

2. Self-explanatory. In this step you choose which speci�c models to train and backtest.

3. The last step relates to the mechanism used to combine the individual strategies. A wide variety

of options is available. It could, for example, be arithmetic, sum, product, mean etc., combiners

or voting based approaches.

If we assume that only the class labels are available from the classi�er outputs, we de�ne the decision

of the t'th classi�er as dt;c 2 f 0; 1g; t = 1 ; :::; T and c = 1 ; :::; C, where T is the number of classi�ers

and C is the number of classes. If thet'th classi�er or hypothesis ht chooses class! c , then dt;c = 1,

and 0 otherwise. The continuous values outputs can be converted to label outputs such as BUY and

SELL by assigningdt;c = 1 for the class with the highest output, but not vice versa.



7 Methodology Page 98 of 137

Speci�cally in this thesis, the goal is to make the three investment strategies generate trading signals

and see if they can agree. If, for example, two out of three strategies generates a BUY signal on some

stock, the information will be fed to the backtesting so that the ensemble strategy can act on this

majority vote signal. Generally, Majority Voting has three variations: the ensemble decision is the

class 1) where all classi�ers agree (unanimous voting), 2) the class is predicted by at least one or more

than half the number of classi�ers (simple majority ), or 3) the class that receives the highest number

of votes, with no emphasis on whether or not the sum of these votes are above 50% (plurality voting ).

Since we "only" have three strategies, variation 2 and 3 overlap in the sense that if 2 strategies agree,

the class is predicted by more than half of the strategies (2 out of 3) and the class has received the

highest number of votes (2 against 1).

Normally, majority voting refers to plurality voting, which is mathematically de�ned as:

choose class! c� if � T
t=1 dt;c � = max c � T

t=1 dt;c .

For the purpose of this thesis, we want the ensemble investment strategy to act upon trading signals

if 2 or more individual strategies agree on either buying or selling a speci�c stock at a speci�c time.

We will also implement a 1/3 and a 3/3 Ensemble strategy for reference. This means that the 1/3

strategy will act on all signals generated from the three individual strategies and the 3/3 strategy will

act when one signal is generated by all three methods.

7.11 CAPM Implementation

The Capital Asset Pricing Model provides a framework in which one can evaluate the performance

of a given portfolio, based on the average returns of the portfolio relative to the predictions of the

CAPM model.

The measure is based on the well known CAPM formula, where a simpli�ed version of the model

mentioned earlier is:

r i = r f + � i;m (rm � r f ); (64)

In practice, we utilize this tool to compare performance of di�erent strategies, in an attempt to

determine their similarities. In our implementation, r f is replaced with the benchmark returns, and

r i is replaced with the target model. We then use linear regression to determine the coe�cients and

�nally evaluate whether a given model creates alpha. We can explore whether our models exhibit

any � compared to a combination of traditional factor portfolios. Lastly, the framework enables us

to evaluate our ensemble model with a replicating portfolio using Fama-French factors and Betting

Against Beta or with our individual strategies. This is done by regressing the portfolios and �nd

estimates for the coe�cients.

7.11.1 Factor Portfolios

For our comparison, we have chosen to explore 6 Fama-French factors and the Betting Against Beta

portfolio:



7 Methodology Page 99 of 137

� Fama-French Momentum Factor

� Fama-French SMB (Small Minus Big) Factor - Size

� Fama-French HML (High Minus Low) Factor - Value

� Fama-French RMW (Robust Minus Weak)

� Fama-French CMA (Conservative Minus Aggressive)

� Fama-French Market Minus Risk-free, value-weighted

� Betting-Against-Beta

The momentum factor is constructed from six value-weight portfolios formed on size and prior returns.

Speci�cally, from the average return on two high prior return portfolios minus the average of two low

prior return portfolios, both on the the prior 2-12 months, meaning the last month is excluded:

Momentum = 1 =2(Small High + Big High ) � 1=2(Small Low + Big Low ) (65)

The daily prior 2-12 return breakpoints are the 30th and 70th NYSE percentiles.

The 5 Fama-French factors are constructed using 6 value-weight portfolios formed on size and book-

to-market, 6 value-weight portfolios formed on size and operating pro�tability, and 6 value-weight

portfolios formed on size and investment. Speci�cally, SMB63 is the average return on nine small

stock portfolios minus the average return on nine big stock portfolios:

SMB = 1 =3(SMBB=M + SMB OP + SMB INV ) (66)

HML is the average return on two value portfolios minus the average return on two growth portfolios:

HML = 1 =2(Small V alue + Big V alue) � 1=2(Small Growth + Big Growth ) (67)

RMW is the average return on two robust operating pro�tability portfolios minus the average return

on two weak operating pro�tability portfolios:

RMW = 1 =2(Small Robust + Big Robust) � 1=2(Small Weak + Big Weak) (68)

CMA is the average return on two conservative investment portfolios minus the average return on two

aggressive investment portfolios:

CMA = 1 =2(Small Conservative + Big Conservative ) � 1=2(Small Aggressive + Big Aggressive)

(69)

Additionally, the Fama-French Market Minus Risk-free ( Rm � Rf ) is the excess return on the mar-

ket and the value-weighted return of US stocks listed on NYSE, AMEX and NASDAQ in the CRSP

63 See Appendix for the individual portfolios



7 Methodology Page 100 of 137

database.

Lastly, the market-neutral Betting Against Beta (BAB) factors are long leveraged low-beta assets

and short high-beta assets64. To construct the BAB factor, all securities in a country are ranked in

ascending order on the basis of their estimated beta and the ranked securities are assigned to one of

two portfolios: low-beta and high-beta. Then in each portfolio, securities are weighted by the ranked

betas so that lower-beta securities have larger weights in the low-beta portfolio and the same for

higher-beta securities.

Let z be the n � 1 vector of beta rankszi = rank( � it ) at portfolio formation and let z = 1
0

nz=n be the

average rank. n is the number of securities and 1n is a n � 1 vector of ones. The portfolio weights of

the low-beta and high-beta portfolios are given bywL = k(z � z) � and wH = k(z � z)+ , where k is a

normalizing constant k� 1 = 1
0

n jz � zj=2 and x+ and x � indicate the positive and negative elements of

a vector x. By construction, 1
0

nwH = 1 and 1
0

nwL = 1.

Both portfolios are rescaled to have a beta of one at portfolio formation. The BAB is then the self-

�nancing zero-beta portfolio that is long in the low-beta portfolio and short in the high-beta portfolio:

r BAB
t+1 =

1
� L

t

�
r L

t+1 � r f
�

�
1

� H
t

�
r H

t+1 � r f
�

(70)

wherer L
t+1 = r 0

t+1 wL ; r H
t+1 = r 0

t+1 wH ; � L
t = � 0

t wL ; and � H
t = � 0

t wH

64 Betting Against Beta (2014)




	Introduction
	Motivation
	Thesis Statement
	Limitations
	Investment Universe and Data
	Models
	Investment Strategy

	Related Work
	Thesis Structure

	Conceptual Framework
	Portfolio Theory and Portfolio Management
	Modern Portfolio Theory
	The Capital Asset Pricing Model
	Hierarchical Risk Parity

	Technical- and Fundamental Analysis
	Fundamentals
	Technical Analysis
	Factor Investing
	Quantitative Investing and A.I.
	A.I. and Financial Data

	Performance Metrics

	Momentum Strategy
	Staying Out of a Bear Market
	Stock Rankings
	Position Size
	When Do We Sell?

	Machine Learning
	Introduction to Machine Learning
	Supervised Learning
	Unsupervised Learning

	Evaluation Metrics
	Confusion Matrix
	ROC
	AUC

	Cross Validation of Time-Series Data
	Bootstrap Aggregation (Bagging)

	XGBoost
	Decision Trees
	Gradient Boost
	The XGBoost Framework
	The Objective Function
	XGBoost: The Algorithm


	Neural Network
	The Perceptron
	Training Perceptrons

	The Multilayer Perceptron and Backpropagation
	Recurrent Neural Networks
	Memory Cells
	Examples of Recurrent Neural Networks
	Training RNNs
	LSTM Cells


	Methodology
	Data Description
	Data Preprocessing
	GICS Sector Classifications
	Data Preproccessing XGBoost
	Data Preprocessing for LSTM
	Target Creation
	Balancing Dataset

	S&P 500 Investment Universe
	Backtesting Library
	Construction of the Momentum Model
	Construction of the LSTM Model
	Construction of the XGBoost Model
	Hyperparameter Optimization
	Bayesian Hyperparameter Optimization
	Sequential Model-Based Optimization
	Tree-structured Parzen Estimator (TPE)

	Investment Strategy
	Ensemble Learning
	CAPM Implementation
	Factor Portfolios


	Results
	Momentum Strategy
	XGBoost
	Long Short-Term Memory
	Comparison of Individual Strategies
	Ensemble Strategies
	Expanded CAPM Analysis
	Comparison of Replicated Portfolio
	Stability of Estimates for Replicating Portfolio
	Comparison of Replicated Portfolio w/ Individual Strategies


	Conclusion
	The Individuals
	The Ensembles
	The Robustness
	Collective conclusion

	Future Work

	Appendix

