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Abstract

We employ the pairs trading algorithm popularized by Gatev et al. (1999, 2006) on U.S.

stocks data from 1963 until 2019. As Do and Faff (2011) we find that the pairs trader does

not earn significant returns after transaction costs. We hypothesize that the pairs trader is

still making a profit as compensation for providing liquidity during shocks to market and

funding liquidity proxied by the VIX and TED-spread, respectively. We find evidence that the

pairs trader on average is net long illiquid stocks, measured as the Amihud (2002) illiquidity

measure. During sub-periods with shocks to market and funding liquidity, the pairs trader

increases his/her loading on even more illiquid securities, but equally so on the long and the

short leg. The pairs trading strategy has become more unprofitable in recent years, but if

one implements during sub-periods with scarce market and funding liquidity we do find an

indication of slightly higher returns after transaction costs, but not a statistically significant

compensation. A liquidity-adjusted CAPM model does not provide an indication that the pairs

trader is compensated for taking liquidity risk. We therefore come to the conclusion that the

pairs trader is not compensated, to a significant degree, for taking liquidity risk during sub-

periods characterized by liquidity shocks. We speculate that the pairs trader in a Gatev et al.

(1999, 2006) framework is sub-optimally selecting its pairs to ideally reflect a liquidity risk

premium exploiting trade.

Keywords: Pairs trading, Statistical arbitrage, Liquidity risk premium.
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1 Introduction

Pairs trading refers to a trading strategy that bets on the continuation of the historic co-

movements in the prices of two assets, despite temporal divergences. If the pairs trader assumes

that the future will be similar to the past, he takes a long position in the asset that is now

“cheap” and shorts the “expensive” one. This indicates that the trade will be profitable if the

historical relationship of the two assets is reestablished. The strategy was popularized by the

seminal paper by Gatev et al. (1999), and has since then been studied for decades. According to

Malkiel (2003), any abnormal returns to such a simplistic trading strategy must disappear with

its high level of public attention. Yet somehow, studies still find that simple modifications of

this strategy generates risk adjusted returns higher than the market portfolio. As the abnormal

returns persist even after adjusting for common factors, this could suggest that pairs trading

earns a risk premium yet to be accounted for.

We will in this study attempt to accept or reject the following initial hypothesis: The pairs

trading profits are compensation for taking liquidity risk.

Empirical studies find persistence in liquidity, among those, Acharya and Pedersen (2005).

Persistence in liquidity implies that returns are predictable. Stocks with a high illiquidity level

today have a high expected illiquidity level in the following period. Therefore, investors required

returns increase. A higher expected return leads to a lower price and this is where the pairs

trader receives trading signals. Given a natural contrarian approach to investing, the pairs

trader buys stocks that have gone down, while shorting stocks that have gone up. When shocks

to market and funding liquidity occur, the pairs trader will therefore become a liquidity provider

in the illiquid stocks, while taking liquidity in liquid stocks. Under such liquidity states, the

pairs trader is subject to liquidity risk and must require a high expected return during times

with shocks to market and funding liquidity which results in high barriers to arbitrage. We

define liquidity risk as the risk of not being able to trade given a lack of liquidity in the market.

This paper seeks to answer following questions:

• Is the pairs trader on average a liquidity provider and therefore subject to liquidity risk?

• How does the level of liquidity provision change over time?
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• Is the pairs trader earning a higher compensation during sub-periods with high barriers

to arbitrage?

• Does a liquidity-adjusted CAPM model indicate that the pairs trader is compensated for

taking liquidity risk?

These questions are relevant for any statistical arbitrage hedge fund, seeking to understand

what the drivers of pairs trading returns are, and the potential implications of market-wide

liquidity shocks. This could be relevant for funds seeking to hedge exposure to liquidity risk by

pairing one of their existing investment strategy with a pairs trading strategy.

Over the years, academia has provided numerous ways of identifying the liquidity of a

security. Amihud and Mendelson (1986) used the bid-ask spread as their measure of illiquidity

to explain cross-sectional stock returns. Brennan and Subramanyan (1996) followed with price

impact regressed on a unit trade size. Amihud (2002) provided a low-data-requirement measure

considering an average price impact relative to daily dollar volume traded in a given security.

Pastor and Stambaugh (2003) found that returns of securities varied with sensitivity to market

liquidity. Brown, Crocker and Foerster (2007) found a relation between liquidity and momentum

and information effects in the large capitalization segment. These findings imply that a single

measure of liquidity is hardly able to stand alone.

Regardless of multiple accounts pointing to liquidity being a priced factor, liquidity is still

not a common style to include when attempting to find the determinants of expected stock

returns of an investment strategy (Subrahmanyam, 2010). One could perhaps argue that the

lack of a universal measure of illiquidity has yet to be determined, but as Ibbotson (2013) states,

he does not suggest that his measure of turnover is superior to other liquidity measures, but

he argues that his measure is simple and works well. With that logic, Ibbotson simultaneously

points out that the other common styles of investments can be measured in various ways.

I.e. size, SMB, can be found under various capitalization constructions, quintiles, deciles or

quartiles and even across multiple markets. Value versus growth, HML, is not limited to Fama

and French (1992)’s definition as the book-to-market ratio could be measured as the price over

earnings (Basu 1977), dividend over price, enterprise value over ebitda, or other fundamental

ratios. Momentum, by Jegadeesh and Titman (1993), UMD, can be measured over a long list
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of different horizons and weightings. Therefore, Ibbotson places liquidity in the same category

of accepted styles as size, value and momentum.

The thesis is organized as follows: In section 2, we review the key academic literature sur-

rounding liquidity and pairs trading that will repeatedly be referred to throughout the analysis.

Section 3 describes theoretical concepts applied in the methodology. Section 4 describes our

methodology of replicating the pairs trading algorithm and it provides a robustness test of the

portfolio construction process. Finally, it shows how we estimate a liquidity-adjusted CAPM

model. Section 5 presents our empirical analysis, it is structured in four parts: The first part

considers the validation of our methodology through presentation of replicated pairs trading

returns, before and after transaction costs, as well as a disaggregation into a long and short leg

portfolio performance. The second part seeks to answer what the pairs trader actually trades in

terms of risk exposures and their relation to liquidity. The third part presents our results from

liquidity shock sub-period returns. The last part presents the results from a liquidity-adjusted

CAPM cross sectional model. Section 6 discuss our methodology and challenges our hypothesis.

Section 7 concludes.
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2 Literature Review

2.1 Amihud, Y. (2002)

In 1989, Amihud and Mendelson hypothesized that returns increases in illiquidity. While

this relationship was examined widely across stocks, Amihud (2002) examined the relationship

over time by proposing that: “over time, the ex ante stock excess return is increasing in the

expected illiquidity of the stock market”, thereby suggesting that the expected return on stocks,

in part, represents a premium on illiquidity.

Amihud (2002) defined an illiquidity measure, denoted ILLIQ. The idea follows that of

Kyle (1985), who attempted to capture price impact by relating returns to order flow. The

measure of illiquidity for security i was found as the daily ratio of absolute stock returns over

the volume measured in dollar terms, averaged over some period of time:

ILLIQi
t = 1

Daysi
t

Daysi
t∑

d=1

|Ri
td|

V i
td

(1)

where Days, is the number of days averaged over. In Amihud (2002), he averages over a

year. |R| is the absolute return, and V is the dollar volume.

Amihud’s measure of illiquidity provided a simple and low-data-requirement estimate of

illiquidity. The Amihud measure stands in comparison to other illiquidity, such as the bid-ask

spread or market impact, which both requires more microstructure data. This data was not

readily available to the investor in less covered markets, and this is probably the reason for the

Amihud measure’s popularity.

The author considered NYSE stocks through 1964 to 1997, and found that expected stock

returns are positively related to expected market illiquidity risk. In relation, Amihud found that

sudden, unexpected, drops in market illiquidity led to drops in contemporaneous stock returns,

assuming that firm cash flows remain unaffected by the liquidity of the market. These effects

were found to be larger for small capitalization companies and smaller for large capitalization

companies, indicating that the size-effect varies with market liquidity.

7



Liquidity Risk Premium in Pairs Trading May 15, 2020

The intuition behind ILLIQ is that it captures the daily average relation between a unit

change in volume and the price change. Another interpretation presented by the author relates

to a study by Harris and Raviv (1993). They found that disagreements between investors

about new information lead to increased trading, while agreements about the implications of

news leads to less trading as prices change without much trading. Thereby, ILLIQ has the

interpretation of consensus among investors about firm specific news.

2.2 Liquidity Factors

In order to justify the hypothesis that pairs trading profits are compensation for taking liq-

uidity risk, one must first validate that a robust liquidity premium does in fact exist. Literature

researching the liquidity premium was popularized by Amihud and Mendelson (1988), who was

able to show that illiquid stocks outperformed liquid counterparts by using the bid-ask spreads

as a liquidity measure. This section provides an overview of a selection of liquidity factors each

using a different method of measuring liquidity.

2.2.1 Pastor and Stambaugh (2003)

Pastor and Stambaugh (2003) analyze whether market-wide liquidity is priced by testing

whether changes in a stock’s expected returns are cross-sectionally related to changes in the

stock returns sensitivity to market liquidity. They measure liquidity from the following ordinary

least squares (OLS) regression:

re
i,d+1,t = θi,t + φi,tri,d,t + γi,t sign

(
re

i,d,t

)
· vi,d,t + εi,d+1,v d = 1, . . . , D (2)

Where ri,d,t is the return of the stock i on day d in month t and re
i,d,t = ri,d,t− rm,d,t, where

rm,d,t measures the value-weighted return of the market from the CRSP database. vi,d,t is the

dollar volume of the stock. The OLS estimate of γi,t measures the liquidity for stock i in month

t.

From equation 2, we see that the stock return in excess of the market is explained by a

lagged stock return and the dollar volume signed by the lagged stock return in excess of the
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market. By using the return in excess of the market in both the dependent variable and to sign

the volume, Pastor and Stambaugh attempt to isolate the stock-specific effects. Amongst low-

price stocks the tick size may represent large relative price changes, this constitutes a problem

with using a stock’s total return of zero percent for signing the volume. However, using the

excess return solves this issue as the excess of market returns are very unlikely to be zero.

By adding the lagged stock return as an independent variable, this term captures non-volume

related reversals, such as reversals imposed by a stocks tick size. Furthermore, the lagged stock

return variable allows for isolation of volume-related return reversals in the second term.

The authors argue that one should in general expect a negative relation between the stock

returns in excess of the market today relative to the excess returns of stock i yesterday. The

reason for this expectation is not specified. One could speculate that the authors expect that

stocks that outperform the market today are outperforming due to excess purchase pressure

pushing stocks away from its ’true’ market price and, subsequently, one could expect the stocks

to revert on the following day. Moreover, the authors expect that with lower liquidity one

obtains larger absolute magnitude of reversals.

Pastor and Stambaugh also provide a comparison between their liquidity measure and that

of Lo and Wang (2000), Chordia, Roll and Subrahmanyam (2000, 2001, 2002), Jones (2002),

and Amihud (2002). The authors point out a fallacy with using trading activity measures such

as the volume and turnover used by the aforementioned studies. PS argue that while these

trading activity measures seem to capture cross-sectional differences in liquidity well, they do

not appear to capture time variation in liquidity well. Illiquid markets tend to have high trading

volume, PS points to the stock market crash in 1987, liquidity was at a record low, but trading

volume where set its record high. This presents a problem with the Amihud (2002) measure

used in this study (Equation 1). During a crisis, one should expect illiquidity costs to be high.

However, with record volumes, as the denominator in equation 1 increases, the illiquidity costs

decrease. This relation is quantified by the Pastor and Stambaugh. They find a positive time-

series correlation between their liquidity measure and dollar volume during the entire sample

period, but when using sub-samples of low-liquidity months, that relation turns negative. For

that reason Pastor and Stambaugh does not use trading activity measures to proxy for time
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variation in liquidity.

One potential contributor to the negative autocorrelation in Pastor and Stambaugh’s mea-

sure is nonsynchronous trading. Excess returns of stocks could simply be caused by a lack of

liquidity in stocks relative to the market. Therefore, on the following day after an excess return

for stocks, one should expect a reversal. However, the probability of a reversal on day d + 1 is

higher when the volume on day d is low. This is contrasting with the interpretation of γi,t from

equation 2, where one should expect reversals if the volume of day d is high. Moreover, non-

synchronous trading is expected to have a greater impact in low-liquidity months, but average

volume and turnover in those low-liquidity months are shown to be slightly larger than usual.

Regardless of likelihood, the negative value of illiquidity could be affected by a contribution

from nonsynchronous trading.

From cross sectional average of stock liquidity measures, the authors estimate their monthly

market liquidity measure. Consistent with flight to quality and flight to liquidity, when market

liquidity drops, stocks returns display negative correlations with fixed income returns. As found

by Acharya and Pedersen (2005), Pastor and Stambaugh find commonality across stocks in the

monthly liquidity measure. Both findings speak in favor of the hypothesis that market liquidity

could be a priced variable by investors. To construct their liquidity factor, the authors use

the monthly liquidity measure estimated above to construct a liquidity factor relying on the

principle of greater return reversals induced by order flow when liquidity is low.

From 1966-1999, their factor returns 7.5% annually after adjusting for a multifactor model

of market return, size, value and momentum. They further find that half the alpha in a

momentum strategy is compensation for taking liquidity risk. The choice to include momentum

in the analysis is motivated by the anomaly of buying winners and selling losers over the

past year produces abnormal returns (Jegadeesh and Titman (1993)). Finally, Pastor and

Stambaugh conclude that future studies should focus on attempting to explain pricing anomalies

through liquidity.
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2.2.2 Amihud (2014)

Amihud (2014) presents a liquidity factor, IML, defined as Illiquid-minus-Liquid stocks

portfolios. Illiquidity is calculated following equation 1, from his own 2002 paper. Portfolios

are constructed by sorting into 15 portfolios in two dimensions based on ILLIQ and standard

deviation. As ILLIQ and standard deviation are positively correlated, Amihud seeks to avoid

confounding between the two by sorting into tertiles based on the standard deviation and,

within each tertile, he divides into quintiles based on the ILLIQ measure. To mitigate reversals

and momentum in stock returns, Amihud calculates portfolio returns three months after the end

of the formation period. Each portfolio return is equal to the value weighted average monthly

stock return. Finally, the IML factor return is calculated by taking the average of the three

highest and lowest ILLIQ quintiles, and buying the illiquid portfolios while short selling the

liquid portfolios. The factor was constructed using a sample of NYSE and AMEX stocks.

Following a multi-factor CAPM model using the return factors of Fama and French (1992)

and Carhart (1997), the factor generates an annual alpha of 4.06% from 1950 to 2012, and is

robust to sub-periods. It has a positive and highly significant SMB beta, which seems rather

intuitive as small stocks are naturally more illiquid relative to the large stocks. Estimating a

multi-factor model without the SMB results in an annualized alpha of 5.6%, which Amihud

suggests speaks to a limited limited size-effect on the IML factor.

Conclusively, Amihud points to the IML factor being priced, but when controlling for fund-

ing illiquidity, the risk factor is only statistically significant in periods of time where funding

illiquidity is high, which is consistent with Brunnermeier and Pedersen (2009). Amihud mea-

sures funding illiquidity as the yield spread between corporate bonds rated BAA and AAA.

Higher spread equals higher funding illiquidity.

2.2.3 Liu (2006)

As mentioned, liquidity can be measured in many ways, and does not have one universally

accepted measure, as each measure captures something different. Amihud (2014) is therefore,

naturally, not the only paper proposing of a liquidity factor. Liu (2006) proposes a return

factor, LIU, using an illiquidity measure that evaluates the proportion of zero-volume days
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over the previous year and by turnover. By construction the two methods also differ. While

IML are value-weighted, quintile portfolios with pre-rankings into terciles based on volatility

of returns, LIU are equal weighted, decile portfolios with no pre-rankings. However, both

regression capture about the same alpha indicating that the liquidity premium is not captured

by the other factors. Amihud then includes the LIU factor to test whether the two factors

capture the same liquidity premium. The results show that the two factors indeed capture

different information about the liquidity premium, and that both systematic risk factors can

together contribute to explain expected stock returns.

2.2.4 Ibbotson, Chen, Kim and Hu (2013)

Ibbotson et. al. (2013) present a measure of illiquidity by considering stock turnover. At

the time, this was already an established measure of illiquidity with a negative correlation to

equity returns (Haugen and Baker (1996) and Datar, Naik and Radcliffe (1998)). Turnover was

found by Idzorek, Xiong, and Ibbotson (2012) to exhibit greater explanatory power than that of

Amihud (2002)’s illiquidity measure. Ibbotson defines illiquidity as the annual share turnover

defined as the sum of 12 monthly volumes divided by each month’s shares outstanding. The

authors make use of the top 3500 stocks in U.S. equity markets from 1971 to 2011.

They construct a liquidity factor from this measure, by splitting their stock universe into

quintiles based on their ranked illiquidity measure. They construct a long-short portfolio by

buying the least liquid quintile and shorting the most liquid quintile. The resulting liquidity

factor premium, as with Pastor and Stambaugh, Liu and Amihud, could not be explained by the

Carhart four-factor model constituting market risk premium, small-minus-big, high-minus-low

and winners-minus-losers.

Besides a liquidity factor, Ibbotson et al. (2012) also analyze how a the returns of the first

quartile of a liquidity sorted portfolio compared with the market portfolio as well as the first

quartile of returns of size, value, and momentum. Their findings suggest that low liquidity

outperforms the equally-weighted market portfolio, size and momentum, but still falls short to

value.

Conclusively, Ibbotson points to the clear-cut argument for a liquidity premium. Liquidity
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is desired by investors, who are clearly willing to pay more for liquid stocks. Illiquidity is costly

as it takes longer to trade and usually costs more to trade an illiquid security relative to a liquid

one. Therefore, in equilibrium, one finds a higher gross return as a compensation of illiquidity.

Small stocks can be argued to be more risky, but should that necessarily be the case for value

stocks or high momentum? With this argument, Ibbotson questions whether the same clear

argument can be provided for, particularly, value and momentum, or whether these styles are

rather compensation for other characteristics that markets put a lower price to.

In summary, these papers seem to suggest that liquidity is a priced factor, regardless of

the choice of liquidity measure, while simultaneously not being explained simply by a SMB

factor. Conclusively, we will maintain our initial hypothesis that pairs trading profits could be

compensation for taking liquidity risk.

2.3 Acharya and Pedersen (2005)

This paper is described in more detail, as future calculations in this thesis will be based

on the framework presented by Acharya and Pedersen (AP).

When liquidity is low, trading difficulty is usually higher, and small firms have a relatively

lower liquidity than large firms, Pastor and Stambaugh (2003). When trading activity drops,

implicit costs increase and prices turns more volatile. The explicit transaction costs similarly

increase when liquidity is low, as market-makers, who provide liquidity, end up requiring higher

collateral and margin requirements. With these mechanics in mind, one should expect illiquid

securities being priced relatively lower than liquid securities as investors seek compensation for

taking on the liquidity risk. Therefore, in 2005, AP introduced a liquidity-adjusted CAPM

model (LCAPM), arguing that a shock to the market-wide liquidity is a source of systematic

risk. Investors price this risk by requiring higher expected returns on securities with higher

liquidity-related risk, resulting in lower prices for these high liquidity risk securities.
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Introducing the Liquidity-Adjusted CAPM

The liquidity-adjusted CAPM model considers how asset gross returns,

ri
t = Di

t + P i
t

P i
t−1

(3)

depends on its relative illiquidity costs, market returns and relative market illiquidity.

ci
t = Ci

t

P i
t−1

(4)

rM
t = ΣiS

i(Di
t + P i

t )
ΣiSiP i

t−1
(5)

cM
t = ΣiS

iCi
t

ΣiSiP i
t−1

(6)

Where P is the asset price, D is the dividend, C is the illiquidity costs measured as a

per-share cost of selling security i, and S is the number of shares outstanding.

The authors define an imagined economy, in which security i has a dividend of Di
t−Ci

t and

no illiquidity costs. In this imagined economy the standard CAPM holds (Markowitz (1952),

Sharpe (1964), Lintner (1965) and Mossin (1966)). They then claim that equilibrium prices

are the same in an economy with frictions as those of the imagined economy, arguing that net

returns on a long position is identical between the two economies, and that all investors in the

imagined economy hold the market portfolio while engaging in borrowing and lending at the

risk free rate to satisfy their risk preferences. Based on these arguments, the CAPM in the

imagined economy can be expressed as a CAPM in net returns with illiquidity costs.

The liquidity adjusted CAPM in net return of security i thereby becomes:

Et

(
ri

t+1 − ci
t+1

)
= rf + λt

covt

(
ri

t+1 − ci
t+1, r

M
t+1 − cM

t+1

)
vart (rM

t+1 − cM
t+1) (7)
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Where λ = Et(rM
t+1 − cM

t+1 − rf ) is the risk premium.

Equation 7 can be expanded into the conditional expected gross return:

Et

(
ri

t+1

)
=rf + Et

(
ci

t+1

)
+ λt

covt

(
ri

t+1, r
M
t+1

)
vart (rM

t+1 − cM
t+1) + λt

covt

(
ci

t+1, c
M
t+1

)
vart (rM

t+1 − cM
t+1)

− λt

covt

(
ri

t+1, c
M
t+1

)
vart (rM

t+1 − cM
t+1) − λt

covt

(
ci

t+1, r
M
t+1

)
vart (rM

t+1 − cM
t+1)

(8)

Simplified to

Et

(
ri

t+1

)
=rf + Et

(
ci

t+1

)
+ λtβ1 + λtβ2 − λtβ3 − λtβ4 (9)

Where Et(ci
t+1) is the expected relative illiquidity cost. The four betas will be presented

below.

Sources of liquidity risk

From equation 9 the authors show that the LCAPM consists of the regular market beta

and three betas each representing different sources of liquidity risk, for which investors require

a return premium:

β1 : The standard market beta, captures the relation between stock returns relative to market

returns.

β2 : The liquidity risk associated with the covariance between liquidity of a security, ci, with

market liquidity cm, cov(ci, cm). This beta provides an estimate of the extent to which the

liquidity of the stock, depends on the liquidity of the markets. This beta is usually positive,

as one should expect the liquidity of a security to drop when the market liquidity is dropping.

This phenomenon is called commonality in liquidity. With this return premium, the authors

argue that investors will require a premium for buying securities that are illiquid during an

illiquid market period. The authors find a return premium to be 0.08%.

β3 : The liquidity risk introduced by the covariance between security returns, ri, and market

illiquidity, cov(ri, cm). This return premium is argued to exist as investors pay a premium for

15



Liquidity Risk Premium in Pairs Trading May 15, 2020

securities with high expected returns during drops in the market liquidity. Therefore, this beta

tends to be negative. The return premium is estimated to be 0.16%. The existence of the

return premium is supported by Pastor and Stambaugh (2003) findings focusing on the return

reversals caused by order flow.

β4 : The liquidity risk associated with the covariance between security liquidity and market

returns, cov(ci, rm). The intuition behind this return premium is that investors are willing to

pay a premium for liquid securities when the market returns drop. As such, risk averse investors

prefer assets with stable liquidity costs during market drop. This premium was not studied

before the publication of Acharya and Pedersen paper in 2005. The return premium due to the

covariance between the illiquidity of securities with market returns is found to be 0.82%, and

seem to be the most important of the three illiquidity betas.

These relations are illustrated in the beta matrix below.

rm cm

ri β1 β3
ci β4 β2

Unconditional Liquidity Adjusted CAPM

As liquidity, empirically, has been shown to be persistent and time-varying (Amihud (2002),

Pastor and Stambaugh (2003)), the LCAPM model shows that returns are predictable. The per-

sistence in liquidity conflicts with an assumption of independence between dividends and illiq-

uidity costs. Therefore, to derive an unconditional function to estimate the liquidity-adjusted

CAPM, the authors instead assume a constant conditional covariance of innovations in illiquid-

ity and returns. This assumption results in the following unconditional functions.

E
(
ri

t − r
f
t

)
= E

(
ci

t

)
+ λβ1i + λβ2i − λβ3i − λβ4i (10)

where

β1i =
cov

(
ri

t, r
M
t − Et−1

(
rM

t

))
var (rM

t − Et−1 (rM
t )− [cM

t − Et−1 (cM
t )]) (11)
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β2i =
cov

(
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t − Et−1 (ci
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(
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var (rM
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β4i =
cov

(
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t) , rM

t − Et−1
(
rM

t
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var (rM

t − Et−1 (rM
t )− [cM
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t )]) (14)

They find the average illiquidity, E(ci
t), for a portfolio by taking the average using the entire

time-series of illiquidity observations. The return and illiquidity innovations are elaborated on

in the following section.

Empirical results

AP considers all common shares from CRSP listed on NYSE and AMEX from July 1962

to December 1999. As a measure of illiquidity, the authors utilize the Amihud (2002) measure

defined in equation 1.

The authors form sets of 25 test portfolios sorted on illiquidity, variation in illiquidity,

size and book-to-market by size. Following equations 10 to 14, the authors run cross-sectional

regressions under a number of different model specifications. First, for comparison to the

CAPM, they present a single lambda applied to a net beta. To distinguish between the empirical

goodness of fit of the standard CAPM with a market beta and the liquidity adjusted CAPM

while both exploit the same degrees of freedom, the authors define the net beta as:

βnet
p = β1

p + β2
p − β3

p − β4
p (15)

By defining this single variable, the CAPM and LCAPM are more comparable, as the

LCAPM is not simply improved by adding factors, rather it is improved by the liquidity ad-

justment. The standard CAPM results in an R2 of 0.653, while the liquidity adjusted CAPM

results in an R2 of 0.732, with a statistically significant parameter for βnet
p at a 1% alpha level.
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Second, four separate lambdas associated with each of the liquidity betas are introduced

to determine where the liquidity effects are stronger. By considering these results the authors

mention the multicollinearity problem inherently present in the model. The authors find that

illiquid securities, securities with a high average ci, display high liquidity risk, measured as

cov(ci, cm), cov(ri, cm) and cov(ci, rm). These findings provided evidence of the theory of ’flight-

to-liquidity’. AP proposed that flight-to-liquidity is a result of investors selling what they

perceive as the less liquid investments, and turning towards more liquid investments instead.

Consider a financial crisis where market liquidity dries up and stocks diverge due to excess

sales pressure, and subsequently, investment opportunities arise. From the perspective of the

pairs-trader, AP’s findings imply that the pairs-trader will end up buying illiquid stocks and

selling the liquid ones. This is a result of the liquid security increasing in value relative to its

counterpart as a result of excess demand, and the illiquid security dropping in value due to

excess supply. This proposition suggests that the pairs trader provides liquidity. The pairs

trader buys the stock that performs relatively poorly during a crisis, and sells the stock that

has done relatively well during a crisis. As an effect, according to AP, the pairs trader earns a

premium for liquidity provision. In the following sections we will consider which of the three

liquidity effects introduced by AP determine the profits for the pairs trader.

2.4 Gatev, Goetzmann and Rouwenhorst (1999, 2006)

Gatev, Goetzmann and Rouwenhorst (GGR) were the first in documenting pairs trading

and making it available to the public. Even though the authors mention that the strategy had

been implemented since the 80’s, it was not until their publication in 1999 that pairs trading

became popular among arbitrageurs willing to take advantage of temporary relative mispricings

of stocks. In 1999, they reported the results of the strategy implemented with U.S. markets

daily data ranging from 1962 until 1997, and in 2006 they extended their research with data

covering the period 1962-2002.

The methodology of the strategy proposed by GGR consists of pairing stocks which ex-

perienced similar relative pricing during the formation period, and subsequently trade them,

opening long and short positions when the normalized prices diverge by two standard devia-
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tions from their historical spread. The authors define a formation period of twelve months in

which they calculate the sum of squared differences in the normalized price series for each pair

of stocks (including reinvested dividends). To be included in the formation period, the stock

has to satisfy the requirements of having zero days without trading volume during the previous

twelve months. This filter helps to alleviate some concerns about the possibility to trade highly

illiquid stocks.

After identifying the pairs with the minimum distance in their normalized price series, the

five pairs with the lowest SSD are assigned to the portfolio top 5, and with the same criteria

they form the portfolio top 20 and top 110-120 (top 20 pairs after the top 100). Then, they

begin to trade the pairs during a period of six months, opening positions when the spread

exceeds two standard deviations from the historical measure, and closing them when the prices

converge, when one of the stocks in the pair is delisted, or at the end of the trading period. The

whole process is repeated every month, so at each point in time there six overlapping portfolios,

mimicking the structure of an institutional investor with different portfolio managers.

The excess returns of the strategy are reported as what they call committed capital and

employed capital (or fully-invested capital). The first considers the number of pairs that are

selected for trading, while the second calculates the returns based on how many pairs are

actually traded during the period. The difference in these methods arises when one (or more

than one) pair never diverges enough to trigger a trading signal. Therefore, the committed

capital approach still considers the cost of committing capital even though a trade is not

executed, while the fully-invested approach calculates returns based on capital actually invested

in trading positions.

They further distinguish between returns based on positions that open (closed) on the

same day of the trading signal (no waiting), and returns calculated from opening positions on

the day following the signal (1 day waiting). The returns from the no waiting approach may

be biased upwards due to the bid-ask bounce, so they also report the returns from trading one

day after a trading signal.

In their publication from 1999, they find statistically and economically significant returns

both for the committed capital and the fully-invested portfolios, with positions initiated on the
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day of the signal and on the following day. Similar conclusions arise in the paper published

in 2006, in which they extend their previous study. In 1999 they reported the returns over

6-months periods, while in 2006 they reported returns over 1-month periods. To make their

results comparable, we report the returns from both papers compounded to 1-year. Despite

the circulation of the paper published in 1999, the returns from the pairs trading strategy

did not diminish significantly for the committed capital portfolios, and even increased for the

fully-invested portfolios.

Portfolio Top 5 Top 20
Publication ’99 paper ’06 paper ’99 paper ’06 paper

No-wait
Fully-invested 0.1238 0.1688 0.1249 0.1866

Committed Capital 0.1232 0.0982 0.1238 0.1010
Wait-one-day

Fully-invested 0.0754 0.0932 0.0816 0.1128
Committed Capital 0.0750 0.0570 0.0808 0.0642

The authors argue that the profits are not caused by mean reversion, but to the presence

of a latent risk factor in the returns, different from conventional risk measures. They arrive to

this conclusion after analyzing the returns up until and after 1988, which consider the year that

marks the rise in the hedge fund industry. The average monthly return for the top 20 strategy

drops from 118 bps per month to around 38 bps. However, after adjusting for the Fama-

French-Momentum-Reversal factors, the risk-adjusted returns for each of the periods remain

significantly positive. GGR argues that pairs trading returns are a compensation for the risk

arbitrageurs bear when enforcing the Law of one price.

They employ some robustness checks to analyze pairs trading results under different cir-

cumstances. First, the returns presented before come from the strategy implemented with un-

restricted pairs, so any stock can be paired with any other that minimizes the sum of squared

distances in their normalized prices. This approach is entirely mechanical, and may lead to

pairing stocks which do not have much in common nor share common factor exposures. There-

fore, they restrict the pairs to stock that belong to the same industry group within the grouping

proposed by Standard and Poor’s: Utilities, Transportation, Financials and Industrials. Af-

ter this change, the returns are somewhat lower but still both statistically and economically

significant.
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Secondly, they argue that the returns from pairs trading do not simply come from mean

reversion. To support this statement, they perform a bootstrap analysis to compare the per-

formance of pairs trading implemented following their methodology, and the results to forming

pairs with a random selection of stocks. They start by defining pairs and obtaining the dates

in which each pair would start a position, but instead of then trading the stocks from the pair,

they replace them with two other stocks with similar returns in the previous month. If pairs

trading is simply a reversal strategy, by performing the bootstrap several times, one could ex-

pect to get on average, similar returns to those from pairs trading. However, they find that the

returns from the random pairs are negative and more volatile than those from the true pairs,

concluding that the strategy is not solely benefiting from mean reversion.

Thirdly, given that the strategy may not be possible to implement due to short-selling

constraints, especially with small capitalization stocks, the authors restrict the analysis by

only considering stocks that belong to the top 30% market capitalization and they find that

the returns remain mostly unchanged and highly significant for all portfolios. Additionally,

they test if the strategy may be affected by short recalls so they simulate recalls on the short

positions on days with high volume and they find that the returns are slightly affected but

remain positive and highly significant.

Finally, they also analyze if pairs trading works just because of the exposure to bankruptcy

risk. As stocks with an increasing probability of bankruptcy would normally go down in price,

if pairs trading is simply profiting from the non-realization of a bankruptcy from the long-end

of the pairs, the returns would be expected to come from the long positions. However, GGR

show that much of the returns come from the short positions.

2.5 Do and Faff (2010, 2012)

Do and Faff (2010) analyze pairs trading in U.S. markets for the period 1962-2009 and

provide further evidence of the decreasing trend in the profitability of the strategy. Their

argument is that the main the driver for the lower returns is a higher arbitrage risk caused

by fundamental, noise-trader and synchronization risks. Therefore, they disagree with GGR’s

hypothesis that this phenomenon is produced by an increased competition to arbitrage away
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these opportunities.

Fundamental risks refers to the increased disruption in the relationship between stock

prices, which leads to non-convergent pairs. This disruption could be because the condition of

the business of one (or both) of the companies changes substantially, and this is reflected in

the price during the trading period. The noise-trader risks alludes to irrational trading, such

as market bubbles or panic selling, which works against the traders betting on a closing of the

spread. Finally, synchronization risk refers to the uncertainty about when the market will react

to a potential mispricing of assets, which could not happen during the time the arbitrageur

holds a position.

They decompose the returns from pairs trading by periods, sectors and the frequency of

convergence of the pairs, and they find that most of the profitable pairs are those with the

highest number of zero-crossings (ZC), defined as the number of times the normalized spread

series changes sign (convergence). They argue that restricting pairing to stocks within the same

industry and choosing those with the lowest SSD during the formation period (like in GGR),

but then sorting again by the number of ZC, produces portfolios with superior returns to those

proposed by GGR.

As a continuation of their paper published in 2010, in 2012 Do and Faff investigated if

pairs trading is still profitable after accounting for trading costs. They argue that the existence

of pairs trading returns is not by itself an argument against market inefficiency because after

transaction costs, the returns from all portfolios considered vanish or even become negative.

As pairs trading requires the execution of several trades because the pairs may diverge and

converge many times, one must take into consideration the cost of applying this strategy.

They form 29 different portfolios based on sectors, industries, sum of squared deviations

and zero crossings, and they focus on estimating transaction costs for the period 1963-2009 and

decomposing the costs into three groups: commissions, market impact and short selling fees.

To estimate the commissions, they focus on Jones’ (2002) work in which he presents a time

series of commissions paid by all investors from 1925 until 2000. These costs are most likely

above the commissions paid by institutional traders, so Do and Faff apply a 20% discount to the

reported costs while citing other papers that support their estimations. For the period 2001-
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2009 they use the quarterly reports of institutional trading costs from Investment Technology

Group (ITG). The values reported range from 70 basis points (bps) in 1963 to as low as 9 bps

in 2009, for an average of 34 bps for the entire period. Therefore, commissions on trades have

dramatically decreased in the period studied.

To estimate the market impact of pairs trading, the authors measure the price movements

which occur after the divergence signals, defined as two standard deviations from the historical

spread in the normalized price series. They analyze the spreads from one day prior to divergence

until two days after to draw conclusions about how arbitrageurs affect prices when they seize

to exploit these opportunities. Do and Faff argue that we should expect a gradual narrowing

in the spreads after the divergence when market participants see the current spread as an

opportunity. Then, to arbitrage away the divergence, the cheap stock is expected to appreciate

with the inflow of new buy orders, while the expensive one is expected to fall in price with the

new selling orders. They report that on average the spread declines from 7.56% to 7.02% and

6.78% one and two days after divergence, respectively. These figures imply that an average

market impact of 26 bps in the following two days after divergence signals for the entire period

1963-2009.

Additionally, they mention that short positions in pairs trading are subject loan fees and

short selling constraints in the form of recalls or the inability to short certain stocks. For loans

fees, they use a constant 1% yearly fee payable during the period in which a trader holds a

short position. Regarding short selling constraints, they mention that around 84% of the stocks

considered (or 99% of the total market value) can be shorted, and that historically only around

2% of the short positions are recalled.

Do and Faff show that all portfolios considered have positive monthly returns of 93 bps on

average, and in all cases the returns are statistically significant. However, after adjusting for

the estimated costs of trading, the average monthly returns amongst all portfolios goes down

to 12 bps, with some portfolios even showing negative returns. This leads to the conclusion

that, pairs trading is only profitable before accounting for all trading costs, but after trading

costs most of the returns disappear.
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2.6 Engelberg, Gao and Jagannathan (2009)

After a modified replication of the methodology of GGR, Engelberg et al. (2009) attempt

to answer the questions of why some selected pairs perform better than others, what causes

the spread of normalized prices between pairs to diverge from one another and if the reason for

divergence affects subsequent returns and convergence horizon.

The authors find that pairs trading returns are driven by events with impact on both

the long and short positions. Their analysis is focusing on news published around the date

of divergence. The returns of pairs trading are found to be partly driven by a difference in

liquidity level, and by differences in the responses to i.e. industry specific shocks. This suggests

that by focusing on pairs where one stock is slower at reacting to news common to both stocks

in the pair, one can improve pairs trading returns. They further find that returns tend to be

smaller once sell-side analysts take an interest in the stocks, and when institutional owners

hold a large proportion of stocks. In summary this analysis shows that the pairs trading return

have two primary drivers: liquidity provision and lagged reactions to information affecting both

companies in the pairs.

Furthermore, they analyze how the reason for initial divergence affects profits. They find

that returns are higher for pairs that diverge due to news that temporarily affect the liquidity

of one of the stocks in the pair. On the other hand, returns tend to be lower for news that have

a more fundamental and persistent relevance for a given stock. The intuition here is clear, if a

stock in a pair suddenly changes fundamentally, there is a lower probability that the two stocks

will converge again. As liquidity was found as an important factor, the authors combined the

Pastor and Stambaugh (2003)’s liquidity risk factor with the Carhart four factor model, and

found that pairs trading returns has a significant exposure to the liquidity risk factor, regardless

of the holding period tested. They can, however, not explain all pairs trading returns, which

are both economically significant, ranging from 0.8% to 1.9% per month depending on holding

period, and statistically significant at a 1% alpha level. It should be noted that the authors

do not account for transaction costs. Conclusively, they find that liquidity provision and price

discovery contribute about equally to explaining the abnormal returns in pairs trading.

Finally, the authors analyze the convergence horizon. They found that size and liquidity
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seem to affect which pairs converge faster than others. Small, illiquid and volatile stocks tend

to converge faster than the stable large and liquid securities. Furthermore, they found that

pairs trading returns can be improved by focusing on the holding period. Specifically, they

found that pairs that do not converge during the first ten days of the initial signal have lower

risk adjusted returns than pairs held for six months.

3 Theory

3.1 Market neutrality

This section seeks to inform the reader of the implications of market neutrality and how

it relates to a pairs trading portfolio. We consider the pairs trading strategy to fall into

the category of statistical arbitrage strategies. Statistical arbitrage strategies are commonly

characterized by a short-term holding period and broadly diversified portfolios, and it falls into

the category of market neutral strategies because it takes long positions and short positions

simultaneously. This method seeks to take advantage of mispricings in securities with high

correlations, which is the main focus of a pairs trading strategy.

A market neutral portfolio is defined as a portfolio that is independent of market fluc-

tuations, which is commonly measured as the correlation between the market return and the

market neutral portfolio. Different methods of obtaining a market neutral portfolio can be

utilized, and we will in this section focus on three forms of neutrality: dollar neutrality, beta

neutrality and sector neutrality. Needless to say, ’market neutral’ is a very liberal use of the

word as the trader is not immune to all kinds of fluctuations in the markets simply by having

zero dollar, beta or sector exposure, and in that sense being risk free. It simply means that the

portfolio is not subject to market risk, which the capital asset pricing model (CAPM) assumes

is the only risk factor that the speculator is compensated for. While this assumption is widely

challenged in academia and subject to endless testing, it is now empirically fair to assume that

investors can earn risk premiums from exposure to other risk factors. We will touch upon these

risk factors in section 3.2.
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Dollar neutral

The straight forward approach to market neutrality, which is utilized by the pairs trader

in a GGR (2006) and Do and Faff (2010, 2012) setup, is monetary neutrality. If you go long $1

in stock A, you simultaneously go short $1 in stock B.

$Long = $Short

As such you obtain a net investment of 0. This method does not account for any historic patterns

in the relationship between the fluctuations in the stock prices of A and B. The dollar neutral

portfolio is in theory self-financing, as the proceeds from borrowing the stock and short selling

it can be used to buy another stock. This makes a dollar neutral strategy suitable for empirical

research. In practice, this notion of self-financing is however overly optimistic due to, amongst

others, short-selling restrictions - in particular on the small capitalization segment of stocks, as

short selling was a scarce opportunity in the early sample used for this study. Moreover, short

selling most often comes with margin requirements. Margin requirements impose the necessity

of collateral posted by the short seller to add a buffer for the stock lender, in the case of the

short seller going bust. Margin restrictions are ignored in this study, but it does affects the

extent of potential implementation for the prospective pairs trader.

One should note that being dollar neutral does not imply that the investor is necessarily

independent of market fluctuations as the risk profile on the long and short position may differ

when the betas of stock A and stock B are not the same.

Beta neutral

Beta neutral is in a CAPM framework a risk free strategy, and can therefore not earn

anything north of the risk free rate. The idea is to have a weighting scheme that ensures the

same amount of market risk is taken on both the long and the short leg. As a concrete case, if

we buy stock A, that has a beta of 2, and short stock B, that has a beta of 1, our beta neutral

portfolio consists of $-2 short in stock B and $1 long in stock A. This example illustrates that

we take a smaller position in the more risky stock A, while taking a larger position in the less
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risky stock B to compensate for the lower market risk. As such, our weighting allows for betas

on the long side and short side to be equal.

βLong = βShort

It is evident from the example that the strategy is not dollar neutral, and thereby in theory

not self-financing. It is however theoretically market neutral. This method is commonly applied

by practitioners, yet it is liable to the choice of beta estimate. Beta can be estimated in an

unlimited amount of ways. Should one use daily, weekly, monthly, quarterly or annual return

data? Should one use a half year estimation period, one year, two years or five years? As

the underlying company changes over time, so does the stock’s beta. Therefore, to keep the

portfolio beta neutral, one must frequently adjust the portfolio weighting.

Sector neutral

Arguably, a stock should be more affected by shocks to the sector it belongs than by

changes in the overall market. For example, technology stocks suffered greater losses than

utilities stocks during the dot-com bubble. Sector neutrality is an attempt to immunize the

portfolio to sector specific shocks. Again, for the sector neutral trader, he can select between

being dollar neutral and beta neutral to a given sector.

Benefits of market neutrality

The question is then, why would an investor spend resources attempting to be neutral to

an endless amount of risk factors?

The answer is simple. By being long and short at the same time, you avoid having any

directional bias. In other words, you do not bet on the direction of the market, you instead bet

on the relative performance of stock A in relation to stock B. If you have reason to believe stock

A is overvalued, and B is undervalued, one can - in theory - obtain risk free profits by buying

the undervalued stock and selling the overvalued counterpart. As such market neutrality is

beneficial for investment strategies exploiting small market inefficiency and anomalies.
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Market efficiency

The question then becomes, are markets actually efficient? Fama (1970) first introduced

the concept of an ‘efficient’ market defining it as a market reflecting all available information.

This definition implies that one cannot exploit any mispricings, as markets will always reflect

the true value of a security. Three forms of market efficiency were defined. First, we have the

weak-form efficiency. It implies that security prices reflect all information about past prices.

One cannot use past prices to predict future prices. Second, we have semi-strong efficiency. It

implies that security prices reflect all publicly available information, and only inside information

can generate abnormal returns. Third, we have strong-form efficiency. This third level implies

that all publicly available information as well as inside information is priced. Note that the

pairs trader is betting on markets not being weak-form efficient as the pairs trader is using past

price information to form pairs and generate signals. Should the pairs trader generate abnormal

returns, it would be evidence of an inefficient market, breaching all three levels of efficiency.

3.2 Factor models

One cannot discuss market efficiency without taking the choice of equilibrium model into

account. In order to claim that one generates abnormal returns, one must prove that returns

are not only compensation for taking exposure to certain risk factors. We will in this section

present most commonly used risk factors, as these will be used repeatedly throughout this

study.

Fama and French (1993) introduced two additional factors to assist the CAPM market risk

premium in explaining stock returns. The first factor constructs portfolios based on size, as

it buys the stocks with small market capitalization and shorts the large market capitalization,

therefore the name Small-minus-Big, or SMB. This factor captures the, at the time, empirical

anomaly of small capitalization stocks outperforming large capitalization stocks. The second

factor they introduced is the High-minus-Low factor, or HML. It is another statistical anomaly,

where one buys stocks with a high book value relative to market value (B/M ratio), also

denoted value stocks, and short sell stocks with a low B/M ratio, also denoted growth stocks.

The rationale is that first with a high B/M ratio are “cheap”, in the sense that you pay less for
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$1 of the company. Whereas growth stocks, as the name indicates, are priced high, based on

expectations of future growth which in turn is reflected in the market value of the company.

In the same category of commonly used return factors, we find the Momentum factor,

introduced in 1993 by Jegadeesh and Titman. The authors find that by buying recent winners

and selling recent losers, the investor generates abnormal returns. These findings have lead to

much empirical research and they hold across asset classes and across subperiods. Yet some

evidence suggests that the momentum outperformance relative to the market is not caused

by systematic exposure to a risk factor, but rather by delayed reactions to firm-specific news.

While one could come up with a convincing story as to why investors should require a premium

for holding the small illiquid stock, relative to holding large stocks, it is hard to tell an equally

convincing story as to why the momentum investor should earn a premium. While not consid-

ered a risk premium, it is often included in portfolio return regressions, and we shall therefore

consider this factor in our analysis as well.

3.3 Fama Macbeth Regression

When testing the CAPM in cross-sectional tests, one encounters some statistical issues.

The standard OLS regression framework assumes that observations are independent. However,

cross sectional correlation amongst portfolios would result in less informative results than the

OLS implies. The implications would result in the OLS standard errors becoming too low, and

consequently, one would obtain to many false positives, also known as type 1 errors. Fama and

Macbeth (1973), hereafter FMB, present a possible solution to this issue.

The cross sectional test in a FMB regression is split into 3 steps for in-sample beta esti-

mation. Acharya and Pedersen (2005) construct cross sectional regressions using pre-estimated

betas. While they do not implement the Fama and Macbeth approach, they point out that the

FMB procedure would yield the exact same results. As we will present our results using the

FMB procedure in this study, we will describe the procedure as applicable to our methodology

after providing the framework in the three steps below:
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• Step 1: Compute the time-series betas for each N portfolio.

E(rp,t)− rf = αp + βpFt + εt,p, ∀p{1, ..., P} (16)

• Step 2: For each time period t, regress N returns on the N betas derived from step 1.

E(rp,t)− rf = γ0 + λβ̂p + u (17)

• Step 3: Compute averages to find Fama Macbeth estimators of λ and α obtained in step

2. From the cross sectional regressions in step 2, we get a times series of least squares

alpha and lambda estimators: [α̂t=1, , ..., α̂t=T ], the risk premium is defined as

λ̂FMacB = 1
T

T∑
t=1

λ̂t (18)

SE(λ̂FMacB) = σ(λ̂t)√
T

(19)

In this paper, we use the liquidity risk beta formulas proposed by AP from equations 11

to 14 to complete step 1.

Step 2 can be a cumbersome one, as you need to run t cross sectional regressions. We can

however enjoy the benefit of estimating only one liquidity beta through time, and do not have a

rolling beta estimation window. This means that our betas are constant through time, and we

can take a shortcut to step 3. Since we are applying a linear framework, the order in which we

take the average and run the regression does not make a difference. The average of regression

coefficients is the same as the regression coefficients of averages. We can therefore take the

average off all portfolio returns considered in our analysis and run a single cross sectional

regression of these averages on the betas estimated in step 1.

As such, for the pending cross sectional regressions presented in section 5.6.2, we estimate
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variations of the following regressions:



rp=1,avg

rp=2,avg

. . .

rp=P,avg


=



1 β̂p=1,1 β̂p=1,2 β̂p=1,3 β̂p=1,4

1 β̂p=2,1 β̂p=2,2 β̂p=2,3 β̂p=2,4

· · · · · · · · · · · · · · ·

1 β̂p=P,1 β̂p=P,2 β̂p=P,3 β̂p=P,4





α

λ1

λ2

λ3

λ4


+



ep=1

ep=2

. . .

ep=P


(20)

Where rp=1,avg is the average portfolio return, and λ1− λ4 represents a market or liquidity

risk premium. The cross sectional standard errors of each lambda is the same as the cross

sectional standard errors, except they are missing a correction for the fact that the betas are

generated regressors, a so called ‘Shanken correction’.

4 Methodology

4.1 Data

The sample used in this paper comprises all stocks in the CRSP database. We employ

daily price and volume data from August 1962 until December 2019. We select all common

shares, denoted by CRSP share codes 10 and 11, listed on NYSE and AMEX. While Nasdaq

stocks are included in GGR’s study, our need for volume data to calculate illiquidity measures

leads us to discard the companies listed on this exchange. Nasdaq stocks only have volume

data since 1982 and it includes inter-dealer trades Anderson and Dyl (2005), which can lead

to unreliable comparisons in illiquidity measures with stocks listed on the other exchanges.

Therefore, our analysis is based only on stocks listed on NYSE and AMEX, which also allows

us to apply the methodology from Acharya and Pedersen (2005) to analyze pairs trading returns

as a compensation for taking liquidity risk.

Adjusted share prices are calculated using CRSP variables PRC and CFACPR, where PRC

is the close price of day t for stock i, and CFACPR is the cumulative factor for adjusting prices
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for dividends and stock splits.

P i,adj
t = PRCi

t

CFACPRi
t

(21)

Subsequently, we calculate daily stock returns as:

ri
t = P i,adj

t

P i,adj
t−1
− 1 (22)

We filter out data with missing price information. Stock delistings are handled following

the methodology of Acharya and Pedersen (2005). We maintain delisting returns of -100% and

any CRSP delisting codes of 500 (reason unavailable), 520 (went to OTC), 551-573 and 580

(various reasons), 574 (bankruptcy) and 584 (does not meet exchange financial guidelines) are

assigned a return of -30%. This figure is the average delisting return estimated by Shumway

(1997), who examined the OTC returns of delisted stocks and found that a negative return of

30% was the average delisting return of all delisted companies included in the CRSP database.

This adjustment functions as a mitigation against survivorship bias in our results.

We obtain the time series of the Fama-French 3-factors and the momentum factor from

professor Kenneth French website1.

4.2 Formation and trading of pairs

In this section, we explain how the formation and trading periods are defined, and how we

calculate the returns, following the approach of GGR (1999; 2006) and Do and Faff(2010; 2012).

In section 5, we explain the results obtained and compare them with those of the aforementioned

authors.

Formation period

Every month, we form pairs over a 12 month look-back period. Subsequently, we trade

the pairs over the following 6 months. Both the length of the formation period and the length

of the trading period are arbitrarily chosen by GGR and Do and Faff. One could attempt to
1https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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improve results by choosing an alternative formation and trading period, but this is not within

the scope of our study. An illustration of how the pairs are formed and then traded can be

found in figure 1.

Figure 1: Portfolio Construction

This figure illustrates the formation and trading periods of the strategy implemented in this study. Pairs are

formed over 12 months and traded over the subsequent 6 months. The first portfolio of pairs starts trading at

the beginning of month 13, and every month a new portfolio starts its trading period. At the end of month 18,

the first portfolio stops trading and from then on, six different portfolios are traded every month.

We start each formation period by screening out all stocks with one or more days of zero

volume trading, indicated by CRSP’s variable VOL. We further apply prices filters in line with

those used by Acharya and Pedersen (2005), screening out stocks with share prices below $5

and above $1000, since returns on low-price stocks are highly affected by the minimum tick size

of $1/8 for NYSE stocks effective until 1997. Figure 2 shows the monthly number of stocks

living up to our criteria, and it can be seen that each month there are at least 1000 stocks that

pass all the filters, and in some months this figures goes above 2000 stocks.

For each stock, we normalize our stock prices by constructing a total return index at the

beginning of the formation period, until the end of the trading period. For a given period with

N stocks in our sample, we obtain N ∗ (N − 1)/2 possible pairs. We divide by two because if

stock A and B are be a pair, then stock B and A cannot be a pair. We calculate the sum of

squared deviations between each pair based on the spread between the two normalized price

series, denoted as P̃ i and P̃ j for stock i and j, respectively. Lastly, the pairs are ranked by their

33



Liquidity Risk Premium in Pairs Trading May 15, 2020

Figure 2: Tradable stocks

This figure illustrates the number of stocks that fulfil all the requirements of data availability, minimum and
maximum price. The highest number of tradable stocks is 2218 in March 1973, and the lowest is 1053 in January
2010, after the financial when many companies disappeared or got delisted from public markets.

SSD measure, and those with the lowest values are considered the top n pairs.

SSDi,j =
T∑

t=1

(
P̃ i

t − P̃
j
t

)2
(23)

Trading period

We calculate the historical mean P̄ , and standard deviation σ̂, for each pair spread during

the formation period. Each pair consists of stock i and stock j. We then standardize our

spreads during the trading period to obtain daily Z-scores.

Zi,j
t =

(
P̃ i

t − P̃
j
t

)
− P̄ i,j

σ̂i,j
(24)

If the spread moves more than two historical standard deviations away from its historical

mean, we buy the underperforming stock, and short-sell the outperforming stock. We unwind

our position when the two normalized price series cross again, when a stock is delisted or on

the last day of the trading period, whichever occurs first.
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The strategy is then based on the premise that stocks that historically moved together

should continue to do so in the future. Should this argument hold, the pairs trader earns a

profit when the stocks converge. GGR test a strategy based on executing a trade immediately

after receiving a signal, and a strategy based on waiting one day before executing a trade. The

latter being the more conservative method. The immediate signal trade implies that the trader

can buy and sell the stocks at the respective close prices on the day of the signal. While it

is possible with intra-day data, this study will only consider the more conservative approach

of waiting a day before taking a position. The method of waiting one day was introduced by

GGR to alleviate the concern of an upward bias in the returns induced by a potential bid-ask

bounce or trading halt.

While the two standard deviation move may be appropriate for a majority of the pairs,

some pairs may follow each other so closely that two standard deviation moves are rather

negligible in magnitude. These scenarios are therefore not attractive enough for the pairs

trader seeking compensation higher than the bid-ask bounce and transaction costs paid for

the trade. This issue is addressed by Do and Faff (2010), who point out that pairs trading

portfolios may include two share classes of the same company. To avoid trading pairs of the

same company listed as separate share classes, we keep only one unique company identifier

signified by CRSP’s PERMCO variable. While this alleviates the problem to some extent, one

should still be aware that sometimes even pairs of stocks of different companies may not be

ideal for pairs trading when the trading signals are obtained with small price deviations that

do not justify the transaction costs of entering the trade.

Figure 3 shows an example of the trading period of two stocks, consistent with figure 1 of

GGR. The stocks represented are Kennecot and Uniroyal, and they form one of the top pairs

selected by our algorithm for the first trading period. We obtain similar results to those of

GGR, yet for us the pair was ranked 6th based on the SSD measure, while GGR finds it to

be ranked 5th in that same period. However, the pattern of opening and closing positions is

similar.
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Figure 3: Daily normalized prices: Kennecot and Uniroyal (Pair 6)

This figure illustrates an example of the trading period of the pair formed by Kennecot and Uniyoral stocks.

The full lines represent the normalized prices of each stock, while the dashed green lines represent the positions

taken in the pair. When the normalized prices diverge by more than 2 historical standard deviations, a position

in the pair is taken until the normalized prices converge or until the end of the trading period. In this example,

we open and close positions several times during the trading period, so it is a profitable pair.

Figure 4 shows a flowchart explaining the trading strategy. It indicates how we form pairs,

and whether or not we should place a trade each day for any given pair.
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Figure 4: Flowchart of the trading strategy
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4.2.1 Excess Return Computation

The strategy implemented in this thesis is trading intensive and it requires buying and

selling stocks, sometimes every day. Therefore, the computation of the returns is a non-trivial

issue, as there are positive and negative returns every day for all the different portfolios trading

at the same time. We do not rebalance the long and short exposures of each pair despite that

they may move significantly when positions are open. This could lead to higher-than-ideal

exposures to overall market movements for a long-short strategy, but it reduces the impact of

the trading costs. We will discuss this trade-off in further detail in section 6.

The daily return r, at time t of each pair P is calculated as the value-weighted returns of

the long (L) and short (S) positions in the following way,

rP,t = wL,t · rL,t + wS,t · rS,t

wL,t + wS,t

(25)

wi,t = wi,t−1 (1 + ri,t−1) = (1 + ri,1) · · · (1 + ri,t−1) (26)

where w is the weight of stock the position on the stock i which includes all the returns

since the beginning of the trading period. On day 1 of the trading period, all weights are 1

since we consider long and short positions of 1 dollar. The returns on the short positions are

considered with respect to the pairs trader, which means that the return is positive when the

stock goes down in price, and vice-versa when the stock appreciates.

To make our results comparable to those of the existing literature, we follow the approach

taken by GGR (1999; 2006) and Do and Faff (2010; 2012), who consider two different measures

of excess return: the return on committed capital and on actual employed capital (or fully-

invested return). The difference between the two approaches was already mentioned in section

2.4. Committed capital considers the number of pairs that are selected for trading, while fully-

invested calculates the returns based on how many pairs are actually traded in the trading

period. Both methods should give the same returns when all pairs have open positions but the

the differences are evident when one (or more) pair never diverges enough to trigger a trading
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signal. Then, the committed capital approach still considers the cost of the money set aside for

trading even though a trade is not executed, while the employed capital approach calculates

returns based only on capital actually invested in trading positions.

The committed capital approach has the advantage of a simpler calculation of returns but

it also implies a possible under-utilization of resources as there is a cost of opportunity for the

pairs trader that has to commit capital to pairs that do not trade. The disadvantage of the

committed capital is remedied in the fully-invested approach, which only takes into account the

capital invested in active positions.

Related research

This study is not attempting to manipulate the original GGR recipe for generating pairs.

While this recipe seems logical, one could question the robustness of the methodology applied,

as it is by no means derived academically. Instead of challenging these choices ourselves,

we present a non-exhaustive list of developments in academic literature related to statistical

arbitrage and pairs trading.

GGR is by far the most cited paper in the pairs trading domain. The simplicity of the

algorithm tested on U.S. equities has led to much related and more recent research in the

area and on different markets and asset classes. Many apply more sophisticated methods of

isolating co-moving stocks. We will therefore in this brief section attempt to break the different

approaches into a few selected buckets to have an overview of various attempts to improve pairs

trading results. Some honorable mentions of other approaches are:

• Distance approach: The sum of squared deviation as used in GGR’s recipe for selecting

pairs, and applied by Do and Faff as well. But other distance measures could also be

used to identify co-moving stocks. This method benefits from a simplistic approach of

generating signals through nonparametric thresholds.

• Cointegration: Another notable method is cointegration tests. During the formation

period, a cointegration test is applied to obtain econometrically more reliable equilibrium

relationships between co-moving stocks. These approaches differ in the formation period,
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while most follow a GGR threshold rule in the trading period. Caldeira and Moura

(2013) apply this approach on Sao Paulo stock exchange from 2005 to 2012. The modified

strategy presents returns before transaction costs of 16.38% per year and a Sharpe ratio

of 1.34.

• Time series: In this approach one ignores the formation period. Instead, emphasis is

focused on the trading period, where one attempts to model the spread as a time series

process, i.e. a mean reverting spread over time. Signals are thereby generated through

predictions of the spread. Cummins and Bucca (2012) apply this approach on Energy

futures and find annualized returns before transaction costs of over 18% per year.

• Machine Learning and PCA: These approaches have limited supporting literature.

Machine learning combined with forecasting approaches has been studies by Huck (2009,

2010) on U.S. S&P 100 from 1992-2006. Huck takes multiple spreads and return forecasts

based on bivariate information sets using an Electre III method to obtain rankings of

all assets in terms of expected returns. He then buys the first ranked (under-valued)

asset, and short the lowest ranked (over-valued) asset. The PCA approach has been

implemented by Avellaneda and Lee (2010). They consider statistical arbitrage strategies

in U.S. equities from 1997 to 2007, and generate their signals using PCA as well as sector

ETFs. They work with the idiosyncratic component of stock returns and model the

residuals as mean-reverting processes to generate their contrarian trading signals. The

PCA approach generated a Sharpe ratio 1.44, while the ETF approach generated a Sharpe

ratio of 1.1.

Many noteworthy attempts to improve the GGR algorithms are proposed by prior studies.

Engelberg et al. (2009) propose closing positions if convergence does not occur after the first

10 days. They show that the profitability is highest during the first couple of days: 25 bps for

the first day, and 13 bps for the second, while then slowly fading out over time.

We find that on average, we hold the pair for 36 trading days, or 1.6 months, and a median

of 21 trading days, just below one month of trading. Table 1 shows that 5% of all signals

converge within the first day. These positions will have a severe impact by the bid-ask bounce.
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9% within two days, and 32.7% of pairs converge within the first 10 days.

Table 1: Average time to convergence

Days since signal Pct of signals converged

1 4.98
2 9.14
3 12.94
4 16.43
5 19.61
6 22.58
7 25.29
8 27.87
9 30.31
10 32.70

We stick to the GGR methodology for the duration of our analysis, but make a note that

the methodology is by no means the one and only method of obtaining abnormal returns. We

note that the holding period clearly is another arbitrarily selected element to the algorithm,

but we do not attempt to implement any improvements.

4.3 Top pairs robustness

One of the first choices to make when analyzing pairs trading is the number of pairs to

trade. Gatev et al. (1999, 2006) present their results for top 5, top 20 and top 101-120 (pairs

ranked 101 to 120 in lowest SSD). They find that the monthly average return and Sharpe ratios

are the highest for the portfolio formed by the top 20 pairs. Comparing the metrics of the

top 20 portfolio with the top 5 portfolio, there is not a significant difference in mean returns,

but the most noticeable difference is in the standard deviation of returns (1.53% for top-20 vs.

2.10% for top 5). For the top 101-120 portfolio, the mean returns, Sharpe ratio, and standard

deviation are similar to those for the top 20 pairs. GGR also reports the top 101-120 as the

lowest SSD pairs may be so correlated that even the smallest price divergence could trigger a

trading signal, and therefore enter several trades too early. In the case of Do and Faff (2010),

they only present their results for the top 20 pairs.

We test the robustness of the arbitrary choice of the number of pairs to include in a

portfolio by analyzing the results of selecting portfolios ranked lower than the best pairs. The
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results shown in this section are for the fully-invested and the committed capital returns, before

and after transactions costs. Theoretically speaking, we should expect to observe an inverse

U-shape for the Sharpe ratios, as there should be an optimum. However, given the number of

pairs in each portfolio, we are subject to idiosyncratic noise.

In figure 5 we present scatter plots of the Sharpe ratios of four different combinations in

the number of pairs to include in a portfolio. Each of the four subplots is formed by portfolios

comprising 5, 10, 20 or 50 pairs. For example, sub-figure A, is formed by portfolio of top 5,

top 6-10, top 11-15, etc., so there is no overlapping in the pairs included in each portfolio. The

purpose of this representation is to show that even by varying the number of pairs, there is

still a downward trend in Sharpe ratios by trading pairs with higher SSD. The dashed red line

is the fitted line that minimizes the residuals of all the observations, and in all the different

combinations considered, it has a negative slope. The four subplots are for the Sharpe ratios

considering fully-invested returns, but the situation is similar for committed capital returns,

presented in figure 21 in the Appendix.

In figure 6, we perform a similar analysis for the mean returns before and after transaction

costs. In this case we show both fully-invested and committed capital returns in one figure. It

is clear from the figure that forming portfolios of 5 pairs produces a noisier plot than for any of

the other higher number of pairs. However, it is evident that for any of the options considered,

the further away we go from the top pairs, in general we find lower mean returns. In all cases,

the difference between the portfolios of top pairs and those of pairs close to rank 1000, is around

10 basis points per month.

Figure 7 presents the mean returns and Sharpe ratios for all possible portfolios of top pairs

up to pair 120 2. The x-axis denotes the portfolio of the first pair up to pair n. For example,

0-0 represents the portfolio of just the top pair selected every month (we start counting at

0), so if the trader chooses to trade only the top pair, the mean return and Sharpe ratio will

be determined by only that pair traded each month; likewise, 0-119 denotes all pairs up to

the pairs ranked 119th, so the portfolio formed each month will contain 120 different pairs.
2We perform this analysis up to pair 120 due to computing power limitations as we are working with data

frames of over 100 million data points. Each iteration requires the calculation of returns each day (from 1963-08
to 2019-12) for each pair (2 stocks each), for each of the six portfolios trading at the same time.
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From sub-figure A, it is evident that the mean returns before and after transaction costs do not

change significantly by adding more pairs to the portfolio. In terms of Sharpe ratios, portfolios

with more pairs seem to perform better, probably due to similar mean returns and the benefit

of a lower standard deviation by adding more stocks, but this benefit is reduced by higher

transaction costs, as for any portfolio size the Sharpe ratio is around zero.

These findings suggest a decreasing profitability of the pairs trading portfolios when trading

pairs ranked low in the SSD metric. For example, we can see in figure 5 that the Sharpe ratio

for top 0-50 is smaller than for top 51-100, but then for top 101-150 the Sharpe ratio drops

again to continue in an erratic pattern when we move further away from the best pairs. Do and

Faff (2010) indicate that a low SSD does not imply that a pair is potentially more profitable

than another pair with higher SSD, because the pairs trader benefits when the stocks performs

a round trip (divergence and convergence), but if they just move together without crossing or

they are too close substitutes, their divergences might not be enough to trigger trading signals.

As theory suggests, we find a slight degree of an inverse U-shape amongst the top portfolios,

whereas the remaining portfolios for top pairs 200 and forward to be relatively flat stable around

an average Sharpe ratio. These findings suggest that the top portfolio may not be the optimal

portfolio to trade, and one should instead focus on stocks further down the ranks.

As mentioned, we find some benefits from not trading only the “best” pairs. It would appear

that one should include pairs of stocks that may not be so correlated during the formation

period. These findings are in line with Do and Faff (2012) who suggest removing the pairs

with the lowest SSD. However, these potential benefits come with the cost of higher transaction

costs which translate in little to no improvement when including more pairs to the portfolio,

and there is no clear evidence in our findings indicating that there is an optimal rank of the

pairs to trade.

For these reasons, and in order to be able to compare our conclusions to those of the

existing literature, in the rest of the paper we will only perform our analysis based on the top

20 pairs as Do and Faff. We expect the top 5 pairs, as used by GGR, to be subject to little

diversification and too much idiosyncratic noise. Further research could be done in analyzing

the optimal number of pairs and in which SSD ranks these pairs should be, but this procedure
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requires significant data mining which is not the purpose of our thesis.

Figure 5: Sharpe Ratios of Top-1000 pairs divided in sub-portfolios - Fully-Invested

This figure shows the annualized Sharpe ratios of the fully-invested returns for different combinations of the

number of pairs in each portfolio, up to the pair ranked 1000 in the SSD metric, with pair 0 being the pair

with the lowest SSD during the formation period. Sub-figure A, shows the Sharpe ratios of portfolios comprised

of 5 pairs each, with the left-most blue dot representing the metric for trading only the first 5 pairs with the

lowest SSD, and the right-most blue dot indicating the Sharpe ratio of the portfolio which only trades pairs

ranked between the 996th to 1000th in the SSD metric. The same explanation applies to the other sub-figures,

which show the results of forming portfolios of 10, 20 and 50 pairs. The dashed red line is the fitted line that

minimizes the residuals of all the observations.

(a) Steps of 5 pairs (b) Steps of 10 pairs

(c) Steps of 20 pairs (d) Steps of 50 pairs
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Figure 6: Mean Returns of Top-1000 pairs divided in sub-portfolios

This figure shows the monthly mean returns of the fully-invested and committed capital approaches, before and

after transaction costs, for different combinations of the number of pairs in each portfolio, up to the pair ranked

1000 in the SSD metric, with pair 1 being the pair with the lowest SSD during the formation period. Sub-figure

A, shows the mean returns of portfolios comprised of 5 pairs each, for which to the left of the X-axis we find

the portfolios of pairs with the lowest SSD (pairs 0-4), and in the right we find those pairs ranked lower in SSD

metric. The same explanation applies to the other sub-figures, which show the results of forming portfolios of

10, 20 and 50 pairs.

(a) Steps of 5 pairs (b) Steps of 10 pairs

(c) Steps of 20 pairs (d) Steps of 50 pairs
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Figure 7: Means and Sharpe ratios for all combinations of top 120 pairs

This figure shows the monthly mean returns and the annualized Sharpe ratios of the fully-invested and committed

capital approaches, before and after transaction costs, for portfolios of increasing number of pairs, up to the

pair ranked 120 in the SSD metric, with pair 1 being the pair with the lowest SSD during the formation period.

The x-axis indicates which pairs are included in the portfolio, so the further we go to the right of the x-axis,

the more pairs are included. For example, 0-0 represents the portfolio of just the top pair selected every month

(we start counting at 0), so if the trader chooses to trade only the top pair, the mean return and Sharpe ratio

will be determined by only that pair traded each month; likewise, 0-119 denotes all pairs up to the pair ranked

119, so the portfolio formed each month contains 120 different pairs.

(a) Monthly mean returns (b) Annual Sharpe ratios

4.4 Long/Short Excess returns

Given that the pairs trading strategy is not necessarily actively trading all days of the

month, calculating excess returns on the short and the long leg is not as straight forward as

simply subtracting (adding) the monthly equal weighted market return from the monthly return

of long (short) leg of the pairs trading portfolio. This method is dubious as we may trade the

long portfolio during the first 15 days of the month, but if the market goes down by 10% in

the second half of the month, we are subtracting a full month return from a half month return,

and our results would be biased.

The problem scenario above could be countered using daily equal-weighted market returns

from CRSP, but here we have a new set of challenges. Canina et al. (1998) warn about the

use of daily CRSP equal-weighted index returns. When comparing the mean return of the

monthly rebalanced equal-weighted monthly return from CRSP, and the daily rebalanced equal-

weighted accumulated monthly return, they find a monthly return difference of 0.43% or 6%
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per year. Daily rebalancing in a market portfolio requires a fair share of transaction costs,

that are not accounted for in the index, and replicating these returns are therefore next to

impossible. Moreover, the authors find that daily autocorrelation and bid-ask bounces account

for more than half the monthly variation between the two calculation methods. The daily equal

weighted return is therefore a very noisy return series. We attempt to approximate the monthly

rebalanced daily return by adjusting the daily equally-weighted return as follows.

We invest the same notional amount in both our long or short leg, as we do in the market.

We then consider four points in time. At time A we have the start of the month, at time B we

have the opening of a position, at time C we have a closing of the position and finally at time D

we have end of month. Our excess return for a long leg position is then calculated as the daily

equal weighted return between time B and time C, divided by the daily equal weighted return

between time A and D, multiplied by the monthly rebalanced equal-weighted return provided

by CRSP. With this approach, we scale down the daily rebalanced return to approximate the

monthly rebalanced return. This method is naturally only valid if the monthly rebalanced and

daily rebalanced return series are correlated on a monthly basis, and we find the correlation to

be 0.9996. As such we can derive some approximated excess returns on our pairs trading long

and short portfolio. We will discuss this method in section 6, and how it impacts our results.

Our analysis of the long and short leg will be following the GGR (2006) methodology.

Performance is considered before and after transaction costs, but not in excess of a market

return. Instead GGR consider it as excess of a monthly T-bill rate. While they do not explicitly

state why they take returns in excess of the risk free rate, we assume that it breaks down to

the same complications as stated above. Likewise, we will analyze how our long/short exposure

has changed over time, to reflect upon whether daily rebalancing might be optimal given a

potentially large exposure to market movements.

4.5 Transactions costs

Given that pairs trading is a trading intensive strategy, one must consider the costs incurred

when implementing it. Nowadays, the costs of trading are much lower than they were in the

60’s, 70’s and 80’s, but so are the returns of pairs trading, as found by Do and Faff (2010).
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Therefore, in this section we analyze pairs trading by taking transaction costs into account.

For that matter, we focus on Do and Faff (2012) who analyzed if pairs trading is still profitable

after transaction costs, and in section 5.3 we show the results of applying these costs to the

pairs trading strategy.

Commissions

To execute a trade, one must pay a commission that may include the compensation to

the broker, exchange fees, among others. Usually these commissions depend on the size of the

trade, so a simple way to calculate their impact in a trading strategy is to estimate a percentage

of the total amount to be invested.

Do and Faff (2012) estimated the one-way commissions that an institutional investor would

have paid for the period 1963-2009. They base their estimations on the findings of Jones (2002),

who presents a time series of commissions paid by all investors from 1925 until 2000. These

costs are most likely above the commissions paid by institutional traders who have access to

better deals than retail investors, so Do and Faff apply a 20% discount to costs estimated by

Jones, while citing other papers that support their estimations. The values reported range from

70 basis points (bps) in 1963 to as low as 9 bps in 2009, for an average of 34 bps for the entire

period. As our study goes until 2019, we estimate the commissions for the years not covered

by Do and Faff by linearly decreasing the commissions they estimate for 2009 (9 basis points),

to reach 3 basis points in 2019.

Market impact

Market impact refers to the hypothetical effect in the markets produced by the application

of a trading strategy. When there is an opportunity to make profits, most likely, market

participants will identify it and subsequently try to exploit it. While doing so, the opportunity

will gradually or rapidly fade away. In the case of a pairs trader, when he sees that a pair has

diverged by a certain amount that justifies taking a position in the pair. It is likely that other

traders will observe the divergence as well and the prices of the stocks will be affected by the

new buy or sell orders. This may cause the depreciated stock to increase in price because of
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the increased demand (buy orders) and the “expensive” stock to lose value with the increased

offer (sell orders). In a short amount of time, the arbitrage disappears.

Do and Faff estimate the market impact of pairs trading by measuring the price movements

which occur after the divergence signals, defined as two standard deviations from the historical

spread in the normalized price series. They analyze the spreads from one day prior to divergence

until two days after to draw conclusions about how arbitrageurs affect prices when they seize

to exploit these opportunities. Do and Faff argue that one should expect a gradual narrowing

in the spreads after the divergence, because the long is expected to appreciate with the inflow

of new buy orders, while the short leg is expected to fall in price given the new short selling

orders. They report that, on average, the spread declines from 7.56% to 7.02% and 6.78% one

and two days after divergence, respectively. These figures imply an average market impact of 26

basis points in the following two days after divergence signals for the entire period 1963-2009.

In our thesis, we use Do and Faff’s estimation of market impact of 21 and 9 basis points for

long positions before and after 1988, respectively. For short positions, we use their estimate of

10 and 7 basis points for the years before and after 1988, respectively.

Short selling fees

Pairs trading implies short-selling one of the stocks for each of the pairs in which the trader

takes a position. These stocks have to be borrowed in order to be sold, and this has a cost for

the trader, as the broker will normally charge a percentage fee of the amount borrowed. Do and

Faff consider a constant 1% loan fee per year payable over the life of each trade. They mention

that this fee might be conservative as it is slightly higher than those estimated in other studies.

For our analysis we consider a 1% short selling fee in 1963 and a linearly decreasing fee to reach

20 basis points in 2019. This cost can be more accurately estimated but it also depends on

the agreements between the trader and his broker, so it is hard to define a number that can be

used by all traders. Additionally, one could also consider trading single stock futures, instead

of the stock itself, which could be cheaper but it is not a product available for all stocks.

We assume that we can short-sell any stock but this may not necessarily be true in practice,

especially during a crises, and particularly for small capitalization stocks. However, given that
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on average we take short positions in stocks belonging to deciles 7 to 8 (see figure 12), the

short-selling constraints should not be a significant concern.

4.6 Barriers to arbitrage

We hypothesize that the pairs trader earns a liquidity premium when barriers to arbitrage

are high. To get a better idea about whether this hypothesis holds, we attempt to isolate periods

of time where the liquidity premium could be particularly high. When barriers to arbitrage are

high, we hypothesize that market participants display a lack of risk willingness due to lower

liquidity in the market or because they are unable to trade due to limited funding liquidity.

When funding liquidity and market liquidity are low, we expect that the pairs trader requires a

higher premium for providing liquidity in these particularly illiquid sub-periods, relative to the

premium required during more stable sub-periods. Our results will therefore stand in contrast

to those presented by Do and Faff and GGR.

In this section we will explain how market liquidity and funding liquidity are defined, and

briefly introduce the findings of leading academic research in the area. Furthermore, we will

explain how we approximate market and funding liquidity in our analysis.

4.6.1 Market liquidity

We attempt to isolate low market liquidity months by using the implied volatility index on

the S&P 500 (VIX). One could make use of the Amihud (2002) measure as a proxy for market

illiquidity by taking the average ILLIQ measure for each stock in each period. We hypothesize

that when the VIX spikes, one should expect to obtain more signals due to an increased chance

of divergence. This methodology follows that of Chung and Chuwonganant (2014), who find

that VIX exerts a large market-wide impact on liquidity and on individual asset liquidity. The

authors find that the effect of VIX on stock liquidity is greater than the combined effects of all

other common determinants of stock liquidity. Therefore, we argue that a spiking VIX will likely

result in lower risk appetite for arbitrageurs which could present an opportunity of a higher

liquidity provision premiums for the pairs trader. We consider monthly percentage changes in

the VIX, and test various monthly thresholds for these changes to see if large volatility shocks,

50



Liquidity Risk Premium in Pairs Trading May 15, 2020

both negative and positive, result in significant contemporaneous and subsequent gains for the

pairs trader. Concretely, we consider percentage changes month over month at the following 5

percentile thresholds to capture drops in the VIX: 0.05, 0.10, 0.15, 0.20, and 0.25. Moreover,

we consider 0.75, 0.80, 0.85, 0.90, and 0.95 to capture large surges in the VIX. We consider this

method to be appropriate since it isolates the large shocks to the market liquidity, as opposed

to selecting an arbitrary percentage threshold of the VIX. Selecting an specific threshold for

the VIX could also be considered, but is left for further research.

The analysis considers both the lagged and non-lagged change in the VIX. With the lagged

version, we hypothesize that a large spike in the VIX leads to an increased chance of divergence

in our portfolios. We test whether this could result in our pairs converging in the following

period, assuming the VIX does not continue to surge. A further increase in the VIX could,

however, result in our pairs diverging even further. Profits are expected when the VIX reverse

back to normal due to an increased risk appetite of arbitrageurs and increased market liquidity.

With the non-lagged version, we attempt to detect any patterns as to how the pairs trader is

affected by contemporaneous changes in the VIX. Using the same logic as for the lagged version,

we expect the pairs trader makes profits when the VIX drops a lot, while he would lose money

when the VIX surges, as pairs are expected to diverge. As we may be subject to our pairs

trading portfolios not trading for weeks, we analyze whether we have any zero-trading days,

and if so, we would have to adjust the VIX return to reflect the time we were actually in the

market. We find a total of 19 days with no position in our pairs trading portfolios. This is out

of a sample of 677 months. None of the zero-days occur during the same month. We therefore

do not consider this an issue, and will leave it as an insignificant issue in our analysis.

The higher probability of divergence with an increasing VIX is countered by a simultaneous

increment in the correlation amongst securities. One could suggest further research to pair

our approach with a further disaggregation of the VIX by considering an index of implied

correlation instead. An argument could be made for pairs trading to be more profitable when

implied correlations are low, as one should expect to receive more trading signals.

The VIX time series starts from 1990, and our analysis will thus be reflecting the period of

time, that by Do and Faff is deemed particularly unattractive to the pairs trader, as it generates
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negative pairs trading returns after transaction costs.

4.6.2 Funding liquidity

When markets are already illiquid, they are highly sensitive to changes in funding condi-

tions. Ibbotson (1999) finds that the median market betas of brokers and speculators are in

excess of 1. This serves as evidence of why they find that when markets are dropping, capital

constraints are more likely, and it explains why liquidity dry-ups often coincide with drops in

the market. Brunnermeier and Pedersen (2007) (BP) find that speculator funding is a key

driver of the market liquidity. Their findings are based on evidence of two separate but mutu-

ally reinforcing liquidity spirals. BP first define a ‘margin spiral’, which occurs if margins goes

up when market illiquidity increases. A margin spiral could be explained with the following

scenario: markets are dropping, and market participants lose wealth; when market participants

lose wealth, market liquidity dries up. Given Ibbotson’s findings, this subsequently leads to a

tightening of speculators’ funding constraints. As such, we have a resulting margin spiral. BP

then introduce the ‘loss spiral’. A loss spiral occurs when speculators hold positions that ex-

hibit negative correlation with customers’ demand shocks. When funding shocks occur, market

illiquidity increases, speculators suffer losses on their positions, they are forced to sell more and

they push prices even further down. This increases market illiquidity, and we then have a ‘loss

spiral’. The margin spiral and loss spiral reinforce each other.

BP consider the accessibility of capital and determinants of margin requirement. Both of

which affect market participants’ risk willingness. They find that in times of liquidity crisis,

margins increase, and exogenous shocks to speculator capital lead to a reduction in market liq-

uidity. Furthermore they find that the relation between speculator capital and market liquidity

is non-linear. When speculators are far from their constraints, the impact on market liquidity

is limited. When they are close to their capital constraint, the impact on market liquidity is

substantial. These effects are found to be greater for illiquid securities.

The findings of BP collide with our hypothesis of pairs trading profits. In times of low

funding liquidity, liquidity spirals should in theory increase the liquidity provision premium for

the pairs trader. In the same way as the VIX functions as a proxy for the market liquidity,
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we use changes in the yield spread of Eurodollars over T-bills (TED spread) to isolate periods

with large shocks to funding liquidity. There is no unified way of measuring funding liquidity,

but we follow the methodology of Asness, Moskowitz and Pedersen (2013) who uses, amongst

others, the TED-spread as a proxy for funding liquidity.

The TED spread is available from 1986 and forward. It will therefore have slightly more

observations than the VIX-based analysis. Thresholds for the TED spread are selected in the

same way as for the VIX. Resulting thresholds are shown in table 2, where we see that the

VIX and TED spread changes span rather symmetrically from -6.56% to 6.37% and -0.3% to

0.29% respectively. While we do not expect to see much better results using the 0.25 and 0.75

percentiles, this method does allow for more visually pleasing presentation of the incremental

changes and put the more interesting edge cases of 0.05 and 0.95 into perspective.

Table 2: VIX TED thresholds

Percentile ∆ TED pct ∆ VIX pct

0.05 −0.30 −6.56
0.10 −0.20 −4.10
0.15 −0.14 −3.24
0.20 −0.11 −2.75
0.25 −0.08 −2.19
0.75 0.06 1.80
0.80 0.09 2.31
0.85 0.12 3.50
0.90 0.19 4.83
0.95 0.29 6.37

The VIX and TED spread change is calculated from end of month t-1 to end of month

t (a full month change). Therefore the pairs trading portfolio must be active throughout the

entire month, to actually reflect returns affected by these changes in the VIX. When checking

for non-active days in our portfolio, we find a total of 18 days with no positions in our 677

months sample.

As introduced in section 4.4, both the excess mean returns and Sharpe ratios will be

provided for both the long and the short leg - only after transaction costs - to test whether

either side drive returns during these volatile sub-periods, and if the strategy actually generates

substantial returns to offset the transaction costs, that during the full period nullified our pairs
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trading returns. Furthermore, 5-factor regressions for each percentile are presented for the

net pairs trading returns after transaction costs, as well as for the long and short leg after

transaction costs. Regressions for the net pairs trading portfolios are specified as:

rnet,t = αi + β1IMLt + β2(Mkt−RFt) + β3SMBt + β4HMLt + β5MOMt + εi,t (27)

where rnet,t is the monthly fully-invested return at time t.

We introduce the IML factor to the regression as it should tell us whether the hypothesis

of whether or not the pairs trader is compensated for taking liquidity risk. We replicate the

IML factor following the methodology of Amihud (2014) as explain in section 2.2.2. We can

compare our results to the sub-period of 7/1981 - 2012, and we obtain a slightly higher mean

return of 0.38% relative to 0.289%. A regression of the IML factor on the Carhart four-factor

model results in an R2 of 0.653 compared to the 0.67 reported by Amihud. The same highly

significant negative loading on the market with coefficients of -0.2191 compared to -0.226, for

SMB we find a positive loading of 0.748 compared to 0.769. For HML we find 0.306 while

Amihud reports 0.321, and finally for momentum we find a negative loading of %0.042 while

Amihud reports -0.029%. In summary, we come very close to a replicating factor, and we will

implement it for future regressions throughout this study. As explained in section 2.2.2, one

could argue that the SMB and IML factors capture much of the same variation. Amihud tests

for this issue, by estimating regression models with IML as the dependent variable, and the

Carthart four-factor model as the explanatory variables. He finds that SMB does explain some

of the returns in the IML factor, but not all. Amihud therefore argues that the two factors do

capture something different. We report the factor correlations below to inform the reader of

a slight degree of multicollinearity introduced by including both of these two variables in the

regressions. We find a correlation of 0.62 between the IML and SMB factor.

4.7 Liquidity Adjusted CAPM

Acharya and Pedersen (2005) present empirical evidence consistent with flight to liquidity

and the pricing of liquidity risk. The authors form portfolios based on the Amihud illiquidity
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Table 3: Factor Correlations

IML Mkt-RF SMB HML RF Mom

IML 1 -0.17 0.62 0.29 0.03 -0.12
Mkt-RF -0.17 1 0.29 -0.25 -0.08 -0.14

SMB 0.62 0.29 1 -0.19 -0.04 -0.01
HML 0.29 -0.25 -0.19 1 0.08 -0.2
RF 0.03 -0.08 -0.04 0.08 1 0.06

Mom -0.12 -0.14 -0.01 -0.2 0.06 1

measure; however, this methodology is not suitable in a pairs trading framework. Our initial

hypothesis is that the pairs trader provides liquidity in the illiquid stocks, while simultaneously

taking liquidity in the liquid stocks. But our portfolio construction is set up in a way that

pairs cannot be formed to express this hypothesis in a trade. We therefore base our analysis

on portfolios formed by pairs within each SIC industry as done by GGR (2006) and Do and

Faff (2010). This method alleviates the problem, and allows for pairing across liquidity levels.

While GGR and Do and Faff solely consider four sectors (Utilities, Transportation, Financials

and Industrials), we will break the SIC sectors into 10 additional pieces for two purposes:

Firstly, we need a larger sample size to run more robust cross sectional regressions. Secondly,

from the perspective of the pairs trader, more sectors should result in better results, as you

separate stocks into clusters that move closer together.

In this section, we will present our modified replication of their methodology to test whether

the pairs trader is compensated for taking liquidity risk, and at what points in time this

compensation is the highest.

4.7.1 Acharya and Pedersen replication

In order to construct a liquidity CAPM model, we follow the methodology of Acharya and

Pedersen (2005) as described in section 2.3, but with slight modifications to fit the pairs trading

portfolios into their framework.

Their market portfolio is formed each month and consists of the sample of stocks with a

price above $5 and below $1000, and consider only stocks with valid data for volume and returns

for at least 15 days in that month. For both returns and illiquidity, their reported results use an
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equal weighting to define portfolio returns and illiquidity. This method is also used in Amihud

(2002). The argument for this choice is that it allows for compensation of an overestimated

liquidity level using value-weighting, since stocks are more liquid than many other asset classes

represented in the market portfolio, i.e. real estate or corporate bonds. After calculating the

Amihud measure for each stock following equation 1, we normalize the illiquidity measure to

obtain a stationary measure, ci
t by

ci
t = min(0.25 + 0.30ILLIQi

tP
M
t−1, 30.00) (28)

where PM
t−1 is the ratio of the total market capitalization of the market portfolio in the prior

month relative to the total market capitalization of the market portfolio at the starting point

of our analysis in August 1963. This adjustment helps alleviate the stationarity problem as it

accounts for inflation. We use the same coefficients 0.25 and 0.3 as AP, as we are considering

the exact same sample. These coefficients are selected such that the cross sectional distribution

of ci
t, for portfolios based on size-deciles, has an approximately same level and variance as the

half-spread. The half-spread is defined as the difference between the current share price and

the midpoint between the bid and the ask. AP base these numbers on Chalmers and Kadlec

(1998). The cap of 30% is in place to cleanse for extreme outliers in the ILLIQ measure. This

method of normalization puts the illiquidity on a scale corresponding to the cost of a trade.

To obtain portfolio illiquidities we use the sum of the equal-weighted normalized illiquidity

cp
t =

∑
i in p

wip
t c

i
t (29)

To compute the liquidity betas as presented in section 2.3, equation 11 to 14, we estimate

the illiquidity innovations by first defining the un-normalized liquidity truncated for outliers as

ILLIQp
t =

∑
i in p

wip
t min

(
ILLIQi

t,
30.00− 0.25

0.30PM
t−1

)
(30)

The illiquidity innovations for the market and the portfolios can then be predicted by
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defining an autoregressive process.

(
0.25 + 0.30ILLIQM

t P
M
t−1

)
=a0 + a1

(
0.25 + 0.30LLIQM

t−1P
M
t−1

)
+ a2

(
0.25 + 0.30ILLIQM

t−2P
M
t−1

)
+ ut

(31)

The error term from this regression correspond to the market illiquidity innovation series:

ut = cM
t −Et−1(cM

t ). Innovations in returns and illiquidities are then estimated for each portfolio

as, rp
t −Et−1(rp

t ) and cp
t −Et−1(cp

t ) respectively, where the Et−1 term is estimated as a prediction

from a second-order autoregressive model. This method of calculating the liquidity and return

surprises functions to alleviate the issue of persistence in liquidity, as presented in section 2.3.

For the market illiquidity series, we estimate an R2 of 75.3% from the AR(2) process using

the same sample period as AP. This is close to AP’s estimate of R2 of 78%. We further estimate

the standard deviation of market illiquidity innovations to be 0.13% relative to AP’s 0.17%.

To test for the continued persistence in liquidity, we check the autocorrelation of the illiquidity

innovations and find -0.0368% relative to AP’s -0.03. An Augmented Dickey Fuller (ADF) test

on the equal weighted illiquidities return a ADF statistic of -2.856 and a p-value of 0.051, so

we have a slight degree of stationarity. However, for the illiquidity innovations we find an ADF

statistic of -5.88 and a p-value of < 0.0001, we then reject the hypothesis of a unit root in the

time series of illiquidity innovations. We present a plot of the market illiquidity innovations in

the appendix, as a comparison to AP’s Fig. 1. In comparison to the AR(2), we estimate an

AR(1) and AR(3). We find that the AR(1) performs worse in terms of resulting autocorrelation

of -0.24 compared to AP’s -0.29. The AR(3) model results in very limited improvement in the

explanatory power of the model, with an R2 of 75.9%, the R2 is not reported by AP, but only

mentioned to produce little improvement.

Equipped with monthly sector portfolio returns, our illiquidity and return innovations for

the market portfolio and the pairs trading portfolios, we estimate the liquidity betas for each

portfolio using equations 11 to 14. For each sector portfolio we find the average of monthly

illiquidity measures, E(ci
t), by taking the average of the entire time-series of illiquidity obser-
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vations.

To examine how liquidity risk affects expected returns, we use a Fama and Macbeth (1973)

method, as described in section 3.3. We obtain point estimates in a cross sectional regression

that take the pre-estimation of the beta into account. Since the betas are estimated using our

entire sample period, they are constant through time. We can therefore enjoy the benefit of

Fama and Macbeth’s approach by not having to estimate t number of cross sectional regressions,

where t is the number of estimation periods in our sample. Instead, we can simply take the mean

return for each sector and regress them on the sector specific betas. We present 8 regressions

specified in the same way as AP, by considering special cases of the relation presented in section

2.3.

E(rp
sec,t) = α + κE(cp

t ) + λ1β
p
1 + λ2β

p
2 + λ3β

p
3 + λ4β

p
4 + λβp

net (32)

Since the liquidity level, E(ci
t), is an average that does not scale with time, we need to

adjust the measure from being paid monthly, to reflect the actual holding period. The holding

period is not necessarily one month. In table 4, we find an average holding period in months

for each of our sector portfolios.

Table 4: SIC sectors average holding period

Sector Avg. holding period

Utilities 1.62
Financials 1.88
Transport 2.26
Industrials 1.91
Technology 2.13
Wholesale 2.22

Retail 2.12
Real Estate 2.45

Mining 2.13
Construction 2.32

Consumer Goods 2.13
Materials 2.02

Consumer Services 2.12
Communications 2.05

From table 4, it is evident that the holding period is smallest for the utilities sector and

highest for the real estate sector. On an overall average, we are holding pairs for 2.0972 months.
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To reflect this as a holding period, we scale our overall E(ci
t) by κ = 1/2.0972 = 0.4814.

In an attempt to examine the effect of the liquidity risk (β2, β3, β4), isolated from the

liquidity level, E(ci
t), and the market risk (β1). Eight regression models are specified as follows:

• Model 1:

E(rp
t )− 1

AHPsec

E(cp
t ) = α + λβp

net (33)

In this model, we treat κ as a constant of 1, scaled to adjust for the average holding

period for each sector, denoted, AHPsec. This allows us to specify the dependent variable

net of the average illiquidity costs.

• Model 2:

E(rp
t ) = α + κE(cp

t ) + λβp
net (34)

In this model, we treat κ as a free parameter.

• Model 3:

E(rp
t ) = α + λ1β

p
1 (35)

This model model represents the baseline capital asset pricing model (CAPM). As such,

we treat κ as 0.

• Model 4:

E(rp
t )− 1

AHPsec

E(cp
t ) = α + λ1β

p
1 + λβp

net (36)

This model again treats κ as a constant of 1, but includes both the market risk premium

and the net beta.

• Model 5:

E(rp
t ) = α + κE(cp

t ) + λ1β
p
1 + λβp

net (37)

This model considers κ a free parameter, while again including both the market risk

premium and the net beta.
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• Model 6:

E(rp
t ) = α + λ1β

p
1 + λβp

net (38)

In this model we set κ to zero, while preserving the market beta and the net beta.

• Model 7:

E(rp
t )− 1

AHPsec

E(cp
t ) = α + λ1β

p
1 + λ2β

p
2 + λ3β

p
3 + λ4β

p
4 (39)

In this model we introduce the liquidity risk premias and remove the model restriction

that λ1 = λ2 = −λ3 = −λ4, as given by βnet. We note that this model is subject a high

degree of multicollinearity as can be seen in the results section, table 19. κ is treated like

a constant of value 1.

• Model 8:

E(rp
t ) = α + κE(cp

t ) + λ1β
p
1 + λ2β

p
2 + λ3β

p
3 + λ4β

p
4 (40)

Finally, we consider each of the liquidity risk betas and the market beta, while keeping κ

as a free parameter.
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5 Empirical Results

In this section we present our empirical results. The section consists of four parts. First,

we show our replication of the seminal papers on pairs trading by GGR (2006) and Do and Faff

(2010, 2011), we denote this part: ‘Replication’. Second, we present our results concerning what

the pairs traders portfolio is loading on, we denote this part ‘Loadings’. Third, we present our

results from liquidity shock sub-period returns, we denote this third part ‘Liquidity Shocks’, and

finally we present our liquidity CAPM regression model, denoted ‘Liquidity Adjusted CAPM’.

PART I - Replication

5.1 Implementation of GGR / Do and Faff methodology

In this section we present our replicated results following the GGR (1999, 2006) pairs

trading algorithm. This section functions as a validation of our methodology, before moving on

to testing our hypothesis.

GGR (1999; 2006) were the first authors to publish an analysis of pairs trading. Do and Faff

(2010; 2012) extended GGR’s research until 2009, following the same methodology as GGR,

but they included sub-periods and the performance of the strategy when taking transaction

costs into account. We validate our pairs formation and subsequent trading methodology,

by replicating the results of Do and Faff (2010, 2012) and showing its extension with data

until December 2019. Since we are utilizing the CRSP database, which is not a point-in-time

database, we can expect some differences between our results and those from the literature on

the same topic. Additionally, we are excluding stocks listed in Nasdaq for the reasons explained

in section 4.1.

Results from the replication

We implement the pairs trading strategy explained by GGR and Do and Faff and obtain

similar results. One can observe the same patterns as those found by GGR and Do and Faff:

early sub-periods of high profitability and diminishing returns through the last decades.
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In table 5, we summarize the results from implementing the trading strategy following

the methodology explained in section 4.2. All the figures presented are for the fully-invested

approach except for the last line, which reports the monthly mean return of the committed

capital approach. It is evident from the table that pairs trading profitability has decreased

significantly over the decades, with a mean return after 2003 of around zero. In the period

1963-1988, for employed capital we obtain an average monthly return of 1.05%, and 0.91%

for committed capital, compared to 0.86% and 0.85%, respectively, reported by Do and Faff

for the same period. In the next period (1989-2002), the mean returns go down dramatically

to about one-third of those in the previous period. We find mean monthly returns of 0.38%

for fully-invested and 0.33% for committed capital, while Do and Faff find 0.38% and 0.36%,

respectively. For the last period included in Do and Faff’s paper, 2003-2009, they find mean

monthly returns of 0.24% for both approaches, while we find almost zero in both cases. Finally,

taking into account the period 1963-2009 covered by Do and Faff, they find mean monthly

returns of 0.62% and 0.61%, while we find 0.68% and 0.60% (figures not reported in the table),

for fully-invested and committed capital, respectively. The low returns are also confirmed in

the period 2010-2019, when the returns we find for both approaches are almost zero.

Table 5: Monthly returns of top 20 pairs

This table provides the summary statistics of our implementation of GGR and Do and Faff’s methodology from
1963 to 2019. All of the numbers shown are Fully-Invested returns, except for the last row, which presents the
monthly mean returns of the Committed Capital approach. The Sharpe ratio is annualized.

1963-1988 1989-2002 2003-2009 2010-2019 Full period

Mean return (employed) 0.0105 0.0038 −0.0002 −0.0001 0.0056
Median 0.0099 0.0027 0.0021 0.0004 0.0047

Std 0.0131 0.0131 0.0168 0.0080 0.0137
Sharpe Ratio 2.7693 0.9990 −0.0415 −0.0325 1.4242

Min −0.0788 −0.0253 −0.0708 −0.0236 −0.0788
Max 0.0780 0.1037 0.0624 0.0242 0.1037

Kurtosis 8.6023 20.0429 7.8961 0.9594 9.5750
Skewness −0.4623 2.8069 −1.4240 −0.1167 0.1389

Obs. with return below 0 0.1475 0.3512 0.3929 0.4583 0.2836
Monthly serial correlation 0.2387 0.0382 0.1897 −0.1686 0.2493
Mean return (committed) 0.0091 0.0033 0.0003 0.0000 0.0050

We also find similar results for the fraction of months with negative returns, which is

evident from the table that they have a great impact in the returns as in the first sub-period

the faction is below 15%, ending in 46% for the last decade. Do and Faff find 11% of months
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negative returns in 1963-1988, 32% in 1989-2002 and 47% in 2003-2009. In terms of Sharpe

ratios, we also get results close to those reported by Do and Faff for the periods 1963-1988 and

1989-2002 (2.76 and 1 vs. 2.94 and 1.2). We observe a difference in the period 2003-2009 when

we get a negative Sharpe ratio of -0.0415 (influenced by a negative mean return of -0.0002) but

Do and Faff find a positive Sharpe ratio of 0.8.

To further validate our approach, in figure 8, we recreate figure 1 from Do and Faff (2012),

extended until 2019. We find the spikes in the monthly excess returns in the same months

and for similar magnitudes as those reported by Do and Faff. The downward trend of pairs

trading profitability is evident by looking at the higher frequency (as reported in Table 5)

and magnitude of negative returns in the more recent years compared to the returns at the

beginning of the period analyzed. It can be seen from the twelve months moving average, that

the early periods were signified by high average return whereas since the late 90’s, the returns

have oscillated around zero with two major spikes doing the dot-com bubble and the financial

crisis of 2008.

Figure 8: Monthly Fully-Invested returns of the portfolio of Top 20 pairs

This figure shows the monthly returns time series of the Top-20 pairs from August 1963 until December 2019,

together with the 12 months moving average of the monthly returns.
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Additionally, in figure 9 we recreate figure 3 from Gatev et al. (2006) and extend it until

2019, by calculating the cumulative return of pairs trading compared to the SP 500 and the

value-weighted all CRSP index. We get almost exactly the same as GGR even though we are

not including Nasdaq stocks and we apply some extra filters to our stock selection process. It is

clear from the figure, and consistent with table 5 and figure 8, that the volatility of pairs trading

returns is remarkably low compared to the overall market, and that the returns have flattened

out in the last decades. Some possible explanations for the lower returns in the recent years, as

pointed out by GGR and Do and Faff, are the higher popularity of statistical arbitrage strategies

in the hedge funds industry, and the worsening of arbitrage risks (unexpected disruption in the

relative relationship between pairs stocks and higher irrational trading as indicated by Do and

Faff).

Figure 9: Cumulative returns of Top-20 pairs

This figure shows the cumulative excess returns of both the Fully-Invested and the Committed Capital ap-

proaches, together with cumulative returns of the SP 500 index and the value-weighted all CRSP index. The

y-axis is in logarithmic scale.

In summary, we find similar results to those reported by GGR and Do and Faff, with small

differences that could be generated by our exclusion of Nasdaq stocks, the application of price

filters for reasons explained in section 4.1, and the use of data from CRSP retrieved several

years later.
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Risk-adjusted returns of pairs trading

To explore the systematic risk exposure of pairs trading, we regress the fully-invested

monthly returns on the 3 factors of Fama and French (1993), including the momentum factor

and the illiquid minus liquid factor (IML, Amihud (2014)). We perform this analysis to get an

initial understanding of what drives pairs trading returns.

Even though we open a position with 1 dollar in the long-leg and 1 dollar in short-leg,

this does not mean that the strategy is market neutral as each stock can have different betas.

Additionally, given that we do not implement any rebalancing, as our long and short positions

change in value, the overall market exposure will be affected by market movements to some

extent. Therefore, we expect to see some beta exposure in our portfolios.

In terms of value and growth stocks, if we consider long periods, there might not be a

significant exposure to the HML factor. However, if the analysis is limited to periods of crises

when investors prefer to own more liquid stocks to reduce their risk, we can expect to get signals

to buy the higher risk assets (value) that investors want to get rid of. Regarding the exposure

of pairs trading to the SMB factor, as small companies tend to be more volatile than the large

ones, it is unlikely that we find pairs with low SDD of companies with a significant difference

in size. Then, we do not expect to see a significant loading to the SMB factor.

If the strategy implemented in this paper systematically buys stocks with low liquidity,

and sells the liquid counterpart, we expect to see a positive loading on the IML factor. Finally,

as pairs trading bets on price reversals, it is essentially a contrarian investment strategy, so we

expect to have a negative loading on the momentum factor.

In table 6 we present the results of the regressions for 4 different sub-periods and the entire

period 1963-2019, before transaction costs.

We find that for the early sub-periods, we find significant alpha of 1% and 0.4% per month,

in the two more recent sub-periods we find close to 0% alpha. The regressions exhibit positive

a large loading on IML in the early periods, but this effect disappear in later periods. One

should beware of the inherent multicollinearity between the SMB and IML factors. As we

see they change sign in 2003-2009. We find a large market loading in the early period, and a

65



Liquidity Risk Premium in Pairs Trading May 15, 2020

large negative loading on the market in 2003-2009. These findings speak to the fallacy of the

choice not to rebalance in order to limit transaction costs. In general we observe an expected

negative momentum loading, however, only 2003-2009 is significant. The HML is significant for

2003-2009 as well. All factors are found significant for the sub-period capturing the financial

crisis of 2008, and we find a much better fit for that sub-period, than for the rest.

Table 6: Factors - Replication of Do and Faff - Fully-Invested

This table presents the following 5-factor regression model

rnet,t = αi + β1IMLt + β2(Mkt−RF )t + β3SMBt + β4HMLt + β5MOMt + εi,t

Where rnet,t is the monthly fully-invested return, before of transaction costs, on pairs trading portfolio. The
table has parameter estimates and t-Statistics reported in parentheses below. The R2 and R2

adj are provided
below. The t-statistics are computed using Newey-West standard errors with six lags. Factor loadings are
presented for the Do and Faff sub-periods.

1963-1988 1989-2002 2003-2009 2010-2019

Alpha 0.0097 0.004 -0.0005 -0.0003
(9.33) (3.31) (-0.25) (-0.56)

IML 0.149 0.0038 -0.24 -0.0273
(3.87) (0.1) (-2.16) (-0.46)

Mkt-RF 0.0655 -0.0202 -0.2715 0.0343
(3.06) (-0.43) (-3.65) (1.47)

SMB -0.0915 -0.0661 0.4644 0.0012
(-2.56) (-1.36) (3.5) (0.03)

HML 0.0003 -0.0404 0.1163 0.0014
(0.01) (-0.78) (2.09) (0.05)

Mom -0.0281 0.0014 -0.1082 -0.0267
(-1.25) (0.05) (-2.22) (-0.94)

R2 0.1024 0.0308 0.3139 0.0516
R2adj 0.0874 0.0009 0.2699 0.0101

5.2 Long/Short disaggregation

In this section we look at the profitability of long and short positions separately, which

naturally add up to the returns of pairs trading as we invest the same amounts on each leg.

In order to obtain the hypothetical returns of investing only in the long or only on the short

positions, we have to consider a gross investment of 2 dollars on each leg such that it can be

compared with the total gross investment of the pair, following GGR (2006). Then, the returns

attributable to just investing long or short would twice as much as their sole contribution to

the pair.
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We disaggregate our pairs portfolio into its long and short component to examine whether

the pairs trader is simply exploiting mean reversion. This would be evident in the data, if returns

on the long and short side are symmetric, as a signal would be generated by either a divergence

by stock A or B with equal probability. The analysis further allows us to understand what drives

our returns. We are asking the question of whether risk-adjusted returns are driven by our long

or our short leg. Since we are assuming the possibility of taking short positions in any stock

(with no zero-volume day during the formation period) is possible, we are naturally interested

in whether the short leg is driving our returns. If so, one should examine short-restrictions in

more detail. If instead, we find that the long leg is driving returns, it is interesting to consider

if short positions should rather be taken in the market index rather than the stock due to a

cost minimization objective.

In table 7 we present the monthly average returns of the long and short positions by

different sub-periods chosen by how GGR and Do and Faff present their findings. In all sub-

periods considered, the average long returns for fully-invested portfolios are positive and over

1% per month except for the period 2003-2009 which is around 0.78%, and we find an average

monthly return of 1.33% for the full period 1963-2019. Comparing our results with those

reported by Gatev et al. (2006) for the period 1963-2019, we find almost no difference with the

authors as they report monthly average returns of 1.33% while we find them to be 1.34%. The

returns have been more stable in recent years as their volatility has been decreasing, and they

experienced less extreme minimum and maximum observations.

For short positions, we find positive monthly average returns only for the early years

considering 1963-2002. All other sub-periods present negative returns for our short-portfolio,

with increasing magnitudes and frequency of months with losing positions. Compared to Gatev

et al. (2006), we find lower monthly average returns of 0.28% for the period 1963-2019, while

they report 0.44% for the same period.

Figure 10 shows the gross exposure to long and short positions separately for all the 6

overlapping portfolios comprised of the top 20 pairs. As each position is initiated with 1 dollar

in the long leg and 1 dollar in the short leg of the pair but no rebalancing is applied during

the trading period, the pairs traded can end up having a long or short net exposure. This
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Table 7: Returns of Long and Short positions

Summary statistics on the disaggregation of the pairs trading portfolios returns into its long and short compo-
nents. Panel A shows the summary statistics for the long leg. Panel B shows the summary statistics for the
short leg. Sub-periods are based on Do and Faff sub-periods, as well as GGR (2006) who perform the same
analysis from 1963-2002. All of the numbers shown are Fully-Invested returns, except for the last row, which
presents the monthly mean returns of the Committed Capital approach. The Sharpe ratio is annualized.

(a) LONG positions

1963-1988 1989-2002 1963-2002 2003-2009 2010-2019 Full period

Mean return (fully inv.) 0.0141 0.0120 0.0134 0.0078 0.0169 0.0133
Median 0.0090 0.0173 0.0107 0.0086 0.0194 0.0124

Std 0.0612 0.0619 0.0614 0.0373 0.0539 0.0576
Sharpe Ratio 0.7989 0.6740 0.7550 0.7224 1.0888 0.8005

Min −0.3528 −0.1499 −0.3528 −0.1325 −0.1120 −0.3528
Max 0.3927 0.1818 0.3927 0.0985 0.1642 0.3927

Kurtosis 8.4635 0.2768 5.4487 2.6895 0.0741 5.1108
Skewness 0.3425 −0.1189 0.1749 −0.7236 −0.2618 0.1036

Obs. below 0 0.4197 0.3393 0.3911 0.3929 0.3333 0.3811
Monthly serial corr. 0.1018 0.0094 0.0688 0.2697 −0.2600 0.0300

Mean return (committed) 0.0123 0.0145 0.0116 0.0071 0.0150 0.0117

(b) SHORT positions

1963-1988 1989-2002 1963-2002 2003-2009 2010-2019 Full period

Mean return (fully inv.) 0.0069 −0.0045 0.0028 −0.0082 −0.0171 −0.0021
Median 0.0064 −0.0067 0.0016 −0.0057 −0.0246 −0.0056

Std 0.0532 0.0574 0.0549 0.0254 0.0537 0.0525
Sharpe Ratio 0.4473 −0.2700 0.1791 −1.1182 −1.1014 −0.1359

Min −0.2366 −0.1446 −0.2366 −0.0741 −0.1252 −0.2366
Max 0.1953 0.1625 0.1953 0.0496 0.1093 0.1953

Kurtosis 2.1189 0.1769 1.1988 0.4479 −0.1394 1.1361
Skewness 0.0238 0.3475 0.1310 −0.3096 0.5218 0.2396

Obs. below 0 0.4492 0.5595 0.4884 0.6786 0.7000 0.5495
Monthly serial corr. 0.1106 −0.0378 0.0621 0.2585 −0.2791 0.0254

Mean return (committed) 0.0059 −0.0038 0.0024 −0.0066 −0.0150 −0.0018

is presented in the bottom part of the figure which takes the difference in the gross exposure

between long and short positions at each point in time. There is no clear pattern of a positive or

negative exposure throughout the entire period but the strategy can end up having significant

market exposure as the net long/short exposure moves away from the equilibrium.

In table 8 we present the risk-adjusted returns in excess of the 30-day Treasury bill returns,

following the methodology of GGR. The risk adjustment factors include the Amihud IML factor,

the Fama and French three-factor model and finally the Jegadeesh and Titman momentum

68



Liquidity Risk Premium in Pairs Trading May 15, 2020

Figure 10: Long-Short exposure

Total long and short exposure for the 6 overlapping portfolios of top 20 pairs. The bottom part shows the
difference between long and short total exposures. Each position is initiated with 1 dollar in both long and
short positions, so a positive Net Exposure indicates that the total gross amount on long positions exceeds the
amount on short positions, and vice versa.

factor.

Given the limitation on short opportunities on most stocks in the early period of our analy-

sis, we expect to see significant risk-adjusted returns to be primarily driven by the short leg. In

recent years, as short opportunities are less scarce, we expect a less negative alpha. Our expo-

sure to the market is naturally expected to be given as a strongly positive loading on both legs,

as the short is considered from a long perspective. The momentum factor loading is expected

to be negative as we are following a contrarian strategy and could therefore load negatively

on momentum. The IML factor exposure is expected to be positive given our hypothesis of

loading on illiquid stocks, while shorting the liquid counterparts. We note that this may be

affected by some degree of multicollinearity between the SMB factor and the IML factor as they

capture some of the same variation. Small stocks are naturally more illiquid, and therefore, as

we expect to by illiquid, our long side should load positively on the SMB factor, while our short
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leg should be in the liquid counterpart, and as such, we should expect a negative sign. For the

HML factor, we cannot see any systematic reason why we should load on value over growth

on average, as the pairs trader does not take book values into account. One could speculate

whether a positive sign could be expected due to the strategy buying the cheap stock and selling

the expensive stock should lead to a positive tilt towards value stocks.

In line with the findings from GGR who regress on a reversal factor instead of a liquidity

factor, in table 8 we observe that the short leg is, in fact, driving much of the abnormal

returns. GGR speculate that since the short positions are generating all the risk-adjusted

excess return, and the short leg contains stocks that have increased in value relative to the

counterpart before opening the trade, it is unlikely that the pairs trading returns are driven

by a reward for unrealized bankruptcy risk. We find that the long leg is losing money during

the period analyzed by GGR. While they find 24 bps positive risk-adjusted excess returns, it

is insignificant. As mentioned, a difference is to be expected as they are including Nasdaq

in their analysis. Our analysis finds similar statistics as those found by GGR, and close to

our hypothesized signs. We naturally load heavily on the market on both the long and short

portfolio. The IML factor is significant for all periods but the 2003-2009 sub-period. So in more

recent years, the IML factor does not seem to capture returns. For the long leg it is a positive

loading and for the short it is negative, it indicates as we hypothesized that the pairs trader

is long the illiquid stocks and short the liquid counterpart. We do however find that the SMB

loading is negative for the long leg, indicating that we are loading on large capitalization stocks.

One can again speculate that this is an effect of the inherent positive correlation between the

IML and SMB factors. We see that in 2003-2009, the signs change for the two as well. For the

HML factor we do see strong positive significance. One could speculate that this is an effect

of the element of buying cheap and selling expensive in the pairs trading algorithm, but it is

unclear. The momentum factor is only significant for the long leg in the sub-period 1963-1988,

where the loading is, as expected, negative. We finally note that the R2 appears to be dropping

over time. This could indicate that pairs trading results are not captured by the same factors

today as they were decades ago, or merely that the transaction costs are lower today, and

liquidity in the market is far greater than in the past. One could therefore argue that periods
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of time where the pairs trader provide liquidity, to a degree that deserves a premium, are more

scarce today than 50 years ago.

Given our results, we will now account for transaction costs to determine if the abnormal

excess returns on the short leg could be an effect of ignored short restrictions.

Table 8: Risk-adjusted returns of Long and Short positions

Risk-adjusted return of long and short positions for top 20 fully-invested returns.

(a) LONG positions

1963-1988 1989-2002 1963-2002 2003-2009 Full Period

Alpha -0.0022 -0.0027 -0.0029 0.0011 0.0025
(-1.34) (-1.12) (-2.1) (0.47) (1.34)

IML 0.2251 0.4238 0.3228 -0.1474 0.645
(2.55) (3.71) (4.29) (-1.24) (4.32)

Mkt-RF 0.5318 0.4221 0.5003 -0.0647 0.4041
(10.93) (7.1) (11.65) (-0.79) (6.53)

SMB -0.2476 -0.4464 -0.3207 0.3767 -0.5579
(-3.41) (-5.19) (-5.37) (2.56) (-4.19)

HML 0.3849 0.2445 0.3539 0.053 -0.0962
(6.33) (2.63) (6.67) (0.64) (-1.22)

Mom -0.1157 0.0532 -0.0152 -0.0702 0.0564
(-2.39) (1.35) (-0.45) (-1.14) (0.71)

R2 0.5395 0.344 0.4459 0.1656 0.2854
R2adj 0.5318 0.3237 0.44 0.1121 0.254

(b) SHORT positions

1963-1988 1989-2002 1963-2002 2003-2009 Full Period

Alpha -0.0119 -0.0067 -0.0105 0.0015 0.0028
(-7.55) (-3.45) (-8.25) (0.99) (1.56)

IML 0.0761 0.42 0.1992 0.0926 0.6723
(0.93) (3.73) (2.77) (1.4) (5.59)

Mkt-RF 0.4663 0.4423 0.4529 0.2068 0.3697
(10.39) (8.37) (11.63) (3.73) (5.73)

SMB -0.1561 -0.3803 -0.2316 -0.0877 -0.5591
(-2.44) (-4.07) (-4.0) (-0.98) (-4.2)

HML 0.3846 0.2849 0.3667 -0.0633 -0.0976
(6.3) (3.18) (6.93) (-1.08) (-1.4)

Mom -0.0875 0.0518 -0.0007 0.0381 0.0831
(-1.86) (1.36) (-0.02) (1.61) (0.95)

R2 0.5353 0.3944 0.4514 0.2903 0.2703
R2adj 0.5275 0.3757 0.4455 0.2448 0.2383

71



Liquidity Risk Premium in Pairs Trading May 15, 2020

5.3 Transaction costs

In the previous sections, we presented the results of implementing pairs trading before

taking into account any transaction costs, but these costs cannot be neglected as the strategy

can be potentially be trading 240 stocks every month (20 pairs x 2 stocks/pair x 6 overlapping

portfolios). Furthermore, we found that the risk-adjusted returns were primarily driven by the

short-leg.

We apply the transaction costs explained in section 4.5. They cover trading commissions,

market impact and short-selling fees. We obtain similar results (reported in table 9) to those

of Do and Faff (2012). They show that after transaction costs, pairs trading is not profitable,

consistent with our own findings. Even though they do not report the returns by different

periods, we find that for all periods considered, both the mean and the median monthly returns

are around zero, with slightly negative returns for the entire period 1963-2019.

Given these results, one can argue that even though pairs trading shows attractive results

before transaction costs for the early periods, it could also be because these potential returns

were not possible to exploit given the costs they would implicate. Do and Faff (2012) suggest

that pairs trading could still be profitable after transaction costs if the pairing is done within

well defined industry groups or by combining the SSD ranking with a sort by the number of

crossings in prices during the formation period. However, the purpose of our thesis is not to

try to improve the strategy, which has been extensively attained in the existing literature, but

to explain the rationale behind the returns of pairs trading.

Despite our findings, more extensive research on the effect of transaction costs in pairs

trading is needed as we are applying the same costs to all long and short positions, no matter

the size or liquidity of the stocks in the portfolio. It could be the case that we are overestimating

the costs of trading as our portfolios on average contain stocks that belong to the 8th decile in

market capitalization (being 10 the stocks with the highest market cap.)(see section 5.4.2), for

which one can expect lower transaction costs than for lower size decile stocks.
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Table 9: Mean returns - Net of Transaction Costs

This table presents the summary statistics of our implementation of GGR and Do and Faff’s methodology from
1963 to 2019. All of the numbers shown are for Fully-Invested returns of the top 20 pairs net of transaction
costs, except for the last row, which indicates the monthly mean returns of Committed Capital net of transaction
costs. The Sharpe ratio is annualized.

1963-1988 1989-2002 2003-2009 2010-2019 Full Period

Mean return (employed) −0.0004 0.0009 −0.0026 −0.0013 −0.0005
Median −0.0002 0.0002 0.0001 −0.0011 −0.0003

Std 0.0128 0.0129 0.0167 0.0080 0.0127
Sharpe Ratio −0.0993 0.2303 −0.5421 −0.5654 −0.1386

Min −0.0986 −0.0272 −0.0736 −0.0250 −0.0986
Max 0.0612 0.0998 0.0574 0.0229 0.0998

Kurtosis 12.0797 21.1214 8.2203 0.9494 14.7203
Skewness −1.2090 2.9752 −1.6602 −0.1295 −0.2810

Obs. with return below 0 0.5082 0.4881 0.5000 0.5750 0.5140
Monthly serial correlation 0.2522 0.0173 0.1973 −0.1712 0.1591
Mean return (committed) −0.0004 0.0007 −0.0016 −0.0011 −0.0004

PART II - Loadings

5.4 Sector, size and illiquidity loadings

Now that we have validated our methodology by comparing our results to those of GGR

and Do and Faff, we attempt to answer our research questions stated in the introduction. We

start with whether the pairs trader is providing liquidity or not, and how it has changed over

time.

In order to obtain more details regarding what goes into the pairs trader’s portfolio, we

consider what risk exposures and loadings the pairs trading strategy is subject to. In this

section, we examine to which sectors the stocks traded belong, their market capitalization

decile and their Amihud illiquidity measure decile. This will allow us provide an answer the

research question of whether the pairs trader is actually providing liquidity or not, and how the

level of liquidity provision has changed over time. We disaggregate the analysis into how our

long and short legs are loading on each category. In section 5.6.1, we analyze the performance

of pairs trading when the pairing process is restricted to stocks of the same sector, but here we

will focus on unrestricted pairs to provide more information about how stocks are paired when

applying the methodology presented by GGR and Do and Faff.
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5.4.1 Sector Loadings

We define 14 different sectors based on the variable HSICIG from CRSP and we map

each of the codes with the definitions of sectors from SIC website (See appendix table 21 for

reference). In table 10 we present the fraction of long and short positions taken in each of

the sectors considering the total number of positions taken over the period 1963-2019, and in

the right-most column we show the fraction of pairs traded for which both the long and the

short positions are in stocks of the same sector. The vast majority of the positions are taken

in stocks that below to the Utilities sector (74% of long positions and 77% of short positions),

which is in line with Gatev et al. (2006) who finds that 71% of the positions are taken in

Utilities, despite that our analysis includes 17 years more of data. Given these figures for longs

and shorts, we observe that 68.58% of all positions are taken in pairs formed by two Utilities

stocks. We hypothesize that it is an effect of these companies have a rather stable demand as

their products have low differentiation and are consumed with little correlation with the swings

in the economy. As such, stocks in the Utilities sector should have lower betas than the rest of

the market.

The second sector in terms of fraction of positions taken is Financials, with 10% and 7%

for long and short positions, respectively. We find that a total of 6.15% of all positions are in

pairs formed by two Financials stocks which is a significant portion considering that Utilities

comprise most of the positions. For Financials, there is a larger room for differentiation than

for Utilities, but they are still commonly affected by macroeconomic factors such as interest

rates or unemployment shocks. In contrast with GGR, who find that 13% of all positions are

in Financials, we find that only a total of 6.15% of all trades in pairs formed by two Financials

stocks. This difference is most likely caused by our broader segregation of stocks into 14 sectors,

compared to the four sectors considered by GGR.

In third place comes the Communications sector, representing 4.47% for all long positions

and 3.09% of all short positions, but they are not always traded together in the same pair, as

only 1.42% of all positions are in pairs of two Communication stocks. The rest of the positions

are spread across the other 11 sectors, with a total of 78.35% of all trades done over stocks of

the same sector.
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Table 10: Composition of pairs by SIC sectors

This table presents in the columns in the middle, the fraction of long and short positions in each of the sectors
considering the total number of positions taken in the period 1963-2019. The right-most column shows the
fraction of pairs traded for which both the long and the short positions represent stocks that belong to the same
sector.

Sector Long Short Same sector pairs

Utilities 0.7405 0.7700 0.6858
Financials 0.0994 0.0702 0.0615

Communications 0.0447 0.0309 0.0142
Materials 0.0299 0.0272 0.0074

Industrials 0.0157 0.0248 0.0045
Mining 0.0167 0.0245 0.0030

Transport 0.0167 0.0057 0.0028
Consumer Goods 0.0081 0.0171 0.0022

Consumer Services 0.0114 0.0095 0.0010
Wholesale 0.0020 0.0049 0.0004

Retail 0.0042 0.0059 0.0003
Technology 0.0041 0.0036 0.0001
Real Estate 0.0046 0.0053 0.0001

Construction 0.0020 0.0006 0.0001

Total 1.0000 1.0000 0.7835

Figure 11: Sectors Loadings

This figure presents the fraction of long (upper part) and short positions (middle part) in each of the sectors

considering the total number of positions taken each month during the period 1963-2019, for the top 20 portfolio.

To ease the visualization, only Utilities, Financial and Communications sectors are shown as they represent the

vast majority of all trades. The bottom part of the image shows the average number of pairs with at least one

day of open positions each month.
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5.4.2 Size loading

To obtain information about the market capitalization of the companies behind the stocks

chosen for trading, we rank stocks in deciles based on their market capitalization at the be-

ginning of each month. If the pairs trader systematically buys small capitalization stocks over

large ones, we can expect some loading on the SMB factor by Fama and French, but also on

Amihud’s IML factor.

In figure 12 we present the average size deciles of all pairs traded each month, and the

lower part shows the difference between the averages for long and short positions. We can see

that the lines tend to move together with some temporal noticeable divergences and that there

is a tendency for taking long positions in stocks with lower size than the stocks shorted. This

finding is expected to some extent, because when two companies have similar risk factors and

their prices move together closely, it is likely that they are of similar sizes. Therefore, when

there occurs a divergence in their prices, one of the stocks increases in market capitalization,

while the other decreases. As a result, one could argue that this could cause the paired stocks

to end up located in different size deciles.

Our results indicate that, for the entire period 1963-2019, we take long positions on stocks

with an average size deciles of 7.81 (being 10 the highest market capitalization), while the

average decile of the short positions is 8.2, resulting in an average size decile for each pair of

8.01 and an average difference in long and short deciles of 0.39. Additionally, we find that

only 29% of the pairs include stocks from the same size decile but this number might be so

informative as there could be several pairs of stocks from almost the same size which are on

the limits of each decile. Then, if we consider the pairs for which the stocks have no more than

one decile of difference, we find that 65% of pairs are formed with stocks of similar market

capitalization.

If we only consider the period covered by Gatev et al. (2006), 1963-2002, our results indicate

that the strategy we implement has an average difference in long and short size deciles loading

of 0.39, than that reported by GGR (0.97). They do not report long and short separately, but

they point out that the average size decile of their pairs is 7.29, while we find a this figure to

be 8.20 in our analysis. Hence, our implementation of pairs trading, on average, finds more
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homogeneity in the composition of the pairs based on size, compared to GGR. These differences

may arise because we are not using Nasdaq stocks and we apply additional price filters in the

formation period.

Figure 12: Average Market Cap. Decile of open positions

The upper part of this figure shows the average market capitalization decile of the long and short positions

open at each point in time for the top 20 portfolio. Decile 10 represent the stocks with the highest market

capitalization, while decile 1 comprise the smallest companies. The lower part indicates the difference over time

between the long and short positions average market capitalization decile.

5.4.3 ILLIQ loading

To get an indication of whether a shock to market or funding liquidity leads to the pairs

trader providing liquidity in the more illiquid stocks while shorting the more liquid counterpart,

we examine the average Amihud ILLIQ decile loading of the strategy. ILLIQ can take extreme

values which makes it hard to compare results. Therefore, to avoid that outliers drive our

results, we rank stocks based on their ILLIQ measure each month and assign them to ILLIQ

deciles.

In figure 13 we present the average monthly ILLIQ deciles of all pairs traded each month,

separated by long and short positions, and the lower part shows the difference between the
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ILLIQ deciles average for long and short positions. We can see that the lines tend to move

together with some temporal noticeable divergences, and that there is a tendency for taking

long positions in stocks with higher ILLIQ than the stocks shorted, as shown in the lower part

of the figure. This figure looks as the inverted figure 12, and this not surprising as small cap.

stock are usually more illiquid than large cap.

Our results indicate that for the entire period 1963-2019, we take long positions on stocks

with an average ILLIQ decile of 3.41 (being 10 the decile formed by the most illiquid stocks),

while the average ILLIQ decile of the short positions is 3.01, resulting in an average ILLIQ decile

for each pair of 3.21 and an average difference in long and short deciles of 0.40. Additionally,

we find that only 27% of the pairs include stocks from the same ILLIQ, and when we consider

the pairs for which the stocks have no more than one ILLIQ decile of difference, we find that

62% of pairs are formed with stocks of similar liquidity.

In conclusion, there is a tendency in the strategy to take long positions in stocks that are

more illiquid than the stocks shorted, but this does not necessarily mean that the pairs trader

only buys the extremely illiquid stocks and sells the most liquid ones as the difference between

long minus short ILLIQ deciles seldom exceeds a full decile. These results could to some extent

be argued as expected because the GGR algorithm only trades the pairs with the lowest SSD

during the formation period, and if one of the stocks is extremely illiquid while the other stock

is highly liquid, there could be a significant difference in their price series movements which

would give the pair a low ranking.

Exposure during the financial crisis

The composition of the portfolios during the financial crisis of 2007-2008 deserves to be

analyzed separately from all the other years considered in this paper, as it was a period with

severe changes to the exposure levels for the pairs trader. The effects of the financial crisis were

devastating for the stock market, with several companies going bankrupt and other companies

carrying out major corporate restructurings to survive. Considering that the strategy imple-

mented here does not take into account the broad market conditions but just the relationship in

prices between pairs of stocks, this period of major disruption affects not only the composition
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Figure 13: Average ILLIQ Decile of open positions

The upper part of this figure shows the average decile of the long and short positions for the top 20 portfolio,
taken each month and sorted by the Amihud ILLIQ measure of the stocks. Decile 10 includes the most illiquid
stocks, while decile 1 is formed by the most liquid stocks. The lower part indicates the difference over time
between the two lines from the upper part of the figure.

of the portfolios, but also the number of trades carried out.

In figure 11 we show from 1963 until 2019, the fraction of positions taken in the long

and short legs for three of the sectors which account for most of the trades executed: Utilities,

Financials and Communications. Utilities (blue bars) on average comprise most of the positions,

but during the financial crisis we see a surge in trading of Financials (orange bars) and a drop

in Utilities. By looking at figure 14, which shows in stacked bars format, the same information

as in figure 11 but just for the period 2007-2010, we can see that most of the long and short

positions during the crisis are taken in Financials stocks. The bottom part of figure 11 and the

solid lines in figure 14 represent the number of pairs with at least one position averaged across

the six portfolios trading at the same time. In figure 11 we see that this number oscillates

between 14 and 20 for all years except during the financial crisis.

It can be observed in figure 14 that at the beginning of the financial crisis (around mid-

2007) there is a sudden increase in the average number of pairs traded from 14 to over 18. Then,

in early 2008 there is a dramatic drop in the average number of pairs traded to an average of
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around 8, after the Dow Jones index starts its downward trend after hitting hits its all-time-

high in October 2007 and the U.S. reports a contraction of the GDP in the fourth quarter of

2007. In the second part of 2008, with the failure of Bears Stearns and later the bankruptcy

of Lehman Brothers among other financial institutions, there is a new spike in the number of

positions, led by Financials, followed by a sudden drop in the number of positions in 2009,

which stay relatively low during the entire year.

A possible explanation to these dramatic changes in the composition of the portfolios and

the frequency of trading could be that the “normal” relationships in prices measured during the

formation periods are completely broken apart in the trading period as a consequence of the

increased turbulence in the markets. Therefore, pairs that traded in a relatively low range of

normalized prices differences, may not do so when the crisis hits. This mechanism both presents

a problem and an opportunity for the pairs trader. The opportunity for the pairs trader consists

of an increase number of signals for the already active portfolios. These new signals may entail

an increased liquidity premium, as barriers to arbitrage are high. The problem is for the period

to come. The period of market turbulence is now part of the new formation period. This results

in a new high threshold of price differences for the coming trading periods, so if the volatility

does not stay high, there will be fewer trading signals.

In a relatively stable market, one would expect the pairs trader to short stocks that have

gone up in price and therefore moved higher in the size deciles. In terms of the size of the

companies traded during the financial crisis, we see an interesting pattern. Figure 12 exhibits a

large drop in the average size decile of both the long and short positions. This is probably the

consequence of the high loading on financial stocks, which all suffered losses during this period.

In summary we find some evidence of liquidity provision on average when considering the

average loading on Amihud’s ILLIQ deciles. But given that the net exposure to illiquidity is

limited, we do not expect to observe a significant liquidity premium on average.
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Figure 14: Fraction of open positions by sectors during the financial crisis

This figure presents the composition by sectors of all positions taken each month from 2007 until 2010. The

horizontal bars show which fraction of all positions is taken in each sector. To avoid filling up the figure with too

much information, only the sectors that for any of the months considered represent at least 25% of all positions,

are displayed in the figure. The upper sub-figure is for long positions, while the lower sub-figure is for short

positions. The solid line in each sub-figure indicates the number of pairs with at least one open position each

month, and its magnitude is indicated in the Y-axis to the right.

(a) LONG positions

(b) SHORT positions
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PART III - Liquidity Shocks

5.5 VIX and TED sub-periods

After getting a better understanding of what the pairs trader keeps in his/her portfolio, we

now move our focus to the research question about whether specific sub-periods characterized

by high barriers to arbitrage offer the pairs trader enough profitable opportunities to generate

abnormal returns. Nagel (2012) finds indications of implied volatility having predictive power

when explaining returns in investment strategies characterized as liquidity providing. Under

the assumption that the pairs trader is liquidity providing, we should expect to see improved

returns during these sub-periods. Given our results from section 5.4.3 it is not definitively

evident that the pairs trader in a GGR framework is providing a significant amount of liquidity.

In table 11, we present raw summary statistics on fully-invested returns net of transaction

costs during large changes in the VIX. Panel A presents results with no lag, meaning, we

consider month pairs trading portfolio returns with contemporaneous changes in the VIX. We

observe that the pairs trader seems to benefit for large spikes, both in the negative and positive

direction. However, neither are statistically significant. We do however note that the sample

size is limited. We do see, as hypothesized, that the pairs trader makes money, during periods

with decreasing volatility and increasing market liquidity. Seemingly, the pairs trader generates

some returns, but just 21 bps net of transaction costs, which is also not statistically significant.

Contrary to our hypothesis, average returns seem more lucrative during months where the VIX

increased a lot throughout the month with 46 bps net of transaction costs. We note that the

distribution of our 17 monthly returns is positively skewed with a median below 0, and a max.

of 9.98%. Seemingly, the returns are skewed primarily driven by positive outliers. We speculate

that large changes in the VIX do not necessarily mean that the VIX ends the month at the

intra-month high, and therefore market liquidity may have stabilized since the top, and as

such, the pairs trader has already reaped the liquidity premium during the period in which we

observe the month over month spike in the VIX. Furthermore, we observe that only the far edge

cases appear to provide a raw payoff for the pairs trader. As such, the results are improved

from considering the full period, yet the returns are insignificant at an alpha level of 5% and
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of limited scale.

Considering the lagged returns in panel B, we observe more or less the same scale of returns

for the non-lagged VIX drops, as we see for the lagged VIX surges: 24 bps after transaction

costs during market downturns. One could argue that following a large surge in the VIX, a

large drop is more likely. Therefore, we speculate that the two sections capture some of the

same information, and that is why returns are of similar scale.

As we are considering monthly changes, one could perhaps argue that a weekly disaggre-

gation (we expect daily returns to be too noisy) could be an interesting analysis to make, as

one short term volatility shock may rebound within the same month. As such, we do lose some

information about the exact period of time when the returns are high for the pairs trader by

considering month-over-month changes in the VIX and TED spread, but weekly changes are

outside the scope of this paper and suggested for further research.

Table 11: ∆ VIX - Net Portfolio

This table reports summary statistics for large changes to the market liquidity, approximated by changes in
the VIX index. Returns are given as fully-invested returns after transaction costs. Results are given for VIX
changes with no lag in Panel A, and lagged VIX changes in Panel B. The column names indicate the percentile
of changes in the VIX. For example, percentile 0.95 means that we consider months in which the change in the
VIX was more extreme than the 95th percentile.

Percentile <0.05 <0.10 <0.15 <0.20 <0.25 >0.75 >0.80 >0.85 >0.90 >0.95

Panel A: No lag
Mean 0.0021 -0.0013 -0.0004 -0.0007 -0.0001 -0.0005 -0.0004 0.0007 0.0014 0.0046

Median 0.0022 0.0012 0.0012 0.0015 0.0013 -0.0011 -0.001 -0.0011 -0.0013 -0.0016
Std 0.0079 0.0149 0.0132 0.0125 0.0119 0.018 0.0184 0.0208 0.023 0.0273

T-stat 1.12 -0.51 -0.25 -0.48 -0.1 -0.24 -0.17 0.25 0.36 0.69
Kurtosis 1.99 16.18 17.3 15.64 15.88 11.85 13.28 10.27 9.9 10.03
Skewness 0.62 -3.39 -3.3 -2.99 -2.82 2.41 2.76 2.49 2.4 2.86

Min -0.0127 -0.0736 -0.0736 -0.0736 -0.0736 -0.0392 -0.0387 -0.0387 -0.0387 -0.0244
Max 0.0229 0.0229 0.0229 0.0229 0.0229 0.0998 0.0998 0.0998 0.0998 0.0998
Obs 18 36 54 72 90 88 70 52 34 17

Panel B: Lagged
Mean 0.0004 -0.0021 -0.0021 -0.0016 -0.0011 0.0011 0.0005 -0.0025 -0.0019 0.0024

Median -0.0011 -0.0013 -0.0013 -0.0011 0.0001 0.0005 0.0003 0 0 0.002
Std 0.0102 0.0108 0.0094 0.0097 0.009 0.0187 0.0205 0.0178 0.0171 0.0122

T-stat 0.16 -1.19 -1.63 -1.41 -1.12 0.55 0.21 -1.02 -0.66 0.8
Kurtosis 0.86 0.66 1.25 0.73 1.04 12.45 10.77 7.03 8.53 -0.43
Skewness 0.75 -0.07 -0.06 -0.32 -0.44 0.47 0.51 -2.18 -2.19 -0.22

Min -0.0178 -0.0272 -0.0272 -0.0272 -0.0272 -0.0736 -0.0736 -0.0736 -0.0736 -0.022
Max 0.0258 0.0258 0.0258 0.0258 0.0258 0.0998 0.0998 0.0229 0.0229 0.0229
Obs 19 37 55 73 91 88 70 52 34 17
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If we turn our attention to the surges and drops in funding liquidity, approximated by the

TED spread, we observe a very similar picture. Table 12, Panel A, shows a mean return of

20-27 bps in both edge cases. Unlike the VIX, less extreme changes in the TED spread seem to

generate on average the same returns as the extreme thresholds, and given the larger sample, we

observe a higher degree of statistical significance, yet 20 bps is probably not of any economical

importance.

Panel B considers the lagged changes to the TED spread. Noteworthy is that for obser-

vations when funding liquidity eases in the prior month, the pairs trader generates an average

of 47 bps. This amount is not statistically significant given the sample size and the nature of

the move, and the median is a mere 25 bps. Once again, as with the VIX, the conclusion must

be that the GGR-replicating pairs trader is getting abnormal returns after transaction costs.

However, the returns are higher for sub-periods with liquidity shocks relative to the Do and

Faff’s sub-periods as well as for the full period as presented in table 5. Given our observations

in section 5.4.3, one could argue, as done by Do and Faff, that trading the top pairs may not

be beneficial as they move too closely together,

To extend the analysis of raw returns during market and funding liquidity shocks, we now

consider factor regressions during the same period, to get an indication of whether the returns

are driven by exposure to common factors.

Before estimating our regressions, we state our expectation. When the change in VIX

is exceeding our lower bound thresholds of percentiles 0.05 to 0.25, we expect to observe a

positive loading on the IML factor. As markets become more liquids, the pairs are expected to

converge, whereas when the market volatility increases a lot; the opposite is expected as pairs

are expected to diverge as volatility increases. As stated in the previous section, our results are

affected by considering monthly returns rather than at a higher frequency. From our analysis of

our long short exposure, it is evident that we are not exactly market neutral, and some degree

of exposure to the market is to be expected since we do not daily rebalance our positions, as

the shocks to market liquidity intensifies, we should expect a larger and larger impact by our

minor net market exposure.

For the SMB factor, we expect some degree of correlation with the IML factor. From the
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Table 12: ∆ TED - Net Portfolio

This table reports summary statistics for large changes to the funding liquidity, approximated by changes in
the TED spread. Returns are given as fully-invested returns after transaction costs. Results are given for TED
changes with no lag in Panel A, and lagged TED changes in Panel B. The column names indicate the percentile
of changes in the TED spread. For example, percentile 0.95 means that we consider months in which the change
in the TED spread was more extreme than the 95th percentile.

Percentile <0.05 <0.10 <0.15 <0.20 <0.25 >0.75 >0.80 >0.85 >0.90 >0.95

Panel A: No lag
Mean 0.002 0.0028 0.0022 0.002 0.0016 -0.0001 0.0009 0.0013 0.003 0.0002

Median 0.0027 0.001 0.001 0.0009 0.0008 -0.0008 -0.0006 0.0008 0.0018 0.0022
Std 0.0102 0.0133 0.0118 0.0112 0.0103 0.0178 0.0121 0.0116 0.0125 0.012

T-stat 0.88 1.36 1.45 1.61 1.58 -0.05 0.66 0.93 1.54 0.07
Kurtosis -0.26 6.4 7.35 6.69 7.95 11.45 2.2 1.85 1.67 -0.78
Skewness -0.03 1.47 1.45 1.42 1.54 1.09 0.73 0.54 0.6 -0.27

Min -0.0161 -0.0272 -0.0272 -0.0272 -0.0272 -0.0686 -0.0244 -0.0244 -0.0234 -0.0234
Max 0.0219 0.0574 0.0574 0.0574 0.0574 0.0998 0.0441 0.0441 0.0441 0.0196
Obs 20 41 61 81 101 104 82 65 41 20

Panel B: Lagged
Mean 0.0047 0.0007 0.0013 0.0011 0.001 -0.0004 0.0007 0.0006 0.0013 0.0009

Median 0.0025 0.0012 0.0012 0.0012 0.0008 -0.0002 0.0008 0.0009 0.0014 0.0011
Std 0.0151 0.0166 0.0155 0.0144 0.0131 0.0138 0.0094 0.0099 0.0095 0.01

T-stat 1.46 0.29 0.68 0.68 0.77 -0.32 0.63 0.49 0.89 0.41
Kurtosis 6.73 9.37 8.78 9.04 10.84 8.98 0 -0.05 0.23 0.54
Skewness 1.96 -0.88 -0.53 -0.52 -0.52 -1.63 -0.29 -0.36 -0.35 -0.47

Min -0.0168 -0.0686 -0.0686 -0.0686 -0.0686 -0.0736 -0.0234 -0.0234 -0.0234 -0.0234
Max 0.0574 0.0574 0.0574 0.0574 0.0574 0.0441 0.0196 0.0196 0.0196 0.0182
Obs 22 43 62 81 102 104 82 65 41 20

analysis of size decile exposure, we find that we are loading on small capitalization stocks when

markets are dropping, but both on the long and short side. As we are tilting towards holding

the smaller stocks, we expect to observe a positive exposure, but this is under the assumption

of an equal net long/short exposure of zero.

For the HML value factor, we refer to Akbas et al. (2012). They study the time-variation

of liquidity risk of value and growth stocks. Their findings suggest that value stocks tend to

have higher liquidity betas when markets go down a lot, relative to lower liquidity betas when

markets go up a lot. They find the opposite pattern for growth stocks. They argue that across

business cycles, investors should substitute lower-risk assets for higher risk assets, which is why

selling pressure should increase in value stocks during market downturns. As selling pressure

increases, liquidity dries up, and the liquidity premium on value increases. While liquidity dries

up in value, investors may seek the lower-risk growth stocks, or simply seek out other low-risk
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asset classes. This suggests an asymmetric effect in the transition on liquidity, as investors

sell their value stocks more aggressively than their holdings of growth stocks. Regardless, the

authors find that liquidity worsens more in value relative to growth when markets go down,

and the opposite when markets go up. Their findings are therefore consistent with flight to

liquidity. Consistent with this research, Petkova et al. (2005) find that value (growth) stocks

tend to have higher market betas than growth (value) stocks during bad (good) times. So when

markets drop a lot, value is expected to drop more than growth, again consistent with flight

to liquidity. We should therefore expect to see a negative loading on the HML factor when

markets increase, as these findings would suggest that the pairs trader buys growth stocks in

good times, and value stocks in bad times. So our loading on HML should be positive when

implied market volatility spikes.

For the momentum factor, Mom, on average we expect a negative loading, as the pairs

trader is a natural contrarian to the momentum stocks. Pastor and Stambaugh (2003) find

that liquidity risk is positively related to momentum in individual stocks on the US market.

Asness et al. (2013) find that this relation holds for multiple markets and asset classes divergence

is expected to increase. As divergence increases, momentum gains profits, and the pairs trader’s

losses increase. Daniel et al. (1998) presents a behavioral model to explain momentum, in which

they argue that speculators overreact to private information due to overconfidence, and together

with self-attribution bias in their reaction given the following publication of information triggers

return continuation. Thereby explaining momentum returns. As a consequence, as argued by

Avramov et al. (2013), when confidence is high it leads to excesssive trading, meaning liquidity

is high. When confidence is low, it leads to low trading, meaning liquidity is low. When we

observe VIX spikes, confidence is low and one should for this reason expect momentum returns

to drop. Given our hypothesis that the pairs trader receives his signals when the VIX spikes, it

implies that we expect diverge. Therefore, the pairs trader should also loose money. With this

reasoning, we expect a positive loading on momentum when the VIX spikes, while we should

observe the naturally negative loading on momentum during any other sub-period. For shocks

to the funding liquidity, we do not see any arguments as to why our expected exposure levels

should be any different, as Brunnermeier and Pedersen (2007) point to market liquidity and
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funding liquidity reinforcing each other.

In table 13 we consider a factor regression on the net portfolio when markets are particularly

volatile and we observe shocks to the market liquidity. When VIX goes down a lot, we find,

contrary to our hypothesis, significant negative returns. We find a highly significant positive

coefficient for the market. This is a potential effect of our choice to not daily rebalance our

portfolios. As we do not daily rebalance, a net exposure could develop which would lead to

a significant net long or short exposure in times of large volatility. In this case, as VIX is

dropping, we should expect markets to increase, and as we have a positive coefficient, it would

seem that our exposure is net positive. One could argue from figure 10 that it would seem as

if the pairs trader on average is net long.

We also find a significant negative coefficient for the HML factor when markets are in-

creasing. These findings are consistent with the findings from Akbas et al. (2012), as explained

above. Their findings could provide an explanation for what we observe, under the hypothesis

that we are buying the more illiquid stocks. As value has lower liquidity betas when markets

go up, while growth has higher liquidity betas, one should expect a tilt towards buying growth

stocks and selling value. This should result in a negative HML exposure when the VIX is low,

and a positive HML exposure when the VIX is high. This is precisely what we find in our data

in the edge cases for the VIX changes.

For the Mom factor, we find negative insignificant loadings when the VIX is dropping.

Interestingly, in line with the expectation, when the VIX increases a lot, we observe a highly

significant positive exposure to momentum stocks.

When considering the lagged VIX change regression in table 14, the alpha is still economi-

cally insignificant, and only for percentile threshold 0.1 do we observe a significant, yet negative,

alpha for the pairs trader. Moreover, the explanatory power of our models is very low. For a

big decrease in the VIX index, we observe some a negative loading on momentum, as well as

a negative loading on the HML. While the factor loadings are in line with expectations, the

negative alpha is not. Further research could look into the alpha decay for the pairs trader

during these market liquidity shocks at a more frequent evaluation period. One could specu-

late whether the alpha is only generated in very short periods of time after market liquidity
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Table 13: ∆ VIX - Net Portfolio

This table reports the results from the following 5-factor OLS regression:

rex
net,t = αi + β1IMLt + β2(Mkt−RFt) + β3SMBt + β4HMLt + β5MOMt + εi,t

Where rex
net,t is the monthly fully-invested excess return, net of transaction costs, on pairs trading portfolio.

The table has parameter estimates and t-Statistics reported in parentheses below. The R2 and R2
adj are also

provided. The t-statistics are computed using Newey-West standard errors with six lags. Results are given for
multiple percentile thresholds for month over month changes in the VIX index.

Percentile <0.05 <0.10 <0.15 <0.20 <0.25 >0.75 >0.80 >0.85 >0.90 >0.95

Const -0.0074 -0.0029 -0.0027 -0.0028 -0.0007 -0.0028 -0.0024 -0.0022 -0.006 0.0026
(-3.58) (-1.84) (-1.55) (-1.7) (-0.42) (-2.19) (-1.24) (-1.02) (-1.59) (0.36)

IML 0.0004 0.0376 0.0542 0.0231 0.0264 -0.1308 -0.1133 -0.1034 0.0133 -0.0921
(0.01) (0.77) (1.5) (0.69) (0.7) (-1.96) (-1.76) (-0.81) (0.12) (-0.82)

Mkt-RF 0.1427 0.028 0.0526 0.0525 0.0107 -0.1064 -0.0792 -0.083 -0.0322 0.2486
(3.53) (0.39) (0.94) (0.97) (0.21) (-1.86) (-1.3) (-0.84) (-0.34) (1.28)

SMB 0.0271 -0.0009 -0.0049 -0.0054 -0.0032 0.0305 0.0233 -0.0086 -0.1912 -0.5216
(0.21) (-0.01) (-0.06) (-0.11) (-0.07) (0.24) (0.17) (-0.03) (-0.63) (-2.24)

HML -0.1454 -0.0287 -0.0329 -0.0071 0.0097 0.0568 0.0389 0.0442 -0.0017 0.1456
(-2.59) (-0.55) (-0.86) (-0.18) (0.31) (1.21) (0.81) (0.65) (-0.03) (1.53)

Mom -0.0053 -0.0203 -0.0147 -0.0104 -0.0192 -0.0127 -0.0078 -0.0234 0.0745 0.461
(-0.34) (-1.52) (-1.28) (-0.86) (-1.39) (-0.17) (-0.09) (-0.21) (0.88) (2.71)

R2 0.42 0.03 0.04 0.02 0.02 0.08 0.05 0.06 0.07 0.56
R2adj 0.18 -0.13 -0.06 -0.05 -0.04 0.03 -0.02 -0.04 -0.1 0.37

increases. That would explain our results, as the pairs trader is not expected to earn money if

all the diverged pairs have converged already.

For a large spike in the VIX, we observe zero alpha and a strong negative loading on the

IML factor as well as a strong positive loading on the SMB factor. While the two are highly

correlated, we are sceptical about the sign, and the effects of leaving one out. Both are kept in

the analysis as Amihud (2014) reasonably points to the conclusion that the two factors capture

something different, but our results are likely affected by a slight degree of multicollinearity

given the 0.62 correlation between IML and SMB. Factor correlations were presented in section

4.6 in table 3. Again, in the edge cases concerning the 0.05 and 0.95 percentile thresholds, the

sample size is limited to around 20 observations, which in turn also does raise an issue with

concluding concretely based on the resulting output.

Turning our attention to shocks in the funding liquidity, we are now observing slightly

more uplifting risk adjusted returns. When the changes in the TED spread falls in the category

of being lower than the 10th percentile, the pairs trader earns an mean return of up to 42 bps.
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Table 14: ∆ VIX Lagged - Net Portfolio

This table reports the results from the following 5-factor OLS regression:

rex
net,t = αi + β1IMLt + β2(Mkt−RFt) + β3SMBt + β4HMLt + β5MOMt + εi,t

Where rex
net,t is the monthly fully-invested excess return, net of transaction costs, on pairs trading portfolio.

The table has parameter estimates and t-Statistics reported in parentheses below. The R2 and R2
adj are also

provided. The t-statistic of the mean is computed using Newey-West standard errors with six lags. Results are
given for multiple percentile thresholds for month over month lagged changes in the VIX index.

Percentile <0.05 <0.10 <0.15 <0.20 <0.25 >0.75 >0.80 >0.85 >0.90 >0.95

Const 0.0004 -0.0021 -0.0019 -0.0014 -0.0008 0.0012 0.0001 -0.0024 -0.0019 -0.0006
(0.11) (-2.27) (-1.71) (-1.16) (-0.74) (0.75) (0.06) (-1.49) (-1.0) (-0.26)

IML 0.0628 -0.0053 -0.0259 -0.0375 0.0012 -0.1484 -0.1887 -0.2549 -0.1223 -0.3344
(0.86) (-0.09) (-0.75) (-1.05) (0.04) (-1.6) (-1.68) (-2.05) (-1.5) (-4.61)

Mkt-RF -0.0669 0.0411 0.0281 0.0367 0.0301 -0.0689 -0.067 -0.0512 -0.041 -0.0228
(-0.69) (1.26) (1.0) (1.33) (1.16) (-1.65) (-1.63) (-0.99) (-0.62) (-0.79)

SMB -0.0087 -0.0167 0.0076 0.001 -0.0514 0.1179 0.1532 0.2712 0.2505 0.2631
(-0.06) (-0.17) (0.12) (0.01) (-1.1) (1.07) (1.26) (2.34) (1.92) (3.19)

HML 0.056 -0.0911 -0.0784 -0.08 -0.0663 0.089 0.0858 -0.0255 -0.0551 -0.077
(0.59) (-3.31) (-2.33) (-1.89) (-1.86) (1.88) (1.36) (-0.52) (-1.16) (-1.21)

Mom -0.0823 -0.0325 -0.0308 -0.0093 -0.0207 0.0254 0.0642 0.0169 0.0576 0.0771
(-5.78) (-1.17) (-1.36) (-0.66) (-2.33) (0.46) (1.07) (0.29) (0.85) (1.77)

R2 0.17 0.22 0.23 0.18 0.12 0.04 0.05 0.1 0.11 0.46
R2adj -0.15 0.1 0.15 0.11 0.06 -0.02 -0.03 -0.0 -0.05 0.21

We quickly note that the R2 for all models are very low, and the model does not seem to explain

returns generated by the pairs trader, however little the pairs trader might make.

We find a strong negative loading on the SMB factor when funding liquidity eases, sug-

gesting a loading on the large capitalization segment. When markets drop, we tend to have a

stronger tilt on our long leg towards lower capitalization stocks relative to our short leg; we

find a difference of around 2 deciles during the 2008 financial crisis. This effect wore off quickly

and in mid to late 2009, we end up being net long about 1 decile difference in large-cap. As the

loadings were volatile during this liquidity shock period, it is hard to say in general, whether

this is conclusively why we observe what we do in terms of the SMB tilt. But it would serve

as a possible explanation for the 2008 case, where we observe a a rebound in funding liquidity,

lower barriers to arbitrage, we momentarily start trading more large capitalization stocks, and

therefore we get a positive significant exposure. Further research is needed to attempt to for-

malize this hypothesis on other sub-periods than just based on the financial crisis of 2008. Our

momentum exposure is consistently negative, and only in unique cases statistically significant.
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This is consistent with our natural tilt towards a negative momentum loading. The IML factor

is found to be statistically significant in times of large spikes to the TED-spread. This is in line

with our expectation that we tilt towards illiquid stocks when markets drop. We simultaneously

and contradictory negative tilt towards the SMB factor, which we again must point out, as it

could be a function multicollinearity in our regression model.

Table 15: ∆ TED - Net Portfolio

This table reports the results from the following 5-factor OLS regression:

rex
net,t = αi + β1IMLt + β2(Mkt−RFt) + β3SMBt + β4HMLt + β5MOMt + εi,t

Where rex
net,t is the monthly fully-invested excess return, net of transaction costs, on pairs trading portfolio.

The table has parameter estimates and t-Statistics reported in parentheses below. The R2 and R2
adj are also

provided. The t-statistic of the mean is computed using Newey-West standard errors with six lags. Results are
given for multiple percentile thresholds for month over month changes in the TED spread.

Percentile <0.05 <0.10 <0.15 <0.20 <0.25 >0.75 >0.80 >0.85 >0.90 >0.95

Const 0.0019 0.0042 0.0029 0.0023 0.0018 -0.0004 0.0006 0.0011 0.0025 0.0018
(0.86) (1.35) (1.14) (0.94) (0.94) (-0.3) (0.41) (0.89) (1.84) (1.04)

IML 0.0509 -0.0907 -0.0362 -0.0409 -0.0159 -0.0123 0.1557 0.1662 0.2026 0.1008
(1.57) (-0.74) (-0.36) (-0.42) (-0.22) (-0.11) (2.04) (1.96) (2.07) (1.19)

Mkt-RF 0.0094 -0.039 -0.0228 -0.0063 -0.0021 0.0117 0.0767 0.0881 0.0958 0.1278
(0.21) (-0.59) (-0.41) (-0.11) (-0.04) (0.28) (1.95) (2.2) (2.27) (3.92)

SMB -0.1426 -0.0221 -0.0502 -0.0147 -0.0361 -0.0179 -0.1251 -0.162 -0.2622 -0.1194
(-3.94) (-0.26) (-0.57) (-0.17) (-0.6) (-0.15) (-1.63) (-1.82) (-2.29) (-0.84)

HML -0.0748 -0.0469 -0.0696 -0.0264 -0.025 0.1452 0.1083 0.057 0.0325 0.207
(-1.26) (-0.77) (-1.05) (-0.45) (-0.63) (2.38) (1.42) (1.05) (0.59) (2.16)

Mom -0.0235 -0.0831 -0.0585 -0.0436 -0.029 -0.0091 -0.0998 -0.0764 -0.0418 -0.0016
(-1.02) (-1.58) (-1.21) (-1.3) (-1.33) (-0.11) (-2.56) (-1.68) (-1.08) (-0.04)

R2 0.25 0.19 0.12 0.05 0.04 0.06 0.25 0.19 0.22 0.28
R2adj -0.02 0.07 0.04 -0.01 -0.01 0.01 0.2 0.13 0.11 0.03

For the lagged TED-spread changes, we observe highly significant mean returns of 70 bps

when the TED-spread was down significantly in the previous month. This could be an effect

of a small sample size, and we saw in the summary statistics for this lagged TED-spread, that

indeed, the outliers in this edge case are affecting the mean return. We are observing the

same pattern with regards to factor loadings as seen for the lagged VIX. The key difference

is now that the IML and SMB factor loading have changed sign. We observe the same odd

pattern of loading positively on momentum when the funding liquidity tightened in the past

month. Moreover, we seem to load on growth stocks when the change in the TED-spread is

more extreme than the 90th percentile. This is inconsistent with the findings of the Akbas
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et al. (2012)

Table 16: ∆ TED Lagged - Net Portfolio

This table reports the results from the following 5-factor OLS regression:

rex
net,t = αi + β1IMLt + β2(Mkt−RFt) + β3SMBt + β4HMLt + β5MOMt + εi,t

Where rex
net,t is the monthly fully-invested excess return, net of transaction costs, on pairs trading portfolio.

The table has parameter estimates and t-Statistics reported in parentheses below. The R2 and R2
adj are also

provided. The t-statistic of the mean is computed using Newey-West standard errors with six lags. Results are
given for multiple percentile thresholds for month over month lagged changes in the TED spread.

Percentile <0.05 <0.10 <0.15 <0.20 <0.25 >0.75 >0.80 >0.85 >0.90 >0.95

Const 0.007 0.0029 0.0033 0.0025 0.0016 -0.0006 -0.0004 -0.0005 0.0005 -0.0002
(2.9) (1.3) (1.78) (1.72) (1.48) (-0.57) (-0.38) (-0.46) (0.32) (-0.07)

IML -0.217 -0.2079 -0.1708 -0.1102 -0.0631 0.0071 0.0004 0.0006 0.1477 0.387
(-1.48) (-1.05) (-1.17) (-0.95) (-0.66) (0.1) (0.01) (0.01) (2.36) (4.07)

Mkt-RF -0.0654 -0.0573 -0.0628 -0.0458 -0.036 0.0004 0.0343 0.038 0.0329 0.0067
(-0.92) (-0.8) (-1.05) (-0.88) (-0.82) (0.01) (1.3) (1.28) (0.97) (0.3)

SMB 0.1942 0.205 0.1684 0.143 0.0976 -0.0407 -0.0804 -0.0909 -0.1758 -0.2995
(1.61) (1.33) (1.36) (1.42) (1.13) (-0.53) (-1.39) (-1.36) (-4.04) (-3.86)

HML -0.0342 -0.0076 0.0696 0.0243 0.0069 -0.0075 -0.0214 -0.0278 -0.1067 -0.2461
(-0.43) (-0.13) (1.11) (0.54) (0.18) (-0.2) (-0.72) (-0.6) (-1.85) (-3.35)

Mom -0.1807 -0.1595 -0.1285 -0.1335 -0.1012 -0.006 0.0427 0.0368 0.025 0.0466
(-3.09) (-1.83) (-1.91) (-2.37) (-2.23) (-0.2) (1.91) (1.47) (0.59) (1.67)

R2 0.29 0.18 0.15 0.15 0.11 0.01 0.11 0.13 0.14 0.34
R2adj 0.06 0.07 0.07 0.1 0.06 -0.04 0.05 0.06 0.02 0.11

Conclusively we do not observe much evidence of a significant liquidity premium for the

pairs trader. We observe a higher risk adjusted return and raw return during sub-periods

with market liquidity shocks and funding liquidity shocks relative to the full-period. Yet not a

statistically significant return or a raw return of a scale worth pursuing for a statistical arbitrage

hedge fund.

5.5.1 Robustness of top pairs performance

In this section, we will continue looking at the periods in which we observe large positive

and negative shocks to market and funding liquidity measured as the changes in the VIX index

and changes in the TED spread, respectively. Given our earlier observations that the top

portfolio may not allow for the optimal amount of liquidity provision as initially hypothesized,

we test how robust the results presented in the two earlier sections are to the choice of top

pairs portfolios. We consider the top 120 pairs, divided into six portfolios of 20 pairs each,
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resulting in a portfolio consisting of pairs 0-19, 20-39, 40-59, 60-79, 80-99 and finally 100-119.

We will denote this portfolio construction method as ’Top Pair 120/20’. Top 120 in steps of 20.

Since we observed a slight degree of an inverse U-shaped in the Sharpe ratio amongst the top

portfolios it offers an indication that one should consider portfolios further down the ranks to

perform if not equally well, then better than the top 20.

Results in the following figures are all net of transaction costs, and presented for the net

portfolio. In total, six figures are presented. Each of the figures presents four separate 3D-plots.

On the X-axis we compare the Top pair 120/20 portfolios. This portfolio construction will give

insights as to whether the top ranked pairs outperform the lower ranks. Percentile thresholds

of changes in the VIX and TED spread, surges and drops, are represented on the Y-axis in

percentile form. The Z-axis presents monthly average returns, monthly standard deviation and

annualized Sharpe ratios for the net portfolio after transaction costs.

We present both results with contemporaneous changes in the VIX and TED spread, as

well as lagged changes. Contemporaneous returns are considered to understand the immedi-

ate impact on pairs trading returns, whereas the lagged version presents potential investment

opportunities given information about the past month change in the TED spread and the VIX.

Figure 15 (a) presents the mean return for the net portfolio given a surge in the VIX.

When the VIX spikes, we observe a monthly mean return of the top 20 portfolio of 46 bps after

transaction costs, while the 5 other top portfolios generate zero or negative returns. At the

same time, in figure 15 (c), we observe that the top portfolio, regardless of being formed based

on the lowest SSD, seems to have a higher standard deviation during implied volatility spikes

relative to the 5 lower ranked portfolios. The resulting sharpe ratio in figure 15 (e) estimates

an annualized Sharpe ratio of 0.5, during the largest surges in the VIX. These results seem to

indicate that only the top pair portfolio 0-19 perform better and better the higher the VIX

spike. While profits during spikes in the VIX are contrary to our hypothesis, as previously

mentioned, one could still make an argument for the pairs trader earning the liquidity premium

relatively fast after the VIX surge eases off. In example, if the VIX jumps 10% by the midpoint

of a given month, and drops down 5% by the end of the month, the VIX may look like it’s

surging, even while the liquidity premium may have been harvested already.
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In figures 15 (b), (d), (f), we consider drops in the VIX. We observe a more consistently

good performance for all portfolios, with the top mean return being around 40 bps for the 80-99

portfolio. During these extreme sub-periods, Sharpe ratios vary between 0.6 and 1.6, and we do

not observe any clear pattern in the standard deviation as to which portfolio is more volatile. We

note that the sharpe ratio drops to around 0-0.5 when considering the 0.1 percentile threshold.

These findings could suggest that the pairs trader is earning a slight liquidity premium, when

the market liquidity increase again, consistent with our initial hypothesis.

If we consider lagged changes in the VIX, in figure 16, we observe an almost identical

pattern in the mean return and Sharpe ratio as present in the contemporaneous drops in the

VIX. These two sub-periods are considered to be very likely to overlap, as a large drop in the

VIX, often follow a large increase in the VIX. As such, we should expect to see a degree of

resemblance in our data.

For the lagged drops in the VIX, we observe zero to 40 bps negative subsequent mean

returns depending on which top portfolio is considered. These results are not directly linked

to our hypothesis, as the pairs trader is not hypothesized to enter a lot of trades after a large

drop in the VIX. We are therefore not drawing any conclusions from this section.

In summary, when the VIX increase, it is a hypothesized indicator of market liquidity

distress. We find that in those sub-periods, regardless of looking at lagged changes or con-

temporaneous changes to our portfolio returns, the pairs trader earns a small premium. This

can be due to a fast intra-month market liquidity rebounce allowing the pairs trader to earn a

quick liquidity premium, or simply a noisy estimate based on too few observations in sample.

Similarly the pairs trader earns a small premium when the VIX drops during the same period.

As such, we find some, yet weak evidence of a liquidity risk premium in times with shocks to

the market liquidity.
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Figure 15: ∆VIX - Net portfolio - Mean, Std, Sharpe w. TC

(a) VIX surge - Net portfolio - Mean (b) VIX drop - Net portfolio - Mean

(c) VIX surge - Net portfolio - Std (d) VIX drop - Net portfolio - Std

(e) VIX surge - Net portfolio - Sharpe (f) VIX drop - Net portfolio - Sharpe
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Figure 16: ∆VIX Lagged - Net portfolio - Mean, Std, Sharpe w. TC

(a) Lagged VIX surge - Net portfolio - Mean (b) Lagged VIX drop - Net portfolio - Mean

(c) Lagged VIX surge - Net portfolio - Std (d) Lagged VIX drop - Net portfolio - Std

(e) Lagged VIX surge - Net portfolio - Sharpe (f) Lagged VIX drop - Net portfolio - Sharpe
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For the funding liquidity, figure 17 shows the non-lagged TED-spread thresholds. We again

find some evidence of a small, yet consistently higher risk adjusted return for the pairs trader

in sub-periods with high (numerically) positive shocks to the funding liquidity. Our hypothesis

will have to reflect the same as the one entertained for the VIX surges. Contrary to the VIX,

we do not find any clear pattern of an increasing risk adjusted return with the scale of the drop

in the TED-spread. However, the pattern is not entirely clear and is of the same magnitude

of the TED surges, so we cannot definitively say that market liquidity matters over and above

the funding liquidity in terms of determining the lucrative sub-periods for the pairs trader.

Considering figure 18, which shows the lagged TED-spread thresholds, the mean returns do

not display any clear patterns other than the two top portfolios seem to perform well following

a month with a large drop in funding liquidity. One could speculate whether funding liquidity

takes longer to ease than market liquidity, and as such a premium is earned later after a big

drop in the TED-spread. But once again, and in summary, we cannot reach any definitive

conclusion of a liquidity premium. We can only observe that the returns are higher, yet not to

an statistically nor economically meaningful degree worth pursuing for the pairs trader unless

the strategy is paired with another strategy as a hedge to liquidity risk. We will discuss this in

more detail in section 6. To reach a more definitive conclusion about whether these returns are

compensation for a liquidity premium, we will employ a Liquidity CAPM regression on these

particular sub-periods to get a clearer insight as to what component of liquidity risk may be

driving the slightly higher returns.
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Figure 17: ∆TED - Net portfolio - Mean, Std, Sharpe w. TC

(a) TED surge - Net portfolio - Mean (b) TED drop - Net portfolio - Mean

(c) TED surge - Net portfolio - Std (d) TED drop - Net portfolio - Std

(e) TED surge - Net portfolio - Sharpe (f) TED drop - Net portfolio - Sharpe
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Figure 18: ∆TED Lagged - Net portfolio - Mean, Std, Sharpe w. TC

(a) Lagged TED surge - Net portfolio - Mean (b) Lagged TED drop - Net portfolio - Mean

(c) Lagged TED surge - Net portfolio - Std (d) Lagged TED drop - Net portfolio - Std

(e) Lagged TED surge - Net portfolio - Sharpe (f) Lagged TED drop - Net portfolio - Sharpe
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PART IV - Liquidity Adjusted CAPM

5.6 Acharya and Pedersen - LCAPM

Before we can obtain cross sectional regression results, we have to make a choice about how

we construct portfolios. As introduced in sections 4.7.1, we make use of the sector portfolios,

rather than the AP approach of pairing stocks based on their Amihud ILLIQ measure. We

justify this choice by arguing that sectors are more suitable to test our hypothesis as they allow

for pairing across liquidity levels. We are therefore not forcing our conclusion on our data, but

merely providing a better framework in which we can test whether it holds for the simple GGR

algorithm.

5.6.1 Sector portfolio performance

We begin by examining some overall sector statistics to see how each sector has performed

historically. This section briefly presents sector cumulative returns plots and summary statistics,

before and after transaction costs.

Figure 19 displays the cumulative returns before transaction costs for sector portfolios

consisting of the top 20 pairs in each sector. We observe a decreasing profitability trend in all

sectors. From the unrestricted pairing portfolio we saw that the sector loading was concentrated

primarily in Utilities. This loading seems to be beneficial in the early years of the sample period

as Utilities is the best performing sector, together with Real Estate. However, from the mid

1990’s, shortly before the publication of GGR’s findings, Utilities’ return flattened out. We

speculate that this could be an effect of the popularization of the pairs trading strategy, as

Utilities are the main output from the strategy when using the SSD measure to select pairs.

The Utilities’ cumulative return series draw a clear parallel to the unrestricted pairs cumulative

return chart in figure 9. Both return series only exhibit slight deviations during 2000 and 2008

when the sector loading turns from Utilities to Financials. The Real Estate sector portfolio

appears much more volatile yet profitable up until 2008. We observe that most sectors suffer

slight losses during the financial crisis, yet the Real Estate sector together with Financials,

Construction and Communications suffer particularly great losses during the financial crisis,
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and Financials suffer losses a great deal of time before that.

Figure 19: Cumulative returns for top 20 pairs in sector portfolios

This figure illustrates the cumulative product of fully-invested excess returns before transaction costs for each

sector for a sample period running from 1963 - 2019. Each portfolio represents returns for top 20 pairs.

Table 17 reports the average sector mean fully-invested returns, t-Statistics, standard de-

viation, skewness, kurtosis, min, max and ratio of monthly fully-invested returns below 0. In

Panel A, statistics are provided before transaction costs, and in Panel B they are after transac-

tion costs. All statistics are given for the top 20 portfolio in each sector. We quickly note that

the mean return post transaction costs are all around zero and insignificant. While Real Estate

and Communications are close to being significant at an alpha 5% level with mean returns of

32 and 19 bps per month, respectively. Relative to the full period for the one-portfolio, we

observe a 6 bps improvement per month by trading only stocks from either the Utilities or

Communications sector.

5.6.2 Liquidity-adjusted CAPM cross sections

In this final section of our analysis, we will consider how the pairs trader is loading on

each of Acharya and Pedersen’s liquidity risk betas. While we find limited returns for the pairs
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Table 17: Summary statistics - Sector performance

This table reports the average sector mean fully-invested returns, t-Statistics, standard deviation, skewness,
kurtosis, min, max and ratio of monthly fully-invested returns below 0. In Panel A, statistics are provided
before transaction costs, and in Panel B the same statistics are provided but after transaction costs. All
statistics are given for the top 20 portfolio in each sector.

Sector Mean t-Stat SD Skew Kurt Min Max Obs < 0%
Panel A: Pre-TC

Utilities 0.0062 12.89 0.0126 -0.28 5.24 -0.0804 0.0646 0.3
Financials 0.0052 9.01 0.0151 0.29 3.03 -0.0725 0.0848 0.35
Transport 0.0024 2.59 0.0237 -0.04 1.09 -0.0853 0.0867 0.46
Industrials 0.0059 10.08 0.0152 0.26 1.55 -0.0623 0.0801 0.36
Technology 0.0054 6.38 0.0218 0.36 1.94 -0.0737 0.1113 0.4
Wholesale 0.0046 5.53 0.0216 0.29 1.6 -0.0596 0.1018 0.41

Retail 0.0036 4.86 0.0191 0.26 3.96 -0.07 0.1364 0.42
Real Estate 0.0069 3.92 0.0455 1.2 6.33 -0.1444 0.3287 0.46

Mining 0.0028 2.98 0.0247 -2.12 21.28 -0.2542 0.0874 0.43
Construction 0.0046 3.08 0.0387 -1.92 28.96 -0.4475 0.1968 0.44
Cons. Goods 0.0038 5.52 0.0181 0.11 2.72 -0.104 0.0702 0.42

Materials 0.0038 6.08 0.0163 0.25 3.21 -0.0657 0.0947 0.41
Cons. Services 0.0033 3.86 0.0219 -0.02 2.61 -0.1019 0.0907 0.44

Communications 0.0062 6.16 0.0262 1.93 22.3 -0.1034 0.2925 0.37

Panel B: Post-TC
Utilities 0.0004 0.9 0.0112 -0.91 11.88 -0.0993 0.0625 0.49

Financials 0.0005 0.81 0.0145 0.19 3.37 -0.0737 0.082 0.51
Transport -0.0016 -1.8 0.0235 -0.02 1.1 -0.088 0.0811 0.52
Industrials 0.0009 1.57 0.0149 0.16 1.33 -0.0673 0.0652 0.49
Technology 0.001 1.21 0.0213 0.26 2.12 -0.085 0.1101 0.5
Wholesale 0.0007 0.85 0.0214 0.25 1.66 -0.0658 0.0983 0.49

Retail -0.0009 -1.23 0.0184 0.33 4.78 -0.0715 0.134 0.52
Real Estate 0.0032 1.86 0.0448 1.17 6.51 -0.1494 0.3243 0.49

Mining -0.0014 -1.51 0.0243 -2.21 22.05 -0.2561 0.0834 0.54
Construction 0.0009 0.57 0.0386 -1.94 28.76 -0.4496 0.1944 0.48
Cons. Goods -0.0006 -0.92 0.0177 0.06 2.65 -0.106 0.0654 0.52

Materials -0.0009 -1.41 0.0157 0.35 3.77 -0.067 0.0919 0.55
Cons. Services -0.001 -1.2 0.0213 -0.17 2.7 -0.1036 0.0876 0.54

Communications 0.0019 1.89 0.0258 2.18 24.77 -0.1051 0.2907 0.46

trader, we see a slight increase in net returns after transactions costs when considering periods

of high shocks to market and funding liquidity. We limit our cross-sectional regressions to

consider the full-period of returns to obtain more robust beta estimates. We justify this choice
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by pointing to our findings that the pairs trader is on average net long a more illiquid stock, than

a liquid counterpart, as it was noted in section 5.4.3. We also consider cross-sections during

our hypothesized lucrative sub-periods with either a high spike or drop in the VIX or TED

spread signified by percentile thresholds 0.1 and 0.9. These thresholds are selected to obtain a

larger sample size, but maintain the desired large impact on the market- and funding liquidity,

the analysis has been done with different thresholds, of 0.05 and 0.15, and both additional

thresholds produce results (not reported). These results are provided in the Appendix. We use

fully-invested returns net of transaction costs to preserve space.

We follow Acharya and Pedersen’s methodology and provide results for 8 separate regres-

sions, all of which are defined in section 4.7.1.

Table 20 presents the average liquidity costs, c, the market beta, the three liquidity risk

betas as well as the standard deviation of the ILLIQ innovations and net beta for each sector.

The table is sorted based on the liquidity level. We observe that the lowest liquidity costs are

found in the Utilities sector and the highest are, by far, in the Real Estate sector. Moreover,

we find evidence of more illiquid sectors having higher liquidity risk. In particular, an illiquid

sector that has a high value of c, also tends to display commonality in liquidity with the

market, captured by β2. Moreover, we find a slight pattern that the liquidity sensitivity to

market returns, β4 tends to be more negative for illiquid sectors. We do not observe much

evidence of a relation between the liquidity level and return sensitivity to market liquidity, β3.

We further observe an almost monotonically increasing net beta, and, naturally, the standard

deviation of ILLIQ innovations are increasing with the liquidity level, as they are bounded by

0. These results are in line with the findings of AP, and they are consistent with the notion of

flight to liquidity. We do note that the Financials sector appears to be an anomaly with respect

to the rest, by having a relatively large illiquidity level, a positive return sensitivity to market

liquidity and liquidity sensitivity to market returns. Compared to earlier results, we note that

the Utilities sector, which is dominating our pairs trading one-portfolio, is the least illiquid

sector of all sectors presented, and paradoxically the best performing sector as presented in our

summary statistics. This could function as an indication of why our liquidity premium appears

to be insignificant, as we are mostly trading a highly liquid sector. We should therefore note
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that the implications of our findings in this section mainly apply to funds with strict sector

exposure limit, assuming that they do not daily rebalance, as the mean return across portfolios

do not necessarily reflect the return series generated by the simple GGR algorithm pairs trader.

Table 18: Sector Betas - Full-period

This table reports the average liquidity costs, C, the market beta, the three liquidity risk betas as well as
the standard deviation of the ILLIQ innovations and net beta for each sector. The table is sorted based on
the liquidity level, C. Betas are computed using all monthly return and illiquidity observations for each sector
portfolio and for an equal-weighted market portfolio.

sector c b1 b2 b3 b4 std inno bnet

Utilities 0.0031 0.0042 0.0423 -0.004 -0.0086 0.0265 0.0591
Communications 0.0048 0.0141 0.0941 -0.0137 -0.0272 0.1722 0.1491

Materials 0.0053 0.0076 0.1366 -0.0084 -0.0145 0.183 0.167
Mining 0.0054 0.011 0.1137 -0.0123 -0.0103 0.1891 0.1473

Consumer Goods 0.0076 0.0063 0.2625 -0.0076 -0.042 0.2467 0.3184
Industrials 0.008 0.0048 0.2257 0.0017 -0.0695 0.2623 0.2983
Transport 0.0081 0.0055 0.3882 -0.0022 -0.0587 0.4143 0.4547

Retail 0.0088 0.0058 0.298 -0.0104 -0.0386 0.2982 0.3528
Wholesale 0.0102 0.0061 0.5198 -0.0133 -0.0598 0.3725 0.599
Financials 0.0104 0.003 0.0886 0.0016 0.002 0.4765 0.088

Consumer Services 0.0125 0.0052 0.5254 -0.0078 -0.1318 0.4585 0.6702
Technology 0.0128 0.0056 0.6159 -0.0056 -0.1036 0.4283 0.7307

Construction 0.0134 0.019 0.8619 -0.0224 -0.1104 0.6028 1.0137
Real Estate 0.0265 0.0107 1.6598 -0.0133 -0.1988 1.0473 1.8827

As AP find strong collinearity amongst their liquidity based portfolios, as well as for

individual stocks, we present in table 19 a correlation table reflecting this issue. The collinearity

of our liquidity risk measures are confirmed and of the same scale as found by AP. The task of

empirically distinguishing between the effects of illiquidity and each of the individual liquidity

betas is therefore difficult, as noted by AP.

Table 19: Beta Correlations - Full-period

This table reports the correlations of β1, β2, β3, and β4 for the 14 sectors formed from 1963 - 2019.

b1 b2 b3 b4

b1 1.0 0.36 -0.85 -0.26
b2 0.36 1.0 -0.44 -0.92
b3 -0.85 -0.44 1.0 0.33
b4 -0.26 -0.92 0.33 1.0
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We now turn our attention to examining the liquidity risk betas affect on our sector portfolio

expected returns.

Table 20 presents the eight regression models introduced in section 4.7.1. We start by

comparing the CAPM model (model 3) to a liquidity-adjusted CAPM (LCAPM) with one

degree of freedom (model 1). The LCAPM calculates a net beta, as a function of the market

beta and the three liquidity betas, as given in equation 15. By estimating this net beta, we

obtain a model with only one risk premium, λ. We find that while the LCAPM is a better

fit, both models are very poor fits for the sector portfolio returns, with R2
adj down to 0.027 for

LCAPM and 0.011 for the CAPM. Neither the beta for the LCAPM nor the market beta are

significant. Given that the returns are after transaction costs, it is no surprise that the constant

is insignificant as well. While this alone does not constitute a test for the liquidity risk effect of

our liquidity betas over the liquidity level and market risk, we include both the market beta,

β1, the liquidity level, E(c), and the net beta in our regression models in model 4, 5 and 6.

It is evident that as soon as we include the liquidity level as a free parameter, we find

strong significance for the κ parameter in model 2 and but not only closely significant to an

alpha %5 level for model 5. R2
adj amounts to 0.803 and 0.787 for model 2 and 5, respectively.

κ is estimated to be negative, as also found by AP, even though the model implies κ should be

positive. Given this finding, we, as done by AP, estimate model 6 with κ = 0. For this model

we find strong significance for the beta net. So we find some weak evidence of the liquidity risk

mattering slightly, yet it would seem to that the liquidity level, E(c), matters over the liquidity

risk.

While we find a positive market beta coefficient for models with both the market beta and

the net beta as independent variables, we note that it does not necessarily reflect a positive

risk premium on the market, as the net beta contains the market beta. However, given the

low magnitude of the negative net beta, even after subtracting the net beta, we still obtain a

positive market risk premium. As illustrated for model 4 below:

E
(
rp

t − rf
t

)
= 0.00073 + 0.4818E (cp

t ) + 0.02433βp
1 − 0.00136βp

net

= 0.00073 + 0.4818E (cp
t ) + 0.02297βp

1 − 0.00136 (βp
2 − β

p
3 − β

p
4)

(41)
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In model 7 and 8 we allow for a risk premium for each separate liquidity beta, and we thus

estimate three liquidity risk premiums. We note that none of the models are significant, but that

they all suggests a negative loading on the liquidity risk premiums. Given the multicollinearity

problems, separating these effects is difficult.

In summary, while our estimated sector liquidity betas are consistent with flight to liquidity,

we find little to no evidence that liquidity risk matters over the liquidity level and market risk

for pairs trading returns in a sector portfolio setup. This conclusion holds for the full period

considered in this section, as well for the cross sectional regressions based on changes in the

VIX and TED-spread sub-periods presented in the appendix. In summary, we do not find

any evidence of the pairs trader being compensated for taking liquidity risk. In the following

section, we discuss why our results are not as convincing as first hypothesized.

Table 20: Liquidity-adjusted CAPM - Full period - Net TC

This table reports 8 cross sectional regression models explaining 14 sector portfolio excess returns by a liquidity-
adjusted CAPM model. The data used in the regression reflect months where lagged monthly changes in the
VIX is below the 0.1 percentile. Each model consider special cases of the relation

E(rsec,t) = α+ κE(cp
t ) + λ1β

p
1 + λ2β

p
2 + λ3β

p
3 + λ4β

p
4 + λβp

net

The table presents parameter estimates and t-Statistics reported in parentheses below. The t-statistics are
calculated using a Fama Macbeth framework, that takes pre-estimation of the betas into account. R2 and R2

adj

are provided in the last two columns.

Model Constant E(c) b1 b2 b3 b4 bnet R2 R2
adj

Model 1 0.00088 0.4814 -0.00128 0.202 0.136
(1.76) (-1.74)

Model 2 0.00068 -0.52992 0.00043 0.833 0.803
(0.64) (-2.48) (0.17)

Model 3 -0.00358 -0.09113 0.017 -0.065
(-2.0) (-0.45)

Model 4 0.00073 0.4814 0.02433 -0.00136 0.207 0.063
(0.96) (0.27) (-1.66)

Model 5 0.00019 -0.47843 0.04426 -0.0003 0.836 0.787
(0.11) (-1.86) (0.39) (-0.09)

Model 6 -0.00248 0.15015 -0.00601 0.78 0.739
(-2.75) (1.4) (-6.17)

Model 7 0.00094 0.4814 -0.09027 -0.00124 -0.09269 0.00408 0.263 -0.064
(1.06) (-0.53) (-0.47) (-0.77) (0.22)

Model 8 0.00016 -0.41948 -0.08395 -0.00057 -0.11353 0.00659 0.853 0.761
(0.08) (-1.41) (-0.46) (-0.11) (-0.83) (0.32)
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6 Discussion

In this section we will challenge the methodology used in this study, and suggest other

approaches in an attempt to further the understanding of where pairs trading return drivers.

Each section is ranked given its importance, with the top section being the one we consider the

most important.

Modifying the formation algorithm

Our initial hypothesis assumes that the pairing across liquidity levels occurs frequently

enough for it to have an impact on returns. Our results indicate that this assumption was

overly optimistic. We do observe a slight tilt towards buying the illiquid stock while short

selling a more liquid counterpart. But while this pattern is uplifting in relation to our initial

hypothesis, the scale to which we are net-long illiquidity during liquidity shock sub-periods does

not yield any promising results. This questions whether the simplicity of GGR’s algorithm is

unsuitable for forming pairs across liquidity levels. We speculate that the desired pairs are not

moving close enough together to deliver a low enough sum of squares deviation.

These findings suggest that the simplistic GGR pairs trading algorithm is not, as hypothe-

sized in the introduction, an optimal hedge against liquidity risk for hedge funds seeking to limit

their exposure in existing strategies to liquidity shocks. To cater a pairs trading strategy to be

a liquidity hedging strategy, future research could focus on a modified pairs trading algorithm

that does not focus on pairs selected on a distance measure alone, but rather a combination of

metrics. One could force the long leg to be consistently long a higher ILLIQ decile relative to

the short leg. Do and Faff suggest considering the number of zero-crossings, which is defined as

the number of times the normalized time series cross during the formation period. This metric

could aid in identifying cross ILLIQ decile pairs that may possess the best of both worlds, a

combination of stocks moving together that cross frequently while simultaneously having a long

illiquid leg and a short liquid leg. It would be interesting to see whether this modification would

provide a positive alpha during sub-periods with shocks to liquidity.

Given that we observe a negative correlation between momentum and pairs trading, it

would suggest that a pairing of the two strategies could yield interesting results. This method
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should stand in comparison to Asness et al. (2013). The authors combined momentum and value

in a 50/50 portfolio that outperforms the individual strategies. The benefit of this approach,

as explained by the authors is that momentum and value benefit from the negative correlation

between the two strategies. There is a negative correlation due to momentum being positively

correlated to liquidity risk while value is negatively correlated to liquidity risk. We find that the

pairs trader loads positively on momentum stocks when the VIX spikes, and that the pairing

would therefore not function as a liquidity hedge, but merely attempt to benefit from the general

negative correlation.

Rebalancing vs. no rebalancing

Our findings from the factor regressions show a significant market loading, also evidenced

in figure 10, where we can see that the strategy suffers from a time-varying net exposure to the

market that is different from zero throughout the period 1963-2019.

One option to consider to alleviate this market exposure is to apply daily or periodic rebal-

ancing. However, we would still be facing a trade-off between market exposure and transaction

costs, as we found that the major costs affecting the profitability of pairs trading are the trading

commissions, so adjusting the positions would most likely only worsen the situation.

GGR (2006), as well as Do and Faff (2010), comment on the top pairs potentially moving

too closely together to not even compensate the pairs trader for the transaction costs alone, as

deviations are too small to justify the costs of entering the trade. This could explain why the

top pairs do not earn high returns after transaction costs. We sought to alleviate some of this

effect by filtering our data such that companies with multiple share classes only appeared with

one share class in our sample. However, this still does not help to produce significant positive

returns after transaction costs. One could try implementing the strategy by trading pairs that

are not high in the SSD rank, so that the price spreads to enter a position are big enough to

justify the commissions, but this analysis would still be subject to major data-mining to find

an optimal rank of pairs to trade.

Even though commissions, market impact and short selling fees are the costs that have

the greatest impact on the profitability of pairs trading, the analysis is prone to the lack of
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application of any other costs. For example, as the strategy is assumed to be self-financing,

we do not consider any costs or interests received on margins or collaterals. Moreover, we do

not apply any dividend tax to our stocks, which as a long position holder, the trader is liable

to pay a dividend tax, whereas when holding a short position he must pay the dividend to the

lender and does not receive a tax deduction from dividends on short positions.

Choice of liquidity factor

Amihud (2014) introduced the IML factor, which is based on his 2002 illiquidity measure.

Given that Amihud lays the foundation for the liquidity CAPM analysis in Acharya and Ped-

ersen’s (2005) analysis, we chose this to be our liquidity measure and included the IML factor

in all our factor regressions. But there were other noteworthy options. Pastor and Stambaugh

(2003) criticize Amihud’s (2002) ILLIQ measure, as it is volume based, and volume is not nec-

essarily related to illiquidity. As mentioned in our literature review, Pastor and Stambaugh

refer to the 1987 stock market crash. Liquidity was at a record low, but trading volume set

its record high. While we hope to isolate sub-periods where it is particularly profitable for

the pairs trader, Pastor and Stambaugh would argue that the IML factor does not necessarily

capture this liquidity premium. Therefore, future research could follow the advice of Pastor

and Stambaugh and not use trading activity measures to proxy for time variation in liquidity.

Long and Short Excess performance

As introduced in section 4.4, we attempt to calculate an excess return for both the long and

the short leg. Calculating excess returns on a pairs trading portfolio could naively be calculated

as the monthly return generated by the pairs traders long portfolio and short portfolio in excess

of an equally-weighted market return. However, this method does fall short to the limitations

of how long the pairs trader may be active in the market. If the pairs trader is out of the market

for even just a single day, a mismatch between the return of the pairs trader and the market

occurs. We attempted to alleviate this limitation by adjusting the daily equal-weighted returns

and calculating daily excess returns instead of monthly. In this section, we will present our

resulting long and short excess mean returns during sub-periods with market liquidity shocks.

Shocks to funding liquidity and measures of Sharpe ratios can be found in the Appendix.
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Figure 20 exhibits mean returns when the VIX either surges or drops. We observe that

both the stocks in our long portfolio and short portfolio outperform the market during VIX

surges by a large margin. The opposite holds for market drops. Given that we are long and

short the same notional amount in the market as we are in our long leg and our short leg, we

can only speculate about why we observe this pattern, and it would require more research to

understand the drivers than the time frame of this study allows for. In essence, it would seem

that our long and short stocks exhibit low market betas.

As previously mentioned, Petkova and Zhang (2005) find that value stocks tend to have

higher market betas when markets go down. In section 5.5 we explain why we theoretically

should stock up on value stocks during sub-periods with a spike in VIX. However, we did not find

any evidence of significant loading on the value factor in our factor regression. Therefore, we

cannot definitively dispute our findings as an inconsistency with Petkova and Zhang’s findings.

In section 5.4.1 we found that Utilities is the main sector we trade, both on the long and

the short leg. This sector is commonly characterized as having stable and low-beta stocks, so

this could serve as a possible explanation for our portfolios exhibiting low market exposure.

Another possible explanation goes back to our equally-weighted market return approximation.

If we still overestimate the equally-weighted market returns, we will naturally subtract a larger

market return during market downturns, which could then appear as outperformance by both

our long and short portfolios.

In summary, while intriguing, these results fall into the category of future research needed.
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Figure 20: ∆VIX - Long and Short Excess Portfolios - Mean w. TC

(a) VIX surge - Long Excess - Mean (b) VIX drop - Long Excess - Mean

(c) VIX surge - Short Excess - Mean (d) VIX drop - Short Excess - Mean
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7 Conclusion

Our initial hypothesis was based on empirical literature that finds persistence in liquidity.

Persistence in liquidity implies that returns are predictable. High illiquidity today should

predict high expected illiquidity in the following period, which translates into investors requiring

larger returns. Therefore, as expected returns should increase with illiquidity costs, it would

imply that higher illiquidity costs should result in the investor requiring a larger compensation.

A higher expected return leads to a lower price. This was hypothesized to be the pairs trader’s

trading signal. As the pairs trader provides liquidity during times with shocks to funding and

market liquidity, he/she should have a high expected return. From our results it is evident

that the liquidity premium obtained by the pairs trader is very limited. We asked four initial

research questions, we will answer now on the basis of our analysis.

First, we asked: is the pairs trader a liquidity provider, and therefore subject to liquidity

risk? And second: if the answer to the first question is positive, does the level of liquidity

provision change over time? In our analysis of loadings on size deciles and the Amihud ILLIQ

measure, we observe that the pairs trader on average is net long smaller and more illiquid

stocks, which would indicate that the pairs trader is a liquidity provider, and therefore subject

to liquidity risk. However, the average illiquidity decile traded on the long leg and the short leg

is not very different and does perhaps not justify a large liquidity provision premium. Over time,

two periods particularly stand out: the dot-com bubble and the 2008 financial crisis. The pairs

trader goes from trading an average ILLIQ decile of between 3 and 4 (highly liquid stocks)

to trading an average between 7 and 8 (highly illiquid stocks). These findings support our

conclusion, that flight to liquidity generates signals for the pairs trader in more illiquid stocks.

Conversely, we find that the difference between illiquidity loading on the long and short leg

does not diverge as much as anticipated. We speculate that the reason for these findings arises

during our formation of pairs. If stock A is much more illiquid than stock B, the chance of those

two moving together to the extent that they end up in top 20 in the distance approach is overly

optimistic. This does not dispute the hypothesis, but it challenges the rather simplistic pairing

algorithm’s ability to actively select pairs with a large difference in liquidity level, yet with the

same underlying drivers of returns. During our robustness test of the choice of which top pairs
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portfolio to trade, we found that the top portfolio performed slightly worse than the subsequent

portfolios. These findings could be a weak indication of lower ranked pairs being able to reflect

a liquidity risk premium trade better than a top pair. In summary, the current pairs formation

algorithm allows for minimal exploitation of liquidity provision in times of liquidity shocks. On

average it would appear we do provide liquidity, but the average difference between the long

and short leg illiquidity deciles loading is minimal, and compensation for raking this liquidity

risk must therefore be limited.

Third, we asked: is the pairs trader compensated higher in sub-periods with high barriers

to arbitrage? As Do and Faff, we find that the pairs trader makes an insignificant amount

after accounting for transaction costs. We focus our analysis on sub-periods signified by large

shocks to market liquidity and funding liquidity captured by the VIX index and TED spread,

respectively. For the full period, we generate a loss each month as a pairs trader, net of

transaction costs. By isolating our trading to months where we observe liquidity shocks, results

are improved to earning between 20 and 47 bps per month. The average return of 47 bps are

yielded when the lagged changes in TED spread is plunging. One could argue that a big drop in

the TED spread should indicate that a further improvement of funding liquidity should cause

our pairs to converge as the barriers to arbitrage are lowered. In summary, we find that, net

of transaction costs, the pairs trader does receive a slight degree of compensation in terms of

higher raw returns, but none of which is significant in an economic or statistical sense. These

findings are consistent with our hypothesis that the pairs trader does obtain a higher return

during months characterized by high barriers to arbitrage. Yet the results are not statistically

and hardly economically significant enough to yield a clear conclusion that this is compensation

for providing liquidity.

Finally, we asked whether a liquidity CAPM model indicates whether the pairs trader is

compensated for taking liquidity risk. From our Liquidity CAPM analysis, we could from the

summary statistics deduce that an illiquid sector, denoted as a sector with a high value of c,

tends to display higher commonality in liquidity with the market, captured by β2, relative to a

liquid sector. Moreover, we find a slight pattern that the liquidity sensitivity to market returns,

β4 tends to be more negative for illiquid sectors. However, we do not observe much evidence of

112



Liquidity Risk Premium in Pairs Trading May 15, 2020

a relation between the liquidity level and return sensitivity to market liquidity, β3. The signs of

our liquidity beta estimates are consistent with those found by Acharya and Pedersen (2005),

and they serve as evidence of flight to liquidity. However, from the cross sectional regressions

considering the full sample period, no evidence was found that the pairs trader is compensated

for taking liquidity risk

In summary, we conclude that the simple GGR algorithm for forming pairs does not allow

the pairs trader to take sufficient liquidity risk to generate the hypothesized higher return.

Returns are seemingly all captured by transaction costs, and the pairs trader is only mildly

improving results by trading the strategy during months characterized by liquidity shocks.
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8 Appendix

Figure 21: Sharpe Ratios of Top-1000 pairs divided in sub-portfolios - Committed Capital

This figure shows the Sharpe ratios of the committed capital returns for different combinations of the number of
pairs in each portfolio, up to the pair ranked 1000 in the SSD metric, with pair 1 being the pair with the lowest
SSD during the formation period. Sub-figure A, shows the Sharpe ratios of portfolios comprised of 5 pairs each,
with the left-most blue dot representing the metric for trading only the first 5 pairs with the lowest SSD, and
the right-most blue dot indicating the Sharpe ratio of the portfolio which only trades pairs ranked between the
996th to 1000th in the SSD metric. The same explanation applies to the other sub-figures, which show the
results of forming portfolios of 10, 20 and 50 pairs. The dashed red line is the fitted line that minimizes the
residuals of all the observations.

(a) Steps of 5 pairs (b) Steps of 10 pairs

(c) Steps of 20 pairs (d) Steps of 50 pairs
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Figure 22: Market illiquidity innovations

This figure illustrates the historic standardized market illiquidity innovations and stands as a comparison to
Acharya and Pedersen’s (2005) Figure 1. The series is standardized using the mean and standard deviation
using the full sample up until 2019.

Table 21: Sector Portfolio Size and Formation

Sector Number of Companies HSICIG

Utilities 310 490-499
Financials 1250 600-649 and 670-679
Transport 273 400-479
Industrials 1620 330-359 and 370-399
Technology 503 360-369
Wholesale 352 500-519

Retail 639 520-599
Real Estate 165 650-669

Mining 626 100-149
Construction 148 150-179

Consumer Goods 588 0-99 and 200-239
Materials 1131 240-329

Consumer Services 1239 700-999
Communications 205 480-489
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Table 22: Liquidity-adjusted CAPM - ∆ VIX 0.1 - Net TC

This table reports 8 cross sectional regression models explaining 14 sector portfolio excess returns by a liquidity-
adjusted CAPM model. The data used in the regression reflect months where monthly changes in the VIX is
below the 0.1 percentile. Each model consider special cases of the relation

E(rsec,t) = α+ κE(cp
t ) + λ1β

p
1 + λ2β

p
2 + λ3β

p
3 + λ4β

p
4 + λβp

net

The table presents parameter estimates and t-Statistics reported in parentheses below. The t-statistics are
calculated using a Fama Macbeth framework, that takes pre-estimation of the betas into account. R2 and R2

adj

are provided in the last two columns.

Model Constant E(c) b1 b2 b3 b4 bnet R2 R2
adj

Model 1 0.00596 0.4814 -0.00152 0.098 0.023
(4.14) (-1.14)

Model 2 0.0065 -0.58252 -0.00041 0.509 0.42
(2.66) (-2.45) (-0.23)

Model 3 0.00352 -0.2113 0.144 0.073
(1.11) (-1.42)

Model 4 0.01091 0.4814 -0.26635 -0.00133 0.494 0.403
(5.38) (-2.94) (-1.28)

Model 5 0.01271 -0.71103 -0.27681 0.00039 0.742 0.665
(4.58) (-3.83) (-3.01) (0.28)

Model 6 0.00533 -0.19547 -0.00301 0.363 0.248
(1.78) (-1.46) (-1.95)

Model 7 0.01052 0.4814 -0.30889 -0.00126 -0.05918 0.00193 0.584 0.399
(4.48) (-3.22) (-1.19) (-1.21) (0.21)

Model 8 0.01165 -0.64949 -0.30899 0.00016 -0.05839 4e-05 0.785 0.651
(3.86) (-3.21) (-3.16) (0.12) (-1.18) (0.0)
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Table 23: Liquidity-adjusted CAPM - ∆ VIX 0.9 - Net TC

This table reports 8 cross sectional regression models explaining 14 sector portfolio excess returns by a liquidity-
adjusted CAPM model. The data used in the regression reflect months where monthly changes in the VIX is
above the 0.9 percentile. Each model consider special cases of the relation

E(rsec,t) = α+ κE(cp
t ) + λ1β

p
1 + λ2β

p
2 + λ3β

p
3 + λ4β

p
4 + λβp

net

The table presents parameter estimates and t-Statistics reported in parentheses below. The t-statistics are
calculated using a Fama Macbeth framework, that takes pre-estimation of the betas into account. R2 and R2

adj

are provided in the last two columns.

Model Constant E(c) b1 b2 b3 b4 bnet R2 R2
adj

Model 1 -0.00825 0.4814 -0.00059 0.012 -0.071
(-4.24) (-0.38)

Model 2 -0.00527 -0.82978 0.00117 0.502 0.412
(-1.72) (-3.18) (0.67)

Model 3 -0.01393 -0.00114 0.0 -0.083
(-5.27) (-0.01)

Model 4 -0.00805 0.4814 -0.01776 -0.00042 0.017 -0.162
(-3.67) (-0.24) (-0.23)

Model 5 -0.00364 -0.92703 -0.06677 0.00213 0.537 0.398
(-1.0) (-3.23) (-0.87) (1.02)

Model 6 -0.01327 0.02967 -0.00183 0.054 -0.118
(-4.72) (0.31) (-0.79)

Model 7 -0.01079 0.4814 0.28364 -0.0077 0.14888 -0.03424 0.157 -0.218
(-2.68) (0.68) (-1.06) (0.68) (-1.09)

Model 8 -0.00686 -0.89298 0.27313 -0.00473 0.16952 -0.03248 0.589 0.332
(-1.37) (-2.8) (0.68) (-0.65) (0.8) (-1.07)
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Table 24: Liquidity-adjusted CAPM - ∆ TED 0.1 - Net TC

This table reports 8 cross sectional regression models explaining 14 sector portfolio excess returns by a liquidity-
adjusted CAPM model. The data used in the regression reflect months where monthly changes in the TED-
spread is below the 0.1 percentile. Each model consider special cases of the relation

E(rsec,t) = α+ κE(cp
t ) + λ1β

p
1 + λ2β

p
2 + λ3β

p
3 + λ4β

p
4 + λβp

net

The table presents parameter estimates and t-Statistics reported in parentheses below. The t-statistics are
calculated using a Fama Macbeth framework, that takes pre-estimation of the betas into account. R2 and R2

adj

are provided in the last two columns.

Model Constant E(c) b1 b2 b3 b4 bnet R2 R2
adj

Model 1 7e-05 0.4814 -0.0007 0.022 -0.059
(0.05) (-0.52)

Model 2 0.00293 -0.7815 0.00164 0.703 0.649
(1.43) (-4.66) (1.07)

Model 3 -0.00445 -0.07029 0.09 0.014
(-1.98) (-1.09)

Model 4 0.00075 0.4814 -0.04696 3e-05 0.1 -0.063
(0.51) (-0.98) (0.02)

Model 5 0.00347 -0.78008 -0.0389 0.00224 0.724 0.642
(1.61) (-4.6) (-0.87) (1.33)

Model 6 -0.00422 -0.04086 -0.00194 0.141 -0.015
(-1.83) (-0.55) (-0.81)

Model 7 0.00065 0.4814 -0.20561 -0.00532 -0.1645 -0.01109 0.55 0.35
(0.57) (-2.16) (-2.12) (-2.23) (-1.97)

Model 8 0.00138 -0.57855 -0.19446 -0.00298 -0.15587 -0.00927 0.814 0.698
(0.59) (-2.87) (-1.84) (-0.74) (-1.84) (-1.33)
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Table 25: Liquidity-adjusted CAPM - ∆ TED 0.9 - Net TC

This table reports 8 cross sectional regression models explaining 14 sector portfolio excess returns by a liquidity-
adjusted CAPM model. The data used in the regression reflect months where monthly changes in the TED-
spread is above the 0.9 percentile. Each model consider special cases of the relation

E(rsec,t) = α+ κE(cp
t ) + λ1β

p
1 + λ2β

p
2 + λ3β

p
3 + λ4β

p
4 + λβp

net

The table presents parameter estimates and t-Statistics reported in parentheses below. The t-statistics are
calculated using a Fama Macbeth framework, that takes pre-estimation of the betas into account. R2 and R2

adj

are provided in the last two columns.

Model Constant E(c) b1 b2 b3 b4 bnet R2 R2
adj

Model 1 0.00346 0.4814 -0.00575 0.178 0.11
(1.89) (-1.61)

Model 2 0.00326 -0.48808 -0.00445 0.487 0.394
(1.23) (-1.98) (-1.01)

Model 3 -0.00419 0.07346 0.013 -0.07
(-1.92) (0.39)

Model 4 0.00381 0.4814 -0.04802 -0.00588 0.187 0.039
(1.75) (-0.34) (-1.58)

Model 5 0.00378 -0.51157 -0.04647 -0.00433 0.492 0.339
(1.16) (-1.91) (-0.3) (-0.94)

Model 6 -0.00071 0.03894 -0.00924 0.307 0.181
(-0.29) (0.24) (-2.16)

Model 7 0.00448 0.4814 -0.05722 -0.0066 -0.08836 0.00431 0.327 0.027
(1.89) (-0.36) (-1.74) (-1.22) (0.27)

Model 8 0.00203 -0.18178 -0.02237 -0.00853 -0.11398 0.00995 0.585 0.326
(0.57) (-0.47) (-0.14) (-1.47) (-1.27) (0.51)
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Figure 23: ∆VIX - Long and Short Excess Portfolios - Ann. Sharpe w. TC

(a) VIX surge - Long Excess - Ann. Sharpe (b) VIX drop - Long Excess - Ann. Sharpe

(c) VIX surge - Short Excess - Ann. Sharpe (d) VIX drop - Short Excess - Ann. Sharpe

120



Liquidity Risk Premium in Pairs Trading May 15, 2020

Figure 24: ∆TED - Long and Short Excess Portfolios - Mean w. TC

(a) TED surge - Long Excess - Mean (b) TED drop - Long Excess - Mean

(c) TED surge - Short Excess - Mean (d) TED drop - Short Excess - Mean
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Figure 25: ∆TED - Long and Short Excess Portfolios - Ann. Sharpe w. TC

(a) TED surge - Long Excess - Ann. Sharpe (b) TED drop - Long Excess - Ann. Sharpe

(c) TED surge - Short Excess - Ann. Sharpe (d) TED drop - Short Excess - Ann. Sharpe
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