
Master Thesis

Copenhagen Business School

Cand.Merc(mat.)

Modeling Structural Changes in Volatility
Using Markov Switching GARH Models

Authors:

Jeppe Brauer

Niels Kristensen

Number of pages: 108

Supervisor:

Anders Rønn-Nielsen

May 15, 2020



Abstract

Knowing the risk associated with a financial investment is relevant for everyone in the
financial world. Determining a way to estimate this risk accurately, has been a topic of
discussion for decades. Knowledge regarding the behaviour of financial asset returns, has
lead to a lot of interesting discoveries, such as the heavy tailed nature of the returns as
well as the heteroscedastic behavior of the volatility. These findings have been accounted
for in different ways throughout the years.
A type of behaviour that is rarely accounted for in risk modeling is structural changes
in the modeling, over time. These changes can be seen when the financial markets enter
a crisis, where the volatility usually skyrocket. It is therefore interesting to model these
periods differently, than periods where the financial markets are stable, and the volatility
is generally low.

This thesis applies the theory behind hidden Markov models to expand upon the GARCH
model, such that it can account for periods of structurally different volatility. This model
is called a Markov switching GARCH model, and it will be used to explain the volatility of
the return process for a selected part of the S&P 500 index. In doing so the model param-
eters will be estimated based on a historical time period, that include times of financial
crisis, as well as more stable times. When estimating the parameters of the MS-GARCH
model based on this period, the variance of the financially stable periods converge to being
constant, whereas the variance in the financial crises are modelled well by the GARCH
model.

Estimating the parameters in the MS-GARCH is made difficult since the structure of
the model introduces a path dependence in the conditional variance. This is overcome by
using a Bayesian estimation procedure, instead of maximum likelihood, to determine the
parameter estimates. The method used for the estimation of the parameters is a Gibbs
sampler, which is used due to its effectiveness when working with high dimensional esti-
mation.

The capabilities of the MS-GARCH model as a risk model are also examined. Here
it is found to produce good risk estimates on historical observations, however the risk
estimates generated from day to day, are not ideal.
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Resumé

At kende risikoen forbundet med en finansiel investering, er relevant for enhver person i
den finansielle verden. Dog har måden hvorpå denne risiko estimation bliver lavet, blevet
diskuteret i årtier. Kendskab til opførslen af finansielle afkast har ledt til mange inter-
essante opdagelser, såsom den tung-halede fordeling af de finansielle afkast, samt den
heteroskedastiske opførsel af volatiliteten. Disse opdagelser er gennem årene også blevet
implementeret i diverse risikomodeller.
En type af risikomodellering som der sjældent bliver taget højde for, er strukturelle æn-
dringer i risikomodelleringen gennem tid. Disse ændringer kan ses når de finansielle
markeder går ind i en krise, hvor volatiliteten normalt eksploderer. Det er derfor in-
teressant at modellerer disse perioder anderledes, end de perioder hvor markederne er
stabile og volatiliteten er lav.

Denne afvikling anvender teorien bag Hidden Markov modeller til at udvide GARCH
modellen, således at der kan tages højde for de strukturelle forskelle i volatilitets struk-
turen. Denne type model kaldes en Markov Switching GARCH-model, og vil blive brugt
til at beskrive variansen i afkast processen for en udvalgt periode af S&P 500 indekset. For
at gøre dette, vil modellens parametre blive baseret på en historisk periode som inkluderer
både finansielle kriser, og finansielt stabile perioder. I estimationen af parametrene i MS-
GARCH-modellen, baseret på denne periode, bliver det fundet at variansen konvergerer
til at være konstant i de stabile perioder, samt at GARCH-modeller forklarer volatiliteten
godt i de finansielle kriser.

Estimationen af parametrene i MS-GARCH-modellen er svær at lave, grunden struk-
turen af modellen, som introducerer en løbende afhængighed af den betingede varians
proces. Dette overkommes ved at anvende en Bayesiansk estimations procedure i stedet
for Maximum likelihood estimation. Den brugte metode til estimation af parametrene
er Gibbs sampling, som bruges grundet dens effektivitet når der arbejdes med højdimen-
sional estimation.

MS-GARCH modelles egenskaber som risiko model undersøges også. Her ses det at der
produceres gode risiko estimater på historiske observationer, men risikoestimaterne der
bliver lavet dag til dag, er ikke ideelle.
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1 Introduction

The behaviour financial asset returns can change drastically from day to day. Modelling
this behaviour can be very difficult, since the expectation of the future will have to be
derived from the available historical information.
Modelling financial asset returns as draws from a fixed distribution, often leads to issues,
as the underlying variance, referred to as volatility, is rarely constant. This has been a
focus point in financial risk modelling for decades, and has led to numerous models which
attempt to account for this.
Examples of such models include the ARCH model developed in Engel (1982) as well as
the GARCH model developed in Bollerslev (1986).
Both of these models account for a non-constant volatility, also called a heteroscedastic
volatility, which is often seen in financial asset returns.

Instead of only considering the volatility as heteroscedastic, the volatility can also be
seen as behaving structurally different over time. These structurally different periods
could for instance be seen as times of financial crisis versus times where the financial
markets are stable. It could be assumed that these periods would behave differently, and
neither the ARCH nor the GARCH model are able to account for this.
A type of model that can account for these structural changes in the underlying process,
across time, are called regime shift models.
We wish to implement a model which combines the GARCH model and a regime shift
model. Such a model will possibly be able to capture both the heteroscedasticity from
the GARCH model, as well as accounting for the structural changes in the underlying
process. This model determines the underlying regimes by assuming the existence of an
unobservable Markov chain, which determines the type of regime.

Such a model is called a Markov switching GARCH model, and was first implemented in
Gray (1996), and further developed in Bauwens et al. (2010). Estimating the parameters
of this model, will also be a big focus point, as some alternative measures have to be
implemented, because of the existence of a path-dependence in the underlying variance
process. In Bauwens et al. (2010) it is suggested that a Bayesian approach could be used
to estimate the parameters, instead of maximum likelihood estimation.

With the implementation of the Markov switching GARCH model, we attempt to model
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the volatility of the S&P 500 index, in times of financial crisis and times of market stabil-
ity. One of the goals with this estimation is to clearly separate these structurally different
periods, in order to model them differently.
Further investigation of the estimated model will determine how well it estimates risk,
compared to a standard GARCH model. Furthermore the usefulness of the regime shifting
capabilities, in a risk modelling framework, will also be examined.

1.1 Thesis statement

The main objective of this thesis is to examine how a regime-shift model, in combination
with a GARCH process, can be used to model the structural changes in the volatility of
financial asset returns. We will further investigate how the parameters in such a model
can be estimated, as well as examining the performance of it, as a risk model, compared
to other volatility models.

• What is the MS-GARCH model, and which attributes makes it useful in volatility
modelling?

• How are the parameters and the regimes of the MS-GARCH model estimated?

• How accurate is the estimation procedure for the MS-GARCH model?

• How are financial times of crisis, and times of stability identified and modelled when
using the MS-GARCH model?

• Is it possible to use the MS-GARCH model work as risk model, and how does it
work compared to other volatility models?
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2 Stochastic processes

A stochastic process is a sequence of random variables iterated by time. These random
variables all have values in a state space X . The state space can be defined as subsets
X ⊆ Nd or X ⊆ Rd, depending on whether it is discrete or continuous, where d denotes
the number of dimensions. In this section we will cover stochastic processes with both
discrete and continuous state space, as these are both used throughout the thesis.
Another characteristic of a stochastic processes is the frequency of which the variables are
collected. This can either be done in discrete or continuous time, meaning that there can
either exist observations at every point in time, or at a discrete set of points.

Financial time series, can be considered in either discrete or continuous time. This is
due to the fact that prices on financial assets theoretically exist at every point in time.
This way of defining financial time series is used in several instances, one of which being
option pricing. The theory of option pricing rely greatly on the concepts of stochastic
integrals, which assume that the stochastic process is defined in continuous time.
However since the prices can only be observed discretely, and because it allows for some
simplifying conditions, this thesis will consider the financial time series as discrete time
stochastic processes.

2.1 Markov chains

There exist several different types of stochastic processes, which meet certain conditions.
A particularly useful type of stochastic process is called a Markov chain, which defines
a stochastic processes that satisfies the Markov property. The Markov property states
that each observation is only dependent on the previous observation, and not the entire
preceding chain of observations. The theory behind Markov Chains is covered in Lawler
(2006), where the mathematical definition of a Markov chain X in discrete time and with
discrete state space is given as

P(Xt = xt | X1 = x1, ..., Xt−1 = xt−1) = P(Xt = xt | Xn = xn) ∀ x1, ..., xt ∈ X .

Markov chains are also defined with continuous state space, where the process is required
to follow a similar definition, with Xt = xt replaced by Xt ∈ A for a set A ⊆ X .
Markov chains are also usually assumed to be time-homogeneous, meaning that the prob-
ability of transferring from one state to another is determined by a constant probability,
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which does not depend on time. This condition can be expressed mathematically as

P(Xt = xt | X1 = x1, ..., Xt−1 = xt−1) = ηxt−1,xt

where ηxt−1,xt does not depend on time.
For a Markov chain in a discrete state space, the time homogeneity makes it possible
to collect all transition probabilities in a transition matrix. In a transition matrix each
row describes the probability of transferring from the state, corresponding to the row, to
each of the other states, such that each row sum is equal to 1. Given a state space of
X = 1, 2, ..., k the transition matrix will be

Γ =


η1,1 η1,2 η1,k

η2,1 η2,2 η2,k

ηk,1 ηk,2 ηk,k

 ,

where ηi,j defines the probability of transferring from regime i to regime j.
For the time homogeneous Markov chains the sojourn times, which defines the amount of
time it takes to leave a state, will be geometrically distributed

P(X1 = i, ..., Xt−1 = i,Xt 6= i | X1 = i) = ηt−1i,i · (1− ηi,i).

Since the sojourn times in Markov chains are geometrically distributed, it is also possible
to calculate the amount of time the process is expected to stay in a state. Defining
Ti = min{t ∈ N | Xt 6= i} we have

E(Ti | X1 = i) =
1

1− ηi,i

The transition matrix Γ can contain multiple communication classes, that indicates which
states have a positive probability of transferring between them. These classes can be
divided into two groups, recurrent and transient. The type indicates how frequently a
state is visited in the limit.
Given an infinite number of observations a state is recurrent, if it is visited an infinite
number of times, whereas a transient state will only be visited a finite number of times.

Definition 2.1. Let ζi define the total number of times the Markov chain X visits state
i, ζi =

∑∞
n=0 I{Xn = i}, then state i is recurrent if E(ζi|X0 = i) =∞

If E(ζi|X0 = i) < ∞, the state is called transient. If a communication class is recurrent,
the states in that communication class are called recurrent states.
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In this thesis we only consider Markov chains with one communication class, in which
case the chain is called irreducible. If the Markov chain was not irreducible, it would not
be independent of the starting distribution φ0 in the long run, and it will be uncertain if
the chain would leave the state or return if it left the state.

Definition 2.2. A Markov chain is called irreducible if there for all i,j exist a n > 0 such
that P(Xn = i | X0 = j) > 0.

For an irreducible Markov chain, we define the period, d(i) for state i, as the greatest
common divisor of J , where J contain the number of steps the Markov chain can use in
order to return to state i.

Definition 2.3. A state i is called aperiodic if d(i) = 1 i.e it holds that ηi,i > 0 ∀ i

Since Markov chains are time-homogeneous with transition matrix Γ, it is possible to
determine an invariant probability distribution of the states. The invariant probability
distribution denotes how much the process is in each of the states in X . The invariant
probability distribution is defined as π where πΓ = π and π1T = 1, and it can be found
by taking the limit of the n-step transition probabilities, i.e.

lim
n−→∞φ0Γ

n =


π1

πn

 ,
where φ0 is the initial probability distributions.
for a transition matrix in two dimensions the invariant probability distribution can be
found as

π =

[
π1

π2

]
=

[
η1,2

η1,2+η2,1
,

η2,1
η1,2+η2,1

]
. (1)

2.2 Continous state space

The definitions for Markov chains with continuous state space is described in Hahn (2013-
2014). Most of the definitions in continuous state space stay the same, expect for some
cases. These special cases will be examined further in this section.
It is not possible to define the transition matrix Γ in continuous state space. Instead the
transition matrix will be considered as a transition kernel. Let X be a measurable space,
then for a time homogeneous Markov chain the transition kernel can be written as

P(Xn+1 ∈ B|Xn = x) = P (x,B) ∀ n ∈ N, x ∈ X and B ⊆ X
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For P (., .) to be a transition kernel on X it must be satisfied that any fixed x ∈ X , P (x, .)

is a probability measure.
As the definitions for Markov chains with continuous state space are generally the same
as in discrete state space, we will just apply this change in the notation.
In continuous state space a measure ψ on X is used to describe some properties. A Markov
chain X is said to be ψ-irreducible if there exists a measure ψ such that

∀ B : ψ(B) > 0 =⇒ ∃n : P n(x,B) > 0 ∀x ∈ X ,

This is a general notation in continuous state space, where it is necessary to consider all
measurable subsets of X in order to determine a probability measure.

In continuous state space, recurrence will be defined as Harris recurrence, which is defined
as

Definition 2.4. A Markov chain is Harris recurrent if there exists a measure ψ, such that
the Markov chain is ψ-irreducible and ∀B with ψ(B) > 0 it holds that, P (hB = ∞|X =

x) = 1 ∀x ∈ B

The notation of hB indicates the number of passages of the set B. Furthermore, if a
Markov chain is Harris recurrent and aperiodic, then it is also ergodic.
An ergodic Markov chain ensures that an invariant distribution exist, no matter where it
is initialized.

Definition 2.5. A Markov chain Xn on X with transition kernel P (., .) and invariant
distribution π(.) is ergodic, if ∀x ∈ X ,

||P n(x, .)− π(.)||TV −−−−→
n−→∞ 0.

The notation TV stands for total variation norm and can be written as

||P − π||TV =
1

2

∫
X
|P (dx)− π(dx)|.

Thereby we are ensured that the Markov chain approaches an invariant distribution
Using Definition 2.5 we can approximate the expectation of the invariant distribution

Eπh(x) :=

∫
X
h(x)π(x)dx

by the partial mean,

Sn(h) :=
1

n

n∑
i=1

h(Xi).

The strong law of large number gives the condition under which the mean converges. This
is referred to as the Ergodic Theorem.
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Theorem 2.1. If Xn has a σ-finite invariant measure π, then

P
(

lim
n−→∞Sn(h) = Eπh(x)|X0 = x

)
= 1 ∀x ∈ X

if and only if Xn is Harris recurrent.

2.3 Stationarity

Given the randomness of a stochastic process it is difficult to determine how the process
will behave over a large period of time. A way of evaluating this large time behavior of the
stochastic process, is by evaluating the stationarity of the process. The concepts behind
stationarity are covered in Ruppert and Matteson (2015), which is also the basis for the
following definitions in this section.
A stochastic process can be stationary at different levels. The stationarity requirement
with the strictest assumptions is called a strictly stationary process. A strictly stationary
process is a process where all aspects are unchanged over time.

Definition 2.6. A process is strictly stationary if (X1, ..., Xn) = (X1+m, ..., Xn+m) ∀ n,m.

This also means that the distribution of each set of observations is the same, and is there-
fore not dependent on the time origin nor the number of observations.

A stochastic process can also be weakly stationary, which lessens the assumptions of
the process. For a process to be weakly stationary it must have a finite and constant
unconditional mean and variance. Furthermore the covariance between two observations
must only depend on the time distance between them.

Definition 2.7. A process is weakly stationary if E(Yt) = µ ∀ t, V ar(Yt) = σ2 ∀ t and
Cov(Yt, Ys) = γ(| t− s |) ∀ t, s, for some function γ.

Finally it is possible for a stochastic process to be higher order stationary, which indicates
the existence of a higher order unconditional moment.

Definition 2.8. A process is m-order stationary if the mth moment of Yt is finite and
constant.
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3 Value at risk

In the financial world it is important to have an idea about how risky an investment is.
There are several ways of quantifying risk in the financial world, and one of the more well
know methods is called Value at Risk (V aR). V aR aims to determine the maximum loss
that is expected to occur within a given interval of time, at a certain confidence level. In
this thesis we will cover single day V aR, and the general theory behind V aR is described
in Röman (2017).

The confidence level used in V aR is called α and V aRα is the V aR estimate associated
with the confidence level. As α is a confidence level it can be seen as the classification of
how often the V aR estimate is too low. V aR99% can therefore be seen as the level of the
loss, which will only be expected to be exceeded every 100th day.
The V aRα estimate can therefore also be written as

V aRα(L) = inf{c : P(L > c) ≤ 1− α},

where L denotes the loss.
Calculating V aR is mainly done using either the parametric or non-parametric methods.
This thesis will only cover the parametric method, however the difference between the
two, is that the parametric method assumes an underlying distribution whereas the non-
parametric method does not.
Since the parametric V aR method assumes an underlying distribution, it is possible to
calculate the V aR estimate from Equation 3 as

V aRα(L) = F−1(α; θ),

where F−1 is the quantile function of the underlying distribution, and θ is the parameter
set for that distribution.
the V aR95% and V aR99% are illustrated in Figure 1 using a standard normal distribution.
Here it is seen that V aRα becomes more negative when the confidence level increases.
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Figure 1: Illustration of the V aR estimate using a normal distribution.

Since the parametric V aR method uses a underlying distribution in order to calculate the
risk, it is necessary to consider which distribution is used, as-well as how to parameters of
the distribution are determined. This is not straightforward as the empirical distributions
of financial asset returns usually have much heavier tails than the normal distribution,
i.e. a positive excess kurtosis.
One possible way of accounting for the heavy tails in the financial asset returns could
therefore be to use a more heavy tailed distribution. However finding a distribution with
as heavy tails as financial asset returns can be a task in itself, and working with such
distributions can be even more challenging, and therefore this is rarely a feasible solution.
Alternatively a normal distribution could be used, and the heavy tails could instead be
accounted for by changing the variance of the distribution continuously, this can help
increase the weight of the tail probabilities.

In the next section we will investigate how such a changing variance can be calculated in
order to account for the distribution of financial asset returns as best as possible.
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4 Volatility processes

How to model the variance of financial asset returns, often referred to as volatility, has
been a topic of discussion for decades. The main reason why this metric is difficult to
model, is that it can not be found as a snapshot of how the world is today. Instead it
has to be derived from the available historical information. This creates an issue, as we
will not expect history to repeat itself in the same exact way, and we therefore have to
construct a model which turns history into reality.

The simplest way to construct a model that describes the changing variance, is to use
a running variance with a fixed window. This makes it possible to estimate confidence in-
tervals where new observations would be expected to appear, and therefore an estimation
of the risk, however with this model is far from optimal.
One issue with this method is determining how long an observation is relevant in the
estimation of the risk, i.e. how large should the fixed window be? The size of the window
can have a very significant effect on the variance level, and it is therefore possible to get
two completely different risk estimations solely based on this parameter. Since there is
no theoretically correct window size, the risk is going to be based on a subjective choice.
Therefore it is necessary to construct a more complicated model in order to explain the
movements in financial time series, such that the risk attached with an investment can be
estimated accurately.

One option could be to use an auto-regressive model, described in Ruppert and Mat-
teson (2015), to model the returns. Auto-regressive models assume that the value of a
future return can be seen as a function of past returns. This means that if there was a
large negative return one day, the probability of seeing another large negative return the
next day would be higher. This might seem like a good solution, as it sounds reasonable
that a bad day for the market, will increase the chance of seeing another bad day. How-
ever financial returns rarely exhibit any auto-correlation, and this type of behaviour is
therefore not observed in financial time-series.

Even though financial time series do not exhibit significant auto correlation, it does not
mean that the idea behind auto-regressive models cannot be used. The problem with
using auto-regressive models to model financial asset returns, is that the direction of the
movement, or the sign of the return, is expected to be the same between two days.
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What is actually observed in financial returns, is that the magnitude of the return one day
affects the magnitude of the future returns. This is usually detected in financial returns as
the absolute value of the returns, or the squared returns, exhibit a lot of auto-correlation.
When modelling the magnitude of observations in an auto-regressive manner, it is in fact
the same as modelling the variance. Since the conditional variance moves based on pre-
vious observations, it is also assumed that it is non-constant, and this property is usually
referred to as heteroscedasticity.

Heteroscedasticity can occur in many different ways, however the first model which ac-
counted for it in an auto-regressive framework was introduced in Engel (1982), where the
ARCH model was created. This model can be split into three parts: AR (Auto-regressive)
which means that the present return is conditioned on a set of previous returns, C (Con-
ditional) which means that the conditional variance is modeled, and H (heteroscedastic)
which means that the conditional variance in the model is not constant.
In the ARCH model the conditional variance of the process is modeled from the size of
the squared value of the lagged observations, such that large observations will increase
the variance of the future observations.

4.1 GARCH model

The ARCH model was further developed in Bollerslev (1986) in which the GARCH model
was created. This model added the G (Generalized) term which changes the conditional
variance, such that it will not only be based on the size of the squared value of the lagged
returns, but also on the level of the previous conditional variances.
The advantage of the GARCH model over the ARCH models is the possibility of having a
higher persistence in the conditional variance. This makes it easier to account for volatil-
ity clustering, which is also very prominent in financial time series. Volatility clustering
means that the volatility is high in certain limited periods, and relatively low outside of
these periods.

The GARCH model is constructed to account for both the observations and condi-
tional variances that lie before the previous observations. Such a model is defined as
a GARCH(p, q) model, where p is the number of lagged squared returns (the ARCH
term), and q is the number of lagged conditional variances. In this thesis, we will only
consider the simplest model, the GARCH(1,1) where only the previous, squared return,
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and previous conditional variance is accounted for. This model can be written as

yt = µ+ σtut

σ2
t = ω + αε2t−1 + βσ2

t−1

εt = yt − µ

θ = {ω, α, β}

(2)

Where ut is a draw from a standard-normal distribution, drawn independently of σt.

In this model ω is the lowest possible standard deviation of the model, and it is therefore
clear that we must have ω > 0, since it would otherwise be possible to get a variance of
zero, and if this was to happen the process would become continuously constant. Further
we must have that α ≥ 0 and β ≥ 0, since the variance cannot assume a negative value.
Lastly α + β < 1 ensures that the process is stationary. The stationarity of the GARCH
model is explained in Bollerslev (1986) p. 310, where it is described that the process is
weakly stationary if α + β < 1. However using this result, as well as the strict station-
arity requirement found in Francq and Zakoïan (2010) p. 24, it can easily be found that
α + β < 1 also ensures strict stationarity, by using Jensens inequality

E[log(αu2t + β)] < 0

=⇒ E[log(αu2t + β)] ≤

Jensens inequality

log(E[αu2t + β]) = log(α + β) < 0

=⇒ α + β < 1.

The parameters α and β have two different effects on the GARCH process. α can be
seen as the sensitivity to the level of the previous observations, and β can be seen as
the persistence of the shocks. In Figure 2 four simulated GARCH processes are shown,
with different parameter choices. We see that α makes the process more explosive, and β
increases the time it takes for the process to return to a normal level.
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Figure 2: Simulated sample path with 1000 samples of a GARCH-model described in equation

2. the two upper plots shows the effect of the β parameter and the two on the bottom show the

effect of the α parameter in the GARCH model.

4.1.1 Central moments of the GARCH-model

In order to get a better grasp of how a GARCH time-series behave, it is useful to have
knowledge of the unconditional central moments of the process. The derivations of the
results will follow Posedel (2005), that originally investigated these principals, as well as
Francq and Zakoïan (2010). The third moment, or the skewness, is not considered here.
This is due to the fact that the noise term in the GARCH model is a normal distribution,
i.e. a symmetric distribution, and therefore the GARCH-model will not involve skewness.

Unconditional mean

The unconditional mean is simply found as the mean of the GARCH process. That is

E[yt] = E[µ+ σtut] = E[µ] + E[σtut]

= E[µ] + E[σt]E[ut]

= E[µ] + E[σt] · 0

= µ,

(3)
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due to the independence of σ and µ.

Unconditional variance

In order to calculate the unconditional variance, the expected value of the squared process
is needed, which can be found as

E[y2t ] = E[(µ+ σtut)
2]

= µ2 + 2E[µσtut] + E[σ2
t ]E[u2t ]

= µ2 + E[σ2
t ].

Using Equation 3 and 4.1.1 and also E[ε2t ] = E[(yt − µ)2] = E[σ2
t ] the unconditional

variance can be calculated using the variance formula

V ar[yt] = E[y2t ]− E[yt]
2 = E[σ2

t ]

= E[ω + αε2t−1 + βσ2
t−1]

= ω + αE[ε2t−1] + βE[ε2t−1]

= ω + (α + β)E[ε2t−1].

(4)

Due to strict stationarity of the GARCH process (achieved by α+β < 1) the distribution
of yt and yt−1 are identical, which leads to V ar[yt] = V ar[yt−1] = E[ε2t−1]. Using this it is
possible to re-write the unconditional variance as

V ar[yt] = ω + (α + β)E[ε2t−1]⇐⇒

V ar[yt] = ω + (α + β)V ar[yt]⇐⇒

V ar[yt] =
ω

1− (α + β)
.

(5)

Unconditional kurtosis

In Posedel (2005) it is noted that in order for the existence of a stationary kurtosis the
following condition must be met

β2 + 2βα + 3α2 < 1. (6)

This condition has also been illustrated in Figure 3, where it is clearly seen that this
requirement is more strict than the regular stationary requirement of the GARCH process.
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Figure 3: Area of the {α, β} space in which there exist a stationary kurtosis.

The kurtosis can be found as the fourth moment of the centralized process, or more
explicitly as

k =
E[(yt − µ)4]

(E[(yt − µ)2])2
=

E[(yt − µ)4]

(V ar[yt])2
.

Since V ar[yt] is already known, as the unconditional variance, only the expression
E[(yt − µ)4] has to be determined

E[(yt − µ)4] = E[ε4t ] = E[(σtut)
4] = E[σ4

t u
4
t ] = 3E[σ4

t ]

This can then be further evaluated

3E[σ4
t ] = 3E[(ω + αε2t−1 + βσ2

t−1)
2)]

= 3(ω2 + 2ω(α + β)E[ε2t−1] + α2E[ε4t−1] + β2E[σ4
t−1] + 2αβE[ε2t−1σ

2
t−1])

= 3(ω2 + 2ω(α + β)E[ε2t−1] + 3α2E[σ4
t−1] + β2E[σ4

t−1] + 2αβE[σ2
t−1u

2
t−1σ

2
t−1]),

Which can be rewritten as

3E[σ4
t ] = 3

ω2 + 2ω(α + β)E[ε2t−1]

(1− 3α2 − β2 − 2αβ)

=
3ω2(1 + α + β)

(1− α− β)(1− β2 − 2αβ − 3α2)
.

Given this, the kurtosis of the GARCH process can be found as:

k =

(
3ω2(1 + α + β)

(1− α− β)(1− β2 − 2αβ − 3α2)

)
·
(

ω

1− α− β

)−2
=

(
3(1 + α + β)(1− α− β)

1− (β2 + 2αβ + 3α2)

)
.

(7)

Here it can be see why the condition in Equation 6 must be met, because it allows the
denominator of the unconditional kurtosis expression to stay positive.
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The expression of the kurtosis leads to an interesting discovery. If α is equal to zero, the
kurtosis expression becomes

k =

(
3(1 + β)(1− β)

1− β2

)
=

(
3

1− β2

1− β2

)
= 3.

This indicates that if α is close to zero the unconditional distribution of the GARCH
process will be a normal distribution with variance equal to the unconditional variance
in Equation 5. Investigating this further, we can evaluate the variance expression in
Equation 4 with α = 0

V ar[yt] = E[ω + βσ2
t−1]

This expression is completely independent of yt, and will therefore converge in a fixed, and
predictable manner based on starting variance V ar[y0], as well as the ω and β parameters.
Figure 4 shows this convergence for three different β values, assuming V ar[y0] = 1 and
ω = 1. Here we see that the variance of the processes converge quickly to the unconditional
variance, at which point the process will have converged to a white noise process.

Figure 4: Convergence of the variance in a GARCH model with α = 0

In general the GARCH model performs quite well in modelling financial time series, and
it corrects most of the problems with using a running variance. Since it allows for much
heavier tails it mostly resolves the kurtosis issue.
The GARCH model also removes the need of assuming a window size, instead it is neces-
sary to determine the parameters p and a q parameters. The task of determining a value
of p and q is however more feasible than determining a window size of a running variance,
and usually a GARCH(1,1) model performs quite well. In the case where a GARCH(1,1)
cannot be used, it is also possible to estimate the correct q and p terms. Usually this is
done by using AIC or BIC tests.
The GARCH process furthermore captures some of the volatility clustering in the financial
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time series, however this is also where the model has its greatest shortcoming. Since β
determines the levels of persistence in the volatility shocks produced by α and, α+β < 1,
there is a limit to the amount of persistence in the volatility shocks.
This can be an issue in financial modeling, as structural changes in the financial market,
caused by financial crises, can cause longer periods of structurally different volatility.

One way of overcoming this issue is to assume that these structurally different finan-
cial periods do in fact exists, and that they should be modelled with different parameters.
These kinds of models are called regime shifting models.

4.2 Regime Shift Models

Regime shift models try to explain structural changes, or non-liniarities, in time series
models, by assuming the existence of a number of different regimes with different param-
eters, or even different underlying models. Regime shift models are often divided into two
different types, namely threshold models and Markov-Switching models. These models
differ in the way that the regimes are defined, and thereby how they are found.
Threshold models assume that shifts in regimes can be determined based on the level of
an observed variable, in relation to an unobserved threshold. Threshold models were first
introduced in Tong (1978), and include models such as the SETAR (Self-Exciting Thresh-
old AutoRegressive) model and the STAR (Smooth Transition AutoRegressive) model.
We will not be working with threshold models further in this thesis, however models such
as the one described in this thesis has been created using the threshold framework in
Brooks (2001).
Markov-Switching models were first introduced in Goldfeld and Quandt (1973), and in
this framework it is assumed that there exists an underlying Markov-Chain which governs
which regime the observable variable exists in at any given time. The underlying Markov
chain is not observable, as the regimes themselves are assumed to exist, but are not di-
rectly observable. A Markov-Chain which is not directly observable, but can be implied
through connected observations is called a Hidden Markov model.

4.2.1 Hidden Markov models

A Hidden Markov models denotes a set of two (or more) stochastic processes S and Y ,
where S is an unobservable Markov chain, that contain information regarding Y which is
observable.
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The applications for Hidden Markov models are numerous, as it is rarely possible to ob-
serve every determining variable, in an empirical study. In Yang (2010) the general theory
is covered very well, and this will also be the basis of the theory which is covered in the
following section.

Since the unobservable process S contain information regarding the Y variable, the distri-
bution of Y will be dependent on S. Given this the conditional probability of observing
Yi with respect to the set of unobservable Si can therefore be written as

P(Yn = yn | S1 = s1, ..., Sn = sn).

Here it is essential to clarify that since S is a Markov chain it fulfills the Markov property,
however when Y is conditioned by S the process does not necessarily fulfill a Markov like
property. That is

P(St = st | S1 = s1, ..., St−1 = st−1) = P(St = st | St−1 = st−1)

P(Yt = yt | S1 = s1, ..., St−1 = st−1) 6= P(Yt = yt | St−1 = st−1).

Using the expression in Equation 4.2.1 it is possible to use maximum-likelihood to deter-
mine the most probable values of Si ∀ i ∈ 1, ..., n, and thereby derive the Hidden Markov
chain through the observable variable Y .
One thing to note when calculating the maximum likelihood values of S given Y , is the
dependence of Y on S. Using Bayes rule on Equation 4.2.1 gives

P(Yn = yn | S1 = s1, ..., Sn = sn) =
P(S1 = s1, ..., Sn = sn | Yn = yn)P(Yn = yn)

P(S1 = s1, ..., Sn = sn)
.

Here the term P(S1 = s1, ..., Sn = sn | Yn = yn) shows that each state si will be condi-
tioned on yi, ..., yT ∀ i ∈ {1, ..., T}.

In order to account for this dependence a smoothing algorithm is commonly used when
maximizing the likelihood expression for a Hidden Markov model. Such an algorithm is
described in Hamilton (1994), and the idea is to re-calculate each probability such that
it is dependent on the full information set, and not just the previous observation. The
probabilities of each state is therefore changed, such that

P(St = st | Yt)
Smooth−−−−→ P(St = st | YT )

In order to perform the smoothing, a so called ’forward-backward’ algorithm is applied.
The ’forward-backward’ algorithm is comprised of two steps, first the regular Markov-
chain probabilities are calculated, from the probability P(St = st | Yt, St−1 = st−1), this
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is the forward part of the algorithm. After the forward part has been calculated, each
probability will be re-calculated, with a dependence on the future values state variable.
In order to do this it is proposed in Hamilton (1994) that the smoothing can be found as

ξ̂t|T = ξ̂t|t � (Γ(ξ̂t+1|T � ΓT ξ̂t|t)) (8)

where � denotes the element-wise product, � denotes the element-wise division and

ξ̂t|t =


p(st = 1 | Ωt, θ1,Γ)

p(st = k | Ωt, θk,Γ)


Ωt = {Y1, ..., Yt}

θi = parameter space of regime i.

This is the backwards part of the algorithm, since it is calculated iteratively from the last
observation to the first. The reason why this is calculated from the last observation to the
first is because ξ̂T |T and ξ̂T−1|T−1 are known from the forward part of the algorithm. These
probabilities can then be used to calculate ξ̂T−1|T using Equation 8, and this procedure
can then be continued, until every probability has been smoothed.

4.3 Example of a regime-shifting model

When using Hidden Markov models in regime shifting models it is normal to assume a
state space of the state variable S ∈ {1, ..., k} where k is the total number of regimes.
In this way each regime will be referenced to by its corresponding integer in the state space.

Using this definition of S, and assuming two regimes, S ∈ {1, 2}, a simple regime shift
model can be created, such that it has a positive drift in one regime, and a negative drift
in another. Such a model can be written as

Yt = Yt−1 + θst + ut

θst =

µ if st = 1

−µ if st = 2
, (9)

where µ defines the drift-rate and ut is an i.i.d. draw of a standard normal distribution.
In Figure 5 and 6 simulated sample paths of the process described in Equation 9 are shown
with µ = 1 and µ = 0.1 respectively, and using the transition matrix

Γ =

[
0.99 0.01

0.01 0.99

]
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With these transition probabilities the expected length of each regime will be

1

1− 0.99
= 100,

using the expression in Equation 2.1. Furthermore the invariant probabilities will be 50%
since the transition matrix is symmetrical.
In Figure 5 it is very easy to visually distinguish between the two regimes, since the drift
outweighs the error term, the growth rate is almost strictly positive for regime 1, and
almost strictly negative for regime 2. Since there is such a clear distinction between the
two states in the growth rate, it is almost possible to determine the regimes from the sign
of the growth rate alone.
In Figure 6 the error term has a substantially higher effect on the process, as the drift is
lower, this makes it much harder to distinguish between the two regimes. It is, however,
still clear that there exist two regimes, as there are upward trending periods and downward
trending periods.

Figure 5: Simulated sample path with 1000 samples of a simple regime shift model described in

Equation 9 with µ = 1. The background color illustrates the regime state which the process is in.

A white background color indicates regime one (positive drift), and a red background indicates

regime two (negative drift) Figure (a) shows the sample path, and Figure (b) shows the growth

rate, which is found as the integrated process of (a).
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Figure 6: Simulated sample path with 1000 samples of a simple regime shift model described

in Equation 9 with µ = 0.1. A white background color indicates regime one (positive drift), and

a red background indicates regime two (negative drift) Figure (a) shows the sample path, and

Figure (b) shows the growth rate, which is found as the integrated process of (a).

Using regime shifting properties in conjunction with the GARCHmodel, it may be possible
to account for the structurally different volatility, as well as the heteroscedasticity, seen
in the financial asset returns, and thereby predicting the volatility more precisely.
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5 Markov Switching GARCH model

The original idea of applying Markow Switching models to autoregressive processes, was
created in Hamilton (1989), in which a Markov Switching ARIMA model was constructed.
This was further developed in Cai (1994) and Hamilton and Susmel (1994) which intro-
duced the Markov Switching ARCH model. The reason why the Markov Switching model
was originally only applied to the ARCH model, and not the GARCH model, is due to the
fact that the GARCH model introduces a path dependence of the conditional variance. In
Gray (1996) it is proposed to use to expected value of the variance, instead of the actual
variance in the GARCH model, as a way of overcoming this issue. However this issue has
later been completely overcome in Bauwens et al. (2010), where a Gibbs sampler is used
to approximate the solution of the maximum likelihood expression.
The theory behind Bayesian inference and MCMC methods, such as the Gibbs sampler,
will be explored further in section 6, and how these methods are used in the MS-GARCH
model will be explored in section 7.

In the Markov Shifting GARCH (MS-GARCH) model, the framework from the stan-
dard GARCH model shown in Equation 2, is reused and expanded. The expansion of the
model is done such that each of the parameters of the model at time t is conditioned on the
regime state st, which is generated from a hidden Markov chain St. The MS-GARCH(1,1)
model can be written as

yt = µst + σtut

σt = ωst + αstε
2
t−1 + βstσ

2
st

εt = yt − µst
θst = {ωst , αst , βst}

(10)

As with the standard GARCH model we must have that ωst > 0, αst ≥ 0 and βst ≥ 0, for
each state st ∈ S due to the same argument presented in section 4.1.

As the thesis, only covers the GARCH(1,1) model as well as a two regime models, the
model parameters can be written as

θ =

[
ω1 α1 β1

ω2 α2 β2

]
µT =

[
µ1, µ2

]
Γ =

[
η1,1 η1,2

η2,1 η2,2

]
.
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Using these model parameters the invariant probabilities can be calculated as described
in section 2.1

π =

[
π1

π2

]
=

[
η1,2

η1,2+η2,1
η2,1

η1,2+η2,1
.

]

In order to show the application of the MS-GARCH model, a simulated MS-GARCH
process is shown in Figure 7 (a) which has been simulated using the following parameters

θ =

[
0.3 0.05 0.2

0.05 0.1 0.88

]
µT =

[
0.05 −0.05

]
Γ =

[
0.995 0.005

0.005 0.995

]
.

This simulation shows a significant resemblance to financial returns, as there are periods
of high variance where the asset returns behave in an explosive manner, and periods of
low variance.
Figure 7 (b) shows how an asset would have behaved if the asset returns had been the
same as the simulated process. In this figure it can be seen that the price movements
generated by the MS-GARCH model also resemble real movements in asset prices.

Figure 7: Figure (a) show a simulated sample path with 2000 samples of a MS-GARCH model

described in Equation 10. Figure (b) shows how the price of an asset, indexed to 100, would

move if the asset returns followed the simulated sample path. The background color indicates

the regimes, where white is regime one and red is regime two.
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5.1 Stationarity of the MS-GARCH model

Since the MS-GARCH model includes multiple different GARCH processes, the station-
arity requirement in Bollerslev (1986), can no be applied directly. However in Bauwens
et al. (2010), the stationarity requirements for the MS-GARCH model are given.
Theorem 2.1 in Bauwens et al. (2010) states that a process Yt is geometrically ergodic,
and strictly stationary, if it is initiated from its stationary distribution and follow these
three assumptions:

Assumption 1 The error term ut is i.i.d. with a density function that centered on zero
and is positive and continuous everywhere on the real line, and
E[| u2t |δ] <∞ for some δ > 0.

Assumption 2 αi > 0, βi > 0 and ηi,i ∈ (0; 1) for all i, j ∈ 1, ...,m.

Assumption 3
∑n

i=1 πiE[log(αiu
2
t + βi)] < 0.

Since we will only consider a standard normal distributed error term in this thesis, As-

sumption 1 will be satisfied.
Assumption 2 follows non-negativity requirement from stationarity assumptions in
Bauwens et al. (2010), however it is more strict, as α = 0 and β = 0 are not allowed.
Assumption 3 follows the strict stationarity requirement from Francq and Zakoïan
(2010), where the stationarity of each regime is weighted by the invariate probability
of that regime. This assumption therefore state that if all regimes are strictly stationary,
the MS-GARCH process will also be strictly stationary. However it also says that for the
MS-GARCH process to be strictly stationary all regimes need not be strictly stationary,
as long as there is enough stationarity in the remainder of the regimes.

In Bauwens et al. (2010) it is also argued that under Assumption 1 - 2 the moments
of order k will exist if the following conditions are met

m∑
i=1

πiE
[
(αiu

2
t + βi)

k
]
< 1

E[y2kt ] <∞.

Furthermore, moments of 2. order will exist when the conditions are met for k=1.

5.2 Central moments in the MS-GARCH model

Since the mean in the MS-GARCH process is not affected by the variance, it is possible
to determine the unconditional mean as a weighted average of the drift coefficients, where
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the weight is determined by the invariant probabilities, as described in Section 4.2. The
expression for the unconditional mean of the MS-GARCH model will therefore be

µMS−GARCH = π1µ1 + π2µ2.

Determining the remaining central moments of the MS-GARCH model is much more
difficult, as they are affected by a path dependency of the variance process. This path
dependency is described further in section 5.3.
It is however possible to estimate these parameters, by simulating a set of MS-GARCH
paths, and then calculate the central moments based on these paths.

In Table 1 the central moments of the MS-GARCH model with the parameters shown
in Equation 5 can be seen. These values are found as the average of the empirical mo-
ments from 10.000 different MS-GARCH sample paths, each with a length of 10.000. The
moments from each of the regimes has been calculated using the theoretical expressions
described in section 4.1. Here we see that the variance of the MS-GARCH model lie just
below the average of the variances of the two underlying regimes.
We also see that the kurtosis is much higher than either of the two underlying regimes.
We do also expect this as the high volatility regime pushes observations out in the tails,
whereas the low volatility regime draw observations closer to 0. This results in a high
number of observations close to zero, and a high number of observations far away from 0,
which creates high kurtosis.

MS-GARCH Regime 1 Regime 2

Mean 0 0.5 -0.5

Variance 1.24 0.4 2.5

Kurtosis 7.33 3.02 6.06

Table 1: Comparison of the estimated central moments of the MS-GARCH model, and the

central moments of the underlying regimes.

5.3 Maximum likelihood in MS-GARCH

When applying the MS-GARCH model to a data set, the only information available is
the Y process it self, and therefore it is necessary to estimate both the parameters of
the model, as well as the underlying regime state Markov chain. In order to do this, a
maximum likelihood expression is needed. Since we are estimating two processes, namely
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the process itself and the underlying regime states, the likelihood expression will be a
joint probability of the two, or more precisely it will be

p(yt, st | µ, θ,Γ, Yt−1, St−1) = p(yt | µ, θ,Γ, Yt−1, St−1)p(st | Γ, St−1)

= p(yt | µ, θ,Γ, Yt−1, St−1)p(st | Γ, st−1)

where Yt = {y1, ..., yt} and St = {s1, ..., st}. The last equality arises due to the Markov
property of St
Since the error term of the process is a normal distribution, the probability of observing
yt can be found from a normal distribution as well

p(yt | st, µ, θ, Yt−1, St) =
1√

2πσt
exp

[
(yt − µst)2

2σ2
st

]
. (11)

Since S is a Markov chain, and therefore is time homogeneous the state probabilities are
given as the probability of being in a specific state, given the previous state. Using the
transition matrix, the state probabilities can therefore be found as

p(st | Γ, st−1) = ηst−1,st . (12)

The maximum likelihood expression for the joint series of Y and S is therefore

p(Y, S | µ, θ,Γ) ∝ p(y1, s1 | µ, θ,Γ, Y0, S0) · ... · p(yT , sT | µ, θ,Γ, YT−1, ST−1)

∝ p(y1 | µ, θ,Γ, Y0, S0)p(s1 | Γ, s0) · ...

... · p(yT | µ, θ,Γ, YT−1, ST−1)p(sT | Γ, sT−1)

∝
t=T∏
t=1

1√
2πσt

exp

[
−(yt − µst)2

2σ2
t

]
ηst−1,st .

(13)

Maximizing the likelihood expression in Equation 13 turns out to be very difficult, because
of the structure of the σ-parameter. The variance at each point in time is dependent on
the previous variance, and this effect adds up, such that each variance will depend on
all the previous variances. Given that there exists several regimes in the MS-GARCH
model, the parameter set changes over time, which also changes the variance, and since
each variance is dependent on the previous, a path dependency is created.
The generation of the path dependency is also illustrated in Figure 8, which shows how
the variance behaves as time passes.
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Figure 8: Illustration of path dependence of MS-GARCH variance, based on equivalent diagram

in Bauwens et al. (2010).

The path dependence of the σ-parameter is transferred to the maximum likelihood in
Equation 13, since it depends on the σ-parameter. In order to maximize the likelihood, via
a regular frequentistic approach it would be necessary to test each combination of regime
states, and assuming there is n observations and k regimes this result in kn difference
combinations, which quickly becomes impossible to compute with the hardware available
today.
It is therefore necessary to use a different approach to the maximization, in Bauwens
et al. (2010) a Bayesian approach is suggested, which utilizes MCMC methods in order
to maximize the likelihood expression. The theory behind this is covered in more detail
in section 6, and the estimation algorithm is described in section 7.
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6 Bayesian statistics

The information regarding Bayesian inference and Monte Carlo methods are described
widely in the literature. The literature used in this thesis has been found in Tsay (2005),
Gelman et al. (2014) and Hahn (2013-2014). Furthermore Gamerman and Lopes (2006)
gives a thorough explanation of Markov chain Monte Carlo.

In Bayesian inference the idea is that the parameter values θ can be explained from a
probabilistic point of view. In this setup θ is conditioned on an observable value Y , which
is expressed as p(θ|Y ). In a Bayesian framework θ is considered to be a random variable
spanning a parameter space. Since θ is a random variable it is necessary to use a proba-
bility distribution as a representation for it.

Another approach to statistic inference is frequentist inference where θ is assigned to
a fixed value which optimizes the likelihood based on a sample of observable data Y . This
is referred to as maximum likelihood estimation.
As described in Section 5.3 this method can be rather complex when there exists a path
dependence in the Y -process. In such cases Bayesian inference is preferred.

To give a guidance for further notation, p(θ, y) denote the joint density, p(.|.) the condi-
tioned density and p(.) is the marginal density. As mentioned earlier Bayesian statistic
tries to determine p(θ|Y ), but first of all to get an idea of θ|Y the joint density of θ and
Y is introduced as p(θ, Y ). This expression can be written as

p(θ, Y ) = p(θ)p(Y |θ), (14)

where p(θ) is a prior density of the parameter values. This is an indicator of how θ is
distributed before Y is collected/observed, and it contains the prior belief before collecting
data. As an example, in Section 4.2 it was described how a Hidden Markov model changes
state based on a unobserved transition probability. When estimating these probabilities a
proper choice of prior densities could be a uniform or a beta distribution, which are both
limited to the interval [0; 1].
The prior density is therefore compliant with the space in which the parameter is defined.
Since the the joint density is affected by the prior density, this can create issues and lead
to skewed image of the joint density. Therefore the choice of prior density may affect
posterior density. This problem is solved when the number of data points in Y is large.
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p(Y |θ) can be seen as the "likelihood-density" of the observed Y conditioned by θ. It pro-
vides the likelihood for each value of θ having led to the observations of Y . In Frequentist
inference estimating θ will be equivalent to maximize p(Y |θ) with respect to θ.
Bayesian inference is based on Bayes rule, which is found by normalizing the expression
in equation 14 with the marginal density of Y

p(θ|Y ) =
p(θ, Y )

p(Y )
=
p(θ)p(Y |θ)
p(Y )

, (15)

which is the normalized posterior density. Since the denominator does not include θ, it
can simply be seen as a constant. By normalizing with p(y), each value of θ is therefore
scaled with the same p(y). Thus it can be left out and the un-normalized posterior density
can be written as

p(θ|y) ∝ p(θ)p(y|θ). (16)

where the denominator p(y) has been replaced with a proportional expression, which is
an alternative way of denoting the scaling of p(θ)p(y|θ) such that it is represented as a
density.

6.1 Monte Carlo methods

A possible solution to problems with dependence structures is, to use a Markov Chain
Monte Carlo (MCMC) method.

The MCMC method contain two components, namely the Markov chain and the Monte
Carlo method. The Markov chains follows the theory described in section 2.1 both for
discrete and continues state space. Since using an iterative method for estimating the
parameters, a Markov chain for each of the parameters is created with the posterior dis-
tribution as invariant distribution.

The Monte Carlo part refers to random draws from a process or distribution in order
to obtain a numerical result. This must be done a sufficient amount of times to ensure,
that the underlying Markov chain has converged. Otherwise it is a uncertain it the Markov
chain has reached a invariant distribution.

The goal for the MCMC procedure is that given a large n the invariant distribution,
π, can be approximated for the posterior distribution. it is required that certain proper-
ties described in Section 2 must be satisfied, otherwise it is uncertain whether the Markov
chain will converge to the invariant distribution.
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It is required that the Markov chain is aperiodic and Harris recurrent, and thus also er-
godic, see. Definition 2.2 - 2.5 and theorem 2.1. When the chain is Harris recurrent it
will also be irreducible. If these conditions are met, it ensures that the Markov chain will
converge and that the chain is independent of the initial starting point.

Numerous methods involving MCMC have been developed for solving high dimensional
estimations. This could be the case for parameters in a high dimensional distribution.
We will examine one of the most well-known in the following section.

6.2 Gibbs sampling

One MCMC method which is frequently used when dealing with high dimensional distri-
bution, is the Gibbs sampler. This is a special case of the Metropolis-Hastings algorithm,
which was originally introduced in Metropolis et al. (1953) and later extended in Hastings
(1970).
The Gibbs sampler was introduced in Geman and Geman (1984), and its usefullness for
handling multidimensional estimation problems was pointed out in Gamerman and Lopes
(2006).
Other MCMC methods, like the Metropolis-Hastings algorithm, draws from the joint dis-
tribution of θ. This can be very difficult in with high dimensional distributions.
With the Gibbs sampling algorithm the parameter set θ is divided into d sub-vectors
θ = {θ1, ..., θd}. This way sampling θ can be handled by sampling from the conditional
distribution p(θj|θ−j).
Furthermore the Gibbs sampler is applicable when the joint distribution is unknown or
difficult to sample from, but the conditional distribution for all subset of the parameters
are accessible to sample from.

The Gibbs sampling method samples the parameter space spanning θ = {θ1, ..., θd}, which
is done by iterating over the full conditional distribution

θj ∼ p(θj|θ−j),

where θ−j = {θ1, ..., θj−1, θj+1, ...θd}. At iteration r the sampling of θrj can be written as

θrj ∼ p(θj|θr−1−j ),

where the superscript denotes the current iteration of the parameter, and
θr−1−j = {θr1, ..., θrj−1, θr−1j+1 , ...θ

r−1
d }.

Thus the current component of θ is updated conditioned on the past values of iteration r
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as well as the past values in iteration r − 1 which have not yet been updated.

Since the Gibbs sampler is a MCMC method, the sampling of θj ∼ p(θj|θ−j) is repeated
until each Markov chain of θ1, ..., θd have converged to the invariant distribution. Usually
a burn-in period is removed, consisting of the first iterations of the Gibbs sampler, where
the distribution has not yet converged. This is done such that all the samples have been
drawn from the invariant distribution.
In Section 2.1 we described the properties of the Markov chains, which must be satisfied
in order to ensure that a invariant distribution exists. This must be accounted for, for
each of the parameters. Furthermore due to the Ergodic Theorem 2.1 we can approximate
the mean of the posterior distribution and thereby get an estimate of the parameters for
the MS-GARCH model.

The Gibbs sampling algorithm draws from the conditional distribution, the trajectories
can be shown to be orthogonal. This is showed by the following example.
Suppose we have a single set of coordinates (y1, y2) that follow a bivariate normal distri-

bution with unknown mean µ = (µ1, µ2) and known variance Σ =

(
1 0.7

0.7 1

)
.

When the prior distribution for µ is uniformly distributed, the posterior distribution can
be written as: (

µ1

µ2

)∣∣∣y ∼ N ((y1
y2

)
,

(
1 ρ

ρ 1

))
and the full conditional distribution is given by:

µ1|µ2, y ∼ N (y1 + ρ(µ2 − y1), 1− ρ2)

µ2|µ1, y ∼ N (y2 + ρ(µ1 − y2), 1− ρ2)

This was shown in Gelman et al. (2014) and gives great view of the aforementioned
trajectory of the Gibbs sampler.
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Figure 9: Figure (a) and (b) shows trajectories of the Gibbs sampling method with 10 and

10,000 iterations respectively. The filled black dots in Figure (a), indicates each iteration. The

marginal density of µ1 shown in Figure (c), where the black dashed line is a N (10, 1).

From the trajectories shown in Figure 9 (a) and (b), it is clear to see the sub-vector wise
updating of µ1 and µ2, hence the orthogonal movement from updating each parameter.
However this can be cumbersome for a large number of parameters, yet in many cases it
is still easier to compute than the Metropolis-Hastings, which requires sampling from the
joint density i.e. sampling all parameters at once.
It is not always possible to work with conjugate distributions and it may therefore be
necessary to use numerical integration to overcome this issue.

6.2.1 Griddy-gibbs sampling

Sometimes the true full conditional distribution p(θj|θ−j) is unobtainable, making it im-
possible to draw sample directly from it. In estimation of the MS-GARCH model, this is
case for θ and µ, as it will later be explained in Section 7.5.
In order to resolve this issue, Ritter and Tanner (1992) constructed the Griddy-gibbs
sampler, which samples from an approximated conditional distribution, instead of the full
conditional distribution.
The way this is done, is by numerically integrating the known conditional density, to get
an approximated conditional distribution, or CDF. When the CDF has been approxi-
mated it is inverted, leaving the quantile function, which can be used to draw samples
from.
More specifically the Griddy-Gibbs sampling algorithm will follow these steps:

1. Select a grid of m points {θi,1, ..., θi,m} ∈ Θ and evaluate the conditional posterior
distribution pi(θi,j) for j = 1, ..,m.
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2. Construct an approximation of the inverse CDF of pi(θi,j), which belongs in the
interval [0;1].

3. Draw a value from a uniform distribution and transform it by using the approxi-
mated inverse CDF in order to obtain a value for θi

There are several ways of iterating through step 1 to 3, however the inverted CDF must be
in [0;1], such that the sampling of θi can be obtained by drawing from uniform distribution
in that interval. The theory discussed in this section, will be applied to the MS-GARCH
model in the following section. Here a Gibbs sampling method will be applied, which
resolves the issue created by the path dependence of the variance structure.
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7 Estimation of MS-GARCH using Gibbs sam-

pling

Throughout this section we describe the estimation procedure of the MS-GARCH model,
as well as some modifications which have been necessary to implement.
Recall Equation 10 the MS-GARCH model was written as

yt = µst + σstut

σst = ωst + αstε
2
t−1 + βstσ

2
st−1

εt = yt − µst
θst = {ωst , αst , βst}

For this model the parameters that need to be estimated are θ, µ, Γ and S.
The sampling procedure follows a Gibbs-sampling algorithm as described in section 6.2.
However some of the concepts have been tweaked, in order to make the Gibbs-sampling
work in the MS-GARCH framework. The exact sampling procedure for these parameters
will be examined later in this section.
The estimation algorithm is written in RCPP, which is a C++ implementation embedded
in the statistical software RStudio. The choice of using RCPP was made because of
the computational load associated with MCMC estimation. The implementation of the
algorithm can be found in the appendix, along with an example code.

7.1 Choosing prior distributions

For the estimation of Markov-switching models using a Bayesian approach, a proper prior
distribution must be chosen. A property concerning the parameters, that must be ac-
counted for when choosing a prior distribution, is the restrictions regarding the parameter
space of the variable.

The parameters α, β and Γ are all restricted to the interval [0;1], as described in Section
5. Knowing these limitations it would be appropriate to chose a distribution which also is
limited to that interval. A distribution that lie in [0;1] could the beta distribution. When
using the beta distribution, a set of shape parameters has to be selected. These shape
parameter can either be chosen such that they introduce some prior beliefs, to the shape
of the posterior distribution. Otherwise they can both be set to 1 which is equivalent to
choosing a uniform distribution.
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The minimal variance of the process, ω, is strictly positive. Because of this, the prior
distribution of the parameter must also be strictly positive. Some examples of suitable
prior distributions could therefore be the log-normal distribution, the χ2 distribution, or
another distribution which is truncated such that it is strictly positive.

The drift parameter µ is not limited. Therefore we are able to choose any distribu-
tion spanning the interval ]−∞;∞[.
In financial time series µ often lie around 0, therefore choosing a distribution that is sym-
metric around 0 could be a suitable.

For all the parameters contained in θ, the uniform distribution with appropriate bound-
aries, could be a good choice. By choosing a prior distribution other than uniform two
things must be taking into account. Firstly, if the coefficients in the distribution are
chosen, what should they be in order to capture the prior belief of the shape of the
posterior distribution. Secondly, if the coefficients are not chosen in advance, these hyper-
parameters must estimated, which can be difficult.
A more feasible approach would be choosing a distribution which has equal probability
across the entire parameter space, hence choosing a uniform distribution which span a
pre-selected area.

A problem that can occur, if the parameter space of two regimes are too similar is that the
Gibbs sampler may not be able to separate the regimes. This problem is described in James
D. Hamilton and Zha (2007) as label-switching of the parameters. When label-switching
is not accounted for, it can cause the two regimes to switch state numbers, throughout
the estimation procedure, resulting in inaccurate estimates, and non-converging posterior
densities.
There are several ways to avoid this issue, where one of the more simple ways is to re-
strict each parameter to a confined area, such that a wide overlap between regimes is
avoided. However when choosing the boundaries of the parameter space, two issues must
be accounted for, as described in Bauwens et al. (2010).

1. The truncation of the prior distribution is to narrow and thereby the parameter can
be caught in the boundaries.

2. Choosing too wide boundaries, such that the prior distribution is multiplied by 0 for
a large area of the parameter space, making the posterior computation inefficient.
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7.2 Log transformation

Often it is more convenient to work with the log-likelihood expression instead of the nor-
mal likelihood expression written in equation 13. It has also been necessary to make this
transformation in order to estimate the parameters. This is due to the computational
capabilities for 64-bit computing, where (very) small number are rounded off to equal
zero. As an example 2.225074e-308 is the smallest non-zero number, that R can handle.
This can quickly become an issue for a large value of T in the likelihood expression, as
this is a product of terms which are mostly between 0 and 1. This issue will further be
referred to as numerical instability.
Due to proportionality of the posterior distribution we can easily handle the numerical
instability by parallel shifting the log-likelihood before transforming it back. Doing this
will keep the the proportionality of the likelihood expressions, and it will make it numer-
ically stable.
For the log-likelihood expression adding a number is equivalent to multiplying in the like-
lihood expression. This way we can successfully transform to and back from the log-scale
and avoiding numerical instability.

7.3 Sampling regime states s

When estimating the parameters in the MS-GARCH model, we will start by estimating
the regime states. This procedure is shown in the orange part of the flowchart on page
43.
To do this, the likelihood expression for p(y, s, | µ, θ,Γ) can be rewritten, to find the
conditional posterior distribution of st given everything else, as

p(y, s, | µ, θ,Γ) ∝
T∏
j=1

1√
2πσj

exp

[
−

(yj − µsj)2

2σ2
j

]
ηsj−1,sj

∝
T∏
j=1

1√
2πσj

exp

[
−

(yj − µsj)2

2σ2
j

] T∏
j=1

ηsj−1,sj

∝ p(st|S 6=t, µ, θ,Γ, y) ∝
T∏
j=1

1√
2πσj

exp

[
−

(yj − µsj)2

2σ2
j

]
η2−stst−1,1

ηst−1st−1,2
η
2−st+1

st,1 η
st+1−1
st,2 .

We arrive at the last expression since p(st|S 6=t, µ, θ,Γ, y) is only dependent on terms which
include st, as the rest of the terms are equivalent for all state values of st. Since it is a
proportional expression, these values will evaluated as constants, and thereby have no
effect on the likelihood.
The dependence of the transition probabilities from the previous state, and to the next
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state, stem from the Markov property of S, which is why they have to be accounted for
in this expression.
The expression can now be further rewritten, as

p(st|S6=t, µ, θ,Γ, y) ∝ η2−stst−1,1
ηst−1st−1,2

η
2−st+1

st,1 η
st+1−1
st,2

T∏
j=1

1√
2πσj

exp

[
−

(yj − µsj)2

2σ2
j

]

∝ η2−stst−1,1
ηst−1st−1,2

η
2−st+1

st,1 η
st+1−1
st,2

T∏
j=t

1√
2πσj

exp

[
−

(yj − µsj)2

2σ2
j

]

·
t−1∏
j=1

1√
2πσj

exp

[
−

(yj − µsj)2

2σ2
j

]

∝ η2−stst−1,1
ηst−1st−1,2

η
2−st+1

st,1 η
st+1−1
st,2

T∏
j=t

1√
2πσj

exp

[
−

(yj − µsj)2

2σ2
j

]

∝ η2−stst−1,1
ηst−1st−1,2

η
2−st+1

st,1 η
st+1−1
st,2

T∏
j=t

1

σj
exp

[
−

(yj − µsj)2

2σ2
j

]
.

(17)

The reason why the product term only has to be evaluated from t −→ T , follows the same
argumentation as for the transition probabilities, since the product term from 1 −→ t− 1

will also be evaluated as a constant.
The reason why there is a dependence on the terms after time t is due to the path
dependency of σt which is affected by every si for i ≤ t.
As described previously it is preferable to use the log-likelihood expression, Equation 17
will therefore be transformed as

q(st|S6=t, µ, θ,Γ, y) ∝ log
(
η2−stst−1,1

ηst−1st−1,2
η
2−st+1

st,1 η
st+1−1
st,2

)
+

T∑
j=t

− log(σj)−
(yj − µsj)2

2σ2
j

(18)

Since st can only take on the two values 1 and 2, we can sample it by drawing from
a Bernoulli distribution, with probability π, where π for regime 2 is calculated as the
proportion of the likelihood

π2 =
eq(st=2|.)

eq(st=1|.) + eq(st=2|.) =
p(st = 2|.)

p(st = 1|.) + p(st = 2|.)
,

and the probability of sampling regime 1 will be 1 − π. This procedure is then repeated
for t = 1, ..., T , such that each regime state is estimated.

7.4 Sampling transition probabilities Γ

The next part of the sampling procedure will be the sampling of Γ. This can be seen in
the blue part of the flowchart on page 43.
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The the conditional posterior distribution can be derived as

p(y, s, | µ, θ,Γ) ∝ p(Γ)
T∏
j=1

1√
2πσj

exp

[
−

(yj − µsj)2

2σ2
j

]
ηsj−1,sj

∝ p(Γ)
T∏
j=1

1√
2πσj

exp

[
−

(yj − µsj)2

2σ2
j

] T∏
j=1

ηsj−1,sj

∝ p(Γ|S) ∝ p(Γ)
T∏
t=1

ηst−1,st .

(19)

Since Γ does not depend on µ, θ and y, the conditional posterior distribution will only
depend on S.
Furthermore the product term can be split up as

p(Γ|S) ∝ p(Γ) · ηn11
1,1 · ηn121,2 · ηn212,1 · ηn222,2 ,

where ni,j denotes the number of times st−1 = i and st = j.
Since

∑2
j=1 ηi,j = 1 for i = 1, 2 the expression can be rewritten, by changing η1,2 to

(1− η1,1) and η2,1 to (1− η2,2)

p(Γ|S) ∝ p(Γ)(ηn11
1,1 (1− η1,1)n12(1− η2,2)n21ηn22

2,2 ).

By the independence of η1,1 and η2,2 the probabilities can be considered separately, which
will simplify the problem substantially.
Because all elements in Γ belongs to the interval [0;1], a beta prior distribution can be
used for each of them. In Equation 20 this is done for η1,1

p(η1,1|S) ∝
ηa11−11,1 (1− η1,1)a12−1

Γ(a11, a12)
(ηn11

1,1 (1− η1,1)n12)

∝ ηa11−11,1 (1− η1,1)a12−1(ηn11
1,1 (1− η1,1)n12)

∝ ηa11−1+n11
1,1 (1− η1,1)a12−1+n12 ,

(20)

where Γ(., .) denotes the gamma distribution.
The values a11, a12 are the shape parameters belonging to the prior distribution. When
a11 = a12 = 1 the prior distribution will be a uniform distribution. Therefore the samples
from the posterior distribution concerning η1,1, and equivalently for η2,2, can be drawn
from a beta distribution.

7.5 Sampling θ and µ

The conditional posterior distribution of θ and µ are found equivalently to the previous
parameters, and the sampling procedure can be seen in the purple and green part of the
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flowchart on page 43.
Firstly the conditional posterior distribution is found as

p(y, s, | µ, θ,Γ) ∝ p(θ, µ|S, y)
T∏
j=1

1√
2πσj

exp

[
−

(yj − µsj)2

2σ2
j

]
ηsj−1,sj

∝ p(θ, µ)
T∏
j=1

1√
2πσj

exp

[
−

(yj − µsj)2

2σ2
j

] T∏
j=1

ηsj−1,sj

∝ p(θ, µ|S, y) ∝ p(θ, µ)
T∏
j=1

1

σj
exp

[
−

(yj − µsj)2

2σ2
j

]
,

(21)

where unnecessary constants have been left out, and p(θ, µ) denotes the chosen prior dis-
tribution.

It is once again advantageous to log-transform Equation 21 because of the numerical
instability. With a log transformation the expression becomes

q(θ, µ|S, y) ∝ log [p(θ, µ)] +
T∑
j=1

− log(σj) +−
(yj − µsj)2

2σ2
j

, (22)

with q(θ, µ|S, y) = log(p(θ, µ|S, y)).

Since this expression can not be simplified to a closed form solution, and in particu-
lar since it does not follow a standard distribution, sampling these parameters is not as
is not as straightforward as for the other parameters.
It will be necessary to make an approximation of the posterior distribution for each iter-
ation r that is different than the ones used in Section 7.3 and 7.4.
In Section 6.2.1 we described such a method for handling such an issue, namely the Griddy
Gibbs method.
By applying this method we start by sampling ω1

1. By using Equation 22 we can compute the kernel density of the posterior distribu-
tion, κi(ωi1|S(r), β

(r−1)
1 , α

(r−1)
1 , θ

(r−1)
2 , µ(r−1), y), where (r) denotes the iteration step.

κi denotes evaluating the density in the ith point of a fixed grid (ω1
1, ..., ω

G
1 ). By eval-

uating the posterior distribution over the chosen grid, the vector νκ = (κ1, ..., κG) is
obtained.

Since a log-transformation of the posterior distribution is used, the points calcu-
lated for ν are on a log scale. In order to compute the CDF it is therefore necessary
to make the transformation of ν back from the log scale, by taking the exponential

41



of ν.
We will denote the element-wise exponential transformation of ν by Ψ = eν , where a
parallel shift has been applied to the series of ν such that the numerical instability,
as explained previously, is avoided.

2. To approximate the CDF, a Riemann sum over the chosen grid can be used. This
can be calculated as

fj =

j∑
i=2

Ψi(ω
i
1 − ωi−11 )for j = 2, ..., G

To make f a proper distribution function, every point in f is normalised by 1
fG
.

Later in this section we explain more thoroughly how to ensure an accurate approx-
imation of the CDF.

3. Find the inverse of f , i.e. the quantile function, f−1. Then draw
ωr1 ∼ p(ω1|S(r), β

(r−1)
1 , α

(r−1)
1 , θ

(r−1)
2 , µ(r−1), y) as follows:

First draw u ∼ uniform(0, 1), and then use the approximated quantile function to
obtain ωr1.
In order to use the approximated quantile function, it is necessary to interpolate
between the points generated by the numerical integration. There are several ways
to interpolate between the points in f−1, however a linear interpolation is the most
simple, and through testing it has been found to be sufficient.

4. Continue similarly for the parameters αr1 −→ βr1 −→ ωr2 −→ αr2 −→ βr2 −→ µr −→ ωr+1
1 .

One of the issues encountered when implementing the estimation procedure of the pa-
rameters in the MS-GARCH model, was instability in the numerical integration of the
posterior distributions for θ and µ.
In the following section we will give a more thorough description of the numerical inte-
gration procedure used in the Griddy Gibbs sampler.
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Figure 10: A flowchart showing the estimation procedure of the MS-GARCH model. A high

quality version can be seen in the appendix.
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7.6 Numerical integration algorithm

As explained previously the prior distributions are chosen such that they encapsulate the
sample space of the posterior distributions as well as possible. However since it is unknown
how the conditional posterior distributions look, and given the fact that the intervals of
the probability mass of the conditional posterior density, used in the Gibbs-sampler, can
change at each iteration, the numerical integration method has to be considered.
In Bauwens et al. (2010) it is suggested that M points should be used to estimate the
integrated density. However since there is a chance that the probability mass lie on a very
small area within the boundaries, chosen by the prior distribution, it is necessary that M
is very large.
This is shown for a beta distribution in Figure 11 below, where a grid of 10 point seems
to produce an acceptable approximation for a wide distribution such as the one in Figure
11 (c). However for a narrow distribution as the one in Figure 11 (a) it is notable that the
same grid gives a poor approximation of the CDF. This is because only one of the points
in the integration falls within the probability mass of the distribution.

Figure 11

Under normal circumstances this is not a big issue, since the M can easily be increased.
However the functions which are being integrated in the Gibbs sampler are computation-
ally cumbersome, because the entire σ process has to be re-calculated with each calculation
of the function, therefore it is not possible to increase M infinitely.

Instead of using a standard Riemann sum, we have developed an algorithm which de-
termines where the probability mass of the density function lie, and uses that interval in
the integration process. By doing so, we ensure that the probability mass is calculated
accurately, no matter how slim the distribution is. Using this algorithm does require some
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extra calculations. However, if a Riemann sum, with the same level of precision, was used,
the computational load would be far greater.

A flowchart showing the steps of the integration algorithm can be seen on page 49. A
more in-depth explanation will also be given in the following section.

The algorithm is split into three sections.

1. The mode parameter, or maximum, of the posterior density is found.

2. The boundaries of where the probability mass of the posterior density lie are found.

3. A Riemann sum is calculated between the boundaries found in step (2) and the
remaining area between the boundaries of probability mass, and the boundaries of
the parameter space are approximated using triangles.

The calculation of the mode parameter serves multiple purposes. Since the posterior dis-
tributions in the Gibbs sampler have been log transformed, they have to be transformed
back to true probabilities again. As explained in section 7.2, this can be done by parallel
shifting of the log transformed function before the exponential transformations, and by
doing so the function will retain the same proportionality.
Using the mode parameter for the parallel shift of the posterior density, ensures that the
function value in the mode will be 1 after the transformation. This way of parallel shifting
the posterior distributions will also ensure that the scaling of the posterior distributions
remain the same throughout the Gibbs sampling algorithm.
The mode parameter will also be used in the calculation of the boundaries of probability
mass. How this is done will be explained further later in this section.

Estimation of the mode parameter

The mode parameter is found using a golden search approach, in which the algorithm
starts at point xmid, in the center of the parameter space. In xmid the differential coef-
ficient is then calculated (using the finite differences method). Given that the posterior
density is unimodal we know that a positive differential coefficient ensures that the mode
is on the right of xmid, and the mode is on the left of xmid if the differential coefficient
is negative. Using this knowledge a process can be implemented to search for the mode,
following this procedure

1. Define the bounds of the parameter space x1 = xmin and x2 = xmax.

2. Define xmid as x1+x2
2

.
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3. Calculate the differential coefficient in xmid, using the finite differences method.

4. If the differential coefficient is negative set x1 = xmid else set x2 = xmid.

5. Repeat step 2 - 4 until the mode has been found.

We define the number of times step 2-4 are repeated as τ , and the value of τ is discussed
further in section 7.6.1.
When the procedure has been run τ times the mode parameter is found as xmid, and the
function value in this point, which is used in the parallel shift in the exponential trans-
formations, will be defined as γmid.
Since the golden search approach continuously halves the maximum distance to the de-
sired point, only a very small number of calculations are needed in order to determine
a very accurate estimate of the mode. Instead of using the golden search approach for
locating the mode, it could be argued that the Newton-Raphson method should be used,
as this method is more widely used. However, since the interval in which the mode is
found is limited, the Newton-Raphson method will not work.

Effective bounds of the probability mass

The next step of the algorithm seeks to determine the boundaries of where the probability
mass of the posterior distribution lie, i.e. where it would be expected to draw samples
from the distribution. This is done since only a small part of the sample space of a
narrow posterior distribution, has a probability of sampling which is significantly higher
than zero. An example can be seen in Figure 12, where a density is dawn, according to
which the combined probability of drawing an observation between [0; 0.4] or [0.6; 1] is
1.684 · 10−10. In this distribution it would therefore be a waste to accurately calculate
the integral in these intervals, since the probability of drawing a sample in the intervals
is approximately zero.

46



Figure 12: An example of a distribution with a slim probability mass. The distribution is a

beta distribution with parameters shape1 = shape2 = 500

We propose a limit ε which indicates the maximum difference between the function value
in the mode parameter, γmid, and the log transformed posterior density function, where it
still remains relevant to calculate the integral correctly. This is equivalent to limiting the
integral to only integrate, where the function value of the posterior density is above e−ε.
In order to determine the boundaries, another version of a golden search has been imple-
mented, since the sign of the differential coefficients are known on either side of the mode
parameter.
Instead of the differential coefficient, the function value is used directly. The boundaries
are moved using the difference between the tested point and γmid relative to the ε limit.
Using this difference it is possible to determine if the boundary is to the left or the right
of the tested point. This in turn leads to the following approach for finding the bound to
the left of the mode

1. Define the bounderies using the prior distribution x1 = xmin and x2 = xmid.

2. Define xlow as x1+x2
2

.

3. Define γlow as the function value of xlow.

4. If γlow − γmid > ε set x1 = xlow else set x2 = xlow.

5. Repeat step 2 - 4 until the limit has been found.

As with the procedure to find the mode of the conditional density function, step 2-4 will
be repeated τ times. The same number of repetitions is used here, as the in the previous
procedure, since we expect a similar number of repetitions are needed in order accurately
determine the two values, given the similarity of the two procedures.
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After xlow has been found, the process is then performed similarly in order to calculate
the limit on the right hand side of the mode. This leaves two limits for the integral xlow
and xhigh.

Integration method

The last step of the algorithm calculates the approximate integral using xlow, xhigh and
γmid found previously.
The area between xlow and xhigh found in the previous step is calculated using a modified
Riemann sum. It turned out that it was computationally easier to implement a Riemann
sum, where the top of each column is a triangle, instead of as flat column. Since the
posterior distributions are smooth this type of integral should yield the same result as
a regular Riemann sum when enough grid points are used for the integration. How the
integral is calculated using the alternative Riemann sum is illustrated in Figure 13.

Figure 13: Illustaion of an alternative way of calculating the column area of a Riemann sum.

Instead of using columns with flat tops, the columns will have a triangular shape, defined by the

function values in the limits of the columns.

The areas between the boundaries of the probability mass and the boundaries of the
parameter space are approximated using triangles. This will result in an overestimation of
the tail probabilities, however if ε is large enough, the probability of drawing an observation
in the tails is approximately zero. How large ε has to be is discussed further in section
7.6.1.
An alternative solution would be to set the probability of ending between these points
to zero. However this could possibly prevent the posterior distributions from reaching
certain points of the parameter space, which would break the ergodicity requirement of
the Gibbs sampler. Because of this the tails will be estimated using triangles.

48



Figure 14: A flowchart showing the numerical integration procedure used for the estimation of

θ and µ in the estimation procedure. A high quality version can be seen in the appendix.
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7.6.1 Input parameters for the numerical integration

Since this integration method relies on different parameters, this section will evaluate
what the values of these parameters need to be, in order for the integration algorithm to
function properly. The parameters which will be evaluated are

• τ , the number of times the golden search is run in order to find the mode, and the
boundaries of the probability mass, xlow and xhigh.

• ε, the critical value of the boundaries.

• ρ, the number of grid points used for the integration withing the boundaries xlow
and xhigh.

The parameters will be choosen based on the performace of the algorithm when applied to
a number of beta distributions with different parameters. This will test how the algorithm
perform in different scenarios.

Choosing the number of iterations for the golden search τ

In order to keep the parameter set of the numerical integration algorithm as simple as
possible, the same τ will be used for determining both the mode and the boundaries of
the probability mass.

Figure 15 shows the convergence of the mode parameter for different beta distributions.
It is notable that the convergence seems more or less unaffected by shape and placement
of the distribution. This is good when having to pick a τ , since the chosen τ should work
equally well for most distributions, according to Figure 15.
Investigating Figure 15 further, τ = 10 seems suitable since it looks like it has converged
for all distributions at this level.
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Figure 15: Convergence of the distance between the estimated mode parameter, and the true

mode of the distributions using the golden search method.

Next, the limits, which capture the probability mass, will be determined. An equivalent
figure to Figure 15, where limits are evaluated instead of the mode, can be seen in Figure
16.
The limits found in Figure 16 are determined using the true mode, instead of the mode
found using an equivalent τ . This is done since its more simple, and it encapsulates the
effect of the golden search method of the limits.
in Figure 16 we see that the algorithm also seems to have converged for τ = 10.
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Figure 16: Convergence of the distance between the estimated bound, and the true bound,

given by ε, of the distributions using the golden search method.

In Table 2 the absolute distances between the estimated and real mode, as well as the
estimated and true boundaries are shown for a subset of τ values. This table also shows
that τ = 10 seems reasonable, as the precision is quite high.
A point worth noting when looking at the table is that the precision of the mode parameter
does not increase significantly after 15 iterations. The reason for this is that the finite
differences method is used for the differentiation process, in the golden search method for
the mode parameter. Since the step size in this finite differences method has been chosen
as 1

1000
of the area of the parameter space, the precision of the golden search method will

at some point surpass the precision of the finite difference method. This is one of the main
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problems with numerical analytics. However since we has chosen τ = 10, this should not
affect our results much.

Number of iteration

5 10 15 20 30

Figure a1

Mode 1.56e-02 4.88e-04 4.58e-05 5.01e-05 5e-05

Limits 2.14e-02 9.19e-04 1.05e-05 4e-08 4.66e-10

Figure b1

Mode 9.73e-03 5.21e-04 4.83e-05 4.97e-05 5e-05

Limits 3.86e-03 5.91e-04 1.40e-05 4.22e-07 4.66e-10

Figure c1

Mode 1.36e-02 4.60e-04 4.77e-05 5e-05 5e-05

Limits 1.444e-02 3.35e-04 1.50e-05 7.59e-07 4.65e-10

Table 2: Absolute error of estimated limits

Choosing the critical value ε

Next we will consider the sufficient level for ε, such that the probability for being in inter-
val from the boundaries of the parameter space to the chosen limits is acceptably small.
If ε becomes too large the approximation of the tail probabilities will be very bad, due the
triangular density estimation used in the tails. The probability of being on the edge of
the parameter space will simply be too high. On the other hand, if ε is too small the area,
which is integrated will become too large, which negates the purpose of the integration
algorithm.

In order to determine a suitable ε, the tail probabilities for different values of ε have
been estimated. To get an indication of what might be a sufficiently low probability out-
side the limits, this is compared with the true probability for the beta distribution.
In Figure 17 the aforementioned comparison of the tail probabilities, from the boundaries
of the parameter space to the limits, are shown. These are shown for the same beta
distribution, as used in Figure 16 (b1).
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Figure 17: Tail probability for different value of ε. Figure (b) is a close up of figure (a).

It can be seen in Figure 17 (a) that the estimated tail probability quickly converges to
the true value, when ε increases. However, it is difficult to see the difference between true
and estimated probability as they both goes to 0.
Figure 17 (b) shows a closeup of Figure 17 (a) for 15 ≤ ε ≤ 25. Here it is clear, that for
a sufficiently large ε, the estimated probability in the tails is equivalently small such that
it will not affect the approximated CDF, in a significant manner.

Critical value ε

5 20 30 40 50

Excess probabilities 0.2444 1.31e-08 7.71e-14 3.36e-18 8.52e-21

Table 3: Excess tail probabilities outside of boundaries for different values of ε.

In Table 3 the excess tail probabilities can be seen for selected values of ε. Here ε = 20

will be small enough for it to have a very little effect on the integration. Using ε = 20 will
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give a one out of 100 million chance that an observation will end up in the tails, when it
wouldn’t have if the integration was conducted properly. Since we are not drawing close
to 100 million samples, this estimation seems reasonable.

Finding a sufficient number of grid points ρ

The last thing to consider is the amount of grid points used for the integration, in order to
have an accurate approximation of the CDF. Since the numerical integration algorithm,
explained in Figure 14, ensures that we have determined where the probability mass is
located, a sufficient number of grid points is still needed, within these boundaries.
In order to determine this we use the Kolmogorov–Smirnov statistic, D, to compare the
estimated CDF with the true CDF for a given distribution. The Kolmogorov–Smirnov
statistic is the supremum of the set of distances between the empirical and theoretical
CDF. This statistic is used as an indicator of how much the approximated CDF deviates
from the true CDF. This information is sufficient since limρ−→∞D = 0. Therefore a suffi-
ciently small D has to be chosen such that the approximation is accurate.

Figure 18 shows the CDF approximation for the beta distribution in Figure 15 (b1),
using the alternative integration method with 10, 100 and 400 grid points.
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Figure 18: precision of the estimated integral given the number of points, ρ, used for the

Riemann sum.

Figure 18 gives an indicator, of which ρ yields an acceptable approximation. With the
chosen limits for the probability using 10 grid points is far from enough, as shown in Fig-
ure 18 (a1) and (a2). The histogram in (a1) accentuates the issue with not using enough
grid points, since the estimated density will not be a smooth curve function, but instead
falls in a set of uniformly distributes areas.
With 100 and 400 grid points the approximation of both the CDF and density are almost
identical to the true beta distribution, shown in Figure 18 (b1)-(c2).
Using more than 100 grid points, does not seem necessary as the approximation does not
seem to become more accurate by doing so. This is also supported by Figure 18 (d) where
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the Kolmogorov–Smirnov statistic seems to have converged after using 100 grid points.

In order to evaluate the Kolmogorov–Smirnov statistic generated by the approximated
CDF’s, they will be compared to the expected maximal distance of an empirical distri-
bution function, generated by drawing n observations from the true distribution. Using
this measure it is then possible to evaluate whether the approximated CDF is sufficiently
precise.
When performing this comparison we will use n = 100.000 draws, since we will not expect
to draw more than 100.000 samples from any conditional posterior distribution when us-
ing the Gibbs-sampling algorithm. Furthermore we will perform the test 100.000 times,
in order to get the expected Kolmogorov–Smirnov statistic for 100.000 draws using the
different ρ values.
The result of this experiment is shown in Table 4 where the Kolmogorov–Smirnov statistic
almost stays constant after ρ = 100. Therefore this seems to be an acceptable amount to
use for the numerical ingratiation.

Expected
distance

ρ

10 50 100 200 400

Max distance 0.0027 0.067 0.0038 0.00278 0.00266 0.00278

Table 4: the average Kolmogorov-Smirnov test statistic, and p-value using the estimated CDF

and the true CDF and a sample size of n = 100.000

7.6.2 Computational advantage

As described earlier, the general idea of encapsulating the probability mass is for compu-
tational advantages when integrating the posterior distribution in order to approximate
the CDF. This is done instead of integrating over the entire parameter space.
We have showed that 100 grid points are sufficient for the numerical integral in order to
ensure accuracy of the approximation. Since the area which encapsulates the probability
mass can vary in size, this will affect the number of points that must be used in a standard
Riemann sum.

In order to compare the standard Riemann sum with the integration method used in
this thesis, the number of calculations needed for a given precision will be compared. Fig-
ure 19 shows the number of calculation needed when using the standard Riemann sum,
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given that 100 grid points has to be included in a percentage of the integral area. Here it
is also when where the standard Riemann sum will be disadvantageous and where it will
be advantageous.
For computing the number of calculation points in Figure 19, the information provided
from the earlier sections is used for the limited Riemann sum. The number of calculation
points for an equivalent standard Riemann sum has been calculated as

ρ · area of parameter space
area of encapsulated probability mass

,

where ρ is the number of grid points chosen for the integral.

Figure 19: Number of calculation points needed when using the standard Riemann sum, given

that 100 grid points has to be included in a percentage of the integral area.

Because the integration process used in this thesis requires a fixed number of calculations
in order to determine the boundaries, it will be disadvantageous if the probability mass
can be encapsulated on an area less than 70% of the parameter space. However we can
not be sure that the encapsulated probability mass will only cover 70% of the parameter
space, for each iteration of the Gibbs-sampler. Therefore it is necessary that number of
points for the standard Riemann sum correspond to what might be expected.
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8 Estimating simulated MS-GARCH

The following section will examine how the estimation algorithm, described in Section 7,
performs when applied to a simulated MS-GARCH data set. By doing so, we will be able
to test how well the estimation procedure, described in Section 7, performs.
The simulated MS-GARCH process used as basis for the estimation algorithm has been
generated using the following parameter set, and the process can be seen in Figure 20.

θ0 =

[
0.5 0.35 0.15

1.5 0.15 0.65

]
µT0 =

[
0.05 −0.05

]
Γ0 =

[
0.99 0.01

0.03 0.97

]
(23)

Figure 20: Simulated process of 2000 observations constructed using the MS-GARCH model

described in Section 5, and the parameters shown in Equation 23. The White background

indicated regime one, and the red background indicates regime two.

Before the estimation algorithm can be run, a set of inputs have to be defined. These
inputs include the starting point of the regime states, the prior distributions for the
parameters, as well as a starting value for the parameters.

8.1 Initial values of the estimation

The starting points of all the regime states have all been set to regime one, i.e. st = 1 ∀ t.
This choice of starting point should challenge the algorithm since it presents no prior
knowledge of the regime states.

The starting points for the parameter set also have to be selected. The ones used for
this estimation can be seen in Table 5. These starting points have been chosen such that
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regime 1 is less explosive, and less persistent than regime 2.

Lastly the prior distributions has to be considered. The prior distribution for each pa-
rameters will be chosen to be uniform, as this will allow the model to be optimized solely
on the information of the data.
In order to separate the regimes, such that the model does not switch the labels of the two
regimes throughout the optimization process, the prior distributions for the parameters
will be limited to certain boundaries, as explained in section 7.1.
Another thing that has to be considered when choosing the boundaries, is the stationarity
of the model. This has to be considered, as we wish the final model to be stationary,
and since the MS-GARCH model does not follow the same stationarity restrictions as a
standard GARCH model, it is possible to set the boundaries such that the the sum of α
and β exceeds one for certain regimes.
The variance stationarity requirement that exists in the MS-GARCH model is∑k

i=1 πi(αi + βi) < 1, as explained in section 5.1. Since the transition matrix changes
throughout the estimation process, the invariant probabilities πi are also changing. Be-
cause of this it is only possible to be completely sure that every process is stationary if
αi + βi < 1 ∀ i ∈ {1, ..., k}, however it can be useful to consider states which allows for
explosive regimes.
In Table 5 the chosen intervals for the prior distributions can be seen.
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Parameters Limits

Real Starting Min Max

ω1 0.50 0.10 0.01 1.00

α1 0.35 0.10 0.10 0.50

β1 0.15 0.10 0.01 0.25

µ1 0.05 0.00 0.10 0.10

ω2 1.50 0.50 0.50 3.00

α2 0.15 0.20 0.01 0.25

β2 0.65 0.70 0.30 0.90

µ2 -0.05 0.00 0.20 0.10

η1,1 0.99 0.90 0.00 1.00

η2,2 0.97 0.90 0.00 1.00

Table 5: The parameters used in for simulating the MS-GARCH process used in the estimation,

as well as the model parameters stating points and boundaries.

8.2 Parameter estimation

When determining the posterior distributions from the estimation algorithm, it is neces-
sary to have a burn-in period, as described in section 6.2. Since it is not known how long
the algorithm has to run before the posterior distributions have converged, the algorithm
will be run 50.000 times, after which, it will be evaluated whether the process has con-
verged. The way in which the convergence will be determined is by evaluating a trace-plot.

In Figure 21, the trace plot of the simulations can be seen, here we see that all the pa-
rameters converge quite quickly, and the burn-in period could therefore be equally small.
To be certain that the process has converged, and since there are a lot of observations,
the burn-in period will be set to 10.000.
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Figure 21: A trace plot showing the parameter estimates for each iteration of the Gibbs-sampler.

In the trace-plot it seems like some of the parameters, such as β1 and µ2 may have
too tight boundaries, as they hit the boundaries quite frequently. In order to evaluate
whether the boundaries are too tight, as well as investigating the posterior distributions,
the histograms of the posterior distributions are shown in Figure 22.
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Figure 22: Histograms showing the posterior distributions, when a burn-in period of 10.000

observations are removed. The mode parameters have been calculated using a Gaussian kernel

density estimate

In the histograms the same issues can be seen, as the probability mass of the β1 and µ2

parameters have been cut off. However for both parameters it seems that mode param-
eter is within the boundaries, and the estimate should therefore still be quite accurate.
Another note to this point is that the boundary for the β1 parameter can not be negative.
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Using the posterior distributions the model parameters have to be chosen. There are
two main options when choosing the model parameter. Either the mean, or the mode
parameter of the posterior distribution can be chosen. The mean is the easiest choice, as
it can easily be calculated, and it should also be a good estimate.
The issue with using mean is that it is not possible to take the average of the entire
posterior distribution, because of the boundaries set by the prior distributions. This is
not an issue for every parameter, as some of them stay well within their boundaries. It
does however become an issue for parameters which are limited by the boundaries. This
is especially prevalent for the µ2 parameter, where the estimated mean will be lower than
the actual mean, since there is accounted for more probability mass in the left hand side
of the posterior distribution.
A way to resolve this issue is to use the mode parameter of the posterior distributions.
Since the mode parameter does not depend on the entire distribution, but only on the
most likely value, it is not affected by boundaries, as long at the mode of the posterior
distribution lie within the boundary limits.
One issue with using the mode parameter, is that the posterior distributions are empirical
with a continuous first-axis, and the mode parameter is therefore not possible to deter-
mine directly. There do exist several methods of determining mode parameters, however
these methods will not necessarily produce the same results.
Because the mean is easier to calculate and easier to evaluate, this will be chosen as the
parameter estimate. In Figure 22 it can also be seen that the two estimates are quite
close in most cases, even for the µ2 where the mean should produce the biggest issues.

The estimated model parameters found using the means of the posterior distributions
can be seen in Table 6.
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Real
parameter

Estimation

Mean Std.

ω1 0.50 0.5361 0.0513

α1 0.35 0.3824 0.0510

β1 0.15 0.0822 0.0503

µ1 0.05 0.0286 0.0239

ω2 1.50 1.4840 0.5526

α2 0.15 0.1415 0.0453

β2 0.65 0.6965 0.0758

µ2 -0.05 -0.0188 0.0732

η1,1 0.99 0.9858 0.0041

η2,2 0.97 0.9700 0.0081

Table 6: Estimated parameters of the simulated MS-GARCH process in Figure 20, using the

MS-GARCH model.

The estimated parameters of regime 2 are very close to the real parameters, where as the
parameters of regime 1 are quite different. It mainly seems like the β1 parameter is too
high, and the ω1 and α1 parameters are too low. However if the unconditional variance
and kurtosis of the regime 1 GARCH process are calculated using both the estimated
parameters and the real parameter we get the following result.

Estimated Real

Unconditional variance 1.0016 1

Unconditional kurtosis 4.7858 4.4554

Table 7: Unconditional variance and kurtosis of the estimated regime 1 GARCH model param-

eters, and the real regime 1 GARCH model parameters.

This means that while there are some differences between the estimated and the real pro-
cess, these are most likely minor, since the variance of regime 1 is very low. Furthermore
the unconditional distribution of the two processes are almost identical. Since the two
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processes are so similar it seems reasonable that the estimation algorithm converges to
the wrong parameter estimates.

8.3 Estimation of the regime states

Another reason that could cause the estimation algorithm to converge to the wrong pa-
rameter estimates would be if the regime states are not correctly identified, and therefore
this will also have to be investigated.
Optimally the regime states would be determined as the regime each observation is in the
most, across the iterations of the gibbs sampler, similarly to how the rest of the model
parameter have been chosen. However, there is one issue with this approach. Since it is
not known how long the burn-in period will be before the estimation algorithm has run,
the regime of every observation would have to be saved for each iteration of the estimation
algorithm. This would make it possible to ignore the burn-in period, and use the remain-
ing iterations to determine the estimated regime states. The issue with this approach
is that having to save 2.000 observations for 50.000 iterations would require saving 100
million data-points each time the algorithm is run. This would significantly slow down the
algorithm, and since no further analysis would be done using the additional information,
this approach is quite excessive.
Alternatively the algorithm is run an additional 10.000 times after the initial 50.000 in
order to have a ’clean’ sample of the regime states.
This does mean that there is a difference between the underlying iterations for the pa-
rameter estimates, and the regime states. However the reason why the burn-in period is
removed is exactly because the process is assumed to have converged after the burn-in
period. Since the estimation algorithm has converged to the invariant distribution, the
samples are drawn from the same posterior distribution. Given the ergodic theorem, see
section 2 theorem 2.1, the end result should therefore be the same.

After the additional 10.000 iterations the probability of the regime states can be estimates,
and the results of which can be seen in Figure 23. Here we see that the probabilities lie
close to being in each regime in 50% of the iterations of the Gibbs sampler. Because of
this, the estimated regimes of the observations will be defined as the most likely regime.
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Figure 23: the probability of being in regime two for each observation in the sample-path.

In Figure 23 the real regimes of the model are compared to the ones estimated by the
algorithm. Here it is clear that the estimated regimes are very similar to the real regimes.

Figure 24: Figure (a) shows the real regimes used to generate the MS-GARCH process. Figure

(b) shows the regimes estimated by the probabilities in Figure 23. The regimes are estimated by

classifying regimes which have a probability higher than 50% of being in regime 2, as regime 2.

Having the model parameter estimates, as well as estimated regime states, it is possible
to calculate the estimated conditional σ-process, which is done by using the formula in
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Equation 10 on Page 24.
In Figure 25 the real conditional σ-process are compared with the ones calculated using
the estimated parameters and regimes. In the comparison we see that σ is approximately
the same for both models, except when the estimated and real regimes differ. Given this it
is not expected that the difference in the parameters discussed previously will have much
of an effect on the model, however the estimated regimes may.

Figure 25: The σ-process generated using the estimated parameters and regime states, com-

pared with the σ-process generated using the real parameters and regime states.

8.4 Estimated model evaluation

In order to evaluate the performance of the model further, the standardized residuals are
calculated using the formula

r̂t =
yt − µ̂st
σ̂t

.

Both the standardized residuals as well as the squared standardized residuals, will be
evaluated.
The standardized residuals should give insight into whether the mean of the white noise
ut, from Equation 10, is 0, and the squared standardized residuals tests if the variance
of ut is 1. These residual tests will therefore show if the process left after removing the
MS-GARCH model is in fact white noise drawn from a standard normal distribution, as
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defined by the model in Equation 10.
In Figure 26 the residuals, and the squared residuals are shown. In this figure the residuals
lie around zero, which indicates that the mean of the residuals is zero. Furthermore we
see that the squared residuals lie close to 1, this is also what is expected since a squared
standard normal distribution is a χ2-distribution with 1 degree of freedom, and the mean
of such a distribution is 1. Since the mean of the squared residuals is approximately 1
and the mean of the residuals is 0, it indicates that the residuals are white noise, and that
the model explains the variance of the process well.

Figure 26: Residuals, and squared residuals, calculated using the estimated parameters and

regime states.

Another way to evaluate the residuals is through a qq-plot, where the residuals are com-
pared to a theoretical estimate of the residuals. The qq-plots of the residuals and the
squared residuals are shown in Figure 27, here we see that the residuals are clearly nor-
mally distributed, however the squared residuals are not perfectly χ2-distributed.
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Figure 27: qq-plot of the residuals and squared residuals using the estimated parameters and

regime states. The qq-plot in Figure (c) is generated using a χ2 distribution.

As discussed previously the main difference between the real model and the estimated
model, is the estimated regime states. In order to quantify how much of the inaccuracy
of the residuals is caused by the wrongly estimated regime states, the qq-plots can also
be seen in Figure 28 where the real regimes, but the estimated parameters are used. Here
we see that the squared residuals become χ2-distributed, which indicates that the biggest
issue when estimating the model is estimating the regime states.
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Figure 28: q-plot of the residuals and squared residuals using the estimated parameters and

the real regime states used to generate the MS-GARCH sample-path. The q-plot in Figure (c)

is generated using a χ2 distribution.

Since the white noise in the MS-GARCH model is i.i.d. there can not be any auto-
correlation in the residuals, since this would indicate that the noise terms are not inde-
pendent of each other. In Figure 29 the auto-correlation of both the residuals and the
squared residuals, using the estimated regime states and the estimated parameters, are
shown. Here it is clear to see that the residuals exhibit no auto-correlation, which again
indicates that the residuals are white noise.
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Figure 29: Auto correlation plots of the residuals and the squared residuals.

Lastly the likelihood estimates of the estimated, and the real model can be evaluated. This
can be done using the AIC or BIC criterions, however since the number of observations,
and number of parameters stay constant, these criterions will not provide more information
than the likelihood alone. Therefore the likelihood will be evaluated by calculating the
log likelihood. These log-likelihood estimated are calculated by taking the log of the
expression in Equation 13 leading to

log(p(Y, S | µ, θ,Γ)) = log

(
T∏
t=1

1√
2πσst

exp

[
−(yt − µst)2

2σ2
st

]
ηst−1,st

)

=
T∑
t=1

(
log

(
1√

2πσst

)
+ log

(
exp

[
−(yt − µst)2

2σ2
st

])
+ log

(
ηst−1,st

))

=
T∑
t=1

(
log(ηst−1,st)− log(

√
2πσst)−

(yt − µst)2

2σ2
st

)
.

(24)
Even though the Bayesian approach does not directly attempt to maximize the likelihood,
it would still be expected that the estimated model provides a good log-likelihood esti-
mate. The log-likelihood for the estimated and real models are therefore shown in Table
8. Here we see that the estimated model returns a log-likehood which is higher than the
log-likelihood for the real model. This might help explain why the estimation algorithm
converges to the estimated model. One explanation as to why the likelihood of the esti-
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mated model is higher than the likelihood of real model, could be that because the model
is simulated, it will only be approximately equal to the real model, and because only 2.000
observations were simulated, this approximation could be somewhat inaccurate.

Estimated model Real model

log-likelihood -1706.6 -1747.692

Table 8: Log-likelihood calculated using the real model parameters and states, and the log-

likelihood calculated the estimated parameters and states.

Using the knowledge from this section, we will attempt to estimate the MS-GARCH
model on a financial time series. When performing this estimation we will further test
if the model can be used to estimate the volatility differently when the markets are in a
financial crisis, compared to when they are not.
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9 Estimating MS-GARCH on S&P 500

In this section we will implement a model which accounts for the structural changes
in the volatility, caused by financial crises, by using the MS-GARCH model. This will
help determine whether the MS-GARCH model can be used in practice when modelling
empirical data. It will further allow the possibility of comparing how well the model works
compared to other models such as the GARCH model.

9.1 Data

The underlying data used for this analysis will be the S&P 500 index (S&P 500), which
is an index measuring the performance of 500 companies traded at stock exchanges in the
United States.1

This index has been chosen since it covers a wide spectrum of branches, providing a good
representations of the American stock market. For simplicity we will be using the daily
closing prices of index, and the daily return will be calculated as

rt =
pt − pt−1
pt−1

.

Since one the objective of this thesis is to model risk by accounting for the structural
changes in the volatility, and because of the computational load associated with using large
data sets in EM algorithms, we will not be using the entire index for the estimation. The
index will instead be limited from 01-Jan-1999 to 01-Jan-2011. This interval encapsulates
most of the Dot-com bubble in the late 90’s, as well as the financial crisis in 2008, while
also having a less volatile interval in between these two crises. This interval also makes
the length of the time series roughly 3000 observations, which limits the calculation time
of the estimation.
Figure 30 shows the S&P500 index, as well as the interval that will be used in this thesis
for the estimation. In the returns it is clear to see that the beginning and end of the
interval behaves much more extremely than the middle.

1The historical quotes for this index have been found on Yahoo finance https://finance.yahoo.com/
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Figure 30: S&P 500 index from 05-01-1980 to 05-04-2020. Figure (a) shows the actual price

development, while Figure (b) shows the net return.

A histogram of the returns can be seen in Figure 31 where it is clear to see that the returns
in this time series are very heavy tailed. This also makes sense since two financial crises
are included.

Figure 31: Histogram of the S&P500 index between 01-Jan-1999 and 01-Jan-2011. The normal

distribution is fitted on the data where µ = 0.009 and σ = 1.3

The central moments of the returns can also be seen in Table 9, where we also observe a
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very high excess kurtosis.

Mean Variance Skewness Excess kurtosis

0.009 1.359 0.082 7.474

Table 9: Central moments of the S&P500 index between 01-Jan-1999 and 01-Jan-2011

In Figure 32 the autocorrelations of the returns and the squared returns can be seen. Here
we see a strong autocorrelation in the squared returns, however there does not seem to
be any autocorrelation in the returns.
The heteroskedasticity indicated by the autocorrelation plots, as well as the high kurtosis
and low skewness, seen in Table 9, indicates that a GARCH or MS-GARCH model could
be a proper choice to model the volatility.

Figure 32: Autocorrelations of the S&P500 index between 01-Jan-1999 and 01-Jan-2011. Figure

(a) shows the auto correlation of the returns, and Figure (b) shows the autocorrelation of the

squared returns.

9.2 Model estimation

As in section 8, some starting parameters have to be defined before the estimation al-
gorithm can be run. The process of choosing these will follow the same procedure as in
the previous section, where regime 1 will be a less volatile and non-explosive regime, and
regime two will be more volatile and explosive.

9.2.1 Initial values of the estimation

The starting point of the regime states will be the same as in the previous section, where
each observation was be defined as regime 1.
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The chosen starting point of the model parameters can be seen in Table 10. These
parameters have been chosen since they are very different volatility processes, and the low
probability of changing between regimes seem suitable since we are expecting the model
to only have two regime changes (after the Dot-com bubble, and before the financial crisis
in 2008).
The prior distributions have all been chosen as uniform distributions, and the boundaries
of the prior distributions can be seen in Table 10.
These boundaries mainly differentiate the regimes by β and µ, which hopefully should be
sufficient in order to keep the regimes from switching labels.

Starting
parameters

Limits

Min Max

ω1 0.10 0.01 0.60

α1 0.05 0.01 0.10

β1 0.40 0.20 0.60

µ1 0.00 0.01 0.30

ω2 0.40 0.01 0.30

α2 0.20 0.01 0.15

β2 0.80 0.70 0.95

µ2 0.00 -0.40 0.10

η1,1 0.99 0.00 1.00

η2,2 0.99 0.00 1.00

Table 10: Starting parameters and limits of the prior distributions used in the estimation

algorithm.

9.2.2 Parameter estimation

Figure 33 shows a trace-plot of 50.000 iterations of the estimation algorithm, using the
starting parameters and prior distributions defined in Table 10. In this figure we see that
the model converges rather quickly, and that the boundaries are wide enough to capture
the probability mass for most of the parameters.
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Looking at the kernel regressions of the trace-plot, a burn-in period of 10.000, like the
one used in the previous section, seem sufficient. However the running average converges
rather slowly for the α1 and β1 parameters, and therefore a longer burn-in period of 20.000
has been chosen in order to ensure the convergence of the process.

The posterior distributions calculated after removing the burn-in period can be seen in
Figure 34. Here we see that posterior distributions of the parameters in regime two are
very smooth, and lie well within the boundaries. Looking at the posterior distributions
for the parameters in regime 1, show that the α1 parameter converges towards zero, and
the β1 parameter is almost uniformly distributed. This will be investigated further in this
section.
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Figure 33: A trace plot showing the parameter estimates for each iteration of the Gibbs-sampler,

for the S&P500 index.
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Figure 34: Histograms showing the posterior distributions of the parameters, after removing

the burn-in period of 20.000 observations.

In previous section it was determined that the means of the posterior distributions pro-
duced good estimates for the model parameters. The model parameters calculated using
the means of the posterior distributions, can be seen in Figure 11.
Looking at the transition probabilities η1,1 and η2,2 we see that the expected length of the

80



regimes will be

regime1 =
1

1− 0.9804
≈ 51

regime2 =
1

1− 0.9939
≈ 163

(25)

which are quite small compared to the length of the time series. This means that estimated
high volatility regime is most likely not confined to the two financial crises.

Estimation

Mean Std.

ω1 0.2118 0.0412

α1 0.0255 0.0149

β1 0.3619 0.1118

µ1 0.0959 0.0245

ω2 0.0593 0.0162

α2 0.0829 0.0109

β2 0.8909 0.013

µ2 -0.0002 0.0264

η1,1 0.9804 0.0072

η2,2 0.9939 0.0024

Table 11: Parameter estimates, and the standard deviation of the posterior distributions, for

the MS-GARCH parameters estimated by the estimation algorithm for the S&P500 index.

In Figure 35 the estimated regime states are shown. These regime states are estimated
using the method explained in Section 8, where an additional 10.000 iterations of the
algorithm are used to generate the regimes states. In Figure 35 it is clearly seen that
regime 2 is not limited to the financial crises, as hoped. The regimes do however capture
most to the volatility periods within the time series.
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Figure 35: Estimated regimes and regime probabilities for the S&P500 index. Figure (a) shows

the probability of being in regime 2 for each observation in the sample-path. Figure (b) shows

the regimes are estimated by classifying regimes which have a probability higher than 50% of

being in regime 2, as regime 2. The white background indicated regime 1 and the red background

indicated regime 2.

9.2.3 Evaluation of the α and β parameters of regime 1

Going back to the posterior distributions of α1 and β1 in Figure 34, a contour plot showing
the two parameters can be seen in Figure 36 (a). Here it is seen that when α1 is low, the
chance of β1 being low will also increase.
One explanation for this correlation, is that, as α converges to zero, the GARCH process
converges to a white noise process, as explained in section 4.1. When the GARCH model
becomes a white noise process, i.e. when α −→ 0, β will only effect the variance level of
the model.
If regime 1 has converged to a white noise process, it would be expected that the uncon-
ditional variance of the underlying GARCH model, which is defined in Equation 5, would
converge as well. This would be expected since the only relevant attribute of a normally
distributed white noise process, is the variance, and assuming the process has converged,
the unconditional variance should therefore have converged as well.
Given that the unconditional variance has converged, a relationship between ω and β

would be expected, since these parameters both effect the unconditional variance of the
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underlying GARCH model. In Figure 36 (b), a contour plot showing samples of β1 and
α1 can be seen, which show a clear correlation between the two parameters. This again
indicates that regime one has converged to a white noise process.

Figure 36: contour plot showing correlations between the GARCH parameters in regime 1.

Figure (a) show the correlation between α1 and β1, and Figure (b) show the correlation between

ω1 and β1

Figure 37 shows the unconditional variance of regime one. Here we see that the uncon-
ditional variance has converged to a fixed level, which also indicates that the process has
converged to a white noise process.
This convergence helps explain why the observations of β1 are almost uniformly dis-
tributed, since the only significance of the β1 is to ensure that the unconditional variance
stays relatively constant.

Figure 37: A trace plot showing the unconditional variance of the GARCH model in regime 1

calculated using Equation 5 on page 16
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9.3 Modelling regime 1 with constant variance

Since regime 1 converges to a white noise process, it would be interesting to test how the
estimation performs if α1 and β1 are fixed to zero. This would be equivalent to defining
regime 1 as a white noise process with ω1 variance.
Before doing this it has to be considered whether fixing α1 and β1 to zero, is allowed
given the maximum-likelihood expression. To do this, consider the maximum-likelihood
expression of the MS-GARCH model, explained in section 5

p(Y, S | µ, θ,Γ) =
t=T∏
t=1

1√
2πσt

exp

[
−(yt − µst)2

2σ2
t

]
ηst−1,st .

In this expression neither α nor β appear directly, but instead they appear through σ.
Since every maximum-likelihood expression used for the estimation algorithm is based
directly on this expression, fixing α and β to zero should not effect the expressions.
Another point worth noting is that the stationarity requirement of the MS-GARCH model
assumes α > 0 and β > 0, which is obviously broken if α and β are fixed to zero. However
since a white noise process is stationary, the MS-GARCH process will also be stationary
is regime 2 is stationary. If regime 2 is not stationary, we will investigate the stationarity
of the process further.

9.3.1 Parameter estimation

This estimation where regime 1 has been fixed to a white noise process has also been
conducted using 50.000 iterations, and using the same starting parameters as the previous
estimation. The prior distributions used are also the same, except for α1 and β1, of which
the prior distributions are negated, given that these are constant. The trace plots and
histograms for the posterior distributions of the parameters can be seen in appendix A.1
and A.2. These are not included here, as they look almost identical to the ones from the
previous estimation.
Similarly to the previous estimation, it seems to have converged after 20.000 iterations,
so this burn-in period will be kept. The estimated model parameter found after removing
the burn-in period can be seen in Table 12.
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Estimation
Regime 1 = GARCH

Estimation
Regime 1 = white noise

Mean Std. Mean Std.

ω1 0.2118 0.0412 0.3437 0.0273

α1 0.0255 0.0149 - -

β1 0.3619 0.1118 - -

µ1 0.0959 0.0245 0.0964 0.0246

ω2 0.0593 0.0162 0.0594 0.0153

α2 0.0829 0.0109 0.0825 0.0110

β2 0.8909 0.0130 0.8915 0.0138

µ2 -0.0002 0.0264 0.0000 0.0263

η1,1 0.9804 0.0072 0.9799 0.0074

η2,2 0.9939 0.0024 0.9939 0.0023

Table 12: Comparison between the parameter estimates when regime 1 is assumed to be a

GARCH model, and when regime 1 is assumed to be a white noise process.

Here we see that α2 + β2 < 1, which means that regime 2 is stationary, and the entire
process will therefore also be stationary. We also see that the parameters in regime 2 are
almost identical to what they were in the previous estimation.
Comparing the parameters of regime 1 is not as straight forward, as the underlying models
of the estimations are different. However the µ1 parameters of the two estimations are
equivalent.
One way of comparing regime 1 in the two estimations, is to compare the unconditional
variance, from the first estimation, with ω1 from the model where regime 1 has been
defined as a white noise process. This comparison can be seen in Figure 38, where the
empirical densities of the two estimations are shown. Here we see that the unconditional
variance, and the variance of the white noise process are almost identical.
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Figure 38: Comparison between the posterior distribution of the uncnditional variance of regime

1, when assumed to be a GARHC model, and ω of regime 1, when assumed to be a white noise

process. The purple area indicated the overlap of the blue and red areas.

In Figure 39 the estimated regime states, and regime probabilities are shown. Here we see
that the regimes are also almost identical to the ones found in the previous estimation.
This was also to be expected, since the rest of the model has been almost identical between
the two estimations.

Figure 39: Estimated regimes using the standard MS-GARCH model, and the estimated

regimes when fixing regime 1 to a white noise process. The white background indicated regime

1 and the red background indicated regime 2.
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The fact that the MS-GARCH model estimates regime one as a white noise process is
quite interesting. Since risk is usually modelled using either very simple models, such as
a white noise process, or more complex models such as the GARCH model, it therefore
seems fitting that the MS-GARCH model suggest that both models work in different
scenarios. Since modelling regime 1 as a GARCH model only provides a more complex
model, this model will no longer be considered. Instead regime 1 will be fixed to a white
noise process moving forward.

9.4 Separation of regimes

As shown in Figure 39, regime 2 is not only based on the financial crises. Therefore we
will consider alternatives which may split up the regimes such that regime 2 is solely based
on the financial crises.
One solution which may help further spilt up the regimes is smoothing the state probabil-
ities. Doing this could generate the desired states, which could then be fixed, after which
another estimation can be run using the fixed states. For smoothing the regime state
probabilities, the smoothing expression shown in Equation 8 on Page 21 will be used.
After smoothing the regime state probabilities the regime states are as shown in Figure 40.
Here it is seen that some of the observations which are classified by both of the regimes
in 50% of the iterations, will be pushed into one of the two regimes. This gives ’cleaner’
regimes, which could be quite useful, however it does not resolve the issue, as there are
still areas between the two financial crises which are defined by regime 2.
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Figure 40: Smoothed probabilities of being in regime 2 calculated using Equation 8.

Another way of splitting up the two regimes as desired, is by using another prior distri-
bution for the transition probabilities. This might help the process converge to another
local maximum, which only includes regime 2 in times of financial crises.
The new prior distribution will be chosen such that it increases the probability of sam-
pling high values of η1,1 and η2,2. To do this two different options will be considered. The
first option will be using a truncated distribution with a limit in 0.99. The truncated
distribution will remain uniform, but hopefully the small sampling interval will help the
estimation algorithm converge at a higher level for η1,1 and η2,2.
The second option will be to apply a skewed beta prior distribution which has a very
high probability of sampling close to 1, but still not predetermine the posterior distribu-
tion. For doing this we have chosen a skewed beta distribution with shape1 = 200 and
shape2 = 1.1. This distribution can be seen in Figure 41.
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Figure 41: The skewed beta distribution used as a prior distribution for the transition proba-

bilities in the estimation algorithm.

The trace plots from running the estimation algorithm with the new prior distributions
for the transition probabilities can be seen in appendix B.1 and C.1. In the trace plots it
is seen that the estimation algorithm converges after 20.000 iterations as with the rest of
the estimations. Therefore this burn-in period will be used for these estimations as well.
The state probabilities generated using the new prior distributions can be seen in Figure
42. Here we see that the skewed beta distribution achieves the desired result where the
regimes are split into financial crises, and non-financial crises.
The truncated distribution however failed to achieve this result. The reason for this is most
likely that the boundaries of the truncation were too wide, which caused the estimation
algorithm to converge to the previous regime states.
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Figure 42: Estimated regimes and regime probabilities using the skewed and truncated beta

distributions as priors. Figure (a) and (c) show the regimes found using the skewed beta distri-

bution. Figure (b) and (d) show the regimes found using the truncated distribution. The white

background indicated regime 1 and the red background indicated regime 2.

This explanation is also supported by Figure 43, which shows the trace plot of the η1,1
and η2,2 parameters, in the estimation where a truncated prior distribution is used.
In this figure it is clear to see that η1,1 is sampled in the boundary of the truncation. This
means that the truncated prior distribution could most likely produce the desired regimes
if it was truncated at a higher level. However since the skewed beta distribution already
achieves this, we will stick to using this prior distribution.
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Figure 43: trace plots showing the transition probabilities from the estimation algorithm where

a truncated prior distribution is used for η1,1 and η2,2.

We now have two different estimated models,

• The white-noise model, where a white noise process was used to estimate regime 1

• The beta-prior model, where a white noise process was used to estimate regime 1,
and a skewed beta prior distribution was used for the transition probabilities.

The posterior distributions of the beta-prior model are shown in Figure 44. We see that the
posterior distributions lie within the boundaries, and seem to have converged to smooth
distributions. It is only the posterior distribution for η2,2 which look unusual, however
this is simply because the probability of switching away from regime 2 is very low.
We also see that the posterior distributions are distinctly different, even though the same
prior distribution has been used for both η1,1 and η2,2. This means that the prior distri-
bution has not predetermined the shape of the posterior distributions, but instead it has
led to a new local optima.
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Figure 44: Histograms showing the posterior distributions of the parameters, after removing

the burn-in period of 20.000 observations, and defining regime 1 as a white noise process as well

as using a skewed beta prior for the η parameters.

The estimated model parameters of the beta-prior model can be seen in Table 13. Here we
see that regime 2 is not much different than it was before changing the prior distribution.
The only noticeable differences is that the drift becomes positive, whereas it was zero
before changing the prior distribution. The process has also become slightly more explosive

92



since α2 has increased.
In regime 1 the variance has increased a lot. This is most likely due to the fact that the
periods which were previously classified as regime 2, has now been classified as regime
1. Since these periods are more volatile than the rest of regime 1, they will increase the
volatility of regime 1.

Estimation
white-noise model

Estimation
beta-prior model

Mean Std. Mean Std.

ω1 0.3437 0.0273 0.4536 0.0226

µ1 0.0964 0.0246 0.0487 0.0198

ω2 0.0594 0.0153 0.0497 0.0135

α2 0.0825 0.0110 0.0937 0.0124

β2 0.8915 0.0138 0.8849 0.0144

µ2 0.0000 0.0263 0.0322 0.0266

η1,1 0.9799 0.0074 0.9971 0.0016

η2,2 0.9939 0.0023 0.9994 0.0006

Table 13: Comparison between the parameter estimates of the white-noise model and the beta-

prior model.

9.5 Model comparison and evaluation

Since a prior distribution had to be used in order to get the beta-prior model, it is worth
investigating if this assumption, has made the model worse when modelling the returns
than the white-noise model. In order to evaluate this we will look at the residuals and see
if one of the models perform significantly worse than the other.
The residuals are calculated equivalently to how they were calculated in Section 8, where
both the residuals as well as the squared residuals are calculated. Figure 45 shows qq-
plots of the residuals of both models. Here we see that none of the models are able to
explain the most extreme returns, as the residuals have heavy tails. We also see that the
beta-prior model is slightly worse at modelling the variance when looking at the qq-plots
for the squared residuals. However this is not a massive difference, and the two models
should therefore perform quite similarly.
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Figure 45: qq-plots for evaluating the residuals of the models achieved with and without a

skewed beta prior for the transition probabilities.

The autocorrelations of the residuals and squared residuals are also shown in Figure 46.
Here we see that none of the residual show any significant autocorrelation. Therefore the
models main has difficulty, is modelling the extreme returns which are seen in financial
time series from time to time.
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Figure 46: Autocorrelation plots for evaluating the residuals of the models achieved with and

without a skewed beta prior for the transition probabilities.

Through estimation of the MS-GARCH model on the S&P 500 index from 01-Jan-1999 to
01-Jan-2011, we hoped to be able to split up the period, such that the structural changes
in the volatility process could be accounted for. By doing so it was found that periods of
high volatility were described well by a GARCH process, and volatility was constant in
periods of low volatility.
It was further shown that, if a skewed beta distribution was used as a prior for the transi-
tions probabilities, the estimated periods could be split up such that regime 2 was solely
based on the financial crises.

In the next section we will apply the beta-prior model to another part of the S&P 500
index, in order to evaluate its capabilities as a risk model.
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10 Evaluation of MS-GARCH

The purpose of the empirical study in the previous section, was to explore the possibilities
of implementing an MS-GARCH model which is able to model the structural changes in
the volatility caused by financial crises.
We proposed the beta-prior model which was found using a skewed beta distribution as
prior distribution for the transitions probabilities, and modelled regime 1 as white noise.
this model gave a clear separation of highly volatile and low volatile periods.
In this section we wish to examine if, and how, this model can be used for modelling the
daily risk of financial assets.

10.1 Comparison of MS-GARCH and GARCH

The parameter estimates from the previous section will be used, to estimate the risk on
the remaining part of the S&P 500 index, i.e. the period after 01-Jan-2011. This series is
also shown in Figure 47.

Figure 47: S&P 500 index from 01-Jan-2011 to 05-Apr-2020. Figure (a) shows the actual price

development, while Figure (b) shoes net return.

When estimating the risk we will use the value-at-risk metric described in section 3, where
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the parametric method will be used with a normal distribution, where the variance is de-
fined as the conditional variance of the MS-GARCH model.
In order to evaluate how well the MS-GARCHmodel estimates the risk, it will be compared
with a standard GARCH(1,1) model, which was described in Section 9. The parameters of
the GARCH model will found similarly to how the parameters in the MS-GARCH model
were found, using the S&P 500 index from 01-Jan-1999 to 01-Jan-2011. The estimation
of the parameters in the GARCH model is done using the rugarch package in R.
This model will then be used to estimate the risk in the S&P 500 index after 01-Jan-2011,
in order to compare it to the risk estimated by the MS-GARCH model.
For this comparison a higher lagged GARCH(p,q) model could also be used, however since
the MS-GARCH model is based on the GARCH(1,1) model, it makes sense to compare
these.

Table 14 shows estimated parameters of the MS-GARCH found in Section 9.2 and the
GARCH model parameters found using the rugarch package in R.

Estimation
beta-prior model Garch(1,1)

Mean Std. Estimate Std. error

ω1 0.4536 0.0226 0.012 0.003

α1 - - 0.077 0.009

β1 - - 0.917 0.009

µ1 0.0487 0.0198 0.044 0.017

ω2 0.0497 0.0135 - -

α2 0.0937 0.0124 - -

β2 0.8849 0.0144 - -

µ2 0.0322 0.0266 - -

η1,1 0.9971 0.0016 - -

η2,2 0.9994 0.0006 - -

Table 14: Parameter comparison between MS-GARCH model and GARCH(1,1) with ut ∼
N (0, 1) estimated using the S&P 500 index between 01-Jan-1999 to 01-Jan-2011.

As shown in Table 14 the parameters of the standard GARCH model does not deviate
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much from the second regime in the MS-GARCH model.
This is quite interesting as the standard GARCH model has to account for both volatile
and non-volatile periods whereas regime 2 of the MS-GARCH model only has to account
for the volatile periods.
Nonetheless it is still interesting to compare the two models, and thereby examine if low
volatile periods can be explained by a white noise process.

When applying the MS-GARCH model to a new series, the underlying regimes have
to be found, in order to produce risk estimates for the MS-GARCH model.
The first issue with estimating the regime states with fixed parameters, is whether the
transitions probabilities should be fixed or re-estimated.
The estimated transition probabilities, η1,2 and η2,1, are roughly equal to the number of
regime shifts in the estimation interval, divided by the total length of the estimation in-
terval. Because of this the transition probabilities will depend on where the limits of the
estimation interval are, as a single regime shift can have a large effect on the estimated
transition probability.
However because the rest of the model parameters have been estimated using those tran-
sition probabilities they will be kept constant. This might affect the precision of the
estimated regime states, but this is an issues that arise, when a model is fitted on a dif-
ferent interval than it is applied to.
The rest of the parameters of the MS-GARCH model, namely the θ and µ will be kept
constant as well.

Because the regime states found in section 9 are estimated directly using the full es-
timation algorithm, these will also be kept constant. This allows for some simplifying
conditions, as it gives a starting regime s0, and starting variance σ2

0 for estimating the
new regimes.
Keeping all the parameters constant removes a large part of the estimation procedure
described in Section 7, and the only remaining part will be the regime state estimation
described in Section 7.3.

The regimes estimated using the modified estimation algorithm, where the model pa-
rameters have been fixed can be seen in Figure 48. Here we see that the model is able
to split the new series very well, as it is only highly volatile periods that are classified as
regime two.
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Figure 48: Estimated regimes and regime probabilities for the S&P500 index after 01-Jan-2011.

Figure (a) shows the probability of being in regime 2 for each observation in the sample-path.

Figure (b) shows the regimes are estimated by classifying regimes which have a probability higher

than 50% of being in regime 2, as regime 2. The white background indicated regime 1 and the

red background indicated regime 2.

Using these regimes, it is possible to calculate the estimated variance process using the
MS-GARCH model. The variance process of the MS-GARCH model compared with
the equivalent variance process calculated using the standard GARCH model with the
parameters from Table 14, can be seen in Figure 49. Here we see that the variance of the
two models are similar when the MS-GARCH model is in regime 2, however when it is in
regime 1, they are quite difference.
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Figure 49: Comparison of the estimated variance using the MS-GARCH model and a standard

GARCH model.

Using the conditional variance processes shown in Figure 49, it is also possible to calculated
the V aRα estimates. This has been done for a confidence level of α = 99% in Figure 50,
where the two models seem to perform similarly.
One interesting thing regarding the V aR estimates in Figure 50, is that Regime 1 acts
almost as a lower bound on the V aR estimate. This lower bound on the conditional
variance seem quite fitting, as no matter how limited the movement of a financial asset
is, there will always be an underlying risk, which has to be accounted for.
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Figure 50: V aR99% estimated calculated using the conditional variance from the MS-GARCH

model and the GARCH model.

Using the two series of V aR estimates, we can also calculate how often the returns break
the V aRα limit, and compare this with what would be expected at the given α level.
As there are 2331 returns in the used series, and since we calculate the V aR on a α = 99%

level, we would expect the V aRα limit to be broken roughly 23 times. In Table 15 the
number of times the V aRα limit was broken using the MS-GARCH and the GARCH
model are shown.
Here we see that the MS-GARCH model is closer than the GARCH model to the expected
number of broken V aRα limits. While this is not the only important aspect of the risk
modelling, it still indicates that the MS-GARCH model is slightly better at modelling the
risk.

Expected MS-GARCH GARCH

Number of
broken V aRα limits 23 45 51

Table 15: Number of times the estimated V aR99% estimates were broken for the MS-GARCH

and GARCH model.
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10.2 Daily value at risk estimation

Since the likelihood expression of S depends on all future values of Y , as described in
section 7.3, every observation, except for the last one, is conditioned on unavailable infor-
mation, in the context of a risk model. This means that the estimated state of a date will
be conditioned on every observed return after that date, and since this information will
not be available at the time of the risk estimate, these risk estimate will be unattainable.

Instead of evaluating the model as a historical estimate, it would be interesting to evaluate
it as a true risk model, which only condition on known information.
When doing so, the St = {s1, ..., st} process will have to be recalculated for each day,
while only conditioning on Yt = {y1, ..., yt} in order to calculate σt. Doing this presents
another problem, as this allows for the regimes before t to change, as time passes, and the
risk on a given day can change as more information becomes available.
In order to show this effect, Figure 51 shows how the regime states are estimated using
the first 1500 observation of the time-series, and how they were estimated using the full
time-series. Here we see that the area in the beginning of 2012 and 2016, are estimated
differently by the two models, and given the path dependency of the variance, this can
also have an effect on the risk estimated in the future.

Figure 51: Estimated regimes using the first 1500 observation, and using the full time-series

from 01-Jan-2011 to 05-Apr-2020.

102



A way of avoiding this, is to fix the estimated states every day. This could also be
convenient as the regime states could then be used as an indicator of how the next period
of time is expected to behave, i.e. the model will tell when we are in a crisis scenario.
The issue with this approach is that the estimation procedure will no longer take the
path dependence into account. Effectively this means that the estimated regime state will
be based directly on the last term of the likelihood expression, as well as the transition
probability from the previous state. The state probabilities will therefore be possible to
calculate using

q(st|S6=t, µ, θ,Γ, y) ∝ log
(
η2−stst−1,1

ηst−1st−1,2
η
2−st+1

st,1 η
st+1−1
st,2

)
+

T∑
j=t

− log(σj)−
(yj − µsj)2

2σ2
j

∝ log
(
η2−stst−1,1

ηst−1st−1,2

)
− log(σt)−

(yt − µst)2

2σ2
t

,

(26)

which can be calculated for st = 1 and st = 2 in order to calculate the proportional
probability, as done previously.
Calculating the regime states using this method, yields the probabilities shown in Figure
52. Here it is important to note that the second axis has been scaled, and that every
observation will effectively be classified as regime 2.
This method can therefore not be used, which also makes sense, given that the path-
dependency was not accounted for.

Figure 52: Transition probabilities found by keeping the previous regimes constant.

Because of this, the variance of each observation has to be based on a individually esti-
mated series of regime states, calculated using every previous observation. The variances
calculated when only conditioning on the known information is shown in Figure 53. Here
we see that the two models work similarly in the high volatility periods, however in the
low volatility periods, the model which is only based on the known information is less
stable.

103



Figure 53: The conditional variance generated by the MS-GARCH model, assuming knowledge

of the full time-series from 01-Jan-2011 to 05-Apr-2020 and assuming available knowledge are

included.

These conditional variance estimates have also been used to estimate the V aR, which can
be seen in Figure 54. It is difficult to tell if the estimates are better or worse than the
previous ones, however they are definitely not as clean as the risk estimates generated
using the full series.

Figure 54: V aR99% estimated calculated using the conditional variance from the MS-GARCH

model assuming available knowledge.

In table 16 the number of times the V aR99% estimates have been broken for each of the
estimated models is shown.
Here the performance of the MS-GARCH model which is only conditioned on known
information performs equivalently to the MS-GARCH model found using the full time
series. However the V aR estimates were not as ’clean’ in the low volatile periods.
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Expected GARCH
MS-GARCH

Full Limited

Number of
broken V aRα limits 23 51 45 45

Table 16: Number of times the estimated V aR99% estimates were broken for the MS-GARCH

and GARCH model. For the MS-GARCH model both the estimates assuming knowledge of

the full time-series from 01-Jan-2011 to 05-Apr-2020 and only assuming available knowledge are

included.

Using the beta-prior model found in section 9 it is possible to estimate the regimes such
that the regimes are split up well. The value at risk estimates generated from this model
is also quite good compared to a standard GARCH model, and the constant volatility in
regime 1 does not seem to negatively affect the risk estimates.
However both models underestimate the risk, since the V aR99% limit is broken more than
would be expected.

The risk estimated by only conditioning on the known information, yielded a result, which
did not split up the regimes very well, since the estimated risk process often switched to
the high volatility regime after seeing a single large return. However the MS-GARCH
model still does not perform worse that the standard GARCH model, and is therefore not
specifically bad in risk modelling.
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11 Conclussion

The main objective with this thesis was to implement a model, that can describe the
volatility, of financial asset returns, by accounting for periods in which, the variance be-
have structurally different. We found that the GARCH model is able to describe for the
heteroscedasticity, as well as some of the high kurtosis, seen in financial asset returns. We
further discovered that regime shifting models, make it possible to account for periods
with structurally different behaviour.
The combination of these models resulted in the MS-GARCH model, that include the
desired attributes of both of the models.
The regime shifting capabilities of the MS-GARCH model were especially useful, as they
allowed for the variance to be estimated differently in periods of high volatility, and peri-
ods of low volatility.

The estimation of the parameters in the MS-GARCH model, can not be done using
Maximum likelihood, due to the path dependence, in the conditional variance process.
Instead a Bayesian approach was chosen, and specifically a Gibbs sampling algorithm was
used, because of the high dimensionality of the estimation procedure.
A few modifications had to be implemented in order for the estimation procedure to work
accurately. These modification included a log transformation, of the conditional posterior
distributions, which kept the computations numerically stable. Another modification was
the implementation of an alternative numerical integration procedure, which made the
integration accurate under any circumstance, with only a small computational demand.

Using the estimation procedure, the parameter set of the MS-GARCH model was es-
timated based on the asset returns of the S&P 500 index. The result of the estimation
procedure showed that the variance of the financial asset returns, in financial crises, are
described well with a GARCH model. However when the financial markets were not in a
state of crises, the variance could be considered constant.
An issue encountered in the estimation was that the volatile, and stable periods were not
completely separated, as a few low volatile periods were estimated as high volatile. In
order to deter the estimation procedure from estimating periods of low volatility as high
volatility regimes, a prior distributions was applied in the estimation of the transitions
probabilities. It was found that a skewed beta distribution, would allow the model to
converge, such that the high and low volatile regimes were completely separated.
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The estimated model was then applied to a different period of the S&P 500 index, in
order to test how well it could estimate the risk. Here we saw that the risk estimates gen-
erated by the MS-GARCH model, were slightly more accurate than the ones generated
by a standard GARCH model. An issue was, that the estimated regime states for the
MS-GARCH model, were based on the entire information set. The model was therefore
estimated for each day individually, where the regime states were only conditioned on the
known information to that day.
The risk estimated by only conditioning on the known information, yielded a result, which
did not split up the regimes as well, since the estimated risk process often switched to the
high volatility regime after seeing a single large return.

The MS-GARCH model is therefore difficult to use as a risk model, since it is not stable
when modelling the variance of the present time.
However, it does work rather at modelling historical volatility, and the fact that it allows
for low volatility periods to be modelled with a constant variance, is very interesting.

11.1 Discussion

In order to get a model which clearly separates regimes of high and low volatility, some
assumptions were made regarding the prior distributions for the transition probabilities.
While these prior assumptions are allowed when using a Bayesian approach for the esti-
mation, it could be argued that they were too extreme and the impact on the posterior
distribution was therefore too large.
An alternative approach could have been to include a third regime, which could possibly
help explain periods that were too extreme to be classified as regime one, but not extreme
enough to be classified as regime 2. However since we decided to only focus on models
with two regime, the prior assumptions was made in order clearly separate the regimes.

The model estimated in Section 9 was based on a limited section of the S&P 500 in-
dex. If another part of the index would have been chosen, the estimated model might
have been different. Especially the transition probabilities could have been affected much
by the choice of interval, given that the number of regime changes were very low.
An alternative approach could have been to fit the model on the full data-set for each
estimation. The issue with this approach is that the computational demand is very high,
and limiting the interval was therefore necessary.
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The regime states found when only conditioning on the known information, available
at that time, were often estimated to be in regime 2, as shown in section 10. The process
was therefore modelled mainly as a standard GARCH model.
The reason why this becomes an issue, is due to the fact the the GARCH model does an
exceptional job at modelling the volatility of financial asset returns. Since the GARCH
model describes both periods of high and low volatility well, regime 1 in the MS-GARCH
model becomes less important.
Because of this it could be questioned whether the MS-GARCH model introduce a high
level of complexity, without much gain. Since the volatility modelling closely resembles
that of a standard GARCH model, it could be argued that the regime shifting capabilities
of the MS-GARCH model are unnecessary in a risk modelling framework.
However the MS-GARCH model still does not perform worse that the standard GARCH
model, and is therefore not specifically bad in risk modelling. Furthermore the MS-
GARCH model allows for periods of low volatility to be modelled using a constant vari-
ance, which could be interesting to consider when modelling risk.

11.2 Future work

Throughout the thesis, the noise term of the MS-GARCH model was defined as draws
from a standard normal distribution. However the residuals generated with the estimated
MS-GARCH model, on the empirical data, showed signs of heavy tails. A suggestion
can therefore be to use a more heavy tailed distribution, Such as the t-distribution, as
the noise terms of the MS-GARCH model. Doing so might remove some of the heavy
tails seen in the residuals, which could possibly make the MS-GARCH model even more
accurate in capturing the more extreme returns. Another aspect of the analysis which

was kept constant throughout the thesis, was the number of regimes in the MS-GARCH
model. Since only two regimes were investigated, the analysis was limited to focus on
regime states of financial crisis, and regime states of financial stability. For future work
it might be interesting to consider more periods for the volatility process. By including
more regimes in the MS-GARCH model it could perhaps be useful explaining different
business cycles. Lastly it could be interesting to consider a combination of a threshold

model and a MS-GARCH model. When exploring performance of the MS-GARCH model
in a risk framework, we experienced a difficulty in predicting regimes, when no information
regarding the future is available. A combination of a threshold model and a MS-GARCH
model might be useful in detecting regimes changes more accurately.
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Appendices

A Estimation: regime 1 with constant volatil-

ity

A.1 Trace-plot
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A.2 Histogram of posterior distributions with a burn-in of 20.000
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A.3 State probabilities and estimated states
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B Estimation: Truncated distribution for tran-

sition probabilities

B.1 Trace-plot
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B.2 Histogram of posterior distributions with a burn-in of 20.000
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C Estimation: Skewed beta distribution for

transition probabilities

C.1 Trace-plot
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C.2 Histogram of posterior distributions with a burn-in of 20.000

117


	Abstract
	Resumé
	Acknowledgement
	Introduction
	Thesis statement

	Stochastic processes
	Markov chains
	Continous state space
	Stationarity

	Value at risk
	Volatility processes
	GARCH model
	Regime Shift Models
	Example of a regime-shifting model

	Markov Switching GARCH model
	Stationarity of the MS-GARCH model
	Central moments in the MS-GARCH model
	Maximum likelihood in MS-GARCH

	Bayesian statistics
	Monte Carlo methods
	Gibbs sampling

	Estimation of MS-GARCH using Gibbs sampling
	Choosing prior distributions
	Log transformation
	Sampling regime states s
	Sampling transition probabilities 
	Sampling  and  
	Numerical integration algorithm

	Estimating simulated MS-GARCH
	Initial values of the estimation
	Parameter estimation
	Estimation of the regime states
	Estimated model evaluation

	Estimating MS-GARCH on S&P 500
	Data
	Model estimation
	Modelling regime 1 with constant variance
	Separation of regimes
	Model comparison and evaluation

	Evaluation of MS-GARCH
	Comparison of MS-GARCH and GARCH
	Daily value at risk estimation

	Conclussion
	Discussion
	Future work

	References
	Appendices
	Estimation: regime 1 with constant volatility
	Trace-plot
	Histogram of posterior distributions with a burn-in of 20.000
	State probabilities and estimated states

	Estimation: Truncated distribution for transition probabilities
	Trace-plot
	Histogram of posterior distributions with a burn-in of 20.000

	Estimation: Skewed beta distribution for transition probabilities
	Trace-plot
	Histogram of posterior distributions with a burn-in of 20.000


