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By Frederik Winther Nielsen & Johan Dybkjær-Knudsen 

 

 

Financial Distress Prediction (FDP) models largely revolve around the utilization of 

financial information to predict the probability of financial distress of companies. 

Accurate financial distress predictions are relevant for stakeholders as financial 

distress can have lasting impacts on both internal stakeholders and external 

stakeholders. Despite the widely studied area of FDP that has seen recent 

developments from machine learning, the academic literature has primarily focused 

on financial information, leaving the potential impact of quantitative non-financial 

ownership information sparsely studied. The potentially underdeveloped aspect of 

including non-financial ownership information as a predictor in FDP, the latest 

development of high-performance models using machine learning, and a 

considerable amount of data on limited Danish companies, leads to the research 

question: “How does the inclusion of non-financial ownership information affect 

the performance of financial distress prediction models on Danish companies?” 

Using public data from the Danish Business Authority, linear discriminant analysis 

(LDA), logistic regression (LR), and gradient boosted trees (GBT) models are 

trained on reduced (dense) data using cross-validation and randomized grid search 

– first trained without the proxy for non-financial ownership information, i.e., 

company ownership default risk (CODR), and then trained similarly with CODR. 

Additional GBT-models were trained on the complete (sparse) data for better 

generalization with and without CODR. The results show that the sparse-GBT-

CODR is the best-performing model (𝐴𝑈𝐶 = 0.8409)  over other models. 

Following a discussion on limitations, implications, operationalization approaches, 

and statistical tests, the thesis concludes that there presumably are potential positive 

impacts of using non-financial ownership information for FDP on Danish 

companies but calls for further research. 

Keywords: Financial Distress Prediction, Machine Learning, Linear Discriminant Analysis, Logistic 

Regression, Gradient Boosted Trees 

PREDICTING FINANCIAL DISTRESS 
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1 TERMINOLOGY 

The following contains the most common list of acronyms and terminology used throughout this thesis. 

While the first occurrence of each term in the thesis is followed by an explanation, the below list 

provides the reader with a collective terminology as a point of reference.  

Term Description 

CODR Company ownership default risk, used as a proxy for non-financial ownership 

information 

Dense We define data as being dense if all the data elements are non-empty. However, the 

usual definition is that a majority of the elements are non-zero 

FDP Financial distress prediction 

GBT Gradient boosted trees 

LDA Linear discriminant analysis. Also known as Multiple Discriminant Analysis – 

however, this is simply a generalized form of LDA for 𝑁 possible classes 

LR Logistic regression 

ODR Ownership default risk 

Serial failers People that are repeatedly involved in company bankruptcies 

Sparse We define data as being sparse if the majority of the data elements are empty. 

However, the usual definition is that a majority of elements are zero 

Sparse-GBT-

CODR 

A GBT model trained on sparse data and a CODR feature 

UDA Univariate discriminative analysis 
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2 INTRODUCTION 

The global economy is an intertwined web of transactions, relationships, and complex ripple effects. 

The performance of any company is undoubtably connected to several stakeholders, both directly and 

indirectly. This is true both for companies in good periods, but also for companies during subpar periods 

that might lead to financially distressed companies characterized by loan defaulting and potentially 

bankruptcy. 

A company in financial distress often affects both the company itself and all its stakeholders negatively; 

internal stakeholders such as employees, shareholders, and managers, but also external stakeholders 

such as business partners, suppliers, customers, regulators, creditors, etc. Situations of financial distress 

in one company can further exacerbate the financial situation of related companies with subpar financial 

performance, which could create a ripple effect of bankruptcies in the (global or local) economy. 

To some extent, financial distress is a natural part of the economy. Regardless, they can have lasting, 

but potentially avoidable, negative effects. Hence, the ability to predict these could alleviate some of 

the negative effects by suppliers of credit, e.g., business partners, banks, etc. Here, for new relationships, 

the suppliers of credit can accurately risk-assess and price the provision of credit – or deny credit. For 

existing credit relationships, the negative impact can be lessened by discouraging further provision of 

credit or disbanding existing relationships prior to a potential financial distress.  

Due to the economic impact of financially distressed companies, the ability to anticipate these is highly 

relevant for a wide variety of industries and stakeholders. Consequently, several data-driven models 

have been developed over the years to predict financial distress. Many scholars and practitioners have 

investigated the feasibility of financial distress prediction (FDP) for the reasons outlined above and to 

better assess the risk of providing credit (Schuermann, 2005). 

FDP as an academic field has developed considerably since its inception more than half a century ago 

with univariate discriminant analysis, then linear discriminant analysis, followed by conditional 

probability models (e.g., logistic regression), and in the latter years with various machine learning (ML) 

implementations giving rise to promising solutions and increased predictive performance that utilize 

companies’ publicly available financial information. The increased academic and practical focus on ML 

for FDP, specifically, is driven by a multitude of factors, such as predictive superiority over traditional 

statistical methods, the ability to identify highly complex patterns in datasets, and due to a less 

restrictive set of assumptions compared to traditional statistical models (Tang et al., 2020). The 

proliferation of ML in FDP has also been partly driven by advances in computer processing power. 

While ML generally has been driven by an abundance of data, much of the academic literature focus 

exclusively on a limited number of financial statements, e.g., annual reports, often with estimation 
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samples of less than 500 companies, and with a frequent exclusive focus on public limited companies 

(Aziz & Dar, 2006).1 

In opposition to this “narrow” scope, two contemporary academic articles have investigated Danish 

limited companies (A/S and ApS), including more than 250,000 financial statements on more than 

100,000 unique companies extracted from the Danish Business Authority’s elaborate company 

database, and find that it is possible to create “broad” state-of-the-art FDP-models using ML on 

financial statements (Christoffersen et al., 2018; Matin et al., 2019). 

Despite the methodological and theoretical developments in the field of FDP and the explosion of data 

availability, most studies only focus on the utilization of purely financial information from financial 

statements.2 While it has been shown that financial information carries considerable predictive power, 

the inclusion of non-financial information external to financial statements and its impact on FDP-

models, is sparsely studied in the literature. This includes information relating to the company owners, 

e.g., the ability of owners to grow companies (proven growth track-record), the experience of owners 

(number of years owning healthy companies), information on whether owners have been involved in 

previous financial distresses (a default risk of owners), etc. These three pieces of ownership information 

all potentially contain relevant information that can be used in FDP-models. The latter point is 

presumably especially relevant as it includes information on owners’ previous financial distresses, 

which could directly influence the likelihood of future distresses, e.g., the impact of serial failers 

(people that are repeatedly involved in company bankruptcies). 

To the best of the authors’ knowledge, there have been no studies that incorporate the impact of previous 

financial distresses of owners on FDP. Some serial bankruptcy studies investigate serial failers on a 

company-level, e.g., Hotchkiss (1995) investigate the post-bankruptcy performance of reorganized 

companies.3 Similarly, most literature on ownership influences on financial distress relate to large 

companies, including corporate governance, ownership concentration, absolute and relative power of 

shareholders, agency theory, etc. (Daily & Dalton, 1994sa, 1994b; Deng & Wang, 2006; Donker et al., 

2009; Lajili & Zéghal, 2010; Mangena & Chamisa, 2008; Manzaneque et al., 2016).  

The potential underdeveloped aspect of including non-financial ownership information as a predictor 

in FDP, the development of high-performance models using ML, and the considerable amount of data 

 

1 For more recent examples, see Alexandropoulos et al., (2019), Huang & Tserng (2018), Tang et al. (2020), Mai et al. (2019) 
2 However, there have been several promising developments in the area of including textual information from financial 

statements as predictors of financial distress (see e.g., Mai et al., 2019; Matin et al., 2019; Tang et al., 2020). Further, various 

FDP-models have also included stock prices (Câmara et al., 2012) and macroeconomic variables (Christoffersen et al., 2018). 
3 See also Denning et al. (2001) on factors for a successful reorganization. 
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on limited Danish companies from the Danish Business Authority leads us to the following research 

question: 

How does the inclusion of non-financial ownership information affect the performance of 

financial distress prediction models on Danish companies? 

Specifically, this thesis seeks to answer this research question by first investigating the predictive power 

of linear discriminant analysis, logistic regression, and gradient boosted trees models without the 

inclusion of non-financial ownership information. Following this, two additional logistic regression and 

gradient boosted trees models are trained with the addition of ownership information to investigate the 

potential effect on predictive power. As a proxy for the inclusion of non-financial ownership 

information, this thesis uses company ownership default risk (CODR), which is a quantification of the 

risk to a given company that might arise from the current owners’ previous company defaults.4  

2.1 DELIMITATIONS 

In the investigation of this research question, the following delimitations apply. The scope is limited to 

financial statements from non-financial and non-holding Danish limited (ApS and A/S) companies 

covering the period from 2012 to 2018.  

Non-financial companies and non-holding companies are excluded for their differing asset structure 

(Christoffersen et al., 2018; Jackson & Wood, 2013; Matin et al., 2019). Denmark is chosen as a case 

study due to the elaborate database on Danish companies from the Danish Business Authority. The 

focus on limited companies (ApS and A/S) primarily stems from the limited availability of financial 

information on other legal company structures such as sole proprietorships. The delimitation of the 

period from 2013 to 2018 is partly limited by data availability where the lower boundary signifies the 

general introduction of digitized financial statements in 2013 and the upper boundary is limited by the 

methodological choice of categorizing companies as financially distressed if they declare bankruptcy 

within a period of two years. Logically, we cannot categorize companies as not financially distressed 

before the two-year period has passed, which excludes financial statements from parts of 2018, all of 

2019 and 2020.5  

  

 

4 An introduction to the formal definition with examples can be found in section 6.2.3.2. 
5 For a more elaborate explanation of the delimitations, see Section 6, Methodology. 
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2.2 STRUCTURE OF THE THESIS 

As a guide to the reader, the following provides an overview of the structure of the thesis and the main 

topics covered in each section. 

Immediately following the introduction, the Literature Review presents definitions, a brief history of 

the academic literature on financial distress prediction and the models developed historically, an 

introduction to academic literature on FDP in Denmark, and an introduction to the contemporary 

practical FDP-approach of the largest bank in the Nordics, Nordea. Lastly, the discussed academic and 

practical approaches are discussed in relation to the methodology of this thesis. 

The section Theory gives a brief introduction to the field of machine learning and provides the reader 

with a foundational introduction to the models. Specifically, it introduces the models: linear 

discriminant analysis, logistic regression, and gradient boosted trees. It also introduces concepts such 

as boosting, gradient boosting, metrics for evaluating predictive models, etc. 

The Data is briefly introduced, outlining the two databases employed in this thesis, the permanent and 

the financial statements (FS) databases. The first contains “fundamental” company information such as 

name, address, foundation date, and, most importantly, a potential cessation date. The latter contains 

all financial statements in an .xml-format for machine-readability.  

The subsequent section, Methodology, provides an overview of the following methodological 

considerations: First, the philosophy of science-foundation and research design is described followed 

by an outline of the data pipeline, including the acquisition, cleansing, and general preparation of data 

from the permanent and FS databases, and then the merging of these two data sources. Lastly, once the 

data has been prepared for analysis, the data analytics section outlines the methodological steps in the 

application of the models, splitting, model training, grid search, cross-validation, and model evaluation.  

The Results section presents the AUC-scores of the seven models and visualizes the model ROC-curves. 

Discussion presents the various data and model limitations such as erroneous data and inter-dataset 

comparisons. Then, two sparse models are operationalized using optimized thresholds, and the costs of 

using these models are calculated. Following this, the McNemar test is performed to test whether the 

two sparse models are significantly similar. Lastly, areas for future work are discussed.  

Lastly, the thesis is wrapped up in the Conclusion, presenting the main findings, answering the research 

question, and presenting potential impacts. 
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3 LITERATURE REVIEW 

The following literature review outlines notable existing literature on financial distress prediction 

(FDP). First, it includes some definitions relating to the area of FDP. Then, it outlines a brief history of 

the data-driven methodologies undertaken to predict financial distress. Following this, it presents two 

notable contemporary papers on financial distress in Denmark on which this thesis draws inspiration 

from and uses the same data foundation. Then, a brief introduction to the practical implementation of 

FDP-models in Nordea, the largest Nordic bank. Lastly, the academic literature and its relation to the 

thesis are presented. 

3.1 DEFINITIONS 

3.1.1 FINANCIAL DISTRESS 

Financial distress can generally be understood as something that degrades a company’s profitability 

considerably. However, since different countries have different accounting procedures and sometimes 

vastly different legal frameworks, to date there is no unified definition of what constitutes financial 

distress (Tang et al., 2020, p. 4). Despite a lack of unified definition of financial distress, several 

country-specific studies make use of the legal status bankrupt as the outcome of financial distress – 

however, what exactly must be triggered in a company to declare bankruptcy also differs from country 

to country, but it generally relates to the inability of companies to meet their financial obligations 

(Bhimani et al., 2014; Charitou et al., 2008, p. 154). This paper uses the declaration of bankruptcy as a 

proxy for having been in financial distress. More precisely, a company is considered financially 

distressed in the period spanning from two years prior to the act of declaring bankruptcy to the act itself, 

similar to Christoffersen (2018) and Matin et al. (2019).6  

In the Danish context, a company is financially distressed if the company has one of the following legal 

states within a period of two years: Bankrupt, in bankruptcy, compulsory dissolved, or under 

compulsory dissolvement. 7  This classification is in accordance with other academic literature on 

financial distress (prediction) of Danish companies, e.g., Christoffersen (2018) and Matin et al. (2019). 

3.1.2 FINANCIAL DISTRESS PREDICTION 

Financial distress in companies have serious ramifications, not only for the business itself, its owners, 

and its employees, but also for its business environment such as creditors, partner companies, the supply 

chain in which the company is located, the customers, etc. For creditors, such as banks, business 

partners, and other parties in the supply chain, a loan default entails that the debtor is unable to make 

 

6 The chosen window size differs among scholars for different reasons, with prediction windows ranging from 1 to 5 years. 

This thesis chooses two years specifically to follow the scholarly approaches in Denmark. 
7 In Danish: Konkurs, under konkurs, tvangsopløst, and under tvangsopløsning. 
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its payments on time – which then might lead to insolvency and then start the legal process of declaring 

for bankruptcy, which can lead to deteriorating liquidity of affected creditors, and in the worst case start 

a bankruptcy ripple effect. For more than half a century, scholars have researched this topic,8 and 

specifically the ability to predict the financial distress of companies, known as Financial Distress 

Prediction (FDP) (Sabela et al., 2018; Sun et al., 2017; Tang et al., 2020; Xin & Xiong, 2011; 

Zmijewski, 1984, etc.). 

3.2 A BRIEF HISTORY OF FINANCIAL DISTRESS PREDICTION 

The field of financial distress prediction encompasses many different approaches developed over the 

years. The following provides a brief history of the academic literature on financial distress prediction 

that are based on quantitative methodologies, which excludes theoretical models of financial distress 

where the academic focus is on the causes of bankruptcy. Interested readers are referred to Crouhy et 

al. (2000) for an introduction to the most prominent historical theoretical models. 

The field of (quantitative) financial distress prediction has developed considerably over the past half-

century since Beaver (1966) – who is generally considered the pioneer within the field of FDP (Charitou 

et al., 2008; Jones et al., 2017; Mai et al., 2019) – performed univariate financial ratio analyses on 

financial statements (Beaver, 1966; Jackson & Wood, 2013). Methodologically, Beaver calculated the 

mean value, dispersion around the mean, and skewness of different financial ratios for both failed and 

non-failed companies, to investigate the predictive power of univariate discriminant analysis (UDA). 

A univariate discriminatory model uses a single value – here a financial ratio – to categorize companies 

into either non-failed or failed in a discriminative manner, i.e., a dichotomous univariate t-test (Gottardo 

& Moisello, 2019).  

As outlined in Figure 1a, Beaver’s (1966) cash flow to total debt ratio illustrates the discriminatory 

power of a single financial ratio one year prior to bankruptcy. Specifically, he identifies a certain cut-

off point on the cash flow to total debt dimension. All companies below this threshold are classified as 

failed while the companies above the threshold are labeled non-failed. The ability to discriminate 

between the two classes lessens as the prediction window increases, which is outlined in Figure 1b by 

the large overlap between non-failed and failed firms using a five year window. This methodology 

builds on the work of Paul FitzPatrick (1932) who found that there are significant ratio differences at 

least three years prior to failure and Smith & Winakor (1935) who found “a marked deterioration in the 

mean values with the rate of deterioration increasing as failure approached” (Beaver, 1966, p. 81). 

 

8 See Aziz & Dar (2006) for a review of the historical literature. 
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Figure 1 – One of Beaver’s (1966) univariate discriminatory models that displays the relative frequency of failed companies (dotted line) 

and non-failed companies (solid line) on the vertical axis, for all cash flow to total debt ratios (horizontal axis). Figure 1a (left) shows the 

predictions of failed companies when predicting one year ahead, Figure 1b (right) predicts five years ahead (p. 92)  

Following the seminal work of Beaver (1966) on univariate discriminant analysis (UDA) using financial 

ratios, several scholars turned to linear discriminant analysis (LDA), which employs more than a single 

financial ratio.9 One of the best known examples of LDA in the academic literature is the Z-score 

developed by Altman (1968) based on 91 American manufacturing corporations (Jones et al., 2017), 

which followed Fisher’s (1936) formulation of the linear discriminant that attempts to find a linear 

combination of features that separates two or more classes of objects or events. Specifically, Altman’s 

Z-score relies on five financial ratios: Working Capital/Total assets (𝑥1), Retained Earnings/Total 

Assets (𝑥2), Earnings Before Interest and Taxes/Total Assets (𝑥3), Market Value Equity/Book Value of 

Total Liabilities (𝑥4), and Sales/Total Assets (𝑥5). Altman’s (1968) original estimated discriminant on 

American manufacturing companies is 

 𝑍 = 0.012𝑥1 + 0.014𝑥2 + 0.033𝑥3 + 0.006𝑥4 + 0.999𝑥5 (1) 

For both UDA and LDA, the non-failed or failed classification is based on thresholds. While UDA 

utilizes the threshold of a single financial ratio, LDA (such as the Z-score) utilizes several ratios. 

However, where the UDA approach undertaken by Beaver (1966) specifies a single cut-off point that 

classifies companies into one of two categories, Altman’s (1968) Z-score categorizes into three 

categories. For the estimated model in equation 1 above, companies with a Z-score greater than 2.99 

are categorized as non-bankrupt, companies with a Z-score below 1.81 as bankrupt, while the interval 

from 1.81 to 2.99 denote the zone of ignorance or a so-called gray area. Due to its simplicity, ease of 

interpretability, and its seemingly good predictive power, the Z-score model gained proponents both 

inside and outside the academic field, e.g., from financial institutions.  

Following the introduction of LDA-models in FDP, of which the Z-score is prototypical, several 

scholars focused their attention to conditional probability models, e.g., linear probability models, probit, 

 

9 Often, literature uses the term multiple discriminant analysis. However, this is simply a generalized form of LDA for 𝑁 

possible classes. 
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and logit (Aziz & Dar, 2006) – of which the latter has been prevalent in the literature (Aziz & Dar, 

2006; Charitou et al., 2008; Hamer, 1983). Ohlson (1980) was the pioneer of using the logit model 

(logistic regression) for FDP while Zmijewski (1984) was the pioneer of the probit model for FDP 

(Balcaen & Ooghe, 2006). These new methodological developments partly arose from criticism of the 

Z-score model (Johnson, 1970; Joy & Tollefson, 1975; Moyer, 1977), including using information for 

bankruptcy prediction that did not become available until after the event of bankruptcy (Ohlson, 1980, 

p. 113),10 and partly from a violation of the underlying statistical assumptions in LDA when predicting 

financial distress (Balcaen & Ooghe, 2006, p. 86; Tang et al., 2020),11 e.g., assumptions of multivariate 

normality, homoscedasticity, linearity, no outliers, etc. 

In addition to the purely statistical models in FDP outlined above, scholars increasingly started to focus 

on artificially intelligent expert systems (Aziz & Dar, 2006; Suntraruk, 2010), the first of which was 

introduced in 1977 by Jerome Friedman (1977) to perform FDP using recursively partitioned decision 

trees. Later, scholars have also utilized neural networks and many other types of machine learning (ML) 

algorithms to perform FDP (Aziz & Dar, 2006, p. 21). Recent studies have shown high performance of 

deep learning models in FDP, e.g., deep neural networks and deep dense multilayer perceptron 

(Alexandropoulos et al., 2019; Mai et al., 2019 as cited in Tang et al., 2020). Tsai et al. (2014) further 

find that ensembles (a collection of models) of ML classifiers tasked with FDP outperform other 

approaches. They observe that boosted decision tree ensembles both outperform other classifier 

ensembles such as both boosted and bagged support vector machines and neural networks and 

outperform single ML-classifiers (p. 983). 

A considerable amount of the academic literature presents empirical evidence that artificially intelligent 

expert systems (AI) – or more accurately ML, the subset of AI that deals with how AI-systems “learn” 

– to be superior to traditional statistical models in the task of FDP (Aziz & Dar, 2006; Jabeur & Fahmi, 

2018; Jones et al., 2017; Kuldeep & Sukanto, 2006; Tang et al., 2020). Specifically, Jones (2017) finds 

that new age statistical learning models, i.e., ML-models, are better on three factors: (1) they are better 

predictors of financial distress than other classifiers both on cross-sectional and longitudinal test sets; 

(2) they are relatively easy to estimate and implement, e.g., requiring minimal work for data preparation, 

variable selection, and model architecture specification; and (3) that while the model architecture itself 

can be relatively complex there is a good level of interpretability through metrics such as relative 

variable importances. 

While several other scholars have found ML-models to be good predictors generally, there is still a push 

in the academic literature to enhance ML-model interpretability (Hall & Gill, 2019; Lipton, 2018), 

 

10 Known as information leakage (David, 2019). 
11 See Büyüköztürk & Çokluk-Bökeoǧlu (2008) and Tabachnick & Fidell (2000). 
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which – for certain models – can be unclear. However, as argued by Hyndman & Athanasopoulos 

(2018) on forecasting: depending on the circumstances, “the main concern may be only to predict what 

will happen, not to know why it happens”. Similarly, Jones (2015) argue that the benefit of using 

complex nonlinear (and non-interpretable) classifiers should be improved predictive powers over 

simpler models (p. 73). Both Jones (2015), Hyndman & Athanasopoulos (2018), and other scholars 

propose that if easily-interpretable models have comparable results to more complex models, the 

simpler and more parsimonious method should be utilized. 

3.3 FINANCIAL DISTRESS PREDICTION IN DENMARK 

Scholars throughout the world have successfully applied various forms of ML-models due to their 

seemingly predictive superiority over traditional statistical models (see Aziz & Dar, 2006 for a historical 

overview), notable examples include Tang et al. (2020) and Sun et al. (2014, 2017) on Chinese 

companies, Jones et al. (2017) on American companies, Zięba et al. (2016) on Polish companies, and 

Christoffersen et al. (2018) and Matin et al. (2019) on Danish companies. 

Compared to many other FDP-studies throughout the world that focus on large publicly traded 

companies, the Danish Business Authority provides the general public with access to a large database 

of financial statements from both listed and non-listed companies through the Danish Business 

Authority API (Virk.dk, 2020a).12 In Denmark, both Christoffersen et al. (2018) and Matin et al. (2019) 

use this database13 and prepare a dataset of financial statements from non-financial and non-holding 

companies, which includes 50 numerical financial ratios. In addition,  Matin et al. (2019) use textual 

data from auditors’ reports and managements’ statements available in financial statements. 

Both Christoffersen et al. (2018) and Matin et al. (2019) utilize the same dataset. However, due to the 

different methodological deliberations on the inclusion of textual data, Christoffersen et al. (2018) use 

a dataset spanning from 2003 to 2016, encompassing 1.3 million financial statements from 198,929 

unique companies, of which 43,674 entered into a distress period at least once (p. 12). Matin et al. 

(2019) use financial statements from Danish non-financial and non-holding companies, but filter the 

data on the period from 2013 to 2016 to include text data from auditors and management, which is not 

available digitally prior to 2013. The latter dataset then encompasses 278,047 financial statements from 

112,974 unique companies with 8,033 distresses (p. 201). Both find that the ML-model gradient boosted 

trees perform better than benchmarks. Matin et al. (2019) additionally find that a neural network that 

includes auditor reports has better prediction power than gradient boosted trees with purely financial 

ratios. 

 

12 See Section 5.1 Dataset Description and https://datacvr.virk.dk/data/ 
13 However, rather than using the public API, both papers use cleansed and extracted data provided by Bisnode and Experian. 

https://datacvr.virk.dk/data/
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3.4 COMPANY OWNERSHIP DEFAULT RISK 

The predictive value of incorporating companies’ current owners’ previous company bankruptcies in 

FDP-models seem to be an underdeveloped point in the academic literature, e.g., the impact of serial 

failers that are repeatedly involved in (or perhaps even cause) company bankruptcies. To the best of the 

authors knowledge, there have not been any studies on this area. However, there have been “serial” 

bankruptcy studies on a company-level, e.g., the post-bankruptcy performance of reorganized 

companies (Hotchkiss, 1995). There have similarly been numerous studies on corporate governance 

and the impact of ownership concentration on company performance (Daily & Dalton, 1994a, 1994b; 

Deng & Wang, 2006; Donker et al., 2009; Lajili & Zéghal, 2010; Mangena & Chamisa, 2008; 

Manzaneque et al., 2016).  

3.5 FINANCIAL DISTRESS PREDICTION IN PRACTICE  

From a collaboration between the authors and Nordea, it is clear that financial distress prediction (and 

more generally credit scoring) are used extensively in the practical world as well. Nordea – and 

presumably banks overall – have credit scoring as an integral part of their business and, as a result, 

developed it as an integrated process. The following briefly and superficially14 outlines the workings of 

an in-house credit analysis tool used at Nordea, which to some extent is assumed to generalize to other 

banks. 

Nordea’s in-house credit analysis tools for assessing the risk of companies going into financial destress 

uses publicly available financial company data provided by a vendor. Most of this data is equivalent to 

the information contained in the database from the Danish Business Authority (Appendix 11.1, 13:20). 

Despite the fact that most of the data acquired comes from financial statements, Nordea relies on 

qualitative data as well, which could potentially include information on whether the borrowers have 

defaulted before, years of experience of the board or owners, previous success stories, attitude, or any 

other type of qualitative information. However, the content of the qualitative information provided is 

unknown to the authors and could encompass other aspects entirely. 

Regardless, this qualitative aspect indicates that non-financial data is used in a qualitative manner to 

assign credit scores and calculate the probability of financial distress – or more specifically, loan 

defaulting. However, Nordea stresses that the qualitative aspect only constitutes a small part of the full 

risk score, and that the primary focus is put on key quantitative financial ratios. In the case of Nordea, 

the model does not produce direct probabilities15  like several models developed in the academic 

literature, but instead provides a credit grade ranging from zero to seven. Here, it is indicated that the 

 

14 Superficial largely due to proprietary information that Nordea could not disclose. 
15 At least not for the end-user. 
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qualitative data at most impact the quantitative score by one grade (Appendix 11.1, 13:20; 16:50). In 

the case of Nordea, the credit scoring process appears relatively streamlined. Consequently, the 

development of better FDP-models could potentially be easily implemented in banks in general, 

showing a certain transferability of academically developed models to practical processes.  

3.6 RELATION TO THE THESIS 

As outlined above, financial distress, and FDP specifically, has received much interest for more than 

half a century. This thesis includes three benchmark FDP-models from the academic literature: an LDA-

model, a conditional probability model (logistic regression), and an ML-model. Specifically, a re-

trained Altman Z-model is included due to its long-standing popularity both academically and from 

practitioners. Despite its later decrease in popularity (Dimitras et al., 1996), it is frequently used a 

baseline-model (Altman & Narayanan, 1997; Balcaen & Ooghe, 2006, p. 64). The logistic regression 

(LR) model is included as the conditional probability model due to its (general) predictive superiority 

over LDA-models, its general usage in banks and financial institutions today,16 and its historically high 

academic interest (Aziz & Dar, 2006). Lastly, this paper incorporates an ML-model with gradient 

boosted trees due to both its novelty and general predictive superiority over previous FDP-models (Tsai 

et al., 2014). Additionally, gradient boosted trees have been successfully applied in a Danish context 

for FDP in Christoffersen et al. (2018) and Matin et al. (2019).17 

As this paper investigates the potential increased predictive ability of including a company ownership 

default risk (CODR)-variable 18  in FDP of Danish companies, it uses the methodological FDP-

considerations in Christoffersen et al. (2018) as the academic foundation – and to some extent Matin et 

al. (2019). Specifically, this paper uses a similar dataset with a similar set of financial ratios as 

Christoffersen et al. (2018), but with CODR added as a feature. 

  

 

16 Nordea alluded to the use of logistic regression for credit scoring, but it was not be confirmed as it is proprietary information. 
17 While Christoffersen et al. (2018) compare gradient boosted trees to statistical models, Matin et al. (2019) use gradient 

boosted trees as a benchmark to their convolutional recurrent neural network. 
18 See section 6.2.3.1 on page 42 for an introduction to CODR. 
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4 THEORY 

This section introduces the theories that form for foundation for the later sections. Specifically, three 

models are introduced, i.e., linear discriminant analysis (LDA), logistic regression (LR), and gradient 

boosted trees (GBT). Then, the process of hyper-parameter tuning is introduced, followed by a section 

on model scoring. 

4.1 A BRIEF INTRODUCTION TO MACHINE LEARNING 

Geron (2017) defines machine learning as “the science (and art) of programming computers so they can 

learn from data”. This very simple definition gives the notion and idea of where the name “machine 

learning” origins. While this provides a general introduction to machine learning, this thesis uses a more 

specific definition given by Borovcnik et al. (2012), i.e., “a set of methods that can automatically detect 

patterns in data, and then use the uncovered patterns to predict future data”, since this definition better 

explains the inner workings of ML and its applications.  

Machine learning can generally be categorized into four distinct subsets: supervised, unsupervised, 

semi-supervised, and reinforcement learning. In the following, we introduce supervised learning based 

on its relevancy to the thesis and refer to Geron (2017) for an introduction to the other approaches (for 

a brief introduction to unsupervised learning, see Appendix 2). 

4.1.1 SUPERVISED LEARNING 

Supervised machine learning is the subset of machine learning in which models are trained using known 

outcomes. In machine learning, this outcome is known as the target or the label. The target can be both 

continuous (as in predicting the revenue of a company) or categorical (as in financial distress or no 

financial distress). As an example, Figure 2 outlines a snippet of the dataset used in this thesis, showing 

six predictor features (columns) for five annual statements and a feature with the target values, where 

1 represents financial distress and 0 no financial distress. Thus, the company represented in the third 

row went bankrupt within two years from the date of publication of this financial statement. 

 

Figure 2 – Example data for supervised machine learning 



Copenhagen Business School Predicting Financial Distress May 15, 2020 

 

  Page 17 of 84 

 

Supervised machine learning is either a classification task or a regression task. Classification is the task 

of classifying a data point into exactly one pre-defined class,19 e.g., financial distress/no financial 

distress, but can also be expanded to multi-class classifications e.g. in the case of classifying an industry, 

e.g., retail/insurance/agriculture. Regression is the task of predicting a continuous value. This thesis 

uses classification as the target variable belongs to exactly one of two classes. 

Supervised models learn by tuning their parameters according a given objective function. A model’s 

parameters are the internal variables of a model that, when adjusted, will change the behavior of the 

model. Typically, the objective function holds a loss function and a regularization term, although the 

latter is often not used. The loss function determines the penalty that is given to an instance when fitting 

a model, based on the errors that the fit creates. In order not to overfit the model, a regularization term 

can be added in the objective function, which penalizes complex models and lead to the creation of 

simpler models (Fawcett & Provost, 2013). The goal of the machine learning model is then to optimize 

(maximize or minimize) the objective function by changing the internal parameters, known as the 

training phase. Once a model has been trained, i.e., once the objective function is optimized, the trained 

model can then use the “learned” patterns to predict the label of a new set of data. To ensure proper 

training and test the ability of a model to generalize, the model is tested on new and unseen data, and 

its performance measured by comparing the predictions to the actual labels. Figure 3 shows the training 

and the test phase. 

 

Figure 3 – A visualization of the training and the test phase that supervised machine  

learning models undergo, from Herlau et al. (2018).  

In the training phase, the model takes training data as input, it trains the model using the objective function, and then it returns a fitted 

model. In the test phase, the model is then tested on new unseen data and is then evaluated using the preferred scoring metric. 

  

 

19 Multi-label classification enables data points to be classified into more than one class. 
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4.2 MODELS 

4.2.1 LINEAR DISCRIMINANT ANALYSIS 

Linear discriminant analysis (LDA) is a method historically used for classification, which the Altman 

Z-score for financial distress prediction is developed on (Altman, 1968; Aziz & Dar, 2006). For two 

classes, LDA reduces the feature space of a dataset into a single line. On this line, a threshold can be 

specified where data points above the threshold are classified into one particular class and data points 

below the threshold to another class. As put by Tan et al. (2006), the purpose of LDA is to find “a linear 

projection of the data that produces the greatest discrimination between objects that belong to different 

classes”. As an example, imagine a dataset consisting of two classes as outlined by the two circles in 

Figure 4 below. 

  

Figure 4 – LDA example 

The two classes are projected following the dashed lines. Figure 4a shows two projections: onto the line with maximum distance between 

the means and onto the line with minimum scatter. Figure 4b shows a better projection with discriminatory power that minimizes scatter 

while maximizing the distance between the class means. Note the threshold on the prediction line 

In Figure 4, there are two classes indicated by the two oval circles plotted using two features from the 

dataset. The objective of LDA is to find a line that, when all the data points are projected directly onto 

it, maximizes the distance between the means of the two classes and minimizes the scatter within each 

class. This discriminant is visualized in Figure 4b. More formally, LDA seeks to maximize the 

following for classes 𝑖 and 𝑗: 

 maximize 
(𝜇𝑖 − 𝜇𝑗)

2

𝑠𝑖
2 + 𝑠𝑗

2  (2) 

Where 𝜇𝑖 is the mean of class 𝑖, and 𝑠𝑖
2 is the scatter of class 𝑖, i.e. for a given class: 

 scatter = ∑(𝑥𝑖 − 𝜇)2

𝑁

𝑖=1

 (3) 

Where 𝑁 is the number of samples, 𝜇 is the class mean, and 𝑥𝑖 is the projected value of data point 𝑖. 

Once the line that maximizes equation 2 has been found, the projected line can be described 

formulaically using the original features (like the Altman Z-score formulation), then a threshold can be 

specified for classification purposes, which is represented by smaller solid line perpendicular to the 

linear discriminant in Figure 4b above.  
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4.2.2 LOGISTIC REGRESSION 

Logistic regression (LR) is a conditional probability model and is one of the best-known classifiers. It 

is widely used due to its simplicity and interpretability. LR is an extended version of linear regression 

that produces probabilities, which can be used for classification. To explain the relation and benefits of 

using LR for financial distress classification over linear regression, consider the linear probability 

model in Figure 5 below (a linear probability model is a linear regression where the dependent variable 

takes the value 0 or 1). 

 

Figure 5 – Linear probability model, from Herlau et al. (2018) 

As visualized above, the linear probability model seems to be able to differentiate between the two 

classes, negative and positive. However, the regression line far exceeds the range from 0 to 1, which 

entails that it cannot be used for probabilities since probabilities should range from 0 to 1. In fact, the 

linear probability model can produce results from −∞ to ∞ linearly which is undesired. In comparison, 

LR produces values between 0 and 1 (see Figure 6). 

 

Figure 6 – Logistic regression, from Herlau et al. (2018) 

In order to “squeeze” the output range from [−∞, ∞] to [0,1], LR uses the following sigmoid function. 

 𝑝(𝑦 = 1|𝑥) = 𝜎(𝑧) =
1

1 + 𝑒−𝑧
 (4) 
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Where 𝑝(𝑦 = 1|𝑥) is the output probability that 𝑥 belongs to class 𝑦 = 1. Thus, the sigmoid function, 

𝜎(𝑧), converts any input 𝑧 in the range [−∞, ∞] to [0,1]. Here 𝑧 is defined as 

 𝑧 = log
𝑝(𝑥|𝑦 = 1)𝑝(𝑦 = 1)

𝑝(𝑥|𝑦 = 0)𝑝(𝑦 = 0)
 (5) 

Which should be read as the log-odds that a data point 𝑥 belongs to class 1. The above relies on Bayes 

Theorem, which is outside the scope of this section (interested readers are referred to Herlau et al. 

(2018)). Since the sigmoid function 𝜎(𝑧) converts the log odds that a data point, 𝑥, belongs to class 1, 

𝑦 = 1, into a probability between 0 and 1, a classification threshold can be used to classify data points. 

For a threshold 𝑡, the model will classify data point 𝑥 as the predicted class �̂� using the following logic. 

�̂� = {
1 if 𝑝(𝑦 = 1|𝑥) ≥ 𝑡

0 otherwise
 

However, in order to classify different data points, the model must be trained first. The LR is trained 

by minimizing the cost 𝑐 based on the model weights 𝜃. For one sample the cost is defined as 

𝑐(𝜃) = {
− log(𝑝(𝑦 = 1|𝑥))           𝑦 = 1

− log(1 − 𝑝(𝑦 = 1|𝑥))   𝑦 = 0
 

As an example, if the true label of 𝑥1 is 1 but the predicted probability 𝑝(𝑦 = 1|𝑥1) = 0.2. The cost of 

this prediction is 𝑐(𝜃) = − log(0.2) ≈ 0.7. The cost is then averaged over all instances to find the 

overall cost of the weights. This cost is then calculated for different sets of weights, and the weights 

that minimize the cost are chosen.20 

4.2.3 GRADIENT BOOSTED TREES 

Compared to LR and LDA that are single-model classifiers, gradient boosted trees (GBT) is an 

ensemble of decision tree classifiers. Before introducing the GBT-model itself, important parts that 

make up GBT are introduced, including decision trees, ensemble learning, boosting, and lastly the 

variant of GBT used in this thesis, XGBoost. 

4.2.3.1 DECISION TREES 

A decision tree follows a divide and conquer approach in a tree-like structure with the objective to 

maximize class purity in leaf nodes for classification purposes.21 To illustrate the model, consider 

Figure 7 below. 

 

20 In statistics this is known as the maximum likelihood estimate 
21 Decision trees can also be used for regression tasks, we refer to Han et al. (2012). 
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Figure 7 – Decision Tree Example, from Han et al. (2012)  

Decision tree on whether a customer is likely to purchase a computer at a retail store. 

Here the objective is to classify whether a customer in a retail store will purchase a new computer or 

not, based on Boolean logic (yes/no answers), e.g., whether the customer is youth/middle-aged/senior, 

student/non-student, or has an excellent/fair credit rating. In this decision tree, all customers start at the 

root node, i.e., age (the later paragraphs outline how the structure of the tree is established). At the root 

node each customer is evaluated based on this single criterion. Since all customers that are middle aged 

purchase computers (meaning that the resultant node is pure), the tree terminates at the leaf node and 

all customers that followed this decision path, are classified as yes (likely to purchase a new computer). 

For the other customers, however, the path continues until a potential pure leaf is reached. All paths 

result in a leaf node (a classification), but it is quite likely that not all leaf nodes are pure. 

Decision trees are constructed such that any given split seeks to maximize the purity gain of the resulting 

nodes. First, both the feature of the root node and the corresponding split of this feature is decided. This 

decision is based on two factors: (1) how pure the resulting classes are (maximizing purity of the 

resultant nodes) and (2) how balanced the question is (maintaining balanced subsets, so the split is not 

too specific). Then each subsequent node is decided on the next-best split, third-best split, etc. in a 

recursive manner until a stopping condition is reached or when the purity of the resulting nodes cannot 

be improved anymore. 

More formally, the impurity, 𝐼, of the dataset at the root, 𝑟, is calculated, 𝐼𝑟. Then, the impurity, 𝐼, of a 

split on feature 𝑘 and threshold 𝑡𝑘 is calculated as 

 𝐼(𝑘, 𝑡𝑘) =
𝑚𝑙𝑒𝑓𝑡

𝑚
𝐼𝑙𝑒𝑓𝑡 +

𝑚𝑟𝑖𝑔ℎ𝑡

𝑚
𝐼𝑟𝑖𝑔ℎ𝑡 (6) 

Where 𝑚 is the total instances used for the current split, 𝑚𝑙𝑒𝑓𝑡/𝑟𝑖𝑔ℎ𝑡 is the instances in the left/right 

nodes after the split, and 𝐼𝑙𝑒𝑓𝑡/𝑟𝑖𝑔ℎ𝑡  is the impurity of the left/right nodes. Comparing the impurity 

before the split with the impurity after the split enables the calculation of the purity gain Δ, which 

decision trees seek to maximize. It can be formulated as 
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 maximize Δ = 𝐼𝑟 − 𝐼(𝑘, 𝑡𝑘) (7) 

Then, once the purity gain has been maximized, the decision tree is split into the corresponding nodes, 

where each node now acts as root nodes from which a new purity gain is considered. 

There are several impurity measures that can be employed for different purposes. The most common 

methods for measuring the impurity are Gini and Entropy, of which the following outlines the former. 

Formally, the Gini of a node 𝑖 is formulated as 

 𝐺𝑖 = 1 − ∑ 𝑝𝑖,𝑐
2

𝑛

𝑐=1

 (8) 

Where 𝑝𝑖,𝑐 is the ratio of instances of class 𝑐 in node 𝑖. As an example, consider the following (left) 

node with a total of seven instances, with six instances of the class financially distressed and one 

instance of the class not financially distressed. The Gini impurity of this node is calculated as  

 𝐺𝑙𝑒𝑓𝑡 = 𝐼𝑙𝑒𝑓𝑡 = 1 − (
6

7

2

+
1

7

2

) ≈ 0.24 (9) 

If the other (right) resultant node included five financially distressed and five non financially distressed 

companies, a total of 17 instances have been split into the left and right nodes. Then, calculating the 

Gini impurity, 𝐺𝑟𝑖𝑔ℎ𝑡 = 𝐼𝑟𝑖𝑔ℎ𝑡 gives the following resultant Gini impurity of the overall split 

 𝐼(𝑘, 𝑡𝑘) =
7

17
∗ 0.24 +

10

17
∗ 0.50 ≈ 0.39 (10) 

Calculating the Gini purity gain, Δ using the root Gini impurity, 𝐼𝑟 gives the following 

 Δ = 𝐼𝑟 − 𝐼(𝑘, 𝑡𝑘) = [1 − (
11

17
)

2

+ (
6

17
)

2

] − 0.39 ≈ 0.71 − 0.39 ≈ 0.31 (11) 

Thus, the purity gain for this split is Δ ≈ 0.31. If this split maximizes the Gini purity gain considering 

all features and thresholds, the split is created and recursively done so for the subsequent nodes. 

Following the above logic, a decision tree can be built, trained, and used for prediction of new data. 

Compared to other ML-models, decision trees are considered white box models as the level of 

interpretability is high (Pedregosa et al., 2011). Specifically, the prediction of new data samples is based 

on Boolean logic in splits that clearly indicate how the label for a given data sample is predicted. 

4.2.3.2 ENSEMBLE LEARNING 

The concept of ensemble learning comes from the idea that a group of predictors, called an ensemble, 

performs better than single predictors. One example of an ensemble is a random forest, which is a 
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collection of decision trees – each trained on random subsets of the training data. The decision trees are 

then combined into one predictor such that the majority vote of the individual decision trees is predicted. 

While random forest is a combination of the same type of classifier, ensembles can also be a 

combination of different types of models. 

4.2.3.3 GRADIENT BOOSTING 

One powerful technique within ensemble learning is the concept of boosting, where several weak 

learners (model that predict just slightly better than random guessing) are combined into one strong 

learner by training them sequentially. Here, sequential learning is the process of training a weak model, 

after which a subsequent predictor attempts to weakly adjust the incorrect predictions made by the first 

predictor, then a third predictor is added that adjusts errors made by the first two models, etc., until a 

sequential ensemble of weak learners is created. Sequential weak learning is computationally easy and 

therefore enables training many models.  

There are different approaches to boosting. Two of the more common approaches are AdaBoost and 

gradient boosting, of which a variant of the latter is used in the GBT-model. Specifically, gradient 

boosting boosts the residual errors of the previous predictor (compared to AdaBoost that boosts 

weights). Specifically, for each model after the first weak learner, a predictor is fitted to the residual 

errors of all the previous models, and then added to the ensemble. Gradient boosting is often performed 

using decision trees as weak learners since they are computationally efficient, known as boosted trees.  

To exemplify the process of boosted trees, consider Figure 8 below. Here, the top left corner illustrates 

the original data points and overlaid with the single trained decision tree on the green line. The 

predictions of this decision tree are then shown in the top right side on the red line (which are the same 

as the green fitted line to the left). Following this, on the middle left, a new weak decision tree is fitted 

on the residuals of the first tree, and when combined with the previous learner on the original data they 

produce the predictions on the middle right. Lastly, a third weak learner on the bottom left is fitted to 

the residual errors of the two previous sequential models, combined, and finally predicts the output on 

the bottom right. 
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Figure 8 - Example of gradient boosting on decision tree regressors, from Geron (2017) 

4.2.3.4 XGBOOST  

XGBoost (XGB) is an acronym for Extreme Gradient Boosting developed by Chen & Guestrin (2016). 

As the name implies, XGB is a gradient boosted model that uses decision trees. The primary advantages 

of XGB over other models is its high execution speed and excellent performance, with over a factor 4 

performance gain over comparable gradient boosted models (Chen & Guestrin, 2016). Consequently, it 

has been a top performer of various data science competitions for these reasons and due to a support for 

sparse datasets (missing values) and good imbalance handling (Brownlee, 2018). These features provide 

a solid foundation for XGB as an FDP-model due to large sparse datasets (which LDA and LR cannot 

handle) and an accented class imbalance between financially distressed companies and non-financially 

distressed companies. Further, there are several technical implementations in XGB that speed up 

computational performance, e.g., cache access patterns, data compression, sharding, etc., which are 

quite technical areas that are outside the scope of this thesis.  

4.3 HYPER-PARAMETER OPTIMIZATION 

Hyper-parameters are model parameters that are not directly learnt from data. Instead, hyper-parameters 

are specified prior to model estimation and decide how an ML-model should learn. For example, the 

hyper-parameters on decision trees include the maximum depth of a tree, the minimum number of 
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samples required to split an internal node, the maximum number of features to consider for a split, the 

function for measuring the quality of a split, etc. Hyper-parameters can have significant impact on the 

performance of a model, and it is therefore important to correctly tune these.  

While hyper-parameter tuning is an important task, it is also non-trivial and usually requires a mixture 

of rules-of-thumb and trial-and-error approaches (Brownlee, 2019). Due to the (sometimes quite large) 

number of model configurations manual trial-and-error is infeasible and is instead usually performed 

using a (standard or random) grid search of the model parameters to find the best hyper-parameters. 

 

Figure 9 – Illustration of both standard (left) and random (right) grid search, from Bergstra & Bengio (2012) 

Figure 9 (left) illustrates the concept a grid search over a two-dimensional hyper-parameter space. The 

green (top) and yellow (left) curves each illustrate the value of each hyper-parameter individually. In 

this illustration, the “green” parameter is considerably more important than the “yellow” parameter – 

however, the grid must be searched to find the peak of these curves as they are not known in advance. 

The figure also illustrates some of the drawbacks of using a standard grid search compared to a random 

search, i.e., for a standard grid search only a small subset of the individual hyper-parameter spaces is 

searched compared to a random search, as illustrated by the points on the curves in Figure 9. 

4.4 K-FOLD CROSS VALIDATION 

Before introducing cross-validation, the concept of train and test splitting is introduced.  

Once a model has been trained with data, its performance should be tested on unseen data since model 

training and testing on the same data might lead to the model simply “repeating” the labels which it has 

already seen from the training phase while being unable to predict anything useful on new and unseen 

data (Pedregosa et al., 2011). This is known as over-fitting, which partly arises from the fact that some 

machine learning implementations can capture highly complex and non-linear patterns, which might 

lead to modelling of random noise in the training data. Instead, datasets are split into training and test 

partitions as illustrated in Figure 10 below to performance-test estimated models.  
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Figure 10 – Train and test split illustration, from Pedregosa et al. (2011) 

However, due to the fact that a model’s hyper-parameters must be tuned prior to estimation and later 

performance-tested on a test set, as outlined in section 4.3 above, there is a risk that the hyper-parameter 

tuning leads to over-fitting on the test set, since the hyper-parameters can be tweaked until optimal 

performance on the test set is reached (Pedregosa et al., 2011). In other words, the information from the 

test set is said to “leak” to the training phase, violating the requirements of testing model performance 

on new and unseen data. To combat this, the training set can be further split into training and validation 

sets to enable hyper-parameter tuning without information leakage. Once training has finished and 

hyper-parameters have been optimized on the validation set, performance can be evaluated on the 

unseen test data. 

While this approach is valid, partitioning the dataset into three distinct sets does not allow for full 

training utilization of the data as the training data points are severely reduced. K-fold cross-validation 

combats this drastic sample reduction and removes the need for a distinct validation set. Instead, after 

a dataset has been split into train and test splits, the training data is used for cross-validation which 

entails splitting the training data into 𝑘 smaller sets (see Figure 11), where 1 of the 𝑘 folds is used as a 

validation set and the remaining 𝑘 − 1 sets are used as training sets. This is repeated in splits, where 

each fold iteratively is used as a validation set while the remaining 𝑘 − 1 folds are used as training sets. 

The model performance can then be averaged over all 𝑘 parts to estimate how well the model will 

perform in the future. This process can then be repeated for every combination of hyper-parameters, 

i.e., combining (random) grid search with cross-validation.22 Lastly, the best performing model with 

specified hyper-parameters is then usually re-estimated on the entire training set without cross-

validation and subsequently tested on the unseen test data for the final model evaluation (Daume, 2017, 

p. 65). 

 

22 In sci-kit learn, this is implemented through RandomizedSearchCV and GridSearchCV. 
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Figure 11 – Train and test split illustration, from Pedregosa et al. (2011) 

4.5 SCORING 

The following introduces the concept of scoring. While the above introduced the various models and 

their intricacies, their performances need to be evaluated using a suitable metric. There are many 

different metrics for evaluating classification (and regression) performance, which largely depend on 

the goal of the evaluation and whether the classes are balanced. This section visits the confusion matrix 

and the evaluation metrics accuracy, F1-score, Receiver Operating Characteristics (ROC), and Area 

Under the Curve (AUC). 

4.5.1 CONFUSION MATRIX 

While the confusion matrix itself is not an evaluation metrics, it is a useful tool for understanding the 

performance of a classification model, which provides a foundation for the later sections on evaluation 

metrics. It is built on four building blocks as illustrated in Figure 12 below (Han et al., 2012).  

 

Figure 12 - Confusion Matrix 

The four building blocks of the confusion matrix are the following: 

• True positive (TP): The number of observations that are classified as positive, and truly are 

positive.  

• False positive (FP): The number of observations that are classified as positive, but in fact are 

negative. Also known as a type I error. 



Copenhagen Business School Predicting Financial Distress May 15, 2020 

 

  Page 28 of 84 

 

• True negative (TN): The number of observations that are classified as negative, and truly are 

negative. 

• False negative (FN): The number of observations that are classified as negative, but in fact are 

positive. Also known as a type II error. 

The confusion matrix is commonly used as a tool for analyzing how well the model classifies the 

observations. A perfect model would have values only in the diagonal from the top left to the bottom 

right, with values only in the true positive and true negative cells. The confusion matrix provides a 

simple way to gauge the way in which a model misclassifies. Some of the more common metrics built 

from the confusion matrix are the following: 

𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝐑𝐞𝐜𝐚𝐥𝐥 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

𝐄𝐫𝐫𝐨𝐫 𝐫𝐚𝐭𝐞 =
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

Briefly, precision is the proportion of positive samples that are correctly classified, accuracy is defined below, 

recall is the proportion of positive samples that are classified as positive, and error rate is the misclassification 

rate, i.e., the proportion of the samples that have been classified incorrectly. Both the accuracy and error rate 

suffer from the same issues when dealing with imbalanced datasets, which are outlined below. 

4.5.2 ACCURACY 

One of the simpler evaluation metrics is accuracy, which simply is defined as the proportion of correctly 

classified samples. As outlined in the equation below, accuracy is the number of correctly classified samples 

(true positives and true negatives) divided by the total number of samples (both true and false positives and 

negatives), i.e.,  

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
# 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

# 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
=

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (12) 

However, accuracy as a measure of model performance has several important limitations. First, for highly 

imbalanced data where one class is severely underrepresented, e.g., only 1% of all cases, a model that always 

predicts the majority class, has an accuracy of 99% despite being completely unable to classify the minority 

class. Consequently, it is a poor metric for imbalanced data. Second, the importance of correctly classifying 

one (e.g., the minority class) of the classes might be higher than correctly classifying the majority class, which 

accuracy does not consider. This is true for many cases, e.g., credit fraud, tumor classification, identification 

of financially distressed companies, etc. For these cases, respectively, it is presumably more important to 

capture all cases of fraudulent activity, malignant tumors, and financially distressed companies (recall) than it 

is to incorrectly categorize non-fraudulent activity as fraudulent, malignant tumors as benign, or financially 

distressed as healthy (false positive). 
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4.5.3 F-SCORE 

The F-score (or 𝐹1) is a measure that takes the harmonic mean of the precision and recall score and combines 

them into a single score. 

 
F-score =

2

1
precesion

+
1

recall

 
(13) 

Since there tends to be an inverse relationship between precision and recall, where the increase in one normally 

results in a decrease in the other, the F-score is a commonly used substitute to the accuracy metric (Han et al., 

2012).  

4.5.4 ROC AND AUC 

While both the F-score and accuracy are commonly used metrics for classification evaluation, they both suffer 

from the same limitation, i.e., they only evaluate models at a single threshold. What this means in practice is 

that samples with a probability higher than a pre-defined threshold (usually 0.5) are categorized as positive 

and negative otherwise. From these classification, accuracy, F-score, and other metrics can be calculated. 

However, as with the case of financially distressed companies, it could be more important to classify one 

specific class correctly compared to the other class, e.g., classifying a high number of financially distressed 

companies as financially distressed (high recall) despite potentially misclassifying a higher number of healthy 

companies as financially distressed (false positive rate,  𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
). To achieve this, the threshold can be 

lowered, which results in higher recall (and usually a higher FPR). To visualize the general performance of a 

classification model, the Receiver Operating Characteristic (ROC) is used to show the false positive rate and 

recall (also known as true positive rate) for all possible thresholds, as visualized in Figure 13 below. 

 

Figure 13 – ROC Curve 

The advantage of the ROC curve is that it can be used for a cost/benefit analysis to assign the appropriate 

threshold, where each type of classification (TP, TN, FP, and FN) can be assigned either a financial cost or 

benefit, e.g., the financial benefit identifying financially distressed companies (TP), the cost of misclassifying 
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healthy companies as financially distressed (FP), etc. (Han et al., 2012, p. 374). We can thus say that the ROC 

depicts the relative trade-off between cost and benefits of a given model at different thresholds. The closer the 

ROC curve is to the upper left corner the better, whereas a curve that follows the diagonal line represents a 

model that does no better than random guessing. The ROC curve is thus an intuitive visualization of the 

performance of a model at a range of thresholds, but it is not a scoring metric. 

To convert the informative ROC curve into a scoring metrics, the AUC (Area Under the ROC Curve) can be 

calculated. As the name suggests, the AUC is simply the geometric area under the ROC curve. Visualized in 

Figure 13 above, it is calculated as the area under the ROC divided by the unit square ranging from 0-1, where 

1 represents a perfect model (that touches the top left corner), 0.5 represents a random model (the diagonal), 

and 0 represents a model that never predicts the true label (a ROC that would touch the bottom right corner). 

Although AUC does not provide as much information as the ROC graph used for deciding on a suitable 

threshold, it is a useful metric to evaluate the overall performance of a classification model (Fawcett & Provost, 

2013). Furthermore, another interpretation of AUC is the probability that a classifier ranks a randomly chosen 

positive observation higher than a randomly chosen negative observation, e.g., two financial distress prediction 

models with AUC scores of 0.71 and 0.74 indicate that the second model is 3 percentage points more likely to 

predict a higher distress probability for a random distressed firm than for a random non-distressed firm on 

average (Christoffersen et al., 2018).  
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5 DATA 

5.1 DATASET DESCRIPTION 

This paper utilizes two distinct databases from www.virk.dk that contain public data of all Danish companies. 

We have dubbed the two databases, the permanent database and the financial statements (FS) database to 

differentiate the two. 

The permanent database contains fundamental company data, i.e., name, address, starting date, status (active, 

bankrupt, etc.), potential cessation date, legal corporate form (A/S, ApS sole proprietorships, etc.), industry 

code (NACE-codes23), contact information, number of employees, associated persons/businesses (owners, 

auditors, management, etc.), signing rules, registered capital, etc. Furthermore, the database contains all 

companies’ full historical record of any changes in the above-mentioned features and the date of these changes, 

i.e., all registered changes in both dissolved and active companies (Virk.dk, 2020a). 

The FS-database contains financial statements of all Danish companies legally required to disclose such 

information. The financial information is published in one or more of three formats, i.e., .pdf, scanned paper 

reports (usually .tiff), or .xml. The latter format, .xml, follows an XBRL-structure24 and is the digitized and 

machine-readable format that this thesis uses. There is a legal requirement for companies to submit financial 

statements in both .pdf and .xml format. However, in the case of discrepancies between the file formats, the 

contents of the former prevail (Mygind, 2018b; Virk.dk, 2020b).  

 

23 See https://www.dst.dk/da/Statistik/dokumentation/nomenklaturer/dansk-branchekode-db07 
24 XBRL (eXtensible Business Reporting Language) is a standard for business and financial data (XBRL, 2020). 

http://www.virk.dk/
https://www.dst.dk/da/Statistik/dokumentation/nomenklaturer/dansk-branchekode-db07
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6 METHODOLOGY 

6.1 PHILOSOPHY OF SCIENCE 

The research design of this thesis follows the positivistic research paradigm, specifically critical realism. Using 

the hypothetico-deductive method proposed by Popper (1935), a research question is specified with a partially 

implicit hypothesis, i.e., that the inclusion of non-financial company information can impact the predictive 

power of FDP-models, which then is tested through empiricism. According to Guba (1991), this is a common 

way of conducting research in the positivistic paradigm where the ontological belief is that there is an objective 

truth and that it exists independently of the researchers studying it (Egholm, 2014; Guba, 1991). In the 

investigation of predictors for financial distress, the authors believe that there exist causal relations and patterns 

in quantitative data that may explain the nature of why companies get financially distressed, and that these 

relations exist independently of our research into the subject. Thus, this thesis seeks to investigate the objective 

truth of companies’ financial behavior through machine learning. Following the epistemological method of 

critical realism, the authors believe that evidence can support a priori hypothesis, but cannot fully confirm 

them. 

With the thoughts of Guba (1991) on the importance of experiments, this thesis seeks to conduct research in 

an objective manner and with reproducible experiments. In the research for this thesis, large quantities of 

financial and non-financial data are gathered, and machine learning experiments are created to find relations 

in the data. We attempt to conduct value free research such as to distance our subjective observations from the 

research, limiting human bias in the results. Thus, we seek to let our results derive from data provided by 

limited Danish companies without introducing biased manipulations into the data, which could invalidate the 

findings. One example of attempting to conduct value free research and limit human bias is seen when 

randomly searching the hyper-parameter space for optimal hyper-parameters.  In so doing, we ensure that the 

findings are as objective and reproducible as possible. Despite the effort to conduct value free research, human 

bias cannot be completely eliminated due to normative choices of models, parameters, and variables – all 

subjective decisions of the researcher.  

6.2 DATA PIPELINE 

As outlined in the data section, this paper utilizes two different data sources from The Danish Business 

Authority (Virk.dk, 2020b, 2020a); the permanent database containing fundamental business information and 

the FS database comprising financial statements. 

Section 6.2 outlines the data pipeline, i.e., how the data is acquired, filtered, cleansed, parsed, stored, changed, 

and finally yields the proper data format ready for analysis. Specifically, it describes how the permanent data 

is retrieved, filtered, parsed, and output to the financial statements process, which then retrieves and parses the 
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relevant financial statements. Finally, this section explains how the outputs of each database are combined to 

prepare it for analysis. The data pipeline is illustrated in the flowchart in Figure 14 below. 

 

Figure 14 – Flowchart of the data pipeline from the databases (DB) to the final dataframe. 

6.2.1 PERMANENT DATA 

6.2.1.1 DATA ACQUISITION 

To acquire the historical changes of all limited companies in Denmark, a script is created to query the 

permanent database from the Danish Business Authority (Virk.dk, 2020a) for information on all Danish limited 

companies, i.e., A/S and ApS companies. However, rather than querying and fetching all the data in the 

permanent database, the needed features are specified, including the CVR-number, owners, ownership shares, 

industry codes, municipality, legal form (A/S/ApS), status of the company (such as active and bankrupt), etc.25 

– including retrieving the changes in any of the specified features and the date of change. 

 

25 A full list of the features can be found in Appendix 3 
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To ensure speediness and smaller-scale testing, every iteration of a search only queries and fetches information 

on companies founded in a chosen year (starting from the first registered company in 1798 26). Once the 

information is acquired and stored, the script moves to the subsequent year, fetches the same information (if 

any), stores it, repeating this process until terminating after fetching information on all limited companies 

founded in 2020. Once completed, the script stores all information in dictionary-structures (json-files) in one 

file for each year on the hard-drive for parsing. 

While creating and populating these “annual” dictionaries, another large dictionary is created that contains 

information on all owner-company relations from 1798 until today, i.e., a dictionary that comprises all 

ownership stakes held by any immediate owner (holding company, person, parent company, etc.). In so doing, 

it is possible to identify all current and past owner-company relationships for any given owner (usually 

represented by a holding company). As an illustration, Figure 15 below provides a snippet of the dictionary 

structure where we identify that owner “10000874” (PVC Holding27) owned 50 % of “31472512” (PC 

Ejendomme Hvalsø) from 2009 until 2016, from which point the owner took full ownership control of the 

company. Furthermore, we identify that PVC Holding acquired a 10 %-stake in “35380337” (Skjoldenæsholm 

Golfcenter) in 2013 and still holds that position (gyldigTil is null).  

 

Figure 15 – Snippet of the owner-company relations dictonary 

 

26 The company is Aktieselskabet. Det kongelige octroierede almindelige. Brandassurance-Compagni founded by Christian VII of 

Denmark. CVR: 63095818. History of the company: https://dis-danmark.dk/bibliotek/907080.pdf  
27 As a legal requirement, the authors must inform that this company is protected against unsolicited advertising, which we ask the 

reader to observe (see https://datacvr.virk.dk/data/node/178)  

"10000874": { 
        "CVR": { 
            "31472512": [ 
                { 

                    "Andel": "0.5", 
                    "Periode": { 
                        "gyldigFra": "2009-10-15", 
                        "gyldigTil": "2016-04-30" 
                    } 

                }, 

                { 

                    "Andel": "1.0", 
                    "Periode": { 
                        "gyldigFra": "2016-05-01", 
                        "gyldigTil": null 
                    } 

                } 

            ], 

            "35380337": [ 
                { 

                    "Andel": "0.1", 
                    "Periode": { 
                        "gyldigFra": "2013-10-01", 
                        "gyldigTil": null 
                    } 

                } 

            ] 

        } 

    } 

https://dis-danmark.dk/bibliotek/907080.pdf
https://datacvr.virk.dk/data/node/178
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6.2.1.2 DATA PROCESSING 

This section outlines the processing steps taking place after acquiring the historical information on all Danish 

limited companies and their owner-company relations. 

First, certain companies are excluded. Similar to existing literature on financial distress prediction, financial 

companies and holding companies are excluded due to their differing asset structure (Christoffersen et al., 

2018; Jackson & Wood, 2013; Matin et al., 2019). Furthermore, financial companies have different accounting 

standards (Christoffersen et al., 2018). We further exclude companies that have unknown industry codes as 

spot tests reveal that these companies have a much higher likelihood of erroneous numbers when cross-

referencing the scanned annual reports. They are also often simply mislabeled holding companies. The 

exclusion method is outlined in Table 1 below. 

Exclusion type Exclude if one of the following is true 

Unknown industry code [Industry code] is 999999 

Financial companies [Industry code] begins with either “64”, “65”, or “66”28 

Holding companies [Company name] contain the name “holding” 

Table 1 – Company exclusion table 

Once these companies are filtered out, the remaining companies are parsed. For each json-file that contains 

information on companies founded in one specific year, the entire historical record of those companies is 

parsed from a raw dictionary format (see Appendix 4), which resembles how the data is stored in the permanent 

database, to a tabular format as seen in Table 2 below. Every row in the matrix thus represents a state that the 

company has been in and the date of that state change. As such, all rows for a given company represent all 

states that this specific company has ever been in with respect to the queried features.29 

Munici

pality 

Industry 

Code 

CVR Name Status Legal 

Form 

Date 

657 511900 53399428 H. Pries-Jensen A/S Normal A/S 26/02/1930 

657 511900 53399428 H. Pries-Jensen A/S Under bankruptcy A/S 08/10/1999 

657 511900 53399428 H. Pries-Jensen A/S Bankrupt A/S 02/09/2003 

Table 2 – Example of fundamental company information in a tabular format 

Following these transformations, a list of all unique CVR-numbers is provided for the acquisition of financial 

statements. 

 

28 Following the NACE-codes outlined in the code repository: /Extras/From The Danish Business Authorities/CVR-Branchekoder.xlsx 
29 Thus, changes in company features that are out of scope for this paper (e.g., company name changes, changes in the board of directors, 

etc.) are not represented in this matrix. 
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6.2.2 FINANCIAL DATA 

6.2.2.1 DATA ACQUISITION 

As outlined in the flowchart above, the acquisition of the financial information occurs after the completion of 

the permanent data acquisition. The processes could run simultaneously, and unneeded companies could then 

simply be excluded post-merging. However, the stepwise approach is done to ensure that unnecessary financial 

statements (e.g., from holding companies) are not fetched, increase data acquisition speed, and reduce strain 

on the FS database. 

The financial statements are acquired through a two-step process, interacting with the FS database on two 

separate occasions, explained in the following paragraphs. In the first step, the database is queried using the 

list of unique CVR-numbers. Here all URLs that point to .xml financial statements relating to a specific batch 

of CVR-numbers are saved. Once completed, the process is repeated for a new batch of CVR-numbers until 

all financial statements have been acquired. In the second step, all URLs acquired in the previous step are used 

to download all financial reports followed by a data extraction process of the key financial figures.  

The database stores metadata on each company’s financial statements and the financial statements themselves. 

The metadata includes information such as the period of reporting, a timestamp of when the information was 

last edited by The Danish Business Authority, the date of publishing the financial report, the type of report 

(annual report, quarterly report, final report of liquidation, etc.), the file format (.tiff (images), .pdf, .xml), if 

the report required revision (True, False), the CVR number of the company, and finally a URL pointing to the 

financial statement in an .xml format. An example of the data is shown in Figure 16 below. 

 

Figure 16 - Example of financial statement metadata and URL to an .xml file 

'_source': { 

    'indlaesningsId': None, 

    'sagsNummer': '14-390.980', 

    'regnskab': { 

        'regnskabsperiode': { 

            'slutDato': '2014-06-30', 

            'startDato': '2013-07-01' 

        } 

    }, 

    'sidstOpdateret': '2014-12-18T23:00:00.000Z', 

    'cvrNummer': 62816414, 

    'dokumenter': [{ 

            'dokumentType': 'AARSRAPPORT', 

            'dokumentMimeType': 'application/xml', 

            'dokumentUrl': 'http://regnskaber.virk.dk/41461826/Y

3ZyLmRrOi8veGJybHMvWC03MDEyMTQ4OS0yMDE0MTAwOV8yMTE3MTFfMzIw.xml' 

        } 

    ], 

    'regNummer': None, 

    'indlaesningsTidspunkt': '2018-04-01T06:06:34.932Z', 

    'offentliggoerelsesTidspunkt': '2014-12-18T23:00:00.000Z', 

    'omgoerelse': False, 

    'offentliggoerelsestype': 'regnskab' 

} 
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Several filters are applied when querying the database for the URLs to ensure that only relevant data is 

returned. First, the query is set to only return URLs pointing to .xml files as .pdf files and other formats are 

unreadable for the script. In August 2012, the Danish Business Authority submitted new guidelines on the 

digitalization of financial statements, resulting in a requirement for companies to upload financial statements 

electronically in an XBRL format (Erhvervsstyrelsen, 2015). Consequently, the acquired financial statements 

generally cover full accounting years from 2012 until today. However, since most financial statements also 

include key financial figures from past years, data from 2010 and 2011 is often acquired as well. Excluding 

.pdf files and solely acquiring digitized financial statements entails a significant data exclusion, which could 

be partly circumvented by using optical character recognition (OCR). However, this requires setting up a robust 

data-retrieval pipeline for .pdf files with its own validation system, which is outside the scope of this thesis. 

The second filter is the exclusion of any financial statement that is not an annual report, e.g., quarterly reports 

and reports of liquidation. While the inclusion of quarterly reports might contain information relevant to 

financial distress prediction, solely using annual reports provides a certain standardized framework of 

managing financial data. Thus, each instance in the dataset covers an entire accounting period, which for 

specific industries and companies negates the impact of seasonality.  

Once the list of URLs containing all relevant financial statements has been consolidated, the process of 

acquiring each .xml file is initiated using asynchronous processing30 rather than fetching each single financial 

statement in a sequential manner. This allows for great speed efficiency when interacting with the FS database. 

In so doing, a significant speed improvement over a standard synchronous process is achieved, which reduces 

the time needed for fetching of financial statements from more than a week to approximately 30 hours. 

6.2.2.2 DATA PROCESSING 

Once all necessary data is acquired, an extensive feature extraction process of turning the .xml files into a 

format suitable for analysis is undertaken. Specifically, the values of each .xml file are extracted, cleansed, 

tested for errors, and parsed into a tabular format. The following describes the process in detail. 

6.2.2.2.1 FEATURE EXTRACTION 

Extracting the feature and value pairs requires two important steps, i.e., defining the features to extract and 

then extracting the feature-value pairs using a reference map to assign the extracted values to the relevant year. 

The first step is done prior to the data extraction, the second step during. 

 

30 The concept of asynchronous processing can be rather technical and might be out of scope for this thesis, so we will not dive into 

further detail about this. Instead, we refer to the code base and to https://realpython.com/async-io-python/    

https://realpython.com/async-io-python/
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First, the required features are defined from the International Financial Reporting Standards (IFRS), which 

the XBRL-standard observes. In 2019, this standard covered 613 numerical features and 6,571 text features 

(International Accounting Standards Board, 2020). A list of selected variables can be found in Appendix 5. 

Second, the feature-value pairs are extracted, and a reference map is created for each .xml file. Each .xml file 

is structured in the format shown in Figure 17 below. For the first row, < indicates the beginning of the metadata 

of the feature, TaxExpense, in the contextRef (reporting year), c4 with currency, u531
, followed by a 

decimals indicator on whether the value is stored in thousands, millions, or actual numbers. Then the metadata 

indicators end with >, followed by the actual value, -30000, and then ended by </d:TaxExpense> indicating 

the end of the feature-value pair and its metadata. 

 

Figure 17 - Snippet of .xml code with feature-value pairs and metadata 

Once all feature-value pairs are extracted, the values are transformed using the metadata. For decimals, the 

value is simply multiplied accordingly.32 If unitRef is different from u5, entailing usage of other currencies 

than DKK, the entire financial statement is discarded. This is done to ensure a coherence of Danish companies 

in the dataset without influence from foreign accounting standards. Consequently, companies whose operations 

are solely based outside of Denmark (and reported in any other currency) are excluded. 

Each financial statement utilizes contextRef as a reference to an accounting year. However, the year-context 

mapping is not consistent between financial statements. Thus, for each financial statement, a unique context-

year mapping is created using the reference mapping at the end of each .xml file illustrated in Figure 18 below 

(see Appendix 6 for an example of an context-year mapping). For this instance, all values referencing the 

context c4 are coded as the period from 2010-07-01 to 2011-06-30.  

 

Figure 18 – Snippet of context metadata in .xml code 

 

31 u5 references DKK following the ISO 4217 currency codes: https://www.iso.org/iso-4217-currency-codes.html 
32 However, as the later sections will outline, several companies have misreported their financial figures by factors of thousands, 

millions, and sometimes billions. 

<d:TaxExpense contextRef="c4" unitRef="u5" decimals="0">-30000</d:TaxExpense> 

<d:ProfitLoss contextRef="c1" unitRef="u5" decimals="0">200951</d:ProfitLoss> 

<d:ProfitLoss contextRef="c4" unitRef="u5" decimals="0">401620</d:ProfitLoss> 

<context id="c4"> 

 <entity> 

  <identifier scheme="http://www.dcca.dk/cvr">56208410</identifier> 

 </entity> 

<period> 

 <startDate>2010-07-01</startDate> 

 <endDate>2011-06-30</endDate> 

</period> 

https://www.iso.org/iso-4217-currency-codes.html
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The process of extracting feature-value pairs and mapping these to corresponding accounting periods is then 

repeated for each .xml file and stored in a large .json file.  

6.2.2.2.2 DATA CLEANSING 

Once fetched, the parsed financial statements must be cleansed considerably due to a large proportion of 

various errors in the .xml files. According to two Danish credit rating agencies, 25-33% of all Danish electronic 

financial statements might be erroneous (Bisnode, 2017; Mygind, 2018b, 2018a), e.g., incorrect CVR-

numbers, more than one feature-value pair for profit/loss for the year that are conflicting, values off by several 

orders of magnitude, etc. 

The data investigation reveals wrong usage of the decimal tag as evidenced by cross-checking .xml files and 

the corresponding .pdf files. These errors are assumed to arise from the interaction with the reporting software 

used to generate the .xml files using the XBRL-standard. To alleviate the issues arising from misreported data, 

several implementations are made to cleanse the data, which is described in more detail below. One example 

is financial values three orders of magnitude away (off by a factor 103) from the reported .pdf values. This can 

be seen in Table 3 below where the accounting year of 2017 suddenly saw a considerable increase in Assets 

and other financial information from the previous year and compared to the subsequent year. 

 

Table 3 – Example of a three orders of magnitude error 

These errors are identified iteratively by screening every financial statement. At each row, the value of Assets 

is stored and compared with its value in the previous year and the subsequent year. Assets is chosen as the 

proxy for the decision on whether to de-scale since all companies report this value and since it is one of the 

values least prone to large yearly fluctuations (except when erroneous). However, as some companies 

experience extreme growth from year to year, the error detection allows for a growth in Assets up to a factor 

100 increase. While a factor 100 might seem high, this ensures that novel growth companies are accurately 

modelled, e.g., a newly founded company could increase its total assets from DKK 50,000 up to 5,000,000 

DKK in one year. Consequently, if the current Asset value is off by a (growth limit) factor of more than 100, 

all financial values are descaled by a factor 1,000, then Assets is re-checked, followed by another potential 

descaling of all values, continuing until the current Asset value is within limits of a growth limit factor of 100. 

While this presumably descales most companies to their true values, a small subset of extreme growth 

companies might be incorrectly scaled using this approach. 
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While the growth limit disallows more than a 100 factor increase in asset value, there is also a check on whether 

the asset value is divisible by 1,000 as this provides further evidence that the asset value has been increased 

by three orders of magnitude or more. Formally, these two checks are formulated as below, and if both are 

true, the financial values are divided by 1000. 

 𝐴𝑠𝑠𝑒𝑡𝑠𝑡−1 < (𝑔𝑟𝑜𝑤𝑡ℎ𝐿𝑖𝑚𝑖𝑡 ∗ 𝐴𝑠𝑠𝑒𝑡𝑠𝑡) > 𝐴𝑠𝑠𝑒𝑡𝑠𝑡+1 AND 𝐴𝑠𝑠𝑒𝑡𝑠𝑡  mod 1,000 =  0 (14) 

While the financial values are most often multiplied by 1,000, there are also errors of much higher magnitudes, 

as illustrated in Table 4 with more than 15,000 financial statements with magnitude errors.  

# of financial reports with magnitude errors 

Magnitude 9 

(billion) 

Magnitude 6 

(million) 

Magnitude 3  

(thousand) 

2 346 14,484 

Table 4 - Distribution of magnitude errors in Assets 

In addition to the magnitude errors outlined above, there are several other errors, e.g., when the parsed data 

does not contain essential financial information such as either Assets or Liabilities. These two values are 

essential for calculating the company size (the process is explained in the next paragraph). In total, this excludes 

69,213 financial statements. Further, there are some values that are reported as negative that should be positive 

and vice-versa. However, the inconsistency of these within financial statements disallowed proper cleansing. 

As such, many of these errors still exist in the dataset, but spot tests indicate that the proportion of these errors 

is much smaller than magnitude error. 

6.2.2.2.3 FINANCIAL RATIO CALCULATIONS 

After the extraction and cleansing phase of the financial data, the data is restructured into 46 financial ratios33, 

most of which are scaled by the company size. Furthermore, the ratios are winsorized at 5% and 95% quantiles 

to remove the impact of extreme outliers. Similar to Christoffersen et al. (2018) and Matin et al. (2019), 

company size is defined as the total debt of the firm when equity is negative (in absolute numbers) and total 

assets otherwise. In so doing, each financial report is standardized by the size of the company, which ensures 

that each financial statement can be generalized. Otherwise, the models could be heavily impacted by 

unstandardized financial data. As an example, consider the debt/size ratio with high predictive power: large 

corporations would create noise in the (unscaled) debt variable when their debt only constitutes a small 

 

33 This list of variables closely mirrors both Christoffersen et al. (2018) and Matin et al. (2019). However, some individual values could 

not be computed, e.g., due to data inconsistencies. 
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percentage of the capital structure, which lessens the generalizability of the model. The selected variables are 

listed in Appendix 7. 

6.2.3 COMBINED DATA STRUCTURE 

Once the fundamental historical company information, the financial ratios, and the owner-company 

relationships are acquired, they are all combined into one dataset. An illustration of the combined data structure 

is shown in Figure 19, which outlines how the financial ratios form the data foundation on which the 

fundamental company data is added, followed by the Company Ownership Default Risk (CODR) feature. 

 

Figure 19 – Combined data structure 

6.2.3.1 PERMANENT DATA 

The information on industry code, municipality code, and legal form are added to each financial statement 

using the publication date of each financial statement. In the cases where the publication date is not available, 

six months are added to the end of the accounting period similar to the approach of Christoffersen et al. (2018) 

and Matin et al. (2019). Thus, the latest available information at the time of publication34 is appended as 

features to the dataset. The same exercise is performed for the target variable, financially distressed or not 

financially distressed. However, rather than simply appending the status information at the time of publication, 

a window of two years from the date of publication to exactly two years later is created. Thus, if the given 

company has had one of the statuses: Under compulsory dissolution, Dissolved after bankruptcy, Under 

bankruptcy, Compulsory dissolved within this two-year period, the company receives the label 1 (financially 

distressed), otherwise it receives the label 0 (not financially distressed). 

6.2.3.2 COMPANY OWNERSHIP DEFAULT RISK 

Following the addition of the fundamental company information, including the target variable, the Company 

Ownership Default Risk (CODR) feature is added. To introduce the acronym of CODR, it is a method of 

 

34 This is done in order not to create information leakage from the future (David, 2019). 
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quantifying the risk (R) to a given company (C) that might arise from the current owners’ (O) previous 

company defaults (D). These four aspects are then combined in the CODR-variable. 

To calculate the CODR of company 𝑐 at time 𝑡, the ownership default risk (ODR) of each individual owner 𝑜 

of company 𝑐 at time 𝑡 must be calculated first. Once the ODR of each owner 𝑜 at time 𝑡 has been calculated, 

these are then weighted by the owner’s share in company 𝑐. In other words, CODR is a weighted average of 

each owner’s ODR, weighted by that owner’s ownership share (percentage) in company 𝑐. More formally,  

 CODR𝑐𝑡 = ∑ ownership share
𝑐𝑡𝑜

∗

𝑁

𝑜=1

ODR𝑡𝑜 (15) 

   

Where the subscripts o, 𝑐 , and 𝑡  denote the ‘owner’, ‘company’, and ‘time’. Thus, ownership share𝑐𝑡𝑜 

denotes the ownership share of owner 𝑜 in company 𝑐 at time 𝑡. Similarly, ODR𝑡𝑜  denotes the ownership 

default risk of owner 𝑜 at time 𝑡. 

ODR can be thought of as the number of company defaults that a person (owner) has had up until now weighted 

by the ownership share of those companies, all divided by the total ownership shares held up till this point. 

More formally, 

 ODR𝑡𝑜 =
∑ latest ownership share

𝑡𝑜𝑠
∗ isDefaulted𝑡𝑜𝑠

𝑁
𝑠=1

∑ latest ownership share
𝑡𝑜𝑠

𝑁
𝑠=1

 (16) 

   

Where s denotes ‘subsidiary’. Thus, latest ownership share𝑡𝑜𝑠 represents the latest percentage ownership of 

held by owner 𝑜 in subsidiary 𝑠 at time 𝑡. isDefaulted𝑡𝑜𝑠 is a Boolean flag denoting whether subsidiary 𝑠 has 

defaulted while owned (wholly or partially) by owner 𝑜 at or any time before time 𝑡, i.e., the value is 1 if the 

subsidiary 𝑠 defaulted and 0 otherwise. Subsidiary relates to any company other than 𝑐 owned at or before time 

𝑡 by any of the owners at time 𝑡. 
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Figure 20 – Overview of company-ownership and owner-subsidiary relations 

To give a practical example on CODR, consider the company in Figure 20 above. To calculate the CODR of 

this company today, the ODR of all owners (owners 1-4) must be calculated. To calculate the ODR of Owner 

1, the number of defaults owner 1 has been a part of is counted, which is 2 (as subsidiary A and C defaulted 

when owner 1 was part of the organization), weigh each of these defaults by owner 2’s ownership shares, 

which is 100% ∗ 1 + 90% ∗ 1 = 1.9. Then divide the sum of the weighted defaults (1.9) by the latest held 

sum of ownership shares that owner 1 currently controls and has controlled, which is 𝐴𝑠ℎ𝑎𝑟𝑒 + 𝐵𝑠ℎ𝑎𝑟𝑒 +

𝐶𝑠ℎ𝑎𝑟𝑒 + 𝐶𝑜𝑚𝑝𝑎𝑛𝑦𝑠ℎ𝑎𝑟𝑒 = 100% + 50% + 90% + 40% = 2.8 . Note that while owner 1 does not own 

shares in subsidiary B anymore since he left the firm a year ago, the latest position of 50% is still used in the 

ODR-calculation as a representation of a “successful” exit.35 Consequently, we calculate the ODR of owner 1 

ODR𝑜𝑤𝑛𝑒𝑟 1 =
(100% ∗ 1) + (50% ∗ 0) + (90% ∗ 1) + (40% ∗ 0)

100% + 50% + 90% + 40%
=

1.9

2.8
≈ 0.68 

As Owner 2 has no previous or current positions other than the 40% in the company, the ODR of owner 2 is 

40%∗0

40%
= 0 . Similarly, the ODR of Owner 3 is 

(20%∗0)+(55%∗0)

20%+55%
= 0  and the ODR of Owner 4 is 

(10%∗0)+(100%∗0)+(25%∗1)

10%+100%+25%
≈ 0.19. 

 

35 “Success” should be understood quite narrowly as it simply refers to the absence of a company in financial distress. 
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Consequently, the current CODR for this company is(40% ∗ 0.68) + (30% ∗ 0) + (20% ∗ 0) + (10% ∗

0.19) ≈ 0.29. 

6.2.4 LDA IMPLEMENTATIONS 

As mentioned in Section 3.2, Altman (1968) uses five financial ratios in his analysis: Working Capital/Total 

assets (x1), Retained Earnings/Total Assets (x2), Earnings Before Interest and Taxes/Total Assets (x3), Market 

Value Equity/Book Value of Total Liabilities (x4), and Sales/Total Assets (x5). Three of the five variables 

(x1, x2, x3) can be created directly from the financial reports, but the latter two are only available for publicly 

listed companies. Altman (2017) instead proposes replacing Market Value of Equity (x4) with Book Value of 

Equity when analyzing private companies. He also mentions the potential difficulty of obtaining Sales and 

therefore suggests replacing this value with just a fixed constant (Altman et al., 2017). These four ratios are 

then incorporated into the main dataset consisting of the 46 primary features. The LDA-implementation thus 

only uses these four features, whereas LR and GBT use all the other previously discussed features.  

6.3 DATA ANALYTICS 

As outlined in the previous sections, this thesis creates three financial distress prediction models, i.e., Linear 

Discriminant Analysis (LDA), Logistic Regression, (LR) and Gradient Boosted Trees (GBT). The 

methodology consists of three steps: (1) First, creating a baseline model using LDA that mirrors Altman’s 

(1968) traditional linear discriminant using a combination of the original features and new suggestions as 

described in Section 6.2.4. Then, (2) the LR and GBT models, with and without a CODR-feature, are trained 

on the dense dataset (missing values excluded) described in Section 6.2.3. Finally, (3) the GBT-models, with 

and without the CODR-feature, are trained on the full sparse dataset (missing values included). These models 

are then evaluated in relation to each other. This section describes the process of finding the best models and 

covers hyper-parameter tuning, standardizing data, and ensuring reliable results using cross-validation. Note 

that, due to missing values, three distinct datasets will be used. LDA, that has a small feature space, trains on 

its own dense dataset with four “Altman Z”-variables. LR and GBT similarly train on a dense dataset, but with 

much more features than LDA. Finally, due to GBT’s ability to handle missing values, GBT is trained on the 

full (sparse) dataset. 

To avoid verbosity and be succinct when referring to the specific models, the following terminology is used 

when discussing the models in relation to each other, i.e., models trained on the large dataset with missing 

values are denoted as sparse whereas models trained on the smaller dataset with no missing values are denoted 

as dense. Further, to accent the difference between the models with a CODR-variable and those without, they 

are denoted with the suffix CODR or no suffix, respectively. As such, the GBT model trained on the large 

(sparse) dataset with missing values and which includes the CODR-variable is denoted as sparse-GBT-CODR 

and the related model without a CODR-variable is simply denoted sparse-GBT.  
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6.3.1 LINEAR DISCRIMINANT ANALYSIS 

The LDA-model is trained using the four variables obtained in Section 6.2.4. Altman’s (1968) original Z-score 

model contained a set of estimated coefficients used for classification. Rather than using Altman’s (1968) 

previously estimated coefficients from a very different business context, the LDA-model is re-trained to better 

generalize on Danish companies. 

Before training the model on the four financial ratios, all data points with missing values are excluded, after 

which approximately 230,000 of 745,000 instances remain. Then, the data is split into training (75%) and test 

(25%) sets such that reliable test results can be produced. There is no need for hyper-parameter tuning since 

LDA offers no hyper-parameters that can be tuned.36 

6.3.2 DENSE PREDICTION 

For LR, data instances with missing values must be excluded and the remaining values must be standardized. 

The first point on excluding values is simply due to an inability of the model to handle missing values, and the 

second point on standardization is recommended practice when performing LR (or ML generally) that includes 

a regularization term. Just prior to standardization, the data is split into training and test samples. After these, 

the hyper-parameters are tuned using cross validation on the training set to find the optimal model. 

For the removal of missing values, i.e., making the sparse dataset dense, removing all missing values poses an 

issue as several of the features have more than 99% missing values. Consequently, the removal of the 

corresponding data instances would shrink the dataset to less than 1% of the original size. Thus, features that 

contain information in less than 60% of the instances (i.e., more than 40% missing values) are removed. Using 

this approach, 22 features are removed. Following this, the remaining data instances with at least one missing 

value are similarly removed, which results in a considerable reduction from 743,607 instances to 153,750, i.e., 

shrinking the vertical size of the dataset by 79%. After converting the dataset from a sparse to a dense dataset, 

the resultant data is split into a training set, consisting of 75% of the data, and a test set with the remaining 

25%. 

For the training and test set individually, each of the data features are standardized independently by 

subtracting each value by the mean and dividing by the feature’s variance such that it scales to unit variance 

(Geron, 2017; Pedregosa et al., 2011). Standardizing is a standard procedure in machine learning that ensures 

a better input for the models recommended for models with a regularization term. Standardization is 

 

36 There are several hyper-parameters available, but these are mostly which solver to choose etc. It does thus not make sense to 

implement hyper-parameter tuning methods such as random search. 
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specifically performed as it is recommended for regularization used in logistic regression (Pedregosa et al., 

2011).  

6.3.2.1 LOGISTIC REGRESSION 

For LR, random search is performed to find optimal hyper-parameters and cross-validation for training the 

model. Two hyper-parameters are specified, i.e., class_weight and C. The class_weight hyper-parameter 

allows the model to weigh the two target classes, 0 and 1, differently, which is especially useful for imbalanced 

datasets. This entails that errors are penalized differently, so that errors from the majority class are penalized 

less than errors from the minority class. Consequently, it is set to balanced and serves to re-balance the data. 

Then the C hyper-parameter, which is the inverse of regularization strength where lower values result in a 

higher regularization, will be found during random hyper-parameter optimization. There are no limit 

boundaries for on the value, but it is set to 1 by default. A log-uniform distribution ranging from 0.001 to 1,000 

is created and the random search will then choose random C values from this distribution.  

 

Figure 21 - Logistic Regression hyper-parameter settings 

As a third hyper-parameter that is not model-specific, the scoring metric used to evaluate the models in the 

random cross-validation is set to AUC (roc_auc). After the hyper-parameter space is specified, 50 random 

iterations are run to get the optimal value of C and the best performing model37. The same steps are then 

repeated for the LR-CODR model, which returns a different model. 

6.3.2.2 GRADIENT BOOSTED TREES 

The XGBoost implementation of Gradient Boosted Trees (GBT) has seven hyper-parameters that are relevant 

for this thesis. Three of the hyper-parameters are specified prior to performing a random search to reduce 

complexity when finding the optimal set of hyper-parameters. Subsequently, a random search will optimize 

the remaining hyper-parameters. This task is done for both dense-GBT and dense-GBT-CODR. First, the 

scale_pos_weight parameter is set to re-balance the two imbalanced classes38 using the ratio between the 

negative classes and positive classes, here 22.49. Following this, the optimal number of trees in the ensemble 

is estimated. 

6.3.2.2.1 NUMBER OF TREES 

First, the optimal number of trees in the ensemble, given by the n_estimators hyper-parameter, is estimated. 

Specifically, the estimation is performed by calculating the AUC of different ensemble models using cross-

 

37 It is infeasible to find the actual optimal value when running random search, but the estimated values could be close. 
38 For an overview of the hyper-parameters, see https://xgboost.readthedocs.io/en/latest/tutorials/param_tuning.html  

Parameters =  {class_weight = "balanced", 

 C = log-uniform(0.001, 1000)} 

https://xgboost.readthedocs.io/en/latest/tutorials/param_tuning.html


Copenhagen Business School Predicting Financial Distress May 15, 2020 

 

  Page 47 of 84 

 

validation with different numbers of trees on the training set. Once the AUC scores reach a plateau, indicating 

that no improvements are found by adding additional trees, an optimal number of trees is found. As shown in 

Figure 22 below, the model performance on both the training set and the test set (which is within the original 

training set) clearly indicates how the model progressively fits the training set at the expense of 

generalizability. From the figure, it seems that the model quickly reaches a stage of diminishing returns and 

converges on 11 trees based on the validation set.  

 

Figure 22 – Finding the optimal number of trees 

6.3.2.2.2 MAX DEPTH 

Following the optimal number of trees, the size of each tree (hyper-parameter max_depth) is found. The size 

relates to the maximum number of layers for each tree. It is important to find the right depth-balance since too 

shallow trees will perform too poorly and too deep trees tend to overfit. The optimal tree depth is found in a 

similar manner to the optimal number of trees, with the AUC scores shown in Figure 23. For each depth-level, 

the mean AUC-score is plotted along the curved line and vertical lines showing the maximum and minimum 

scores for each depth level. Here, there are indications that the optimal number of trees is 5. 

 

Figure 23 – Finding the optimal depth of the trees 
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6.3.2.2.3 RANDOM SEARCH 

After these three hyper-parameters have been specified, the hyper-parameter search space has decreased 

considerably in complexity. Consequently, a random search of 20 iterations is conducted to find the remaining 

four hyper-parameters, i.e., learning_rate, gamma, subsample, colsample_bytree. The learning_rate (also 

called the shrinkage factor) specifies the effect of adding one more tree to the ensemble. As previously 

described, gradient boosted trees iteratively add trees to the ensemble where each tree attempts to correct the 

residual errors made by the previous trees. The learning rate applies a weighting on the corrections that every 

new tree makes and specifies the speed at which the model learns: too high and the optimal parameters might 

not be found, too low and the training will slow down considerably, which increases training time but also lead 

to a more fine-tuned model. The learning rate is set to range between 0.01-0.1. Gamma is a hyper-parameter 

that specifies the minimum loss (the highest gain from split purity) that is required to create one extra branch 

in a tree. The range is set to range between 0-5, where 0 is the default. Subsample defines the proportion of the 

training set that any given train is allowed to train on and is given as a ratio 0-1, where a subsample-size of 0.5 

entails that each tree will be trained on a random half of the training set to make the model generalize better. 

It is recommended not to specify subsample at the extremes (Brownlee, 2018), thus the range is set to 0.3-0.8. 

The final hyper-parameter colsample_bytree is similar to the subsample feature, but rather than subsampling 

the instances (rows), it subsamples the features (columns) instead. This hyper-parameter is used for an entire 

tree, meaning one tree is only allowed to use the randomly sampled features, whereas the subsample hyper-

parameter on instances, randomly subsamples the training data at each node. The feature subsample range is 

set to 0.8-1.0, which heightens the probability that any given tree always will have important features. The full 

set of hyper-parameter and their values is shown in Figure 24. 

 

Figure 24 - Hyper-parameter settings for the random search 

6.3.3 SPARSE PREDICTION 

The above section on dense prediction outlined the need to shrink the dataset to a dense format, which 

considerably reduces the available data and information contained within it. Instead, the following performs 

the same procedure as presented in Section 6.3.2.2 above, but with sparse data. However, only GBT is able to 

handle sparse data, excluding LR and LDA for this step. The hyper-parameter optimization follows the same 

approach and the same hyper-parameter space is chosen. However, due to the differences between the dataset, 

a new random search must be initialized.  

  

Parameters =  {scale_pos_weight = 22.49, 

 n_estimators = 11, 

 max_depth = 5,  

 learning_rate = range(0.01, 0.1), 

 gamma = range(0, 5) 

 subsamble = range(0.3, 0.8), 

 coolsample_bytree = range(0.8, 1.0)} 



Copenhagen Business School Predicting Financial Distress May 15, 2020 

 

  Page 49 of 84 

 

6.3.3.1 GRADIENT BOOSTED TREES 

Similar to above, the optimal values for scale_pos_weight, n_estimators, and max_depth, are found prior to 

random search. The best ratio for the scale_pos_weight hyper-parameter is calculated as 24.29 and is used for 

the remaining hyper-parameter optimization steps.  

6.3.3.1.1 NUMBER OF TREES 

The optimal number of trees is found by iteratively evaluating the performance of the model at different 

numbers of trees in the ensemble. AUC is again used as the scoring metric. Here, the best performing model 

appears to include 50 trees. However, the performance on the validation (test) set quickly flattens out and fewer 

trees could presumably be used. Regardless, n_estimators is set to 50 to better enable the search for the best 

performing model.  

 
Figure 25 - Optimal numbers of trees (on sparse dataset) 

6.3.3.1.2 MAX DEPTH 

For the depth of each tree, the AUC-scores of five models at max depth levels ranging from 1-10 are 

investigated. From Figure 26, it appears that the model on average performs better at a max depth of 5 despite 

the fact that the best performing model had a max depth of 6 (as shown by the vertical lines). Regardless, the 

max depth is set at 5 as this max depth, on average, performed better. 

 
Figure 26 - Optimal tree depth (on sparse dataset) 
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6.3.3.1.3 RANDOM SEARCH 

Following the specification of the above the hyper-parameters, i.e., scale_pos_weight, n_estimators, and 

max_depth, a random search is conducted for the four remaining hyper-parameters, i.e., learning_rate, gamma, 

subsample, and colsample_bytree. The random search is implemented as explained in Section 6.3.2.2, but with 

changes to scale_pos_weight, n_estimators, and max_depth as outlined above. The optimal hyper-parameters 

on the sparse-GBT models might be considerably different from the ones found for the dense-GBT models due 

to the different data structure. The overall settings for the random search on the sparse dataset are shown in 

Figure 27. 

 

Figure 27 - Hyper-parameter settings for the random search (on the sparse dataset)  

Parameters =  {scale_pos_weight = 24.29, 

 n_estimators = 50, 

 max_depth = 5,  

 learning_rate = range(0.01, 0.1), 

 gamma = range(0, 5) 

 subsamble = range(0.3, 0.8), 

 coolsample_bytree = range(0.8, 1.0)} 
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7 RESULTS 

This section outlines the results of the implemented models. Specifically, the AUC-scores are presented in 

Table 5 and visualized in Figure 28, followed the ROC-curves of the different models. The estimated hyper-

parameters can be found in Appendix 8.  

As outlined below, of the five models evaluated on the dense dataset, i.e., LDA, LR, LR-CODR, dense-GBT, 

and dense-GBT-CODR, the best performing model is dense-GBT with an AUC-score of 0.8347, followed by 

dense-GBT-CODR with a score of 0.8332, then LR with 0.8191, LR-CODR with 0.8189, and finally LDA with 

0.7210. For the two sparse models, the better model is the sparse-GBT-CODR with an AUC-score of 0.8409, 

followed by sparse-GBT with a score of 0.8236.  

Model results (AUC-scores) 

 Altman Z-score  

(LDA) 

Logistic Regression 

(LR) 

Gradient Boosted Trees 

(GBT) 

Without missing values 

(dense) 

w/o CODR LDA 

0.7210 

LR 

0.8191 

Dense-GBT 

0.8347 

w/   CODR  LR-CODR 

0.8189 

Dense-GBT-CODR 

0.8332 

With missing values 

(sparse) 

w/o CODR   Sparse-GBT 

0.8236 

w/   CODR   Sparse-GBT-CODR 

0.8409 

Table 5 – AUC-scores of the trained model, evaluated on the test set. Best-performing models are highlighted for each dataset 

 

Figure 28 – AUC-scores of the trained model, evaluated on the test set. Best-performing models are highlighted for each dataset. Note that the 

vertical axis starts at 0.5, which indicates random guessing. 

  

0.721
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0.5
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7.1 ROC-CURVES 

The following section first outlines the ROC-curves underlying the AUC-scores from Table 5 and Figure 28, 

then the individual ROC-curves of the dataset-model categories are visualized (LR-models, both dense-GBT 

models, and both sparse-GBT models). 

Figure 29 visualizes the best performing models in each dataset-model category. Here the sparse-GBT-CODR 

and dense-GBT follow a similar trajectory, though sparse-GBT-CODR (as evidenced by the AUC-score) is 

slightly more concave. Following this, LR is noticeably similar though with slightly lower true positive rates 

and higher false positive rates as the threshold increases (as the line moves from bottom-left to top-right). 

Lastly, the performance of LDA appears to be considerably different to the other models. 

 

Figure 29 – ROC-curves of the best performing models in each category 

For logistic regression, the LR and LR-CODR ROC-curves are visualized in Figure 30, presenting almost 

identical ROC-curves. 

 

Figure 30 – ROC-curves of the logistic regression models 
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Similar to logistic regression, the ROC-curves for dense-GBT and dense-GBT-CODR are considerably similar, 

though with some more pronounced differences at the top left area of the curve, as evidenced in Figure 30. 

 

Figure 31 – ROC-curves of the dense gradient boosted trees models 

Lastly, the ROC-curves for sparse-GBT and sparse-GBT-CODR are visualized in Figure 32. Here, the ROC-

curves are noticeably different for different thresholds.  

 

Figure 32 – ROC-curves of the sparse gradient boosted trees models  
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8 DISCUSSION 

For the models trained on the smaller, but denser dataset, CODR does not appear to enhance the predictive 

power of either logistic regression (LR) or gradient boosted trees (GBT) when evaluated on the test set. 

However, for the large dataset with several missing values, GBT performs slightly better with the inclusion of 

the CODR-variable than if it had not been included. In short (using the terminology outlined Section 6.3), the 

results presented above indicate that there is an enhanced predictive power of the sparse-GBT-CODR over 

sparse-GBT while there appears to be no benefit of having a CODR-variable in the dense models. 

When comparing the different models without a CODR-variable with their CODR counterparts, it is not 

immediately clear why only the sparse-GBT-CODR model performed better on the test data. The results could 

indicate that for companies that do not provide a “complete” financial statement, i.e., companies that provide 

financial statements with a large proportion of missing values, FDP-models benefit from having additional 

information when little is available. When comparing the feature importances of the GBT-models (which are 

discussed later), the fact that the CODR-variable ranks relatively low in the feature importances of the dense-

GBT-CODR model and high in the sparse-GBT-CODR model, might further support this assumption. Since 

relatively smaller companies probably have a higher propensity to submit sparse financial statements, the 

sparse dataset likely also contains a larger proportion of smaller companies (or any other type of company 

likely to submit sparse financial statements) than the dense dataset, which has different impacts on the 

information contained in the dense and sparse datasets, respectively. 

Considering dense-LR, dense-LR-CODR, dense-GBT, and dense-GBT-CODR, it appears that the inclusion of 

CODR has worsened the predictive power of the models. As discussed above, the dense dataset might 

encompass enough information on how to accurately predict financial distress for the given financial 

statements that adding CODR simply adds noise to the model. More technically, it might be that the regularizer 

penalizes the general model for creating complexity without any added benefit of higher prediction power, 

which negatively impacts the other features. Similarly, it might be that CODR simply adds noise to an already 

complex model, which diverts training time from important parameters to a “noisy” feature. Lastly, it might 

just be due to chance, indicated by the closeness of the AUC-scores. 

The following section discusses some of these areas of interest. First, the data limitations and model limitations 

are presented for discussion. Then, the model consistency and the feasibility of cross-dataset comparison of 

the GBT-models are discussed. Following this, a potential approach to operationalizing the sparse-GBT 

models is presented after which the potential added predictive power of sparse-GBT-CODR is discussed and 

partially tested. Lastly, potential future work is presented.  
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8.1 DATA LIMITATIONS 

A major data challenge is the level of erroneous data, which can negatively impact the model training phase. 

This is exemplified by the vast number of checks implemented and the need for data modification. One of 

these (smaller) challenges is the presence of missing values in financial statements. This arises both from 

incorrect usage of the XBRL-format as evidenced in the data but is most likely also due to many strikingly 

specific accounting terms that only a handful of companies ever use, creating a sparse dataset, which only the 

GBT models can handle.  

Specifically, a large data challenge is the incorrect usage or the decimal indicator in the .xml files leading to 

financial values that are off by three, six, and in two cases, nine orders of magnitude. Several of these errors 

were handled using a relatively simple approach of comparing the current year’s Assets value to previous and 

subsequent year and down-scaling if considerably above (approximately 15,000 cases). This simple check does 

not capture all cases since newly started companies have no future or past reference points to compare with. 

Similarly, companies that have reported incorrect values throughout all years will not be identified either. 

While the implementation of these simple checks has captured some of the errors, it might also have led to 

incorrect modifications in the case of growth companies. Similarly, several financial statements included 

negative values when they should have been positive and vice-versa, but these issues were unfortunately too 

inconsistent to modify in an automatic manner. There are also indications that more than 30% of the .xml files 

are erroneous (Mygind, 2018a). 

8.2 MODEL LIMITATIONS 

All models generally rely on the same overall data structure, which should entail that all models are impacted 

by the same data issues. While this is partly true for the case of erroneous data (negative reported values when 

they should be positive, errors of magnitude, etc.), the impact of not being able to handle missing values is 

much larger since only one of the implemented models, GBT, can handle missing values. Consequently, the 

training and test sets used for sparse and dense models differ. This might seem like a trivial challenge that 

simply lessens the availability of data for the models unable to handle missing values. However, important 

limitations and potential impacts arise from the number of missing values. 

The limitation that LDA and LR requires dense data considerably limits the effective training space and causes 

loss of potentially important information, e.g., several financial statements might include important pieces of 

information that could be used for financial distress prediction, but if a number of other companies did not 

report these values, the features are excluded. This potentially limits the predictive power of dense models 

substantially and leads to an inability to predict the probability of financial distress of new data samples with 

sparse information. Conversely, the ability of GBT to both train on and predict using all available data despite 

missing values, cannot be understated. This is especially true in financial distress prediction as the simple task 
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of removing features that have a considerable amount of missing values (only keeping features with values in 

more than 60% of financial statements) results in a feature space reduction from 193 to 171 (12% reduction). 

Further, after removing sparse features, individual financial statements with missing values must be removed 

as well. In so doing, the number of financial statements is reduced from 743,607 to 154,237 – a removal of 

80% of the available financial reports. 

In order to minimize data shrinkage for the dense models, the threshold that specifies the minimum proportion 

of values needed in a feature could be changed (here 60%). This threshold has a large impact on the data 

reduction level as it decides on the number features to exclude, which impacts the data instance space.  In this 

case, the choice of only keeping features that have values in more than 60% of its rows results in a 12% 

reduction in the feature space but a mighty 80% reduction in the data instance space. Instead, the feature 

threshold could be programmatically optimized so that it results in the lowest level of data shrinkage, e.g., a 

threshold of 91% results in a feature reduction of 16.6% and a row reduction of 14.2%. Consequentially, the 

60%-threshold has potentially removed important information for the dense models that could have increased 

(or decreased) the prediction performance drastically. 

Another limitation of this research comes from how the models have been trained. While they perform 

seemingly well, in fact better than what current research has achieved (Christoffersen et al., 2018; Matin et al., 

2019), the models are still limited in their hyper-parameter space. Random search was applied to find the 

optimal combination of hyper-parameters (see Appendix 8). While this method achieves good results in 

general, especially when time is taken into consideration, it will not find the true optimum in the continuous 

hyper-parameter space. Only a close-to-optimal hyper-parameter setting will be reached. Due to computational 

constraints, only 20 different settings of hyper-parameters were tested per model in this study.39 This suggests 

that better model performances could have been achieved, with hyper-parameters closer to the optimum.  

8.3 MODEL CONSISTENCY AND COMPARISONS OVER DATASETS 

Considering the four GBT models, which generally are superior to both LDA and LR models, the produced 

feature importances show that a similar set of features consistently show up as the ten most important features, 

i.e., cash, accounts payable, age, size, other short-term debts, profit, and retained earnings (see Figure 33 

below). Several of these are consistent with the findings of Christoffersen et al. (2018). Feature importance 

here is simply a score that counts the number of times each feature is split on. For the GBT-CODR models 

only sparse-GBT-CODR consider CODR an important feature, ranking sixth. In fact, in dense-GBT-CODR the 

CODR feature is not important.  

 

39 Because of a low computational cost, LR was trained on 50 iterations. 
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Figure 33 – Feature importances of the four GBT-models 

While the type of company likely to submit sparse financial statements probably differs from the ones that 

submit dense statements, the AUC-scores between the sparse and dense models could also have been impacted 

by the split of the train and test samples as they are inherently different. This introduces a potential bias where 

one test set could contain instances that are relatively harder to predict compared to the other test set – meaning 

that harder-to-predict samples largely might appear in the training set for one of the datasets and in the test set 

for the other. 

At first sight, this split issue between datasets could be solved by first performing the train and test split on the 

sparse dataset that contains all financial statements and features, and then removing the sparse features and 

sparse financial statements for the models requiring a dense dataset (compared to the procedure employed in 

this thesis of first removing missing values, and then splitting). This ensures that all training samples used in 

the dense models are used as training samples in the sparse models as well (and that test samples for dense 

models are used as test samples for sparse models). However, it does not work in the opposite direction, i.e., 

that all training samples used in the sparse dataset are used in the dense training set (similarly for the test sets). 

Since this approach still does not equate the two datasets as the sparse financial statements remain for one of 

the models and not for the other, it could still lead to harder-to-learn/predict samples in the sparse dataset. 

Furthermore, removing data instances after a split could skew the class balance of the training and test sets. 

Highly imbalanced datasets are especially sensitive to such post-split processing since small changes in the 

minority class can lead to large proportional fluctuations. Similarly, this could also change the prior class 
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probabilities in models that rely on such weights (e.g., logistic regression), which could lead to usage of 

incorrect probabilities from a training set that does not accurately reflect the reality. 

However, while there could be impacts stemming from the above-outlined approaches, it does not seem 

particularly plausible that two distinct random splits would make such an impact primarily due to the sheer 

number of financial statements that occur in both datasets. Since the original dataset is of a decent size, the 

impact of the split is lowered. Thus, a random split on these large datasets probably does not carry a noticeable 

impact on the AUC-scores. 

From the results table it is clearly indicated that the models, in order from best to worst, are sparse-GBT-

CODR, followed by the two dense-GBT models, then sparse-GBT, then the LR-models, and lastly LDA. 

However, model performance cannot (perhaps, should not) be compared across different datasets. The primary 

issue is the non-identical test samples, which restricts the ability to make fair comparisons. Some of the 

deliberations outlined above, e.g., on samples that are harder-to-predict, potential sample bias, etc. might give 

an indication as to why this might be the case. Instead, the better approach is to compare models that are tested 

on the same test set, and for the case of financial distress prediction here, to compare non-CODR models with 

their CODR counterpart – both using the same sparse or dense dataset. 

When comparing models on the same dense dataset, this thesis has produced models that perform better than 

industry standard models (LR) and historical models (LDA). However, since all these models require a dense 

data structure to make predictions, it is severely limited and there are clear benefits of utilizing financial 

distress prediction models that do not rely on strict data input rules, especially since most of the available 

financial statements from the Danish Business Authority are sparse as a rule rather than as an exception. 

Consequently, the practical application opportunities of dense models are considerably more limited than that 

of sparse models. Consider providing a dense and a sparse model the same list of companies to risk-assess, 

respectively. Even if the scores (AUC, precision, recall, misclassification rate, etc.) were similar (or even if a 

dense model outperformed a sparse model) – a sparse model would still be preferable for the simple reason 

that it is more flexible and contains the predictive ability for (almost) any level of sparsity. The following 

discussion will only discuss the two sparse models: sparse-GBT and sparse-GBT-CODR because of this crucial 

inherent superiority of sparse models and further due to the indication that the CODR feature enhances 

predictive power, which the following seeks to investigate.  

8.4 OPERATIONALIZATION OF SPARSE MODELS 

Throughout this thesis, AUC has been used as an objective scoring metric that compares classifier performance 

and which is widely used for imbalanced dataset (Hand, 2009). Thus, AUC has been used as an objective 

comparison scoring method over all possible thresholds. However, to operationalize the FDP-models, the 

threshold that defines whether a company is classified as financially distressed or not must be specified.  
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Specifying a threshold is largely dependent on the use case of the financial distress prediction and requires 

some of the following (financial or otherwise relevant) cost deliberations. Regardless of the use case of an 

FDP-model, the cost of misclassifying companies (false positive and false negative) and the benefit of correctly 

classifying companies (true positive and true negative) should be quantified. Quantifying or otherwise 

specifying these costs allow for an optimization of the threshold such that the costs of using the model are 

minimized. 

 

Figure 34 – Confusion matrix of sparse-GBT-CODR on test set using a 0.5 threshold 

Consider the confusion matrix in Figure 34 above, which shows the number of correctly classified and 

incorrectly classified instances with a (standard) threshold of 0.5. Considering only the misclassifications (false 

positive and false negative), there is a much higher number of false positives than false negatives. If the costs 

of false positives and false negatives are equal for a certain use case, then the cost impact of using a threshold 

of 0.5 is suboptimal. In other words, the threshold can be changed such that the total misclassification instances 

shrink, and the number of false positives and false negatives are more balanced. More formally, the optimal 

threshold is the one that maximizes the following. 

 maximize [(𝛾𝑓𝑝 ∗ 𝐹𝑃) + (𝛾𝑓𝑛 ∗ 𝐹𝑁)] (17) 

Where 𝐹𝑃 and 𝐹𝑁 are false positives and false negatives, respectively, and 𝛾𝑓𝑝  and 𝛾𝑓𝑛  are the individual 

impacts of these, respectively. Note that if 𝛾 is negative, it constitutes a cost – if positive, a benefit. The 

equation can then be further expanded to include the benefits (or costs) of correct classification (𝑇𝑃 and 𝑇𝑁). 

 maximize [(𝛾𝑓𝑝 ∗ 𝐹𝑃) + (𝛾𝑓𝑛 ∗ 𝐹𝑁) + (𝛾𝑡𝑝 ∗ 𝑇𝑃) + (𝛾𝑡𝑛 ∗ 𝑇𝑁)] (18) 

As previously noted, the cost of misclassification differs between use cases. However, Altman et al. (1977) 

find that the cost of misclassifying a firm that is financially distressed as not financially distressed (false 

negative) is 35 times higher than the cost of a false positive in loan-giving situations. They argue that this cost 

distribution primarily stems from auditor costs, damages to the public brand, legal costs, etc. Although the 

costs could be a 35-to-1 relationship, the following will assume equal costs as the authors are of the opinion 

that the cost-distribution is highly situational, following Balcaen & Ooghe (2006) who also find that most 
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practitioners and academics assume equal costs of false positives and negatives. As such, the optimized 

threshold in the following should not constitute a truth, rather the following should depict the benefit of finding 

such a threshold in terms of cost. 

First, the trained model, sparse-GBT-CODR, predicts the probabilities of financial distress on a training set. 

Then, using these probabilities and the actual values, the threshold is changed from 0 to 1 using small steps – 

and at each point, the proportion of false positives and false negatives is calculated. Once the proportion of 

false positives and false negatives multiplied by their respective costs reaches a balance, an optimal cost 

threshold has been found. Here, the calculated threshold is 0.8054 ≈ 0.81 . Then, the classification 

performance using optimized threshold, 0.81, is tested on the test set. The results are outlined in the confusion 

matrix in Figure 35 below, indicating that the optimized threshold for the sparse-GBT-CODR model generalize 

well since the resultant balance between the false positives (2.97%) and the false negatives (3.11%) is 

approximately equal.  

 

Figure 35 – Confusion matrix of sparse-GBT-CODR on test set using a 0.8054 threshold 

Comparing the 0.81 threshold to the original 0.50, the misclassification rate on the test set has decreased from 

28% + 0.7% = 28.7%  to 2.97% + 3.11% = 6.08% . Using a misclassification cost of 1  and a correct 

classification cost (or benefit) of 0, this provides the following impacts (costs) of using thresholds 0.50 and 

0.81, respectively. 

𝑖𝑚𝑝𝑎𝑐𝑡0.50 = [(−1 ∗ 0.7%) + (−1 ∗ 28%)] = −28.7 

𝑖𝑚𝑝𝑎𝑐𝑡0.81 = [(−1 ∗ 2.97%) + (−1 ∗ 3.11%)] = −6.08 

Which gives the following improvement of using the 0.8 over the 0.5 threshold. 

𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡0.81−0.50 = −6.08 − (−28.7) = 22.62 

Thus, if the misclassification cost of 1 represents DKK 1, each usage of the model using 0.5 and 0.81 as 

thresholds would result in financial costs of −28.7 and −6.08 on average, respectively. 
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The above operates with a dichotomous approach to classification. Instead, the predicted probabilities can be 

used to create multiple bins indicating the likelihood that a company is financially distressed, see Figure 36 

below for the probability density plots of the two classes (note the distressed curve has been upscaled for 

visualization purposes). The approach of binning continuous values is presumably an approach utilized by 

Nordea that credit scores companies on an integer scale from 0 to 7 (see Appendix 1). Similar to Nordea, using 

the knowledge of the data distribution in Figure 36, bins can be created in a similar manner to the cost-based 

calculations above or in a more qualitative manner, e.g., a probability over 90% indicating financial distress 

highly likely, over 70% as likely, over 50% as possible, etc. depending on the use case and the cost of not 

identifying a financially distressed company and the cost of wrongly identifying a company as financially 

distressed. Furthermore, the predicted probabilities and the knowledge of the distribution as outlined in Figure 

36 can be used to create a zone of ignorance similar to Altman (1968) where probabilities in a certain range 

are classified as unknowns or other categories. 

 

Figure 36 – Probability density plot 

Note: The distressed density plot has been upscaled considerably.  

The cut-off point denotes the cost-optimal point (≈ 𝟎. 𝟖𝟏) 

8.5 INCLUSION OF NON-FINANCIAL OWNERSHIP INFORMATION 

Several models have been tested in this thesis. However, as outlined in the sections above, the sparse models 

are generally superior to the dense models with better practical opportunities stemming from their ability to 

operate on limited data information. As such, the latter parts of the discussion section largely revolved around 

the two sparse models, i.e., sparse-GBT and sparse-GBT-CODR. Considering these two models, the inclusion 

of non-financial ownership information – of which the company ownership default risk (CODR) feature is a 

proxy – appears to improve the power of financial distress prediction with AUC-scores of 0.8236 and 0.8409 

for sparse-GBT and sparse-GBT-CODR, respectively. Despite the seemingly relatively modest improvement, 

the enhanced predictive power is noticeable on the ROC-curves as illustrated in Figure 37 below. 
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Figure 37 – ROC curves of sparse-GBT and sparse-GBT-CODR 

The cross-validation results in Figure 38 below further support the possibility that the two sparse-GBT models 

perform differently and the hypothesis that non-financial ownership information might increase predictive 

power. Here, the AUC-scores from the 5-fold cross-validation of the fitted hyper-parameters is visualized, 

which shows no overlap between the five folds between the models. However, it is important to note that the 

cross-validation for the two models was performed on two different random samples, which entails that the 

individual folds are not directly comparable to one another. 

 

Figure 38 – Comparison of AUC-scores of sparse-GBT and sparse-GBT-CODR in during 5-fold cross-validation.  

Note that the folds are random, meaning they are not directly comparable between the models. 

As outlined in the previous sections, the feature importance rank of sparse-GBT-CODR similarly indicates that 

the inclusion of the CODR feature is an important part of the model. However, to more robustly test whether 

the inclusion of a CODR variable positively enhances predictive power or not, certain tests can be performed 

to test statistically significant differences between machine learning models. There are a variety of test for such 

tests. Dietterich (Dietterich, 1998) discusses the implications of using five different statistical tests for different 
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purposes, depending on how expensive the training phase of models is, i.e., the time and computation power 

needed to train models. He suggests performing 5×2 cv (five repetitions of a 2-fold cross-validation), which 

could be employed in the thesis. However, due to the computational power and time needed to perform such 

tests on top of the already-trained models, this is not be feasible. For non-expensive statistical tests, Dietterich 

(Dietterich, 1998) proposes performing the McNemar test instead. The McNemar test, tests the null hypothesis 

that two algorithms have the same error rate, e.g., that the two classifiers disagree the same amount. 

Consequently, rejecting the null hypothesis suggests that there is evidence that the two classifiers disagree in 

different ways. 

The following will outline the McNemar’s test on the sparse-GBT and sparse-GBT-CODR models with the 

null hypothesis that the classifiers disagree the same amount. To perform the test on two classifiers, the 

thresholds for each model must be specified first since the McNemar’s requires a 2×2 contingency matrix with 

dichotomous classification, as outlined in Table 6 below. 

 sparse-GBT correct sparse-GBT incorrect 

sparse-GBT-CODR 

correct 

(a) 

No. of times both models classify correctly 

 

(b) 

No. of times sparse-GBT-CODR is correct when 

sparse-GBT is incorrect 

sparse-GBT-CODR 

incorrect 

(c) 

No. of times sparse-GBT-CODR is incorrect 

when sparse-GBT is correct 

(d) 

No. of times both models classify incorrectly 

Table 6 – 2x2 contingency table for the two sparse-GBT classifiers 

Once the contingency table has been filled out, the test statistic can be calculated using cells 𝑏 and 𝑐 above. 

Since the McNemar’s test tests the null hypothesis that the two classifiers disagree the same amount, only the 

counts of disagreement are included (cells bottom-left and top-right in Table 6). Formally, the statistic is 

 𝜒2 =
(𝑏 − 𝑐)2

𝑏 + 𝑐
 (19) 

Where 𝑏 and 𝑐 denote the counts of disagreements between the models as in Table 6. To perform the actual 

test, the previously estimated optimal threshold of 0.8054 ≈ 0.81 is used for the sparse-GBT-CODR model 

with the assumption of equal misclassification costs, and when estimating the threshold for the sparse-GBT 

model with the same assumptions, the estimated threshold is 0.790103 ≈ 0.79. These thresholds are then used 

to classify all instances in the test set, filling the contingency table (see Table 7 below). 

 sparse-GBT correct sparse-GBT incorrect 

sparse-GBT-CODR correct 173,030 1,639 

sparse-GBT-CODR incorrect 1,599 9,634 

Table 7 – 2x2 contingency table (sparse-GBT-CODR threshold ≈ 𝟎. 𝟖𝟏, sparse-GBT threshold ≈ 𝟎. 𝟕𝟗) 
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Leading to the following test statistic 

 𝜒2 =
(𝑏 − 𝑐)2

𝑏 + 𝑐
≈ 0.49 (20) 

Which leads to a p-value of ≈ 0.482. Consequently, the null hypothesis that the two models are significantly 

different cannot be rejected on a significance level 𝛼 = 5%, which suggests that for the specified thresholds, 

the models appear similar. However, an important limitation to the McNemar test for classification is that it 

relies on clearly defines thresholds and dichotomous classification. Consequently, the specification of other 

thresholds could result in different conclusions on the difference between the performance of sparse-GBT and 

sparse-GBT-CODR models.  

If the above test is repeated using the standard threshold of 0.5 for both models (or assuming a different cost 

structure), the contingency is considerably different (see Table 8 below). 

 sparse-GBT correct sparse-GBT incorrect 

sparse-GBT-CODR correct 125,985 7,399 

sparse-GBT-CODR incorrect 6,322 46,196 

Table 8 – 2x2 contingency table (threshold = 𝟎. 𝟓) 

Performing the McNemar’s test on these classification outcomes result in 𝜒2 ≈ 84.53 and a p-value of ≈ 0.00. 

Here, the null hypothesis is rejected on the previously set significance level (𝛼 = 5%). Thus, the models appear 

to be significantly different for some thresholds, but not for others, suggesting that the CODR feature, and 

non-financial ownership information generally, can be included in FDP-models with increased predictive 

performance over models that do not include non-financial ownership information for certain use cases. 

Despite significant differences between the models for some thresholds, the difference in performance is not 

clear-cut since the performance largely seems to depend on the specification of the threshold, which 

predominantly is a practical decision that depends on the use case. Consequently, the McNemar test on the 

difference in performance of two classifiers might not be a suitable test to perform to estimate the general 

difference in performance between the models. Instead, a 5×2 cv test proposed by Dietterich (1998), although 

computationally expensive, might be a better approach as it “assesses the effect of both the choice of training 

set (by running the learning algorithms on several different training sets) and the choice of test set (by 

measuring the performance on several test sets)“ (p. 1919), which allows for more robust comparisons between 

the models. The indications of differences in model performance with the inclusion of non-financial ownership 

information also suggest that further research is warranted into the topic with potential benefits for academics 

in the field of FDP and practitioners alike. 
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Lastly, the inclusion of non-financial ownership information (or other types of information external to financial 

statements) open up for the possibility for financial distress predictions to become continuous and less reliant 

on the publication time of financial statements, which often are published with one year’s interval. 

Consequently, by the time the financial statements are published, the numbers might not accurately reflect the 

current reality anymore. Specifically, financial distress predictions can now be made whenever information 

external to the financial statements is updated. For the case of CODR, model predictions can be adjusted 

instantaneously when a change in the CODR feature occurs rather than having to wait a year for a new financial 

statement to be released. Including other important features would further enable more dynamic FDP-models 

for the benefit of stakeholders relying on accurate and timely predictions.  

8.6 FUTURE WORK 

Doing the ideation, development, de-bugging, and writing stages of this thesis, several discussions arose on 

other avenues within the area of financial distress prediction. Some of these where implemented and some are 

introduced as topics for future work. 

For this thesis, potential changes include incorporating the number of employees as both a feature, but also as 

a measure for outlier detection where companies above a certain threshold, e.g., 
𝑃𝑟𝑜𝑓𝑖𝑡

# 𝑜𝑓 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠
, would be 

marked as potential outliers. Similarly, since many erroneous financial statements are identified and 

consequently adjusted, an erroneous statement flag could be added as a feature indicating whether the financial 

statement is erroneous. Likewise, the textual information included in the financial statements could be further 

included in the models similar to the approach of Matin et al. (2019) that found an improvement of including 

auditor reports – however, this is largely out of scope for this thesis due to its complexity. Further, a macro-

economic feature that captures relevant financial information external to the company could also be utilized. 

The data scope could also be broadened to include older financial statements by developing a robust OCR-

scanner. Assuming a good OCR-model, it can then further be used to classify digitally erroneous financial 

statements, which heightens data quality. 

The CODR feature could also be expanded to include not only the immediate owner, but the ultimate owner, 

which presumably would lead to a score that is more tied to the root-cause, i.e., the person and not the holding 

company. Other proxies than CODR for non-financial ownership information could also be integrated, 

including the (members of the) board ownership default rate or inclusion of the ownership concentration 

heavily discussed in the literature (Daily & Dalton, 1994a, 1994b; Deng & Wang, 2006; Donker et al., 2009; 

Lajili & Zéghal, 2010; Mangena & Chamisa, 2008; Manzaneque et al., 2016). Additionally, rather than having 

a score like CODR that is calculated based on the proportion of failures, a more “positive” owner score could 

be developed, including previous ownership performance such as individual growth numbers, the owners’ 
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previous experience (e.g., quantification of the number of years in healthy companies), etc. If a proper data 

pipeline is setup, social media information could also be integrated, though this likely is resourceful. 

The FDP-models developed and described in this thesis heavily rely on financial statements, which excludes 

many start-ups that presumably are more prone to financial distress. Consequently, it could be beneficial to 

develop FDP-models that are able to take these considerations into account, e.g., through a focus on non-

financial features that are available prior to the publication of the first financial statement, e.g., CODR or other 

ownership variables outlined above such as the ability of the owner to drive company growth or the ability to 

maintain the health of these.  
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9 CONCLUSION 

Motivated by the potentially underdeveloped aspect of including non-financial ownership information as a 

predictor in financial distress prediction, the development of high-performance models using machine 

learning, and the considerable amount of data on limited Danish companies from the Danish Business 

Authority, this thesis set out to investigate the following research question: “How does the inclusion of non-

financial ownership information affect the performance of financial distress prediction models on Danish 

companies?” 

To answer the research question above, three types of models were trained and evaluated on dense data, i.e., 

linear discriminant analysis (LDA), logistic regression (LR), and gradient boosted trees (dense-GBT). First, 

all models were trained on financial ratios without a proxy for non-financial ownership information, i.e., 

company ownership default risk (CODR). Then, LR and dense-GBT were trained using CODR to compare 

predictive power. Realizing the extent to which the dense dataset limits the predictive ability of models 

stemming from model needs of removing missing data, GBT was additionally trained on the full sparse dataset 

both with and without CODR, i.e., producing the sparse-GBT and sparse-GBT-CODR models, creating a total 

of seven models. 

The results from the financial distress predictions of Danish limited companies show an enhanced predictive 

power of sparse-GBT-CODR (𝐴𝑈𝐶 = 0.8409)  over sparse-GBT (𝐴𝑈𝐶 = 0.8236) . For dense models, 

however, the results do not suggest a benefit of including CODR. The McNemar test was then performed on 

the two sparse models, sparse-GBT-CODR and sparse-GBT, and found that model performance is significantly 

different for certain thresholds, though not for others. These findings suggest that the inclusion of CODR – 

and possibly non-financial ownership information generally – for increased predictive performance is largely 

business-dependent. In certain contexts, the inclusion of non-financial ownership information might increase 

the predictive performance over models that do not include non-financial ownership information. In so doing, 

existing FDP-models could be enhanced, enabling better and more fair credit scoring, more accurate pricing 

of credit risk, and enable the creation of more dynamic and up-to-date predictions by avoiding the reliance on 

financial statements published on an annual basis and instead adjust predictions as soon as the non-financial 

predictors change. 

Despite the promising indications, it cannot be said for certain that the inclusion of non-financial ownership 

information positively affects the performance of financial distress prediction models on Danish companies. 

However, the authors believe that the above findings clearly suggest that further research into the inclusion of 

non-financial ownership information is warranted.  
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11 APPENDICES 

11.1 APPENDIX 1 – INTERVIEW TRANSCRIPT HIGHLIGHTS WITH NORDEA 

Interviewee – Simon Nissen, Business Developer, 12 years of work experience at Nordea of which the first 9 

years were in consumer-facing business units. He is now primarily working on system-technical tasks but is 

also involved with the Danish credit rating process and is ensuring that it works as intended. 

13:20 – Simon: “We have our own internal rating models, that we use, and in these, we use 

quantitative factors. The majority of the factors are pure (ed. financial) numbers. 

On top of this, we have more soft values, the quantitative values that we use. These 

concern information on, the owners, the executive board, the industry etc. All this 

information (ed. quantitative and qualitative) will together form the credit score 

that goes from 0-7.” 

14:45 – Simon: “We have partnered with companies, that provide data to us, data from financial 

reports. The data may come from CVR or other data providers, that provide data 

to us and our (ed. electronic) financial analysis tools. This data will be 

automatically read by our tools.”  

15:15 – Simon: “So if we have a company that we need to rate, then we can go in (ed. in their 

systems), and source data from that company. Then I get the external financial 

report, without typing anything (ed. into the analysis tool).”  

16:50 – Frederik: “What about the qualitative aspects (ed. in the credit rating process)? How 

much can they influence the ratings?  

Simon: “… They have an influence, but they influence with at most one grade” 
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11.2 APPENDIX 2 – UNSUPERVISED LEARNING 

While supervised machine learning models train using labeled data, unsupervised machine learning models 

train on unlabeled data (Fawcett & Provost, 2013). As an example of an unlabeled dataset, note Figure 39 

below. This figure is identical to Figure 2, but the target variable is removed.  

 

Figure 39 – Example data for unsupervised machine learning 

Compared to supervised machine learning, which attempts to learn patterns in the data to accurately predict or 

classify data points, unsupervised learning focuses more on exploratory data analysis. There are five primary 

uses for unsupervised learning: Clustering, density estimation, anomaly detection, association mining, and 

dimensionality reduction. Unsupervised learning is not employed in the analysis of financial distress prediction 

in this thesis; hence the following only briefly outlines one of the five subsets of unsupervised machine 

learning, i.e., clustering, to provide the reader with the two contrasting methodologies of unsupervised and 

supervised learning. 

Clustering is a machine learning technique used to cluster data into groups. There are several algorithms that 

can do this effectively for different types of data (Geron, 2017). As an example, imagine a different dataset on 

retail customers, where each customer is visualized as a dot in Figure 40. The left area of the figure illustrates 

the original uncategorized dataset (no colors). Following a clustering technique, the customers have now been 

categorized into three classes as indicated by the three colors in the right side of the figure. Following the 

categorization of the data into these three groups, a retailer might be able to identify that these three types of 

customers warrant different marketing strategies to be successful. For the data relating to this thesis, a 

clustering technique could similarly categorize financial statements into groups based on similar traits. While 

the data visualized below is two-dimensional, clustering can be done for any n-dimensional data. 

 

Figure 40 - Example of clustering data into groups from Herlau et al. (2018)   
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11.3 APPENDIX 3 – QUERIED PERMANENT DATABASE VARIABLES 

Type of information Feature name Description 

Company CVR Company registration No. 

enhedsNummer Unique database ID 

samtID Revision number 

nyesteNavn Latest company name 

status, periode Status (Active, bankrupt) for 

a given period 

kortBeskrivelse, periode Legal form (A/S, ApS) 

branchekode, periode Industry code 

livsforloeb Foundation date and possible 

cessation date 

kommunekode, periode Municipality No. 

Participants enhedsNummer Unique database ID 

forretningsnoegle CVR No. if the participant is 

a company 

enhedsNummerOrganisation Unique database ID of 

organization No. 

medlemsData.attributter The data values contained for 

the query 

Table 9 Permanent DB variables 
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11.4 APPENDIX 4 – COMPANY INFORMATION (DICTIONARY) 

 

Figure 41 – Fundamental company information a dictionary format  

"5": { 

        "Adresse": [ 

            { 

                "kommune": { 

                    "kommuneKode": 661 

                }, 

                "periode": { 

                    "gyldigFra": "2008-01-08", 

                    "gyldigTil": "2010-08-03" 

                } 

            } 

        ], 

        "Branche": [ 

            { 

                "branchekode": "821100", 

                "periode": { 

                    "gyldigFra": "2008-01-08", 

                    "gyldigTil": "2010-08-03" 

                } 

            } 

        ], 

        "CVR": 31172772, 

        "EnhedsNr": 4000614889, 

        "Liv": [ 

            { 

                "periode": { 

                    "gyldigFra": "2008-01-08", 

                    "gyldigTil": "2010-08-03" 

                } 

            } 

        ], 

        "Navn": "KODIF ISLAND EXPRESS ApS", 

        "SamtID": 5, 

        "Senestestatus": "TVANGSOPL\u00d8ST", 

        "Status": [ 

            { 

                "periode": { 

                    "gyldigFra": "2008-01-08", 

                    "gyldigTil": "2010-07-22" 

                }, 

                "status": "NORMAL" 

            }, 

            { 

                "periode": { 

                    "gyldigFra": "2010-07-23", 

                    "gyldigTil": "2010-08-02" 

                }, 

                "status": "UNDER TVANGSOPL\u00d8SNING" 

            }, 

            { 

                "periode": { 

                    "gyldigFra": "2010-08-03", 

                    "gyldigTil": "2010-08-03" 

                }, 

                "status": "TVANGSOPL\u00d8ST" 

            } 

        ], 

        "Virksomhedsform": [ 

            { 

                "kortBeskrivelse": "APS", 

                "periode": { 

                    "gyldigFra": "2008-01-08", 

                    "gyldigTil": "2010-08-03" 

                } 

            } 

    } 
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11.5 APPENDIX 5 – LIST OF INITIAL SELECTED FINANCIAL FEATURES 

Financial features 
AccumulatedImpairmentLossesAndAmortisationOfIntangibl

eAssets 

LongtermLiabilitiesOtherThanProvisionsDueInOneYear 

AccumulatedImpairmentLossesAndDepreciationOfInvestme

nts 

LongtermMortgageDebt 

AccumulatedImpairmentLossesAndDepreciationOfPropertyP

lantAndEquipment 

LongtermReceivablesFromAssociates 

AccumulatedRevaluationOfPropertyPlantAndEquipment LongtermReceivablesFromGroupEnterprises 

AccumulatedRevaluationsOfInvestments ManufacturedGoodsAndGoodsForResale 

AcquiredIntangibleAssets MinorityInterests 

AdditionsToIntangibleAssets NetIncreaseDecreaseInCashAndCashEquivalents 

AdditionsToInvestments NominalValueOfIssuedShares 

AdditionsToPropertyPlantAndEquipment NoncurrentAssets 

Adjustments NoncurrentBankLoans 

AdjustmentsForCurrentTaxOfPriorPeriod NoncurrentLiabilities 

AdjustmentsForDecreaseIncreaseInWorkingCapital NoncurrentReceivables 

AdjustmentsForDeferredTax NoncurrentReceivablesDueFromRelatedParties 

AdjustmentsOfHedgingInstrumentsAtFairValue NumberOfEmployees 

AdministrativeExpenses NumberOfIssuedShares 

AmortisationOfGoodwillOfInvestments OperatingMargin 

AmortisationOfIntangibleAssets OpinionOnAuditedFinancialStatements 

Assets OtherAdjustmentsOfFinanceExpenses 

AverageNumberOfEmployees OtherAdjustmentsOfFinanceIncome 

BiologicalAssets OtherAdjustmentsRelatedToInvestments 

CashAndCashEquivalents OtherCurrentPayables 

CashAndCashEquivalentsConcerningCashflowStatement OtherEmployeeExpense 

CashCapitalIncrease OtherExpenseByNature 

CashFlowFromOperatingActivitiesBeforeFinancialItems OtherExternalExpenses 

CashFlowsFromUsedInFinancingActivities OtherFinanceExpenses 

CashFlowsFromUsedInInvestingActivities OtherFinanceIncome 

CashFlowsFromUsedInOperatingActivities OtherFinanceIncomeFromGroupEnterprises 

ContractWorkInProgress OtherInterestExpenses 

ContributedCapital OtherInterestIncome 

CopyrightsPatentsAndOtherIndustrialPropertyRightsService

AndOperatingRights 

OtherLongtermInvestments 

CurrentAssets OtherLongtermPayables 

CurrentBankLoans OtherLongtermReceivables 

CurrentDeferredTaxAssets OtherOperatingExpenses 

CurrentLiabilities OtherRegulationsDevaluations 

CurrentReceivablesFromSubsidaries OtherRegulationsImpairmentLossesAndDepreciations 

CurrentTaxExpense OtherReserves 

DateOfApprovalOfReport OtherShorttermInvestments 

DeferredIncomeAssets OtherShorttermPayables 

DepreciationAmortisationExpenseAndImpairmentLossesOfP

ropertyPlantAndEquipmentAndIntangibleAssetsRecognisedI

nProfitOrLoss 

OtherShorttermReceivables 

DepreciationOfPropertyPlantAndEquipment PaidContributedCapital 

DisposalsOfIntangibleAssets PlantAndMachinery 

DisposalsOfInvestments PostemploymentBenefitExpense 

DisposalsOfPropertyPlantAndEquipment PrepaymentsForPropertyPlantAndEquipment 

Dividend ProceedsFromLongtermLiabilitiesClassifiedAsFinancing

Activities 

DividendIncomeRelatedToInvestments ProfitLoss 

DividendPaid ProfitLossAfterAttributableToMinorityInterest 

EmployeeBenefitsExpense ProfitLossAttributableToMinorityInterest 

Equity ProfitLossFromOrdinaryActivitiesAfterTax 

EquityRatio ProfitLossFromOrdinaryActivitiesBeforeTax 

EquityTransfersToReserves ProfitLossFromOrdinaryOperatingActivities 

ExchangeRateAdjustmentsOtherFinanceExpenses ProfitLossRelatedToInvestments 
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ExchangeRateAdjustmentsOtherFinanceIncome ProfitLossRelatedToInvestmentsImpairmentLossesAndD

epreciation 

ExchangeRateLoss PropertyCost 

ExchangeRateProfit PropertyPlantAndEquipment 

ExtraordinaryDividendPaid PropertyPlantAndEquipmentGross 

FeesForAuditorsPerformingStatutoryAudit ProposedDividendRecognisedInEquity 

FeesForAuditorsPerformingTaxConsultancy Provisions 

FeesForOtherServicesPerformedByAuditors ProvisionsForDeferredTax 

FinanceCosts PurchaseOfIntangibleAssetsClassifiedAsInvestingActiviti

es 

FinanceExpensesArisingFromGroupEnterprises PurchaseOfInvestments 

FinanceIncome PurchaseOfPropertyPlantAndEquipmentClassifiedAsInve

stingActivities 

FixturesFittingsToolsAndEquipment RaisingOfDebtToCreditInstitutions 

GainsLossesFromCurrentValueAdjustmentsOfOtherInvestme

ntAssets 

RaisingOfLongtermDebt 

Goodwill RawMaterialsAndConsumables 

GrossMargin RepaymentsOfLongtermLiabilitiesClassifiedAsFinancing

Activities 

GrossProfitLoss ReportingPeriodEndDate 

GrossResult ReportingPeriodStartDate 

IdentificationNumberCvrOfAuditFirm ReserveAccordingToArticlesOfAssociation 

IdentificationNumberCvrOfReportingEntity ReserveForNetRevaluationAccordingToEquityMethod 

IdentificationNumberCvrOfSubmittingEnterprise RestOfOtherFinanceExpenses 

IdentificationNumberCvrOfSubmittingEnterprise RestOfOtherReserves 

IdentificationNumberPnrOfAuditFirm ResultsFromNetFinancials 

ImpairmentLossesOfIntangibleAssets RetainedEarnings 

ImpairmentLossesOfInvestments ReturnOnCapitalEmployed 

ImpairmentOfFinancialAssets ReturnOnEquity 

IncomeFromInvestmentsInAssociates RevaluationsOfPropertyPlantAndEquipment 

IncomeFromInvestmentsInGroupEnterprises Revenue 

IncomeFromOtherLongtermInvestmentsAndReceivables ReversalsOfImpairmentLossesAndAmortisationOfDispos

edIntangibleAssets 

IncomeTaxesPaidRefundClassifiedAsOperatingActivities ReversalsOfImpairmentLossesAndDepreciationOfDispos

edPropertyPlantAndEquipment 

IncomeTaxExpenseContinuingOperations SaleOfInvestments 

IncreaseDecreaseOfImpairmentLossesAndAmortisationOfInt

angibleAssetsThroughNetExchangeDifferences 

ShareHeldByEntityOrConsolidatedEnterprisesInRelatedE

ntity 

IncreaseDecreaseOfImpairmentLossesAndDepreciationOfPr

opertyPlantAndEquipmentThroughNetExchangeDifferences 

SharePremium 

IncreaseDecreaseOfIntangibleAssetsThroughNetExchangeDi

fferences 

ShorttermDebtToBanks 

IncreaseDecreaseOfInvestmentsThroughNetExchangeDiffere

ncesEquity 

ShorttermInvestments 

IncreaseDecreaseOfPropertyPlantAndEquipmentThroughNet

ExchangeDifferences 

ShorttermLiabilitiesOtherThanProvisions 

IncreaseDecreaseOfPropertyPlantAndEquipmentThroughTra

nsfers 

ShorttermMortgageDebt 

IncreaseOfCapital ShorttermPartOfLongtermLiabilitiesOtherThanProvisions 

IntangibleAssetsGross ShorttermPayablesToAssociates 

InterestExpenseAssignedToGroupEnterprises ShorttermPayablesToGroupEnterprises 

InterestExpensePartOfCostOfAsset ShorttermPayablesToShareholdersAndManagement 

InterestIncomeFromGroupEnterprises ShorttermPrepaymentsReceivedFromCustomers 

InterestPaidClassifiedAsOperatingActivities ShorttermReceivables 

InterestReceivedClassifiedAsOperatingActivities ShorttermReceivablesFromAssociates 

Inventories ShorttermReceivablesFromGroupEnterprises 

InvestmentInPropertyPlantAndEquipment ShorttermReceivablesFromOwnersAndManagement 

InvestmentsGross ShorttermTaxPayables 

InvestmentsWithNegativeEquityDepreciatedOverReceivable

s 

ShorttermTaxReceivables 

LandAndBuildings ShorttermTradePayables 

LeaseholdImprovements ShorttermTradeReceivables 
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LiabilitiesAndEquity SocialSecurityContributions 

LiabilitiesOtherThanProvisions TaxExpense 

LongtermDebtToBanks TaxExpenseOnOrdinaryActivities 

LongtermDebtToOtherCreditInstitutions TradeAndOtherCurrentReceivables 

LongtermInvestmentsAndReceivables TradeAndOtherCurrentReceivablesDueFromRelatedParti

es 

LongtermInvestmentsInAssociates TradeAndOtherReceivables 

LongtermInvestmentsInGroupEnterprises TradeAndOtherReceivablesDueFromRelatedParties 

LongtermLiabilitiesOtherThanProvisions ValueAdjustmentsOfEquity 

LongtermLiabilitiesOtherThanProvisionsDueAfterFiveYears

AndMore 

ValueOfKeyFigureOrFinancialRatio 

LongtermLiabilitiesOtherThanProvisionsDueBetweenOneAn

dFiveYears 

WagesAndSalaries 
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11.6 APPENDIX 6 - EXAMPLE OF A REFERENCE MAP 

 

Figure 42 – Reference map 

 

  

{'c1': '2012', 

'c4': '2011', 

'c5': '2011', 

'c7': '2012', 

'c33': '2012', 

'c49': '2012', 

'c50': '2012', 

'c51': '2012', 

'c72': '2012', 

'c76': '2012', 

'c106': '2012', 

'c157': '2012', 

'c158': '2011', 

'c179': '2012', 

'c180': '2011', 

'c208': '2011', 

'c209': '2012', 

'c210': '2012', 

'c214': '2011', 

'c215': '2012', 

'c216': '2012', 

'c217': '2011', 

'c218': '2012', 

'c219': '2012', 

'c247': '2011', 

'c248': '2012', 

'c249': '2012', 

'c286': '2011', 

'c287': '2012', 

'c288': '2012', 

'c292': '2011', 

'c293': '2012', 

'c294': '2012', 

'c362': '2012', 

'c364': '2011'} 
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11.7 APPENDIX 7 – LIST OF SELECTED VARIABLES
40 

 

 

40 For detailed calculations of each variable, please go to the following in the code repository /Code/Main/2_Add50Variables.ipynb 
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11.8 APPENDIX 8 – RESULTS OF RANDOM SEARCH 

 


