Klara Elsa Stiebel (124097) Karin Lina Maria Bergqvist (124676)

Investor Realization and Response to Climate Change

A study of the local warming effect on investors at the Stockholm stock exchange

Master's Thesis MSc Finance & Strategic Management 90 pages/ 172 758 Characters

Supervisor: Søren Ulrik Plesner

Copenhagen Business School June 15th, 2020

"Climate change is the defining challenge of our time. Time is fast running out for us to avert the worst impacts of climate disruption and protect our societies from the inevitable impacts to come"

- António Guterres, UN Secretary-General, cited in WMO (2020, p. 4)

Abstract

Combining data from the Swedish financial market with abnormal temperatures in Stockholm from 2004 to 2019, we study the causal impact of temperature shocks on investor behavior. More specifically, we first examine whether abnormal temperatures affect investors' attention to climate change as proxied by Google Search Volume Index. Then, we study the stock performance of carbon-intensive firms in relation to firms with low carbon emissions during abnormal temperatures. Finally, we identify investors as either retail investors, blockholders, or institutional investors and examine their trading behavior during abnormal temperatures. Combining data from several sources, we do not find evidence that temperature exposures significantly affect local investors' attention, stock prices, nor trading activities. The thesis shed light on the national differentiation of investors' realization and response to climate change, an important contribution to climate finance research.

Table of Contents

1. Introduction	
1.2 Research Question	9
1.3 Delimitations	10
1.4 Overview of the Thesis	12
2. Climate Science	
3. Literature Survey	
3.1 Climate Finance	
3.2 Limited Attention	19
3.3 Evidence from Climate Change Research	25
3.4 Home Bias	
3.5 Sweden and Climate Change	
3.6 Contribution	
4. Methodology	
4.1 Research Design	
4.2 Hypothesis Development	
4.3 Data collection and Processing	40
4.5 Regression Methodology4.5.1 Descriptive Statistics and Diagnostic Testing	54 56
5. Presentation of Results	
6. Discussion	
7. Conclusion	
8. Limitations and Future Research	
8.1 Perspective	
9. Final Remark	
10. Bibliography	
11 Annendix	

Table of Figures
Figure 1: The average annual global temperature compared to the long-term average (1901-
2000), from 1885 to 2019
Figure 2: The average annual temperature in Sweden compared to the world
Figure 3: Development of respondents' concern about climate change from 2001 to 2018 in
Sweden
Figure 4: Effects of climate change and percentage of respondents that are highly concerned
about them in 2019
Figure 5: Percentage of respondents from European countries believing that the climate is
probably or definitely changing between 2016 and 2017
Figure 6: Abnormal temperature development in Stockholm between December 2003 and
December 2019
Figure 7: Google SVI and number of articles published change in business newspapers on the
topic climate change
Figure 8: Average Google search activity for the topics "Global warming" and "Climate
change"
Figure 9: Google SVI for the topic "Climate change" in Sweden and Stockholm
Figure 10: Illustration of seasonal subseries plot of Google SVI for "Climate change" in
Sweden
Figure 11: Proportion of each industry within the high-emission category in our sample 53
Figure 12: Distribution of the residuals of DSVI (STHLM) and Ab_temp
Figure 13: Distribution of the residuals of the equal-weighted EMC portfolio and Ab_temp 60
Figure 14: Distribution of the residuals of EMCARetail and Ab_temp61
Figure 15: Google search volume and climate related events74
Figure 16: Development of respondents' concern about climate change from 2003 to 2018 in
Sweden
Figure 17: Percentage change in yearly average Google SVI, percentage change in major
concerns of climate change, and yearly average abnormal temperature
Figure 18: Average proportion of local and foreign institutional investors and blockholders 82

1. Introduction Our global climate is anthropogenic (Interg

Our global climate is changing, and there is overwhelming scientific evidence that the cause is anthropogenic (Intergovernmental Panel on Climate Change [IPCC], 2018a). Beside the severe impact human actions could have on the environment, the changing climate could also become one of the most economically disrupting occurrences of the century with a loss of five to twenty percent of global annual GDP depending on the trajectory (Stern, 2007). Even so, perceptions and beliefs in climate change vary at large. In August of 2018, the Swedish high-school student Greta Thunberg initiated a global movement of millions striking for policymakers to do more on the issue (BBC News, 2020a). On the other side of the Atlantic, President Donald Trump dismisses the climate "prophets of doom" as alarmist (BBC News, 2020b).

Since the nature of the climate change issue requires it to be effectively tackled in a unified response, understanding what causes these differences in the perceptions of climate change becomes crucial. The public beliefs carry weight, not only for understanding the responses to climate change on a policy level, but also in the pricing of climate-sensitive assets in financial markets. Correctly pricing these assets today is key to lowering the possibility of extreme price movements in the future. As investors trade on their beliefs, the understanding of what impacts the climate change beliefs of investors is an essential contribution, not only to the efficient markets debate, but also to mitigate the possibility of future financial shocks.

For these reasons, the understanding of climate belief formation has in recent years gained academic attention (Hong, Karolyi, & Scheinkman, 2020). Interestingly, many studies find that personally experiencing temperature abnormalities carries large weight in determining our perceptions and beliefs about climate change (Choi, Gao, & Jiang, 2020; Zaval et al., 2014; Deryugina, 2013). Even though local weather carries insignificant information about the trajectory of the global climate, it is more discernible on a personal level than the global climate trend (Choi, Gao, & Jiang, 2020). Therefore, there seems to be a common mis-association between the experienced local temperatures and the health of the climate at large. On an international level, Choi, Gao, and Jiang (2020) find that local temperature shocks affect both investor attention and belief formation toward climate change. Specifically, they find that the pricing of climate-sensitive stocks and Google searches are systematically altered in these

periods. The international perspective of Choi, Gao, and Jiang (2020) enables generalized conclusions. However, in order to draw conclusions on the country-specific impact of local abnormal temperatures on aggregate beliefs, complementary national studies are required. Therefore, this thesis aims to extend the findings of Choi, Gao, and Jiang (2020). We will do so by examining how investors in the Swedish market realize and respond to climate change through the experience of abnormal temperatures. More specifically, through objective proxies and financial data, we quantitatively examine whether local temperature abnormalities impact investor attention, investor beliefs, and different investors' trading activity on the Stockholm stock exchange.

Because of individuals' inherent limits to attention, experiencing abnormal temperatures may cause investors to be more attentive toward climate change (Choi, Gao & Jiang, 2020). Our thesis tests this idea by first examining whether the experience of abnormal temperatures affects retail investor attention to climate change as proxied by Google Search Volume Index. In the second set of analyses, we extend the limited attention perspective by looking at the closely related area of personal experience and belief-formation. Given that Swedish investors revise their climate change beliefs when experiencing abnormal temperatures, prices on the local exchange may be impacted due to the home bias. In the same manner as Choi, Gao, and Jiang (2020), we theorize that if the experience of temperature abnormalities causes Swedish investors to update their beliefs about climate change, they might choose to buy stock with lower sensitivity to the climate and sell stocks with higher sensitivity. This trading behavior could occur to the extent that the lower-sensitivity stocks outperform the others. Moreover, once belief in climate change is revised, there is also a possibility that stocks of companies that have a negative impact on the climate will be avoided for conscience reasons. We test whether these behaviors are present in the Swedish market in two consecutive steps. First, we examine whether abnormal temperatures systematically affect the returns of carbon-intensive firms. We do so by categorizing firms based on their respective industry emission levels according to the Intergovernmental Panel on Climate Change (IPCC). The stocks belonging to the highest emitting industries were grouped into a high-emission category, and the others were considered low emitting. Going long in the first and short in the latter, we studied the combined portfolio returns in relation to abnormal temperature. Additionally, the portfolio returns of each separate category were analyzed. Secondly, we assess whether the local temperature impacts investor trading activity on the Stockholm stock exchange in the same firms. We do so by examining the trading behavior of retail investors, blockholders, and institutional investors. Local investors are distinguished from foreign ones, as only local investors are experiencing the local temperatures. The change in ownership-levels at each quarter for the respective groups is analyzed in relation to temperatures abnormalities.

In our comprehensive study, we do not find evidence that temperature exposures significantly affect investors' attention, stock prices, or trading activities on the Stockholm stock exchange. More specifically, we do not find a relationship between abnormal temperature and Swedish investors' attention to climate change. Furthermore, neither the prices of low emitting firms nor high emitting firms are visibly impacted by temperature abnormalities. This finding is also robust in a control-period stretching through the 1990s, which indicates that no such relationship exists. Finally, we find that none of our determined investor groups systematically respond to abnormal temperatures.

Our study presents novel results on the impacts of abnormal temperature on investor behavior in the Swedish market. Existing research on climate change beliefs in Sweden has, to our knowledge, solely been conducted through survey-data. Our study combines these previous findings with quantitative evidence to get closer in understanding the nature of Swedish investors' response to climate change. Our study primarily contributes to the body of research within the new field of Climate finance. We add to the current research on climate change beliefs in Sweden by examining the local warming effect. Additionally, we contribute to the same field by narrowing the scope toward the under-researched area of investors' climate response in the Swedish market. Finally, our research contributes to the larger purpose of disentangling the climate change issue by looking at the important mechanisms at work in the financial market. While our combined analysis of the relationship between abnormal temperatures and investor behavior displays a consistent set of non-results, our tests construct a point of departure for further review. The exclusion of a systematic abnormal temperature impact can guide future research in the important task of identifying the drivers of investors' realization and response to climate change in the Swedish market.

1.2 Research Question

Motivated by the necessity of examining investors' realization and response to climate change and guided by the existing research, our thesis aims to answer the following research question:

"To what extent, if at all, does abnormal temperatures affect equity investors' realization and response to climate change in Sweden?"

Additionally, to further narrow the contribution of the thesis to the existing research, the three interrelated sub-questions will be answered throughout the analysis:

- (i) What is the international evidence on temperature influence on investors' attention and beliefs towards climate change?
- (ii) What is the evidence from Sweden on temperature influence on investors' attention and beliefs towards climate change?
- (iii) If these differ, what could be the explanation between the diverse findings?

1.3 Delimitations

During the work with this thesis, several delimitations have been made. First of all, we narrow the scope toward the under-researched area of investors' climate response in a high-belief country. More specifically, this thesis focuses on exploring whether the local abnormal temperature in Stockholm impacts investors' realization and response to climate change on the Stockholm stock exchange.

The first delimitation regards the choice of abnormal temperatures, as a whole nation does not experience the same temperature abnormalities. The data sources applied in the research enabled us to separate domestic investors from foreign investors. However, we were unable to distinguish domestic investor location on a city level. Therefore, the temperature had to be collected from a location that most closely responded to the majority of local investors' experience. The capital of Sweden, which is also the city of the exchange, has the highest population density in the country, concentrated capital, and is also substantially covered by the media. Moreover, Sweden is a relatively small country. Even though the temperatures in the north and the south may vary, we argue that the small size of the country leads to monthly abnormal temperatures often being experienced simultaneously across the whole nation. Thus, we argue that any monthly temperature abnormalities in Stockholm are highly related to the experience of the majority of investors on a national level. Consequently, we deemed it reasonable to apply the temperatures measured at the closest weather station to the Stockholm stock exchange as a proxy for investor temperature experience in Sweden.

Moreover, we chose to limit our research to examining only monthly intervals. One could argue that the unexplored territory of a local warming effect on Swedish investors could require an examination of different time intervals to exclude or confirm its existence. However, due to the scope of the thesis, an elaborate choice of one interval frequency had to be made. According to Deryugina (2013), only temperature fluctuations of a month up to a year will predict climate change beliefs. Additionally, Choi, Gao, and Jiang (2020) found that the local warming effect on investor attention and beliefs was strongest at a monthly frequency, when examining daily, weekly, monthly, and quarterly frequencies. Since this previous research suggests that the likelihood of a temperature effect being present but undetectable at a monthly interval should be low, we deemed the monthly frequency most appropriate to examine.

In the first groups of tests, we focus on using the well-established proxy for retail investor attention; Google Search Volume Index (SVI). Thus, attention proxies for the other two investor groups were not examined. We planned to also proxy institutional investor attention by following Ben-Rephael, Da, and Israelsen (2017) approach of using Bloomberg data on the Daily Max Readership score, which measures the search frequency and articles read of a specific stock. Unfortunately, we were unable to collect the data before the COVID-19 lockdown.

In the later tests, when identifying high emission firms in our portfolio construction, we applied IPCC identification of major emission industries. These industries were then hand-matched with the stocks industry code given by DataStream. Other identifications of high emission firms, such as environmental scoring from ESG providers, could have substituted or complemented the IPCC definitions. Additionally, we do not directly measure a firm's specific climate sensitivity through its emission levels. For example, specific physical risks of climate change have not been examined. We do, however, argue that high emission levels are related to other risks of climate change, such as regulatory risks, which implies collective sensitivity for these firms. The reason we focus on the IPCC classification of high emission sources specifically is that it is considered a highly reliable source, accessible for everyone, and eases the comparability of our results with the study of Choi, Gao, and Jiang (2020).

Furthermore, we calculated size-adjusted return by dividing all companies into different size quintiles and then removing the average return of each quintile. Other models of calculating adjusted returns, such as factor models, could also have been used. However, when considering these adjustments for the return calculation, we encountered a significantly reduced sample when obtaining other company information. Therefore, it was considered most appropriate to adjust returns according to the market capitalization data that had better coverage for our sample.

1.4 Overview of the Thesis

To answer the research question specified above, the paper follows a five-section structure. More specifically, it covers the literature on the topic, the analytical approach, the result of the study, and a discussion of the result. The paper finishes up with a conclusion of the results that give rise to recommendations for future studies as well as a perspective of the paper. A more detailed description and purpose of each section are presented below.

Section 1: In the first section of the paper, we provide an introduction to the overall topic, its relevance, and the motivation behind the study. This creates the basis for the specific research question and relevant sub-questions that are then specified. Additionally, the delimitations of the paper are presented to uncover the boundaries of the study.

Section 2: In the second section, we aim to both present the theoretical foundation on which this thesis relies and answer the first sub-question of the research. The intention is to equip the reader with the theoretical foundation for the thesis by presenting both the concepts and theories that formed the research. This implies offering an introduction to Climate science and Climate finance, which provides definition to the matter at hand. Further, the behavioral theories which underpin and frames the research are provided. The focus is then narrowed toward the existing research on climate change beliefs and their formation in order to answer the first sub-question of our research. Similarly, we aim to provide the foundation for the third sub-question by introducing nationwide survey studies of citizens' climate change beliefs in Sweden. Finally, we offer the specific contributions of our study in relation to the existing literature presented.

Section 3: The third section presents the methodological approach of the paper. Specifically, we introduce the research design that lays the foundation for the methodological approach. This is followed by a formulation of the hypotheses development that underpins the research. Then, we will describe the data collection and processing, which culminates in the regression methodology that the thesis has applied and the limitations of the same.

Section 4: In the fourth section, we aim to answer the second sub-question by presenting and interpreting the results of our study. First, we provide the results and interpretation of the regressions examining abnormal temperature influence on Swedish investors' attention.

Secondly, the results and interpretation of the regressions examining abnormal temperature influence on stock returns on the Stockholm stock exchange are presented. Finally, we provide the results and interpretation of abnormal temperatures influence on retail investors, blockholders, and institutional investors' trading activity. In each subsection, the results are compared to the international findings of Choi, Gao, and Jiang (2020) to lay the foundation for the following discussion.

Section 5: Finally, in section five, we first answer the third sub-question by interpreting the results from the Swedish market in relation to the theories presented in the literature review. Then, we reach a conclusion where we answer our overall research question and present the relevant findings. The thesis is finalized by putting the results in perspective. First, the limitations of the research and future recommendations are evaluated. Secondly, we comment on the potential implications of the worldwide pandemic COVID-19.

2. Climate Science

In this section, we will provide a brief background to the thesis by defining climate change, and explaining the broader picture of the causes and effects of the changing climate.

The climate of the earth is the long-term regional or global average patterns of temperature, humidity, and rainfall throughout seasons and years National Aeronautics and Space Administration [NASA], n.d.). The change in climate is referred to as climate change and defined by the Nobel Peace Prize awarded IPCC (2018b, p. 544) as:

"The change in the state of the climate that can be identified (e.g., by using statistical tests) by changes in the mean and/or the variability of its properties and that persists for an extended period, typically decades or longer. Climate change may be due to natural internal processes or external forcing such as modulations of the solar cycles, volcanic eruptions and persistent anthropogenic changes in the composition of the atmosphere or in land use."

Scientists have in recent years reported of a rapid rise in the average global temperature. The increasing long-term temperature trend is one of the most consistent and extensive evidence of a warming earth (United States Global Change Research Program [USGCRP], 2018). According to the National Centers for Environmental Information (NCEI, 2019), the combined land and ocean temperature has, on average, risen with 0.07°C per decade since 1880 and 0.18°C since 1981. This trend has been accompanied by melting glaciers and ice sheets, shrinking snow cover, rising sea level, extreme weather events, and other indicators consistent with a warmer earth (USGCRP, 2018).

In 2019, the global mean surface temperature was 0.95°C warmer than the average temperature between 1901 and 2000 (NCEI, 2019). This makes 2019 to the second warmest year on record after 2016 globally. However, 2016 was characterized by a very strong El Niño, a phenomenon that gives a high global average temperature (World Meteorological Organization [WMO], 2020). Further, the average temperature of 2010 to 2019 makes it the warmest decade on record, as illustrated in figure 1.

Figure 1: The average annual global temperature compared to the long-term average (1901- 2000), from 1885 to 2019. Data source: Lindsey and Dahlman, 2020.

The changes in the climate since the 20th century is mainly driven by human activities (NASA n.d.). The fossil fuel burning is the primary cause, since it increases the greenhouse gas levels in the atmosphere and raises the average surface temperature (NASA, n.d..).

Climate scientists have concluded that if we continue on the current path, emissions of greenhouse gases will lead to warming of 1.5°C above the pre-industrial levels between 2030 and 2052 (IPCC, 2018a). This would result in long-lasting changes in all components of the climate system and increase the probability of severe and irreversible impacts for people and ecosystems (IPCC, 2018a).

However, climate change is not only a scientific concern but also a severe economic threat (Kelly et al., 2015). It will have significant impacts on the price of energy, availability of resources, the vulnerability of infrastructure, and the valuation of companies (Kelly et al., 2015). Consequently, it poses a major risk to the global economy. This is illustrated by Stern (2007) that estimates that climate change, if not tackled early, could cost between five and twenty percent of annual global GDP. Clearly, the financial impact of such a large reduction in global productivity is severe. However, there still remain several possible future scenarios if

mitigation efforts are accelerated, and low-carbon solutions are established at scale (Kelly et al., 2015). It is up to human endeavor to change the path of emission and mitigate against climate change. Thus, it is individuals' efforts, innovations, investments, and policy changes that can shift the path (IPCC, 2014). These efforts can be categorized into two strategies:

- 1) Adaptation is the process of change to actual or expected climate to limit the negative impacts of climate change.
- Mitigation is the process of reducing (or preventing) emissions of greenhouse gases to limit future climate change.

Therefore, choices and investments which are made in the short, medium, and long term in both adaption and mitigation will determine how much climate will change throughout the century (United Nations Framework Convention on Climate Change [UNFCCC], n.d.)

3. Literature Survey

Our thesis is resting on the foundation of behavioral theories about individuals' limited attention and processing power. More specifically, the consequences that limited attention seemingly has on individuals' perceptions and beliefs about climate change. When this is combined with an existing home bias, it is possible that local heuristic belief updating does not only have impacts on beliefs but could also shift stock prices. It is within this frame our thesis is embedded. Therefore, our research relies on the combination of four strands of literature: Climate finance, Limited attention, Climate research on belief-formation, and Home bias. The chosen literature within each field is presented in this section in order to provide the necessary building blocks for the later analysis. Furthermore, the review of international evidence aims to answer the first sub-question of our research, which is concerned with the international findings on temperature influence on investors' attention and beliefs toward climate change. Moreover, our third subquestion requires a review of the current findings of climate change beliefs in Sweden, which is also presented within this section. We finalize the section by placing our study in relation to the chosen body of literature and presenting our contribution to the same.

3.1 Climate Finance

Climate finance is defined by the UNFCCC (n.d., para. 1) to be: "local, national or transnational financing—drawn from public, private and alternative sources of financing—that seeks to support mitigation and adaptation actions that will address climate change".

In other words, it is about investments that households, governments, and corporations must undertake to change the path to a low-carbon economy and to build resilience to climate change (Hong, Karolyi, & Scheinkman, 2020). The European Commission estimates that to achieve a net-zero greenhouse gas emissions by mid-century in the European Union, the energy systems and its related infrastructure would have to rise to two-point eight percent of GDP from two percent today. This would require additional investments between €175 and 290 billion a year (European Union, 2019). Estimations for the U.S. are comparable (Hong, Karolyi, & Scheinkman, 2020). In the absence of both mitigation and adaption, a report issued by USGCRP (2018) forecast that this would reduce up to ten percent of the American economy by the end of the century. These large estimations illustrate the significant risks of climate change for companies, capital markets, and in turn, investors (Hong, Karolyi, & Scheinkman, 2020). For example, a study by Kelly et al. (2015) concluded that investors could offset approximately half of the negative impacts of climate change. This can be achieved by investing in assets that exhibit low climate change risk and, including different asset classes in the portfolio, and diversifying internationally. As summarized by at the UN Investor Summit on Climate Risk in January 2016 by the UN secretary-general, Ban Ki-Moon (United Nations, 2016, para. 39):

"... Investors need to know how the impacts of climate change can affect specific companies, sectors and financial markets as a whole."

The central questions that underline these concerns is how the damages from climate change should be distributed and in what way societies should price and mitigate risk from global emission. The next question is if capital markets can assess the price of the climate risk and raise the capital that possibly could help households and institutions to hedge the risks (Hong, Karolyi, & Scheinkman, 2020). The answers to these questions are subject to the beliefs and expectations that agents in the economy hold. For instance, characterizing the beliefs of investors is vital to the efficient market debate that concerns the pricing of climate risk (Hong, Karolyi, & Scheinkman, 2020).

3.2 Limited Attention

The standard models of asset pricing rely on the assumption that an investor's decisions are made by utilizing all available information and incorporating new information instantly (Shleifer, 2000). Thus, the price changes of tomorrow reflect solely tomorrow's news and are not dependent on today's price fluctuations. News are unpredictable, and therefore, the price change of tomorrow must be random. Hence, price changes should be as unpredictable as the information content itself (Malkiel, 2003).

This assumption contradicts findings in a large body of the behavioral economics literature, which suggests that individuals often overlook and do not incorporate all relevant information when making decisions (Lim & Teoh, 2010; Barber & Odean, 2008; Kahneman & Tversky, 1972). The failure to incorporate all relevant information in decision making can be ascribed to our cognitive constraints and the immense amount of information available to us (Lim & Teoh,

2010). Attention requires effort, and because of our limited attentive resources, we must be selective in our allocation of attention. As expressed by Nobel Laureate in Economics, Herbert A. Simon (1971, p.40-41):

"What information consumes is rather obvious: it consumes the attention of its recipients. Hence, a wealth of information creates a poverty of attention and a need to allocate that attention efficiently among the overabundance of information sources that might consume it."

Hence, limits to attention can bare consequences to asset pricing, as investors only use a subset of available information both when valuing a stock and in the portfolio choice (Lim & Teoh, 2010; Barber & Odean, 2008). Studies have found that when faced with the choice of an immense amount of stocks, the individual investors will, due to their limits to attention, narrow their choice set to stocks that recently caught their attention (Barber & Odean, 2008; Odean, 1999). Barber and Odean (2008, p. 786) rationalize that: *"Investors do not buy all stocks that catch their attention; however, for the most part, they only buy stocks that* do so". In contrast, individual investors do not engage in short selling to the same degree as institutional investors and will only tend to sell stock they already own. As a consequence, Barber and Odean (2008) found that individual investors become net-buyers of attention-grabbing stocks, which generates attention-driven buying pressure, resulting in higher stock prices in the short-run followed by long-run reversals.

Furthermore, Hirshleifer and Teoh (2003) argue that the amount of attention we allocate toward an aspect does not need to be correspondent with its actual importance for the task at hand. In other words, attention can be misdirected. For example, agents tend to underweight abstract and statistical information (Hirshleifer & Teoh, 2003; Tversky & Kahneman, 1973). This tendency can lead to a neglect of relevant information, which impacts asset prices. An example is found in a study by Peng and Xiong (2006), who consider the impact of limited attention on asset price dynamics. They find that an investor with limited attention tends to allocate more attention to market level and sector level factors than to firm-specific factors.

Attention allocation

Because limited attention puts constraints on what we can be attentive towards and might result in misdirected attention, it is central to understand what captures our attention. According to Lim and Teoh (2010), the attention allocation of an individual is largely dependent on the characteristic of the information, i.e., some stimuli are more easily perceived and processed than others. More specifically, the salience of a stimulus is an important denominator for our attention to be captured by it. The salience effect is evident in multiple studies performed on financial markets. For example, Huberman and Regev (2001) find that the salience of a New York Times article on advances in cancer research caused the stock price of the company with drug-licensing rights to soar. The dramatic impact occurred despite the fact that other journals and newspapers had reported the story months earlier. Similarly, Klibanoff, Lamont, and Wizman (1998) find that the price-elasticity of closed-end country funds temporarily rises when country-specific news appears on the front page of the New York Times. They conclude that the salience of the news story causes investors to react more to fundamentals. The salience of certain stimuli is also linked to narrow framing by investors (Lim & Teoh, 2010). For example, studies find that individual decision-making differs between problems framed as losses contra problems framed as gains (Kahneman & Tversky, 1979). This framing bias naturally extends to financial decision-making and risk perceptions, as investors will focus more on loss rather than other risk-measures, such as variance (Lim & Teoh, 2010).

Furthermore, DellaVigna and Pollet (2007) find that investors are often inattentive to less salient and less accessible long-term effects, but attentive to the more salient short-term effects. By forecasting future demand through demographic data and lagged consumption in agesensitive sectors, they find that the demand changes for five to ten years into the future predicted annual industry stock returns. In contrast, shorter forecasts did not (DellaVigna & Pollet, 2007). The finding is similar to the frog-in-the-pan anecdote, which was hypothesized by Da, Gurun, and Warachka (2014). Specifically, the frog-in-the-pan anecdote entails that a frog will instantly react and jump out of a pan of boiling water. However, if the frog is put in a pan with cold water that is slowly heated to a boiling point, the frog won't react (Da, Gurun, & Warachka, 2014). By hypothesizing the same tendencies with investors and continuous- contra discrete information Da, Gurun, and Warachka (2014) find that, consistent with the frog in the pan, investors seem to underreact to continuous information. Finally, as attention to one task requires a substitution from other tasks, information may be lost in the noise of competing information (Lim & Teoh, 2010). Therefore, attention allocation is also dependent on the characteristics and number of competing stimuli in the environment (Lim & Teoh, 2010). This is evident in the findings of Hirshleifer, Lim, and Teoh (2009). They examine investor reaction to earnings news when distracted by a large amount of other companies' earnings announcements on the same day. When doing so, they find that when competing announcements are made, there is a weaker same-day price and volume reaction to the own firm's announcement (Hirshleifer, Lim, & Teoh, 2009).

Attention allocations influence on judgment

As described above, Lim and Teoh (2010) argue that attention allocation is affected by the ease with which an individual can access and process information. Further, accessibility and processing ease is connected to the salience of a stimulus. Hirshleifer and Teoh (2003) argue that the salience of an event impacts both judgments of the importance of a stimulus and causality. This is also found in the several studies presented above. Limits to attention and processing power can also impact decision-making due to heuristics, which will be elaborated on in the following paragraphs. More specifically, we will move from the focus on what captures individuals' attention to how limited attention impacts individual judgments through the heuristics. Kliger and Kudryavtsev (2010) explain that when people make decisions, they tend to search for rules (heuristics) that simplify the process of solving a problem and, simultaneously, take the relevant information into account. These heuristics often result in a simplification of the problem and irrational behavior. For instance, people overvalue some information while disregarding others (Kliger & Kudryavtsev, 2010).

The first heuristic that we will consider is the availability heuristic. This heuristic implies that individuals evaluate the likelihood or frequency of an event by the ease with which they can access corroborative memories of similar events (Tversky & Kahneman, 1973). Thus, when making decisions, people tend to consider past experiences, even when it is irrelevant for the present and future (Kliger & Kudryavtsev, 2010). In other words, people estimate the likelihood of an event based on how easy it is to imagine. This can be exemplified with the event of a car accident: an individual who has observed a terrible car accident will judge the likelihood of such an event higher than a person who has not, even if they both have access to the same

statistical information. Moreover, recent memories are more available than older memories (Deryugina, 2013). Another exemplification of the heuristic is found by Kliger and Kudryavtsev (2010). In their study, they find that the stock market reacts positively and stronger to recommendation upgrades when accompanied by positive stock market index returns. While they react negatively and stronger to recommendation downgrades when it is accompanied by negative stock market index returns.

The second heuristic is similar to the first and is the representativeness heuristic. An individual that follows this heuristic will judge a probability of an event (or object) by how representative it is in relation to other events (or objects). In other words, the likelihood of an event is determined by the extent it: "(*i*) is similar in essential characteristics to its parent population; and (*ii*) reflect the salient features of the process by which it is generated" (Kahneman & Tversky, 1972, p. 431). For example, the probability of an event A will be judged more in relation to event B if A appears more representative than B (Kahneman & Tversky, 1972). Thus, an error in judgment is made since representativeness does not imply that the event A is more probable than B.

The third relevant heuristic of this thesis is attribute substitution. This entails that individuals use less relevant but more easily accessible information rather than more diagnostic but less available information (Duan & Li, 2019). This heuristic implies that when people are confronted with a difficult question, they often answer a simpler one instead, without realizing that a substitution has taken place (Kahneman & Frederick, 2002). Thus, the substitution that occurs introduces systematic biases in the decision-making process where an attribute is influenced by how difficult (or easy) the information is accessible (Koutsobinas, 2014). Kahneman & Frederick (2002) exemplifies the heuristic with an illustrative example of a study by Strack, Martin, and Schwarz. In their research, college students were asked two questions. The first question was, "How happy are you with your life in general?" and the second was, "How many dates did you have last month?" (Strack, Martin, and Schwarz, as cited in Kahneman & Frederick, 2002, p. 53). The relationship between the questions is insignificant when asked in this order. However, the correlation rose by 0.66 when the dating question was asked first. Thus, the answer to how happy a person is about their life is influenced by their dating life if the latter is asked first, i.e., general happiness is substituted by the attributes of the individuals dating life.

Measurements of attention

Until now, we have gone through what limited attention is and how it influences individuals. Another important consideration is how to measure attention, as the psychological findings on individual attention are not necessarily easy to capture empirically. More specifically, due to the lack of an unequivocal measure of investor attention, the attention of investors must be indirectly proxied by some existing measures. Naturally, this has presented some challenges to research and, as a consequence, proxies vary across studies. For example, the earlier mentioned study by Klibanoff, Lamont, and Wizman (1998) uses media coverage as a proxy for investor attention. This is also done by Choi, Gao, and Jiang (2020) who, among other proxies, uses the Raven Pack News Analytics scoring of company-specific news stories to proxy for attention. In a criticizing article, Da, Engelberg, and Gao (2011) mention additional attention proxies ranging from extreme returns and trading volume to advertising expenses. In response to the indirect nature of all of these attention proxies, Da, Engelberg, and Gao (2011) instead propose a more direct measure of attention: Google SVI on Google trends. Through their findings of Google SVI's impact on asset prices, they argue that Google searches are different from, but correlates with other attention proxies. Moreover, they argue that the measure primarily captures retail investor attention. As an extension to the endeavor of finding direct attention measures for other investor groups, Ben-Rephael, Da, and Israelsen (2017) propose the use of reading activity and news searching scores provided for Bloomberg terminal news as a proxy for institutional investor attention.

Main findings of the sub-section

The salience, accessibility, and competing stimuli are important determinants for the allocation of individuals' attention. Furthermore, this is argued to have an influence on investor judgment through related heuristics. Because of these attention-tendencies, investors will only impound information into prices when its relevance for the valuation becomes more salient and easy to process and/or when there are less competing stimuli in the environment (Lim & Teoh, 2010). This could bare consequences for the way investors form their beliefs on climate change and the subsequent pricing of climate-sensitive assets. Therefore, the next section will review climate change research on both the mechanisms behind climate change belief-formation and the pricing effects of the same.

3.3 Evidence from Climate Change Research

Recent studies within Climate Finance argue that beliefs regarding climate change affect asset pricing (Hong, Karolyi, & Scheinkman, 2020; Baldauf, Garlappi, & Yannelis, 2020; Choi, Gao, & Jiang, 2020). Hong, Karolyi, and Scheinkman (2020) emphasize that the perceptions and beliefs regarding climate change are vital denominators for an individual's potential to assess the price of climate risk. Similarly, Krueger, Sautner, and Starks (2019) survey global institutional investors on climate risk perception. They find that institutional investors believe that climate risks have important financial implications for their portfolio firms. Further, institutional investors believe climate risks, especially those related to regulation, have already begun to materialize. In addition, many investors report that they do take actions related to climate risks. They also found that these institutional investors believe that equity valuations in some sectors do not fully reflect the climate risks (Krueger, Sautner, & Starks, 2019).

The proposition that beliefs about climate change affect prices is also confirmed by Baldauf, Garlappi, and Yannelis (2020). They found that real estate prices are influenced by the differences in beliefs regarding climate risks. More specifically, houses that were projected to be underwater as a consequence of climate change sell at a discount in areas where people believe in climate change compared to houses with the same projected future in climate change denier areas. A simple conclusion explains the result: prices will only be affected when we believe in the occurrence and effects of climate change (Baldauf, Garlappi, & Yannelis, 2020). Finally, in relation to the topic of climate risk, the findings by Addoum, Ng, and Ortiz-Bobea (2020) are worth mentioning. They examine how climate risks impact the performance of U.S. companies. More specifically, they examine the impact of increased temperatures on sales and productivity. They find that neither abnormally warm nor abnormally cold weather affects caused by abnormal temperatures in the U.S. market is found in the energy industry, while temperatures are abnormally cold.

Research within climate change has examined how beliefs are formed on the topic. In a study by Zaval et al. (2014), it was found that personally experiencing temperature abnormalities increases the perception of climate risks due to attribute substitution. As mentioned in the previous section, attribute substitution entails that individuals use less relevant but more easily accessible information rather than more diagnostic but less available information (Duan & Li, 2019). In other words, Zaval et al. (2014) find that the experience of abnormal temperatures is more accessible than, for example, the more diagnostic climate science, which leads people to substitute the latter for the former. Moreover, Zaval et al. (2014) argue that current temperature abnormalities cause an overestimation of the weight and frequency of similar past events. This conclusion can be linked to the earlier mentioned availability heuristic, where individuals evaluate the probability or frequency of an event by the ease with which they can access corroborative memories of similar events (Tversky & Kahneman, 1973). The presence of heuristic belief updating connected to temperature fluctuations is also found in a study performed by Deryugina (2013). While there seem to be parts of the updating process that are consistent with rationality, Deryugina (2013) finds evidence of both representativeness and availability heuristics in climate change belief formation. In addition, it is found that only longer temperature fluctuations of a month up to a year will predict beliefs, while shorter fluctuations have no effect.

In a similar quest, Konisky, Hughes, and Kaylor (2016) examine the effects of experiencing extreme weather events and concern about climate change. They find that there is a relationship between the two, given that the weather event is recent. Contradictory to the finding of Deryugina (2013), they find that weather activity that has occurred over longer time horizons than one month does not affect public opinion (Konisky, Hughes, & Kaylor, 2016). The tendency to be inattentive toward longer-term weather events has similarities to many of the previously mentioned limited attention findings. For instance, the findings of Da, Gurun & Warachka (2014) where investors seem to underreact to continuous information and the findings of DellaVigna and Pollet (2007) who conclude that investors are often inattentive to less salient and less accessible long-term effects, but attentive to the more salient short-term effects. The impact of salience on climate change risk perception is confirmed by Alok, Kumar, and Wermers (2020). They find that professional money managers overreact to large climatic disasters that happen close to them. These local investors make wrongful estimates of the climate risks and underweight disaster zone stock to a larger degree than distant mutual fund managers. Another related perspective to people's belief updating process is the media coverage on the topic. It has been found that it is a central factor in people's understanding of the issue

(Boykoff & Roberts, 2007). Interestingly, Schmidt (2015) finds that media coverage of climate change appears to be higher in years that are warmer than in previous years.

One can argue that observing and experiencing climate change would be difficult considering its long-term trending nature. However, a large proportion of research has found support for the claim (Borick & Rabe, 2014; Akerlof et al., 2013; Howe et al., 2013). In a survey study in Michigan performed by Akerlof et al. (2013), it was stated by 27 percent of the respondents that they had experienced climate change (Akerlof et al., 2013). The most frequently mentioned perceived personal experiences of climate change were "Seasons" and "Weather." Moreover, Akerlof et al. (2013) argued that these experiences affected beliefs of climate change and increase risk perception, presumably through a combination of direct experience, vicarious experience, and social construction (Akerlof et al., 2013).

Furthermore, in an international survey, Howe et al. (2013) also study when individuals recognize that they have experienced climate change. Consistent with the findings of Akerlof et al. (2013), they find that individuals who experience an increase in local average temperatures are more likely than others to recognize local warming (Howe et al., 2013). Their findings suggest that personally experiencing an increased average local temperature may shift the perception of climate change. Similarly, Borick and Rabe (2014) found that weather-related factors are, by individuals, frequently used as an explanation for their belief that the planet is either warming or not warming.

Recent literate has also examined how these experience-based beliefs regarding climate change impact individuals' actions. Accordingly, Li, Johnson, and Zaval (2011) find that both belief-formation and action is likely to be influenced by heuristics. Through surveys performed in the U.S. and Australia, they find that respondents who considered the survey day warmer than usual believed more in global warming and had greater concern about it than others. Furthermore, respondents were also more likely to donate larger amounts of money to a global warming charity when perceiving deviations from normal temperature. Hence, they find that climate change beliefs and actions incorporate irrelevant but salient information about temperature. A similar pattern is found by Broomell, Budescu, and Por (2015). Through an international survey, they measure the willingness to engage in or endorse specific climate change mitigation

actions. They find that personal experience of climate change is strongly related to the willingness of engagement and a driver of climate mitigation actions.

Finally, a very relevant study for this thesis is, as previously mentioned, the study by Choi, Gao, and Jiang (2020). Therefore, we will provide an extensive explanation of their climate change research in the following paragraphs. Choi, Gao, and Jiang's (2020) study is based on the concept of limited attention. Accordingly, they find that people pay more attention to climate change and revise their beliefs upward when experiencing high local temperatures. Using data from 74 exchange cities, they document that attention to global warming increases when the local temperature is abnormally high.

Furthermore, Choi, Gao, and Jiang (2020) also find that stocks classified as low emitting outperform stocks classified as high emitting in abnormally warm weather. This occurrence is further analyzed by looking at reactions to abnormal temperatures in different investor groups. They argue that retail investors are more prone to individual biases than institutional investors and blockholders. Consequently, these three investors group is examined in the article. They find that local retail investors sell high-emission firms and buy low-emission firms when experiencing these conditions. Through a series of robustness tests, they conclude that this occurrence is unlikely to be motivated by changes in firms' fundamental value. Further, local blockholders trade in the opposite direction of retail investors, while local institutional investors do not respond systematically to abnormal temperatures. The outperformance by low emitting stocks is by Choi, Gao, and Jiang (2020) explained by the retail investors' upward revision of beliefs caused by the perceived personal experience of global warming. However, Choi, Gao, and Jiang (2020) open up for the possibility that when collective beliefs are close to the scientific consensus, the relationship between attention, stock prices, and local abnormal temperatures could be weakened. Further, they argue that the equity home bias explains the reason why abnormally warm temperatures impact local investors and stock prices. Therefore, this theory will be further reviewed in the next section.

3.4 Home Bias

Modern portfolio theory assumes that investors aim to maximize their expected utility and thus optimize the expected return for a given amount of risk. Further, in the financial literature, it is

well known that there exists a benefit of international diversification of equity portfolios. Since there is a positive correlation within an economy, one could reduce the portfolio risk by diversifying internationally (Solnik, 1974). The optimal risk-return profile is referred to as the world-market portfolio of securities and consists of securities that are diversified internationally, with proportion to their market share of the global economy (Eldor, Pines, & Schwartz, 1998; Tesar & Werner, 1995; Solnik, 1974). Therefore, globally diversifying generates a better risk-return profile in relation to a domestic portfolio since the global capital market bears less systematic risk than a country's internal capital market (Solnik, 1974).

In this context, the tendency of investors to allocate a greater share of their portfolio to domestic securities rather than foreign ones is contrary to the modern portfolio theory. This is known as the "home bias", and this phenomenon is costly after considering the higher risk of the underdiversified portfolio implied by the overweighting of domestic shares (French & Poterba, 1991). One of the first studies of the home bias was conducted by French and Poterba (1991). They revealed that investors worldwide exhibit a strong bias toward domestic shares. For example, American equity traders invest around 94 percent in national securities, even if the U.S equity market covers below 48 percent of the global equity market. More recently, Sercu and Vanpée (2008) illustrate that home bias is present worldwide by measuring the intensity of the ratio of domestic equity relative to the market capitalization. For instance, the study found that in Sweden, more than 60 percent of the equity portfolio is invested in domestic securities. Thus, even if markets have become more integrated and barriers to international investments have fallen in comparison to the pioneer study by French and Poterba (1991), countries still continue to hold significantly biased equity portfolios (Kang & Stulz, 1997). As stated by Kang and Stulz (1997, p. 4):

"Financial Economists have noticed that even though the barriers to international investment have fallen dramatically, foreign ownership of shares is still extremely limited and much smaller than one would expect in the absence of barriers to international investment."

Over time the financial literature has provided different explanations for why investors seem to neglect the so-called "free lunch" of diversification. However, academia has far from agreed whether the phenomenon is driven by rational or behavioral reasons. For example, Huberman

(2001) argues that the reason for the home bias is that people feel comfortable to invest their money in the familiar and often overlook the principles of portfolio theory. Coval and Moskowitz (1999) found that in the U.S., investment managers favor investments in locally headquartered firms. They argue that this bias is motivated by informational advantage instead of familiarity after discovering that the local holdings tend to be in small firms with a high degree of leverage. Consistent with the belief, Bae, Stulz, and Tan (2008) investigate if distance impacts the quality of the information held by analysts. Using an international sample of 32 countries and controlling for both firm and analyst features, they find a local analyst advantage. Thus, the result suggests that local analysts have better information in relation to foreign ones since local analysts generate more accurate forecasts.

Regardless of the underlying motives, investors' preference for domestic securities is found to create an overrepresentation of local investors in financial markets globally. As a result, the prices of securities are affected by these local investors. For example, Shive (2012) finds that during power blackouts, when trading is probably prevented for those in the affected area, firms with headquarters in the area are affected. Specifically, the share turnover of these firms decreases by three to seven percent in addition to a price volatility drop on days of blackouts. This is in line with the argument that local investors own a greater number of shares in local stocks and influence stock prices. Another example is a study by Chan, Hameed, and Lau (2003). In their study, they find that prices of securities are impacted by country-specific investors' sentiment. More specifically, they find that the Jardine Group stock, after moving the trading activity to Singapore from Hong Kong, correlated less with the Hong Kong market and more with Singapore's market after the move. The core business was still in Hong Kong and Mainland China, while the stock was traded in Singapore. If markets were integrated, the trading location should not influence the stocks trading behavior (Chan, Hameed, & Lau, 2003).

3.5 Sweden and Climate Change

The thesis is based on the Swedish market and, therefore, this section introduces the Swedish citizens' beliefs on the topic. Ultimately, the section functions as a complement to our study in order to enable a deeper interpretation of results in the Swedish market compared to international findings. First, we will shortly describe the changing climate in the country. Then,

we will introduce the media coverage on the topic in recent years. Finally, we will present nationwide surveys conducted on climate change beliefs.

The poles are warming at a faster speed than the rest of the planet. As a result, the yearly change in the average temperature is higher in Sweden than the average change of the rest of the world Swedish Meteorological and Hydrological Institute (SMHI, 2020a). This occurrence is exemplified in the figure 2, by comparing the average annual temperature in 2019 to the long-term average (1901- 2000).

Figure 2: The average annual temperature in Sweden compared to the world. Data sources: Globe illustration from (Dagens Nyheter, 2020), climate data from Lindsey and Dahlman (2020), and SMHI (2020b).

As shown in the illustration, the surface temperature in Sweden has risen with 1.56°C, while the global land and ocean surface temperature increased with 0.95°C in 2019. This increasingly changing climate has, in recent years, been heavily covered by the Swedish media. Retriever (2020) has, in the six most recent years, examined the media coverage of climate change in Sweden. As illustrated in table 1, the total number of articles on climate change has increased considerably in from 2014 to 2019.

Year	Total no. of articles		Business newspapers	
	No. of articles	Trend	No. of articles	Trend
2014	41,875	-	877	-
2015	53,852	29%	1,497	71%
2016	52,426	-3%	1,892	26%
2017	61,121	17%	2,282	21%
2018	84,647	38%	2,678	17%
2019	145,824	72%	4,610	72%

Table 1: Climate change articles published between 2014 and 2019. Data source: Retriever (2020).

As shown in the figure above, the number of articles on the topic of climate change has increased by 72 percent from 2018 to 2019. The total number of articles on the topic was 150,000, and 4,610 articles were published in business newspapers. This makes the climate change, by far, the biggest news topic in the Swedish media in 2019 (Retriever, 2020), Additionally, the climate activist Greta Thunberg is the most mentioned person in the media, including in business newspapers headlines, in 2019. The year before, when she started to strike for the climate, she was on place eleven (Retriever, 2020).

Nationwide Surveys

The following paragraphs will complement our empirical study with three nationwide surveys conducted by institutional organizations on how the population views climate change. This enables us to deepen the understanding of people's beliefs in the country.

First, a nationwide survey is carried out by the SOM Institute every year in the form of a mail questionnaire to randomly selected people in the age group between 16 to 85 that live in Sweden. The survey consists of several sub-surveys, which comprise of approximately 3,500 respondents per survey. Since 2001, a survey regarding the concern about climate change has been conducted (SOM Institute, 2019).

Figure 3: Development of respondents' concern about climate change from 2001 to 2018 in Sweden. Own creation. Data source: University of Gothenburg, SOM Institute (2020).

As shown in figure 3 above, since the survey started in 2001, more than 30 percent of the respondents have stated that they are very concerned about climate change. In 2017, more than

60 percent stated the same, representing the highest level in the survey period. In 2018 there where drought, forest fires, and Greta Thunberg initiated school strikes for the climate. However, as shown in figure 3, the proportion of very concerned respondents decreased by 20 percentage points in the same year. Nevertheless, the proportion of very concerned respondents is still the second-highest in the decade.

The second nationwide survey that covers climate change is conducted by Kantar Sifo, and the results are presented in a report by Wennö and Söderpalm (2020). The web survey includes randomly selected people in the age group between 18 to 79 that live in Sweden. The number of respondents was 2,101. There are several interesting findings in the survey related to the topic of this thesis. First, the survey finds that those who do not believe in climate change, the so-called "climate deniers", are only three percent of the respondents. Furthermore, less than 40 percent of the respondents knew what the two largest emitters in Sweden were (Wennö & Söderpalm, 2020). Another interesting finding in the survey is illustrated in figure 4. The respondents were asked to what degree they were concerned about several climate change effects. The percentages of the respondents that answered that they were highly concerned about the listed effects of climate change are displayed in the figure below.

Figure 4: Effects of climate change and percentage of respondents that are highly concerned about them in 2019. Data source: Wennö and Söderpalm (2020).

As shown in the figure, the respondents are most worried about wildfires, drought, and extinction of species. Wennö and Söderpalm (2020) argue that it is most likely explained by

the drought and forest fires in the country the year before and the intensive media surveillance on the topics. The high level of fear of extinction of species is also a topic that has been discussed extensively in the media in Sweden in the past year. The effects that the public is least worried about is flooding and food shortages. Common to these two topics is that there are effects that are more likely to occur elsewhere in the world than in Sweden.

The last survey that this thesis will cover is conducted by the European Social Survey (2018) that examines public views towards climate change in European countries. The fieldwork was conducted between 2016 to 2017, and it consisted of 44,387 respondents from 23 different countries. The respondents were asked whether they think the world's climate is changing. The percentages of the respondents that answered that climate is probably or definitely changing are displayed in figure 5.

Figure 5: Percentage of respondents from different European countries believing that the climate is probably or definitely changing between 2016 and 2017. Own creation. Data source: European Social Survey (2018).

As shown in figure 5, 96.80 percent of the respondents in Sweden believe that the climate is probably or definitely changing. That makes the country one of the top three European countries believing that the climate is changing in the years 2016 to 2017. The average percentage of the respondents believing in climate change was 93.40 percent, and the answers vary from 82.20 percent in Russia to 97.70 percent in Iceland. Furthermore, the same question was asked in a different nationwide survey study (n>18.000) on the other side of the Atlantic by Marlon et al.

(2016). They found that in the U.S, only 70 percent of the respondents believed that climate change was occurring in 2016.

3.6 Contribution

The climate science is clear: humans are causing an increase in global temperature, and it has severe consequences (IPCC, 2018a; Kelly et al., 2015). As the increasing temperature poses risks to all layers of society, not least the financial, the phenomenon has given rise to the research field of Climate finance (Hong, Karolyi, & Scheinkman, 2020). A crucial part of the field is the study on how individuals form their perceptions and beliefs about climate change. This is not only important to policymakers in order to efficiently drive political processes toward mitigation, but also to the stability of our financial markets. In the year 2020, Choi, Gao, and Jiang released an acknowledged study on investor belief formation when it comes to climate change. Their international study suggests that the experience of local abnormal temperatures caused investors to pay more attention to climate change and to revise their beliefs about climate change. They find that the local investor belief-revision impacted the prices of local stock because of the home bias. However, the specific impact on individual countries is still unknown. Therefore, this thesis aims to fill this research gap in Climate finance by studying how investors realize and respond to climate change in Sweden. Up until now, studies on climate change beliefs in Sweden has, to our knowledge, only been conducted through surveys. Furthermore, Sweden is unique in many aspects with regard to climate change. First, the temperatures around the poles increase faster than the rest of the world (SMHI, 2020a). Secondly, concerns and beliefs about climate change are higher in Sweden than in many other countries (European Social Survey, 2018).

By examining the tendencies found by Choi, Gao, and Jiang (2020) in Sweden, we contribute to many research aspects. First, we add to the current research on climate change beliefs in Sweden by examining the local warming effect, which, to our knowledge, is domestically unexplored. Second, we contribute to the same field by narrowing the scope toward the underresearched area of investors' climate response in the Swedish market. Third, we extend the international findings of Choi, Gao, and Jiang (2020) with our in-depth analysis of a specific country, which enables complementary conclusions on the country-specific impact of local abnormal temperatures. Finally, our research contributes to the larger purpose of disentangling
the climate change issue by looking at the important mechanisms at work in the financial market. Thus, as presented in our introductory section, this thesis aims to answer the following research question and following sub-questions:

"To what extent, if at all, does abnormal temperatures affect equity investors' realization and response to climate change in Sweden?"

- (i) What is the international evidence on temperature influence on investors' attention and beliefs towards climate change?
- (ii) What is the evidence from Sweden on temperature influence on investors' attention and beliefs towards climate change?
- (iii) If these differ, what could be the explanation between the diverse findings?

4. Methodology The following section approach. The starting

The following section will describe the data collection process, as well as our methodological approach. The starting point will be a concise description of the research design. This is followed by a formulation of the hypotheses that guide the empirical research. Then, we will describe the data collection process, which culminates in the regression methodology that the thesis has applied.

4.1 Research Design

With a basis in positivist philosophy, we set out a three-part analysis and aim to investigate the relationships between abnormal temperature and investor realization and response to climate change in Sweden. At the core, we are testing the recent findings of Choi, Gao, and Jiang (2020) on a national level and in a more recent time setting. Our approach is consistent with the positivist philosophy, as we apply an objective lens in our evaluation of reality, assuming that observable data can fully portray the phenomenon. In doing so, we follow a deductive approach that allows for hypothesis development and discussions in light of previous findings and enables comparability between our national findings and the international findings of Choi, Gao, and Jiang (2020). The quantitative form of our research method is based on an extensive data sample, where we evaluate our hypotheses by examining links between abnormal temperature and investor attention, stock returns, and different investors' trading activity.

To ensure the internal validity of our research, we have conducted a well-designed research that carefully measures the phenomena. We based our study on data from high-quality data providers FactSet, Thomson Reuters, Google Trends, and Swedish Meteorological and Hydrological Institute. Our study sample size is also large, and we apply established proxies based on research published in top journals. This ensures that our observed findings represent the population that we are examining and ensure internal validity (Druckman et al., 2011). Further, our study is not set up for a generalized conclusion, this would require a global sample. Thus, external validity is not a goal of the research. Finally, by following a strict methodological approach, we can ensure that the results are replicable for the Swedish market in the same time horizon, which confirms reliability.

4.2 Hypothesis Development

Our overall research question is grounded in the idea that abnormal temperatures could affect investor realization and response to climate change. This assumption is nested in existing theory on limited attention, biased belief updating processes, and home bias.

Because of human's limited attention, Lim and Teoh (2010) argue that attention allocation is affected by the ease with which an individual can access and process information. Accessibility and processing ease are primarily determined by the salience of the information and the characteristics and number of competing stimuli in the environment (Lim & Teoh, 2010). DellaVigna and Pollet (2007) find that investors are often inattentive to less salient and less accessible long-term effects, but attentive to the more salient short-term effects. Incorporating this tendency into a climate change setting, the finding suggests that there may be inattentiveness toward the long-term trending effect of climate change. Further, the experienced short-term effects of climate change, such as abnormal temperatures, could grant more attention. Howe et al. (2013) find that individuals who experience an increase in local average temperatures are more likely than others to recognize climate change. Hence, people are prone to mis-associate abnormal temperatures with the climate at large. Therefore, experiencing salient abnormal temperatures could increase investor attention toward climate change. This form the first hypothesis:

(i) H_A : Abnormal temperatures impact Swedish investors' attention towards climate change.

Further, Choi, Gao, and Jiang (2020) found that the highest level of abnormal temperatures increased investor attention. Thus, a higher level of abnormal temperature might be the most salient. This leads to our second hypothesis:

(ii) H_A: The highest level of abnormal temperatures does impact Swedish investors' attention towards climate change to a larger degree than the other temperature levels.

Moreover, our limited attention can give rise to cognitive biases that influence beliefs and decision-making. Existing climate research suggests that temperature abnormalities influence

our risk perceptions and beliefs about climate change (Choi, Gao, & Jiang, 2020; Zaval et al., 2014; Li, Johnson & Zaval, 2011). Since abnormal temperatures seemingly affect climate change beliefs and investors trade on their beliefs, abnormal temperatures could also impact stock prices. It is important to note that only local investors would experience the temperature shocks that could influence beliefs and actions. However, due to the home-bias, local investors adjust their beliefs when experiencing temperature abnormalities, they may choose to sell stocks that are sensitive to climate change and buy stocks with lower sensitivity to climate change (Choi, Gao & Jiang, 2020). Moreover, Choi, Gao, and Jiang (2020) claim that this could occur to the extent that the latter outperforms the former. Similarly, Li, Johnson, and Zaval (2011) claim that experiencing abnormal temperatures increase the willingness to engage in mitigation action. This suggests that abnormal temperature could also lead investors to avoid stocks that they perceive as harmful to the climate. This forms the third hypothesis:

(iii)
$$H_A$$
: Abnormal temperatures impact stock return in high and/or low emission firms.

In conformity with the reasoning in the second hypothesis, we also examine whether a potential effect is nonlinear. Our fourth hypothesis is the following:

(iv) H_A : The highest level of abnormal temperatures does impact stock returns in high and/or low emission firms to a larger degree than the other temperature levels.

Furthermore, there are reasons to believe that different investor groups would react differently to the experience of abnormal temperature. Choi, Gao, and Jiang (2020) argue that retail investors are more prone to individual biases than institutional investors and blockholders. Therefore, to gain a deeper understanding of whether abnormal temperatures influence different investor types' trading behavior in high and low emission firms, three hypotheses are formed:

(v) H_A : Abnormal temperatures impact local retail investors' average net buy of high and/or low emission firms.

- (vi) H_A : Abnormal temperatures impact local institutional investors' average net buy of high and/or low emission firms.
- (vii) H_A : Abnormal temperatures impact local blockholders' average net buy of high and/or low emission firms.

In conformity with previous hypotheses, we test whether the potential effect is nonlinear with our last hypotheses:

(viii) H_A : The highest level of abnormal temperatures has a larger impact on local retail investors' average net buy of high and/or low emission firms than the other temperature levels.

(ix) H_A : The highest level of abnormal temperatures has a larger impact on local institutional investors' average net buy of high and/or low emission firms than the other temperature levels.

 H_A : The highest level of abnormal temperatures has a larger impact on local

(x) blockholders' average net buy of high and/or low emission firms than the other temperature levels.

4.3 Data collection and Processing

In accordance with the hypothesis development of the thesis, we attempt to uncover the three subsequent areas in order to answer our overall research question:

- i) The relationship between abnormal temperature and investor attention
- ii) The relationship between abnormal temperature and stock returns
- iii) The relationship between abnormal temperature and trading activity of different investor types.

The examination of the three areas requires market data, long-term weather data, and proxies for investor attention from different data sources. A more specific description of the data sources and processing are found in each subsection. Finally, to analyze the data, we run several regressions as described in section 4.5 Regression Methodology.

Sample size

The main testing period for our analysis stretches from 31 December 2003 to 31 December 2019. The choice of our main testing period is based on several considerations: (i) firstly, we wished to obtain data from a period when climate change was a phenomenon in Sweden as that is essential for capturing any of the proposed effects (ii) secondly, we wish to generate a sample with sufficient overlap to previous studies to ease comparability (iii) thirdly, for more reliable comparability with the international results we also wanted to apply the same time horizon for the sample. We chose our control period, 30 December 1983 to 31 December 1999, because at this period in time, fewer people recognized climate change as a phenomenon. This is based on the conclusion that the major public concern for the human causation of climate change occurred after this period. For instance, in the IPCC report in 2001, it is stated that at the period of the report's release, there existed new and more powerful evidence that climate change has an anthropogenic cause.

As mentioned in the previous section, we have had to utilize a variety of data sources as one data-provider could not supply the necessary information. The combination of the data from different sources has caused some decreases in our samples due to the provider limitations. Because of the limits to the availability of Google Trends data, which is key in our first sets of hypotheses testing, the first analysis is conducted with a sample stretching from the earliest time that Google provided search data, January 2004, to December 2019. Further, FactSet and Thomson Reuters DataStream does not provide data on all the same firms. Therefore, the datasets were matched by the individual tickers, resulting in a smaller final sample of stocks than the individual samples from both suppliers. The obtained market data has monthly intervals, with the exception of the FactSet ownership data, which could only be collected at quarterly intervals. The obtained weather data has intra-daily frequencies that are later transformed into monthly averages. The monthly interval was chosen based on the previous findings by Deryugina (2013) and Choi, Gao, and Jiang (2020) as earlier described in the delimitations, section 1.3. After all data-processing, which is further elaborated on in the following sections, the final sample sizes are presented in table 2.

Final Sample size

SMHI Temperature data **Google Trends** Google search data

Monthly frequency December 1979 - December 2019 480 observations Monthly frequency January 2004 - December 2019 192 observations FactSet Institutional investor data

Quarterly frequency

December 2003 - December 2019 65 observations of 498 stocks Thomson Reuters DataStream Market data (Blockholder data)

Monthly frequency (Quarterly frequency) Control period: December 1983 - December 1999 Main period: December 2003 - December 2019 386 (65) observations of 498 (498) stocks

 Table 2: Final Sample size. Own creation. Data sources: SMHI (2020b), Google Tends (2020),

 FactSet (2020), and Thomson Reuters (2020).

Weather Data

Daily weather data was obtained from the Swedish Meteorological and Hydrological Institute from 31 December 1979 to 31 December 2019. The closest weather station to Stockholm Stock Exchange that has been active in the sample period was selected. Following Choi, Gao, and Jiang (2020), we decomposed the local temperatures into three components: average temperature, monthly temperature, and abnormal temperature.

$$Temperature_t = Avg_temp_t + Mon_temp_t + Ab_temp_t$$
(1)

To estimate the three temperature components, the temperature for each month in our sample period was found by first calculating the average of intra-daily temperatures between 06:00-18:00 and then finding the average of the daily temperatures within each month. Then, we found the average temperature ($Aver_temp_t$), which is the average monthly temperature (in Celsius degrees) in Stockholm over the previous 120 months. We calculated the monthly temperature (Mon_temp_t) as the average temperature in the same month over the previous ten years, minus the average temperature ($Aver_temp_t$). Hence, we find how much each month, on average, deviates from the yearly average. Finally, we calculated the abnormal temperature (Ab_temp_t) in month t by subtracting $Aver_temp_t$ and Mon_temp_t from the observed temperature. In the figure below, the abnormal temperature development in the main sample period is displayed.

Figure 6: Abnormal temperature development in Stockholm between December 2003 and December 2019. Own creation. Data source: SMHI (2020b).

As shown in figure 6, the temperature in Stockholm has risen in recent years as the abnormal temperature display. For example, the abnormal temperature in December 2004 was 2.14°C compared to 2.42°C in December 2019. Furthermore, there are more months that are abnormally warm than abnormally cold in the main testing period.

Proxy for Investor Attention

As noted in the literature review, investors' attention is not necessarily easy to capture empirically. More specifically, due to the lack of an unequivocal measure of investor attention, it must be indirectly proxied by some existing measures. Google has since 2004 offered the Google Search Volume Index (SVI) through the product Google Trends. The Google SVI provides the possibility to explore the popularity of a topic or search term in a specific location and period. Da, Engelberg, and Gao (2011) argue that Google SVI data captures retail investors' attention very well. This proxy is also used by Choi, Gao, and Jiang (2020) to measure retail investors' attention to climate change. Another proxy is applied in the research of Klibanoff, Lamont, and Wizman (1998). Specifically, they use media coverage of companies as a proxy for investor attention. Thus, potentially, one alternative to our study could be to proxy climate change attention as the number of articles on the topic. However, we do not have access to platforms that provide the number of articles in our whole time period. Thus, we graph the two

proxies to examine whether Google SVI incorporate the media effect, or if they differ greatly in recent years.

Figure 7: Google SVI and number of articles published in business newspapers on the topic climate change. Time period between January 2014 and December 2019. Own illustration. Data sources: Google Trends (2020) and Retriever (2020).

As shown above, the two proxies seem to be highly correlated. This is also in accordance with the Da, Engelberg, and Gao (2011) findings, that Google searches are different from, but correlates with other attention proxies. Thus, Google SVI is also assumed to capture media attention as well as the retail investor attention. The utilization of this proxy also eases the comparability of the study of Choi, Gao, and Jiang (2020). Furthermore, the action of actively searching for a specific search term indicates that the attention of the agent is definitely upon that topic. Moreover, as the attention theories and heuristics tested in this paper is closely linked to the behavior of individual investors, we find this proxy especially appropriate for this study.

Google Search Volume Index (SVI)

Google SVI uses a standardized scale from 0 to 100, where 0 is the lowest search volume and 100 the highest search volume for a given time horizon. Thus, Google SVI is a relative measure of the search volume for the chosen period. Narrowing the Google SVI to "search terms" would imply an exclusion of possible misspellings and searches in different languages. Therefore, we

chose to collect data by "topic" to get a comprehensive measure of the attention to "Climate change".

In accordance with recent studies within climate finance, we explore the two topics: "Climate change" and "Global warming" as a proxy for the attention to climate change (Choi, Gao, & Jiang, 2020). However, we do not exclude the possibility that other search topics may capture investor attention to climate change and encourage future research to explore this further.

Figure 8: Average Google search activity for the topics "Global warming" and "Climate change" between January 2004 and December 2019. Own creation. Data source: Google Trends (2020).

The two topics, "Climate change" and "Global warming", are highly correlated, but we apply the latter in our research since the search traffic is slightly higher throughout the time period, as shown in figure 8. Thus, we argue that the topic "Climate change" captures investor attention towards climate change better than the topic "Global warming". Therefore, we retrieve monthly Google SVI data for the topic "Climate change" in Stockholm and Sweden over the time series January 2004 to December 2019.

Figure 9: Google SVI for the topic "Climate change" in Sweden and Stockholm. Stretching from January 2004 to December 2019. Own creation. Data source: Google Trends (2020).

As shown in figure 9, the search traffic for "Climate change", between January 2004 and December 2019, is generally higher at the beginning of the period, then reduced in 2010 and finally increased in recent years. To capture the change in Google SVI, we apply the following formula:

$$Log Change in SVI = LnSVI_t - LnSVI_{t-1}$$
(2)

Thus, the change in Google SVI towards climate change is defined as the natural log change in Google SVI. However, the time series have a few undefined values due to the characteristics of Google SVI. For example, two percent of the values are missing for the log change in Google SVI Sweden. Since the natural log of zero is undefined, we followed Pratama et al. (2016) and replaced these missing values with the mean of the observation sample.

There are reasons to believe that Google search data may display seasonality; in other words, periodic fluctuations. For example, some search terms such as "tax" may be trending around the tax season every year. When plotting the seasonal subseries with their respective means, shown in figure 10, it is evident that Google SVI for "Climate change" displays a seasonal trend.

Figure 10: Illustration of seasonal subseries plot of Google SVI for "Climate change" in Sweden stretching from 2004 to 2019. Own creation. Data source: Google Trends (2020).

As shown in figure 10, a seasonal trend is visible. For example, in the summer months from June to August, the search volume is considerably lower compared to the rest of the months. As a consequence, the SVI was adjusted for seasonality. Following Choi, Gao, and Jiang (2020), the log change in Google SVI was regressed on month-of-the-year dummy variables. The residuals from this regression are the DSVI used in further regressions. Thus, DSVI is the seasonally adjusted monthly log change of SVI on the topic of "Climate Change" in Stockholm or Sweden.

Market Data

All utilized market data has been retrieved at Thomson Reuters DataStream (DataStream) and FactSet, where the latter covers institutional ownership data. Data collected from DataStream include stock returns, market capitalization, firm-specific information, and ownership data on blockholders.

Stock and firm-specific information

The utilized market data, excluding the institutional ownership data, has been retrieved at DataStream. Our sample construction began with all major listings of common stock on the Stockholm Stock Exchange (Nasdaq OMX Stockholm and First North Stockholm), thereby excluding exchange-traded funds, preferred stock, closed-end funds, and warrants. To avoid survival bias, both dead and active companies within the sample period have been included, i.e. companies that have defaulted, merged, or been delisted for other reasons within the period of

observation are included in the sample. As a result of lack of data, our sample only consist of primary listings, because all secondary listings were missing key data points for further testing. The market data retrieved for this sample is market capitalization, total return indexes, total percentage of outstanding shares held by blockholders, and percentage of outstanding shares held by foreign blockholders. In addition to the time-series data, static data on the Industry Classification Benchmark (ICB) of industry subsectors for each company was retrieved. More information on the codes and definitions of the utilized data can be found in the appendix B. All stocks that were lacking data on one of the acquired market data variables in the whole sample period were removed.

Subsequent to the first treatment of the raw data, the monthly returns were calculated according to the changes in the Return Index, which takes capital gains and dividends into account as well as adjusts for subsequent capital actions such as stock splits. Hence, the calculated changes in the Return Index is the return of holding the stock in each month, including capital gains and dividends.

DataStream may suffer from further data errors and needs to be treated according to the found errors. Therefore, we screen the calculated return data according to the findings by Ince and Porter (2006). More specifically, DataStream reports data on firms that are no longer traded by repeating the last valid data point in consecutive months for the entire time period. Consequently, we trim the data on delisted firms by removing all monthly observations of zero returns at the end of the sample period to the first record of a non-zero return. Consecutively, due to research observations of occasional DataStream pricing errors (Choi, Gao, & Jiang, 2020; Hou, Karolyi & Kho, 2011; Ince & Porter, 2006), we follow the suggested procedure of removing any monthly return above 300 percent that is reversed within one month. The removal is determined by the following rule suggested by Ince and Porter (2006), specified as:

if $(R_t > 300 \text{ percent})$ or $(R_t - 1 > 300 \text{ percent})$, and $((1 + R_t) (1 + R_{t-1}) - 1 > 50 \text{ percent})$, then both R_t and R_{t-1} are treated as missing.

Further consideration was taken in accordance with observations of DataStream rounding practice for low price stock. According to Ince and Porter (2006), a minimum stock price of \$1

should be required to avoid non-trivial observation errors. Therefore, we require a minimum stock price of 10 SEK at the end of the previous month for an observation to be included in the analysis. This also minimizes potential biases arising from illiquid stock.

Size-adjusted returns

Banz (1981) finds that there is a size effect present in stock return movements. Specifically, it is found that there is a negative relationship between the firm's market capitalization and the return. In accordance with these findings, initial return calculations were size-adjusted. All companies were divided into quintiles based on their market values. Subsequently, the average return of each quintile was removed from the return of each stock in that specific quintile in the same month, i.e. the size-adjusted return of a stock in quintile one is equal to the actual return of the stock in month t minus the average return of quintile one in month t.

This return adjustment enables us to draw conclusions on whether any observed effect in the regressions is robust to adjustments for size premiums. Other models, such as factor models, were considered for the calculation of adjusted returns. For example, Hou, Karolyi, and Kho (2011) have found that factors driving global stock returns are momentum and cashflow-to-price. However, when considering adjusting returns based on these variables, we encountered large difficulties in easily obtaining the cashflow-to-price data for all stocks in our sample. Therefore, it was considered most appropriate to follow Choi, Gao, and Jiang (2020) method and adjust returns according to the market capitalization data that had better coverage for our sample.

Ownership data

Choi, Gao, and Jiang (2020) found that market behavior differs between investor types. We apply this theory to our research and examine the potential influence of abnormal weather on trading behavior among three investor types. The three investor types of interest to our thesis are retail investors, blockholders, and institutional investors. In order to examine investor trading behavior, we collect ownership data for blockholders and institutional investors and create a proxy for retail investors.

Blockholders and Institutional Investors

Ownership data on the sample was collected from two sources, DataStream and FactSet. DataStream provides data on the percentage of outstanding shares held by foreign and domestic blockholders (owning more than five percent of shares outstanding). FactSet provides data on quarterly institutional ownership in the form of time series. In FactSet, tickers for stocks listed in Stockholm were obtained and later used to build specified institutional ownership sheets in the FactSet Download Builder. The request was specified to present the percentage of outstanding shares owned by institutional investors in each stock, grouped by foreign investors and domestic investors. This resulted in a detailed sheet, presenting the name of each institutional owner and their ownership stake in each quarter. Ownership data for active and inactive stocks was retrieved in 102 separate excel sheets due to the limitations of the builder. These were subsequently merged with the help of macros to present full ownership time-series for all stocks. The merged sheet was further used to separate institutional blockholders (owning more than five percent) from institutional investors that are not blockholders. Both categories were also grouped by their foreign or domestic origin.

Proxy for Retail Investors

Since retail ownership cannot be directly measured for each of the sample stocks, we apply a proxy for retail ownership. To enable the proxy to be calculated, the final sheet of FactSet's data on institutional investors explained in the previous section, was subsequently matched with the DataStream sheet on blockholders by the stocks' individual tickers and names. Finally, this data was used in the following formula developed by Choi, Gao, and Jiang (2020) to proxy for retail ownership:

Retail own. = 100% - Blockholder own. - Institutional own. (excl. blockholders) (2)

Where the data on blockholder ownership originates from DataStream and institutional ownership from FactSet. Naturally, retail ownership is not an exact measurement and is, therefore, prone to errors.

Portfolio construction

For the subsequent testing, we construct portfolios with the final stock return data and ownership data from DataStream and FactSet. This section will go through the process of the portfolio constructions. First, the construction method for portfolios based on stocks climate sensitivity will be presented. Secondly, the construction of ownership portfolios for the same stocks will be introduced.

Climate portfolios

The paper hypothesizes that investors might increase their attention toward climate change when they experience abnormal temperatures. As a result, they might revise their beliefs on the topic and subsequently buy stocks less sensitive to the climate and sell stocks with higher sensitivities to the climate. We, therefore, construct portfolios based on this assumption. Firms with high emission levels are generally more sensitive to climate change because of the risk of adverse cash-flow effects (Choi, Gao, & Jiang, 2020). These could stem from the possibility of increasing production costs through the price of carbon and increasingly strict regulations. Moreover, they inhabit the possibility that investors avoid them for social conscience reasons. Therefore, the stocks are categorized by their emission levels as a proxy for their sensitivity to the climate. The high emission firms are identified with the aid of the Intergovernmental Panel on Climate Change (IPCC).

The IPCC assesses the science related to climate change for the United Nations (IPCC, 2020). In doing so, they also provide yearly reports summarizing the scientific findings on the drivers of climate change (IPCC, 2020). These reports are by science academies viewed to represent the consensus of the international scientific community on climate change science (Science, 2001). Due to the accessibility of these reports for all types of investors and the fact that they are considered to represent the scientific consensus, we consider it a reasonable measurement for firms viewed to have high climate sensitivity. Therefore, firms that belong to an industry sector that is identified as a major emission source by the IPCC were considered to belong in the higher sensitivity category.

To categorize all firms in our sample according to IPCC's definitions, the industry sub-sectors provided by DataStream were hand-matched with the IPCC industry sub-categories. The full

list of IPCC sub-categories are found in IPCC (1996) and Krey et al. (2014). For our sample, the matched DataStream industries together with their respective IPCC sub-category code are shown in table 3 below.

TRD industry name	IPCC industry name(s)	IPCC category code
Conventional Electricity	Public electrucity and Heat production	1A1a
Oil: Crude Producers	Manufacture of Solid Fuels and other Energy Industries, Oil	1A1bc, 1B2a
Iron and Steel	Iron and steel, Iron and steel production	1A2a, 2C1
Aluminum	Non-ferrous metals, Aluminum production	1A2b, 2C3
Chemicals: Diversified	Chemicals, Chemical industry	1A2c, 2B
Paper	Pulp and paper, Other production: Pulp and paper	1A2d, 2D1
Tobacco	Food processing, beverages and Tobacco	1A2e
Food Products	Food processing, beverages and Tobacco, Other production: Food and drink	1A2e, 2D2
Farming, Fishing, Ranching and Plantations	Agriculture/Forestry fishing, Enteric Fermentation, Manure management, Agricultural soils	1A4c 4A, 4B, 4Dr
Transportation Services	Transport equipment, Road transportation	1A2f2, 1A3b
Commercial Vehicles and Parts	Transport equipment	1A2f2
Machinery: Construction and Handling	Transport equipment, Machinery	1A2f2, 1A2f3
Machinery: Industrial	Machinery	1A2f3
Machinery: Tools	Machinery	1A2f3
General Mining	Mining and quarrying	1A2f4
Gold Mining	Mining and quarrying	1A2f4
Construction	Construction	1A2f6
Home Construction	Construction, Residential	1A2f6, 1A4b
Airlines	Civil aviation, International aviation	1A3a, 1C1
Trucking	Road transport (includes evaporation) (fossil)	1A3b
Marine Transportation	Navigation	1A3d, 1C2

Table 3: Mapped Emission industries in accordance with IPCC and DataStream ICB subsectors. Own creation.Data sources: Thomson Reuters(2020), Krey et al. (2014), and IPCC (1996).

Further, the matching was purposefully restrictive in order to avoid bias. A firm was only included in the high-emission category if the DataStream industry name could unambiguously be matched to one or more of the IPCC codes. To ensure robustness in a Swedish setting, the categorized sample was further analyzed in relation to the National Inventory Report Sweden which covers the greenhouse gas emission inventories from 1990 to 2017 (Swedish Environmental Protection Agency, 2019). The report is submitted under the IPCC framework and gives insight into which of the IPCC industries are the most polluting in Sweden. Hence, by examining the IPCC industries in a Swedish context, it was established that the chosen emission industries were not only polluting in an international context, but also sources of high emission in Sweden. The final proportion of the matched industries within the high-emission category is presented in figure 11.

Figure 11: Proportion of each industry within the high-emission category in our sample. Own creation.

Once the matched firms had been categorized as high-emission, the remaining firms were categorized as low-emission firms. The high-emission- and low-emission grouping of firms will further be referred to as Clean and Emission, respectively. In order to be able to further robust any consecutive findings, both value-weighted and equal-weighted returns for the Clean and Emission portfolios were calculated.

Subsequent to the grouping, a long-short portfolio was constructed. The portfolio was constructed to take a long position in the Emission firms and short the Clean firms. The returns of the EMC ("Emission Minus Clean") portfolio were both equal-weighted and value-weighted.

Trading Activity Portfolios

As mentioned in the ownership section, three investor types were considered in this study: retail investors, blockholders, and institutional investors. In accordance with Choi, Gao, and Jiang (2020), we deem the trading activity for each investor group to be the change in ownership from one quarter to another. For instance, if institutional investors decreased their holding in a stock from 24 percent to 20 percent of total shares outstanding, it is concluded that institutional investors sold four percent of the shares in this quarter. The same sample of firms and the same firm-categorization, as described in the previous section, is utilized for these portfolios. For

each type of investor, the average net buy across all Clean firms was calculated for each quarter (Δ Clean), as well as the average net buy across all Emission firms (Δ Emission). Successively, separate "long-short"-portfolios for each investor type were created taking Δ Emission minus Δ Clean. These portfolios will further be referred to as EMC Δ Retail, EMC Δ Institutional, and EMC Δ Blockholders. Moreover, only local investors experience the abnormal temperatures that could affect their trading behavior. Therefore, separate portfolios for foreign institutional investors, local institutional investors, foreign blockholders, and local blockholders were constructed. These portfolios will further be referred to as EMC Δ LocInstitutional, EMC Δ ForInstitutional, EMC Δ LocBlockholders, and EMC Δ ForBlockholders. As no data on the origin of retail investors could be obtained, all are assumed to be local. This assumption is based on the reviewed theory on the home bias, which implies that at least a majority of these investors should be domestic.

4.5 Regression Methodology

In order to answer the research questions, "*To what extent, if at all, do abnormal temperatures affect equity investors' realization and response to climate change in Sweden?*" the paper runs several regressions that are divided into three categories. First, we will go through how the test for attention towards climate change will be conducted. Then, the tests related to portfolio returns will be explained. Further, we will go through the last test category that comprises the trading behavior in high versus low emission stocks among different investor types. Then, the descriptive statistics and considerations related to the regressions are presented. Finally, we acknowledge the methodological limitations that we consider important for further interpretation of our results.

Abnormal temperatures and attention to climate change

This thesis examines whether abnormal temperatures experienced over the recent 16 years in Stockholm explain the changes in attention towards climate change. The paper applies the log change in Google SVI for the topic "Climate change" as a proxy for investor attention to climate change. The log change in Google SVI is then seasonally adjusted and termed DSVI. To examine the relationship between investor attention and abnormal temperatures, the following regression is run:

In order to assess whether the change in attention is dependent on the level of abnormal temperatures, the regression is run on quintile dummies based on Ab_temp. Specifically, Ab_temp Q1 is the 20 percent lowest abnormal temperatures and Ab_temp Q5 is the 20 percent warmest abnormal temperatures. Finally, the study repeats all regressions by replacing DSVI in Stockholm with DSVI in Sweden to capture the attention of investors on a national level.

Abnormal Temperatures and Portfolio Return

If investors realize the effect of climate change by experiencing abnormal temperatures, they may update their beliefs about the value of firms or avoid climate-unfriendly stocks. Therefore, the thesis examines whether abnormal temperatures affect stock returns on the Stockholm Stock Exchange. To do so, we utilize a series of linear regressions directly between the stock returns and abnormal temperatures. Where, EMC_t is the value-weighted or equal-weighted, size-adjusted or unadjusted return of the EMC portfolio in month t (from December 2003 to December 2019), and Ab_temp is the abnormal temperature, yielding the following return regression:

$$EMC_t = \alpha + B_1 Ab_t emp_t + \varepsilon_t \tag{4}$$

In the same manner as the first regression, we run the regression on quintile dummies based on Ab_temp. Specifically, Ab_temp Q1 is the 20 percent lowest abnormal temperatures and Ab_temp Q5 is the 20 percent warmest abnormal temperatures. Further, to robust any potential findings, the regression is run on a control test period stretching from December 1983 to December 1999. This is the same time horizon as the original test period, with the exception that fewer people are assumed to have recognized climate change as a phenomenon and its link to human greenhouse gas emissions in these years (Intergovernmental Panel on Climate Change, 2001).

Abnormal Temperatures and Trading Activity

In order to examine how different investors react to abnormal temperatures, we study the relationship between the trading activity of different investor types and abnormal temperatures.

The link between abnormal temperature and change in ownership of blockholders (owning more than five percent of shares outstanding), institutional investors and retail investors are analyzed. For each investor group, the EMC portfolio is defined as the average net buy across all high-emission firms minus the average net buy across all low-emission firms in quarter t. The following regression is run for each type of investor:

$$EMC_{\Delta_t} = \alpha + B_1 A b_t emp_t + \varepsilon_t \tag{5}$$

Where EMC Δ is the change in ownership for either investor group, further defined as EMC Δ Retail, EMC Δ Institutional, and EMC Δ Blockholder. Similar to regression one and two, these regressions are then run on quintile dummies based on Ab_temp to examine whether the level of temperature has an impact on investor behavior.

Finally, since only local investors are experiencing the local abnormal temperature, we run the regressions on portfolios divided by investor location. Specifically, domestic blockholders, foreign blockholders, domestic institutional owners, and foreign institutional owners. This enables us to conclude whether the potential effect can, in fact, be derived from the experience of local temperature.

4.5.1 Descriptive Statistics and Diagnostic Testing

In this section, we will present the statistical properties of the time series for our main testing period. To avoid unnecessary repetition, but still allow for considerations to be presented, some variables will be presented in this section whilst others will be found in the appendix. We will first describe our approach for the handling of outliers, which is applied through all testing. Then the considerations will be divided into the three test groups; abnormal temperatures influence on investor attention, portfolio returns, and trading activity.

It is important to identify extreme values within the sample to ensure robustness of the regression. If extreme values in the sample can be characterized as genuine outliers, they are typically treated in one of the following ways: keeping the outlier, winsorizing it, or eliminating it (Ghosh & Vogt, 2012). However, each of these methods has potential drawbacks. The first method, keeping the outlier, may overvalue it and cause the estimate to vary drastically from

the true population value. The second and third treatment, winsorize or eliminate the outlier, may introduce statistical bias and may undervalue the outlier (Ghosh & Vogt, 2012). The method chosen for this thesis for dealing with outliers is winsorization. All variables, except Ab_temp, are winsorized at the top and bottom 2.5 percent tails to mitigate the impact of outliers. However, the known drawbacks are important to consider when interpreting the regression results. Therefore, the winsorized results will be considered with respect to non-winsorized results.

Abnormal Temperatures and Attention

In the first sets of tests, we study whether abnormal temperature impact attention towards climate change. The variables DSVI (STHLM) and DSVI (SWE) are the seasonally adjusted monthly log change of Google SVI on the topic climate change in Stockholm and Sweden, respectively. The variable Aver_temp is the average monthly temperature (in Celsius degrees) in Stockholm over the previous 120 months. The variable Mon_temp is the average temperature in the same month of the year over the past ten years, minus Aver_temp. The variable Ab_temp is the average temperature in a particular month minus Aver_temp and Mon_temp. The variables applied in the regressions is Ab_temp, DSVI(STHLM), and DSVI(SWE).

Variable	Mean	SD	10%	25%	50%	75%	90%	Skewness	Kurtosis
DSVI (STHLM)	0.016	40.306	-50.520	-21.931	0.689	26.313	52.991	-0.070	2.861
DSVI (SWE)	0.550	35.945	-44.031	-17.095	1.644	21.362	39.767	0.068	3.691
Aver_temp	8.265	0.166	7.955	8.184	8.302	8.386	8.448	-0.904	3.027
Mon_temp	0.033	7.414	-9.311	-7.201	-0.687	8.028	10.412	0.154	1.565
Ab_temp	0.230	1.902	-2.182	-0.985	0.371	1.431	2.527	-0.446	4.281

 Table 4: Descriptive statistics of Google DSVI and Ab_temp in the sample period stretching from December

 2003 to December 2019. Own creation. Data Source: SMHI (2020b) and Google Trends (2020).

In table 4, the descriptive statistics are presented. As shown in the skewness column, the variable Aver_temp is moderately skewed to the left, while the rest of the variables are approximately symmetric. However, as stated earlier, the variable Aver_temp is only used to calculate Ab_temp and is not applied in any regression. Furthermore, the skewness is not surprising given the nature of the variable. As described in section 3.5, the long-term average temperature has increased as a consequence of climate change. Hence, we would expect this variable to be slightly skewed. Looking at the kurtosis, we see that DSVI (STHLM) and

Ab_temp exhibit some fat tails, while DSVI(SWE) is slightly more light-tailed than the normal distribution. However, this rather small deviation from the normal distribution, and all variables are argued to be acceptable.

An illustration of the distribution of regression residuals in both a histogram and Q-Q plot is found in figure 12 for DSVI (STHLM) and in appendix C.12 for DSVI (SWE). The residuals of both DSVI (STHLM) and DSVI (SWE) on Ab_temp is approximately normally distributed. Moreover, it is important to consider possible heteroskedasticity and autocorrelation when dealing with time-series data (Wooldridge, 2013). Therefore, the Breusch Pagan's test on the residuals is used to check for heteroscedasticity. Further, we test for no serial correlation by using the Breusch-Godfrey test of autocorrelation. The results are presented in appendix C and remedied by the utilization of Newey-West standard errors when applicable.

Histogram and Q-Q plot of residuals of DSVI (STHLM) and Ab_temp

Figure 12: Distribution of the residuals of DSVI (STHLM) and Ab_temp stretching from December 2004 and December 2019. Own creation. Data sources: SMHI (2020b) and Google Trends (2020).

Abnormal temperatures and portfolio returns

In the second group of tests, we form three portfolios based on the IPCC definitions of high emission industries, as described in section 4.3. The portfolio of high emission firms is entitled Emission while the low emission firms comprise the Clean portfolio. Furthermore, a long-short portfolio is formed and equals Emission minus Clean (EMC). EMC (Unadjusted) is the only portfolio presented in unadjusted returns. The other portfolios are presented in size-adjusted returns as described in section 4.3. Finally, as illustrated below, we apply both equal-weighted and value-weighted returns.

Variable	Mean	SD	10%	25%	50%	75%	90%	Skewness	Kurtosis
<i>Equal Weighted</i> EMC (Unadjusted) EMC	-1.078 -0.074	3.209 0.461	-5.231 -0.653	-3.403 -0.383	-1.412 -0.045	1.085 0.195	2.676 0.528	0.288 -0.040	2.836 2.957
Emission Clean	-0.273 0.042	1.735 0.266	-2.445 -0.299	-1.508 -0.112	-0.216 0.025	0.848 0.222	2.152 0.378	-0.042 0.025	2.647 2.989
Value Weighted	0.700	2.264	2 70 4	2.267	0.024	0.000	1.046	0.125	2.106
EMC (Unadjusted)	-0.789 0.143	2.264 1.519	-3.704 -1.770	-2.267 -0.867	-0.824 0.182	1.073	1.846 1.887	-0.247	3.106
Emission Clean	0.100 -0.148	2.414 1.495	-3.262 -1.951	-1.516 -1.077	0.058 -0.239	1.689 0.682	3.404 1.691	-0.033 0.428	2.443 3.368
Ab_temp	0.232	1.902	-2.182	-0.985	0.371	1.431	2.527	-0.442	4.252

 Table 5: Descriptive statistics of portfolio return and Ab_temp in the sample period stretching from December

 2003 to December 2019. Own creation. Data Source: SMHI (2020b) and Thomson Reuters (2020).

In table 5, the descriptive statistics are presented. Looking at descriptive statistics, we find that all variables are approximately symmetric, except for value-weighted EMC and Clean portfolio that is moderately skewed to the left and the right, respectively. The result implies the EMC portfolio earns slightly more frequent small gains and has fewer extreme losses than the normal distribution, while the CLEAN portfolio has more frequent small losses and fewer extreme gains compared to the normal distribution.

As for the previous group of tests, the distribution of the residuals for the equal-weighted EMC portfolio and Ab_temp is presented in both a histogram and Q-Q plot while the others are found in their respective section within appendix D. As shown in figure 13 below, the residuals of the equal-weighted EMC portfolio are approximately normally distributed. Further, none of the other portfolios display serious violations of normality. The tests for heteroskedasticity and autocorrelation are found in appendix D, and treated with Newey-West (HAC) standard errors when applicable.

Figure 13: Distribution of the residuals of the equal-weighted EMC portfolio and Ab_temp stretching from December 2004 to December 2019. Own creation. Data sources: SMHI (2020b) and Thomson Reuters (2020).

In the third group of tests, we follow the definition of the IPCC of the carbon emission industries, as described in section 4.3. The EMC portfolio is formed based on different owners to examine different trading activities. The three ownership groups are retail investors, blockholders (owning more than five percent of shares outstanding), and institutional investors. We assumed that the retail investors are mainly local and divided the blockholders and the institutional investors into local and foreign investor categories. The change in ownership is defined as the percentage average change in respective ownership groups over the quarter between the Emission and Clean portfolio.

Variable	Mean	SD	10%	25%	50%	75%	90%	Skewness	Kurtosis
EMC AInstitutional	-0.068	0.558	-0.805	-0.400	-0.068	0.296	0.654	-0.124	2.712
EMC	-0.093	0.996	-1.223	-0.567	-0.115	0.417	1.216	0.021	3.835
EMC ARetail	0.067	1.438	-1.994	-0.820	0.060	1.027	1.899	0.067	2.650
EMC AForInstitutional	-0.023	0.385	-0.408	-0.207	0.018	0.220	0.471	-0.521	3.482
EMC <i>D</i> ForBlockholders	-0.021	0.771	-0.629	-0.405	-0.114	0.129	1.242	0.433	3.920
EMC ALocInstitutional	-0.073	0.456	-0.640	-0.338	-0.048	0.215	0.442	-0.248	3.020
EMC ALocBlockholders	-0.078	0.619	-0.908	-0.426	0.023	0.287	0.551	-0.709	3.507
Ab_temp	0.227	1.386	-1.290	-0.502	0.270	1.055	2.280	-0.549	4.260
-									

Table 6: Descriptive statistics of trading activity and Ab_temp in the sample period stretching from December2003 to December 2019. Own creation. Data sources: SMHI (2020b), Thomson Reuters (2020) and FactSet(2020).

Looking at the descriptive statistics in table 6, we find that most of the variables are approximately symmetric. However, some variables are moderately skewed, including the quarterly abnormal temperature, EMC portfolio of foreign institutional investors, and local blockholders. The portfolio returns of foreign intuitional investors and quarterly abnormal temperatures are slightly skewed to the left and, therefore, argued to be satisfactory. The EMC portfolio of local blockholders is moderately skewed to the left, meaning that it has slightly more positive net-buys and have fewer extreme negative net-buys than the normal distribution. As the ownership portfolio is constructed with average net-buy in Emission firms minus the average net buy in Clean firms, the interpretation would be that there are more frequent buys in the Emission portfolio and fewer instances of extreme net buys in the Clean portfolio. Since the variables are only moderately skewed, we argue that it is satisfactory. Looking at the kurtosis, we see that all variables approximately follow the normal distribution.

Abnormal Temperatures and Trading Activity

The residuals for the third group of tests are displayed in both a histogram and Q-Q plot. The EMC portfolio of retail investors and Ab_temp is presented below, while the rest of the portfolios are found in their respective appendix. As shown below, the portfolio is approximately normally distributed. The residuals of the Blockholder portfolio in this group of tests seem to violate normality. The limitation of apparent non-normality will, therefore, be considered in the coming section. As for previous tests, any presence heteroskedasticity and autocorrelation is remedied by Newey West standard errors.

Histogram and Q-Q plot of residuals of EMCARetail and Ab temp

Figure 14: Distribution of the residuals of the EMCARetail and Ab_temp stretching from December 2004 to December 2019. Own creation. Data sources: SMHI (2020b), Thomson Reuters (2020), and FactSet (2020).

Limitations to Regression Methodology

In this section, we wish to acknowledge the methodological limitations that we consider important for further interpretation of our results. More specifically, we will discuss the limitations in light of possible Type I and Type II errors. A Type I error, also called a "False Positive", would mean that the null hypothesis is falsely rejected and a Type II error, a "False Negative", would mean that a false null hypothesis is not rejected.

In our model, we have, for some of the utilized variables, identified violations of the zeroconditional mean assumption. More specifically, when performing the Ramsey Reset test, we identified that when introducing the ownership portfolio of Institutional investors, the model exhibited indications of omitted variable bias and is therefore mis-specified (appendix E.1). Furthermore, the value-weighted Emission portfolio in the control period (appendix D.24), as well as the equal-weighted unadjusted EMC portfolio in the main testing period (appendix D.1), exhibit similar test results. As all of the other variables fulfill the assumptions to an acceptable degree, we chose to keep the model. However, the interpretations of the results of these specific regressions should be considered with caution. The possible omitted variables in the model mean that the model will attribute the effect of the left-out variables to the included variables (Kumar, 2020). This creates biased estimates and could increase the possibility of errors. As described in the previous section, our residuals are argued to be approximately normally distributed, even if blockholders exhibit some tendencies of non-normality. According to Pallant (2013), violations of normality should not cause major problems given that a large enough sample size (>30) is used. However, we wish to acknowledge that extra caution is taken with regards to any significant results as non-normality could increase the possibility of Type I errors (Mellenbergh, 2019). Thus, to decrease the possibility of false positives, we choose to be conservative in our result interpretations.

5. Presentation of Results

In this section, the results of the regressions are presented and interpreted. The regression output will be interpreted in relation to non-winsorized results in all of the three test groups. In the second test, the result will also be interpreted in relation to a control test period when, as previously argued, fewer people are assumed to recognize climate change as a phenomenon. The empirical findings will be compared with the results of Choi, Gao, and Jiang (2020) that was presented in the literature review.

Regression Outputs 1: Abnormal Temperatures and Attention to Climate Change

In the first group of regressions, we test the first hypotheses, if Swedish investors' attention towards climate change varies with abnormal temperatures. A change in the attention toward climate change is measured by the DSVI, which is the seasonally adjusted monthly log change of Google searches. The final regression results are reported in table 7.

	DSVI (STHLM)	DSVI (STHLM)	DSVI (SWE)	DSVI (SWE)
	(1)	(2)	(3)	(4)
Ab_temp	0.553		1.365	
	(0,44)		(1,17)	
Ab_temp Q2		10.903		12.006
		(1,44)		(1,43)
Ab_temp Q3		-12.751		-6.840
		(-0,13)		(-0,88)
Ab_temp Q4		0.813		4.109
		(0,09)		(0,60)
Ab_temp Q5		10.006		11.417
		(1,23)		(1,53)
Observations	191	191	191	191
R^2	0.001	0.017	0.005	0.039

Table 7: Regression output of DSVI and Ab_temp with coefficients in percentage. The t-statistics are reported in parentheses. The statistical significance of the coefficients is reported by p<0.10; p<0.05; p<0.05; p<0.01.

In the first test, column one and three, the coefficient of interest is B1, the slope of the abnormal temperature variable. The coefficients' significance is reported in parenthesis. The coefficient estimates of Ab_temp are not significant, which suggests that neither people in Stockholm (t-stat = 0.44) nor Sweden (t-stat=1.17) pay more attention to climate change when they are

experiencing abnormal temperatures. A low R-squared is expected given that a lot of variables other than temperatures can have predictive power of the variance of people's attention toward climate change.

As a second step, we test our second hypothesis. More specifically, if Swedish investors' attention towards climate change varies more with the highest level of abnormal temperatures than with other temperature levels. To do so, we rank all months into quintiles based on Ab_temp in order to examine whether a change in attention varies with the level of abnormal temperatures. This is done by using quintile dummies in the regression instead of Ab_temp. Specifically, Ab_temp Q1 is the 20 percent lowest abnormal temperatures and Ab_temp Q5 is the 20 percent warmest abnormal temperatures. As shown in columns two and four, none of the coefficients of the quintile dummies are significant. The findings contradict the results of Choi, Gao, and Jiang (2020), who identifies that abnormal temperature is significantly positive at a 95 percent confidence level. Furthermore, they find that the relationship is nonlinear, as the highest abnormal local temperature in quintile five has the only coefficient significantly different from zero.

As explained in section 4.3, the Google DSVI is winsorized at the top and bottom 2.5 percent tails to mitigate the impact of outliers. However, such winsorizing can result in statistical bias by undervaluing the outliers. Therefore, in table 8, the non-winsorized results are also presented to allow considerations in relation to the winsorized. As seen in table 8, the non-winsorized results are similar to the winsorized results in table 7, and neither show significance.

	DSVI (STHLM)	DSVI (STHLM)	DSVI (SWE)	DSVI (SWE)
	(1)	(2)	(3)	(4)
Ab_temp	0.620		1.410	
	(0,49)		(1,20)	
Ab_temp Q2		11.050		10.288
		(1,40)		(1,12)
Ab_temp Q3		-0.590		-7.354
		(-0,06)		(-0,84)
Ab_temp Q4		1.371		2.195
		(0,14)		(0,28)
Ab_temp Q5		10.371		11.753
		(1,24)		(1,53)
Observations	191	191	191	191
R^2	0.001	0.016	0.005	0.031

Table 8: Regression output of non-winsorized DSVI and Ab_temp with coefficients in percentage. The statisticalsignificance of the coefficients is reported by *p<0.10; **p<0.05; ***p<0.01.

Sub-Conclusion

Based on the evidence in table 7 and 8, this thesis does not find support for the first and second hypothesis that Swedish investor attention towards climate change, by means of google search, is impacted by abnormal temperature. Hence, the tests fail to reject the first and second null hypothesis, indicating that neither abnormal temperature nor the level of abnormal temperature increases the attention toward climate change. The results contradict the findings of Choi, Gao, and Jiang (2020), who find that abnormal temperature results in an increase in attention and that the impact is nonlinear.

Regression Output 2. Abnormal Temperatures and Portfolio Returns

In the third hypothesis, the relationship between abnormal temperature and stock returns on the Stockholm Stock exchange are examined. If people in Sweden revise their beliefs about climate change when experiencing abnormal temperatures, they might assess the climate risks differently or simply avoid climate unfriendly stocks. As described in the methodology section (4.3), portfolios were formed according to the IPCC definitions to distinguish climate-unfriendly stocks (Emission) from the others (Clean). All portfolios have been formed using both equal-weights and value-weights to further robust any findings and ease compatibility with previous findings by Choi, Gao, and Jiang (2020).

Table 9, columns one to eight and nine to sixteen provides the results for the four portfolios of interest in equal weights and value weights, respectively. The long-short portfolio Emission Minus Clean (EMC) is presented both in unadjusted returns and size-adjusted returns. The separate displays of the Emission and Clean portfolios are presented in size-adjusted returns. By examining a long-short portfolio, going long the Emission stocks and short the Clean stocks, a conclusion can be drawn regarding a potential systematic relationship between the performance of Emission and Clean stocks and abnormal temperatures. Subsequently, by studying the Emission and Clean portfolios separately, their individual contributions to the returns of the EMC portfolio can be assessed.

		Equal-weighted portfolios								Value-weighted portfolios						
	E	MC	EMC (u	nadjusted)	Emi	Emission Clean		EMC		EMC (unadjusted)		Emis	ssion	Clean		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
Ab_temp	0.035		-0.160		0.060		-0.022		0.068		-0.067		0.004		-0.085	
	(0,20)		(-1,24)		(0,09)		(-0,22)		(1,19)		(-0,77)		(0,05)		(-1,51)	
Ab_temp Q2		0.134		2.296		0.547		-0.077		0.040		0.244		0.515		0.058
		(1,28)		(0,30)		(1,39)		(-1,28)		(0,12)		(0,44)		(0,94)		(0,17)
Ab_temp Q3		0.089		0.459		0.384		-0.051		0.303		0.614		0.186		-0.354
		(0,84)		(0,61)		(0,97)		(-0,83)		(0,87)		(1,25)		(0,34)		(-1,04)
Ab_temp Q4		-0.006		-0.038		-0.265		0.003		0.112		0.192		0.817		-0.128
		(-0,06)		(-0,06)		(-0,07)		(0,06)		(0,32)		(0,39)		(0,15)		(-0,38)
Ab_temp Q5		0.115		-1.047		0.418		-0.067		0.481		-0.479		0.384		-0.493
		(1,09)		(-1,53)		(1,05)		(-1,10)		(1,39)		(-0,93)		(0,69)		(-1,45)
Obs.	193	193	193	193	193	193	193	193	193	193	193	193	193	193	193	193
R^2	0.000	0.016	0.009	0.026	0.000	0.018	0.002	0.016	0.007	0.014	0.003	0.025	0.000	0.006	0.012	0.020

Table 9: Regression output of equal-weighted and value-weighted portfolio returns and Ab_temp with coefficients in percentage. The statistical significance of the coefficients is reported by p<0.10; p<0.05; p<0.01.

In table 9, columns one, three, five, and seven, are part of the equal-weighted portfolio and show no support for a relationship between abnormal temperature and portfolio returns. This also holds true for the value-weighted portfolio in columns nine, eleven, thirteen, and fifteen in the table. This is consistent with our findings regarding the relationship between attention and abnormal temperatures. Further, even though no statistically significant conclusions can be drawn, it is noteworthy that the coefficients of the size-adjusted returns seem to behave in the opposite manner of Choi, Gao, and Jiang (2020). For example, we find that the return of the EMC and Emission portfolios is slightly positive in months of abnormal temperature. At the same time, the Clean portfolios have a slightly negative return in the same months. Hence, if significant, the coefficients would imply that Emission stocks systematically receive a positive adjusted return in months with abnormal temperatures while Clean stocks underperform in the same months.

As argued in the previous section, the winsorized result must be considered in relation to the non-winsorized result. Therefore, in table 10, the non-winsorized results are presented and will be considered in relation to the winsorized results in table 9.

			Eq	ual-weighte	d portfolio	os			Value-weighted portfolios							
	EN	ИC	EMC (u	nadjusted) Emission		ssion	Clean		EMC		EMC (unadjusted)		Emission		Clean	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
Ab_temp	0.016		-0.192		0.054		-0.097		0.078		-0.086		-0.097		-0.098	
	(0,68)		(-1,39)		(0,59)		(-0,70)		(1,28)		(-0,94)		(-1,10)		(-1,57)	
Ab_temp Q2		1.128		0.191		0.474		-0.064		0.021		0.177		0.578		-0.118
		(0,79)		(0,24)		(0,88)		(-0,77)		(0,06)		(0,31)		(0,99)		(0,31)
Ab_temp Q3		0.701		0.491		0.315		-0.040		0.312		0.594		0.135		-0.036
		(0,49)		(0,62)		(0,58)		(-0,48)		(0,85)		(1,17)		(0,23)		(-0,97)
Ab_temp Q4		-0.022		-0.807		-0.085		0.012		0.046		0.139		0.076		-0.022
		(-0,15)		(-0,11)		(-0,16)		(0,15)		(0,13)		(0,26)		(0,13)		(-0,06)
Ab_temp Q5		0,245*		-1,333*		0,915*		-0,142*		0.558		-0.664		0.368		-0.590
		(1,70)		(-1,73)		(1,68)		(-1,71)		(1,51)		(-1,15)		(0,63)		(-1,57)
Obs.	193	193	193	193	193	193	193	193	193	193	193	193	193	193	193	193
R^2	0.002	0.023	0.011	0.031	0.002	0.023	0.003	0.023	0.009	0.018	0.004	0.028	0.000	0.007	0.013	0.025

Table 10: Regression output of non-winsorized equal-weighted and value-weighted portfolio returns and Ab_temp with coefficients in percentage. The statistical significance of the coefficients is reported by p<0.1; *p<0.05; **p<0.01.

Table 10 and 9 show no systematic relationship between abnormal temperature and portfolio returns. However, there is a noteworthy difference between the equal-weighted portfolios in the two tables when temperature quintiles are considered. As stated earlier, we do not find any significant relationships between the level of abnormal temperature and the winsorized estimates. This is in contrast to the non-winsorized results where the warmest temperature quintile and returns on all equal-weighted portfolios are significant at a ten percent level. Furthermore, this is in line with Choi, Gao, and Jiang (2020), who find that the warmest temperature quintile had the statistically strongest relationship with returns. However, in contrast to Choi, Gao, and Jiang (2020), the economic impact of our results is inverse for all portfolios with size-adjusted returns. The coefficients of EMC and Emission at the warmest temperature quintile are positive and the coefficient of Clean is negative, indicating an

overperformance by Emission stocks in abnormally warm weather. Consequently, a change from the coldest temperature quintile (one) to the warmest quintile (five) would imply an increase of 25 basis points (t-stat = 1.70) in size-adjusted return of the equal-weighted portfolio. However, these findings are only significant at the lowest level (90 percent) and not supported by a presence in the value-weighted portfolios, nor in any shown systematic relationship with the Ab_temp variable. The difference between the winsorized and non-winsorized results in the equal-weighted portfolio is therefore assumed to be caused by the outliers that are biased since they create a significant association that is not present. Hence, the evidence is claimed contingent.

Finally, in table 11, all of the regressions are repeated in the control test period when climate change was less publicly recognized. The regressions are not significant, and the model has even lower explanatory power than the original test period. The same holds true for the non-winsorized results that are shown in appendix D.17.

		Equal-weighted portfolios								Value-weighted portfolios						
	EN	ИС	EMC (ur	nadjusted)	Emission Cle		ean	EMC		EMC (unadjusted)		Emission		Clean		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
Ab_temp	0.008		-0.007		0.016		-0.005		0.010		0.003		0.069		0.015	
	(0,25)		(-0,09)		(0,29)		(-0,22)		(0,15)		(0,02)		(0,97)		(0,21)	
Ab_temp Q2		0.018		0.223		0.073		-0.004		-0.165		0.021		-0.303		0.102
		(0,07)		(0,37)		(0,17)		(-0,03)		(-0,33)		(0,02)		(-0,56)		(0,18)
Ab_temp Q3		0.028		0.233		0.010		-0.023		-0.207		-0.548		-0.341		0.142
		(0,12)		(0,36)		(0,02)		(-0,14)		(-0,42)		(-0,57)		(-0,63)		(0,25)
Ab_temp Q4		-0.040		-0.055		-0.051		0.033		0.180		0.633		0.219		-0.084
		(-0,17)		(-0,08)		(-0,12)		(0,20)		(0,36)		(0,66)		(0,41)		(-0,15)
Ab_temp Q5		-0.101		0.086		-0.121		0.081		-0.228		-0.416		0.267		0.374
		(-0,42)		(0,16)		(-0,28)		(0,48)		(-0,46)		(-0,45)		(0,49)		(0,67)
Obs.	193	193	193	193	193	193	193	193	193	193	193	193	193	193	193	193
R^2	0.000	0.002	0.000	0.002	0.000	0.001	0.000	0.003	0.000	0.005	0.000	0.010	0.005	0.012	0.000	0.004

Table 11: Regression output of control period (December 1983 to December 1999), equal-weighted and valueweighted portfolio returns and Ab_temp with coefficients in percentage. The statistical significance of the coefficients is reported by p<0.1; p<0.05; p<0.01.

Sub-conclusion

This thesis finds no evidence of a relationship between abnormal temperatures and monthly stock returns on the Stockholm Stock exchange. Hence, we found no support for the third and fourth alternative hypothesis that abnormal temperature affect stock return. This is in line with the previous findings of this thesis that show no statistically significant effect of abnormal

temperature on attention. In contrast to the findings by Choi, Gao, and Jiang (2020), this thesis finds no evidence that people in Sweden revise their beliefs about climate change when experiencing abnormal temperatures.

Regression Output Test 3: Abnormal Temperatures and Trading Activity

In the fifth, sixth, and seventh hypothesis, the relationship between different investor types and their average net buy of high and low emission firms during abnormal temperatures are examined. More specifically, the investor types are grouped as retail investors, blockholders, and institutional investors. Average net buy for each investor group is defined as the average change in ownership between two quarters in the Emission firms minus the average ownership change in Clean firms. Table 12 provides the results for the three portfolios of interest. By examining the different investor groups' trading activity in the EMC portfolio, a conclusion can be drawn regarding a potential systematic relationship between the investor types trading activity and abnormal weather.

	EMC	∆Retail	EMCΔI	nstitutional	EMC			
	(1)	(2)	(3)	(4)	(5)	(6)		
Ab_temp	-0.055		0,782*		0.038			
	(-0,42)		(1,72)		(0,36)			
Ab_temp Q2		-0.374		0.013		0.535		
		(-0,67)		(0,06)		(1,17)		
Ab_temp Q3		0.869		0.008		-0.458		
		(1,57)		(0,04)		(-1,07)		
Ab_temp Q4		-0.169		0.225		0.217		
		(-0,30)		(1,18)		(0,56)		
Ab_temp Q5		-0.146		0,444**		-0.009		
		(-0,26)		(2,45)		(-0,03)		
Observations	65	65	65	65	65	65		
R^2	0.003	0.092	0.038	0.100	0.003	0.108		

Table 12: Regression output of trading activity and Ab_temp with coefficients in percentage. The statisticalsignificance of the coefficients is reported by p < 0.1; p < 0.05; p < 0.01.

As shown in table 12 columns one and five, neither retail investors nor blockholders show systematic trading behavior during abnormal temperatures. However, at the lowest significance level, 90 percent, institutional investors systematically increase their holdings in Emission firms under abnormal temperatures (t-stat =1.72). Thus, a 1-standard-deviation increase in Ab temp would correspond to an increase in the average net buy of 1.08 percent (=0.782*1.386) in the EMC portfolio of institutional investors. Further, even though no statistically significant conclusions can be drawn regarding the retail investors and blockholders trading activity, it is noteworthy that the coefficients of interest in these tests seem to behave in the same manner as in Choi, Gao, and Jiang (2020) findings. The retail investor coefficient is slightly negative, while the blockholders coefficient is slightly positive. Hence, if significant, the coefficients would imply that retail investors decrease their holdings while blockholders increase their holdings in abnormal temperatures. We also examine the eighth, ninth, and tenth hypothesis, that is whether the highest level of abnormal temperature impact the respective investor group. Column four shows that institutional investors increase their EMC holdings by 0.78 percent in the warmest temperature quintile compared (five) to the coldest quintile (one). Similar to the result above, no significant trading behavior is found for the blockholders nor retail investors.

It is important to note that one of our methodological limitations concerned the institutional investor variable. The possibility of Type I errors in this regression was elaborated on in the regression methodology limitations (section 4.5). Hence, we are conservative in the interpretation of the above significance and rely on the following test for conclusions regarding institutional investors.

In table 13, we examine whether the behavior differs among foreign and local investors to test our hypotheses. Since only local investors will experience the temperature in Sweden, the potential behavioral effect of experiencing abnormal temperature will only apply to local investors. Thus, the differentiation between foreign and local investors simultaneously functions as an indication of the robustness of the findings in table 12.

	EMC ALoc	Institutional	ΕΜС ΔΕο	rInstitutional	EMC ALoci	Blockholders	EMC		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Ab_temp	0.032		0.047		-0.006		-0.004		
	(0,86)		(1,37)		(-0,11)		(-0,06)		
Ab_temp Q2		-0.046		0.092		0.255		-0.277	
		(-0,24)		(0,61)		(1,10)		(-0,91)	
Ab_temp Q3		-0.144		0.179		-0,459*		-0.393	
		(-1,04)		(1,18)		(-1,98)		(-1,29)	
Ab_temp Q4		0.017		0,274*		-0.008		0.013	
		(0,11)		(1,81)		(-0,03)		(0,04)	
Ab_temp Q5		0.234		0.204		0.011		-0.164	
		(1,56)		(1,35)		(0,05)		(-0,54)	
Observations	65	65	65	65	65	65	65	65	
R^2	0.010	0.075	0.029	0.061	0.000	0.142	0.000	0.042	

Table 13; Regression output of trading activity of foreign and local investors and Ab_temp with coefficients in percentage. The statistical significance of the coefficients is reported by p<0.1; p<0.05; p<0.01.

As shown in table 13, columns one and three, the previously systematic relationship between abnormal temperature and trading behavior vanishes when dividing the institutional investors based on their geographical origin. Hence, instead of further supporting the weak relationship found in the previous test, these findings indicate that no systematic relationship, in fact, exists. Since this test provides no significant result, the relationship found in table 12 is concluded to be obsolete. Further, as shown in columns five and seven, there is, as expected, no relationship presents for blockholders.

As explained earlier, it is important to evaluate the winsorized result in relation to nonwinsorized estimates. Therefore, in table 14, the non-winsorized results are presented and these will be considered in relation to the winsorized results in table 13 and 12.
	EMC <u>A</u> Retail		ЕМСДи	stitutional	EMC		
-	(1)	(2)	(3)	(4)	(5)	(6)	
Ab_temp	-0.070		0,083*		0.037		
	(-0,51)		(1,78)		(0,35)		
Ab_temp Q2		-0.278		0.013		0.569	
		(-0,47)		(0,06)		(1,21)	
Ab_temp Q3		0.869		-0.008		-0.501	
		(1,46)		(-0,04)		(-1,12)	
Ab_temp Q4		-0.254		0.302		0.217	
		(-0,43)		(1,25)		(0,56)	
Ab_temp Q5		-0.146		0,444**		-0.009	
		(-0,25)		(2,45)		(-0,03)	
Observations	65	65	65	65	65	65	
R^2	0.004	0.079	0.036	0.097	0.002	0.114	

Table 14: Regression output of non-winsorized trading activity and Ab_temp with coefficients in percentage. Thestatistical significance of the coefficients is reported by *p<0.1; **p<0.05; ***p<0.01.

In table 14, columns one, three, and five similar results between abnormal temperatures and trading behavior as in the winsorized tests are shown. In the same manner as in the winsorized tests, no support is found when dividing the investor groups based on their geographical origin, as shown in appendix E.8.

Sub-conclusion

This thesis finds no evidence of a systematic relationship between the trading activity of any investor group and abnormal temperature. The weak relationship found between institutional investors and abnormal temperatures was not supported when the group was geographically divided and therefore deemed obsolete. Thus, there is no support for the hypotheses that experiencing abnormal temperatures affects the trading behavior of the different investor groups. This is in contrast to Choi, Gao, and Jiang (2020), who find that local retail investors systematically sell high emission stocks while blockholders buy high emission stocks in abnormal temperatures.

6. Discussion

This section aims to provide a fuller discussion of the empirical results in relation to the underlying theory of the thesis and depict the result in relation to the national surveys conducted by institutional parties that were presented in the 3.5 section of the thesis. This will be done in three interrelated sections. First, a discussion regarding attention to climate change and abnormal temperature will be performed. Secondly, the discussion will focus on investor beliefs in light of the literature on the topic and surveys conducted in Sweden. Finally, building on the findings in the first two sections, the discussion emerges in a depiction of the ownership impact on stock prices.

Abnormal Temperatures and Attention to Climate Change

The first sets of hypotheses examine whether abnormal temperature impacts Swedish investors' realization about climate change. More specifically, whether the experience of abnormal temperatures causes Swedish investors to pay more attention to climate change. As argued in the literature chapter, limited attention puts constraints on what we can be attentive towards and might result in a misdirected attention (Lim & Teoh, 2010; Hishleifer & Teoh, 2003). Furthermore, DellaVigna and Pollet (2007) argue investors are often inattentive to less salient and less accessible long-term effects, but attentive to the more salient short-term effects. Since the local weather is people's direct experience, it could affect people's attention towards climate change (Choi, Gao, & Jiang, 2020), even if the short-term abnormal temperatures say nothing about the long-term trend (IPCC, 2018b; Zaval et al., 2014).

In the paper of Choi, Gao, and Jiang (2020), it is concluded that abnormal temperatures in an international setting result in an increase in attention towards climate change. This thesis tests whether the same effect is visible when focused solely on the Swedish market and in a more recent time period. However, the thesis does not find support for the set-out hypotheses. Hence, the findings contradict Choi, Gao, and Jiang's (2020) result, and the potential reasons and implications will now be discussed.

According to Lim & Teoh (2010), the salience of a stimulus is an important denominator for our attention to be captured by it. Therefore, our insignificant result causes a question of the salience of abnormal temperatures to rise. One could argue that a reason for the non-result is that abnormal temperatures are not salient for people in Sweden. However, the substantial findings of abnormal temperature impact on an international level suggest that the stimuli are perceived as salient in many nations. As a consequence, one must turn to what might offset the salience of abnormal temperatures in Sweden. We argue that a likely explanation could be found in the perception, characteristics, and the number of competing stimuli in the environment as these are likely to differ across borders. This line of reasoning stems from the description of attention allocation by Lim and Teoh (2010). They argue that attention allocation is not only dependent on the salience of the stimulus in question, but also on the characteristics and number of competing stimuli in the environment. This is derived from the premise that attention to one task requires substitution from another task (Lim & Teoh, 2010). Thus, we argue that the insignificant result of the first test could be explained by the argument that competing stimuli in the area of climate change might be more salient than the abnormal temperatures in Sweden. Hence, the stimulus abnormal temperature might be offset by other competing stimuli towards climate change. Accordingly, we graph several relevant climate change events in recent years, that could be competing stimulus, and compare it to Google SVI for the topic "Climate change" in Sweden.

Figure 15: Google search volume and climate related events. Time period stretching from 2013 to 2019. Own illustration. Data source: Google Trends (2020).

As shown in figure 15, some potential competing stimuli seem to correlate with attention toward climate change. Notably, some events seem to repeatedly result in increased attention toward climate change, such as IPCC reports and the United Nations Climate Change Conference (COP).

Schmidt (2015) claims that media coverage of climate change appears to be higher in years that are warmer than previous years; in other words, years that break the records. Thus, the attention effect of local weather could be enhanced by the media. If the media systematically cover the topic of climate change in abnormal temperatures, the local warming effect on attention found in other studies, such as Choi, Gao, and Jiang (2020), could partly be ascribed to increased media coverage. The salience of media coverage has been found in many of the studies covered in our thesis. Klibanoff, Lamont, and Wizman (1998) and Huberman and Regev (2001) both found that the salience of New York Times articles impacted investors. Moreover, Boykoff and Roberts (2007) found that media coverage was a central factor in people's understanding of climate change.

In Sweden, record-breaking years, such as 2019, seem to increase media attention. For instance, in Swedish business newspapers, the number of articles related to the topic of climate change increased by 72 percent in relation to the previous year (Retriever, 2020). We also see an increase in Google SVI in these years. This indicates that media coverage could be related to abnormal temperatures. However, by looking at the yearly tendencies, we cannot identify whether the increase in media coverage is related to specific months of abnormal temperatures or if the increased media attention is coincidental. Consequently, we cannot rule out the possibility that Sweden exhibits a weaker relationship between abnormal temperatures and attention due to the media coverage being unrelated to abnormal temperatures is offset by competing stimuli. Since media coverage is often perceived as salient, it could potentially reveal which these competing stimuli are. For instance, Greta Thunberg is one of the most mentioned in the business newspaper headlines in recent years (Retriever, 2020) and seems to attract google searches, as shown in figure 15.

Abnormal Temperatures and Portfolio Returns

The combination of the third and fourth sets of hypotheses examines whether abnormal temperature impacts Swedish investors' response to climate change. The results from the hypothesis testing will be elaborated on in this section. The result will be discussed in relation to studies presented in the literature chapter on how personal experience can affect the belief regarding climate change and people's adopted actions. These will further be applied to the Swedish context for answers regarding the apparent difference in our findings compared to international studies. The result will also be depicted in relation to the first analysis to develop the discussion further of the interrelated results.

According to the efficient market hypothesis, beliefs are supposed to be revised when new value implicating information reaches the market (Malkiel, 2003). As abnormal temperatures carry no new information about the climate at large, beliefs about climate cash-flow implications and the following prices should not be revised. However, existing climate research suggests that temperature abnormalities do influence our risk perceptions and beliefs about climate change (Choi, Gao, & Jiang, 2020; Zaval et al., 2014; Li, Johnson, & Zaval, 2011). In an international setting, Choi, Gao, and Jiang (2020) concluded that abnormal temperature affects investors' beliefs and stock prices of climate sensitive stock. Heuristic belief-updating and collective market actions lay the foundation for this effect to be present, as temperature abnormalities are, as previously argued, non-information with regards to the climate at large. As concluded in the regression output section 4.5, we find contradicting results in the Swedish market. In Sweden, we find no evidence of a systematic relationship between abnormal temperature and EMC returns in Sweden. Because of this, we do not find support for the hypothesis that Swedish investors systematically update their beliefs regarding climate change when experiencing abnormal temperatures. Our finding, therefore, supports a conclusion where belief updating with regards to climate change does not seem to be heuristic in the Swedish market and does not give support to conclusions about market inefficiency. However, the potential underlying reasons for our non-result need to be elaborated on further. Therefore, the following discussion will evaluate the potential reasons behind the non-result in contrast to the underlying theory of the thesis and opposing result of Choi, Gao, and Jiang (2020).

One potential reason for the non-result could be that Swedish investors have not, to a large extent, updated their belief regarding climate change when experiencing abnormal temperatures. In order for a price-effect to be visible within the means of our method, it would require either a continuous updating or a reversal of beliefs about climate change related to abnormal temperature periods. In a yearly survey by the SOM Institute, approximately 20,000 Swedes are asked about the level of concern they have about climate change, which gives some indications on the belief-updating process in Sweden.

Figure 16: Development of respondents' concern about climate change from 2003 to 2018 in Sweden. Own creation. Data source: University of Gothenburg, SOM Institute (2020).

As shown in figure 16, there are some indications of a continuous belief-updating process in Sweden. In the period from 2003 to 2018, we see a decrease in respondents with little- to no concern from 19.4 percent to 15.0 percent and an increase in respondents with some- to major concern from 80.6 percent to 84.9 percent. The same holds for potential belief reversals, where the figure indicates that concerns do vary across the years. For example, in 2006 and 2011, it is visible that the respondents with major concern decreases and little- to some concern increases. As argued earlier, a detectable price-effect would require either a continuous updating or a reversal of beliefs about climate change related to abnormal temperature periods. Given that the SOM Institute survey could mirror investor beliefs, it indicates that beliefs are continuously revised and reversals are not occurring, which are implicating our results, but rather that abnormal temperatures do not seem to drive the beliefs. However, it is still uncertain whether the small proportion of people with varying concerns would be enough to implicate stock prices.

With that in mind, it is important to consider Swedish people's climate change beliefs in relation to other countries since the current literature on the topic is covering international data and larger markets such as the U.S. In a U.S. survey from 2016, only 70 percent of the respondents believe that climate change is occurring (Marlon et al., 2016). In the same year, European Social Survey (2018) finds that 96.8 percent of Swedes believe that climate is changing. Furthermore, compared to other European countries, Sweden scores second-highest on the question. Additionally, as shown in figure 16, a large proportion of Swedes are concerned about climate change as early as in 2003, which in itself indicates a belief in a changing climate. As argued in the previous paragraph, the development of concerns is also rather small. This is also indicated in a survey by Kantar Sifo, where only three percent of the respondents in 2019 do not believe in climate change (Wennö & Söderpalm, 2020). Hence, the non-result of our study compared to other international studies could potentially be explained by the evidence suggesting that such a large proportion of Swedes already believe that climate change is happening. When collective beliefs are so close to the scientific consensus, the relationship between stock prices and local abnormal temperatures is expected to be weakened (Choi, Gao, & Jiang, 2020). Thus, the belief-updating process, which can be identified in an international setting, might be too small to detect in a Swedish setting given that beliefs are not adequately reversed within the testing period.

Another important consideration is to evaluate the second set of discussions in relation to the first discussion on Attention to climate change. As argued in the literature review, limited attention cannot only cause heuristics which implicate beliefs, but also create attention-driven buying pressure (Barber & Oden, 2008). According to Barber and Odean (2008), individual investors can become net-buyers of attention-grabbing stocks, which generates attention-driven buying pressure, resulting in higher stock prices in the short-run followed by long-run reversals. As abnormal temperature does not systematically increase Swedish attention toward climate change, the possibility of this type of price pressure was excluded in our first analysis. Thus, the result from our second analysis is in conjunction with our first. In figure 17 below, attention toward climate change, as proxied by Google SVI, abnormal temperature and major concern about climate change are presented.

Figure 17: Percentage change in yearly average Google SVI, percentage change in major concerns of climate change, and yearly average abnormal temperature. Own creation. Data soures: Google Trends (2020), University of Gothenburg, SOM Institute (2020), and SMHI (2020b).

As shown in figure 17, the change in the two factors, attention and major concern about climate change, seem to continuously correlate while abnormal temperature does not. This further establishes that the identification of what factors drives these processes might have attention-driven pricing implications, but that the determining factor in the Swedish market does not seem to be abnormal temperature.

As argued in the literature review, many studies have found that personal experience is important for the belief process when it comes to climate change (Baldauf, Garlappi, & Yannelis, 2020; Keenan, Johnson, & Weber, 2014; Zaval et al., 2014). In a survey by Kantar Sifo in 2019, the importance of personal experience is, to some degree, visible in the responses from Swedish people when they elaborate on what concerns them most about climate change (Wennö & Söderpalm, 2020). The potential of wildfires and droughts are the most worrying scenarios, which are connected to recent experiences of the incidents. This indicates that availability heuristic, where individuals evaluate the likelihood or frequency of an event by the ease with which they can access corroborative memories, could be present in the belief-process of Swedes. One could argue that both worrying scenarios are closely connected to warm local temperatures. Thus, it seems that any potential pricing effect due to an increase in attention and/or heuristic belief revision could be correlated with the warmest quintile of abnormal temperature. However, we did not find this systematic pattern in our study, even if the population in the Kantar Sifo survey seem to demonstrate these behavioral patterns. Hence, we

could not find supporting evidence of a heuristic belief formation related to abnormal temperatures in Sweden. However, in relation to this argumentation, it could be considered whether a combination of experiences and social construction could be explanatory for the non-result of our study. In an article by Akerlof et al. (2013), it is argued that an increased risk perception of climate change is caused, presumably, through a combination of the direct experience, the vicarious experience, and the social construction. Therefore, the direct experience of abnormal temperatures might not in itself be enough to explain the formation of beliefs, but a combination of experiences and social construction could have explanatory power.

Even though the above arguments suggest that other factors than abnormal temperatures drive climate change beliefs and attention in the Swedish market, one cannot completely exclude the factor as a driver. It is important to consider whether the IPCC classification of high emission firms captures the general beliefs of investors. In a survey by Kantar Sifo in 2019, less than 40 percent of the respondents knew what the two largest emitters in Sweden were (Wennö & Söderpalm, 2020). Hence, this indicates that more than the majority of the respondents demonstrate some degree of incompetence on the major emitters in the society. If these results can be translated to the majority of investors, any potential price effect for the Emission and Clean stocks may not be detectable with our IPCC classifications. This indication of public ignorance surrounding the issue is interesting for future classifications. However, the assumption of undetectability due to ignorance is a rather strong one to make. The conclusion that a proportion of Swedes are unable to identify which sources that generate high emissions. Hence, we argue that the categorization where the largest emission industries are grouped into one unit should have the ability to capture the public perception.

Furthermore, it is important to consider whether the IPCC classification could suffer from actual cash-flow effects in abnormal temperatures. For example, if a multitude of industries in the Clean grouping of stocks experience a negative earnings effect in abnormally warm weather while the Emission stocks do not, a potential price-effect due to belief revision could be canceled out. However, since the Emission and Clean portfolios are examined separately, we would still be able to detect a systematic effect in the respective portfolios. Furthermore, Addoum, Ng, and Ortiz-Bobea (2020) find that in the U.S. market, neither abnormally warm

nor abnormally cold weather affects establishment sales or productivity. They conclude that the only evidence of a sales effect caused by abnormal temperatures in the U.S. market is found in the energy industry, while temperatures are abnormally cold. The IPCC definitions of our thesis classify all energy companies as high emission firms. Thus, if the result of the study by Addoum, Ng, and Ortiz-Bobea (2020) can be translated to the Swedish market, the non-existing relationship of our study between abnormal temperatures and returns is in line with earnings expectations. Hence, a cash-flow effect that cancels out a present price effect caused by belief-updates is unlikely in our study.

Abnormal Temperatures and Trading Activity

In the third set of hypotheses, the abnormal temperature impact on Swedish investor response to climate change was further examined. More specifically, the relationship between abnormal temperature and different investors' trading behavior on the Stockholm Stock exchange was studied. The result will primarily be viewed in light of our previous findings. Further, it will be an extension to the previous discussion on stock prices and abnormal temperature by taking a point of departure in the ownership impact on stock prices.

The results from the first sets of hypotheses indicate that there should be no systematic trading behavior based on abnormal temperatures. At least, any potential systematic trading behavior does not affect the pricing mechanism. The results from the last sets of hypotheses confirm this conjecture, and no systematic relationship between abnormal temperature and trading activity of retail investors, blockholders, or institutional investors is found. However, we must consider the importance of a home bias presence in the matter. Research has found that investors tend to allocate a greater share of their portfolio to domestic securities rather than foreign ones (French & Poterba, 1991). As a result, the prices of local stocks are affected by local investors' trading behavior (Chan, Hameed, & Lau, 2003). Thus, if our sample does not exhibit this unbalance between local and foreign investors, local investors would not be able to move prices to the same degree. In the results of hypothesis two, ownership proportions are unknown. Therefore, as an extension to the previous discussion, an estimation of the sample proportion of local and foreign investors is presented.

Figure 18: Average proportion of local and foreign institutional investors and blockholders. Time period stretching from December 2003 to December 2019. Own creation. Data sources: Thomson Reuters (2020) and FactSet (2020).

As shown in the pie chart above, the average local institutional ownership and blockholders ownership in our sample is 74 percent, while 26 percent is foreign. Further, all retail investors are assumed to be local. Hence, we can see that the sample exhibits an overrepresentation of local ownership. Consequently, we would expect to see a price movement if the local abnormal temperatures would be a determining factor for local investors' valuation of stocks. However, since no such relationship is present, it is not the proportion of local and foreign investors that is explanatory for the non-result, but rather that abnormal temperature is not the determining factor.

Further, Choi, Gao, and Jiang (2020) argue that retail investors are more prone to individual biases than institutional investors and blockholders. The findings of Choi, Gao, and Jiang (2020) also support the claim, where retail investors systematically avoid the Emission stocks once their beliefs are updated. Therefore, we would expect that trading activity based on heuristic belief-formation in abnormal temperatures would primarily, in case of its presence, be visible in the retail investor segment. Consequently, the non-relationship between abnormal temperatures and all investor trading activity further supports the conclusion that belief-formation in Sweden does not seem to stem from experiencing temperature abnormalities. However, in line with the arguments formed in the previous discussion, we cannot ultimately exclude the factor as a driver. The result is prone to some of the same potential diluting

mechanisms as discussed in the previous section. In particular, if the IPCC classifications do not reflect the public perception, the test of investor trading activity would also be prone to the same dilution of the result as argued earlier. Nevertheless, the combined results in all our hypotheses testing strongly suggest that abnormal temperature is not influencing investor behavior on the Stockholm stock exchange.

7. Conclusion

This thesis studies to what extent, if at all, exposure to abnormal temperature in Sweden affects equity investors' realization and response to climate change. The aim of the thesis is to contribute to the limited research made by financial economists on the effect of abnormal temperature exposures on investor behavior in regard to climate change. Inspired by international studies, we contribute with novel insight from the Swedish stock market.

Our study was conducted in three interrelated sections starting off by showing a non-significant relationship between abnormal temperature and increased attention by means of Google searches on the topic "Climate change". We argue that the stimulus abnormal temperature might be offset by other competing stimuli toward climate change. Thus, we could not find that abnormal temperature influenced investors' realization of the climate change issue.

Further, we turned to the Stockholm stock market by identifying industries as either high or low emission and constructed a long-short portfolio defined as Emission Minus Clean (EMC). At a monthly frequency, we find that the effects of temperature abnormalities on stock prices are statistically insignificant. Thus, we could not find support for our hypotheses that abnormal temperature impact investor beliefs, and the market as a whole do not react to abnormal temperature. We argue that the high level of climate change believers in Sweden makes the link between abnormal temperature and stock prices weaker. The updating of beliefs as a consequence of abnormal temperatures might be too small to impact prices or not exist at all on the Stockholm stock exchange. Consistent with these results, we find similar non-results at the ownership level, where we document that temperature exposures are unrelated to trading activities among retail investors, blockholders, and institutional investors.

The consistent set of non-results strongly suggests that abnormal temperatures do not influence equity investors' realization and response to climate change in Sweden. This provides a starting point for further examination that will be expressed in the next section.

8. Limitations and Future Research

While our combined analysis of the relationship between abnormal temperatures and investor behavior displays a consistent set of non-results, our tests construct a point of departure for further review. In this section, we will therefore extend the previous discussion and present limitations combined with suggestions for future research.

From our combined analysis, it is clear that some questions remain to be answered for an ultimate conclusion of what drives investor attention, beliefs, and ultimately actions with regards to climate change in the Swedish market. In our discussion regarding abnormal temperatures and stock returns, we identified some indications of availability heuristics when it comes to climate change concerns in Sweden. We elaborated on the argument by linking the worrying scenarios of wildfire and drought to abnormally warm temperatures. These scenarios specifically correlate with warm summers. However, the variable of abnormal temperature used in our research will pick up abnormality in all seasons. For example, many of our abnormally warm months occur in the wintertime. Consequently, while our results suggest that abnormal temperatures in general do not seem to impact investor behavior, it remains unsolved whether, for example, abnormally warm summers do. Given the indications of a potential behavioral effect linked to certain seasons of abnormal temperatures, it would be valuable for future research to examine seasonality or other temperature measures further.

Our previous discussions also mentioned the potential of not capturing the public perception with the IPCC categorization. More specifically, a survey by Kantar Sifo in 2019 indicates some incompetence on emission sources among the Swedish respondents (Wennö & Söderpalm, 2020). In spite of this indicated incompetence, we argue it unlikely that the IPCC categorization would fail to capture the public perception. However, a survey study on investor perception regarding emitting industries or specific companies could help to create a more precise categorization to capture investor belief. Further, the IPCC categorization might inherit some industry effects. By employing different categorization measures, such as the one described above, or other already available environmental classifications, researchers could further exclude potential industry effects. Therefore, we encourage further research to explore other types of firm-categorization in order to gain a deeper understanding of the belief mechanisms on the Swedish market.

Further, the chosen proxy to capture attention toward climate change in the Swedish market is not necessarily exhaustive. While Google SVI is often occurring in later research as a comprehensive measure of attention, other proxies are also utilized. As a starting point for future studying of Swedish investor attention to climate change it could therefore be of interest to examine other proxies more closely. Furthermore, as beliefs and attention seem to correlate in the Swedish market, research on the relationship between stock prices and the attentionvariable itself could be of interest. In our research we have also been limited to using a proxy for the ownership proportion of retail investors. This proxy is susceptible to measurement errors. Further, the amount of local- contra foreign retail investors is unknown. Instead, all retail investors are assumed to be local. Therefore, a study allowing a precise measure on, not only the institutional investors and blockholders, but also retail investors would be a valuable contribution to the research field.

It is also important to mention that stock returns are affected by many factors. The market impact of the current worldwide outbreak of COVID-19 is an excellent example of an event that could dominate other potential factors such as abnormal temperature. Hence, marketdisrupting events and other price implicating factors can potentially create too much noise for a detection to be possible within the means of our chosen method. Over the length of the main sample period, 16 years, many such price-implicating events have taken place, which could dilute results. Further, our method is unable to capture whether any effect might have been present in some years, but not in others. Hence, a suggestion for further establishment of the abnormal temperature effect would be to study it in different time horizons. It is also important to note that while our monthly and quarterly time series' does not exhibit a significant relationship, it cannot be excluded that other time intervals do. It could, therefore, be of interest to further study the effect of abnormal temperatures on attention and beliefs in other intervals. Another limitation of our study in comparison to Choi, Gao, and Jiang (2020) is that it does not exhibit the same identification advantage as one based on international data. In an international setting, beliefs will naturally vary across countries and will most likely not be revised or updated simultaneously. This will clearly facilitate an identification of any abnormal temperature effect. To conclude, future research efforts may be dedicated to further investigate these concepts. Notwithstanding, we are confident that our thesis advances existing knowledge on the Swedish investor realization and response to climate change.

8.1 Perspective

While writing this thesis, the global COVID-19 pandemic has rippled through our societies and created devastating effects for people across the globe. Moreover, the virus has a dramatic impact on financial markets all over the world. The combination of the two has caused an economic crisis in which our thesis must be viewed in relation to. Since our thesis examines data from a period prior to these events, the potential effect of the crisis will be taken into consideration. The consideration requires the atypical approach of introducing additional information. However, due to the significance of the events, we do not wish to leave it uncommented.

The outbreak of the COVID-19, is in many ways resembling a future climate crisis. Watching the pandemic develop is like looking into a crystal ball where the climate crisis unfolds. The two crises are both global challenges that are not at all concerned with borders. Furthermore, these challenges call for governments' actions on a global scale, which have practically never before been seen during peacetime (The Economist, 2020). However, no matter how uncanny the resemblance might be, the perhaps less obvious interaction between the two is even more noteworthy for the field of climate finance in general, and our research in particular. These interactions will, therefore, be reviewed in relation to our research area.

Visibility of the Climate Change Magnitude

The basis for our thesis is the limited attention of individuals, which inherently requires that attention to one task is conditioned with less attention to other tasks. In light of this, it is interesting to observe whether the attention to the global pandemic causes attention to climate change to decrease. The Swedish media-coverage implies that this might be the case. In 2019 the top-subject in Swedish media was the climate (Retriever, 2020). When comparing the number of climate articles in 2019 with COVID-19 articles in only the first four months of 2020, the COVID-19 coverage is more than double the climate amount (Retriever, 2020). The effect of COVID-19 on investor attention to climate change would, therefore, be of interest to

further investigate. Moreover, if COVID-19 causes attention to climate change to decrease, further studying the effects of abnormal temperatures on attention to climate change internationally could serve a purpose. Our results indicate that this would not be manifested in Sweden since climate change attention is unrelated to abnormal temperatures prior to the crisis

On the other hand, the global pandemic could also shed light on the magnitude of the challenges of climate change. Since the pandemic has caused complete shutdowns of parts of the economy, it has also resulted in enormous reductions of greenhouse-gas emissions. The International Energy Agency (IEA, 2020). forecasts a reduction of global industrial greenhouse-gas emissions of eight percent in 2020 compared to 2019. This would make the reduction six times bigger than what was achieved in the aftermath of the 2008 financial crisis (IEA, 2020). Even so, the shutdowns and significant limitations to people's daily lives have proven far too small to be able to reach the goal of a climate only being 1.5°C warmer than pre-industrial levels. According to The Economist (2020) we would need to decarbonize 90 percent more than we have done during COVID-19 lockdowns in order to reach the goal. The insufficiency of the reductions, even when such dramatic limitations to daily life are imposed, paints a very vivid picture of the magnitude of the climate change challenge. Even though the necessary decarbonization levels could be argued to be incorporated into investor forecasts and riskassumptions, this very vivid realization could have impact on the way investors approach emission industries going forward. More specifically, when applying the concept of heuristics, the salient personal experience of limits to daily lives and realizations of its insufficiency could have an impact on risk judgments. The question remains whether our attention will be framed toward the risks of a future pandemic or whether it could create the argued realization of climate change magnitude. Another factor to consider is whether the influence of such a realization causes inaction rather than action i.e., whether the magnitude creates feelings of helplessness. Our thesis deals with investors' realization and response to climate change as a consequence of abnormal temperature, but these new potential impacts on the subject matter remain unsolved. Therefore, studying the post COVID-19 realization of the climate change magnitude and the response of investors would be an interesting extension to the subject area.

The EMC Portfolios

During the global pandemic outbreak, there has been a crash in the prices of risk assets and a spike in volatility. Due to the wide-reaching lockdowns, the demand for energy has also decreased significantly in the period. IEA (2020) states that global energy demand declined by 3.8 percent in the first quarter of 2020. The demand for coal and oil was mostly affected, whereas renewables was the only source with an increased demand. The decreased demand in oil and subsequent OPEC+ failure to agree on output cuts caused spot prices to plummet in March (International Monetary Fund, 2020). Moreover, investors seem to expect the prices to stay low for a long time as the oil futures curve shifted down. What kind of extended effects these tendencies of low demand in the carbon-intensive energy sectors combined with increased demand in the renewables sector will have post-crisis is hard to tell. However, the carbonintensive energy sector is largely represented on the Emission side of our portfolios. Thus, special caution in portfolio considerations should be applied in future studies, even if we see no reason to believe that the crisis will affect the systematic relationship of abnormal temperature on stock prices in Sweden. The crisis also poses implications for sectors that could alleviate the investors' physical climate-risks. More specifically, the impact of insurance companies and governments being strained by COVID-19 could also impact investor perceptions of risks associated with climate change as the alleviating parties may have less coverage. Having said that, a potential relationship might vanish in other countries or in an international study, due to the salient competing stimuli COVID-19. Hence, a multitude of interactions between the pandemic and the climate change issue gives reason for additional portfolio considerations and rise to future research areas.

In conclusion, the disruptive nature of the global pandemic poses several scenarios where the climate change issue might be perceived and tackled differently than before. Even though we do not believe that the COVID-19 crisis will affect the level of climate change believers in Sweden, the crisis could affect attention toward it. Furthermore, the significant impact on numerous sectors has disruptive impacts, which gives reason to believe that new considerations must be accounted for in future climate finance research.

9. Final Remark

The climate change issue requires it to be effectively tackled in a unified response. We believe that more research on the topic is critical to make that possible. As of today, research conducted by financial economists is rather limited, even if many questions, such as investors' behavior, are naturally suited for the field. Thus, we hope that this thesis can inspire other researchers in finance to address questions related to the changing climate, which is one of the most critical challenges of our time.

10. Bibliography

- Addoum, J. M., Ng, D. T., & Ortiz-Bobea, A. (2020). Temperature shocks and establishment sales. *The Review of Financial Studies*, *33*(3), 1331–1366.
- Akerlof, K., Maibach, E. W., Fitzgerald, D., Cedeno, A. Y., & Neuman, A. (2013). Do people "personally experience" global warming, and if so how, and does it matter? *Global Environmental Change*, 23(1), 81-89.
- Alok, S., Kumar, N., & Wermers, R. (2020). Do fund managers misestimate climatic disaster risk. *The Review of Financial Studies*, *33*(3), 1146-1183.
- Bae, K. H., Stulz, R. M., & Tan, H. (2008). Do local analysts know more? A crosscountry study of the performance of local analysts and foreign analysts. *Journal of Financial Economics*, 88(3), 581-606.
- Baldauf, M., Garlappi, L., & Yannelis, C. (2020). Does Climate Change Affect Real Estate Prices? Only If You Believe In It. *The Review of Financial Studies*, 33(3), 1256-1295.
- Banz, R. W. (1981). The relationship between return and market value of common stocks. *Journal of financial economics*, 9(1), 3-18.
- Barber, B., & Odean, T. (2008). All That Glitters: The Effect of Attention and News on the Buying Behavior of Individual and Institutional Investors. *The Review of Financial Studies*, 21(2), 785-818.
- BBC News. (2020a, February 28). Greta Thunberg: What does the teenage climate change activist want? Retrieved May 5, 2020, from BBC News: https://www.bbc.com/news/world-europe-49918719
- BBC News. (2020b, January 21). Davos: Trump decries climate 'prophets of doom' with Thunberg in audience. Retrieved May 5, 2020, from BBC News: https://www.bbc.com/news/world-europe-51189430
- Ben-Rephael, A., Da, Z., & Israelsen, R. D. (2017). It Depends on Where You Search: Institutional Investor Attention and Underreaction to News. *The Review of Financial Studies*, 30(9), 3009 -3047.
- Borick, C. P., & Rabe, B. G. (2014). Weather or not? Examining the impact of meteorological conditions on public opinion regarding global warming. *Weather, Climate, and Society, 6*(3), 413-424.

- Boykoff, M. T., & Roberts, J. T. (2007). *Media coverage of climate change: current trends, strengths, weaknesses.* Human development report. Retrieved from http://hdr.undp.org/sites/default/files/boykoff maxwell and roberts j. timmons.pdf
- Boykoff, M. T., & Roberts, J. T. (2007). *Media coverage of climate change: current trends, strengths, weaknesses.* Human development report.
- Broomell, S. B., Budescu, D. V., & Por, H.-H. (2015). Personal experience with climate change predicts intentions to act. *Global Environmental Change*, *32*, 67-73.
- Chan, K., Hameed, A., & Lau, S. (2003). What if Trading Location Is Different from Business Location? Evidence from the Jardine Group. *Journal of Finance*, 58(3), 1221-1246.
- Choi, D., Gao, Z., & Jiang, W. (2020). Attention to global warming. *The Review of Financial Studies*, 33(3), 1112-1145.
- Coval, J., & Moskowitz, T. (1999). Home Bias at Home: Local Equity Preference in Domestic Portfolios. *Journal of Finance*, *54*(6), 2045-2073.
- Da, Z., Engelberg, J., & Gao, P. (2011). In Search of Attention. *The Journal of Finance*, 66(5), 1461-1499.
- Da, Z., Gurun, U. G., & Warachka, M. (2014). Frog in the Pan: Continuous Information and Momentum. *The Review of Financial Studies*, *27*(7), 2171-2218.
- Dagens Nyheter. (2020, June 08). *Klimatet just nu*. Retrieved May 5, 2020, from DN: https://www.dn.se/klimatet-just-nu/
- DellaVigna, S., & Pollet, J. (2007). Demographics and Industry Returns. *American Economic Review*, 97(5), 1667-1702.
- Deryugina, T. (2013). How do people update? The effects of local weather fluctuations on beliefs about global warming. *Climatic change*, *118*(2), 397-416.
- Druckman, J. N., Green, D. P., Kuklinski, J. H., & Lupia, A. (2011). Cambridge handbook of experimental political science. *Cambridge University Press*, 27-29.
- Duan, T., & Li, F. W. (2019). Climate Change Concerns and Mortgage Lending. *Available at SSRN 3449696*.
- Eldor, R., Pines, D., & Schwartz, A. (1998). Home asset preference and productivity shocks. *Journal of International Economics*, 25(1), 165-176.
- European Social Survey. (2018, September). European Attitudes to Climate Change and Energy: Topline Results from Round 8 of the European Social Survey. Retrieved

March 5, 2020, from

https://www.europeansocialsurvey.org/docs/findings/ESS8_toplines_issue_9_climatec hange.pdf

- European Union. (2019). *Going Climate Neutral by 2050*. Retrieved April 20, 2020, from https://ec.europa.eu/clima/sites/clima/files/long_term_strategy_brochure_en.pdf
- FactSet. (2020). Download Builder [FactSet Database].
- French, K., & Poterba, J. (1991). Investor Diversification and International Equity Markets. *The American Economic Review*, 81(2), 222-226.
- Ghosh, D., & Vogt, A. (2012). Outliers: An evaluation of methodologies. *Joint statistical meetings*, 2012.
- Google Trends. (2020). Google Search Volume Index Data.
- Hirshleifer, D., & Teoh, S. (2003). Limited attention, information disclosure, and financial reporting. *Journal of accounting and economics*, *36*, 337-386.
- Hirshleifer, D., Lim, S. S., & Teoh, S. H. (2009). Driven to Distraction: Extraneous Events and Underreaction to Earnings News. *Journal of Finance*, *64*(5), 2289-2325.
- Hong, H., Karolyi, G. A., & Scheinkman, J. A. (2020). Climate Finance. *The Review of Financial Studies*, *33*(3), 1011-1023.
- Hou, K., Karolyi, G. A., & Kho, B. C. (2011). What factors drive global stock returns? *The Review of Financial Studies, 24*(8), 2527-2574.
- Howe, P. D., Markowitz, E. M., Lee, T., Ko, C.-Y., & Leiserowitz, A. (2013). Global perceptions of local temperature change. *Natural Climate Change*, *3*(4), 352-356.
- Huberman, G. (2001). Familiarity breeds investment. *The Review of Financial Studies*, *14*(3), 659-680.
- Huberman, G., & Regev, T. (2001). Contagious Speculation and a Cure for Cancer: A Nonevent that Made Stock Prices Soar. *The Journal of Finance*, *56*(1), 387-396.
- Ince, O. S., & Porter, R. B. (2006). Individual equity return data from Thomson Datastream: Handle with care! *Journal of Financial Research*, *29*(4), 463-479.
- Intergovernmental Panel of Climate Change. (1996). *Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories*. Retrieved from Intergovernmental Panel of Climate Change - Task Force on National Greenhouse Gas Inventories: https://www.ipcc-nggip.iges.or.jp/public/gl/guidelin/ch1ri.pdf

Intergovernmental Panel on Climate Change. (2001). *Climate Change 2001: Synthesis Report. A Contribution of Working Groups I, II, and III to the Third Assessment Report of the Integovernmental Panel on Climate Change*. Retrieved from https://www.ipcc.ch/site/assets/uploads/2018/05/SYR TAR full report.pdf

Intergovernmental Panel on Climate Change. (2014). *Climate Change 2014 Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)].* Retrieved from

https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf

- Intergovernmental Panel on Climate Change. (2018a). *Global Warming of 1.5°C, Summary for Policymakers*. Retrieved from https://www.ipcc.ch/sr15/chapter/spm/
- Intergovernmental Panel on Climate Change. (2018b). Annex I: Glossary IPCC. In: Global Warming of I.5C. Retrieved from

https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15 AnnexI Glossary.pdf

- Intergovernmental Panel on Climate Change. (2020). *IPCC*. Retrieved February 5, 2020, from https://www.ipcc.ch
- International Energy Agency. (2020, April 30). *International Energy Agency*. Retrieved from Global Energy Review 2020 - The impacts of the Covid-19 crisis on global energy demand and CO2 emissions: https://www.iea.org/reports/global-energy-review-2020/global-energy-and-co2-emissions-in-2020
- International Monetary Fund. (2020, April). *Global Financial Stability Report: Markets in the Time of COVID-19*. Retrieved from https://www.imf.org/en/Publications/GFSR/Issues/2020/04/14/global-financial-stability-report-april-2020
- Kahneman, D., & Frederick, S. (2002). Representativeness revisited: Attribute substitution in intuitive judgment. In T. Gilovich, D. Griffin, & D. Kahneman (Eds.), *Heuristics and biases: The psychology of intuitive judgment* (pp. 49-81). Cambridge: Cambridge University Press.
- Kahneman, D., & Tversky, A. (1972). Subjective probability: A judgment of representativeness. *Cognitive psychology*, *3*(3), 430-454.
- Kahneman, D., & Tversky, A. (1979). Prospect Theory: An Analysis of Decision under Risk. *Econometrica*, 47(2), 263-291.

- Kang, J., & Stulz, R. (1997). Why is there a home bias? An analysis of foreign portfolio equity ownership in Japan. *Journal of financial economics*, *46*(1), 3-28.
- Kelly, S., Yeo, J., Coburn, A., Copic, J., Crawford-Brown, D., Foley, A., ... Ralph, D. (2015). Unhedgeable Risk: How Climate Change Sentiment Impacts Investors. Cambridge: University of Cambridge.
- Klibanoff, P., Lamont, O., & Wizman, T. A. (1998). Investor Reaction to Salient News in Closed-End Country funds. *The Journal of Finance*, *53*(2), 673-699.
- Kliger, D., & Kudryavtsev, A. (2010). The availability heuristic and investors' reaction to company-specific events. *The journal of behavioral finance*, *11*(1), 50-65.
- Konisky, D. M., Hughes, L., & Kaylor, C. H. (2016). Extreme weather events and climate change concern. *Climatic change*, *134*(4), 533-547.
- Koutsobinas, T. T. (2014). Keynes as the first behavioral economist: the case of the attributesubstitution heuristic. *Journal of Post Keynesian Economics*, *37*(2), 337-355.
- Krey, V., Masera, O., Blanford, G., Bruckner, T., Cooke, R., Fischer-Vanden, K., . . .
 Zwickel, T. (2014). Annex II: Metrics & Methodology. In: Climate Change 2014:
 Mitigation of Climate Change. Contribution of Working Group III to the Fifth
 Assessment Report of the Intergovernmental Panel on Climate Change. (O. Edenhofer,
 R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, . . . J. C. Minx,
 Eds.) Cambridge and New York, United Kingdom and United States of America:
 Cambridge University Press.
- Krueger, P., Sautner, Z., & Starks, L. T. (2019). The importance of climate risks for institutional investors. *The Review of Financial Studies*, 33(3), 1067-1111.
- Kumar, K. (2020). Econometrics. CRC Press.
- Li, Y., Johnson, E. J., & Zaval, L. (2011). Local warming: Daily temperature change influences belief in global warming. *Psychological science*, 22(4), 454-459.
- Lim, S. S., & Teoh, S. (2010). Limited Attention. In H. Baker, & J. R. Nofsinger (Eds.), Behavioral Finance: Investors, Corporations and Markets (pp. 295-312). Hoboken, NJ: John Wiley & Sons, Inc.
- Lindsey, R., & Dahlman, L. (2020). *Climate Change: Global Temperature*. Retrieved from https://www.climate.gov/news-features/understanding-climate/climate-change-globaltemperature.

- Malkiel, B. G. (2003). The efficient market hypothesis and its critics. *Journal of Economic Perspectives, 17*(1), 59-82.
- Marlon, J., Howe, P., Mildenberger, M., & Leiserowitz, A. (2016). Yale Climate Opinion Maps – U.S. 2016. Retrieved from Yale Program on: Climate Change Communication: https://climatecommunication.yale.edu/visualizations-data/ycom-us-2016/?est=happening&type=value&geo=county
- Mellenbergh, G. J. (2019). *Counteracting Methodological Errors in Behavioral Research*. Cham, Switzerland: Springer.
- National Aeronautics and Space Administration. (n.d.). *Overview: Weather, Global Warming and Climate Change*. Retrieved May 5, 2020, from NASA: Global Climate Change Vital Signs of the Planet: https://climate.nasa.gov/resources/global-warming-vsclimate-change/
- National Centers for Environmental Information. (2019, January). State of Climate: Gloval Climate Report for Annual 2019. Retrieved April 2020, from https://www.ncdc.noaa.gov/sotc/global/201913
- Odean, T. (1999). Do investors trade too much? *American economic review*, 89(5), 1279-1298.
- Pallant, J. (2013). SPSS survival manual: a step by step guide to data analysis using IBM SPSS (5th Edition ed.). Maidenhead: McGraw Hill.
- Peng, L., & Xiong, W. (2006). Investor attention, overconfidence and category learning. Journal of Financial Economics, 80(3), 563-602.
- Pratama, I., Permanasari, A. E., Ardiyanto, I., & Indrayani, R. (2016). A review of missing values handling methods on time-series data. n 2016 International Conference on Information Technology Systems and Innovation (ICITSI), 1-6.
- Retriever. (2020). *Publikationer*. Retrieved May 9, 2020, from Vi-skogen: https://viskogen.se/om-oss/publikationer/
- Schmidt, G. (2015, January 22). Thoughts on 2014 and ongoing temperature trends. Retrieved from RealClimate: http://www.realclimate.org/index.php/archives/2015/01/thoughts-on-2014-and-ongoing-
- Science. (2001). The science of climate change. Science, 292(5520), 1261.

- Sercu, P., & Vanpée, R. (2008). Estimating the Costs of International Equity Investments. *Review of Finance, 12*(4), 587-634.
- Shive, S. (2012). Local investors, price discovery, and market efficiency. *Journal of Financial Economics*, 104(1), 145-161.
- Shleifer, A. (2000). *Inefficient Markets: An introduction to behavioral finance*. Oxford: Oxford University Press.
- Shleifer, A. (2000). *Inefficient Markets: An introduction to behavioral finance*. Oxford: Oxford University Press.
- Simon, H. A. (1971). Computers, communications, and the public interest. In M. Greenberger (Ed.). Baltimore, MD: The Johns Hopkins Press.
- Solnik, B. (1974). Why Not Diversify Internationally Rather than Domestically? *Financial Analysts Journal, 30*(1), 48-54.
- Stern, N. (2007). *The Economics of Climate Change: The Stern Review*. Cambridge: Cambridge University Press.
- Swedish Environmental Protection Agency. (2019). National Inventory Report Sweden 2019. Stockholm, Sweden: Swedish Environmental Protection Agency. Retrieved from: https://www.naturvardsverket.se/upload/miljoarbete-i-samhallet/internationelltmiljoarbete/miljokonventioner/FN/nir-sub-15-april.pdf.
- Swedish Meteorological and Hydrological Institute. (2020a, February 28). *Klimatindikator temperatur*. Retrieved from SMHI: https://www.smhi.se/klimat/klimatet-da-och-nu/klimatindikatorer/klimatindikator-temperatur-1.2430
- Swedish Meteorological and Hydrological Institute. (2020b). *Ladda ner meteorologiska* observationer, Stockholm station number: 98210. Retrieved February 17, 2020, from SMHI: https://www.smhi.se/data/meteorologi/ladda-ner-meteorologiskaobservationer#param=airtemperatureInstant,stations=all,stationid=98210
- Tesar, L., & Werner, I. (1995). Home bias and high turnover. *Journal of International Money* and Finance, 14(4), 467-492.
- The Economist. (2020, May 21). A new opportunity to tackle climate change: Countries should seize the moment to flatten the climate curve. Retrieved May 23, 2020, from The Economist: https://www.economist.com/leaders/2020/05/21/countries-should-seize-the-moment-to-flatten-the-climate-curve
- Thomson Reuters. (2020). Time Series Request [DataStream].

- Tversky, A., & Kahneman, D. (1973). Availability: A heuristic for judging frequency and probability. *Cognitive Psychology*, *5*(2), 207-232.
- United Nations. (2016, January 27). Ban Ki-moon's remarks at Investor Summit on Climate Risk. Retrieved from UN Sustainable Development Goals: https://www.un.org/sustainabledevelopment/blog/2016/01/ban-ki-moons-remarks-atinvestor-summit-on-climate-risk/
- United Nations Framework Convention on Climate Change. (n.d.). *Introduction to Climate Finance*. Retrieved from United Nations Framework Convention on Climate Change (UNFCCC): https://unfccc.int/topics/climate-finance/the-big-picture/introduction-toclimate-finance
- United States Global Change Research Program. (2018). Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II [Reidmiller, D.R., C.W. Avery, D.R. Easterling, K.E. Kunkel, K.L.M. Lewis, T.K. Maycock, and B.C. Stewart (eds.)]. Retrieved from

https://nca2018.globalchange.gov/downloads/NCA4_Report-in-Brief.pdf

- University of Gothenburg, SOM Institute. (2019). *Swedish Trends 1986-2018*. Retrieved February 10, 2020, from https://som.gu.se/digitalAssets/1732/1732590_7.-swedishtrends-1986-2018.pdf
- University of Gothenburg, SOM Institute. (2020). *The National SOM Survey Cumulative Dataset 1986-2018*. Retrieved from Swedish National Data Service. Version 8.0.: https://doi.org/10.5878/eq42-ds83
- Wennö, J., & Söderpalm, P. (2020). Mediebild, opinion och faktakoll i klimatfrågan. Retrieved May 2020, from Kantar Sifo: https://marketing.kantarsifo.se/ladda-nermediebild-opinion-och-faktakoll-i-klimatfragan-lp
- Wooldridge, J. M. (2013). Introductory econometry, a modern approach (vol. 5th). Mason: South-Western Publishing Company.
- World Meteorological Organization. (2020). WMO Statement on the State of the Global Climate in 2019. WMO-No. 1248. Retrieved from https://library.wmo.int/doc_num.php?explnum_id=10211
- Zaval, L., Keenan, E. A., Johnson, E. J., & Weber, E. U. (2014). How warm days increase belief in global warming. *Nature Climate Change*, *4*(2), 143-147.

Appendix

Appendix Overview

Appendix	Title	Page
А	Glossary	101
В	DataStream Mnemonics	104
С	Google DSVI and Ab_temp	105
D	Change in portfolio returns and Ab_temp	112
Е	Trading activity and Ab_temp	149

Appendix A: Glossary

Term	Description
Ab_temp	Abnormal monthly temperature at a temperature station located closest to the Stockholm Stock exchange.
Ab_temp quintiles	Abnormal monthly temperature including abnormal monthly temperature divided into quintiles, where Q1 is the 20 percent lowest abnormal temperatures and Q5 is the 20 percent warmest abnormal temperatures.
Clean	Portfolio consisting of the remaining stocks in the sample when Emission stocks had been removed.
DSVI(STHLM)	Seasonally adjusted log change in Google SVI on the topic "Climate change" in Stockholm. Winsorized at 2.5 percent tails.
DSVI(SWE)	Seasonal adjusted log change in Google SVI on the topic "Climate change" in Sweden Winsorized at 2.5 percent tails.
EMC	Long-short portfolio defined as going long in the Emission portfolio and short in the Clean portfolio.
EMC _A Blockholders	Net average quarterly ownership change between Emission and Clean firms for blockholders (owning more than five percent of outstanding shares). Winsorized at 2.5 percent tails.
EMC∆ForBlockholders	Net average quarterly ownership change between Emission and Clean firms for foreign blockholders (owning more than five percent of shares outstanding). Winsorized at 2.5 percent tails.
EMC∆ForInstitutional	Net average quarterly ownership change between Emission and Clean firms for foreign institutional investors (excluding foreign institutional blockholders). Winsorized at 2.5 percent tails
EMC _Δ Institutional	Net average quarterly ownership change between Emission and Clean firms for institutional investors (excluding institutional blockholders). Winsorized at 2.5 percent tails.

EMC LocInstitutional	Net average quarterly ownership change between Emission
	and Clean firms for domestic institutional investors
	(excluding domestic institutional blockholders).
	Winsorized at 2.5 percent tails.
EMC LocBlockholders	Net average quarterly ownership change between Emission
	and Clean firms for domestic blockholders (owning more
	than five percent of shares outstanding). Winsorized at 2.5
	percent tails.
EMCΔRetail	Net average quarterly ownership change between Emission
	and Clean firms for retail investors. Winsorized at 2.5
	percent tails.
Emission	Portfolio consisting of the sample stocks defined as high-
	emission industries.
Equal-weighted Clean	Portfolio size-adjusted return of the Clean portfolio where
	the same weight is given in all stocks in the Clean portfolio.
	Winsorized at 2.5 percent tails.
Equal-weighted EMC	Size-adjusted return of the EMC portfolio where the same
	weight is given in all stocks in the EMC portfolio.
	Winsorized at 2.5 percent tails.
Equal-weighted EMC (Unadjusted)	Unadjusted return of the EMC portfolio where the same
	weight is given in all stocks in the EMC portfolio.
	Unadjusted returns defined as the monthly change in
	Thomson Reuters DataStream Return Index. Winsorized at
	2.5 percent tails.
Equal-weighted Emission	Size-adjusted return of the Emission portfolio where the
	same weight is given in all stocks in the Emission portfolio.
	Winsorized at 2.5 percent tails.
Non-winsorized	Non-winsorized versions of all of the above variables are
	presented as (Non-winsorized).
Value-weighted Clean	Size-adjusted return of the Clean portfolio weighted
	according to the monthly market capitalization of each
	firm. Winsorized at 2.5 percent tails.
Value-weighted EMC	Size-adjusted return of the EMC portfolio weighted
	according to the monthly market capitalization of each firm.
	Winorized at 2.5 percent tails.

Value-weighted EMC (unadjusted)	Unadjusted return of the EMC portfolio weighted according
	to the monthly market capitalization of each firm.
	Unadjusted returns defined as the monthly change in
	Thomson Reuters DataStream Return Index. Winsorized at
	2.5 percent tails.
Value-weighted Emission	Size-adjusted return of the Emission portfolio weighted
	according to the monthly market capitalization of each firm.
	Winsorized at 2.5 percent tails.

B: DataStream Mnemonics

DataStream Mnemonics	Description
ICBSUN	Industry Classification Benchmark (ICB) Level: Subsector.
MV	Market value. Share price multiplied with the number of ordinary shares in issue.
RI	Return Index. The change in Return index is the stock return of the holder (including capital gains and dividends).
NOSHST	Strategic Holdings. Percentage of company shares outstanding (of five percent or more) that is not available to ordinary investors.
NOSHFR	Foreign Strategic Holdings. Percentage of company shares outstanding (of five percent or more) that is owned by foreign institutions.
UP	Unadjusted Price. The quoted closing price at date t.

Appendix C: Google DSVI and Ab_temp

C.1 DSVI (SHLM) and Ab_temp quintiles

Ramsey RESET test using powers of the fitted values of dsvi_sthlm
Ho: model has no omitted variables
F(3, 186) = 0.49
Prob > F = 0.6896

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: ab_temp

> F(1, 189) = 0.98 Prob > F = 0.3238

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
2	40.555	2	0.0000

H0: no serial correlation

Source	SS	df	MS	Numb F(1	er of ob	s =	191
Model Residual	.021035899 30.8464818	1 189	.02103589 .16320889	9 Prob 9 R-sq	> F uared	=	0.7200 0.0007
Total	30.8675177	190	.1624606	— Adj 2 Root	R-square MSE	d = =	-0.0046 .40399
dsvi_sthlm	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
ab_temp _cons	.0055308 0011131	.0154057 .0294458	0.36 -0.04	0.720 0.970	0248	584 978	.03592 .0569715

Regression with Newey-West standard errors maximum lag: 2

 Number of obs
 =
 191

 F(1, 189)
 0.19

 Prob > F
 =
 0.6622

		Newey-West				
dsvi_sthlm	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ab_temp cons	.0055308 0011131	.0126393 .0194133	0.44 -0.06	0.662 0.954	0194013 0394077	.0304629

Source	SS	df	MS	Num	ber of obs	=	191
				– F(4	, 186)	=	0.80
Model	.524805896	4	.131201474	Pro	b > F	=	0.5239
Residual	30.3427118	186	.163132859	R-s	quared	=	0.0170
				– Adj	R-squared	=	-0.0041
Total	30.8675177	190	.16246062	Roo	t MSE	=	.4039
dsvi_sthlm	Coef.	Std. Err.	t	P> t	[95% Co	onf.	Interval]
ab_temp_q2	.1090309	.0920645	1.18	0.238	072593	39	.2906556
ab_temp_q3	0127513	.0920645	-0.14	0.890	194370	61	.1688734
ab_temp_q4	.0081275	.0920645	0.09	0.930	173497	73	.1897522
ab_temp_q5	.1000589	.0920645	1.09	0.279	08156	59	.2816837
_cons	0405199	.0646753	-0.63	0.532	168113	14	.0870715
Regression wit	th Newey-West	standard e	rrors	Number	of obs	=	191
maximum lag: 2	2			F(4,	186)) =	0.95
				Prob >	F	=	0.4337
		Newey-West					
dsvi_sthlm	Coef.	Std. Err.	t	P> t	[95% Co	onf.	Interval]
ab_temp_q2	.1090309	.0757389	1.44	0.152	040386	58	.2584486
ab_temp_q3	0127513	.0946888	-0.13	0.893	199553	35	.1740508
ab_temp_q4	.0081275	.0920582	0.09	0.930	173485	51	.18974
ab_temp_q5	.1000589	.0815597	1.23	0.221	060842	21	.2609598

-0.75 0.456

-.1475558

.066516

C.2 DSVI (SWE) and Ab_temp quintiles

-.0405199

_cons

.0542558

Appendix C: Google DSVI and Ab_temp

1205(0)	chi2		df		Prob > chi2	-
cays(p)	0.075				A 4176	-
2	8.075		2		0.01/6	_
	H0: N	o serial con	rrelation			
Source	SS	df	MS	Numb	er of obs =	191
Model	.128149054	1	.128149054	- F(1, Prob	> F =	0.3206
Residual	24.4204752	189	.129208864	I R−sq	uared =	0.0052
Total	24.5486243	190	.129203286	i Root	MSE =	.35946
dsvi_swe	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ab_temp	.0136511	.0137074	1.00	0.321	0133881	.0406903
_cons	.0023593	.0261998	0.09	0.928	0493223	.0540408
Regression wi maximum lag:	th Newey-West 2	standard e	rrors	Number F(1, Prob >	of obs = 189) = F =	191 1.38 0.2421
devi eve	Coof	Newey-West	+	D> +	[OF% Conf	Intonyall
usvi_swe	coer.	Stu. Err.	L	P> l	[95% COUL	intervatj
ab_temp _cons	.0136511 .0023593	.0116345 .0174821	1.17 0.13	0.242 0.893	009299 0321258	.0366012 .0368444
Source	SS	df	MS	Nun	ber of obs	= 191
Model	.961342978	4	.2403357	— г(4 44 Рго	b > F	= 1.90
Residual	23.5872813	186	.126813	34 R-s	quared	= 0.0392
Total	24.5486243	190	.1292032	— Adj 86 Roc	nt MSE	= .35611
dsvi_swe	Coef.	Std. Err	. t	P> t	[95% Conf	. Interval]
ab_temp_q2	.1200601	.0811715	1.48	0.141	0400751	.2801953
ab_temp_q3	0684011	.0811715	-0.84	0.400	2285363	.0917341
ab_temp_q4	.0410902	.0811715	0.51	0.613	119045	.2012254
ab_temp_q5	.1141731	.0811715	1.41	0.161	0459622	.2743083
_cons	0356683	.057023	-0.63	0.532	1481634	.0768267

Breusch-Godfrey LM test for autocorrelation
Regression wit maximum lag: 2	h Newey-West	standard er	rors	Number F(4, Prob >	ofobs = 186) = F =	191 1.47 0.2119
dsvi swe	Coef	Newey-West	+	P> +	[95% Conf	Intervall
					[556 60111	
ab_temp_q2	.1200601	.0842074	1.43	0.156	0460643	.2861844
ab_temp_q3	0684011	.0779291	-0.88	0.381	2221397	.0853375
ab_temp_q4	.0410902	.0689894	0.60	0.552	0950121	.1771926
ab_temp_q5	.1141731	.0745854	1.53	0.128	0329691	.2613152
_cons	0356683	.0479015	-0.74	0.457	1301684	.0588317

C.3 DSVI (STHLM, non-winsorized) and Ab_temp quintiles

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
2	38.245	2	0.0000

H0: no serial correlation

Appendix C: Google DSVI and Ab_temp

Source	SS	df	MS	Num	ber of obs =	= 191
				- F(1	, 189) =	= 0.15
Model	.026396946	1	.026396946	i Pro	b > F =	= 0.6964
Residual	32.6769377	189	.17289385	R-s	quared =	= 0.0008
				– Adj	R-squared =	= -0.0045
Total	32.7033347	190	.172122814	Roo	t MSE =	= .41581
not_winsor~m	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
ab temp	.0061956	.0158562	0.39	0.696	0250822	.0374735
cons	0014252	.0303069	-0.05	0.963	0612084	.058358
Regression wit	th Newey-West	standard e	rrors	Number	of obs =	191
maximum lag: 2	2			F(1,	189) =	0.24
				Prob >	F =	0.6272
		Newey-West				
not_winsor~m	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ab temp	.0061956	.0127365	0.49	0.627	0189283	.0313196
_cons	0014252	.0203816	-0.07	0.944	0416299	.0387795
Source	SS	df	MS	Numb	oer of obs =	. 191
				- F(4,	186) =	. 0.73
Model	.508514709	4	.127128677	Prot) > F =	0.5695
Residual	32.19482	186	.17309043	R-so	quared =	0.0155
				- Adj	R-squared =	-0.0056
Total	32.7033347	190	.172122814	Root	MSE =	.41604
not_winsor~m	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ab_temp_q2	.1105016	.0948326	1.17	0.245	0765842	.2975874
ab_temp_q3	0059006	.0948326	-0.06	0.950	1929864	.1811853
ab_temp_q4	.0137174	.0948326	0.14	0.885	1733684	.2008032
ab_temp_q5	.1037127	.0948326	1.09	0.276	0833731	.2907985
_cons	0441737	.0666199	-0.66	0.508	1756016	.0872541
Regression wit	h Newey-West	standard er	rors	Number	ofobs =	191
maximum lag: 2				F(4.	186) =	0.88

lag:

Prob > F = 0.4775

not_winsor~m	Coef.	Newey-West Std. Err.	t	P> t	[95% Conf.	Interval]
ab_temp_q2	.1105016	.0787087	1.40	0.162	044775	.2657782
ab_temp_q3	0059006	.0963477	-0.06	0.951	1959752	.1841741
ab_temp_q4	.0137174	.0951008	0.14	0.885	1738974	.2013322
ab_temp_q5	.1037127	.0835076	1.24	0.216	0610311	.2684565
_cons	0441737	.0571515	-0.77	0.441	1569222	.0685748

C.4 DSVI (SWE, non-winsorized) and Ab_temp quintiles

Ramsey RESET test using powers of the fitted values of not_winsor_dsvi_swe
Ho: model has no omitted variables
F(3, 186) = 0.13

Prob > F = 0.9444

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: ab_temp

> F(1, 189) = 0.45 Prob > F = 0.5055

Breusch-Godfrey LM test for autocorrelation

	i2	Prob > ch:		chi2 df		lags(p)	
		0.0000		2		54.283	2
				elation	serial corr	H0: no	
191	os =	mber of ob	Nur	MS	df	SS	Source
0.85	=	1, 189)	– F(1				
0.3564	=	ob > F	6 Pro	.13674346	1	.13674346	Model
0.0045	=	squared	2 R-s	.160013512	189	30.2425538	Residual
-0.0008	ed =	j R-square	– Adj				
.40002	=	ot MSE	B Roc	.159891038	190	30.3792973	Total
Interval]	Conf.	[95%	P> t	t	Std. Err.	Coef.	not_winsor~e
.0441917 .0542695	9888 9757	0159 060	0.356 0.912	0.92 -0.11	.0152541 .0291561	.0141014 0032438	ab_temp _cons

Appendix C: Google DSVI and Ab_temp

ab_temp_q4 ab_temp_q5

_cons

-.033586 .0490506

Regression wit maximum lag: 2	h Newey-West	standard en	rrors	Number F(1, Prob >	of obs = 189) = F =	191 1.44 0.2321
		Newev-West				
not_winsor~e	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ab_temp	.0141014	.0117634	1.20	0.232	0091031	.0373059
_cons	0032438	.0188603	-0.17	0.864	0404475	.03396
Source	SS	df	MS	Numb	er of obs =	191
				- F(4,	186) =	1.48
Model	.935438442	4	.233859611	. Prob	> F =	0.2108
Residuat	29.4436569	100	.120200210	Adi	R-squared =	0.0300
Total	30.3792973	190	.159891038	Root	MSE =	.39787
not_winsor~e	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ab temp g2	. 1028816	.0906906	1.13	0.258	0760328	.281796
ab temp q3	0735391	.0906906	-0.81	0.418	2524535	.1053753
ab_temp_q4	.0219454	.0906906	0.24	0.809	156969	.2008598
ab_temp_q5	.117526	.0906906	1.30	0.197	0613884	.2964404
_cons	033586	.0637101	-0.53	0.599	1592734	.0921014
Regression wit	h Newey-West	standard e	rrors	Number	of obs =	191
maximum tag: 4				r(4, Prob >	F =	0.3356
		Newey-West				
not_winsor∼e	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ab_temp_q2	.1028816	.0915427	1.12	0.263	0777139	.2834771
ab_temp_q3	0735391	.0876998	-0.84	0.403	2465533	.0994751
ab_temp_q4	.0219454	.0774546	0.28	0.777	130857	.1747478

.117526 .0767952 1.53 0.128 -.0339756 .2690276

-0.68 0.494

.063181

-.130353

D.1 Equal-weighted EMC (unadjusted) and Ab_temp quintiles

Ramsey RESET test using powers of the fitted values of emc_raw_equal Ho: model has no omitted variables $F(3,\ 188) = \qquad {\bf 3.60}$

-(3,	195	5)	=	3.00
Prob	>	F	=	0.0146

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: ab_temp

> F(1, 191) = 0.83 Prob > F = 0.3622

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
1	5.603	1	0.0179

H0: no serial correlation

Source	SS	df	MS	Number of	obs =	193
Model Residual	.001774522 .195963864	1 191	.001774522	 Prob > F R-squared 	=	0.1900
Total	.197738387	192	.001029887	- Adj R-squ Root MSE	ared =	.03203
emc_raw	Coef.	Std. Err.	t	P> t [9	5% Conf.	Interval]
ab_temp _cons	0015985 0104068	.0012154 .0023228	-1.32 -4.48	0.1900 0.0000	039959 149884	.0007989 0058252

Regression wit maximum lag: 1	h Newey-West	standard e	rrors	Number F(1, Prob >	ofobs = 191) = F =	193 1.53 0.2180
		Newey-West				
emc_raw	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ab_temp	0015985	.0012934	-1.24	0.218	0041497	.0009528
_cons	0104068	.0025442	-4.09	0.000	0154251	0053884
Source	SS	df	MS	Numb E(A	er of obs =	193
Model	.005058918	4	.00126473	Prob	>F =	0.2979
Residual	.192679468	188	.001024891	R-sq	uared =	0.0256
				- Adj	R-squared =	0.0049
Total	.197738387	192	.001029887	Root	MSE =	.03201
emc_raw	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
q2	.0022958	.0072497	0.32	0.752	0120054	.0165971
q3	.0045865	.0072973	0.63	0.530	0098086	.0189815
q4	0003775	.0072497	-0.05	0.959	0146787	.0139238
q5	0104666	.0072973	-1.43	0.153	0248617	.0039284
_cons	0100072	.0051263	-1.95	0.052	0201197	.0001053
Regression wit	h Newey-West	standard e	rrors	Number	ofobs =	193
maximum lag: 1				F(4,	188) =	1.48
				Prob >	F =	0.2113
		Newey-West				
emc_raw	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]

q2	.0022958	.0076406	0.30	0.764	0127765	.0173682
q3	.0045865	.0074991	0.61	0.542	0102067	.0193796
q4	0003775	.0068029	-0.06	0.956	0137973	.0130424
q5	0104666	.0068414	-1.53	0.128	0239623	.0030291
_cons	0100072	.0052252	-1.92	0.057	0203148	.0003004

D.2 Equal-weighted Emission and Ab_temp quintiles

Ramsey RESET test using powers of the fitted values of emc_equal Ho: model has no omitted variables $F(3,\ 188)\ =\ 0.77$

Prob > F	=	0.	5	13	3	3
----------	---	----	---	----	---	---

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: ab_temp

> F(1, 191) = 0.36 Prob > F = 0.5503

Source	SS	df	MS	Number of obs	=	193
				F(1, 191)	=	0.01
Model	2.4765e-06	1	2.4765e-06	Prob > F	=	0.9280
Residual	.057812435	191	.000302683	R-squared	-	0.0000
				Adj R-squared	=	-0.0052
Total	.057814912	192	.000301119	Root MSE	=	.0174

emission	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ab_temp	.0000597	.0006602	0.09	0.928	0012425	.0013619
_cons	0027469		-2.18	0.031	0052354	0002584

Source	SS	df	MS	Number of ob	s =	193
				- F(4, 188)	=	0.88
Model	.001056824	4	.000264206	Prob > F	=	0.4799
Residual	.056758087	188	.000301905	R-squared	=	0.0183
				Adj R-square	d =	-0.0026
Total	.057814912	192	.000301119	Root MSE	=	.01738
emission	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]
q2	.0054675	.0039348	1.39	0.1660022	944	.0132295
q3	.0038358	.0039606	0.97	0.334003	977	.0116487
q4	0002654	.0039348	-0.07	0.9460080	273	.0074966
q5	.0041763	.0039606	1.05	0.2930036	366	.0119891
_cons	0053618	.0027823	-1.93	0.0550108	503	.0001268

D.3 Equal-weighted Clean and Ab_temp quintiles

Histogram of Q-Q plot of residuals

Ramsey RESET test using powers of the fitted values of clean_equal Ho: model has no omitted variables F(3, 188) = 0.75

```
Prob > F = 0.5213
```

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: ab_temp

> F(1, 191) = 0.20Prob > F = 0.6544

Source	SS	df	MS	Numb	er of obs	=	193
				- F(1,	191)	=	0.05
Model	3.3177e-07	1	3.3177e-07	Prot) > F	=	0.8292
Residual	.001358154	191	7.1108e-06	6 R-so	quared	-	0.0002
				– Adj	R-squared	=	-0.0050
Total	.001358485	192	7.0754e-06	i Root	MSE	=	.00267
clean	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
ab_temp	0000219	.0001012	-0.22	0.829	000221	4	.0001777
_cons	.0004288	.0001934	2.22	0.028	.000047	4	.0008102
Source	SS	df	MS	Numb	er of obs	=	193
				– F(4,	188)	=	0.78
Model	.000022149	4	5.5373e-06	i Prot) > F	=	0.5401
Residual	.001336336	188	7.1082e-06	6 R-so	quared	=	0.0163
				– Adj	R-squared	=	-0.0046
Total	.001358485	192	7.0754e-06	i Root	MSE	=	.00267
clean	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
q2	0007726	.0006038	-1.28	0.202	001963	6	.0004185
q3	000506	.0006077	-0.83	0.406	001704	8	.0006928
q4	.0000338	.0006038	0.06	0.955	001157	2	.0012248
q5	0006714	.0006077	-1.10	0.271	001870	2	.0005274
_cons	.0008048	.0004269	1.89	0.061	000037	4	.001647

D.4 Equal-weighted EMC and Ab temp quintiles

Ramsey RESET test using powers of the fitted values of emc_equal Ho: model has no omitted variables F(3, 188) = 0.77 Prob > F = 0.5133 Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: ab_temp F(1, 191) = 0.21 Prob > F = 0.6445

Appendix D	Change	in port	folio returns	and Ab	temp
11	<u> </u>				_ 1

Source	SS	df	MS	Numbe	er of obs	=	193
Model	8.4700e-07	1	8.4700e-07	F(1,	191) > F	-	0.04
Residual	.004082265	191	.000021373	R-squ	Jared	=	0.0002
Total	.004083112	192	.000021266	- Adji Root	MSE	=	.00462
emc	Coef.	Std. Err.	t	P> t	[95% Con	nf.	Interval]
ab temp	.0000349	.0001754	0.20	0.842	0003111	1	.0003809
_cons	0007455	.0003353	-2.22	0.027	0014068	8	0000843
Source	ss	df	MS	Numb	er of obs	=	193
				– F(4,	188)	=	0.78
Model	.000066333	4	.00001658	3 Prob	> F	=	0.5420
Residual	.004016779	188	.00002136	6 R-sq	uared	=	0.0162
Total	004092112	102	00002126	– Adj E Root	R-squared	=	-0.0047
Totat	.004003112	192	.00002120	6 KUUL	HSE	-	.00402
emc	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
q2	.0013392	.0010467	1.28	0.202	000725	7	.0034041
q3	.0008887	.0010536	0.84	0.400	001189	8	.0029671
q4	00006	.0010467	-0.06	0.954	002124	9	.0020049
q5	.0011507	.0010536	1.09	0.276	000927	7	.0032291
_cons	0013974	.0007402	-1.89	0.061	002857	5	.0000626

D.5 Value-weighted EMC (unadjusted) and Ab_temp quintiles

Ramsey RESET test using powers of the fitted values of emc_raw_value Ho: model has no omitted variables $F(3,\ 188) = \ 0.67$

Prob	>	F	=	0.5708

193	er of obs =	Numbe	MS	df	SS	Source
. 0.61	191) =	F(1,				
0.4376	> F =	Prob	.000310666	1	.000310666	Model
0.0032	uared =	R-squ	.000513408	191	.098061	Residual
-0.0021	R-squared =	- AdjR				
.02266	MSE =	Root	.000512352	192	.098371666	Total
Interval]	[95% Conf.	P> t	t	Std. Err.	Coef.	emc_raw
.0010271	0023647	0.438	-0.78	.0008598	0006688	ab temp
0044932	0109752	0.000	-4.71	.0016431	0077342	_cons
193	of obs =	Number o	rors	standard e	h Newey-West	Regression wit
0.59	191) =	F(1,				maximum lag: 1
0.4421	F =	Prob > F				
				Newey-West		
Interval]	[95% Conf.	P> t	t	Std. Err.	Coef.	emc_raw
.001044	0023817	0.442	-0.77	.0008684	0006688	ab temp
0044161	0110522	0.000	-4.60	.0016822	0077342	cons
193	er of obs =	Numbe	MS	df	SS	Source
. 1.19	188) =	F(4,				H
0.31/1	> F =	Prob	.000606804	100	.00242/216	Pocidual
0.024/	uared =	K-SQU	.000510343	100	.03534445	Kesidual
.02259	MSE =	Root	.000512352	192	.098371666	Total
Interval]	[95% Conf.	P> t	t	Std. Err.	Coef.	emc_raw
.0125286	0076549	0.634	0.48	.0051158	.0024368	q2
.0162977	0040181	0.235	1.19	.0051493	.0061398	q3
.0120159	0081676	0.707	0.38	.0051158	.0019241	q4
.0053662	0149497	0.353	-0.93	.0051493	0047917	q5
0018999	0161718	0.013	-2.50	.0036174	0090358	_cons
193	of obs =	Number o	rors	standard er	h Newey-West	Rearession wit
1.24	188) =	F(4.				maximum lag: 1
0.2958	F =	Prob > F				
				Newey-West		
Interval]	[95% Conf.	P> t	t	Std. Err.	Coef.	emc_raw
.0132593	0083857	0.657	0.44	.0054862	.0024368	q2
.0158542	0035746	0.214	1.25	.0049245	.0061398	q3
.011577	0077288	0.695	0.39	.0048933	.0019241	q4
.0053903	0149738	0.354	-0.93	.0051616	0047917	q5

.003766

-2.40 0.017

_cons

-.0090358

-.0164649 -.0016068

D.6 Value-weighted Emission and Ab_temp quintiles

Ramsey RESET test using powers of the fitted values of emission_value Ho: model has no omitted variables F(3, 188) = 0.20 Prob > F = 0.8994

193	bs =	ber of ot	Num	MS	df	ss	Source
0.00	=	, 191)	F(1				
0.9627	=	b > F	Pro	1.2808e-06	1	1.2808e-06	Model
0.0000	=	quared	R-s	.000585629	191	.111855075	Residual
-0.0052	ed =	R-square	- Adj				
.0242	-	t MSE	Roo	.000582585	192	.111856356	Total
Interval]	Conf.	[95%	P> t	t	Std. Err.	Coef.	emission
.0018542	7683	0017	0.963	0.05	.0009183	.0000429	ab temp
.0044476	4753	0024	0.575	0.56	.0017549	.0009861	_cons
193	bs =	ber of ot	Nur	MS	df	SS	Source
0.30	=	, 188)	- F(4				
0.8785	=	0 > F	Pro	.000176627	4	.00070651	Model
0.0063	=	quared	K-S	.000591223	188	.111149846	Residual
-0.0148	ed =	t MSE	Roo	.000582585	192	.111856356	Total
Interval]	Conf.	[95%	P> t	t	Std. Err.	Coef.	emission
.0160128	7113	0057	0.351	0.94	.0055063	.0051508	q2
.0127969	8696	0096	0.737	0.34	.0055424	.0018637	q3
.0116791	0045	010	0.882	0.15	.0055063	.0008171	q4
.0147758	8987	0076	0.489	0.69	.0055424	.0038426	q5
.0063472	9014	005	0.732	-0.34	.0038935	0013334	_cons

Histogram of Q-Q plot of residuals

D.7 Value-weighted Clean and Ab_temp quintiles

Ramsey RESET test using powers of the fitted values of clean_value
Ho: model has no omitted variables
F(3, 188) = 1.81
Prob > F = 0.1470

Source	SS	df	MS	Num	ber of obs	=	193
				- F(1	, 191)	=	2.28
Model	.000506169	1	.000506169	Prol	b > F	=	0.1328
Residual	.04242946	191	.000222144	R-se	quared	=	0.0118
				– Adj	R-squared	=	0.0066
Total	.042935629	192	.000223623	Root	t MSE	=	.0149
clean	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
ab temp	0008537	.0005656	-1.51	0.133	00196	93	.0002618
cons	0012851	.0010808	-1.19	0.236	0034	17	.0008468
Source	SS	df	MS	Numb	er of obs	=	193
				- F(4,	188)	=	0.94
Model	.000844384	4	.000211096	Prot) > F	=	0.4403
Residual	.042091245	188	.00022389	R-so	quared	=	0.0197
				- Adj	R-squared	=	-0.0012
Total	.042935629	192	.000223623	Root	MSE	=	.01496
clean	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
n2	.0005767	.0033884	0.17	0.865	00610	75	.007261
42	0035364	.0034107	-1.04	0.301	01026	45	.0031917
q5 q4	- 001282	0033884	-0.38	0.706	- 00796	63	0054022
44	- 0049318	0034107	-1.45	0.150	01165	98	0017963
45	0043310	887396	-1.4J	0.130	- 00430	96	0050533
_cons	.0003208	.002390	0.14	0.032	00439	50	.0050555

D.8 Value-weighted EMC and Ab_temp quintiles

D.9 Equal-weighted EMC (unadjusted, non-winsorized) and Ab_temp quintiles

Ramsey RESET test using powers of the fitted values of emc_raw_euqal_nonwinsor Ho: model has no omitted variables F(3, 188) = 3.16 Prob > F = 0.0259

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: ab_temp

> F(1,191) = 0.11 Prob > F = 0.7358

Breusch-Godfrey LM test for autocorrelation

-.0103051

_cons

-	Prob > chi2			df Prob > ch) chi2 df		lags(p)
-	41	1 0.0041				8.239	1	
-				relation	o serial cor	H0: no		
193	s =	ber of ob	Num	MS	df	ss	Source	
2.10	=	, 191)	- F(1					
0.1491	=	b > F	Prol	.002548322	1	.002548322	Model	
0.0109	=	quared	R-s	.001214712	191	.232010075	Residual	
0.0057	ed =	R-square	- Adj					
.03485	=	t MSE	Roo	.001221658	192	.234558397	Total	
Interval]	Conf.	[95%	P> t	t	Std. Err.	Coef.	emc_raw_no~n	
.0006931	5242	0045	0.149	-1.45	.0013225	0019155	ab_temp	

Regression with Newey-West standard errors Number of obs = 193 maximum lag: 1 F(1, 191) = 1.94 Prob > F = 0.1651

-4.08

0.000

.0025274

-.0152903

-.0053199

emc_raw_no~n	Coef.	Newey-West Std. Err.	t	P> t	[95% Conf.	Interval]
ab_temp	0019155	.0013746	-1.39	0.165	004627	.0007959
_cons	0103051	.0027989	-3.68	0.000	0158257	0047844

121

Appendix D: Change	in portfolio retur	is and Ab temp
--------------------	--------------------	----------------

Source	ss	df	MS	Numi	ber of obs	=	193
				– F(4	, 188)	=	1.54
Model	.007446793	4	.001861698	B Pro	b > F	=	0.1920
Residual	.227111603	188	.00120804	R-s	quared	=	0.0317
				– Adj	R-squared	=	0.0111
Total	.234558397	192	.001221658	Roo	t MSE	=	.03476
emc_raw_no~n	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
q2	.0019134	.0078709	0.24	0.808	01361	32	.01744
q3	.004914	.0079225	0.62	0.536	01071	44	.0205424
q4	0008071	.0078709	-0.10	0.918	01633	37	.0147195
q5	013336	.0079225	-1.68	0.094	02896	44	.0022924
_cons	0093144	.0055656	-1.67	0.096	02029	34	.0016646
Regression wit maximum lag: :	th Newey-West L	standard e	rrors	Number F(4, Prob >	of obs 188 F	= ;) = =	193 1.57 0.1846
		Newey-West					
emc_raw_no~n	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
q2	.0019134	.0079392	0.24	0.810	0137	48	.0175749
q3	.004914	.0079634	0.62	0.538	01079	51	.0206231
q4	0008071	.0071112	-0.11	0.910	0148	35	.0132209
q5	013336	.0077123	-1.73	0.085	02854	97	.0018778
_cons	0093144	.0055283	-1.68	0.094	02021	98	.001591

D.10 Equal-weighted Emission (non-winsorized) and Ab_temp quintiles

Histogram of Q-Q plot of residuals

Source	55	df	MS	Numb	er of obs	=	193
				- F(1.	191)	=	0.35
Model	.000200128	1	.000200128	Prob	> F	=	0.5555
Residual	.109607146	191	.000573859	R-sq	uared	=	0.0018
				- Adj	R-squared	=	-0.0034
Total	.109807274	192	.000571913	Root	MSE	=	.02396
emission_n~n	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
ab_temp	.0005368	.000909	0.59	0.556	00125	62	.0023298
_cons	0016924	.0017372	-0.97	0.331	00511	89	.0017341
Source	SS	df	MS	Numb	er of obs	=	193
				- F(4,	188)	=	1.08
Model	.002477495	4	.000619374	Prob	> F	=	0.3653
Residual	.107329779	188	.000570903	R-sq	uared	=	0.0226
				– Adj	R-squared	=	0.0018
Total	.109807274	192	.000571913	Root	MSE	=	.02389
emission_n~n	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
q2	.0047378	.0054108	0.88	0.382	00593	59	.0154116
q3	.0031463	.0054463	0.58	0.564	00759	74	.01389
q4	0008533	.0054108	-0.16	0.875	0115	27	.0098205
q5	.0091495	.0054463	1.68	0.095	00159	42	.0198932
_cons	0047739	.003826	-1.25	0.214	01232	13	.0027736
	1						

D.11 Equal-weighted Clean (non-winsorized) and Ab_temp quintiles

Source	SS	df	MS	Numb	er of obs	=	193
				- F(1,	191)	=	0.48
Model	6.4687e-06	1	6.4687e-06	6 Prob	> F	=	0.4871
Residual	.002548796	191	.000013344	R-sq	uared	=	0.0025
				– Adj	R-squared	=	-0.0027
Total	.002555264	192	.000013309	Root	MSE	=	.00365
clean_no_win	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
ab_temp	0000965	.0001386	-0.70	0.487	00036	99	.0001769
_cons	.0002752	.0002649	1.04	0.300	00024	73	.0007977
Source	SS	df	MS	Numb	er of obs	=	193
				- F(4,	188)	=	1.09
Model	.000057873	4	.000014468	8 Prob	> F	=	0.3632
Residual	.002497391	188	.000013284	R-sq	uared	=	0.0226
				- Adj	R-squared	=	0.0019
Total	.002555264	192	.000013309	Root	MSE	=	.00364
clean_no_win	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
q2	0006393	.0008254	-0.77	0.440	00226	75	.0009889
q3	000395	.0008308	-0.48	0.635	00203	39	.0012438
a4	.0001249	.0008254	0.15	0.880	00150	33	.001753
a5	0014179	.0008308	-1.71	0.090	00305	67	.000221
cons	.0007137	.0005836	1.22	0.223	00043	75	.001865

D.12 Equal-weighted EMC (non-winsorized) and Ab_temp quintiles

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: ab_temp

> F(1, 191) = 1.05 Prob > F = 0.3065

Source	ss	df	MS	Numb	er of obs	=	193
Model	.000018699	1	.000018699	- F(1, Prob	191) > F	-	0.47
Residual	.007655451	191	.000040081	R-sq	uared	=	0.0024
				- Adj	R-squared	=	-0.0028
Total	.00767415	192	.00003997	Root	MSE	=	.00633
emc_no_win	Coef.	Std. Err.	t	P> t	[95% Co	onf.	Interval]
ab temp	.0001641	.0002402	0.68	0.495	000309	98	.0006379
_cons	0004729	.0004591	-1.03	0.304	001378	84	.0004327
Source	SS	df	MS	Numb F(4,	er of obs 188)	=	193 1.09
				- F(4,	188)	=	1.09
Model	.000173734	4	.000043433	Prob	> F	=	0.3635
Residual	.007500416	188	.000039896	R-sq	uared	=	0.0226
Total	00767415	103	00002007	- Adj	R-squared	=	0.0018
Iotal	.00/6/415	192	.00003997	KOOT	MSE		.00632
emc_no_win	Coef.	Std. Err.	t	P> t	[95% Co	onf.	Interval]
q2	.0011275	.0014304	0.79	0.432	001694	41	.0039491
q3	.0007012	.0014397	0.49	0.627	002138	89	.0035413
q4	0002178	.0014304	-0.15	0.879	003039	94	.0026038
q5	.0024529	.0014397	1.70	0.090	000387	72	.0052931
_cons	0012397	.0010114	-1.23	0.222	003234	49	.0007555
	1						

Appendix D: Change in portfolio returns and Ab_temp

D.13 Value-weighted EMC (unadjusted, non-winsorized) and Ab_temp quintiles

Ramsey RESET test using powers of the fitted values of emc_raw_value_nonwinsor Ho: model has no omitted variables F(3, 188) = 0.58 Prob > F = 0.6295

|--|

Source	SS	df	MS	Number	r of obs =	193
				- F(1, 1	191) =	0.85
Model	.000507718	1	.000507718	8 Prob	•F =	0.3577
Residual	.114063669	191	.000597192	2 R-squa	ared =	0.0044
				– AdjR-	-squared =	-0.0008
Total	.114571387	192	.000596726	6 Root M	1SE =	.02444
emc_raw	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ab_temp cons	000855	.0009273	-0.92 -4.37	0.358 0.000	0026841 0112475	.0009741
			-4.57			
Regression wit	n Newey-West	standard er	rors	Number of	obs =	193
maximum lag: 1				F(1, Prob > F	191) =	0.3508
emc raw	Coef.	Newey-West		P>ItI	[95% Conf.	Intervall
cinc_ruw		500. 2111		12141	1994 6000	1000000
ab temp	000855	.0009142	-0.94	0.351	0026583	.0009482
_cons	0077521	.0018212	-4.26	0.000	0113444	0041597
Source	SS	df	MS	Number	r of obs =	193
Madal	002165122		00070120	- F(4,) Brob y	L00) =	0 2594
Pacidual	111406265	100	.000/9120	ProD P	F =	0.2364
Residuar	.111400205	100	.000392307	Add D	seupred =	0.0270
Total	.114571387	192	.000596720	Root M	ISE =	.02434
emc_raw	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
-2	001767	0055136	0.33	0.740	0001076	0126416
q2	.001/6/	.0055120	0.32	0.749	00910/6	.0120415
43	.0059394	.0055488	1.07	0.200	0050065	.0100052
q4 05	.001300	.0055120	-1.20	0.001	0094865	.0122020
cp	0066409	.0055488	-1.20	0.233	01/5868	.004305
_cons	0084496	.003898	-2.17	0.031	0161391	0007602
Regression wit	h Newey-West	standard er	rors	Number of	obs =	193
maximum lag: 1				F(4,	188) =	1.33
				Prob > F	=	0.2590
		Newey-West				
emc_raw	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]

emc_raw	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
q2	.001767	.0057013	0.31	0.757	0094798	.0130137
q3	.0059394	.0050894	1.17	0.245	0041002	.015979
q4	.001388	.0053015	0.26	0.794	0090701	.0118461
q5	0066409	.0057566	-1.15	0.250	0179966	.0047148
_cons	0084496	.0040225	-2.10	0.037	0163847	0005145

D.14 Value-weighted Emission (non-winsorized) and Ab_temp quintiles

Ramsey RESET test using powers of the fitted values of emission_value_nonwinsor Ho: model has no omitted variables $F(3,\ 188) = \ 0.13$

Source	SS	df	MS	Numbe	r of obs	=	193
Model	6.5144e-06	1	6.5144e-06	- F(1,	191) > F	=	0.01
Residual	.124755964	191	.000653173	R-sau	ared	=	0.0001
				- Adj R	-squared	=	-0.0052
Total	.124762479	192	.000649805	6 Root	MSE	=	.02556
	I						
emission	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
ab_temp	0000969	.0009698	-0.10	0.921	002009	7	.001816
_cons	.0010488	.0018533	0.57	0.572	002606	8	.0047044
Source	SS	df	MS	Numb	er of obs	=	193
				— F(4,	188)	=	0.33
Model	.000877869	4	.00021946	7 Prob	> F	=	0.8555
Residual	.123884609	188	.00065896	1 R−sq	uared	=	0.0070
				— Adj	R-squared	=	-0.0141
Total	.124762479	192	.00064980	5 Root	MSE	=	.02567
emission	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
q2	.0057818	.0058132	0.99	0.321	00568	56	.0172492
q3	.0013465	.0058513	0.23	0.818	01019	61	.0128891
q4	.0007612	.0058132	0.13	0.896	01070	62	.0122286
q5	.0036755	.0058513	0.63	0.531	00786	71	.0152181
_cons	0012846	.0041105	-0.31	0.755	00939	33	.0068241

D.15 Value-weighted Clean (non-winsorized) and Ab_temp quintiles

Ramsey RESET test using powers of the fitted values of clean_value_nonwinsor Ho: model has no omitted variables F(3, 188) = 1.76 Prob > F = 0.1555

Source	SS	df	MS	Numb	er of obs	=	193
Model Residual	.000672025 .051983275	1 191	.000672025 .000272164	- F(1, Prot R-sc	191) > F Juared	=	2.47 0.1178 0.0128
Total	.0526553	192	.000274246	Root	MSE	=	.0165
clean	Coef.	Std. Err.	t	P> t	[95% Co	onf.	Interval]
ab_temp _cons	0009837 0012626	.000626 .0011963	-1.57 -1.06	0.118 0.293	002218 003622	85 24	.0002511 .0010971
Source	SS	df	MS	Numb E (4	er of obs	=	193
Model Residual	.001336175 .051319125	4 188	.000334044 .000272974	Prob R-sq	> F uared	=	0.3022
Total	.0526553	192	.000274246	- Adj Root	R-squared MSE	=	0.0046
clean	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
q2 q3 q4 q5 _cons	.0011771 0036491 0002183 0059011 .000196	.0037415 .003766 .0037415 .003766 .0026456	0.31 -0.97 -0.06 -1.57 0.07	0.753 0.334 0.954 0.119 0.941	006203 011078 007598 013330 005022	6 2 9 2 9	.0085577 .0037799 .0071624 .0015279 .0054149

D.16 Value-weighted EMC (Non-winsorized) and Ab_temp quintiles

Ramsey RESET test using powers of the fitted values of emc_value_nonwinsor Ho: model has no omitted variables $F(3,\ 188)\ =\ 1.35$

(5, 5		,,	_	÷.,	
Prob	>	F	=	0.	2607

Source	SS	df	MS	Num	ber of obs	5 =	193
				– F(1	, 191)	=	1.64
Model	.000426624	1	.000426624	4 Pro	b > F	=	0.2016
Residual	.049630363	191	.000259845	5 R-s	quared	=	0.0085
				– Adj	R-squared	i =	0.0033
Total	.050056988	192	.000260713	B Roo	t MSE	=	.01612
emc	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
ab temp	.0007838	.0006117	1.28	0.202	00042	227	.0019903
cons	.0012543	.001169	1.07	0.285	00105	514	.00356
_							
Source	55	df	MS	Numb	her of obs	-	193
500100	55	<u>.</u>	115	- F(4	188)	_	0.86
Mode1	.000903709	4	000225927	Prot) > F	=	0.4866
Residual	849153279	188	000225527	R=sr	uared	_	0.4000
Residual		100		- Adi	R-squared	_	-0.0028
Total	050056088	192	888268713	Root	MSE	_	01617
Totat	.050050505	132	.000200715	Root	, nac	-	.01017
emc	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
q2	.0002072	.0036617	0.06	0.955	00701	61	.0074304
q3	.0031221	.0036857	0.85	0.398	00414	85	.0103927
q4	.0004611	.0036617	0.13	0.900	00676	21	.0076844
q5	.0055785	.0036857	1.51	0.132	00169	22	.0128491
_cons	0004122	.0025892	-0.16	0.874	00551	98	.0046954

Control Period (December 1983 to December 1999)

D.17 Non-winsorized summary statistics portfolio return and abnormal temperature (control period)

			Equ	al-weighte	d portfol	ios					Val	ue-weighte	ed portfol	ios		
	EN	ЛC	EMC (ur	adjusted)	Emi	ssion	Cl	ean	E	мC	EMC (ur	adjusted)	Emi	ssion	Cle	an
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
Ab_temp	0.003		-0.023		0.003		0.002		0.007		0.006		0.061		0.020	
	(0,09)		(-0,28)		(0,04)		(-0,09)		(0,10)		(0,05)		(0,81)		(0,24)	
Ab_temp Q2		-0.075		-0.006		-0.185		0.049		-0.152		0.041		-0.379		0.054
		(-0,29)		(-0,01)		(-0,37)		(0,28)		(-0,28)		(0,04)		(-0,67)		(0,09)
Ab_temp Q3		-0.006		0.169		-0.048		0.000		-0.164		-0.727		-0.381		0.094
		(-0,02)		(0,25)		(-0,09)		(-0,00)		(-0,30)		(-0,70)		(-0,67)		(0,15)
Ab_temp Q4		-0.086		-0.096		-0.124		0.064		0.098		0.774		0.225		0.020
		(-0,33)		(-0,14)		(-0,25)		(0,36)		(0,18)		(0,77)		(0,40)		(0,03)
Ab_temp Q5		-0.175		-0.175		-0.340		0.123		-0.197		-0.425		0.139		0.326
		(-0,67)		(-0,26)		(-0,67)		(0,68)		(-0,36)		(-0,45)		(0,24)		(0,52)
Obs.	193	193	193	193	193	193	193	193	193	193	193	193	193	193	193	193
R^2	0.000	0.003	0.000	0.001	0.000	0.003	0.000	0.003	0.000	0.002	0.000	0.012	0.003	0.011	0.000	0.002

Regression output of equal-weighted and value-weighted portfolio returns with coefficients in percentage.

Control period. The statistical significance of the coefficients is reported by p<0.10; p<0.05; p<0.05.

D.18 Equal-weighted EMC (unadjusted) and Ab_temp quintiles (control period)

Ramsey RESET test using powers of the fitted values of emc_raw_equal Ho: model has no omitted variables

F(3, 188) = 1.63 Prob > F = 0.1839

Source	SS	df	MS	Numbe	r of ob	s =	193
Model Residual	5.0162e-06 .138962209	1 191	5.0162e-06 .000727551	- F(1, Frob R-squ	191) > F Jared	= = =	0.01 0.9339 0.0000
Total	.138967225	192	.000723788	Root	MSE	=	.02697
emc_raw	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
ab_temp _cons	0000677 0083827	.0008149 .0019447	-0.08 -4.31	0.934 0.000	001 0122	675 186	.0015397 0045468

Regression wit maximum lag: 1	th Newey-West	standard e	rrors	Number o F(1, Prob > F	fobs = 191) = =	193 0.01 0.9316
		Newey-West				
emc_raw	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ab_temp _cons	0000677 0083827	.0007874 .0021872	-0.09 -3.83	0.932 0.000	0016208 0126969	.0014855 0040686
Source	SS	df	MS	Numbe	r of obs =	193
Model	AAA359953	4	000064713	- F(4,	188) =	0.09
Residual	.138708372	188	.00073781	R-sau	ared =	0.0019
				- Adj R	-squared =	-0.0194
Total	.138967225	192	.000723788	Root	MSE =	.02716
emc_raw	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
q2	.0022254	.0061511	0.36	0.718	0099087	.0143595
q3	.0023319	.0061915	0.38	0.707	0098817	.0145456
q4	000547	.0061511	-0.09	0.929	0126811	.0115871
q5	.0008597	.0061915	0.14	0.890	0113539	.0130734
_cons	0093595	.0043495	-2.15	0.033	0179396	0007794
Passassian with	h Never Vest	standard a		Number of	fabr -	103
maximum lag: 1	in Newey-west	standard e	rrors	NUMBER O	188) =	193
Haximum tay. 1				Prob > F	=	0.9891
		Newey-West				
emc_raw	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
q2	.0022254	.0059768	0.37	0.710	0095648	.0140156

q2 q3 .0059768 .0022254 0.37 0.710 -.0095648 0.36 .0064149 .0023319 0.717 -.0103226 .0149865 q4 -.000547 .0065491 -0.08 0.934 -.0134662 .0123722 q5 .0008597 .0055024 0.16 0.876 -.0099946 .0117141 -.0093595 .0041518 -2.25 0.025 -.0175496 -.0011694 _cons

D.19 Equal-weighted EMC and Ab_temp quintiles (control period)

F(3,

Ramsey RESET test using powers of the fitted values of emc_equal Ho: model has no omitted variables

=(3, 188)	=	2.38
Prob > F	=	0.0709

193	s ≡	ber of ob	Numb	MS	df	SS	Source
0.06 0.8007	=	, 191) b > F	- F(1, 5 Prot	7.0523e-06	1	7.0523e-06	Model
0.0003	=	quared	B R-so	.000110333	191	.021073549	Residual
-0.0049	d =	R-square	– Adj				
.0105	=	t MSE	6 Root	.000109795	192	.021080601	Total
Interval]	Conf.	[95%	P> t	t	Std. Err.	Coef.	emc
Interval]	457	[95% 0005	P> t 0.801	t 0.25	.0003173	.0000802	emc ab_temp

Source	SS	df	MS	Numbe	r of ob	s =	193
Model	.000042212	4	.000010553	Prob	188) > F	=	0.9842
Residual	.02103839	188	.000111906	R-squ	ared	=	0.0020
Total	.021080601	192	.000109795	Root	-square MSE	a = =	-0.0192 .01058
emc	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
q2 q3	.000179 .0002837	.0023956 .0024113 .0023956	0.07 0.12 -0.17	0.941 0.906 0.868	0045 0044	466 729 229	.0049047 .0050404 .0043285
q5 _cons	0010058 0013577	.0024113	-0.42	0.677	0057	625 992	.0037508

Histogram of Q-Q plot of residuals

D.20 Equal-weighted Emission and Ab_temp quintiles (control period)

Ramsey RESET test using powers of the fitted values of emission_equal Ho: model has no omitted variables

F(3, 188)	=	2.20
Prob > F	=	0.0890

Source	SS	df	MS	Numbe	er of obs	=	193
		-		- F(1,	191)	=	0.09
Model	.000029636	1	.000029636	6 Prob	> F	-	0.7706
Residual	.066385572	191	.000347568	R-squ	Jared	=	0.0004
				- AdjF	R-squared	=	-0.0048
Total	.066415208	192	.000345913	Root	MSE	=	.01864
emission	Coef.	Std. Err.	t	P> t	[95% Co	onf.	Interval]
ab temp	.0001645	.0005632	0.29	0.771	000946	5	.0012754
cons	0030137	.0013442	-2.24	0.026	005664	9	0003624
						-	
Source	SS	df	MS	Numbe	er of obs	=	193
				- F(4,	188)	=	0.06
Model	.00008093	4	.000020233	Prob	> F	=	0.9939
Residual	.066334278	188	.000352842	R-squ	uared	=	0.0012
				- Adji	R-squared	=	-0.0200
Total	.066415208	192	.000345913	Root	MSE	=	.01878
emission	Coef.	Std. Err.	t	P> t	[95% Co	onf.	Interval]
a2	.0007304	.0042538	0.17	0.864	007660	8	.0091217
q3	.0000952	.0042817	0.02	0.982	008351	1	.0085415
q4	0005143	.0042538	-0.12	0.904	008905	6	.0078769
a5	0012074	.0042817	-0.28	0.778	009653	16	.0072389
cons	002816	0030079	-0.94	0.350	008749	15	.0031175

D.21 Equal-weighted Clean and Ab_temp quintiles (control period)

Ramsey RESET test using powers of the fitted values of clean_equal H0: model has no omitted variables $F(3,\ 188)\ =\ \ 2.44$

-(3,	185	5)	=	2.44
Prob	>	F	=	0.0659

Source	SS	df	MS	Numb	er of ob	s =	193
				– F(1,	191)	=	0.05
Model	2.6187e-06	1	2.6187e-0	5 Prob	> F	=	0.8264
Residual	.010374507	191	.000054317	7 R-sq	uared	=	0.0003
				– Adji	R-square	d =	-0.0050
Total	.010377125	192	.000054048	8 Root	MSE	=	.00737
clean	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
ab_temp _cons	0000489 .0010542	.0002227	-0.22 1.98	0.826 0.049	0004 6.09e	881 -06	.0003903

Source	SS	df	MS	Number of o	bs = _	193
Model	.000025951	4	6.4877e-06	Prob > F	=	0.9761
Residual	.010351175	188	.000055059	R-squared	=	0.0025
				 Adj R-square 	ed =	-0.0187
Total	.010377125	192	.000054048	Root MSE	=	.00742
clean	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]
q2 q3 q4 q5 _cons	0000447 0002344 .0003339 .0008141 .000875	.0016803 .0016914 .0016803 .0016914 .001682	-0.03 -0.14 0.20 0.48 0.74	0.979003 0.890003 0.843002 0.631002 0.462001	3595 5709 9808 5224 4689	.00327 .0031021 .0036487 .0041506 .0032189

D.22 Value-weighted EMC (unadjusted) and Ab_temp quintiles (control period)

Ramsey RESET test using powers of the fitted values of emc_raw_value Ho: model has no omitted variables $F(3,\ 188)\ =\ 1.86$

				.377	0.1	=	PTOD > F	
193	s =	er of ob	Numb	MS	df		SS	Source
0.00	=	191)	– F(1,					
0.9832	=) > F	7 Prob	8.0338e-0	1		8.0338e-07	Model
0.0000	=	quared	7 R-sq	.00180940	191		.345596702	Residual
-0.0052	d =	R-square	– Adj					
.04254	-	MSE	7 Root	.00179998	192		.345597506	Total
Interval]	Conf.	[95%	P> t	t	Err.	Std.	Coef.	emc_raw
.0025619	078	0025	0.983	0.02	2851	.0012	.0000271	ab_temp
0077985	971	0198	0.000	-4.52	0669	.0036	0138478	_cons

Regression with Newey-West standard errors maximum lag: 1

Number	of	obs	=	193
F(1,		191)	=	0.00
Prob >	F		-	0.9832

emc_raw	Coef.	Newey-West Std. Err.	t	P> t	[95% Conf.	. Interval]
ab_temp	.0000271	.0012877	0.02	0.983	0025129	.002567
_cons	0138478	.0033359	-4.15	0.000	0204277	0072679

A	p	pendix	D:	Change	in	portfoli	01	returns	and	Al	0	temp)
				<u> </u>		1							

Source	ss	df	MS	Num	ber of obs	=	193
				- F(4	. 188)	=	0.45
Model	.003297829	4	.00082445	7 Pro	b > F	=	0.7703
Residual	.342299677	188	.00182074	3 R-s	quared	=	0.0095
				– Adj	R-squared	=	-0.0115
Total	.345597506	192	.00179998	7 Roo	t MSE	=	.04267
emc_raw	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
q2	.0002118	.0096629	0.02	0.983	01884	98	.0192734
q3	005476	.0097263	-0.56	0.574	02466	26	.0137106
q4	.0063316	.0096629	0.66	0.513	012	73	.0253933
q5	0041574	.0097263	-0.43	0.670	0233	44	.0150292
_cons	0132697	.0068327	-1.94	0.054	02674	83	.0002089
Regression wit	in Newey-West	standard e	rrors	Number	OT ODS	. =	193
maximum (ag: 1				Prob >	F 188	=	0.8367
		Newey-West					
emc_raw	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
q2	.0002118	.0086026	0.02	0.980	01675	82	.0171817
q3	005476	.0096007	-0.57	0.569	0244	15	.013463
q4	.0063316	.0095412	0.66	0.508	01248	99	.0251532
a5	0041574	.0093189	-0.45	0.656	02254	84	.0142256

D.23 Value-weighted EMC and Ab_temp quintiles (control period)

-2.27

0.024

-.0247787

-.0017606

.0058343

_cons

-.0132697

F(3, 188)	=	2.32
Prob > F	=	0.0769

193	obs =	Number of		MS	df	SS	Source
0.02	=	F(1, 191)					
0.8816	=	Prob > F	506	.00001050	1	010506	Model
0.0001	=	R-squared	971	.00047197	191	146425	Residual
-0.0051	ared =	Adj R-squa					
.02172	=	Root MSE	567	.00046956	192	156931	Total
Interval]	5% Conf.	t [95	P>	t	d. Err.	Coef.	emc
.0013925	011967	88200	θ.	0.15	006563	00979	ab_temp
0012254	074045	00600	0.	-2.75	015663	43149	_cons
193 0.24	obs = =	Number of F(4, 188)		MS	df	SS	Source
0.9142	=	Prob > F	491	.00011549	4	461962	Model
0.0051	=	R-squared	101	.00047710	188	694969	Residual
-0.0160	ared =	Adj R-squa					
.02184	=	Root MSE	567	.00046956	192	156931	Total
Interval]	5% Conf.	• t [95	P>	t	d. Err.	Coef.	emc
.0081104	114047	74001	0.	-0.33	049464	16471	q2
.0077539	118892	67801	0.	-0.42	049788	20677	q3
.0115622	079529	71600	θ.	0.36	849464	18046	q4
.0075393	121038	64701	0.	-0.46	049788	22822	q5
.0034227	103766	32101	Θ.	-0.99	034976	03477	cons

D.24 Value-weighted Emission and Ab_temp quintiles (control period)

.0034227

Histogram of Q-Q plot of residuals

_cons

55	df MS	Number of o	bs = 193
8523372	1 .00052337	— F(1, 191) /2 Prob > F	= 0.94
6612695	191 .00055818	2 R-squared	= 0.0049
		— Adj R-squar	ed = -0.0003
7136067	192 .00055	8 Root MSE	= .02363
Coef. Std.	Err. t	P> t [95%	Conf. Interval]
006912 .0007	7138 0.97	0.334000	7167 .0020991
013661 .0017	7034 -0.80	0.42400	4726 .0019938
SS	df MS	Number of o	bs = 193
		— F(4, 188)	= 0.55
1239904	4 .00030997	6 Prob > F	= 0.6990
5896163	188 .00056327	7 R-squared	= 0.0116
		— Adj R-squar	ed = -0.0095
7136067	192 .00055	8 Root MSE	= .02373
Coef. Std.	Err. t	P> t [95%	Conf. Interval]
Coef. Std.	Err. t 3746 -0.56	P> t [95%	6367 .0075677
Coef. Std. 030345 .0053 034111 .0054	Err. t 3746 -0.56 4098 -0.63	P> t [95% 0.573013 0.529014	6367 .0075677
Coef. Std. 030345 .0053 034111 .0054 021858 .0053	Err. t 3746 –0.56 4098 –0.63 3746 0.41	P> t [95% 0.573013 0.529014 0.685008	Conf. Interval] 6367 .0075677 0828 .0072606 4165 .012788
Coef. Std. 030345 .0053 034111 .0054 021858 .0053 026737 .0054	Err. t 3746 -0.56 4098 -0.63 3746 0.41 4098 0.49	P> t [95% 0.573013 0.529014 0.685008 0.62200	Conf. Interval] 6367 .0075677 0828 .0072606 4165 .012788 7998 .0133455
	0523372 6612695 7136067 Coef. Std. 006912 .000 013661 .001 SS 1239904 5896163 7136067	0523372 1 .00052337 6612695 191 .00055818 7136067 192 .00055 Coef. Std. Err. t 006912 .0007138 0.97 013661 .0017034 -0.80 SS df MS 1239904 4 .00030997 5896163 188 .00056327 7136067 192 .00055	SS df MS Number of o SS df MS F(4, 188) F(1, 191) Prob > F Frob > F Adj R-squared Adj R-squared Adj R-squared Adj R-squared M06912 .0007138 0.97 0.334 000 B13661 .0017034 -0.80 0.424 000 SS df MS F(4, 188) F(4, 188) F136067 192 .000558 Root MSE F(4, 188) SS df MS R-squared Adj R-squared Adj R-squared Adj R-squared Adj R-squared Adj R-squared Adj R-squared No Root MSE Root MSE

.

D.25 Value-weighted Clean and Ab_temp quintiles (control period)

Ramsey RESET test using powers of the fitted values of clean_value
Ho: model has no omitted variables
F(3, 188) = 1.73
Prob > F = 0.1630

Source	~ ~ ~	df	MS	Numb	er of obs	-	193
566766	55	<u>.</u>	115	- F(1.	191)	_	0.04
Model	.000025382	1	.000025382	Prob	> F	=	0.8372
Residual	.114561716	191	.0005998	R-sq	uared	=	0.0002
				- Adji	R-squared	=	-0.0050
Total	.114587098	192	.000596808	Root	MSE	=	.02449
clean	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
ab_temp	.0001522	.0007399	0.21	0.837	00130	72	.0016116
_cons	.0053116	.0017658	3.01	0.003	.00182	87	.0087945
Source	SS	df	MS	Numb	er of obs	-	193
				- F(4,	188)	=	0.19
Model	.000461938	4	.000115484	Prob	> F	=	0.9433
Residual	.11412516	188	.000607049	R-sq	uared	=	0.0040
				- Adji	R-squared	=	-0.0172
Total	.114587098	192	.000596808	Root	MSE	=	.02464
clean	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
q2	.0010238	.0055795	0.18	0.855	00998	26	.0120303
q3	.0014191	.0056161	0.25	0.801	00965	95	.0124978
q4	0008357	.0055795	-0.15	0.881	01184	21	.0101708
q5	.0037404	.0056161	0.67	0.506	00733	82	.0148191
					00350		

D.26 Equal-weighted EMC (unadjusted, non-winsorized), and Ab_temp quintiles (control period)

Histogram of Q-Q plot of residuals

Ramsey RESET test using powers of the fitted values of emc_raw_equal Ho: model has no omitted variables $F(3,\ 188)\ =\ 1.30$ $Prob\ >\ F\ =\ 0.2773$

Source	SS	df	MS	Numb	er of obs =	193
He 4-1				- F(1,	191) =	0.06
Model	.000060477	1	.000060477	Prot	> =	0.8032
Kesidual	.185388267	191	.0009/0619	R-SC	P-coupred =	0.0003
Total	185448743	192	000065870	- AUJ BOOT	MSF =	-0.0049
locat	.103440743	171				.03115
emc_raw	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ab temp	- 0002349	0009412	-8.25	0.803	- 0020915	0016216
_cons	0088672	.0022462	-3.95	0.000	0132978	0044366
_						
Regression with	th Nevey-West	standard e	FFOR	Number	of ohe -	107
maximum lag:	1	standard e	11013	F(1.	191) =	0.08
ingradient toge	-			Prob >	F =	0.7814
		Newey-West				
emc_raw	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ab temp	0002349	.0008456	-0.28	0.781	0019028	.0014329
_cons	0088672	.0025629	-3.46	0.001	0139225	0038119
6					and the	
Source	55	đT	MS	- F(4	188) =	193
Model	.000251658	4	.00006291	5 Prol) > F =	0.9924
Residual	.185197085	188	.000985093	1 R-so	quared =	0.0014
				– Adj	R-squared =	-0.0199
Total	.185448743	192	.000965879	Root	t MSE =	.03139
emc_raw	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
		4471476				A120E02
q2 q3	0000015	.0071542	0.24	0.993	0140823	.0139593
q3 q4	0009615	.0071076	-0.14	0.893	0149824	.0130593
q5	0017523	.0071542	-0.24	0.807	0158651	.0123605
_cons	0086795	.0050258	-1.73	0.086	0185937	.0012347
Regression with	th Newey-West	standard e	rrors	Number	of obs =	193
maximum lag:	1			F(4,	188) =	0.07
				Prob >	F =	0.9904
	66	Newey-West		0.141	INFO CONT	Tete 13
emc_raw	Coef.	sta. Err.	t	₽> t	[95% Conf.	interval)
q2	0000615	.0071406	-0.01	0.993	0141476	.0140246
q3	.0016865	.0066354	0.25	0.800	0114028	.0147759
q4	0009615	.0070603	-0.14	0.892	0148891	.012966
q5	0017523	.0066714	-0.26	0.793	0149126	.0114081
_cons	0086795	.0044591	-1.95	0.053	0174758	.0001168

D.27 Equal-weighted EMC (non-winsorized) and Ab_temp quintiles (control period)

D.28 Equal-weighted Emission (non-winsorized) and Ab_temp quintiles (control period)

Ramsey RESET test using powers of the fitted values of emission_equal Ho: model has no omitted variables $F(3,\;188)\;=\;\;1.90$

(3, 1	.00,	-	1.50
Prob	> F	=	0.1316

Source	SS	df	MS	Numb	per of obs	=	193
				- F(1,	, 191)	=	0.00
Model	9.5214e-07	1	9.5214e-07	Prot) > F	=	0.9648
Residual	.092946562	191	.000486631	R-so	quared	=	0.0000
				– Adj	R-squared	=	-0.0052
Total	.092947514	192	.000484102	Root	t MSE	=	.02206
emission	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
ab temp	.0000295	.0006665	0.04	0.965	00128	51	.001344
cons	0034792	.0015905	-2.19	0.030	00661	63	000342
Source	SS	df	MS	Numb	per of obs	=	193
				- F(4,	, 188)	=	0.14
Model	.000268939	4	.000067235	Prol) > F	=	0.9687
Residual	.092678575	188	.000492971	R-se	quared	=	0.0029
				– Adj	R-squared	=	-0.0183
Total	.092947514	192	.000484102	Root	t MSE	=	.0222
emission	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
q2	0018535	.005028	-0.37	0.713	0117	72	.008065
a3	0004784	.0050609	-0.09	0.925	0104	62	.0095051
o4	0012437	.005028	-0.25	0.805	01116	22	.0086748
05	0033952	.0050609	-0.67	0.503	01337	88	.0065883
cons	0020865	.0035553	-0.59	0.558	00910	01	.0049268
			-0.35	0.000			

D.29 Equal-weighted Clean (non-winsorized) and Ab_temp quintiles (control period)

Ramsey RESET test using powers of the fitted values of clean_equal H0: model has no omitted variables $F(3,\ 188) = 2.38$

=(3, 188)	=	2.38
Prob > F	=	0.0709

193	bs =	Number of obs		MS	df		SS	Source
0.01	=	F(1, 191)	— F(
0.9288	=	Prob > F	97 Pr	4.9227e-07	1		4.9227e-07	Model
0.0000	=	R-squared	31 R-	.000061481	191		.011742855	Residual
-0.0052	ed =	Adj R-square	— Ad					
.00784	=	Root MSE	53 Ro	.000061163	192		.011743347	Total
Intervall	Conf.	tl [95%	P> t	t	Err.	Std.	Coef.	clean
Interval]	Conf.	t [95%	P> t	t	Err.	Std.	Coef.	clean
Interval] .0004461	Conf.	t [95% 290004	P> t 0.929	t -0.09	Err. 2369	Std.	Coef.	clean ab_temp

Source	SS	df	MS	Numb	Number of obs F(4, 188) Prob > F R-squared		193
Model Residual	.000040063 .011703284	4 188	.000010016	F(4, Prob R-sq			0.16 0.9578 0.0034
Total	.011743347	192	.000061163	Root	MSE MSE	d = =	.00789
clean	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
q2 q3 q4 q5 _cons	.0004945 -3.76e-06 .0006407 .0012267 .0005852	.0017867 .0017984 .0017867 .0017984 .0012634	0.28 -0.00 0.36 0.68 0.46	0.782 0.998 0.720 0.496 0.644	0030 0035 0028 002	302 515 839 321 907	.0040191 .003544 .0041653 .0047744 .0030775
D.30 Value-weighted EMC (unadjusted, non-winsorized) and Ab_temp quintiles (control period)

Ramsey RESET test using powers of the fitted values of emc_raw_value Ho: model has no omitted variables

F(3, 188)	=	1.50
Prob > F	=	0.2168

Source	SS	df	MS	Number of obs		193
Model	3.9201e-06	1	3.9201e-06	- F(1, 191) 5 Prob > F	=	0.9661
Residual	.414312164	191	.002169174	R-squared	=	0.0000
				- Adj R-squar	ed =	-0.0052
Total	.414316084	192	.002157896	Root MSE	=	.04657
emc_raw	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]
ab_temp _cons	.0000598 0138993	.0014071 .003358	0.04 -4.14	0.966002 0.000020	7156 5227	.0028352 0072758
Regression wit	th Newey-West	standard e	rrors	Number of obs	=	193
maximum lag: 1	L			F(1, 1	91) =	0.00
				Prob > F	=	0.9635
Regression wit maximum lag: 1	in Newey-West	standard e	rrors	F(1, 1 F(1, 1 Prob > F	= 91) = =	0.96

	Newey-West					
emc_raw	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
ab_temp	.0000598	.0013047	0.05	0.963	0025137	.0026334
_cons	0138993	.0036737	-3.78	0.000	0211455	0066531

A	p	pendix	D:	Change	in	portfol	io	returns	and	Al	0	tem)
				<u> </u>									

Source	ss	df	MS	Num	ber of obs	=	193
				- F(4	, 188)	=	0.57
Model	.0049647	4	.001241175	e Pro	b > F	=	0.6847
Residual	.409351385	188	.002177401	R-s	quared	=	0.0120
				- Adj	R-squared	=	-0.0090
Total	.414316084	192	.002157896	Roo	t MSE	=	.04666
emc_raw	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
q2	.0004108	.010567	0.04	0.969	020434	3	.021256
q3	0072697	.0106363	-0.68	0.495	028251	.5	.0137121
q4	.007741	.010567	0.73	0.465	013104	1	.0285862
q5	0042532	.0106363	-0.40	0.690	02523	5	.0167286
_cons	0132697	.007472	-1.78	0.077	028009	4	.0014701
Regression wit maximum lag: 1	th Newey-West L	standard e	rrors	Number F(4, Prob >	of obs 188) F	= = =	193 0.46 0.7660
		Newey-West					
emc_raw	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
q2	.0004108	.0097367	0.04	0.966	018796	5	.0196182
q3	0072697	.0103126	-0.70	0.482	027613	1	.0130737
q4	.007741	.0100724	0.77	0.443	012128	5	.0276105
q5	0042532	.0093524	-0.45	0.650	022702	3	.0141959
_cons	0132697	.0058343	-2.27	0.024	024778	7	0017606

D.31 Value-weighted EMC (non-winsorized) and Ab_temp quintiles (control period)

Histogram of Q-Q plot of residuals

Ramsey RESET test using powers of the fitted values of emc_value Ho: model has no omitted variables $F(3,\ 188) = 2.05$

Prob > F = 0.1083

	Source	ss	df	MS	Number	of obs	=	193
_					- F(1, 19	1)	=	0.01
	Model	6.0842e-06	1	6.0842e-06	Prob >	F	=	0.9182
	Residual	.109762474	191	.000574673	R-squar	'ed	=	0.0001
_					- AdjR-s	quared	=	-0.0052
	Total	.109768559	192	.000571711	. Root MS	E	=	.02397
_	emc	Coef.	Std. Err.	t	P> t	[95% Cor	nf.	Interval]
_								
	ab_temp	.0000745	.0007242	0.10	0.918	001354	4	.0015031
	_cons	0047308	.0017284	-2.74	0.007 -	.0081399	9	0013216
_								
	Source	ss	df	MS	Number	of obs	=	193
_					- F(4, 18	(8)	=	0.11
	Model	.000247962	4	.00006199	Prob >	F	=	0.9802
	Residual	.109520597	188	.000582556	R-squar	'ed	=	0.0023
_					- AdjR-s	quared	=	-0.0190
	Total	.109768559	192	.000571711	. Root MS	E	=	.02414
_								
	emc	Coef.	Std. Err.	t	P> t	[95% Cor	nf.	Interval]
_	q2	0015153	.0054658	-0.28	0.782 -	.0122974	4	.0092669
	q3	0016433	.0055016	-0.30	0.766 -	.0124961	1	.0092096
	q4	.0009828	.0054658	0.18	0.857 -	.0097993	3	.0117649
	q5	0019714	.0055016	-0.36	0.720 -	.0128242	2	.0088814
	_cons	0039014	.0038649	-1.01	0.314 -	.0115255	5	.0037228

Appendix D: Change in portfolio returns and Ab_temp

D.32 Value-weighted Emission (non-winsorized) and Ab_temp quintiles (control period)

Source	SS	df	MS	Numb	er of ob:	s =	193
				- F(1,	191)	=	0.65
Model	.000402352	1	.000402352	Prob	> F	=	0.4208
Residual	.118080772	191	.000618224	R-sq	uared	=	0.0034
				- Adj	R-square	d =	-0.0018
Total	.118483123	192	.0006171	. Root	MSE	=	.02486
emission	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
ab_temp	.000606	.0007512	0.81	0.421	0008	757	.0020877
cons	0014537	.0017927	-0.81	0.418	0049	897	.0020823
_							
Source	ss	df	MS	Numb	er of ob:	s =	193
				- F(4,	188)	=	0.51
Model	.001261436	4	.000315359	Prob	> F	=	0.7315
Residual	.117221688	188	.00062352	R-sq	uared	=	0.0106
				- Adj	R-square	d =	-0.0104
Total	.118483123	192	.0006171	Root	MSE	=	.02497
emission	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
g2	0037854	.0056547	-0.67	0.504	01494	402	.0073694
a3	0038133	.0056918	-0.67	0.504	01504	412	.0074146
q.9 q.4	.002248	.0056547	0.40	0.691	0089	868	.0134027
05	.0013858	.0056918	0.24	0.808	00984	421	.0126137
cons	0005827	.0039985	-0.15	0.884	0084	703	.007305

Appendix D: Change in portfolio returns and Ab_temp

D.33 Value-weighted Clean (non-winsorized) and Ab_temp quintiles (control period)

Appendix D: Change in portfolio returns and Ab_temp

Source	ss	df	MS	Numb	er of obs	=	193
				- F(1,	191)	=	0.06
Model	.000042109	1	.000042109	Prob	> F	=	0.8117
Residual	.141367428	191	.000740144	R-sq	uared	=	0.0003
				- Adj	R-squared	=	-0.0049
Total	.141409537	192	.000736508	Root	MSE	=	.02721
clean	Coef.	Std. Err.	t	P>ItI	[95% Co	onf.	Intervall
ab temp	.000196	.0008219	0.24	0.812	001425	52	.0018173
cons	.0057052	.0019615	2.91	0.004	.001830	53	.0095742
Source	ss	df	MS	Numb	er of obs	-	193
				- F(4,	188)	=	0.09
Model	.000267246	4	.000066812	Prob	> F	-	0.9858
Residual	.141142291	188	.000750757	R-sq	uared	=	0.0019
				- Adj	R-squared	=	-0.0193
Total	.141409537	192	.000736508	Root	MSE	=	.0274
clean	Coef.	Std. Err.	t	P> t	[95% Co	onf.	Interval]
q2	.0005405	.0062049	0.09	0.931	011699	96	.0127806
q3	.0009436	.0062456	0.15	0.880	011376	58	.013264
q4	.0001984	.0062049	0.03	0.975	012041	17	.0124385
q5	.0032649	.0062456	0.52	0.602	009055	55	.0155852
_cons	.004754	.0043875	1.08	0.280	003903	11	.013409

E.1 EMCΔInstitutional and Ab_temp quintiles

Histogram of Q-Q plot of residuals

Ramsey RESET test using powers of the fitted values of delta_emc_institutional Ho: model has no omitted variables F(3, 60) = 2.98

Prob > F = 0.0384

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: ab_temp

> F(1,63) = 0.54 Prob > F = 0.4658

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2		df		Prob > chi2		
1 6.228		28	1			0.012	26
	HØ:	no serial	correlatio	n			
Source	SS	df	MS	Numb	per of ob	s =	65
				- F(1,	, 63)	=	2.47
Model	.000075202	1	.000075202	e Prot) > F	=	0.1210
Residual	.001917344	63	.000030434	R-so	quared	=	0.0377
				- Adj	R-square	d =	0.0225
Total	.001992546	64	.000031134	Root	MSE	=	.00552
delta_emc_~l	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
ab_temp _cons	.000782 0008583	.0004975 .0006935	1.57 -1.24	0.121 0.220	0002 0022	121 441	.0017761 .0005276

Regression wi maximum lag: :	th Newey-West L	standard e	rrors	Number F(1, Prob >	ofobs = 63) = F =	65 2.97 0.0898
W_emc_inst~l	Coef.	Newey-West Std. Err.	t	P> t	[95% Conf	. Interval]
ab_temp _cons	.000782 0008583	.0004539 .0006008	1.72 -1.43	0.090 0.158	000125 0020589	.0016891 .0003423
Source	SS	df	MS	Numb - F(4,	erofobs = 60) =	65 1.66
Model	.000198628	4	.000049657	Prob	> F =	0.1709
Residual	.001793918	60	.000029899	R-sq	uared =	0.0997
				- Adj	R-squared =	0.0397
Total	.001992546	64	.000031134	Root	MSE =	.00547
delta_emc_~l	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
q2	.0001347	.0021447	0.06	0.950	0041553	.0044248
q3	.0000825	.0021447	0.04	0.969	0042076	.0043726
q4	.0022544	.0021447	1.05	0.297	0020357	.0065444
q5	.004442	.0021447	2.07	0.043	.000152	.0087321
_cons	0020638	.0015165	-1.36	0.179	0050973	.0009697
Regression wit maximum lag: 1	th Newey-West L	standard er	rors	Number F(4, Prob >	ofobs = 60) = F =	65 2.13 0.0875
		Newey-West			1000 0 0	
W_emc_inst~l	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
q2	.0001347	.0023151	0.06	0.954	0044961	.0047655
q3	.0000825	.0021893	0.04	0.970	0042967	.0044618
q4	.0022544	.0019129	1.18	0.243	001572	.0060808

$E.2 \; EMC \Delta Retail and Ab_temp quintiles$

.0044421

-.0020638

Histogram of Q-Q plot of residuals

q5

_cons

.0018157

.0012815

2.45

-1.61

0.017

0.113

.0008101

-.0046272

.008074

.0004995

Ramsey RESET te	st using powers	of the fitte	ed values of	delta_er	<pre>nc_retail_inves</pre>	tors
Ho: mode	el has no omitte	ed variables				
	F(3, 60) =	0.30				
	Prob > F =	0.8229				
Breusch-Pagan / Ho: Cor Variabl F(1,6 Prob >	Cook-Weisberg to stant variance les: ab_temp 53) = 0.29 F = 0.589	est for hete 9 7	roskedasticit	у		
Source	SS	df	MS	Numb	er of obs =	= 65
				- F(1,	63) =	= 0.18
Model	.00003767	1	.00003767	Prot) > F =	= 0.6729
Residuat	.013187814	63	.00020933	Adi	R-squared =	= 0.0028
Total	.013225485	64	.000206648	Root	MSE =	01447
delta_em~ors	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
ab temp	0005535	.0013047	-0.42	0.673	0031607	.0020537
_cons	.0007999	.0018187	0.44	0.662	0028346	.0044344
Source	SS	df	MS	Numb	er of obs =	= 65
				- F(4,	60) =	= 1.52
Model	.00121905	4	.000304763	Prob) > F =	= 0.2069
Residual	.012006434	60	.000200107	R-sc	uared =	= 0.0922
Total	.013225485	64	.000206648	Root	MSE =	= 0.0317 = .01415
delta_em~ors	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
a2	0037362	.0055485	-0.67	0.503	0148348	.0073624
q3	.0086866	.0055485	1.57	0.123	002412	.0197852
q4	0016899	.0055485	-0.30	0.762	0127886	.0094087
q5	0014648	.0055485	-0.26	0.793	0125635	.0096338
_cons	.0003154	.0039234	0.08	0.936	0075325	.0081633

$E.3\ EMC\Delta Blockholders$ and Ab_temp quintiles

151

Ramsey RESET test using powers of the fitted values of delta_emc_blockholders Ho: model has no omitted variables F(3, 60) =0.64 Prob > F = 0.5941 Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: ab_temp F(1,63) = 5.19 Prob > F = 0.0261 Source SS df MS Number of obs = 65 F(1, 63) 0.17 = 1 .000017489 Model .000017489 Prob > F = 0.6779 Residual .006329292 63 .000100465 R-squared = 0.0028 Adj R-squared -0.0131 = .006346781 64 .000099168 Root MSE Total = .01002 [95% Conf. Interval] delta_emc_b~ Coef. Std. Err. t P>|t| .0021833 .0003771 .0009039 0.42 0.678 -.0014291ab_temp _cons -.0010195 .00126 -0.81 0.421 -.0035373 .0014984 Regression with Newey-West standard errors Number of obs = 65 F(1, maximum lag: 0 63) = 0.13 Prob > F 0.7224 = Newey-West Std. Err. P>|t| [95% Conf. Interval] W_emc_bloc~s Coef. t ab_temp .0003771 .0010568 0.36 0.722 -.0017348 .0024889 -.0010195 .0013547 -0.75 0.455 -.0037266 .0016877 _cons SS Source df MS Number of obs = 65 F(4, 60) = 1.81 Model .000685014 4 .000171254 Prob > F = 0.1378 Residual .005661767 60 .000094363 R-squared = 0.1079 Adj R-squared 0.0485 = .006346781 Total 64 .000099168 Root MSE .00971 delta_emc_b~ Coef. Std. Err. P>|t| [95% Conf. Interval] t q2 .0053506 .0038102 1.40 0.165 -.0022709 .012972 .0030414 -.0045801 .0038102 -.0122015 q3 -1.20 0.234 q4 .0021694 .0038102 0.57 0.571 -.0054521 .0097909 -.0000882 .0038102 -0.02 0.982 -.0077096 .0075333 q5 _cons -.0015044 .0026942 -0.56 0.579 -.0068936 .0038848

Regression wit maximum lag: 0	h Newey-West	standard er	rors	Number (F(4, Prob > f	ofobs = 60) = F =	65 1.50 0.2148
W_emc_bloc~s	Coef.	Newey-West Std. Err.	t	P> t	[95% Conf.	Interval]
q2 q3 q4 q5 _cons	.0053505 0045801 .0021693 0000884 0015043	.0045829 .0042669 .0039076 .0034439 .0031647	1.17 -1.07 0.56 -0.03 -0.48	0.248 0.287 0.581 0.980 0.636	0038166 0131151 005647 0069773 0078346	.0145176 .0039549 .0099856 .0068005 .004826

E.4 EMC LocInstitutional and Ab_temp quintiles

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
1	4.385	1	0.0362

H0: no serial correlation

Source	SS	df	MS	Num E(1	ber of obs =	65
Madal	000012055		000012055		, 03) =	0.02
Model	.000012855	1	.000012855		D>r =	0.4358
Residuat	.001310495	05	.000020897	– Adi	R-squared =	-0.0057
Total	.00132935	64	.000020771	Roo	t MSE =	.00457
delta_emc_~x	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ab temp	.0003233	.0004122	0.78	0.436	0005004	.0011471
_cons	0008049	.0005746	-1.40	0.166	0019532	.0003434
	1					
Regression wi	th Newey-West	standard e	rrors	Number	of obs =	65
maximum lag:	1			F(1,	63) =	0.74
				Prob >	F =	0.3938
		Naura Mart				
W emc loca∼l	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
ab_temp	.0003233	.0003766	0.86	0.394	0004292	.0010759
_cons	0008049	.000515	-1.56	0.123	001834	.0002242
Source	SS	df	MS	Numb	per of obs =	65
Madal				- F(4	, 60) =	1.22
Model	.000099829	4	.000024957	Pro) > F =	0.3127
Residuat	.001229521	00	.000020492	- Adi	R-squared =	0.0751
Total	.00132935	64	.000020771	Root	t MSE =	.00453
delta_emc_~x	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
q2	0004589	.0017756	-0.26	0.797	0040106	.0030927
qЗ	0014357	.0017756	-0.81	0.422	0049874	.0021159
q4	.0001669	.0017756	0.09	0.925	0033848	.0037185
q5	.0023352	.0017756	1.32	0.193	0012165	.0058868
_cons	0008532	.0012555	-0.68	0.499	0033646	.0016582
Regression wit	th Newey-West	standard er	rors	Number	of obs =	65
maximum lag: 1	1			F(4,	60) =	1.32
				Prob >	F =	0.2729
		Newey_West				
W_emc_loca~l	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
q2	000459	.0019313	-0.24	0.813	0043223	.0034043
q3	0014358	.0013778	-1.04	0.302	0041917	.0013202

.0001668 .0014815 0.11 0.911 .0023353 .0014959 1.56 0.124 -.0008532 .0008871 -0.96 0.340

q4

q5

_cons

-.0008532

-.0027967

-.0006568

-.0026277

.0031303

.0053275

.0009214

E.5 EMC△ForInstitutional and Ab_temp quintiles

Ramsey RESET test using powers of the fitted values of delta_emc_foreign_institutional_ Ho: model has no omitted variables F(3, 60) = 0.35 Prob > F = 0.7881

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: ab_temp

```
F(1,63) = 0.07
Prob > F = 0.7857
```

65	s =	ber of obs	Num	MS	df	SS	Source
1.88	=	, 63)	- F(1				
0.1756	=	b > F	. Pro	.000027501	1	.000027501	Model
0.0289	=	quared	R-s	.000014653	63	.000923147	Residual
0.0135	d =	R-squared	- Adj				
.00383	=	t MSE	Roo	.000014854	64	.000950648	Total
Interval]	Conf.	[95% C	P> t	t	Std. Err.	Coef.	delta_emc_~_
.0011627	169	00021	0.176	1.37	.0003452	.0004729	ab temp
.0006236	995	00129	0.485	-0.70	.0004812	0003379	_cons
65	s =	ber of obs	Num	MS	df	SS	Source
0.98	=	, 60)	- F(4				
0.4246	=)b > F	6 Pro	.000014595	4	.00005838	Model
0.0614	=	quared	R-s	.000014871	60	.000892268	Residual
-0.0012	d =	R-squared	– Adj				
.00386	=	ot MSE	Roo	.000014854	64	.000950648	Total
Intervall	Conf	[95% (PSITI	+	Std. Err	Coef	delta emc ~
Incervacj		[55%]		Ľ	JUL LIT		dettu_eme_*_
.0039499	.013	00210	0.543	0.61	.0015126	.0009243	q2
.004812	392	00123	0.242	1.18	.0015126	.0017864	q3
.0057648	864	00028	0.075	1.81	.0015126	.0027392	q4
.0050657	855	00098	0.182	1.35	.0015126	.0020401	q5
.0004106	682	00386	0.111	-1.62	.0010695	0017288	_cons
						•	

E.6 EMC LocBlockholders and Ab_temp quintiles

Ramsey RESET test using powers of the fitted values of delta_emc_local_blockholders
Ho: model has no omitted variables
F(3, 60) = 0.52
Prob > F = 0.6703

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: ab_temp

F(1,63) = 0.01 Prob > F = 0.9195

Source	SS	df	MS	Number of obs	=	65
				F(1, 63)	=	0.01
Model	5.0594e-07	1	5.0594e-07	Prob > F	=	0.9095
Residual	.002448908	63	.000038872	R-squared	=	0.0002
				Adj R-squared	=	-0.0157
Total	.002449414	64	.000038272	Root MSE	=	.00623

delta_emc	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ab_temp	0000641	.0005622	-0.11	0.910	0011876	.0010594
_cons	0007677	.0007837	-0.98	0.331	0023339	.0007985

Source	SS	df	MS	Numb	er of ob	s =	65
Model Residual	.000347627 .002101787	4 60	.00008690	7 Prob 3 R-sq	> F uared	=	0.0533
Total	.002449414	64	.00003827	– Adj 2 Root	R-square MSE	d = =	0.0847 .00592
delta_emc	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
q2 q3 q4 q5 _cons	.0025471 0045869 0000779 .0001112 0003809	.0023215 .0023215 .0023215 .0023215 .0023215 .0016415	1.10 -1.98 -0.03 0.05 -0.23	0.277 0.053 0.973 0.962 0.817	0020 0092 0047 0045 0036	965 305 215 324 645	.0071907 .0000567 .0045657 .0047548 .0029026

E.7 EMC△ForBlockholders and Ab_temp quintiles

Ramsey RESET test using powers of the fitted values of delta_emc_foreign_blockholders
Ho: model has no omitted variables
F(3, 60) = 0.58
Prob > F = 0.6314

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: ab_temp

F(1,63) = 0.09 Prob > F = 0.7621

Source	SS	df	MS	Number of obs	=	65
				F(1, 63)	=	0.00
Model	2.0831e-07	1	2.0831e-07	Prob > F	=	0.9534
Residual	.003804531	63	.000060389	R-squared	=	0.0001
				Adj R-squared	=	-0.0158
Total	.00380474	64	.000059449	Root MSE	=	.00777

delta_emc	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ab_temp	0000412	.0007008	-0.06	0.953	0014415	.0013592
_cons	0002015	.0009769	-0.21	0.837	0021536	.0017506

Source	SS	df	MS	Numb	er of ob	s =	65
Model Residual	.000160897 .003643842	4 60	.000040224 .000060731	F(4, Prob R-sq	60) > F uared	= = =	0.66 0.6206 0.0423
Total	.00380474	64	.000059449	Root	MSE	a =	-0.0216 .00779
delta_emc	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
q2 q3 q4 q5 _cons	0027716 0039329 .0001347 001641 .0014313	.0030567 .0030567 .0030567 .0030567 .0030567 .0021614	-0.91 -1.29 0.04 -0.54 0.66	0.368 0.203 0.965 0.593 0.510	0088 0100 0059 0077 0028	858 471 796 552 921	.0033427 .0021814 .0062489 .0044732 .0057547

	EMC ALoc	Institutional	EMC AForInstitutional		EMC ALoc	Blockholders	EMC AForBlockholders	
-	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Ab_temp	0.039		0.054		-0.015		-0.004	
	(0,96)		(1,36)		(-0,22)		(-0,05)	
Ab_temp Q2		-0.058		0.102		0.401		-0.277
		(-0,29)		(0,60)		(1,46)		(-0,90)
Ab_temp Q3		-0.144		0.188		-0,502*		-0.397
		(-1,04)		(1,10)		(-1,83)		(-1,29)
Ab_temp Q4		0.017		0,350**		-0.008		0.021
		(0,11)		(2,11)		(-0,03)		(0,07)
Ab_temp Q5		0.272		0.214		0.011		-0.164
		(1,59)		(1,25)		(0,04)		(-0,53)
Observations	65	65	65	65	65	65	65	65
R^2	0.012	0.084	0.029	0.076	0.001	0.155	0.000	0.043

E.8 Summary statistics trading activity (non-winsorized) and Ab_temp quintiles

Regression output of trading activity of foreign and local investors and abnormal temperature with coefficients in percentage.

Non-winsorized. The statistical significance of the coefficients is reported by p<0.10; p<0.05; p<0.01.

E.9 EMCAInstitutional (non-winsorized) and Ab temp quintiles

Histogram of Q-Q plot of residuals

Ramsey RESET test using powers of the fitted values of delta_emc_institutional_nonwinso
Ho: model has no omitted variables
F(3, 60) = 2.78
Prob > F = 0.0490

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: ab_temp

F(1 , 63)	=	0.03
Prob > F	=	0.8525

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
1	5.981	1	0.0145

H0: no serial correlation

Source	SS	df	MS	Number	of obs =	65
Model	000005150	1	000005150	- F(1, 0	3) =	2.35
Pacidual	.000005159		.000085159	ProD >	F =	0.1301
Residual	.002280854	63	.000036204	K-Squa	red =	0.0300
Total	.002366013	64	64 .000036969 Root MSE	SE =	.00602	
delta_emc_~l	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ah tana		0005436	1.52	0 120	0003531	0010164
_cons	00075	.0007564	-0.99	0.325	0022615	.0007614
Regression wi	th Newey-West	standard e	rrors	Number of	fobs =	65
maximum lag:	1			F(1,	63) =	3.17
				Prob > F	=	0.0797
		Newey-West				
delta_emc_~l	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ab temp	.0008322	.0004671	1.78	0.080	0001013	.0017656
_cons	00075	.0006458	-1.16	0.250	0020407	.0005406
Source	SS	df	MS	Number	of obs =	65
				- F(4,6	50) =	1.60
Model	.00022856	4	.00005714	Prob >	· F =	0.1850
Residuat	.002137455	60	.000035624	Adi P	reu =	0.0966
Total	.002366013	64	.000036969	Root M	ISE =	.00597
delta_emc_~l	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
q2	.0001347	.0023411	0.06	0.954	0045481	.0048176
q3 q4	0000834	.0023411	-0.04	0.9/2	004/663	.0045994
q4 a5	.0030101	.0023411	1.29	0.202	0010047	.007701
_cons	0020638	.0016554	-1.25	0.217	0053751	.0012475
	1					
Regression wi	th Newey-West	standard e	rrors	Number of	obs =	65
maximum lag:	1			F(4,	60) =	2.24
				Prob > F	=	0.0748
		Newey-West				
delta_emc_~l	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]

q2	.0001347	.0023151	0.06	0.954	0044961	.0047655
q3	0000834	.0022717	-0.04	0.971	0046276	.0044607
q4	.0030181	.0024082	1.25	0.215	0017989	.0078352
q5	.004442	.0018157	2.45	0.017	.0008101	.008074
_cons	0020638	.0012815	-1.61	0.113	0046272	.0004995

E.10 EMCARetail (non-winsorized) and Ab_temp quintiles

Ramsey RESET test using powers of the fitted values of delta_emc_retail_investors_nonwi
Ho: model has no omitted variables
F(3, 60) = 0.35
Prob > F = 0.7879

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: ab_temp

F(1,63) = 0.18 Prob > F = 0.6744

Source	SS	df	MS	Number of obs	=	65
				F(1, 63)	=	0.26
Model	.000060328	1	.000060328	Prob > F	=	0.6146
Residual	.014839046	63	.00023554	R-squared	=	0.0040
				Adj R-squared	=	-0.0118
Total	.014899374	64	.000232803	Root MSE	=	.01535

delta_em~ors	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ab_temp	0007004	.001384	-0.51	0.615	003466	.0020652
_cons	.0008549	.0019292	0.44	0.659	0030004	.0047102

Source	SS	df	MS	Numb	er of ob	s =	65
Model Residual	.00118357 .013715804	4 60	.000295893	– F(4, 3 Prob 7 R–sq	> F uared	=	0.2824
Total	.014899374	64	.000232803	– Adj 3 Root	MSE MSE	d = =	0.0181 .01512
delta_em~ors	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
q2 q3 q4 q5 _cons	0027774 .0086866 0025401 0014648 .0003154	.0059303 .0059303 .0059303 .0059303 .0059303 .0041934	-0.47 1.46 -0.43 -0.25 0.08	0.641 0.148 0.670 0.806 0.940	0146 0031 0144 0133 0080	398 758 025 272 726	.009085 .020549 .0093223 .0103976 .0087034

160

E.11 EMC Blockholders (non-winsorized) and Ab_temp quintiles

Ramsey RESET test using powers of the fitted values of delta_emc_blockholders_nonwinsor Ho: model has no omitted variables F(3, 60) = 0.60 Prob > F = 0.6196

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance

Variables: ab_temp

F(1,63) = 3.85 Prob > F = 0.0541

Source	SS	df	MS	Number of obs	=	65
				F(1, 63)	=	0.15
Model	.000016467	1	.000016467	Prob > F	=	0.6991
Residual	.006878765	63	.000109187	R-squared	=	0.0024
				Adj R-squared	=	-0.0134
Total	.006895232	64	.000107738	Root MSE	=	.01045

delta_em~ers	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ab_temp	.0003659	.0009423	0.39	0.699	001517	.0022489
_cons	0010342	.0013135	-0.79	0.434	0036591	.0015907

Regression with Newey-West standard errors maximum lag: $\pmb{\theta}$

 Number of obs
 =
 65

 F(1, 63)
 =
 0.12

 Prob > F
 =
 0.7309

delta_emc_b~	Coef.	Newey-West Std. Err.	t	P> t	[95% Conf.	Interval]
ab_temp	.0003659	.0010592	0.35	0.731	0017508	.0024826
_cons	0010342	.0014068	-0.74	0.465	0038455	.0017772

Appendix	E: Trading	g activity	and Ab	temp
----------	------------	------------	--------	------

Source SS df MS Number of obs =	65
F(4, 60) =	1.94
Model .000789134 4 .000197284 Prob > F = 0	. 1157
Residual .006106098 60 .000101768 R-squared = 0	.1144
Adj R-squared = 0	.0554
Total .006895232 64 .000107738 Root MSE = .	01009
delta_em~ers Coef. Std. Err. t P> t [95% Conf. Inte	erval]
q2 .0056939 .0039568 1.44 0.155002221 .03	36088
q30050097 .0039568 -1.27 0.2100129246 .00	29052
q4 .0021694 .0039568 0.55 0.5860057455 .03	00843
q50000882 .0039568 -0.02 0.9820080031 .00	78267
_cons0015044 .0027979 -0.54 0.593007101 .00	40923
·	
Regression with Newey-West standard errors Number of obs =	65
maximum lag: 0 F(4, 60) =	1.50
Prob > F = 0	.2132
Newey-West	
delta_emc_b~ Coef. Std. Err. t P> t [95% Conf. Inte	rval]
q2 .0056939 .0047088 1.21 0.231003725 .01	51128
q30050097 .0044592 -1.12 0.2660139295 .00	39101
q4 .0021694 .0039076 0.56 0.5810056469 .00	99857
q50000882 .0034439 -0.03 0.980006977 .00	68007
cons0015044 .0031646 -0.48 0.6360078346 .00	48259

E.12 EMC LocInstitutional (non-winsorized) and Ab_temp quintiles

rob > chi2	Prob >		df		chi2	lags(p)
0.0400	0.04		1)	4.220	1
			rrelation	no serial co	H0: r	I
fobs =	Number of obs	Num	MS	df	SS	Source
= 0.7	F(1, 63)	- F(1	000010443		000010443	Madal
d = 0.37	Prop > r B-squared	B Pro	.000018443	63	.000018443	Residual
uared = -0.003	Adi R-squared	– Adi		05		
= .0048	Root MSE	Roo	.000023248	64	.00148789	Total
95% Conf. Interva	t [95% C	P> t	t	Std. Err.	Coef.	delta_emc_~x
000402 00125		A 377	0 00	0004255	0003973	ah tamp
0019798 .00044	21100197	0.211	-1.26	.0004355	0007666	ab_temp cons
bs = 6 63) = 0.9 = 0.342	1, 63) b > F	Prob >			L	maximum lag: I
bs = 6 63) = 0.9 = 0.342 35% Conf. Interval	1, 63) bb > F t [95% Cc :4200042	Prob >	t 0.96	Newey-West Std. Err.	Coef.	delta_emc_~x ab_temp
bs = 6 63) = 0.9 = 0.342 95% Conf. Interval .000421 .001195)018428 .000309	1, 63) b > F t [95% Cd 4200042 .60001842	Prob > P> t 0.342 0.160	t 0.96 -1.42	Newey-West Std. Err. .0004044 .0005386	Coef. .0003873 0007666	delta_emc_~x ab_temp _cons
bs = 6 63) = 0.9 = 0.342 35% Conf. Interval .000421 .001195 3018428 .000309 f obs = 0 = 1.1	1, 63) b > F t [95% Co 4200042 60001842 Number of obs F(4, 60)	Prob > P> t 0.342 0.160 Num - F(4	t 0.96 -1.42 MS	Newey-West Std. Err. .0004044 .0005386 df	Coef. .0003873 0007666 SS	delta_emc_~x ab_temp _cons Source
bs = 6 63) = 0.9 = 0.342 95% Conf. Interval .000421 .001195 3018428 .000309 f obs = 0 = 1.1 = 0.252	1, 63) b > F t [95% Co 4200042 .60001842 Number of obs F(4, 60) Prob > F	P> t P> t 0.342 0.160 Num - F(4 Prob	t 0.96 –1.42 MS .000031354	Newey-West Std. Err. .0004044 .0005386 df	Coef. .0003873 0007666 SS .000125415	delta_emc_~x ab_temp _cons Source Model
bs = 6 63) = 0.9 = 0.342 	1, 63) b > F t [95% Cd 4200042 60001842 Number of obs F(4, 60) Prob > F R-squared	P> t P> t 0.342 0.160 Num - F(4 Prc 3 R-s	t 0.96 -1.42 MS .000031354 .000022708	Newey-West Std. Err. .0004044 .0005386 df 4 60	Coef. .0003873 0007666 SS .000125415 .001362475	delta_emc_~x ab_temp _cons Source Model Residual
bs = 6 63) = 0.9 = 0.342 	1, 63) b > F t [95% Co 4200042 60001842 Number of obs F(4, 60) Prob > F R-squared Adj R-squared	P> t 0.342 0.160 Num - F(4 Prob R-s - Adj	t 0.96 -1.42 MS .000031354 .000022708	Newey-West Std. Err. .0004044 .0005386 df 4 60	Coef. .0003873 0007666 SS .000125415 .001362475	delta_emc_~x ab_temp _cons Source Model Residual
bs = 6 63) = 0.9 = 0.342 05% Conf. Interval 000421 .001195 0018428 .000309 f obs = 1. = 0.25 d = 0.084 uared = 0.023 = .0043	1, 63) b > F t [95% Co 4200042 60001842 Number of obs F(4, 60) Prob > F R-squared Adj R-squared Root MSE	P> t 0.342 0.342 0.160 Num - F(4 Prob R-s - Adj Roc	t 0.96 -1.42 MS .000031354 .000022708 .000023248	Newey-West Std. Err. .0004044 .0005386 df 4 60 64	Coef. .0003873 0007666 SS .000125415 .001362475 .00148789	delta_emc_~x ab_temp _cons Source Model Residual Total
bs = 6 63) = 0.9 = 0.342 35% Conf. Interval .000421 .001195 3018428 .000309 f obs = 1.1 = 0.253 d = 0.084 uared = 0.023 = .0043 95% Conf. Interval	1, 63) b > F t [95% Co 4200042 60001842 Number of obs F(4, 60) Prob > F R-squared Adj R-squared Root MSE	P> t 0.342 0.342 0.160 Num - F(4 Prob 3 R-s - Adj 3 Roc P> t	t 0.96 -1.42 MS .000031354 .000022708 .000023248 t	Newey-West Std. Err. .0004044 .0005386 df 4 60 64 Std. Err.	Coef. .0003873 0007666 SS .000125415 .001362475 .00148789 Coef.	delta_emc_~x ab_temp _cons Source Model Residual Total delta_emc_~x
bs = 6 63) = 0.9 = 0.342 95% Conf. Interval .000421 .001195 3018428 .000309 f obs = 0 = 1.3 = 0.253 d = 0.084 uared = 0.021 = .0043 95% Conf. Interval 0043146 .003163	1, 63) b > F t [95% Cd 4200042 60001842 Number of obs F(4, 60) Prob > F R-squared Adj R-squared Adj R-squared Adj R-squared Root MSE t [95% C 75900431	P> t 0.342 0.342 0.160 Num - F(4 Pro R-s - Adj Roc P> t 0.759	t 0.96 -1.42 MS .000031354 .000022708 .000023248 t t	Newey-West Std. Err. .0004044 .0005386 df 4 60 64 Std. Err. .0018691	Coef. .0003873 0007666 SS .000125415 .001362475 .00148789 Coef. 0005758	delta_emc_~x ab_temp _cons Source Model Residual Total delta_emc_~x q2
bs = 6 63) = 0.9 = 0.342 95% Conf. Interval .000421 .001195 3018428 .000309 f obs = 1.3 = 0.253 d = 0.084 uared = 0.023 95% Conf. Interva 95% Conf. Interva 0043146 .003163 0051745 .00230	1, 63) b > F t [95% Cd 4200042 60001842 Number of obs F(4, 60) Prob > F R-squared Adj R-squared Adj R-squared Adj R-squared Root MSE t [95% C 75900431 44500517	P> t 0.342 0.342 0.160 Num - F(4 Prob R-s - Adj Roc P> t 0.759 0.445	t 0.96 -1.42 MS .000031354 .000022708 .000023248 t t -0.31 -0.77	Newey-West Std. Err. .0004044 .0005386 df 4 60 64 Std. Err. .0018691 .0018691	Coef. .0003873 0007666 SS .000125415 .001362475 .00148789 Coef. 0005758 0014357	delta_emc_~x ab_temp _cons Source Model Residual Total delta_emc_~x q2 q3
bs = 6 63) = 0.9 = 0.342 95% Conf. Interval .000421 .001195 3018428 .000309 f obs = 1. = 0.25: d = 0.042 d = 0.042 95% Conf. Interval 0043146 .003162 0051745 .00230	1, 63) bb > F t [95% CC 4200042 60001842 Number of obs F(4, 60) Prob > F R-squared Adj R-squared Adj R-squared Adj R-squared It [95% C 75900431 44500517 92900357	P> t 0.342 0.342 0.160 Num - F(4 Prob R-s - Adj Roc P> t 0.759 0.445 0.929	t 0.96 -1.42 MS .000031354 .000022708 .000023248 t t -0.31 -0.77 0.09	Newey-West Std. Err. .0004044 .0005386 df 4 60 64 Std. Err. .0018691 .0018691 .0018691	Coef. .0003873 0007666 SS .000125415 .001362475 .00148789 Coef. 0005758 0014357 .0001669	delta_emc_~x ab_temp _cons Source Model Residual Total delta_emc_~x q2 q3 q4
bs = 6 63) = 0.9 = 0.342 05% Conf. Interval 000421 .001195 0018428 .000309 f obs = 1.3 = 0.253 d = 0.043 uared = 0.023 = .0043 95% Conf. Interval 0043146 .003163 0051745 .00234 0035719 .00399	1, 63) bb > F t [95% Cd 4200042 60001842 Number of obs F(4, 60) Prob > F R-squared Adj R-squared Adj R-squared Adj R-squared It [95% Cd 75900431 44500517 92900357 L5100102	P> t 0.342 0.342 0.160 Num - F(4 Prob - F(4 Prob - F(4 Prob - F(4 Prob - F(4 - F(4))))))))))))))))))))))))))))))))))))	t 0.96 -1.42 MS .000031354 .000022708 .000023248 t t -0.31 -0.77 0.09 1.45	Newey-West Std. Err. .0004044 .0005386 df 4 60 64 Std. Err. .0018691 .0018691 .0018691 .0018691	Coef. .0003873 0007666 SS .000125415 .001362475 .00148789 Coef. 0005758 0014357 .0001669 .0027163	delta_emc_~x ab_temp _cons Source Model Residual Total delta_emc_~x q2 q3 q4 q5

Breusch-Godfrey LM test for autocorrelation

h Newey-West	standard er	rors	Number F(4, Prob >	ofobs = 60) = F =	65 1.28 0.2872
	Newey-West				
Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
0005758	.0019793	-0.29	0.772	0045349	.0033833
0014357	.0013777	-1.04	0.302	0041916	.0013202
.0001669	.0014815	0.11	0.911	0027966	.0031304
.0027163	.0017086	1.59	0.117	0007013	.006134
0008532	.0008871	-0.96	0.340	0026277	.0009214
	Coef. 0005758 0014357 .0001669 .0027163 0008532	h Newey-West standard er Newey-West Coef. Std. Err. 0005758 .0019793 0014357 .0013777 .0001669 .0014815 .0027163 .0017086 0008532 .0008871	h Newey-West standard errors Newey-West Coef. Std. Err. t 0005758 .0019793 -0.29 0014357 .0013777 -1.04 .0001669 .0014815 0.11 .0027163 .0017086 1.59 0008532 .0008871 -0.96	Newey-West standard errors Number F(4, Prob > Newey-West Coef. Std. Err. t 0005758 .0019793 -0.29 0.0014357 .0013777 -1.04 0.302 .0001669 .0014815 0.11 0.911 .0027163 .0017086 1.59 0.117 0008532 .0008871 -0.96 0.340	In Newey-West standard errors Number of obs = F(4,60) = Prob > F = Newey-West Coef. Std. Err. P> t [95% Conf.] 0005758 .0019793 -0.29 0.772 0045349 0014357 .0013777 -1.04 0.302 0041916 .0001669 .0014815 0.11 0.911 0027966 .0027163 .0017086 1.59 0.117 00026277

E.13 EMCAForInstitutional (non-winsorized) and Ab_temp quintiles

Histogram of Q-Q plot of residuals

65

Appendix E: Trading activity and Ab_temp

Source	SS	df	MS	S Number of obs		s =	65
Model Residual	.000093496 .001141351	4 60	.000023374 .000019023	Prot	, 60) > F quared	= = _	0.3083
Total	.001234847	64	.000019294	Root	K-square t MSE	a = =	0.0141
delta_emc_~_	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
q2 q3 q4 q5 _cons	.0010212 .0018833 .0036029 .002137 0018258	.0017107 .0017107 .0017107 .0017107 .0017107 .0012097	0.60 1.10 2.11 1.25 -1.51	0.553 0.275 0.039 0.216 0.136	0024 0015 .0001 0012 0042	007 386 809 849 454	.0044432 .0053053 .0070248 .005559 .0005939

E.14 EMC LocBlockholders (non-winsorized) and Ab_temp quintiles

A	pper	ıdix	E:	Trading	activity	and Ab	temp	,
				<u> </u>				

Source	SS	df	MS	Numbe	r of ob	s =	65
Model Residual	.000533787 .002919422	4 60	.000133447 .000048657	- F(4, Prob R-squ	60) > F ared	= = =	2.74 0.0366 0.1546
Total	.003453209	64	.000053956	Root	—square MSE	a = =	.00698
delta_emc	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
q2 q3 q4 q5 _cons	.0040064 0050182 0000779 .0001112 0003809	.002736 .002736 .002736 .002736 .002736 .0019346	1.46 -1.83 -0.03 0.04 -0.20	0.148 0.072 0.977 0.968 0.845	0014 010 0055 0053 0042	664 491 507 616 508	.0094792 .0004546 .0053949 .005584 .0034889

E.15 EMC AForBlockholders (Non-winsorized) and Ab_temp quintiles

Source	SS	df	MS	Number of ob:	s =	65
Model Residual	.000166779 .003693346	4 60	.000041695	– F(4, 60) 5 Prob > F 5 R–squared	= = =	0.68 0.6103 0.0432
Total	.003860125	64	.000060314	A Root MSE	u = =	-0.0206 .00785
delta_emc	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]
q2 q3 q4 q5 cons	0027716 0039716 .0002101 001641 .0014313	.0030774 .0030774 .0030774 .0030774 .0030774	-0.90 -1.29 0.07 -0.53 0.66	0.3710089 0.2020101 0.9460059 0.5960077 0.5130029	272 272 455 966 214	.0033841 .002184 .0063657 .0045146 .005784