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Abstract

This thesis explores whether investors require a risk premia for systematic risk when pricing
Western European collateralized loan obligations (CLOs) from 2017 to 2020. I derive a set
of special purpose vehicle (SPV) characteristics which are suggested to drive the systematic
risk of issued tranches. If investors require risk premia according to the systematic risk of
the tranche, the systematic risk drivers derived are hypothesized to have a significant impact
on required launch spreads. None of the systematic risk drivers are found to have a robust
significant impact on launch spreads for CLOs in this thesis. The implication of the results is
that investors do not require a risk premia for the systematic risk in CLOs which implies CLO
tranches to be overpriced. The complexity of structured debt is suggested to be the reason as it
leaves investors barred from properly understanding the risk profile of the tranches. Instead, the
risk assessment is suspected to be delegated to rating agencies which do not consider systematic
risk in their rating methodologies. Further research is suggested to provide insight into what
causes the lack of systematic risk premia and the methodologies used by investors for systematic

risk assessment in practice.
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1 Introduction

“Since the onset of the credit crisis, in mid-2007, analysts, politicians and researchers
grapple to understand why such a disaster was possible... There were also a larger number
of sophisticated investment bankers, fund managers and central bankers than ever before
who were equally caught by surprise. Due to the high level of complezity that characterizes
structured finance instruments, investors are effectively barred from carrying out any
serious due diligence exercise directly. Thus, delegated monitoring is a sine qua non in
structured finance markets, and the major line of delegation in ABS markets relies on

rating agencies.”

- Brennan, Hein, and Poon (2009)

The quote from Brennan, Hein, and Poon (2009) describes investors which delegated risk assessment
to rating agencies as they were unable to map the risk characteristics of complex structured debt
themselves. As a result of the lack of proper risk assessment, they were found to be caught by

surprise by the instruments’ sensitivity towards deterioration of the economic states.

The reliance on rating agencies to assess risk for structured debt seems puzzling. The models used by
rating agencies are solely based on real-world default probabilities and fails to account for systematic
risk?. As a result, the market consensus of relying on rating agencies do not capture systematic risk

and in particular has been criticized in previous literature?.

Some indications exist that market participants have changed their flawed practices of risk assess-
ment after the Great Financial Crisis (GFC). The Financial Times stated in December 2007 that
“some funds have rued their heavy dependence on ratings” and the SEC has suggested developing
a differentiated rating methodology for structured debt which in particular accounts for systematic
risk (Brennan, Hein, and Poon, 2009). In sum, market participants seem aware of the necessity to
arrive at their own opinion of systematic risk in the wake of the repercussions from the GFC.

After the GFC, the market for structured debt has changed. In particular, the issuance of Collateral-
ized Debt Obligations (CDOs) has ceased and has been replaced by Collateralized Loan Obligations
(CLOs) (Aramonte and Avalos, 2019). CLOs are perceived as less complex compared to CDOs and
less used for questionable practices, such as resecuritations of structured debt tranches. However,
the low resilience of issued tranches against deterioration of the economic state is a shared char-
acteristic between CDOs and CLOs (Aramonte and Avalos, 2019). Understanding systematic risk
is thus still important in the structured debt market post-GFC. With an offset in the quote by
Brennan, Hein, and Poon (2009) it therefore seems appealing to ask the question: “Have investors
adjusted their risk assessment practices and are now capable of understanding systematic risk for
structured debt in the aftermath of the Great Financial Crisis (GFC)?”.

2See section 2.2
3See section 3



A natural starting point for answering this question is assessing the findings and research methods
applied in previous studies of the subject. However, previous empirical studies focusing on systematic
risk in structured debt are scant. Pinto, Marques, and Megginson (2020) found a difference in
spreads between structured debt and corporate bonds and inferred that the difference is caused by
systematic risk. However, I argue that the methodology applied by Pinto, Marques, and Megginson
(2020) cannot isolate the effect from systematic risk and is vulnerable to other spread determinants

systematically influencing the conclusions®.

New discoveries regarding systematic risk in structured debt have emerged post-GFC. In particular,
previous literature has identified a set of characteristics for the Special Purpose Vehicle (SPV) which
drives the magnitude of systematic risk in their issued tranches. For example, the systematic risk of
the loans in the collateral portfolio is found to influence the systematic risk of the issued tranches.
In section 4.2, T extend the findings of the literature by using an intuitive model which connects
selected SPV characteristics with the systematic risk of issued tranches. I suggest that systematic
risk drivers so far not applied in empirical studies can provide further insights into systematic risk
assessment for structured debt. The research method for this thesis is based on the intuition that
if investors recognize systematic risk, these systematic risk drivers should have a positive impact on

the required spread at issue.

1.1 Research question and contribution to the literature

Previous literature on structured debt has mainly focused on identifying spread determinants and
only a few studies have conducted empirical studies of the effect of systematic risk on required
spreads for structured debt. No studies (to the author’s knowledge) have investigated the impact
of SPV characteristics which drives systematic risk on spreads to assess whether systematic risk is
considered by investors. Hence, this thesis aims to provide additional insight into the question of
whether investors price systematic risk into required spreads for structured debt in practice. Other
studies empirically investigating the pricing of systematic risk investigates the differences in spreads
between structured and unstructured debt (Pinto, Marques, and Megginson, 2020). However, I argue
that the methodology applied in this thesis is less prone to be influenced by other, well established
factors which also drives spread differences between structured and unstructured debt.

No previous research has investigated the link between SPV characteristics driving systematic risk
and required spreads for structured debt. In this thesis, I combine a derivation of systematic risk
drivers using a theoretical framework with an empirical study of spread determinants. The main
contribution of this thesis is to provide new insights into the question of whether investors identify
systematic risk and prices structured debt accordingly post the GFC.

The main research question of this thesis is defined below:

4See section 4.



“Is systematic risk priced into spreads at launch for Western FEuropean CLO tranches

with floating coupons issued post GFC?”

To answer this question, four sub research questions (SRQs) are defined. These are formulated to
guide the focus of the studies undertaken and align them with the overall research objective. For
each SRQ), the specifics of financial instruments, time period, and global region are as stated in the

main research question.

SQR1: “Is there a significant difference in required launch spreads between CLOs and

unstructured corporate bonds?”

SQR2: “Can the difference in required launch spreads between CLOs and unstructured
corporate bonds partly be explained by perceived differences in systematic risk by in-

vestors?”

SQR3: “What is the sign and significance of the impact from each SPV characteristic

found to drive systematic risk on the CLOs’ launch spreads?”

SQR: “Does systematic risk have an impact on required spreads for CLO tranches?”

1.2 Delimitation of scope

The number of topics covered within existing literature concerning structured debt is vast and a
delimitation of scope for this thesis is necessary.

First, I provide a delimitation of the type of debt considered in my analyses. The studies undertaken
for this thesis are solely conducted on debt issued in Western Europe® with a time period of issue
limited to between January 2017 and April 2020. Additional restrictions have also been imposed
on the type of debt included in the analyses. Only unstructured and structured instruments with
floating coupons priced at par is included. Furthermore, only CLOs® are considered for structured

debt while only corporate bonds are considered for unstructured debt.

Secondly, a delimitation of the analyses conducted is provided. For this thesis, my sole endeavour
is to examine whether systematic risk is considered by investors in practice when pricing tranches
of CLOs. Many other important topics within structured debt exist but will not be considered in
this thesis.

Finally, my approach for assessing whether systematic risk is considered is by testing the impact

of systematic risk drivers on spreads at launch for CLOs. Alternative methodologies not used in

5Andorra, Austria, Belgium, Channel Islands, Denmark, Faeroe Islands, Finland, France, Germany, Gibraltar,
Greece, Greenland, Guernsey, Holy See, Iceland, Ireland, Isle of Man, Italy, Jersey, Liechtenstein, Luxembourg,
Malta, Monaco, Netherlands, Norway, Portugal, San Marino, Seborga, Spain, Sweden, Switzerland and the United
Kingdom.

6See section 2.1.



this thesis could be applied for testing whether systematic risk is considered by investors, including

interviews and other qualitative studies.

1.3 Structure

Section 2 introduces structured debt and CLOs in particular and describes the rating methodology
applied by one of the market leading rating agencies, Standard & Poors (S&P). Section 3 provides a
literature review concerning spread determinants for structured debt. In section 4 I formulate a set
of hypotheses based on central contributions from previous literature and derivations of relations
between SPV characteristics and systematic risk. The methodology applied to test these hypotheses
in this thesis is elaborated in Section 5, while section 6 provides an insight into data sources and the
data creation process. In section 7 the findings are presented along with sensitivity analyses and an
assessment of the robustness of the findings. Finally, the implications of my findings and suggested
next steps in future studies are discussed in section 8 before I provide a conclusion of the thesis in

section 9.



2 Theoretical background

This section presents the theoretical background of the undertaken study in this thesis. Section 2.1
introduces various terminology applied in this thesis and the anatomy of structured debt. Section
2.2 elaborates on the rating methodology of S&P for structured debt and emphasis is put on whether
systematic risk is captured by their applied methodology.

2.1 Introduction to CLOs

This section provides an in depth description of the process of securitization and collateralized loan
obligations (CLOs) in particular. It also aims to align the terminology for the rest of the thesis and

set the scene for a description of S&P’s rating methodology.

When structuring debt, a special purpose vehicle (SPV) is established to pool debt products into
a portfolio. Most leveraged loans used in CLOs are originated by banks, with a smaller role for
non-bank financial institutions (NFBIs) (FSB, 2019). The acquisitions of the debt products are
funded by issuing collateralized debt obligations (CDOs) from the SPV. The interest and principals
earned from the underlying pool of collateral are then used to pay interests to the holders of the
CDO issues. The CDOs are designed to have different seniorities. For example, the typical SPV
structure has senior, mezzanine and junior CDO tranches. Finally, they also contain a “first-loss”
vehicle, or the equity tranche. Losses in the SPV’s portfolio are then absorbed according to the
seniority of the CDO tranches. The first-loss vehicle takes the first loss and each issue is protected
by all subordinate tranches to that issue (FSB, 2019). Usual investors in the tranches issued by
the SPV are banks, investments funds, insurance companies, pension funds and other non-banks
institutional investors (FSB, 2019).

There are different types of CDOs, defined according to the type of pooled debt collateral. Col-
lateralized loan obligations (CLOs) are a type of CDO which are backed primarily by a portfolio
of loans. Specifically, Bloomberg defines a CLO as debt issues from an SPV which are backed by

primarily by corporate loans.

This thesis is delimited to collateralized loan obligations as defined above. The paper does not cover
“synthetic CLOs” either, which are issued from SPVs backed by credit default swaps.

A SPV is a complex entity with many topics possible to be addressed. For example, an SPV is
defined according to the type of underlying loans, the priority ranking of the issued tranches, the
legal restraints of the portfolio manager and whether it has an active or passive portfolio management
among others. Many of these topics are extensive and are not relevant for this thesis. Hence, a
delimitation of what characteristics of the SPV I describe in this thesis is required. I focus on the
parts of the SPV which are assessed to be important inputs in the rating methodology for S&P.
S&P uses the underlying asset types and the capital structure of the issued CLO tranches as main
inputs in their credit rating methodology. These themes are elaborated below.



2.1.1 Capital structure

The flow of payments from the collateral portfolio of loans to issued CLO tranches follows a set of

clearly defined rules in order to protect the investors according to the tranches’ seniority.

The distribution of payments to CLO issues follows two sets of mechanisms. The first mechanism is
called a “waterfall” - the payments are distributed according to a “waterfall” where payments to the
CLO issues are prioritized according to their seniority. For example, the most senior CLO tranche
receives payments first. Only when the senior tranche is paid will the payments flow down the
waterfall to the next tranche. If payments from the loan portfolio turn out to be insufficient to pay

all tranches, the most senior tranches are then prioritized (FSB, 2019).

The second mechanism which governs the payments to CLO issues are compliance tests. Compliance
tests are conducted periodically and can be divided into two groups - the first group includes
eligibility tests and concentration limits which governs the assets acquired to the collateral portfolio.
For example, eligibility criteria can have a minimum requirement of credit ratings for the loans before
they are allowed to be added to the portfolio. The second group governs how the payments from the
loan portfolio are allocated and usually comprises overcollateralization (O/C) and interest coverage
(I/C) tests. For the discussion of capital structure, I focus on the second group.

The capital structure has to pass the O/C and I/C tests at each tranche layer at every payment
period, before payments can be allocated to more junior tranches. The O/C test imposes a minimum
ratio between the principal of the loan portfolio and the principal of outstanding tranches. The I/C
test imposes a minimum ratio between total interest income from the loan portfolio and total interest
due to CLO issues outstanding. If the ratios are above the minimum requirements, the payments
can flow to the next tranche. If not, the payments are redirected to pay principal on the tranche
in question, until the minimum levels are met. Finally, if any funds remain after the waterfall is
completed, including the O/C and I/C tests, the remaining payments are allocated to the equity

tranche.

O/C and I/C tests and the waterfall of payments in sum governs the flow of payments to the CLO
issues according to their seniority. The payments to the portfolio manager are usually placed on the
top of the waterfall.

The number of CLO issues and size of each tranche are at the portfolio managers discretion and
need to be adjusted according to the risk appetite of investors. Each tranche can be designed to

cater to the demands of the investors according to their seniority and size (Reuters, 2020).

2.1.2 Asset types

CLOs are structured debt backed primarily by a portfolio of loans. The underlying portfolio usually

consists primarily of below investment grade, broadly syndicated leveraged bank loans (BSLs), of



which the SPV takes part in the syndicate. Below investment grade is defined as loans with a credit
rating below BBB. The average rating of collateral for CLOs has been found in previous literature
to be slightly above B (Benmelech and Dlugosz, 2009). The SPV may also invest in unsecured debt
and middle market loans (Johnson, 2018).

The loans used in CLOs are mainly used for financial engineering by the obligor. For example,
common uses for loans used in CLOs are leveraged buy-outs (LBOs), mergers and acquisitions
(M&As), and recapitalization or refinancing of existing debt. When comparing with corporate
bonds, the loans usually have a first lien against the obligor’s assets and are usually senior to
corporate bonds in the obligor’s capital structure. The loans are usually characterized by high
indebtedness of the obligor and high spreads at issue (FSB, 2019).

The collateral can either be static or managed through the life of the vehicle. For a static deal, the
underlying collateral is fixed throughout the life of the deal and investors have full knowledge of
what the collateral will be. For managed deals, the collateral is subject to changes in a predefined
reinvestment period, where the portfolio manager reinvests cash flows and trade loans according to
certain criteria. An amortization period then follows the reinvestment period, where trading is more

restricted and focus is on repaying the CLO issues (Morningstar, 2017).

Eligibility criteria and concentration limits are typical restrictions applied to the loans in the collat-
eral portfolio. The eligibility criteria set requirements on the credit quality of the loans in the loan
portfolio. For example, the criteria can require a minimum rating on each loan or requirements for
the weighted average rating factor (WARF) for the pool. Concentration limits pose restrictions to

issuer and industry concentrations in order to ensure that the portfolio is sufficiently diversified.

2.2 Credit rating methodology for structured debt

The rating methodologies used by major rating agencies play a central role in the derivation of
hypotheses in this thesis as most literature used for my hypotheses derivation assumes investors to
solely price tranches based on its assigned rating. This section provides a description of the rating

methodologies necessary to understand the literature review conducted in section 3.

A detailed description of the rating methodology of S&P is included in this thesis to infer whether
or not systematic risk is considered to some extent in the methodology. Whether or not the rating
methodology considers systematic risk has important implications on the proper methodology to
test whether systematic risk has an impact on spreads using regression analyses. For example, If
the rating methodology considers systematic risk I can’t infer that systematic risk is not considered
solely from the impact of my systematic risk drivers. Systematic risk could have an impact on
spreads through the credit rating even if my systematic drivers’ impact turns out to be insignificant.

S&P, Moodys and Fitch are referred to as “The Big Three” rating agencies. In this section I focus on

the rating methodology applied from S&P. S&P is chosen as its rating has been shown to carry the

10



most explanatory value of the three agencies (Cuchra, 2004). Fitch and S&P’s rating methodology
are both based on the physical probability of default, while Moodys are based on expected default
losses (Brennan, Hein, and Poon, 2009).

This section is structured as follows. First, S&P’s rating methodology is briefly introduced followed

by a description of each element comprising the rating methodology.

2.2.1 An introduction to Standard & Poors’ rating methodology

S&P offer credit ratings to a large number of financial products, often with different rating method-
ologies. The focus of this section is the rating methodology for what S&P calls “Corporate CDOs”.
Corporate CDOs are defined as SPVs backed by diversified pools of corporate debt (loans and bonds).

It also covers SPVs with credit default swaps or sovereign securities as underlying collateral.

The cornerstone of the rating methodology is a stochastic modeling of default rates used to assess
each tranche’s risk of default. The modeling takes into account the risk characteristics in the loan
portfolio as well as tranche specific characteristics including the waterfall and seniority of the tranche

as described in section 2.1.

Additional qualitative and quantitative tests are also made as supplemental tests to the stochastic
modeling. These supplemental tests are made to address event and model risks not captured by the
stochastic modeling. They are used as additional constraints of the rating level for a given tranche.
Finally, S&P may assess additional qualitative factors on a case-by-case basis (Standard and Poors,
2019a).

The rating methodology from S&P is described in detail in a number of easily available articles.
They even provides software which can be used to mimic the stochastic modeling conducted. I have
used the articles available as well as an ongoing dialogue with S&P representatives to understand

the rating process.

2.2.2 Stochastic modeling

Stochastic modeling is used as the primary analysis in S&P’s rating methodology. The analysis
calculates two key metrics, Scenario Default Rate (SDR) and Break-even Default Rate (BDR).

For each rating, an SDR is calculated. The SDR is the default rate of the collateral portfolio that
a tranche should be able to withstand while still repaying note holders in full and on time. The
required SDR increases with the credit rating. For example, a AAA rating requires a larger SDR
than a BBB rating.

The SDR for a given credit rating depends on the risk characteristics of the loan portfolio. S&P runs
a Monte Carlo simulation of the default rate distribution of the collateral portfolio for a given time
horizon. Each credit rating is assigned quantiles of this distribution for each tenor. The quantile
decreases as the credit rating increases. For example, the quantile for a AAA rating with a 5-year
tenor is 0.051%, while it is 5.418% for a BBB rating ".

7 See Appendix D in Standard and Poors (2019a).
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The rating quantiles are then used to derive the SDR from the simulated distribution of default
rates of the collateral portfolio. The SDR is the default rate of the collateral portfolio at the given
quantile in the distribution.

The relation between the SDR and the rating quantile can be written as below. Let X be the default
rate of the loan portfolio, let %444 be the rating quantile for a AAA rating and let SDRa44 be
the SDR for the AAA rating.

P(X > SDRaaa) = %aaa (1)

As the loan portfolio becomes more diversified, the distribution becomes lighter tailed. As a result,

the SDR for a given rating decreases as the diversification increases and vice versa.

In order to run a Monte Carlo simulation of the default rate distribution, one needs to make
assumptions of how the loan defaults are related. S&P use a one-factor Gaussian Copula function

to model the correlations between asset loans (Standard and Poors, 2019a).

The one-factor Gaussian Copula model is an algorithm used to simulate values of normally dis-
tributed variables with a given correlation. The model is used by S&P to simulate defaults of loans
in a collateral portfolio and to capture the assumed correlations between the defaults. The model

can be summarized as below.

Let Z1,Z5,...,Zx be N independent identically distributed random variables with distribution ~
N(0,1). N denotes the number of loans in the portfolio. Hence, there exists a Z denominated iid.
variable for each loan. The Z denominated variables represent the idiosyncratic risk of each loan

defaulting and the variables are thus made independent of each other.

Let M ~ N(0,1) be a single random variable independent of all Z denominated variables. The M
variable represents the common factor across each loan which affects all loans in the portfolio and
thus makes defaults correlated. The single common factor is what gives the name of the one-factor

model.

Let Y7,Y5, ..., Yy be random variables defined as

Yi= Myp+Zi/T—p 2)

Where p is the correlation parameter which can take any value between 0 and 1 p€(0,1).

In order to derive a simulation of number of defaulted loans in the portfolio, an indicator function
is created. The indicator function takes the value 1 if the loan defaults and the value 0 if it doesn’t.
It can be written as

12



L4 ey <p .

0 otherwise

Each loan in the loan portfolio has an indicator function. the default of the loan is defined as not

being able to repay note holders in full and on time in accordance with S&P’s definition.

® denotes the cumulative distribution function for a standard normally distributed variable, while
p denotes the probability of default for the loan.

By simulating a vector of values for the Z denominated variables as well as the common factor M,
a vector of simulated values for the Y variables can be created. Finally, values for the indicator
functions can be derived. The output represents a single observation of the default rate for the loan

portfolio. By repeating, the distribution of default rates can then be simulated.

For a given number of loans, the method based on the one-factor Gaussian Copula model only
requires three inputs to determine the SDR - the probability of default, the correlation parameter
and the rating quantiles. S&P calibrate their parameter values based on historical default rates and
economic stress levels from their S&P Global Rating’s CreditPro (1981-present) database (Standard
and Poors, 2019a). Based on the definition that AAA rated tranches should be able to withstand
extreme historical economic stresses they derive a table of targeted default rates for AAA rated
tranches. The targeted default rates are then used to calibrate the parameter values for probability

of default, the correlation parameter and the rating quantiles for each rating.

For the correlation values p, S&P make some simple assumptions. The values are assumed to be
constant over time and across industries. The correlation values are assumed to be 0.2 for two firms
in the same industry and 0.075 for two firms in different industries. Finally, it is 0.05 for two firms

in different industries and geographic areas (Standard and Poors, 2019a).

S&P then derive a table of default rates and rating quantiles across credit ratings which can be used

to derive SDR/’s for a loan portfolio, using the one-factor Gaussian Copula model.

All else equal, the SDR decreases as the loan portfolio becomes more diversified as increasing
diversification will result in slimmer tails in the simulated default rate distribution, as described
above. Under S&P’s assumptions this would be the case if the loans in the portfolio are chosen to be
from different industries and geographies as opposed to same industry and geography. Furthermore,

the portfolio diversification also increases as the number of loans in the portfolio increases.

As mentioned, the calculation of rating SDRs for a given loan portfolio is only the first of two
steps conducted, before the proper rating for a tranche can be determined. The second step in the

methodology is calculating the tranche’s Break-even Default Rate (BDR).

For each tranche, a BDR is calculated. The BDR is the maximum percentage of defaults in the
collateral portfolio that the tranche in question can withstand, while still paying its note holders in

full and on time.

13



The BDR is used in conjunction with the SDR to determine an appropriate rating for a given
tranche. Specifically, in order to assign a given rating to the tranche, the tranche’s BDR is expected
to be equal to or higher than the rating’s derived SDR. If the BDR is lower than the rating’s SDR,

the tranche does not qualify for the rating. I can write the condition as below.

BDR > SDR (4)

The calculation of BDR is based on a cash flow analysis of the inflows and outflows of the SPV. The
aim of the cash flow analysis is to take the deal components into consideration which influences the
ability to pay the note holder in a timely manner. For example, this includes the risk and payment
characteristics of the collateral portfolio, the tranche’s covenants and protective mechanisms as well

as the SPV’s waterfall and coverage tests as described in section 2.1.1.

The collateral portfolio provides the inflow of funds to the SPV which is subject to both the payment
profiles of the loans as well as their credit risks. Amortization profiles, maturity and frequency of
payments of the portfolio loans comprises the payment profile. The frequency of payments poses a
potential issue as it can cause payment timing mismatches if it differs from the tranches’ payment
frequencies. If tranche payments are more frequent than the portfolio loan payments, it can cause
a potential liquidity issue.

Another important consideration is the collateral portfolio’s credit risk. For example, if the defaults
of loans cluster in periods, are the SPV still able to pay the tranche in full and on time in that
period? And what size of the default rates can be assumed? These types of considerations are
captured in S&P’s cash flow modeling (Standard and Poors, 2019a).

The waterfall of funds is described in section 2.1.1 and governs the flow of funds from the SPV to
its issued tranches and equity position. The transaction documents provide clear definitions of how
interest and principal payments from the portfolio are to be distributed and can differ widely from
deal to deal. For example, the waterfall defines the size of subordinated issues to the tranche, which
I/C and O/C requirements are made and how principal payments from the portfolio are used. If
principal payments are distributed down the waterfall instead of being reinvested in the portfolio, it
can provide equity investors with an immediate return while reducing the credit support available
to offset future defaults. High I/C and O/C requirements for issues more senior to the tranche
in question can result in proceeds being used to pay down the senior issues more quickly, at the

expense of the credit support to the more junior tranches.

These characteristics of the waterfall structure is modeled into the cash flow analysis, when calcu-
lating BDR of the tranche (Standard and Poors, 2019b).

The cash flow modeling described above provides a platform to test if the SPV is able to pay its
tranches in full and on time in various simulated stress scenarios. Stress tests are conducted to
test the sensitivity of tranche payments to loss timing and to identify vulnerabilities to various

assumptions.
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The assumptions used and scenarios conducted when calculating BDR are easily available and
described in great detail in their publicly available articles. They even provide a Cash Flow Evaluator
software, which can be used to imitate their cash flow analysis (Standard and Poors, 2019b).

The BDR in conjunction with the SDR, comprises the stochastic analysis conducted by S&P. The

analysis is then followed by a set of supplemental tests as elaborated below.

2.2.3 Supplemental tests

Supplemental tests are always run in conjunction with the stochastic modeling when assessing the
appropriate tranche rating. The supplemental tests are intended to address event and model risk
for the SPV’s ability to pay in full and on time. Either test may act as a limiting factor for the

appropriate rating for the tranche.

The two tests conducted are the largest obligor default test and the largest industry default test.
The largest obligor default test assesses whether the tranche can withstand specified combinations of
defaults, based on the underlying obligors. The loans in the collateral portfolio are sorted based on
the obligor’s credit ratings. For each group of obligors, the tranche should then be able to withstand
a number of defaults from the largest obligors in that group (Standard and Poors, 2019b).

The largest industry default test is only relevant for rating AAA and all refinements® of AA. The
test comprises a primary and an alternative test. If the tranche ends up failing the primary test, it

can still achieve the desired rating if it passes the alternative test.

The primary test tests whether the tranche is able to withstand defaults of all obligors in the largest
single industry in the portfolio, with an assumed flat recovery rate. If the tranche fails the primary
test, it can still be assigned the desired rating if it passes the alternative test. The alternative test
sorts the loans according to the obligors’ industries and then effectively makes a largest obligor

default test within each industry.

Finally, S&P leaves room for possible case-by-case qualitative considerations. For example, they
can adjust the assumed values in the calculation of the SDR and BDR, if deemed appropriate for
that specific SPV.

In sum, the stochastic modeling is used as the cornerstone of the rating assessment, while supplemen-
tal tests are used to assess potential event risks not accounted for in the model. The supplemental
tests are used as limiting factors for the desired rating for the tranche. That is to say, it can not

improve the rating, but only potentially limit it.

An observation can be made that no tests in the rating methodology by S&P described above
captures systematic risk of the tranches. On the contrary, the methodology aims to capture the
real-world probability of default of the tranche and assign a rating based on this probability of

default. No distinction is made of how the probability of default changes as the economic states

8Refinements are defined for this thesis as all credit ratings within the given alphabetical order. For example,
AA+ and AA- are two different refinements of the AA rated tranches.
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deteriorates. A similar point can be made for the rating methodologies for Moody’s and Fitch®.
This has important implications of the appropriateness of using ratings to assess tranche risk. If
investors solely rely on ratings to assess risk as suggested by Brennan, Hein, and Poon (2009)'°
they will not be able to assess the systematic risk of the tranche. It also has implications for the
appropriate methodology to infer on systematic risk premia using regression analyses. As credit
ratings do not carry any explanatory power wrt. systematic risk, I can infer on whether systematic

risk is priced into spreads using the systematic risk drivers derived in section 4.

A literature review is provided in the next section which is used as the base for the hypotheses

derivation in this thesis.

9Fitch also uses a real-world probability of default while Moodys uses real-world expected losses.
108ee section 1 for a discussion.

16



3 Literature review

This section presents the literature review of this thesis. The literature review is divided into two
groups of literature. Section 3.1 examines the first group of literature which conducts empirical tests
of spread determinants for structured and unstructured debt. Section 3.2 then provides an overview
of theoretical evidence of mispricing caused by systematic risk, assuming investors rely on ratings

to price structured debt tranches.

3.1 Empirical evidence of spread determinants
3.1.1 Differences between unstructured and structured debt

Numerous articles have investigated spread size and proposed a series of spread determinants for
corporate debt. For example, idiosyncratic risk from the issuer, maturity, and issue size are all found
to influence spreads for corporate debt (Y. and Taksler, 2003; Elton et al., 2001; Chen, Lesmond,
and Wei, 2007; Gabbi and Sironi, 2005).

While the pricing of corporate debt is not within the scope of this thesis, the differences in pricing
between structured and unstructured debt might reveal some interesting insights. A branch of
literature has focused on whether spread determinants differ between unstructured and structured
debt and which factors could cause such a difference. Below, I will describe such factors found by
previous literature. In this thesis, these factors causing spread differences between structured and
unstructured debt are referred to as “deviation drivers”.

Oldfield (2000), Jobst (2007), Fender and Mitchell (2005), Pinto, Marques, and Megginson (2020),
and Pena-Cerezo, Rodriguez-Castellanos, and Ibanez-Hernandez (2019) argue that the originator
of the SPV is able to design the tranches to cater to the risk and return preferences of different
investors. For example, investors with limited information are suggested to prefer tranches with low
risk, while investors better able to map the risk profile prefers junior tranches with larger risk and
spreads (Boot, WA, and Thakor, 1993; Cumming et al., 2020). The segmentation of investors is
also suggested to be a result of investment mandates or regulation (Pinto, Marques, and Megginson,
2020; Cumming et al., 2020; DeMarzo and Duffie, 1999; DeMarzo, 2005).

The ability of structured debt to cater to the different preferences of investors is suggested by
Pena-Cerezo, Rodriguez-Castellanos, and Ibanez-Hernandez (2019) among others to result in lower
spreads for structured debt compared to unstructured corporate debt. This is the first deviation

driver suggested by previous literature.

Ashcraft and Schuermann (2008) identified a number of market frictions resulting from the process
of securitization in the wake of the GFC. They identified an adverse selection problem caused by

the asymmetric information of the collateral portfolio between the originator of the SPV and the
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investors. They argue that the originator has an incentive to security bad loans (the lemons) of
her portfolio while keeping the good ones. The investors as well as the credit agencies are not able
to obtain the same information as the originator and the investor should thus impose a haircut on
the tranche price due to adverse selection. In particular, DeMarzo (2005) and Riddiough (1997)
found securitization to mitigate the lemons pricing problem the originator might face, if she sold
the loans unpooled. Originators thus have an incentive to use securitization for the lemons in their
portfolio. The adverse selection should then be taken into account by investors and increase spreads
for structured debt compared to unstructured debt. Adverse selection is the second suggested

deviation driver from previous literature.

The grouping of assets also makes it more difficult to assess the risk characteristics of the tranche,
compared to unstructured debt (Pena-Cerezo, Rodriguez-Castellanos, and Ibanez-Hernandez, 2019;
DeMarzo, 2005). Pooling thus has an information destruction effect for investors, which could also
increase required spreads for structured debt. Information destruction is the third deviation driver
of this thesis.

Biased rating agencies is another issue for structured debt in particular. Cornaggia, Cornaggia,
and Hund (2017) tested whether credit ratings where comparable across asset classes, specifically
between corporate bonds and structured debt. They found that issuers who are least lucrative to the
rating agencies, such as single issuers with relatively small issue sizes, face the harshest requirements
before their issue can be assigned a desired rating. Meanwhile, issuers with larger issue sizes, such
as structured deals, are more lucrative to the rating agencies and faces less strict requirements as a
result. The ratings are thus suggested to “follow the money”. As the issue of multiple tranches backed
by a large loan portfolio have more and larger issue sizes than single corporate issues, the finding
suggests that structured debt have a lower credit quality than unstructured debt for a given rating.
The findings are also supported by Ashcraft and Schuermann (2008) which mentions the conflict of
interest between rating agencies and investors as a market friction for structured debt. Informed
investors might then expect structured debt to have poorer credit quality than unstructured debt
for a given rating and require a higher spread for structured debt compared to unstructured debt

as a result. This is the fourth identified deviation driver in this thesis.

Finally, a series of papers have examined the role of systematic risk for structured debt. Cornaggia,
Cornaggia, and Hund (2017) suggests a fundamental difference in the risk profile between struc-
tured and unstructured debt. Structured debt is suggested to carry more systematic risk while
unstructured debt carry more idiosyncratic, diversifiable risk. Wojtowicz (2014) arrived at a similar
conclusion. He found fair spreads to be higher for structured than unstructured debt. He also sug-
gested that the systematic risk component in structured debt is not appropriately taken into account
by the methodologies of rating agencies. One strand of literature has investigated the impact on
systematic risk on structured debt and is elaborated further in section 3.2. The higher systematic
risk associated with structured debt might also result in a higher spread requirement for structured
debt compared to unstructured debt, if investors are able to take it into account. This is the fifth

deviation driver of this thesis.
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In sum, numerous factors are suggested by previous literature to account for any spread difference
between structured and unstructured debt. Few papers have however conducted empirical tests
of the factors’ effect in practice. Cornaggia, Cornaggia, and Hund (2017) examined whether credit
ratings are comparable across asset classes. They found default rates to be much larger for structured
debt than for corporate debt for a given rating. They also found that credit ratings given at issue
were inflated for structured debt compared to unstructured debt. Cornaggia, Cornaggia, and Hund
(2017) explains the differences by differing risk profiles caused by higher systematic risk in structured
debt. They also suggest rating agencies applies more strict requirements to unstructured debt,

compared to structured debt.

Pinto, Marques, and Megginson (2020) analyzed differences in spreads between unstructured, cor-
porate bonds and structured debt using regression analyses. In their paper, the hypothesis that
investors do take systematic risk into account is tested by comparing the spreads of unstructured
and structured debt. If structured debt has significantly higher spreads than unstructured corporate
bonds when controlling for a number of factors, the hypothesis is accepted. The idea is that the dif-
ference in spreads are caused by the higher systematic risk in structured debt than in unstructured

debt, which is appropriately priced by investors.

They also test the hypothesis that the capability of structured debt to cater to the risk and re-
turn preferences of investors results in lower required spreads for structured debt compared to
unstructured, corporate bonds. If structured debt has significantly lower spreads than unstructured
corporate bonds when controlling for a number of factors, the hypothesis is accepted. For CDOs,
spreads are found to be larger than for corporate bonds and they infer that systematic risk is taken
into account when pricing CDOs. Meanwhile, they reject the hypothesis that the capability of the
tranche design to cater to investors’ risk and return preferences for structured debt results in lower

spreads for structured debt compared to unstructured debt.

It is worth noting that Pinto, Marques, and Megginson (2020) do not distinguish between the
deviation drivers that are described above when inferring on spread differences. For example, the
identified higher spreads for structured debt is used to infer that systematic risk is accounted for.
However, the literature suggests that the higher spreads found could equally be caused by adverse

selection or information destruction.

3.1.2 Spread determinants for structured debt

As elaborated in section 3.1.1, significant attention has been given by both academics and practi-
tioners to the analysis of spreads for corporate bonds and unstructured debt in general. However,
the amount of literature focusing on spread determinants for structured debt has been relatively
scarce (Pinto, Marques, and Megginson, 2020). Ouly a handful of articles which focus on price
determinants of structured debt before the GFC have been found and only a single paper which

tests price determinants after the GFC. Empirical analyses of price determinants for structured debt
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with data set from before the GFC have been conducted by Cuchra (2004), Vink and Thibeault
(2008), Fabozzi and Vink (2012) and Buscaino et al. (2012).

Cuchra (2004) was the first to analyze price determinants for structured debt and focused in par-
ticular on the importance of credit ratings for launch spreads. Cuchra found that credit ratings
seemed to carry more explanatory power for structured debt than for corporate bonds. He also
found characteristics of the market placement like market liquidity had a statistically significant

impact on launch spreads.

Vink and Thibeault (2008) followed the same methodology and used a regression model with similar
price determinants as Cuchra (2004) to test how price determinants’ impacts differ between Asset-
Backed Securities (ABS), Mortgage-Backed Securities (MBS) and Collateralized Debt Obligations
(CDO). In accordance with the findings of Cuchra (2004), they found credit ratings to carry the
largest explanatory power for launch spreads and its impact to differ between ABS, MBS and CDOs.

The article of Fabozzi and Vink (2012) was motivated by the attack on investor’s reliance on credit
ratings post-GFC and they aimed to test whether investors addressed price determinants on their
own. They used a data set of ABSs issued from 1999 to 2006 and also used a regression model with
highly comparable control variables to the ones used in the work of Cuchra (2004) and Vink and
Thibeault (2008). They also found credit ratings to be the main determinant of launch spreads of
structured debt. However, other credit factors which were taken into account by credit agencies
were also found to be significant. They concluded that, although credit ratings indeed were the
main determinant of launch spreads, investors seemed to be able to derive their own view of the

credit risk of structured debt tranches.

The analysis conducted by Buscaino et al. (2012) deviated from the aforementioned articles by
focusing on CDOs backed solely by project finance loans. Project finance loans were defined as
debt created for single-purpose and capital-intensive projects. They use a proprietary data set of
only 43 tranches of project finance CDOs issued in Europe between 1998 and 2007. They based
their methodology on the one used by Cuchra (2004) and Vink and Thibeault (2008) and used a
regression model with similar controlling variables. They also found credit ratings to be the primary

explanatory factor for spreads in project finance CDOs.

After the GFC, only one paper has been found to focus on spread determinants for structured debt.
Pinto, Marques, and Megginson (2020) derived a set of hypotheses on the pricing of structured debt
and tested them by comparing the pricing of structured debt to unstructured debt. Their main
findings were that while credit ratings remain the primary price determinant contractual terms for
the tranche and macroeconomic factors also carries explanatory power, even when credit ratings are

accounted for.

Within the scarce number of papers testing spread determinants for structured debt, the number of
papers focusing on systematic risk is even more restricted. No paper with data from before GFC

tests hypotheses based on systematic risk. The only paper found which conducts an empirical test
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on systematic risk for structured debt are Pinto, Marques, and Megginson (2020) as described in

section 3.1.1.

3.2 Theoretical evidence of systematic risk in structured debt

A strand of literature focusing on a theoretical derivation of systematic risk in structured debt
has appeared in the wake of the GFC. Academics started deriving the nature of systematic risk in
structured debt and how this risk should be reflected in required spreads.

To provide the reader with an overview, previous findings and methodologies applied within this
strand of literature is briefly elaborated below. The models used to simulate the fair spreads in
these articles have been kept relatively simple, with Merton’s model of debt from 1974 playing a
central role!!. Many authors strive to keep the framework simple to maintain intuition. The aim
of this section is to illustrate the highly consistent view in the literature that systematic risk is an
important aspect of structured debt and is not appropriately accounted for by investors as a result

of rating dependency. The view seems consistent across papers and the methodologies applied.

Coval, Jurek, and Stafford (2009a) was one of the first authors to investigate the risk and pricing of
structured debt in the wake of GFC. In order to do so, they assumed a CAPM styled asset return of
the obligors’ company values and applied Merton’s model from 1974. They reached the conclusion
that senior tranches from structured debt replicate the payments from “economic catastrophe bonds”,

which only defaults under severe economic conditions.

Following Coval, Jurek, and Stafford (2009a), a number of articles emerged working from the as-
sumption that spreads were entirely priced using credit ratings. The work of Brennan, Hein, and
Poon (2009) were motivated by a proposal from the SEC to use rating modifiers for structured debt
to account for the different nature of its risk. They tested the mispricing based on the assumption
that investors are not able to assess the true value themselves, but must rely on the rating agencies’
assessment. Similar to Coval, Jurek, and Stafford (2009a) they also assumed the obligor’s company
value followed CAPM and used the Merton model to simulate defaults. They estimated the size of
the pricing errors from ratings based on expected default losses (Moodys) and default probabilities
(S&P) respectively. They found that investors overprice the tranches with a larger pricing error
when pricing is based on default probabilities from S&P instead of expected default losses from
Moodys.

Hamerle, Liebig, and Schropp (2009) uses the same model based on Merton’s simulated defaults and
asset values following CAPM. They aimed to identify sources of arbitrage for the SPV originator

due to systematic risk mispricing. In accordance with Coval, Jurek, and Stafford (2009a) they found

11 In the Merton model, a firm defaults if its terminal value of its assets falls below the face value of the debt
(Merton, 1974).
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the risk profiles between unstructured and structured debt to be different with systematic risk to
play a central role of the credit risk in structured debt. Idiosyncratic risk were found to be replaced
by systematic risk in the securitisation process. They then concluded that spreads for structured
debt tranches are far too low to compensate for its high systematic risk, assuming investors price

entirely on credit ratings.

The works of Wojtowicz (2014) and Krahnen and Wilde (2009) are based on a different modeling
of the loan distribution to Coval, Jurek, and Stafford (2009a), Brennan, Hein, and Poon (2009) and
Hamerle, Liebig, and Schropp (2009), but arrive at the same conclusion. They use what Wojtowicz
(2014) and Hull (2015) call the 'market standard’ model. The market standard model simulates
the correlation and defaults in the underlying loans using a one-factor Gaussian copula model and
Monte-Carlo simulation. See section 2.2 for a description of the one-factor Gaussian copula model.
They both found credit ratings to be insufficient to price structured debt tranches due to systematic

risk and the tranches to be overpriced.

The findings and intuition from the literature mentioned in this section are used to derive the
hypotheses of this thesis in the section below.
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4 Hypotheses derivation

All papers included in the literature review in section 3.2 reached the same conclusion; systematic
risk is an important aspect of tranches’ credit risk and rating reliance will result in mispricing.
However, recent empirical evidence showed that this might not be an issue in practice. As described
in section 3.1, Pinto, Marques, and Megginson (2020) concluded that investors did not solely rely
on credit ratings when pricing, but were able to price systematic risk into tranches of structured
debt. The hypothesis that systematic risk was taken into account when pricing CDOs were tested
by comparing spreads between structured and unstructured debt while controlling for a series of
variables. The hypothesis that systematic risk were taken into account were accepted If CDOs were
found to have higher spreads than corporate bonds.

In their analysis, CDO spreads were found to be larger and the hypothesis that systematic risk is
priced into spreads were accepted. However, one might ask if the difference in spreads can be caused
by other factors than systematic risk. As described in section 3.1, the literature has proposed a
series of deviation drivers which equally could explain the higher spreads in structured debt found
by Pinto, Marques, and Megginson (2020). Adverse selection has been suggested to be an issue for
structured debt in particular as originators might pool all its “lemons” in the SPV at the expense
of investors. Rating agencies have been found to be less strict when assigning ratings to structured
debt, resulting in structured debt having higher probability of default compared to unstructured
debt with the same rating. Finally, the process of pooling loans is found to create knowledge
destruction, making it hard for investors to understand the risk profile of the tranche. These factors

could equally explain the spread differences found by Pinto, Marques, and Megginson (2020).

Even though the spread difference observed might be a result of other factors, the findings of
Pinto, Marques, and Megginson (2020) certainly raises the question whether the spread difference
is actually caused by systematic risk as the authors argues. This thesis aims to test whether this is

the case.

A thorough mapping of the causes of the difference in spreads between structured and unstructured
debt is beyond the scope of this thesis. Instead, my more modest endeavour is to test whether

systematic risk has an impact on the spread difference and spreads for structured debt in particular.

To ease the hypotheses derivation, I introduce some terminology. As mentioned, all factors which are
suggested by previous literature to create spread differences between structured and unstructured

debt are called “deviation drivers”.

In the papers described in section 3.2, the authors identified a number of SPV characteristics which
drives the systematic risk in the issued tranches. For example, the number of loans in the loan
portfolio is found to be positively related to the size of systematic risk. The SPV characteristics
found to drive systematic risk will be referred to as “systematic risk drivers” in the remainder of
this thesis.
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In the following sections, the hypothesis derivations are divided into two sets according to the
nature of the hypotheses. The first hypothesis concerns the deviation drivers and how spreads
deviate between structured and unstructured debt. The second set of hypotheses concerns whether

systematic risk is priced into the spreads of structured debt.

4.1 Spread differences between structured and unstructured debt

In this section, I derive a hypothesis regarding deviation drivers and how they are priced by investors
in practice. As described in section 3.1.1, previous literature has defined a set of deviation drivers
which should result in unstructured and structured debt being priced differently. My hypothesis in
this section is derived to test whether this is the case.

When deriving my hypothesis, emphasis is put on the effect of the deviation drivers as a group. The

hypothesis derived in this section are formulated against a null hypothesis as stated below.
HO,: Investors do not consider deviation drivers when pricing debt

As argued in section 4, it is difficult assigning an observed difference in spreads between structured
and unstructured debt to a particular deviation driver. Hence, I do not make any distinction between
the impacts of deviation drivers for the first hypothesis of this thesis. Instead, I am examining their

impact as a group, consistent with the methodology of Pinto, Marques, and Megginson (2020).

In the hypothesis, I do not attempt to argue which derivation drivers has the highest impact, and
thus which sign the joint effects of the group has. Instead, I merely make the hypothesis that the
group has a significant impact on spread differences as a whole. The hypothesis is formulated as

below.
H1: Structured debt has significantly different required spreads than unstructured debt

In section 4.2, I derive a set of hypotheses used to examine whether investors price systematic risk
in structured debt. I work from the intuition that if investors are not capable of pricing systematic
risk in structured debt, systematic risk has no explanatory power in the impact from the deviation

driver group found when testing H1.

4.2 Systematic risk pricing in structured debt

In this section, I work from the intuition that if systematic risk is accounted for as Pinto, Marques,
and Megginson (2020) argues, the systematic risk drivers later derived should have a statistically
significant impact on spreads for structured debt. If they have, the hypothesis that systematic risk
is accounted for to some extent in structured debt is accepted.
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I should be careful interpreting on the output of the regression analysis; even if systematic risk
drivers turn out to have a significant impact on spreads, I can only infer that investors are able to
identify the presence of systematic risk and to some extent adjust their demanded spread as a result.
However, I can’t infer that they are able to adjust the spread so mispricing is effectively mitigated.
To remove mispricing, investors need to understand each systematic risk driver and its exact impact
on tranche risk. This entails not only significant impacts from the systematic risk drivers, but also
calculating the correct coefficient and whether the relation is linear or non-linear. The hypothesis

that mispricing is mitigated is thus stronger than the hypotheses tested in this thesis.

In the following, a set of systematic risk drivers suggested by previous literature is described. To
develop an intuition of how the systematic risk driver affects systematic risk, I also derive the
relation between systematic risk and the systematic risk driver using a predefined model. 2 For
each systematic risk driver, hypotheses are then formulated based on the theoretical findings from

the literature and the derivation made in this thesis from the model in section 4.2.1.

All hypotheses in this section are formulated against the overall null hypothesis below.

HOy,: Investors are not able to identify and price systematic risk into spreads for
structured debt

4.2.1 Model applied for hypotheses derivation

In his analysis of systematic risk for structured debt, Wojtowicz (2014) found that systematic risk
was dependent on certain SPV characteristics. For example, he argued that the systematic risk for
a tranche increased as the diversification of the collateral portfolio increased. Other authors made
similar observations. Coval, Jurek, and Stafford (2009a) and Brennan, Hein, and Poon (2009) both
found that systematic risk were dependent on tranche seniority, while Hamerle, Liebig, and Schropp

(2009) suggested it was dependent on the number of loans in the loan portfolio.

While previous literature certainly provides a number of suggestions for systematic risk drivers,
they do not seem to offer much intuition as to why these variables should drive systematic risk.
For example, it does not seem straightforward why increasing the number of loans in the portfolio

increases the systematic risk in the tranches.

To develop intuition, I introduce a model from which I can deduce the relation between the drivers
suggested by previous literature and systematic risk carried by tranches. The deduction is carried
out for each systematic risk driver and emphasis is placed on the intuition as to why the driver is

related to systematic risk.

12 See section 4.2.1.
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Inspired by Coval, Jurek, and Stafford (2009a), I consider a tranche backed by a portfolio of N
homogeneous and equally weighted risky loans. The tranche pays off 1 if the percentage loss of the
collateral portfolio is below 1 — X and zero otherwise at maturity'®. The value X is referred to in
the literature as an attachment point and specifies the maximum default percentage of the collateral
portfolio before the tranche is no longer able to pay in full and on time. It can be thought of as the

tranche’s credit enhancement. The payoff of the tranche can be written as

1 fL<X
CF if (5)
0 ifL>X

Where L is the percentage loss of the collateral portfolio.

To model the correlation between loan defaults I assume that given a realization of the economic state
s, loan defaults are independent. In a given economic state, each homogeneous loan in the portfolio
has the same state dependent default probability pr(s). Assuming state contingent independence
of loan defaults, the number of loans which defaults in a given economic state #p (s) thus follows
a binomial distribution with parameter py,(s) and N trials. The number of loans N can be large in
practice. In this case, the number of defaults #1,(s) can be approximated by the normal distribution
with mean N * pr(s) and variance N * pp,(s) * (1 — pr(s)).

#1(s) ~ N(N*pr(s), N+pr(s) * (1 —pL(s))) (6)

The normal distribution approximation simplifies my derivations, while keeping the intuition'4.
Alternatively, I can also derive the percentage loss of the collateral portfolio in a given economic

state L(s) to be normally distributed with a mean of py(s) and variance w.

The state contingent probability that the percentage loss of the loan portfolio L exceeds the attach-
ment point X can be written as below (Coval, Jurek, and Stafford, 2009a).

. ) L (X —pL(s))
P () = P(L(s) 2 X) =1 @<ﬁm<s>*<l—m<s>>> !

Where @ is the cumulative distribution function (CDF) for the standard normal distribution.

Please note how the default probability for each loan, as well as for the tranche, is dependent on
the economic state, s. For example, if the loan obligors’ capability of making payments on time and
in full are positively correlated with the market factor, py,(s) should increase as the economic state

worsens.

For the application in this thesis, I extend the model to consider the relation between the probability
of default for a given loan, pr(s) and the economic state, s. The economic state s is considered a

13Called a digital tranche by Coval, Jurek, and Stafford (2009a).
M The normal distribution do allow for a negative number of loan defaults, which of course is inappropriate. However,
the probability mass for negative loans shrinks and is considered negligible as N increases.
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discrete variable, as it allows for some intuitive interpretations. For low values of s, the economic
state is poor and for high values of s, the economic state is good. In order to derive the relation
between the probability of default for the tranche and the economic state I assume a simple, linear

relation between py (s) and s as below.

prL(s)=a—pBxs (8)

Where a and § are parameters. The accuracy of the relation between py,(s) and s is not of interest
for my application. Instead, I solely aim to model the intuitive relation that the probability of

default decreases as the economic state improves and vice versa.

The value of a is not of interest for this application. However, the value of g is. If § > 0, the obligor’s
ability to make payments on time and in full are positively correlated with the market factor and

vice versa. The interpretation of 8 is thus similar to the interpretation of beta in a CAPM setting.

Compared to the models used in previous literature this model allows to trace the portfolio charac-
teristics to the risk characteristics of the tranche without using Monte Carlo simulation in a simple

and intuitive setup.

When deriving hypotheses below, I aim to develop intuition based on how the state contingent
probability of default for the tranche behaves across states of the economy. The hypotheses are

derived in the sections below.

4.2.2 Number of loans in the portfolio

Coval, Jurek, and Stafford (2009a) developed a set of propositions for structured debt tranches
and its fair prices using the model described in section 4.2.1. They used a normal distribution
to describe the number of defaults in the underlying portfolio, conditional on a given state in the
economy. From the assumed distribution, they derived the proposition that the fair value of a
structured debt tranche declines as the number of loans in the loan portfolio increases. The decline

in value is a consequence of the increase in systematic risk (Coval, Jurek, and Stafford, 2009a).

The proposition was later supported by Wojtowicz (2014) and Hamerle, Liebig, and Schropp (2009)
and no inconsistencies in the literature have been found. Wojtowicz (2014) found fair spreads to
depend on the diversification of the loan portfolio. The higher diversification, the larger systematic

risk of the tranche and thus larger fair spreads.

While the literature agrees that the number of loans should have an impact on systematic risk,
the intuition as to why does not seem straightforward. In order to assess the proposition from the
literature and build an intuition, I derive the relation between number of loans and systematic risk

using the model described in section 4.2.1.

I start by refreshing some assumptions and terminology applied in the model. A tranche defaults if

the loan percentage loss L is larger than the tranche’s attachment point X. The loan percentage loss
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is assumed normally distributed conditional on a given economic state. Conditional on an economic

state s, the loan percentage loss L is normally distributed with mean and variance as shown below.

E(L(s)) = pr(s) (9)

pr(s) * (1 = pr(s))
N

For this application, we are interested in how L’s distribution changes as N — oo. It is immediately

Var (L(s)) =

(10)

evident from equation (10) that as N increases, the tails for the loan percentage loss are getting
slimmer. In particular, the loan percentage loss L of the collateral portfolio converges to pr(s) as
N — oo.

With only a few loans in the portfolio, the loan percentage loss is highly sensitive to the idiosyncratic
risk of few loans. Recall that when the economic state s is given, the loans are assumed to be
independent of each other. However, as the number of loans increase, the impact from each loan is
diversified away and the loan percentage loss converges to pr(s), dependent on an economic state s.
This has an important implication on the probability of default for a tranche with attachment point
X. Recall that a tranche is assumed to default if L(s) > X. If the attachment point X is chosen to
be larger than the state dependent probability of default (X > pr(s)), the loan percentage loss can
still end up being larger than the attachment point. However, as N — oo the loan percentage loss
converges to pr,(s) and the probability mass for the loan percentage loss being above the attachment
point decreases as N increases. The effect on the distribution for the loan percentage loss for a given

economic state is simulated below.
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Figure 1: Loan percentage loss across N
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Note: Simulated distributions with pr (s) = 5% with 10000 simulations.

This observation can be applied to understand how the number of loans in the portfolio affects the
systematic risk of the tranche. Recall from equation (8) that pr(s) is dependent on the economic
state s. This intuitively makes sense; for a good state economy, pr(s) is low compared to its value
in a poor state economy. I now make the thought experiment that only two states of the economy
are possible; a good state where the probability of default for each loan is just below the attachment
point pr,(Good) < X and a poor state where it is just above the attachment point pr (Poor) > X.
For only a few loans in the portfolio, the tranche can easily default in both economic states. The
distribution for the loan percentage loss has fat tails and large distribution mass above the tranche’s
attachment point for both economic states. However, the loan percentage loss converges to py(s)
in each economic state as N — oo. In the good state, this results in the probability of default for
the tranche to decrease as N increases. In the poor state, it results in the probability of default for

the tranche to increase as N increases.

This behavior is exactly what to expect if the systematic risk increases with N. As N increases,
the tranche would increasingly imitate an economic catastrophe bond and only default under poor
economic conditions as suggested by Coval, Jurek, and Stafford (2009a).

The relation between N and systematic risk can also be observed from the probability of default,
conditional on an economic state as given in equation (7). The partial derivative of the conditional

probability of default wrt. N is given below.
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For good economic states where X > py (s), an increase in N results in lower probability of default
for the tranche. For poor economic states where X < pr(s), an increase in N results in a higher

probability of default for the tranche. This in accordance with the findings above!5.

The impact
of increasing the number of loans on the tranche’s probability of default across economic states is

simulated below.

Figure 2: Tranche probability of default across N
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Note: Probability as given in equation 7. Attachment point is given as 5% and the economic states are “worsening”
from left to right.

It is immediately evident from figure 2 that the tranche’s probability of default increasingly resembles

the “economic catastrophe bonds” as defined by Coval, Jurek, and Stafford (2009a) as N increases.

In sum, I find that an increase in the number of loans makes a tranche’s default in a poor economic
state more certain, while also making the survival in a good state more certain. This is in accordance

with what to expect if N drives systematic risk as suggested by previous literature.

15 A5 a tranche is designed to be given a certain credit rating, it could be argued that the attachment level should
not be held constant when investigating N’s impact on the tranche’s conditional probability of default. Instead, it
could be adjusted so the tranche’s unconditional probability of default is held constant. However, this author argue
that such adjustment makes the point unnecessary complicated while not changing the intuition derived.
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The rating methodology of the rating agencies do take the diversification effect into account when
estimating real-world probability of default'®. Thus, any effect from the number of loans on tranche
spreads are interpreted as a result of the effect on systematic risk when controlling for credit ratings.

Motivated by the findings above, I formulate the hypothesis below.

H2: Number of loans in the loan portfolio has a positive impact on spread for structured
debt tranches

4.2.3 Systematic risk in collateral loans

Hamerle, Liebig, and Schropp (2009) found that systematic risk increases when loans with high
systematic risks are included in the collateral pool. A similar point was made by FSB (2019) and
Wojtowicz (2014) who argued that an originator has an incentive to acquire loans with relatively high
spreads and systematic risk for its credit rating and this behavior will increase the tranches’ credit
risk. In fact, Hamerle, Liebig, and Schropp (2009) suggests a scaling effect where the systematic
risk for the tranche increases dramatically as a function of the systematic risk in the underlying

portfolio.

Why the systematic risk of the tranche should behave in this way is not clear. The findings in
previous literature therefore raise the question of how systematic risk in the underlying loans impacts

the tranches’ risk and why.

Below, I investigate how the securitization process creates this relation between systematic risks
using the model described in section 4.2.1. I derive two hypotheses. The first hypothesis concerns
how the size and sign of the loans’ systematic risk impacts the systematic risk of the tranche. The

second hypothesis concerns what determines the scaling effect as suggested by previous literature.

I start by developing some intuition as to how systematic risk is represented in the model used in
this thesis. Systematic risk is the difference in probability of defaults for the tranche across economic
states. If a tranche has high systematic risk, its probability of default should differ greatly across
economic states. Specifically, the probability of default should increase in a poor economic state and
decrease in a good economic state. If the tranche does not have any systematic risk, its probability

of default should not depend on the economic state.

In order to assess the impact from the underlying loans’ systematic risk, I consider three different
portfolios of 20 homogeneous loans. The first portfolio is comprised of loans which probability of

default is not correlated with the economic state s. The second and third portfolio are comprised

16 See section 2.2 for a description of the rating methodology of S&P.
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of loans which are positively and negatively correlated with the economic state, respectively. Using

(8), we can write these characteristics as 8 =0, 8 > 0 and 8 < 0 respectively.

I also consider three different economic states; A good state, a neutral state and a poor state. In

the neutral state, the probability of default py,(s) for all types of loans are assumed to be the same.

However, the three types of loans react differently when the economic state changes. For example,
the loans which are positively correlated with the economic state has the lowest probability of default
in a good economic state while the loans which are negatively correlated with the economic state

has the largest probability of default and vice versa.

I consider an attachment point X equal to the probability of defaults for each loan in the neutral

economic state. I can write

X =pg>0(s) = pg=0(s) = pp<o(s) for s = Neutral (12)
Pp>0(8) < X = pp=0(s) < pg<o(s) for s = Good (13)
pa>0(s) > X = pg=o(s) > pp<o(s) for s = Poor (14)

The differences in how the probability of default changes according to the economic states have some
important implications for the systematic risk of issued tranches as the expected loan percentage
loss in the portfolio is E (L(s)) = pr(s). As aresult, a tranche backed by positive beta loans has the
lowest probability of default in the good state while the tranches backed by negative beta loans has
the highest. The tranche backed by neutral loans is unaffected by changes in the economic state. I
can thus write the relative probability of default for tranches backed by the different portfolios as

below.

P(Lgso > X) =P(Lg=o > X) = P(Lg<o > X) for s = Neutral (15)
P(Lgso > X) < P(Lg=o > X) < P(Lg<o > X) for s = Good (16)
P(Lgso > X) > P(Lg=o > X) > P(Lg<o > X) for s = Poor (17)

The equations above allow for some easy interpretations of the loans’ systematic risk effect on the
tranches’ systematic risk. Loans with a positive systematic risk results in tranches with a positive

systematic risk. The risk of the tranche backed by positive beta loans behaves like it has systematic
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risk. In the good economic state it has a low probability of default, while it has a high probability

of default in the poor economic state.

I can also show that the higher systematic risk in the underlying loans, the higher systematic risk
in the tranche, all else equal. For example, if I include a portfolio of loans with an even higher
systematic risk than the positive beta portfolio, the tranche’s probability of default in the good
and bad state would have more “extreme” values than the positive beta tranche currently assessed.
Specifically, the probability of default would be even lower in the good state, and even higher in the
bad state.

I can thus infer that the size of the systematic risk of the underlying loans are transferred to the
systematic risk of the tranche. The higher systematic risk of the loans, the higher systematic risk
of the tranche, all else equal.

Another observation can be made regarding the loans’ sign of systematic risk, and how it influences
the tranche. Loans which are uncorrelated with the economic state creates tranches which are also
uncorrelated with the economic state. Loans which are negatively correlated with the economic
state creates tranches which are negatively correlated with the economic state. The sign of the

systematic risk from the loans is thus transferred to the tranche’s systematic risk.

The observations made for the positive beta tranches above are consistent with the findings in
previous literature. Furthermore, I have made the additional proposition that the sign of the
systematic risk is transferred to the risk of the tranche. In sum, the first hypothesis regarding

systematic risk of the loans is formulated below.

H3: The systematic risk of the loans in the portfolio has a positive coefficient to the

required spreads for structured debt

To derive the hypothesis regarding the scaling effect I once again use the model described in section
4.2.1 and aims to derive some intuition as to why the securitization process should cause such a

scaling effect.

Once again, I take offset in equation (12), (13) and (14). For a portfolio size of 20 positive beta loans,
the differences in L’s distribution are simulated across economic states below, where the attachment

point is placed just above 5%.
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Figure 3: Loan percentage loss across economic states (N=20)
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Note: Simulated distribution with pr,(Good) = 4.5%, pr,(Good) = 5.0% and pr,(Good) = 5.5% with 10000 simula-
tions.

A key observation is that the tranches still do not resemble “economic catastrophe bonds” as sug-
gested by Coval, Jurek, and Stafford (2009a). For example, in the poor state, there still is substantial
probability of the tranche surviving. Using this graphic, the effect of increasing the number of loans
in the portfolio is easily observable. Recall from equation (10) that the variance of the loan per-
centage loss decreases as N increases. Hence, the tails of the loan percentage loss distribution L
get slimmer as the number of loans increases. Using the intuition from figure 3 I can show how the
behavior of the default of the tranche changes as the number of loans increases. The effect is shown

below where the portfolio size are increased to 200 loans for illustration.
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Figure 4: Loan percentage loss across economic states (N=200)
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Note: Simulated distribution with pr,(Good) = 4.5%, pr,(Good) = 5.0% and pr,(Good) = 5.5% with 10000 simula-
tions.

For the positive beta portfolio, the systematic risk surges as the number of loans increases. This
is exactly the scaling effect suggested by previous literature. As the number of loans increases, the
default behavior of the tranche becomes increasingly binary; it defaults in a poor economic state

and survives in a good economic state with a high certainty.

One interesting observation is that increasing N increases the absolute value of the correlation with
the economic states. For example, the tranche’s negative correlation with the economic state is

more negative when increasing N. The sign of the correlation is thus maintained.

I illustrate the effect on increasing N for the tranche backed by positive beta loans versus the zero
beta loans below. The Y axis is the probability of default for the tranche P (L(s) > X). The X axis

is the economic state.
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Figure 5: Tranche probability of default across betas
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Note: Probability as given in equation 7. Attachment point is given as 6% and the economic states are “worsening”
from left to right. Positive beta is created by making pr (s) dependent on economic states, while the neutral betas
have pr, independent of the economic states.

From here, it is easy to infer that the number of loans have a scaling effect on the beta coefficient

from the underlying loans. For § = 0 loans, the systematic risk can’t be scaled.

In summation, I find that N has a scaling effect on systematic risk. Specifically, it scales the absolute

value of the correlation with the economic state.
This finding is consistent with previous literature which has suggested such a scaling effect. I derive

the second hypothesis regarding the systematic risk below.

H/: The effect of systematic risk of the loans in the portfolio increases with the number

of loans in the portfolio

4.2.4 Tranche seniority

All papers included in the literature review in section 3.2 agrees that systematic risk is dependent
on the seniority of the issued tranche. For example, a AAA rated tranche and a BBB rated tranche

from the same SPV should have different systematic risks.

The literature does not, however, agree on whether senior or junior tranches carry the largest sys-

tematic risk. Coval, Jurek, and Stafford (2009a) was the first to document a difference in mispricing
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caused by systematic risk across seniority. They found senior tranches to carry the largest system-
atic risk and thus the largest mispricings. They even called senior tranches “economic catastrophe
bonds” as they were found only to default under severe economic conditions. Senior tranches were
also found to be the most mispriced by Krahnen and Wilde (2009).

Brennan, Hein, and Poon (2009) did however find that junior tranches in particular were most prone
to mispricing caused by systematic risk. In short, the literature seems to agree that seniority of
the tranches drives systematic risk, but some inconsistencies exist around whether junior or senior

tranches carries the most systematic risk.

The inconsistencies in the literature motivates the derivation of my own opinion. Again, I aim to use
the model described in section 4.2.1 to derive a set of intuitive propositions as to why the systematic

risk differs across seniority.

Using a very simple setup from the model I make the proposition that senior tranches are most
exposed to systematic risk.

Consider an issue of a very subordinated junior and a super senior tranche in a neutral state of the
economy. Within each state of the economy, the very subordinated junior tranche is designed to have
a considerable probability of default. Even for neutral and good economic states, the probability of
default is designed to be substantial. Meanwhile, the super senior tranche is designed to be highly
unlikely to default for most of the economic states of the economy.

The different designs of the tranches have some interesting implications to what type of risk they
carry. The junior tranche is designed to be relatively exhausted solely due to idiosyncratic risk
without any changes in the economic state. When the economy deteriorates, the junior tranche’s
ability to carry loss is limited as a result; the tranche has already lost a relatively large part of its
value solely due to idiosyncratic risk and can only incur a limited change in its probability of default

as a result.

The senior tranche, however, is left largely untouched given no major changes in the economic state.
When the economic state deteriorates, the senior tranche is left unprotected as the junior tranches
is already relatively exhausted within normal economic conditions. As a result, the senior tranches
should experience a surge in its probability of default as a result of changes in the economic states.
The junior tranches should of course also experience an increase in their probability of default as
the economy deteriorates. However, the relative increase in probability of default is more limited as
they already have a considerable probability of default mainly driven by idiosyncratic risk. The tail
risk of changes in economic states are thus carried in a larger degree by senior tranches than junior

tranches.

From the intuition derived above, I derive that the value of senior tranches are more exposed to

systematic risk than the value of junior tranches.

Tranche seniority has an obvious impact on spreads besides carrying systematic risk. As described

in section 2.2, flow of funds from the SPV are prioritized to the issued tranches according to their
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seniority. Hence, seniority also affects the real-world probability of default. A senior tranche has a
lower probability of default than a junior tranche. However, this affect is accounted for by controlling
for credit rating in the regression analyses. Any effect on spreads after credit ratings are controlled

for is interpreted as a result of the changes in systematic risk due to seniority of the tranche.

Therefore, I formulate the hypothesis below.

H5: Seniority of the tranche has a positive impact on spreads for structured debt tranches

when controlling for real-world probability of default

4.3 Hypotheses overview

The hypotheses of this thesis are divided into two areas of interest. First, a hypothesis is formulated
for examining the differences in spreads between structured and unstructured debt. The second set
of hypotheses are derived to examine whether systematic risk is priced into structured debt. Table

1 below provides an overview.

38



Table 1: Overview of hypotheses

Effect tested Hypothesis

Spread H1: Structured debt has significantly different required spreads than unstructured
differences debt

Systematic risk H2: Number of loans in the loan portfolio has a positive impact on spread for

structured debt tranches

H3: The systematic risk of the loans in the portfolio has a positive coefficient to the

required spreads for structured debt

HJ: The effect of systematic risk of the loans in the portfolio increases with the

number of loans in the portfolio

Hb5: Seniority of the tranche has a positive impact on spreads for structured debt

tranches when controlling for real-world probability of default

Research SQR1: Is there a significant difference in required launch spreads between CLOs and

question unstructured corporate bonds?

SQR2: Can the difference in required launch spreads between CLOs and
unstructured corporate bonds partly be erplained by perceived differences in

systematic risk by investors?

SQR3: “What is the sign and significance of the impact from each SPV

characteristic found to drive systematic risk on the CLOs’ launch spreads?”

SQRY4: “Does systematic risk have an impact on required spreads for CLO tranches?”

The next section presents the methodology applied in this thesis for testing the hypotheses above.
It also provides a discussion of which challenges the methodology chosen imposes and which tools

are used in an attempt to mitigate them.
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5 Methodology

As discussed in the literature review in section 2, few papers have made an empirical analysis on
spread differences between structured and unstructured debt. Within those papers, there seems to
exist a consensus regarding the methodology applied for examining spread determinants. All articles
included in the literature review use OLS regression analyses to test hypotheses, with spread as the
endogenous variable and a common set of control factors. Only few authors have chosen different
methodologies. For example, Ammer and Clinton (2004) used an event study to test the effect on
credit ratings on spreads on structured debt while Pena-Cerezo, Rodriguez-Castellanos, and Ibanez-
Hernandez (2019) used structural equation modeling (SEM) to test whether tranching offers higher
yields in total than issuing unstructured debt.

To test the hypotheses derived in section 4 I follow the consensus methodology from previous liter-
ature and use OLS regression analyses. Section 5.1 describes the cross sectional regression analysis
applied for all hypotheses. I describe the analysis approach for the spread difference hypothesis in

section 5.3 and for the structured debt systematic risk hypotheses in section 5.3'7.

5.1 Cross-sectional regression analyses

The regression equation used in this thesis is defined as:

Y, =bp X, ) +be X b Vi=12,.,N (18)

Y; is a (N z 1) vector of dependent variable observations. For this thesis, each element in the vector
is thus an observation of the launch spread for an issued tranche. by, (Hz1) and b, (Cx1) are vectors

where each element is an estimate from the regressors X;h (N z H) and X;’C(N x C) respectively.

N is the number of observations in the data set, H is the number of exogenous variables used to test
the derived hypotheses and C is the number of control variables included in the analysis, inspired
by previous literature within structured debt. The estimates are obtained using the OLS estimator

below.

b=(X'X)"'X'y (19)

The OLS estimator can be shown to be the best linear unbiased estimator (BLUE) under the
Gauss-Markov assumptions'®. The estimates as written in equation 18 are unbiased and consistent

17See section 4.3 for an overview of the hypotheses.

18 A5 defined in Woolridge (2012): Assumption 1: Linear in parameters. Assumption 2: Random sampling in the
population model. Assumption 3: No perfect collinearity, meaning no exact linear relationships among the exogenous
variables included in the model. Assumption 4: The error term has a zero conditional mean given any values of the
independent variables. The assumption can be written as E(ul|z1,z2,...,2n) = 0 where N is the number of exogenous
variables. Assumption 5: Homoscedasticity. the error term u has the same variance across any values of the exogenous
variables. The assumption can be written as Var(u|z1,z2,...,2n) = Var(u).
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if assumption 1 to 4 are satisfied (Woolridge, 2012).

The estimated variance of the parameters are unbiased and consistent if assumption 5 concerning
homoscedasticity is satisfied. Finally, The assumption that the error terms are normally distributed
is convenient to make in order to draw inference of the results. Specifically, when adding the

normality assumption to assumption 4 and 5, I can write

u~ N(0,0?) (20)

Inference in OLS regression analyses are often conducted using the t-test for single coefficients and
the F-test for a set of coefficients. Under assumption 1 to 6 described above, the t statistic follows a,
t distribution under HO and the F ratio follows a F distribution!?. Knowing the distribution of the
estimators under HO allows for inference of whether or not the chosen HO can be rejected. However,

all six mentioned assumptions need to hold in order to know the distribution.

One assumption often breached in empirical analyses is that the unobservable error term is normally
distributed (Woolridge, 2012). In that case, the OLS estimators is not normally distributed and
the test statistics’ distributions are unknown. Fortunately, my inference can rely on the asymptotic
properties of the t and F statistics. Specifically, the central limit theorem (CLT) can be used to
conclude that the OLS estimators have asymptotic normality. Hence, the t statistic approximately
follows a t distribution and the F statistic approximately follows a F distribution for large sample

sizes.

Even for asymptotic inference, homoscedasticity is still required to make inference based on the t-
and F statistics. The estimated variance of the OLS estimators will be biased and not valid for

constructing t statistics and confidence intervals used for inference in the case of heteroscedasticity,

Fortunately, the White heteroscedasticity consistent variance can be applied to estimate the variance,
even when heteroscedasticity is present (White, 1980). The use of White’s robust estimators is only

valid in relatively large sample sizes. The estimate is given below.

no92 . s2
Zi:lrij*ui

Var(b;) = SR
j

(21)
Where r;; is the it" residual from regressing variable j against all other independent variables.
Woolridge (2012) makes the case for always using the robust estimators when sample size is large.

Thus, I use heteroscedasticity robust estimators for all inference in this thesis.

For my data set, the fact that a group of tranches come from the same deal almost certainly results

in correlated error terms for observations within that deal, which results in an assumption breach.

9The t statistic follows a t distribution with N-k-1 degrees of freedom under HO, where k is the number of slope

parameters 5(5) ~ tn_k—1. The F ratio, or F statistics follows a F distribution under HO with a numerator degrees
of freedom equal to the number of independent variables dropped in the restricted model denoted q and a denominator

degrees of freedom equal to N-k-1 in the unrestricted model % ~Fy N—k-1-
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However, the issue can be solved by the use of robust variance estimators for specified clusters. I
use a modification of the Huber-White robust estimators with specified clusters, which allows me to
relax the independence of errors assumption while also allow for heteroskedasticity (Rogers, 1993;
Williams, 2000). For each regression, I specify clusters according to the deal the tranche is in. The
same approach were used by Cuchra (2004) and Buscaino et al. (2012) when dealing with structured

debt tranches among others.

Carefully choosing the appropriate functional form of the included variables in equation (18) can
be used to mitigate bias and enhance asymptotic normality for a given number of observations
(Woolridge, 2012). In section 6.5 I discuss the functional form applied for the set of variables used

in this thesis.

Finally, in order to reduce omitted variables bias I identify a set of independent variables suggested

by previous literature and include it in my regressions. The variables are described in section 6.

5.2 Inference for spread differences between structured and unstructured
debt

In this section, I elaborate on the methodology applied to test the first hypothesis concerning
the spread differences between structured and unstructured debt2’. Before diving into how the
hypothesis is tested in this thesis, I examine some of the challenges that pooled cross section data

presents in regression analyses.

The data set used for the first hypothesis can be divided into two groups; Structured debt and
unstructured debt. When pooling the two groups of data into a single data set, differences in the
intercept and slopes across independent variables needs to be taken into account and appropriately
dealt with in the regression analyses. One way to address these differences is to allow the intercept
and slope to deviate across groups. This is done by introducing a dummy variable which specifies

which group the observation in question belongs to. The dummy variable can be written as below.

1 if structured
SD = (22)
0 if unstructured

The dummy SD, which stands for structured debt, is equal to 1 if structured debt and 0 if unstruc-
tured. The dummy can be applied to allow for deviating intercepts and slopes between the two

groups.

Pinto, Marques, and Megginson (2020) investigated a set of hypotheses quite similar to H1 of this
thesis. They derived two hypotheses based on whether spreads deviated between structured and

unstructured debt when controlling for a set of variables. In order to test these hypotheses, they

20Gee section 4.1.
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created a dummy equal to 1 if the debt was structured and 0 if not. Based on the significance of

the dummy’s impact on spreads, they then made inferences regarding their hypotheses.

While the intuition is clear, one might be concerned that the difference in the pricing equation
between structured and unstructured debt is not limited to the interaction term as implicitly as-
sumed in Pinto, Marques, and Megginson (2020)’s analysis. It does not seem hard to imagine that
some of the control variables have a different impact on spreads for structured debt compared to
unstructured debt. The coefficient estimates in the model will likely be biased if interaction terms
are excluded from the model when they shouldn’t. As a result, I deviate from the model applied
by Pinto, Marques, and Megginson (2020) and include interaction terms for a set of independent

variables. The model used for testing H1 is defined below.

X Y z
Spread; = o + $1.SD; + Z Bet1SD; RD, i + Z Bxyy+1RDy; + Z Brax+y+:(Cei — Cai) + &
x=1 y=1 z=1
H1

(23)
Where RD is rating dummies and C is control variables. Note that the control variables also include
interaction terms with SD when deemed appropriate. As I am inferring on an intercept, I make
all control variables equal to the deviation from its mean. The mean is denoted C. Hence, when
assessing differences in intercepts between structured and unstructured debt I assess it when the
other control variables are set equal to their mean and not zero.

The set of coefficients in the third term on the right-hand side are called difference-in-difference
estimators. Each coefficient measures the difference in average spreads between structured and un-
structured debt between the rating in question and the benchmark rating. A difference-in-difference

estimator can be written as

0= (SPTGGEIAAA,S - Spread_AAA,Un) - (SpreadBe_nchmark,S - SpreadBe:whmark,Un) (24)

Where § is the difference across ratings in the average difference in spreads between structured and
unstructured debt and S and Un denotes structured and unstructured debt. In the example above,

I have used AAA ratings against the benchmark rating.

H1 is tested based on the coefficient from the second and third terms on the right-hand side.
If average spreads are identical for structured and unstructured debt with the same ratings all
coefficients in the second and third terms on the right-hand side must not be significantly different

from zero.
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5.3 Inference for systematic risk in structured debt

As briefly touched upon in section 4.2 the systematic risk drivers derived in this thesis do not
only drive systematic risk, but also real-world probability of default. Both effects have an intuitive
implication on fair spreads. For testing the second set of hypotheses?' the applied methodology
needs to be capable of distinguishing between the two effects. Specifically, the hypotheses should

only concern the effect of systematic risk.

In order to do so, I use cross-sectional regression analyses where I control for credit ratings when
assessing the impact from the systematic risk drivers. While the methodologies of rating agencies
as described in section 2.2 do not account for systematic risk, they have developed an arsenal of
models and qualitative assessments to estimate the effects on the real-world probability of defaults.
This includes the diversification effect from increasing the number of loans, as well as the different
probability of defaults across obligor sectors. I argue that controlling for credit ratings is an adequate
methodology for controlling for real-world probability of default. If the systematic risk drivers are
shown to have a significant impact on spreads when real-world probability of default is accounted

for, I infer the impact is caused by systematic risk.

In order to avoid omitted variable bias, I also include a set of control variables suggested by previous

literature as described in section 6.

While the systematic risk drivers derived in section 4.2 are all expected to carry systematic risk, I
do not consider them to be different proxies of the same effect on fair spreads. On the contrary, I
argue that each systematic risk driver derived represents a distinct effect on systematic risk, which
should all be taken into account by investors when pricing structured debt. The intuition derived
from the applied model in section 4.2 has been a convenient tool to show why this is the case. For
example, the derivations showed that the systematic risk of the loans in the portfolio has a distinct
effect on systematic risk even when the number of loans are controlled for.

In sum, the equation used for testing the second set of hypotheses is defined as below.

4 Y z
Spreadi = + Z ﬂzSRD:v,i + Z ﬂ4+yRDy,i + Z 64+Y+zcz,i +&; (25)
r=1 y=1 z=1
H2, H3, H4, H5
Where SRD is systematic risk drivers, RD is rating dummies and C is other control variables. The
second term on the right-hand side contains all independent variables and their coefficient estimates
used to test hypothesis H2, H3, H4 and H5. The term is expanded below.

4
Z SRD;; = B1N; + B2 LB; + B3N; LB; + B4S; (26)
— H2 H3 Ha4 H5

21See section 4.3.
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Where N is the number of loans in the underlying portfolio and LS is the estimated beta of the
underlying portfolio. S is a variable measuring seniority. The exact definitions of the variables and
how they are tested is elaborated in section 6 and section 7. The coefficients are related to the
hypotheses by denoting the hypotheses below the coefficient in equation (26). The hypotheses H2,
H3, H4 and H5 are tested using t tests on the coefficients in question across a set of regressions.

Using terminology from the equations above, the hypotheses can be formulated as below.

H2:8, >0 (27)
H3:8,>0 (28)
H4: B3>0 (29)
H5:8,>0 (30)

In the next section, all variables applied in equation (23) and equation (25) in this thesis are
described.
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6 Data

This section provides an overview of the specific steps and choices taken from initial data screening
to obtaining the final data set used in the empirical analyses. It also provides an overview of the

variables used in my regression analyses and a short justification of why they are included.

6.1 Sample selection process

The primary data sets are constructed using Bloomberg, with supplementary data from Factset. In

the following the data sources and selection process are elaborated.

6.1.1 Data sources

The most complete data set for structured debt tranches available to the author is provided by
Bloomberg. The Bloomberg terminal allows for treating each tranche as an observation and pro-
vides a set of variables characterizing the tranche and its underlying collateral. Available variables
include among others date of issue, principal size, spread at issue, amount of principal junior to the
tranche (credit support), pricing and credit ratings across credit agencies. The initial data set from
Bloomberg comprises 4,745 unique debt tranches across 589 deals issued in Western Europe from
January 2010 to April 2020. The issue date variable is used to cross-match to time series for implied

interest rate volatility, treasury yields and swap spreads.

Bloomberg is also used to obtain time series. Time series data from Bloomberg used in this thesis
comprises daily observations for the implied volatility interest rate caps as well as interest rate
swap spreads. The implied volatility is the only variable which has data limitations across time
when considering the chosen time frame from January 2010 to April 2020. Specifically, the earliest
obtainable observation for the time series is from October 2016. As a result, the cleaned data set

only contains tranches issued from January 2017 to April 2020.

The data set for unstructured debt is also obtained through Bloomberg, where the chosen variables is
a subset of the variables chosen for structured debt. Excluded variables in the unstructured data set
are variables specific to structured debt. For example, the number of loans and geographic exposure
in the collateral portfolio are intuitively not available for unstructured debt. The unstructured debt
in this thesis are corporate bonds, also issued in Western Europe within the same time frame as for
structured debt, i.e. January 2017 to April 2020.

I have used Factset solely to obtain time series data with daily observations for treasury yields. The
data is also available through Bloomberg, but Factset are chosen due to Bloomberg’s data limits.
The date variable is used for cross-matching to the data sets from Bloomberg.
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6.1.2 Sample selection steps

This subsection describes all steps taken in the selection process from search criteria in Bloomberg
to cleaning of data in Stata. Each step is assigned a step number, making it easy to track each step
and its implication on the number of observations in the data set in table 2. The process is stamped

“1.” for the steps taking for structured debt and “2.” for unstructured debt, respectively.

The data set for structured debt is obtained by applying the following search criteria in Bloomberg’s
structured debt database: (1.1) The date of issue of the tranche has to be within the interval January
2010 — April 2020. (1.2) The data is limited to only include tranches which underlying collateral is
comprised of corporate credit. Specifically, Bloomberg’s CLO criteria is chosen which is defined as:
“CLOs are backed by corporate credit in the form of leveraged loans. The leveraged loan market is
regulated and loans cannot come to market with a leverage ratio of more than 6x... Additionally,
each credit is analysed individually by hundreds of analysts at firms around the globe who seeks
to hold the borrowing company to its covenants”. (1.3) Finally, I only include deals where the

originator is based in Western Europe??.

For unstructured debt the sample selection is designed to create a data set aligned with the criteria
for structured debt. Hence, the corporate bond has to be issued in Western Europe (2.1) between
January 2017 and March 2020 (2.2). The bond is required to be denominated in EUR (2.3), has
floating coupons (2.4) and priced at par (2.5). The composite rating variable as calculated by
Bloomberg is also required to be available (2.6). A final requirement has been made in order to be
able to retrieve the necessary data. The Bloomberg excel functions had difficulties extracting data
for expired corporate bonds for some of the variables and Bloomberg representatives were not able
to fix the error. As such, I have added the requirement that the corporate bonds had to be active
at the day of data extraction (2.7)23.

From Bloomberg, the data set for structured debt is narrowed down to 4,745 structured debt
tranches. Further sample reduction is conducted in Stata. I list the sample steps conducted in
Stata below: (1.4) I follow the example of Cuchra (2004) and Longstaff and Schwartz (1995) and
only focus on floating rated issues. All observations with fixed rate coupons are removed. (1.5) I also
remove all tranches of which the spread or pricing data is not available. (1.6) A number of critical
variables in the pricing model depends on the denominated currency of the tranche payments. This
include all variables for the yield curve factor, as well as implied volatility of the yield curve. 97.6%
of the observations are denominated in EUR prior to this step. As a result, I limit the analyses to
concern only EUR denominated currencies. (1.7) When assessing the development of ratings across
years, it is noted that the data quality for credit ratings prior to 2017 is poor. Almost all tranches

issued prior to 2017 are either not rated or have unavailable ratings. As credit rating is expected

22 Andorra, Austria, Belgium, Channel Islands, Denmark, Faeroe Islands, Finland, France, Germany, Gibraltar,
Greece, Greenland, Guernsey, Holy See, Iceland, Ireland, Isle of Man, Italy, Jersey, Liechtenstein, Luxembourg,
Malta, Monaco, Netherlands, Norway, Portugal, San Marino, Seborga, Spain, Sweden, Switzerland and the United
Kingdom.

237¢th April 2020.
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to carry high explanatory power in the analyses described in section 5, all tranches issued prior to
2017 are excluded from the data. (1.8) Finally, I remove observations which have non meaningful
values in critical variables. The focus is on the credit support variable, which measures all principal
junior to the tranche, as a percentage of the total principal of the deal. If the percentage is negative

or above 100%, the observation is removed.

For the data set of unstructured debt, I imitate the same steps conducted for structured debt. All
variables with unavailable spreads are excluded (2.8).

The steps above results in a data set where no tranche has currency risk. Currency risk is defined
for this thesis as deviations between the denominated currency in the loans in the portfolio and the
issued tranches in accordance with the definitions of Pinto, Marques, and Megginson (2020), Vink
and Thibeault (2008) and Fabozzi and Vink (2012).

All steps described above and their implications on the number of observations in the data set are

summarized in table 2 below.
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Table 2: Overview of sample selection process

Panel 1: Sample selection for structured debt

1.1-1.3 CLOs issued 2010 - 2020 in Western Europe. 4,745
1.4 Only include floating rate issues. 3,622
1.5 Must be issued at par with available spreads. 1,601
1.6 Exclude tranches not denominated in EUR. 1,553
1.7 Exclude tranches issued prior to 2017. 1,017
1.8 Exclude not meaningful data. 1,013

Panel 2: Sample selection for unstructured debt

2.1 Exclude deals not in Western Europe. 1,097,472
2.2 Date of issue between January 2017 and March 2020. 245,305
2.3 Exclude bonds not denominated in EUR. 197,062
2.4 Only include floating rate issues. 5,026
2.5 Must be issued at par. 3,129
2.6 Exclude deals where the composite rating is not available. 3,129
2.7 Exclude non-active bonds. 2,824
2.8 Exclude bonds with unavailable spreads. 2,824
2.9 Available for extraction toexcell. 311

Note: The Bloomberg terminal allows to track the selection steps of corporate bonds, but not for CLOs. Hence, the
impacts from step 1.1 to 1.3 can’t be assessed.

1: Some discrepancy exists between the size of the sample from the Bloomberg Terminal and the sample which is
extracted to excel using BQL. The Bloomberg Help Desk could not solve the issue and concluded that some of the data

simply were unavailable for BQL extraction, which is a function language undergoing development.

6.1.3 Descriptive statistics of samples

To provide the reader with an insight into the sample tranches a battery of descriptive statistics
is provided in appendix 10.4. Some key observations are discussed in brief below. The reader is

referred to the appendix for a more detailed overview.

It is noted that spreads seem to follow a highly right-skewed distribution across the years in the
cleaned data set for both CLOs and corporate bonds. Average spreads and variances increase in
2019 and 2020 compared to 2017 and 2018 across asset types. Furthermore, CLOs seems to have

more wide distributions with more “extreme” spread values than corporate bonds.

Another observation can be made regarding how the ratings are distributed across the two types of

assets. For CLOs, a vast majority of the tranches are rated AAA which is not the case for corporate
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bonds. Meanwhile, a larger fraction is rated below investment grade?* for corporate bonds than for
CLO tranches.

Finally, it is noted that the data set of corporate bonds are represented across more countries than
the data set for CLO tranches.

6.2 Launch spread

The dependent variable in the conducted regression analyses in this thesis is the launch spread. The
launch spread is the basis points (bps) above a defined benchmark and acts as the price component
from investors. The data set is limited to floating rate instruments with a spread above a defined
benchmark, often including a floor. The chosen benchmark is often LIBOR or EURIBOR in EUR
denominated issues. The data set does not contain information of the chosen benchmark. The
launch spread has substantial variation in the cleaned data set for structured debt and ranges from
0 bps to 1,500 bps. For CLO tranches, the distribution is rightly skewed with a mean of 195 bps.
The 95% fractile is 415 bps and issues above the 95% fractile are mainly non rated. For corporate
bonds, the distribution is also right-skewed with a mean of 90 bps with a 95% fractile of 450 bps.

6.3 Systematic risk drivers
6.3.1 Number of loans in the collateral portfolio

I derive in section 4.2.2 that the number of loans in the portfolio drives the systematic risk of the
issued CLO tranches. The number of loans at the day of issue is available from Bloomberg. The
distribution is highly right-skewed with few extreme values and a mean of 604 loans. See appendix

10.4 for a more detailed overview.

6.3.2 Beta in the collateral portfolio

While the other systematic risk drivers used in this thesis are readily available from Bloomberg, the
beta of the collateral portfolio is not available for structured debt. Instead, I have calculated the

beta of the portfolios using the portfolios’ relative industry weightings.

Specifically, T have used the portfolio’s Moody’s industry weightings. The intuition is that the
industry of the loan obligor drives the loans’ sensitivity towards changes in the economic state. For
example, the utility sector is less exposed to changes in the economic state than luxury goods like
automobiles. The industry weightings are thus deemed a relevant metric for the collateral portfolio’s

sensitivity towards changes in the economic state.

For a given CLO tranche, the industry weighting vector is multiplied to a vector of betas where

each element represents a beta for a specific industry. The result is a beta estimate for the collateral

24Defined as below BBB.
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portfolio, calculated as a weighted average of the industry betas. The calculation can be written as

below.

LBix = Wipy (31)

Where W; is a (1zI) vector of industry weightings observed for tranche i and 3; is a (I 1) vector
of beta estimates for each industry. [ is the number of industries considered. Please note how
the vector of industry beta estimates [; is made time dependent. Each industry dependent beta
estimate is calculated as the slope of the linear regression line between the chosen industry index
and the chosen market index. The regression is conducted based on two years of historical pricing
data from the day of the CLO tranche’s issue. Hence, the beta estimates in the beta vector are a
function of the time of issue. The intuition for making the industry beta estimates time dependent
is that the systematic risk perceived from the investors is assumed to depend on the industries’

historical sensitivity to the market indices at the time of issue of the CLO tranche.

The chosen market indices is the S&P 350 Europe Index as this thesis analyses European CLO
tranches which collateral portfolios are heavily weighted towards European countries. Likewise, the
chosen industry indices are GICS indices based on the S&P 350 Europe Index?®.

The gathering of weighting data for each tranche has been very extensive work, as Bloomberg
provides no tools for extracting the industry weightings into excel or similar?®. Instead, the data is
only available on the Bloomberg Terminal. The weightings used for this thesis are thus hard coded
numbers I have manually gathered from the terminal. In the interest of time, I have limited my
extraction of weightings to the 15 most heavily weighted industries for each tranche. Hence, the
lowest weighted industries for a tranche are not extracted?”. The terminal only provides industry

28, Therefore, I have “translated” the industry

weightings based on Moody’s industry definitions
definitions of Moody’s to the industry definitions of GICS used for the indices to calculate beta
estimates. Please refer to appendix 10.3 for an overview of the indices used and the applied relations

between the industry definitions.

On average, Healthcare is the highest weighted industry with an average weighting of 15.4%. Other
heavily represented industries on average are Professional Services and Capital Goods with average
weightings of 10.8% and 8.9% respectively. Less heavily weighted industries are Energy, Utilities
and Transportation with an average weighting of 0.1%, 0.2% and 0.7% respectively.

The beta variable for the CLO tranches has a mean of 0.99 and a standard deviation of 0.07. The

25The GICS classifications provide different level of granularity for the industry definition, which is divided in levels.
For example, level 2 industries are subsets of level 1 industries and so on. For this thesis, only level 1 and level 2
industry indices are used.

26] have had discussions lasting weeks with Bloomberg representatives of how I could extract this data, before it
was concluded that it was only available in the terminal.

27TThe industry weightings used are calculated as the principal for the industry as a percentage of the sum of
principal from the 15 highest weighted industries for that CLO tranche.

28For a few CLOs, industry weightings based on S&P’s industry definitions are also available. However, 1 have
chosen to be consistent in my use of Moody’s industry definitions as they provide most data.
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distribution has few, large values around 1.3 while the rest of the distribution seems bell shaped

around approximately 1.

6.3.3 Seniority

Previous literature has suggested that the carried systematic risk of the tranche is dependent on
the tranche’s seniority. I arrived at the same result in the discussion in section 4.2.4. In this thesis,
seniority is given by Bloomberg’s credit support variable. The credit support variable is the principal
of all tranches junior to the tranche in question as a percentage of the principal of the total deal.
The higher the credit support, the more protected is the tranche from defaults in the collateral

portfolio. An overview of the variable’s distribution across ratings is provided in appendix 10.4.

6.4 Control variables

All included control variables in my regression models are suggested in previous studies within
structured and unstructured debt. Below, I briefly describe the included control variables and

provide a short justification for their inclusion in my regression models.

4.2.3 Yield curve at issue

The yield curve is a common factor controlled for in the bond pricing literature (Cuchra, 2004).
Litterman (1991) suggested that most of the return variation for fixed-income securities can be
explained by the level, slope and curvature of the yield curve at the time of pricing. Specifically,
the majority of the return variation is explained by level and slope alone according to Chen (1993)
and Litterman (1991). I adopt the methodology of Cuchra (2004) and only include proxies for the
level and slope of the yield curve at the time of pricing. Hence, a proxy for the curvature of the

yield curve is not included.

Duffee (1998) measures the level of the yield curve using the 3-month Treasury bond yield while
Cuchra (2004) used 10-year Treasury bond yields. Specifically, Cuchra (2004) used a synthetic
Eurobond for EUR denominated securities. I follow the example of Cuchra (2004) and use 10-
year government bond yields. In the Euro Area, public debt management is decentralized and
the responsibility is assigned to each national agency. Hence, there is no single publicly traded
government bond for the EUR yield curve. I use a synthetic EUR denominated government bond
created by Factset. At each point in time, its 10-year yield is calculated as the minimum of the

10-year yield for the German and French government bonds.

The slope of the yield curve is proxied by the differences in yield between a 30-year and 3-month
Treasury bond by Duffee (1998). Cuchra (2004) used the differences in swap yields between a 10-

year and 2-year swap in the currency of issue to proxy the slope of the yield curve. I follow the
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methodology of Cuchra (2004) and use the difference between the swap yields for swaps with 2-years
and 10-years tenor respectively. The swap market is considered to be more liquid across tenors and
larger in size compared to the Treasury market (Brobst, 2018). The tenors are chosen based on the
expected lifetime of the tranches. The maximum of the weighted average lifetime of the tranches in
the cleaned data set is 9.5 years. As a result, I find a tenor of 10 years adequate. The swap yield is
the rate in the fixed leg in the swap agreement. The swaps used have EUR denominated fixed and
floating legs, where the floating leg follows a 6m EURIBOR. Daily observations are available from
January 2000 to March 2020. The difference between swap yields has an intuitive interpretation.
For example, for a yield curve with an upward slope the swap yield for the 10-year tenor is larger
than the swap yield for the 2-year tenor. Hence, the variable is negative. The absolute value of the

variable increases as the slope of the yield curve increases.

6.4.1 Value of embedded options

Option features and repayment options in particular are often included in structured debt (Cuchra,
2004). An embedded repayment option in the issue gives the option to accelerate repayments of
the principal at the obligor’s discretion. The value of the embedded option influences the spread
and should thus be accounted for in the regression models. While all included CLOs in my data
set has callable option features, the callability’s perceived value from the investors can differ. I
follow the methodology of Cuchra (2004) where the embedded option factor is proxied using implied
interest rate volatility of a 5-year interest rate cap and the estimated weighted average life of the
issue, respectively. Hayre and Thompson Jr (2001) finds early repayments of floating rate issues
to be insensitive to interest rates. However, I do control for differences in option values due to the
perceived interest rate volatility at the date of issue. The option value is expected to be positively
related to the volatility of the interest rate as an increase in the volatility increases the callability’s
value for the obligor. I use the implied volatility from a 5-year EUR denominated interest rate cap
at the date of issue. The data set contains daily observations for the implied volatility from October
2016 to March 2020.

The options’ effects on the lifetime of the issue is expressed through the issue’s weighted average
life (WAL). The WAL is the expected lifetime of the tranche and is calculated by the arranger of
the issue at launch. The calculation incorporates effects of embedded options in the estimate. The
lower WAL, the higher probability of the embedded repayment options to become in the money
and thus the higher option value. Furthermore, previous literature agrees that debt with longer
expected maturities tend to be riskier than debt with lower expected maturities (Pinto, Marques,
and Megginson, 2020).

Option value can also be partly explained by other variables used in the regression analysis. Previous
literature suggests option value is correlated with macroeconomic conditions at the time of issue
(Duffee, 1998). The yield curve at issue can act as a proxy for the economic condition and can thus

be correlated with the option value. Finally, Hayre and Thompson Jr (2001) finds that repayment in
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European structured debt is related to the country of origin of the collateral assets. The variable for
the country of collateral thus might also partly explain the value of embedded options. Geographic

dummies are also included in my regression models.

6.4.2 Cash-flow structuring

In this section, I briefly elaborate on included control variables which are a result of the cash flow

structuring of the tranche.

Previous literature includes the principal of the tranche as a common control variable in debt pricing
models (Pinto, Marques, and Megginson, 2020; Cuchra, 2004). The principal can serve as a proxy
for the liquidity of the issue on the secondary market. Even if the security is not registered on an
exchange, the tranche can be traded through a market maker. Large issues are more likely to be
of interest for market makers and thus be more liquid in the secondary markets. As a result, the
investor might require a haircut on small issues as the issue is unlikely to be sold in the secondary
market (Cuchra, 2004). The principal is also suggested to be a proxy for the degree of diversification
as larger issues are created by pooling a larger set of loans (Pena-Cerezo, Rodriguez-Castellanos,
and Ibanez-Hernandez, 2019). In sum, I expect the principal to have a negative impact on spreads
as found by Buscaino et al. (2012).

I also include the number of tranches issued for the deal in question as Weber and Franke (2009)

found a negative relationship between the number of issued tranches and the yields of the tranches.

6.4.3 Credit ratings

In my data set, credit ratings are available for the three large rating agencies, S&P, Moody’s and
Fitch. Bloomberg also gives access to a composite rating.

The composite rating is calculated based on the ratings from Moody’s, S&P, Fitch and DBRS. The
composite rating is derived by taking the average of the ratings from the four mentioned rating
agencies. Each rating agency is evenly weighted. If the average is between two ratings, it is rounded
“down” to the lower rating. The composite rating variable follows the scaling rating terminology of
S&P as described in section 2.2.

When using the composite rating in my regression analyses a linear relation between the composite
rating and the spread of the tranche can’t be reasonably assumed. I therefore create a dummy
variable for each possible credit rating for the composite rating variable. All ratings below rating b
are used as the benchmark.

Cuchra (2004) argue that the composite rating variable should carry additional information to single
credit ratings, as it is a combination of multiple ratings. I suggest the composite rating calculation
could result in information loss as it averages out deviations in credit ratings. For example, if a rating
agency chooses to deviate from the market consensus for a given tranche I suggest the deviating

rating is likely to be backed by proprietary or in depth information to justify such a deviation. The
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deviation from market consensus would, however, not be captured by the composite rating variable.

Hence, the averaging out of rating can result in loss of information.

Cuchra (2004) finds that S&P’s ratings have the largest explanatory power for structured debt
spreads, followed by Moody’s and then finally Fitch. The evenly weighted average calculation of
the composite rating could thus be inferior to a prioritized weighting system, according to the
explanatory power each rating agency has. I suggest an alternative credit rating variable called
“adjusted rating”. “Adjusted rating” is also calculated based on the ratings of S&P, Moody’s and
Fitch. However, in the calculation of “adjusted rating” I avoid any averages or rounding offs of
credit ratings. Instead, the variable is equal to only one of the available credit ratings. The “adjusted
rating” variable prioritizes the rating agencies according to their explanatory power found by Cuchra
(2004) and is thus equal to the rating from S&P, if available. If not, it is equal to the rating of
Moody’s and finally the rating from Fitch, if the two others ratings are unavailable. The calculation
of the variable allows for a prioritization of the ratings according to their explanatory power. It also
avoids any averaging out of deviating credit ratings. It turns out that the adjusted rating variable

has ratings available to more tranches than the composite rating in the cleaned data set.

Adjusted ratings are applied to assess the robustness of my findings of different calculations of the
credit ratings. The adjusted ratings are only available for the CLOs and not for the corporate bonds.
Hence, the adjusted rating variable is only used for the set of regressions based solely on the CLO

data set.

6.4.4 Time control variables

For a final set of control variables, I include year and month dummy variables defined by the date of
issue of the tranche. The time control factors are included to capture seasonal and year dependent

market effects, which are not captured by the other time dependent variables.

6.5 Functional form specifications

Whether I assume a linear or non-linear relation between launch spreads and the independent
variables has important implications for the possibility of inferring on the results from the regression
analyses and create unbiased estimates. For example, if the relation is assumed linear in my analyses

when the true relation is non-linear it will result in biased estimates.

Some non-linear relations between the spreads and the independent variables included in this thesis
have in fact been suggested by previous literature. For example, Pinto, Marques, and Megginson

(2020) and Sorge and Gadanecz (2008) found a non-linear relation between spreads and maturity.

In my regression analyses I include both a set of regressions which assumes a linear relationship and
a set of regressions which assumes a non-linear relationship. For each of the two sets of regressions
I then asses how well they capture the true relation between spreads and the independent variables
using the RESET test as proposed by Ramsey (1969). This gives me a hint to what set of regressions

are the most appropriate to infer from.
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The non-linear relationship between spreads and the included independent variables are made by
taking the natural logarithm of the launch spreads and using that as the dependent variable in my

regression analyses.

Another possible advantage of using the natural logarithm of spreads as the dependent variable is
that the distribution of the dependent variable then resembles the normal distribution to a higher
degree. Unadjusted launch spreads have a highly right-skewed distribution with the majority of
spreads having relatively low values while also having few observations with relatively large, extreme
values. The distribution of the natural logarithm of spreads are on the contrary more bell shaped
and resembles more the normal distribution. Recall from section 5.1 that one of the assumptions
used in cross-sectional regression analyses is normally distributed residuals for any set of values for
the independent variables. As the residuals are a linear function of the dependent variable for a
given set of values for the independent variables, it follows the same distribution as the dependent
variable. Making the distribution of the dependent variable closer to the normal distribution thus

also makes the distribution of the conditional residuals closer to the normal distribution.

One might argue that whether or not the residuals are normally distributed is not problematic, as I
can resolve to the asymptotic properties of the OLS estimators for inference if the residuals are not
normally distributed. However, when holding the number of observations fixed at some value the
asymptotic behavior of the OLS estimators are improved as the distribution of the residuals to a
larger degree resembles the normal distribution (Woolridge, 2012). Using the natural logarithm of
spreads as the dependent variable might then improve the appropriateness of inferring using t and

F tests when the residuals are not normally distributed.

The next section presents the empirical findings of this thesis and an overview of rejected and
accepted hypotheses.
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7 Empirical findings

This section provides the empirical findings of the undertaken studies. First, the conducted regres-
sion analyses and their results are presented. I assess the assumptions applied in OLS regression
analyses and the robustness of the findings. Second a summary of the findings is given. The analyses

are conducted using Stata and the code from the applied DO files are attached in Appendix 10.7.

7.1 Regression analyses

Table 3, 4 and 5 presents the results of the undertaken regression analyses. The regression analyses
are first divided into two groups, according to the study conducted. The first group of regressions

are conducted for testing H1.

The regressions concerning H1 are divided into two groups, according to the dependent variable
used. Specifically, I use two dependent variables in my analyses as discussed in section 6.5. The first
being launch spreads as described in section 6.2 while the second being the natural logarithm of the
launch spreads. The point of conducting regressions based on the two different dependent variables
is to assess if the fit of the model can be improved by allowing non-linear relations between spreads

and the independent variables using the natural logarithm of spreads.

The second group of regressions are used to test the remaining hypotheses for this thesis, which
only concerns the spreads of CLOs. The regressions for these hypotheses are divided into four
groups, again according to which dependent variable is used and which variable is used to derive
rating dummies. Again, I use two types of dependent variables; Spreads at launch and the natural
logarithm of spreads at launch. I also use two different sets of ratings. As described in section 6.4.3
the ratings are calculated using either Bloomberg’s composite rating or the calculated adjusted
ratings for this thesis. By sorting the regression analyses according to these methodologies, four
groups of analyses are created as shown in table 4 and 5. For example, the first group of regressions
use launch spreads as the dependent variable and composite ratings to account for credit ratings.
The second group also uses composite credit ratings but the natural logarithm of spreads as the
dependent variable and so on.

Each set of regressions used to test H1 comprise five regression analyses. In regression one and two
variables are gradually added in the model. The variables in regression one is thus a subset of the
variables in regression two. Regression three excludes geographic dummies due to multicollinearity
issues with the variables of interest and includes instead interaction terms between the structured
dummy?® and rating dummies. Finally, regression four and five adds additional interaction terms
to the model between the structured dummy and other independent variables. The details can be

seen in table 3.

29Gee section 5.2.
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For each set of regressions used to test the hypotheses which only concerns structured debt, six
regression analyses are conducted. Regression one through three are gradually controlling for more
factors. For example, regression number two has all independent variables used in regression one,
plus geography dummies for the country of the SPV as well as the geography of the collateral
portfolio’s loan obligors. Regression four excludes the interaction term between number of loans
in the collateral portfolio and beta in order to reduce severe multicollinearity issues found for the
interaction term and the variable for number of loans. Finally, regression five and six includes
interaction terms between beta and rating dummies and sector weightings in the collateral portfolio,
respectively. All regressions are conducted to analyse the effects of systematic risk drivers as derived
in section 4.2 on launch spreads for European CLOs.

The assumptions applied in each regression have been investigated and the results are presented
in appendix 10.6. All analyses suffer, as expected, from heteroscedasticity as shown by using the
Breusch-Pagan test (Breusch and Pagan, 1979). The robust standard errors proposed by White
(1980) are applied to mitigate the issue. The RESET test, proposed by Ramsey (1969), is applied
to test for any non-linear combinations of covariates, not accounted for by my models. Potential
misspecifications in my model are furthermore assessed by plotting the predicted values against
the residuals for each regression as presented in appendix 10.5. Problems with multicollinearity
are assessed by calculating the variance inflation factor (VIF) and the normality of the residuals is
evaluated using the normality test proposed by Royston (1992) and Royston (1983). For all applied
regressions, the set of tests described above suggest severe problems with the OLS assumptions. In
particular, issues with multicollinearity, misspecifications and heteroscedasticity are found for most
of the analyses conducted. For a set of regressions, normality in the residuals is also rejected.

Some assumption breaches can be partly mitigated. For example, I can rely on the asymptotic prop-
erties of the distribution of the estimated coefficients when the residuals are not normally distributed.
I can also apply robust standard error estimates for the coefficients when I face heteroscedasticity.
However, a set of assumption breaches are not so easily mitigated. For a set of regression analyses
conducted in this thesis misspecification of the model is identified by the RESET test, implying
biased estimates for all coefficients in the models. I try to reduce the functional form misspecifica-
tion and test the robustness of my results by applying a set of different models and variables in my

analyses.

Multicollinearity issues are identified for most of the regressions. While multicollinearity is not
a violation of the OLS assumptions, it heavily reduces the power of the regression models. In
particular, VIF is very large for the regressions for solely CLOs when the interaction term between
the number of loans in the collateral portfolio and beta is included. In the regressions below, I
try to improve the statistical power of the model by excluding the interaction term in some of the

regression analyses.

The large set of regression analyses is conducted to test the robustness of my findings. It is also con-

ducted in an attempt to improve the statistical power of my analyses by inferring on the regressions
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which performs best in the set of assumption tests conducted. For example, normality of residuals,
the degree of functional form misspecifications and VIFs are found to vary greatly across the set of
regressions. See Appendix 10.6 for an overview of the regressions’ performance in the different tests

conducted.

The breaches of assumptions and issues with multicollinearity are taken into account in my final

assessment of the robustness of my findings where I also discuss potential issues with endogeneity.

The results from the regression analyses conducted are presented in the tables below.
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Table 3: Estimation results - Spread difference between CLOs and
corp. bonds

Launch spreads

Natural logarithm of launch spreads

1.1.1 1.1.2 1.1.3 1.1.4 1.1.5 1.2.1 1.2.2 1.2.3 1.2.4 1.2.5
SD 143.3%* -22.1 -462.4%* -460.5%* -456.7** 0.9%* 0.1 -2.2%* -2.2%* -2.2%*
(9.9) (33.0) (40.5) (42.5) (48.5) (0.1) (0.2) (0.2) (0.3) (0.3)
SD_AAA 511.9%% 548.9%% 552.6%% 3.3%% 3.4%% 3.4%%
(42.0) (45.1) (50.8) (0.5) (0.5) (0.5)
SD_AA 588.7T** 576.7** 578.7** 3.5%* 3.4%* 3.5%*
(40.5) (42.0) (47.7) (0.3) (0.3) (0.3)
SD_A 612.8%% 598.0%% 592.9%% 3.2%% 3.1%% 3.1%%
(40.7) (42.5) (48.5) (0.2) (0.3) (0.3)
SD_BBB 688.0%* 665.3%* 657.6%% 3.3%% 3.2%% 3.2%%
(41.2) (43.0) (49.0) (0.2) (0.3) (0.3)
SD_BB 776.6%* 789.9%* 784.3%* 2.8%* 2.8%* 2.9%*
(75.2) (76.5) (80.4) (0.4) (0.4) (0.5)
SD_B 660.1%* 640.9%* 630.6%* 2.2%* 2.1%% 2.1%%*
(126.9) (124.7) (123.7) (0.4) (0.4) (0.4)
Control- T+Y+ T+ G+ T+Y+ T+Y+ T+Y+ T+Y+ T + G+ T+Y+ T+Y+ T+Y+
Y+WH Y+W+
Dummies! W+P+R W+P+R W+P+R W+P+R W+P+R W+P+R W+P+R W+P+R
P4R P4R
Control-SD- WP WHP+Y WP WHP+Y
Dummies!
No. Obs 590 590 590 590 590 479 479 479 479 479
R2 0.775 0.853 0.868 0.882 0.888 0.718 0.805 0.798 0.809 0.814
Adj. R? 0.765 0.842 0.860 0.874 0.880 0.702 0.786 0.784 0.794 0.799

Note: *Significant at 5%, **at 1%. Robust White std. errors are reported in brackets.

1: T: Time dummies, G: Geography dummies, R: Rating dummies, P: Principal, W: Weighted Average Lifetime Y: Yield proxies
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Table 4: Estimation results - Systematic risk, composite ratings

Launch spreads

Natural logarithm of launch spreads

2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6
N -0.7 -0.9 0.6 -0.0 -0.0 -0.1 -0.0 -0.0 -0.0 0.0 0.0 0.0
(0.8) (0.7) (1.0) (0.1) (0.1) (0.1) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
8 -125.3 -168.8 194.0 59.0 263%* a4.7 -0.6 -0.8 0.3 0.3 0.5% 0.8
(170.7)  (177.6)  (241.6)  (48.9) (61.5) (163.8) (0.9) (1.0) (1.6) (0.3) (0.3) (1.0)
NB 0.7 0.9 -0.6 0.0 0.0 0.0
(0.8) (0.8) (1.1) (0.0) (0.0) (0.0)
cs 5.1% 4.9% 4.4% a.1%* a.7% 3.6 0.0 0.0 0.0 0.0 0.0 -0.0
(2.4) (2.4) (2.2) (2.2) (2.2) (2.5) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
B _AAA -350%* -0.4%
(61.0) (0.2)
B_AA -282%* -0.3
(55.8) (0.2)
B_A S156%* 0.1
(43.0) (0.2)
Control- R+N+  G4+R+ G4+T+ G+T4+ G+T+  G+T+ R+N+ G4+R+ G+T4+ G+T+ G+T+  GHT+
N+W+ R+N+ RN+ RN+ S+R+ N+W+ R+N+ RN+ RN+ S+R+
Dummies! WY N+W+ WY N+W+
Y WY W+Y W+Y Y W+Y W+Y W+Y
Y Y
No. Obs 206 206 206 206 206 206 206 206 206 206 206 206
R2 0.955 0.955 0.967 0.967 0.972 0.969 0.949 0.950 0.963 0.963 0.964 0.969
Adj. R? 0.951 0.951 0.961 0.961 0.967 0.962 0.945 0.945 0.956 0.956 0.956 0.962

Note: *Significant at 5%, **at 1% (Systematic risk are one-sided tests. Else, two sided). Robust White std. errors are reported in brackets.

1: T: Time dummies, G: Geography dummies, S: Sector dummies, R: Rating dummies, P: Principal, W: WAL, Y: Yield proxies, N: # bonds
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Table 5: Estimation results - Systematic risk, adjusted ratings

Launch spreads Natural logarithm of launch spreads
2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 2.4.6
N 11 S1.2 0.7 0.0 0.0 0.3 -0.0 0.0 0.0 0.0 0.0 -0.0
(0.9) (0.8) (1.0) (0.1) (0.1) (0.1) (0.0) (.0) (0.0) (0.0) (0.0) (0.0)
B -215.5 -226.2 211.4 53.5 262%* -217.3 -1.2 -1.1 0.4 0.3 0.5 -1.0
(196.4) (191.0) (246.8) (53.1) (62.4) (119.5) (1.1) (1.1) (1.6) (0.3) (0.3) (0.7)
NB 1.2 1.2 -0.7 0.0 0.0 -0.0
(0.9) (0.8) (1.1) (0.0) (0.0) (0.0)
Ccs 3.9 3.8 4.3* 4.2% 4.8% 4.6* 0.0 0.0 0.0 0.0 0.0 0.0
(2.7) (2.7) (2.2) (2.2) (2.2) (2.4) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
B_AAA -361%* -0.5%
(60.0) (0.2)
B_AA -284%* -0.3
(55.3) (0.2)
B_A ~159%* 0.1
(43.4) (0.2)
Control- R+N+ G+R+ G+T+ G+T+ G+T+ G+T+ R+N+ G+R+ G+T+ G+T+ G+T+ G+T+
N+W+  RA4N+ R+N+ RN+ S+R+ N+W+  R+N+ RN+ R+N+ S+R+
Dummies?! WH+Y N+W+ WH+Y N+W+
Y W+Y W+Y W+Y Y WH+Y W+Y WH+Y
Y Y
No. Obs 209 209 209 209 209 209 209 209 209 209 209 209
R2 0.952 0.952 0.963 0.963 0.968 0.967 0.944 0.944 0.956 0.956 0.956 0.965
Adj. R2 0.948 0.947 0.956 0.956 0.962 0.959 0.939 0.939 0.948 0.948 0.948 0.956

Note: *Significant at 5%, **at 1% (Systematic risk are one-sided tests. Else, two sided). Robust White std. errors are reported in brackets.

1: T: Time dummies, G: Geography dummies, S: Sector dummies, R: Rating dummies, P: Principal, W: WAL, Y: Yield proxies, N: # bonds
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7.1.1 Differences between structured and unstructured debt

The first hypothesis tested in this thesis concerns whether the required launch spreads differ between
structured and unstructured debt. Specifically, I test the differences in launch spreads between CLOs

and corporate bonds when controlling for a set of common control variables.

For each regression, I test the hypothesis that the required launch spread differ between structured
and unstructured debt. The spreads between the two types of assets are found to be significantly
different across 8 of the 10 regression analyses conducted for any reasonable chosen significance
level. When including interaction terms between the structured dummy and the rating dummies,
differences in spread differences between ratings are also found to be significant across all included

interaction terms.

Deviations exist across the conducted analyses regarding the relative sizes of spread differences
across ratings. Specifically, for the analyses using the natural logarithm of spreads as the dependent
variable, junior debt has the lowest increase in required spreads from unstructured to structured
debt while senior debt has the largest. The opposite seems true when using spreads as the dependent

variable.

Across all conducted regressions, severe issues with normality and heteroscedasticity are found.
These are argued to be mitigated by using White’s robust estimators of standard errors as well as

the asymptotic properties of the OLS estimators’ distribution as argued in section 5.

When examining the graphed residuals in appendix 10.5 there seems to be a non-linear relationship
between spreads and the included independent variables not captured by the analyses using spreads
as the dependent variable. This is also evident from the conducted RESET tests, where functional

form misspecifications are found for all regressions using spreads as the dependent variable.

This is however not the case for the regressions using the natural logarithm as the dependent
variable. When examining the graphed residuals, severe issues do not seem to be the case. The
observation is confirmed when assessing the RESET tests, where functional form misspecifications
are less significant for all regressions and insignificant for two of the regressions®’. When inferring
on the impact from ratings, I thus use the analyses with the natural logarithm of launch spreads as
the dependent variable.

In sum, I find evidence to accept the hypothesis that required spreads differ between CLOs and
corporate bonds (H1). For rating BB to AAA, required spreads are higher for CLOs than for
corporate bonds. Only for B rated debt and below, the required spreads are found to be larger for
corporate bonds than for CLOs.

My results are similar to the findings of Pinto, Marques, and Megginson (2020) across most of
the ratings. Specifically, they found required spreads to be higher for CDOs than for corporate
bonds. Their finding resembles my results for debt with ratings in the interval AAA to BB. Pinto,

30Using a significance level of 1%.
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Marques, and Megginson (2020) explained the higher required spreads for structured debt with
investors taking the larger sensitivity towards systematic risk in structured debt into account. In
order to test whether this is the case, I analyze the systematic risk’s impact on required spreads for
structured debt in the following sections. I work from the intuition that if the differences in spreads
identified in this section is caused by systematic risk, systematic risk should have a significant effect

on spreads required for CLO tranches.

7.1.2 Number of loans in the collateral portfolio

The first systematic driver derived in this thesis is the number of loans in the collateral portfolio®'.
For each regression, I test the hypothesis that the number of loans should have a positive impact
on the launch spreads. Across all 24 conducted regression analyses in this thesis, the hypothesis
that the loan number has a positive impact is nowhere near accepted. As evident in table 4 and 5,
many of the estimates are also negative. No evidence is thus found that investors price the impact
on systematic risk from the number of loans into the launch spreads. The conclusion is the same
across all conducted regressions and does not change when I exclude the interaction term between
the beta and number of loans in order to reduce the issue of multicollinearity. I thus do not accept
hypothesis H2 that loan numbers have a positive impact on spreads caused by the systematic risk

it carries.

7.1.3 Beta in the collateral portfolio

To the best of my knowledge, this thesis is the first to analyze the impact on CLO spreads from
beta from the collateral portfolio. As described in section 6.3.2, the beta of the collateral portfolio
is calculated based on the industry weights of the portfolio at issue. In section 4.2.3, I derived that
beta is expected to have a positive impact on the required spreads at issue which was formulated in

hypothesis H3. The hypothesis is tested across 24 regressions.

The beta is not found to have a statistically significant positive impact on spreads in any regressions,
when difference in beta’s impact across credit ratings is not accounted for. For the regression analyses

with relatively few control variables, the estimated impact is even negative.

For each group of analyses, I provide a regression which includes a set of interaction terms between
beta and credit ratings. An interesting observation is that for all regressions which include interac-
tion terms the impact from beta is increasingly positive for more junior tranches. For the regressions
using spreads as the dependent variable, betas impact is even found to be negative for CLOs rated
AAA or AA. No evidence is found that beta has a significant positive impact on spreads for senior
tranches (AAA or AA) using a significance level of 1%. Beta is only found in one regression to

have a significant positive impact on AAA rated tranches if a 5% significance level F-test is used.

3lSee section 4.2.2.
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I conclude that beta is not found to have a robust significant positive impact on spreads and does

not accept hypothesis H3. The conclusion is consistent across credit ratings.

I also test H4%2 by examining the impact on spreads from the interaction term between beta and
the number of loans. The impact is estimated across 12 regressions and not found to be significantly
positive for any reasonable significance levels across all regressions. I thus do not find evidence to
accept H4 either.

7.1.4 Seniority

In section 4.2.4 1 derived that seniority carries systematic risk as the most senior tranche carries
most of the tail risk when the economy deteriorates.

As described in section 2.2 rating agencies only account for real-world probability of default and do
not take systematic risk into account. This distinction has important implications for how I can test
for the systematic risk carried by seniority. When estimating the impact on seniority as a systematic
risk driver, it is necessary to control for the real-world probability of default which are also defined
by the tranche’s seniority. I use credit ratings to control for the real-world probability of default
and infer that any impact from seniority when credit ratings are controlled for is due to systematic
risk. The credit support variable as described in section 6.3.3 is used as a proxy for seniority.

I find that the estimated coefficients are positive for almost all regressions. The statistical significance
is found, though, to depend on which group of analyses the regression belongs to. For the group of
analyses which uses the natural logarithm of launch spreads as the dependent variable, the impact is
not significant for any regressions. However, for the group of analyses which uses launch spreads as
the dependent variable, the impact is found to be significantly positive for a series of the regressions
if a significance level of 5% or 2.5% is used. However, if a significance level of 1% is applied, the

impact is not found to be statistically significant for any regression.

The choice of whether to accept H5 or not depends on the choice of which of the different regressions
are used for inference. When making this choice, I rely on the tests applied to investigate the
statistical power of the regressions and to what extent assumptions are breached®?. It turns out
that the choice of dependent variable has an impact on the normality of residuals and whether the
RESET test finds evidence for functional form misspecificactions. Specifically, the regressions using
launch spreads as the dependent variable fail to reject normality for the residuals, while normality
is rejected for regressions using the natural logarithm of launch spreads as the dependent variable.
However, the RESET test does not find functional form misspecification for a set of regressions
using the natural logarithm as the dependent variable, while it is found for all regressions using

launch spreads as the dependent variable.

The choice of which set of regressions to infer on is thus a trade-off between the normality of residuals

and functional form misspecification. While the asymptotic properties of the OLS estimators allow

32See section 4.2.3.
33See appendix 10.6
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for inference even when the normality assumption is breached, functional form misspecifications
result in biased estimates no matter the number of observations. I thus choose to infer based on
the set of regressions using the natural logarithm of launch spreads as the dependent variable, to
reduce the impact of functional form misspecification. In this set of regressions, the impact from
credit support is statistically insignificant across all regressions. I therefore do not find evidence to
accept H5. However, it is noteworthy that the estimates are almost solely positive, in alignment

with what to expect if the variable should carry systematic risk.

7.2 Summary of empirical findings and hypotheses

In section 4.1 I used a set of deviation drivers identified in previous literature to formulate the
hypothesis (H1) that these factors in conjunction cause a difference in required spreads for structured
and unstructured debt. HI1 states that the required spreads are significantly different between
structured and unstructured debt. It does not make any requirements regarding the sign of the

difference. In this thesis, the difference is tested between CLOs and corporate bonds.

Using a joint data set for CLOs and corporate bonds, I find evidence that the required spreads are
different between CLOs and corporate bonds. The finding is consistent across regression analyses.
Furthermore, I find that the differences are dependent on ratings. For debt rated from AAA to BB,
required spreads are found to be higher for CLOs than for corporate bonds, whereas the opposite
is found for debt rated B and below. H1 is thus accepted.

A comparable analysis was conducted by Pinto, Marques, and Megginson (2020), which arrived at
a similar result when comparing spreads for CDOs and corporate bonds. They inferred that the
larger required spreads observed for CDOs were due to investors requiring a risk premia for the
larger systematic risk carried by structured debt compared to unstructured debt. I argue that it is
difficult assigning the observed difference in spreads between structured and unstructured debt to a
particular deviation driver®*. Instead, I infer that the observed differences in required spreads are
caused by the deviation drivers as a group and the effect from each deviation driver is unobservable
in my data set. To test whether systematic risk could carry explanatory power in the observed
differences in spreads, I extend the methodology of Pinto, Marques, and Megginson (2020) by
working from the intuition that if the differences in required spreads identified are to some extent
caused by systematic risk, systematic risk should have a significant effect on spreads required for
CLO tranches.

Previous literature and the derivations conducted in section 4.2 suggests that a set of measurable
SPV characteristics drive the systematic risk of a tranche. Specifically, T derive four measurable
systematic risk drivers and test whether they have an impact on the required launch spreads by the
market.

34Gee section 4.1 for a discussion.
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The second hypothesis tested in this thesis concerns the number of loans in the collateral portfolio
(H2). I derive that as the number of loans in the collateral portfolio increases, so do the systematic
risk of the tranche. Hence, investors should increase their required spread at launch, as the number
of loans in the collateral portfolio increases. However, no evidence is found that the number of loans
has a positive impact on spreads. The impact is tested across 24 different regression analyses and

the result is consistent across all analyses. H2 is thus not accepted.

The third hypothesis concerns the systematic risk of the underlying loans’ obligors (H3). The
systematic risk of the collateral portfolio is proxied by the industry beta of the obligors, as described
in section 6.3.2. T derive in section 4.2.3 that as the systematic risk of the underlying loans increase,
so does the systematic risk of the tranche. However, no robust evidence is found that the collateral
portfolio’s beta has a positive impact on the investors’ required launch spreads across 24 different

regression analyses. H3 is thus also not accepted.

H4 concerns the interaction between the number of loans in the collateral portfolio and the beta of
the collateral portfolio. In section 4.2.3, I derive that the interaction term should have a positive
impact on the required spreads. No evidence is found that the interaction term has a positive impact

on required spreads across 12 conducted regression analyses. I thus also do not accept H4.

H5 concerns the final systematic risk driver considered in this thesis. I derive, in section 4.2.4, that
systematic risk is higher for senior tranches than for junior tranches. Hence, when real-world proba-
bility of default is controlled for, investors should require a higher launch spread for senior tranches
than for junior tranches. For a set of regressions, this was indeed shown to be the case. However,
the impact is insignificant for the group of regressions where functional form misspecification is not

found. I use these regressions for inference. H5 is thus also not accepted.

In conclusion, none of the systematic risk drivers derived in this thesis have been found to have a

robust significant positive impact on required launch spreads.

For the hypotheses H2, H3 and H4 the results are very robust to changes in the regression model. A
very interesting finding is that H5 is accepted in a subset of the regressions conducted. Furthermore,
the estimated coefficient is positive in almost all regressions, as predicted in section 4.2.4. While the
hypotheses are not accepted in this thesis, the results raise the question if seniority can be found to
be a significant systematic risk driver in future studies with higher statistical power in the analyses

conducted.

Credit ratings were consistently highly significant and carried by far the most explanatory power
across all regressions conducted. This finding supports the view of Brennan, Hein, and Poon (2009)

that rating dependency is a sine qua non in structured debt.

Concluding on these findings, investors are not found to be identifying systematic risk for CLO
tranches and, to some extent, requiring risk premia by adjusting their required spreads. The finding
is robust across systematic risk drivers and regression analyses. I also infer that systematic risk do

not carry explanatory power in the observed differences in required spreads between CLOs.
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An overview of hypotheses and the empirical findings is given in the table below.

Table 6: Overview of accepted/rejected hypotheses

Effect tested Hypothesis Accepted/Not

accepted

Spread differences H1: Structured debt has significantly different required spreads than Accepted

unstructured debt

Systematic risk H2: Number of loans in the loan portfolio has a positive impact on Not accepted

spread for structured debt tranches

H3: The systematic risk of the loans in the collateral portfolio has a  Not accepted

positive coefficient to the required spreads for structured debt

H/j: The effect of systematic risk of the loans in the collateral Not accepted

portfolio increases with the number of loans in the portfolio

Hb5: Seniority of the tranche has a positive impact on spreads for Not accepted
structured debt tranches when controlling for real-world probability

of default

The next section provides a discussion of issues with the methodology applied in this thesis and

suggestions for future research.
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8 Discussion and future studies

Severe problems with most of the OLS assumptions are found across the regression analyses con-
ducted in this thesis. The extent of the issues differs across the different analyses conducted. For a
subset of the regressions, no functional form misspecification is found using the RESET test while

another subset of regressions has been found to have normally distributed error terms.

For the regressions concerning systematic risk in CLOs, one issue consistent across the regression
analyses is severe multicollinearity for some of the systematic risk driver variables. Specifically, the
number of loans and the interaction term between beta and the number of loans have particular
issues with multicollinearity. The issue is also present for seniority, although not as severe. For
the beta variables, multicollinearity is not found to be a major issue when the interaction term
between beta and the number of loans in the collateral portfolio is excluded from the analyses.
While multicollinearity is not a breach of assumptions, it severely reduces the statistical power of

the conducted analyses.

When inferring on systematic risk in CLOs, I have used a set of regressions which showed least
evidence of functional form misspecification as the primary basis for my inference. For these tests
however, the error terms have been found not to be normally distributed. I cannot with certainty
state that the number of observations is large enough to benefit from the large sample properties of

the OLS estimators and thus mitigate the issue of breach of normality.

For the regressions testing for spread difference between CLOs and corporate bonds, similar issues
with assumptions are found. Normality of residuals is rejected and heteroscedasticity is found across
all regressions. Furthermore, the RESET test finds evidence of functional form misspecifications
for almost all regressions. However, some regression models are made where no functional form
misspecification is found. The issues with multicollinearity are furthermore not severe in this group

of regressions.

It is worth noting that the findings in this thesis can only be generalized to CLOs and corporate
bonds in Western Europe with floating coupons denominated in EUR and issued from January 2017
to April 2020. This period can be considered as relatively “steady waters” and no inference can
thus be made on periods of crisis. There might also exist selection bias as only active corporate
bonds at the time of data extraction were available. Furthermore, CLO tranches which were de-
scribed as heavily exposed to “Industrials” industries had often unavailable industry weightings in
the Bloomberg terminal and thus unavailable beta estimates for this thesis. This might suggest

biased selection from the population.

An important observation is that some of the systematic risk drivers used in this thesis are intuitively
very sensitive to omitted variable bias. For example, the coefficient estimate for the credit support
variable can be biased downward if a variable which captures the lower probability of default for
seniority within credit ratings is omitted from my analyses. A similar point can be made for

the number of loans in the collateral portfolio. If my analyses do not control for the beneficial
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diversification effect caused by increasing the number of loans, the coefficient estimate could also be
downward biased. Investors may require lower spreads for tranches with more diversified collateral
portfolios.

The issues of breach of assumptions and low statistical power needs to be taken into account when
considering the findings of this thesis. However, a large set of measures have been applied to mitigate
these issues and the findings have been found to be highly robust across a large set of analyses with
varying degrees of issues with assumptions and statistical power. Based on this, I argue that the
finding that systematic risk is not priced into CLO spreads is reliable and an adequate groundwork

for further studies.

The finding that deviation drivers as a group causes differences in required spreads between CLOs
and corporate bonds encourages further investigation into the effects of the different deviation
drivers. For example, future studies could aim to isolate the effect of systematic risk from the effect
of other deviation drivers on the differences in required spreads between structured and unstructured
debt.

Taking aside the insignificance of the impact of systematic risk drivers on spreads, some indication
has been found that the systematic risk drivers might indeed have an impact on required spreads.
For example, the sign of the coefficient estimate for seniority is positive for almost all conducted
analyses. In the common perception of seniority, this seems counter intuitive. However, the sign of
the coefficient might be explained by the systematic risk caused by seniority. This enforces a need
for further investigation of the effects on the systematic risk drivers. A natural extension to this
thesis is applying a similar approach with inclusion of potentially omitted variables as discussed
above and larger statistical power caused by increased sample size. A larger sample size also allows
for further sensitivity analyses of the effects of systematic risk across credit ratings. Another natural
extension is an application of a similar method on a US data set, where the CLO market is more

developed.
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9 Conclusion

This thesis explores whether investors require a risk premia for systematic risk when pricing Western
European collateralized loan obligations (CLOs) from January 2017 to April 2020. It also provides
insights into the set of factors which causes a difference in required spreads between structured and

unstructured debt.

In order to test the impact from systematic risk on required spreads for CLOs, a set of systematic
risk drivers are derived. Inspired by previous literature, I use a simple model of normally distributed
number of loan defaults conditional on an economic state to derive a set of special purpose vehicle
(SPV) characteristics which drive the systematic risk of issued tranches. The four systematic risk
drivers derived in this thesis are the number of loans in the collateral portfolio, the estimated beta of
the collateral portfolio, the interaction term between beta and the number of loans and the seniority
of the tranche. If investors require risk premia according to the systematic risk of the tranche, the
systematic risk drivers derived are hypothesized to have a significant impact on required launch

spreads.

None of the systematic risk drivers are found to have a robust significant impact on launch spreads
for CLOs. The number of loans and beta of the collateral portfolio are neither found to have a
significant impact on spreads nor meaningful signs of the coefficient estimates if they should carry
systematic risk. These findings are consistent across a set of regressions conducted. Seniority is
also not found to have a robust significant impact on spreads. In sum no systematic risk drivers are

found to influence required spreads for CLOs.

A recent paper tested a similar hypothesis but arrived at a different conclusion for collateralized
debt obligations (CDOs). Pinto, Marques, and Megginson (2020) worked from the intuition that
if structured debt were found to have larger required spreads than unstructured debt, the spread
difference was driven by systematic risk. They did indeed find spreads to be higher for CDOs than
corporate bonds and concluded that investors did take systematic risk into account when pricing
CDOs as a result. I conduct a similar test and analyze whether required spreads differ between
CLOs and corporate bonds. I also find that required spreads are higher for structured than for
unstructured debt for all debt instruments rated BB and above. The finding is robust across all

conducted regression analyses.

In this thesis, I extend the work of Pinto, Marques, and Megginson (2020) by examining what
might cause such a difference in required spreads other than systematic risk. With an offset in
previous literature, I suggest a set of factors which could equally explain the differences found
between spreads for structured and unstructured debt. This includes information destruction and
adverse selection problems in structured debt among others. I argue that the spread difference
found between structured and unstructured debt cannot reasonably be assumed to be solely caused
by systematic risk, but is a result of the impact from all suggested factors as a group. Instead,

I work from the intuition that if systematic risk explains the identified spread differences to some
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extent, systematic risk should have a significant impact on required spread for structured debt. If
systematic risk do not drive spreads for structured debt, it can’t drive the differences in spreads
between structured and unstructured debt. Based on the finding that systematic risk drivers do
not have a significant impact on structured debt, I conclude that systematic risk do not cause the
observed difference in spreads between CLOs and corporate bonds. The conclusion is at odds with
the findings of Pinto, Marques, and Megginson (2020) despite the use of a similar methodology and

similar regression results.

The implication of the results is that investors do not require a risk premia for the systematic risk
in CLOs which implies CLO tranches to be overpriced. The complexity of structured debt might be
the reason as it leaves investors barred from properly understanding the risk profile of the tranches
as suggested by Brennan, Hein, and Poon (2009). Instead, the risk assessment is suspected to be
delegated to rating agencies which do not consider systematic risk in their rating methodologies.
This is in accordance with the high explanatory power of credit ratings found in this thesis. Further
research is suggested to provide insight into the methodologies used by investors for systematic risk

assessment in practice.

The mispricing is suggested to increase with the values of the systematic risk drivers. Specifically,
tranches with high seniority, large number of loans in the collateral portfolio and loans with high
systematic risk in the collateral portfolio are suggested to be the tranches with the largest systematic

risk and thus the largest mispricing.

I also conclude that the observed differences in required spreads between CLOs and corporate bonds
are not driven by systematic risk. Instead, it is driven by other unidentified factors which cause a
difference in spreads between structured and unstructured debt. The exact cause of the identified
spread differences observed both in this thesis and in the work of Pinto, Marques, and Megginson

(2020) remains unidentified which substantiates the need for further research.
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10 Appendix

10.1 Regression analyses

Table 7: Estimation results - Spread difference between CLOs and

corp. bonds

Launch spreads

Natural logarithm of launch spreads

1.1.1 1.1.2 1.1.3 1.1.4 1.1.5 1.2.1 1.2.2 1.2.3 1.2.4 1.2.5
SD 143.3%* -22.1 -462.4%* -460.5%* -456.7%* 0.9%* 0.1 -2.2%% 2.2 -2.2%%
(9.9) (33.0) (40.5) (42.5) (48.5) (0.1) (0.2) (0.2) (0.3) (0.3)
SD_AAA 511.9%%* 548.9%* 552.6%* 3.3%%* 3.4%% 3.4%%
(42.0) (45.1) (50.8) (0.5) (0.5) (0.5)
SD_AA 588.7%%* 576.7%* 578.TF* 3.5%% 3.4%% 3.5%*
(40.5) (42.0) (47.7) (0.3) (0.3) (0.3)
SD_A 612.8%* 598.0%* 592.9%* 3.2%* 3.1%% 3.1%%
(40.7) (42.5) (48.5) (0.2) (0.3) (0.3)
SD_BBB 688.0%* 665.3%* 657.6%* 3.3%% 3.2%* 3.2%*
(41.2) (43.0) (49.0) (0.2) (0.3) (0.3)
SD_BB 776.6%% 780.9%% 784.3%% 2.8%* 2.8%% 2.9%%
(75.2) (76.5) (80.4) (0.4) (0.4) (0.5)
SD B 660.1%* 640.9%* 630.6%* 2.2%% 2. 1%* 2. 1%*
(126.9) (124.7) (123.7) (0.4) (0.4) (0.4)
SD_ WAL 15.7%% 16.1%% 0.1%* 0.1%*
(3.0) (2.9) (0.0) (0.0)
SD_Prin -0.0%* -0.0%* 0.0 0.0
(0.0) (0.0) (0.0) (0.0)
SD_T_yield 269.0 78.7
(7790.3) (105.4)
SD_Diff 111.1 0.6
(105.3) (1.2)
SD_imp_vol 0.8 (1.5) -0.0%
(0.0)
T yield -10600.3 S11121.7 -5433.2 -8735.1 -7778.4 -76.2 -105.5% -91.2% -104.8% -168.5%
(7754.2) (5858.6) (5318.9) (5104.8) (6003.2) (53.8) (43.5) (42.5) (42.6) (82.8)
Diff -149.1 -145.6 -43.2 -69.4 -113.6 -0.9 -1.4% -0.9 -0.9 -1.5
(113.1) (87.7) (79.4) (79.1) (83.4) (0.7) (0.6) (0.6) (0.6) (0.9)
imp_vol 2.3 2.3% 3.2% 2.8% 3.0%% 0.0 0.0%* 0.0%* 0.0%% 0.1%*
(1.6) (1.2) (1.3) (1.2) (1.1) (0.0) (0.0) (0.0) (0.0) (0.0)
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Table 7: Estimation results

corp. bonds

- Spread difference between CLOs and

WAL 8.3%* 5.5%* 4.7%% 1.4 2.0 (1.3) 0.1%% 0.1%* 0.1%* 0.0% 0.0%
(1.3) (1.1) (1.3) (1.3) (0.0) (0.0) (0.0) (0.0) (0.0)
Prin -0.0 0.0% -0.0 0.0% 0.0% -0.0% -0.0 -0.0% -0.0 -0.0
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
D _AAA -349.6 -415.7%* -510.1%* -528.1%* -526.8%* S1.8% -2.3%* -3.0%%* -3.1%* 3.1
ok (73.4) (37.9) (36.5) (36.6) (0.6) (0.3) (0.4) (0.4) (0.4)

(111.9)
D AA -303.6 -334.1%* -533.8%* -522.5%* -518.8%* S1.5% S1.gr -3.0%* -2.9%* -2.9%*
ok (74.5) (36.0) (33.7) (33.9) (0.6) (0.3) (0.2) (0.2) (0.2)

(109.7)
D_A -254.5%* -293.6%* -498.4%* -495.5%* -486.5%* -1 S1.4%%* -2.3%% -2.3%% -2.3%%
(109.9) (73.9) (36.5) (34.2) (34.4) (0.6) (0.3) (0.2) (0.1) (0.1)
D BBB -185.5 241 .8%* -460.2%* -462.8%* -452.4%* -0.8* S1.0% BN ERE ERE
(110.3) (73.3) (36.2) (34.1) (34.4) (0.6) (0.3) (0.1) (0.1) (0.1)
D_BB -17.4 -4.8 -364.1%* -382.4%* -377.2%* -0.1 -0.5 o1.2%% S1.2%k S1.2%
(108.6) (77.4) (43.7) (42.6) (42.0) (0.6) (0.4) (0.3) (0.3) (0.3)
D B 130.5 68.8 S119.8%* S118.9%* -102.6%* 0.7 0.2 -0.5%* -0.5%* -0.4%*
(112.1) (76.1) (40.6) (38.9) (38.7) (0.6) (0.3) (0.1) (0.1) (0.1)

Control- T T+ G T T T T T+ G T T T
Dummies

No. Obs 590 590 590 590 590 479 479 479 479 479
R2 0.775 0.853 0.868 0.882 0.888 0.718 0.805 0.798 0.809 0.814
Adj. R2? 0.765 0.842 0.860 0.874 0.880 0.702 0.786 0.784 0.794 0.799

Note: *Significant at 5%, **at 1%. Robust White std.

1: T: Time dummies, G: Geography dummies

errors are reported in
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Table 8: Estimation results - Systematic risk, composite ratings

Launch spreads

Natural logarithm of launch spreads

2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6
N -0.7 -0.9 0.6 -0.0 -0.0 0.1 -0.0 -0.0 -0.0 0.0 0.0 0.0
(0.8) (0.7) (1.0) (0.1) (0.1) (0.1) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
B -125.3 -168.8 194.0 59.0 263.2 44.7 -0.6 -0.8 0.3 0.3 0.5% 0.8
(170.7) (177.6) (241.6) (48.9) ** (163.8) (0.9) (1.0) (1.6) (0.3) (0.3) (1.0)
(61.5)
NB 0.7 0.9 0.6 0.0 0.0 0.0
(0.8) (0.8) (1.1) (0.0) (0.0) (0.0)
[} 5.1% 4.9% 4.4% 4.1% 4.7* 3.6 0.0 0.0 0.0 0.0 0.0 -0.0
(2.4) (2.4) (2.2) (2.2) (2.2) (2.5) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
B_AAA - -0.4%
349.8%% (0.2)
(61.0)
B AA - -0.3
282.3%* (0.2)
(55.8)
B_A - 0.1
155.6%* (0.2)
(43.0)
T _yield - -957T* - - - - -65.2% -61.2% -68.6 -68.7 -65.7 -88.1%
0413.3%  (4552.4) 8120.9  7666.1  5209.2  13472.6 (25.8) (24.3) (38.5) (36.6) (37.1) (42.3)
(4558.9) (6404.6) (6188.0) (6326.9) (6982.9)
Diff -25.5 -30.5 -109.4 -101.3 -58.6 -210.5 -0.4 -0.4 -1.1 -1.1% -1.0 -1.7%
(60.5) (62.1) (89.5) (88.8) (89.0) (121.4) (0.3) (0.4) (0.5) (0.5) (0.5) (0.7)
imp_ vol 0.3 0.1 5.4%* 5.4%* 5.4%* 3.6 0.0 -0.0 0.0%* 0.0%* 0.0%* 0.0
(0.8) (1.0) (1.2) (1.2) (1.2) (2.1) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
WAL 14.6%* 14.7%% 13.1%* 13.3%* 12.5%* 11.7%%* 0.1%% 0.1%* 0.1%% 0.1%* 0.1%% 0.1%*
(3.0) (3.0) (2.2) (2.3) (2.1) (2.6) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
Prin -0.0 -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(0.1) (0.1) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
Num_B 0.6 0.6 0.7* 0.6* 0.6 0.5 0.0 0.0 0.0 0.0 0.0 0.0
(0.4) (0.4) (0.3) (0.3) (0.3) (0.4) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
D_AAA - - - - - -2.6%*% -2.5%* -2.3%% -2.3%* -1.8%*
750.2%%  T44.8%*  733.8%%  720.3%% 716.2%* (0.4) (0.4) (0.4) (0.4) (0.4)
(78.4) (78.5) (65.0) (64.7) (75.3)
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Table 8: Estimation results - Systematic risk, composite ratings

D_AA - - - - 35.0 - S1.9%% S1.8%% ST L1 7R 0.6% S1.4%%
650.4%*  647.4%*  639.1%*  636.4%*  (47.7) 623.1%* (0.3) (0.3) (0.3) (0.3) (0.3) (0.3)
(60.8) (61.3) (48.3) (48.2) (55.5)
D_A - - - - -3.9 - S1.5%% S1.4%% -1.3%% -1.3%% 0.5 Sl
564.0%*  562.2%*%  557.4%%  555.7%%  (61.5) 545.4%% (0.2) (0.2) (0.2) (0.2) (0.3) (0.2)
(49.4) (49.8) (38.4) (38.4) (43.1)
D_BBB - - - - -35.4 - -1.0%* -1.0%* -0.9%* -0.9%* 1.0%* -0.8%*
442.4%%  441.6%*  430.5%%  438.5%*  (77.8) 429.3%* (0.2) (0.2) (0.2) (0.2) (0.3) (0.2)
(42.4) (42.8) (33.1) (33.1) (36.0)
D BB - - - - 229.9% - -0.3%* -0.2% -0.2 -0.2 1.7%% -0.2
174.8%%  175.1%%  172.4%*  172.4%*%  (88.7) 166.4%* (0.1) (0.1) (0.1) (0.1) (0.4) (0.1)
(35.4) (35.7) (32.3) (32.3) (34.2)
D B 1.9%%
(0.4)
Control- G G+T G4+T G+T G+T+s G G+T G+T G+T G+T+S

Dummies!

No. Obs 206 206 206 206 206 206 206 206 206 206 206 206
R2 0.955 0.955 0.967 0.967 0.972 0.969 0.949 0.950 0.963 0.963 0.964 0.969
Adj. R2 0.951 0.951 0.961 0.961 0.967 0.962 0.945 0.945 0.956 0.956 0.956 0.962

Note: *Significant at 5%, **at 1% (Systematic risk are one-sided tests. Else, two sided). Robust White std. errors are reported in brackets.

1: T: Time dummies, G: Geography dummies, S: Sector dummies
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Table 9: Estimation results - Systematic risk, adjusted ratings

Launch spreads

Natural logarithm of launch spreads

2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 2.4.6
N 1.1 -1.2 0.7 -0.0 -0.0 -0.3 -0.0 -0.0 0.0 0.0 0.0 -0.0
(0.9) (0.8) (1.0) (0.1) (0.1) (0.1) (0.0) (.0) (0.0) (0.0) (0.0) (0.0)
B -215.5 -226.2 211.4 53.5 261.9 -217.3 -1.2 -1.1 0.4 0.3 0.5 -1.0
(196.4) (191.0) (246.8) (53.1) ** (119.5) (1.1) (1.1) (1.6) (0.3) (0.3) (0.7)
(62.4)
NpB 1.2 1.2 -0.7 0.0 0.0 -0.0
(0.9) (0.8) (1.1) (0.0) (0.0) (0.0)
CSs 3.9 3.8 4.3% 4.2% 4.8% 4.6% 0.0 0.0 0.0 0.0 0.0 0.0
(2.7) (2.7) (2.2) (2.2) (2.2) (2.4) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
B_AAA - -0.5%
360.9%* (0.2)
(60.0)
B AA - -0.3
283.6%* (0.2)
(55.3)
B_A - 0.1
158.9%* (0.2)
(43.4)
T _yield - - - - - - -34.5 -29.1 -64.3 -64.0 -60.7 -48.2
4573.7  4521.7  7446.5(7006909.8  4330.1  7774.4 (32.4) (32.8) (41.7) (39.9) (40.5) (43.8)
(5541.0)  (5796.8) (6894.7) (6964.2) (7106.5)
Diff 37.5 37.3 -88.4 -78.7 -35.8 -103.4 0.0 0.0 -0.9 -0.9 -0.9 -1.0
(73.8) (77.0) (101.7) (101.5) (100.7) (122.0) (0.4) (0.5) (0.6) (0.6) (0.6) (0.7)
imp_ vol 0.5 0.5 5.5%* 5.5%* 5.5%* 2.5 0.0 0.0 0.0%* 0.0%* 0.0%* 0.0
(0.8) (1.0) (1.2) (1.2) (1.2) (2.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
WAL 11.5%* 11.5%* 10.3%* 10.6%* 9.7** 10.1%* 0.1%% 0.1%* 0.1%% 0.1%* 0.1%% 0.1%*
(3.7) (3.7) (3.0) (3.0) (2.9) (2.7) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
Prin 0.0 0.0 0.0 0.0 0.0 0.0 0.0% 0.0* 0.0 0.0 0.0% 0.0
(0.1) (0.1) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
Num_B 0.3 0.3(0.4) 0.5 0.4 0.4 1.0%* 0.0 0.0 0.0%* 0.0 0.0 0.0%*
(0.4) (0.3) (0.3) (0.3) (0.4) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
D _AAA - -2.0%*
419.6%* (0.4)
(97.8)
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Table 9: Estimation results - Systematic risk, adjusted ratings

D_AA 97.3%* 96.6%* 104.0 101.8 - 108.4 0.7%* 0.7%* 0.7%* 0.7%* -1.4%% 0.6%*
(24.5) (23.0) o *x 385.5%* *x (0.1) (0.1) (0.1) (0.1) (0.3) (0.1)

(22.2) (22.1) (72.8) (23.1)
D_A 177.9 176.7 188.5 185.2 - 195.0 1.1%* 1.1%* 1.1%* 1.1%* -1.4%% 0.9%*
% ok % ok 419.8%% ok (0.2) (0.2) (0.2) (0.2) (0.2) (0.2)

(40.1) (38.4) (36.0) (35.3) (58.9) (37.6)
D_BBB 293.0 201.5 306.8 302.7 - 316.9 1.5%* 1.5%* 1.5%* 1.5%* -1.0%* 1.3%*
% *x % *x 454,2%% *x (0.3) (0.3) (0.3) (0.3) (0.2) (0.3)

(53.2) (51.0) (46.0) (45.8) (35.0) (49.1)
D_BB 551.9%* 549.9 574.2 568.9 - 587.9 2.2%*% 2. 2%* 2.2%* 2.2%* -0.3% 1.09%*
(72.5) *x *x *x 188,9%* *x (0.4) (0.4) (0.3) (0.3) (0.1) (0.3)

(70.2) (58.4) (58.1) (32.3) (63.1)
D_B 727.0 725.1 750.1 744.8 759.6 2.5%% 2.4%* 2.4%% 2.4%* 2.2%*
ok *k ok *x *x (0.5) (0.4) (0.4) (0.4) (0.4)

(85.2) (84.0) (67.2) (67.0) (70.0)

Control- G G+T G+T G+T G+T+S G G+T G+T G+T G+T+S
Dummies!

No. Obs 209 209 209 209 209 209 209 209 209 209 209 209
R2 0.952 0.952 0.963 0.963 0.968 0.967 0.944 0.944 0.956 0.956 0.956 0.965
Adj. R2 0.948 0.947 0.956 0.956 0.962 0.959 0.939 0.939 0.948 0.948 0.948 0.956

Note: *Significant at 5%, **at 1% (Systematic risk are one-sided tests. Else, two sided). Robust White std. errors are reported in brackets.

1: T: Time dummies, G: Geography dummies S: Sector dummies
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10.2 Overview of notation

Table 10: Overview of notation in regression analyses

Variable name

Description

For hypothesis testing
SD

SD_AAA

NB

CSs

Control variables
Num_B

WAL

Prin

D AAA

imp vol

Diff

T yield

SD_

Dummy equaling 1 if the debt is a CLO tranche and equalling 0 if the debt is a corporate
bond.

Interaction term between the debt dummy SD and the rating dummy, which in this
example is for AAA rated debt.

Number of loans in the collateral portfolio at issue.

Estimated beta of the collateral portfolio as described in section 6.3.2.

Interaction term between the number of loans and the estimated beta of the collateral
portfolio as discussed in section 4.2.3.

Credit support as described in section 6.3.3.

Number of bonds in the collateral portfolio.

Weighted average lifetime of the debt as described in section 6.4.1.

The principal of the debt.

Rating dummy equaling 1 if the debt is rated AAA in this example.

Implied interest rate volatility of a 5 year interest rate cap as described in section 6.4.1.
Difference between the swap yields for swaps with 2 years and 10 years tenor as described
in section 6.4.

10 year bond yields from a synthetic EUR denominated government bond as described in
section 6.4.

Interaction term between the structured debt dummy and other control variables.
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Table 11: Overview of notation in this thesis

Variable name Description

ABS Asset backed security.

BDR Break-even default rate.

Bps Basis points.

BSL Broadly syndicated leveraged bank loan.
CDF Cumulative distribution function.

CDO Collateralized debt obligation.

CLO Collateralized loan obligation.

GFC Great financial crisis.

I/C tests Interest coverage tests.

Investment grade

LBO

Defined as debt with a BBB rating or higher.

Leveraged buy-out

M&A Mergers & acquisitions

MBS Mortgage-backed securities

NFBI Non-bank financial institutions
O/C tests Overcollateralization coverage tests
SDR Scenario default rate

SPV Special purpose vehicle

Structured debt

A phrase used in this thesis to define debt backed by a debt portfolio

Unstructured debt A phrase used in this thesis to define debt not backed by a debt portfolio
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10.3

Sector relations applied for beta calculation

Table 12: Overview of applied industry relations to calculate beta

GICS industry

Moody’s industry from Bloomberg

Automobiles and components

Capital goods

Commercial & Professional services
Consumer durables & Apparel
Consumer services

Diversified financials

Energy

Food, beverage & Tobacco
Healthcare

Household & personal products
Information technology

Materials

Media & entertainment

Retailing
Telecommunication services

Transportation

Utilities

Automotive

Aerospace & Defense, Capital Equipment,
Construction & Building

Environmental Industries, Services: Business
Consumer Goods: Durable

Hotel, Gaming & Leisure, Services: Consumer
Banking, Finance, Insurance & Real Estate
Energy: Oil, Energy: Electricity

Beverage, Food & Tobacco

Healthcare & Pharmaceuticals

Consumer Goods: Non-Durable

High Tech Industries

Chemicals, Plastics & Rubber, Containers,
Packaging & Glass, Metals & Mining,
Forestry products & paper

Media: Advertising, Printing & Publishing,
Media: Broadcasting & Subscription, Media:
Diversified & Production

Retail, Wholesale

Telecommunications

Transportation: Cargo, Transportation:
Consumer

Utilities: Electric, Utilities: Water, Utilities:
Oil & gas
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10.4

Descriptive statistics

Table 13: Credit support across composite ratings for CLOs

Rating
AAA
AA
A
BBB
BB
B

Obs
268
205
217
178
21
11

Mean
39.5
29.2
22.4
16.2
11.3

7.0

Max
56.7
62.0
49.3
31.3
25.0
8.9

Note: The credit support variable is the principal of all tranches junior to the tranche

as a percentage of the principal of the total deal. Given in percentage

Table 14: Collateral portfolio industry weightings for CLOs

in question

Industry
Automobiles and
components

Capital goods
Commercial &
Professional services
Consumer durables &
Apparel

Consumer services
Diversified financials
Energy

Food, beverage &
Tobacco

Healthcare
Household & personal
products
Information
technology
Materials

Media &
entertainment

Retailing

Mean

2.0

8.9
10.8

1.5

9.9

5.0

0.1

4.3

15.4
0.5

8.5

14.3
5.8

5.4

86

Standard dev.
2.1

6.2
4.4

1.9

4.6

3.8

0.4

2.7

4.8
1.2

3.8

4.3
3.3

3.8

Max
10.1

63.3
28.6

7.5

21.8

16.2

3.2

18.1

27.6
5.6

29.8
16.7

27.5



Table 14: Collateral portfolio industry weightings for CLOs

Telecommunication 6.6 3.6 20.1
services

Transportation 0.7 1.5 9.0
Utilities 0.2 1.0 9.3

Note: Used to calculate estimated beta as described in section 6.3.2. Given in percentage.

Table 15: Loan numbers in the collateral portfolio across composite
ratings for CLOs

Rating Obs Mean Max
AAA 276 560 71668
AA 210 801 49148
A 220 358 11341

BBB 180 193 441
BB 21 1349 24053
B 11 2919 29763

Note: The credit support variable is the principal of all tranches junior to the tranche in question

as a percentage of the principal of the total deal. Given in percentage

Table 16: Spreads across composite ratings for CLOs

Rating Obs Mean Standard Max
dev.

AAA 276 82.2 22.9 150
AA 213 148.8 33.4 217
A 220 212.4 48.3 387
BBB 180 321.8 60.5 480
BB 21 513.2 138.3 682
B 11 694.2 205.8 925

Note: Given in bps

Table 17: Spreads across composite ratings for corporate bonds
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Table 17:

Rating

AAA
AA

BBB
BB
B

Spreads across composite ratings for corporate bonds

Obs

10
108
65
83

33

Mean

13.5
10.7
42.0
74.7
150
417.7

Standard
dev.
23.7
22.7
40.2
39.0
63.2
117.3

Max

75
100
150
170
250
675

Note: Given in bps
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10.5 Residuals versus fitted values scatters

Table 18: Residuals versus fitted values scatters

Regression 1.1.1 Regression 1.1.2 Regression 1.1.3
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Table 18: Residuals versus fitted values scatters

Regression 2.1.6
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Table 18: Residuals versus fitted values scatters

Regression 2.4.5
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10.6 Testing OLS assumptions

Table 19: Test for heteroskedasticity, normality, correct specifica-

tion and multicollenarity

Heteroscedasticity Ramsey Reset Multicollenarity Normality
HO: Constant variances HO: No omitted var. HO: Normal data
Study! Regression x? P-value F P-value Mean VIF Z P-value
1.1.1 1875.0 .0000 28.2 .0000 10 10.2 .0000
1.1.2 987.4 .0000 108.2 .0000 7 8.7 .0000
Differences
1.1.3 1951.7 .0000 70.2 .0000 15 10.5 .0000
-S 1.1.4 2151.2 .0000 54.9 .0000 15 10.7 .0000
1.1.5 2139.2 .0000 65,9 .0000 21 10.7 .0000
1.2.1 701.4 .0000 13.4 .0000 10 9.2 .0000
1.2.2 551.6 .0000 3.9 .0087 7 8.1 .0000
Differences
1.2.3 534.1 .0000 0.28 .8408 15 9.2 .0000
- LnS
1.2.4 584.3 .0000 4.5 .0039 15 8.9 .0000
1.2.5 637.3 .0000 3.3 .0204 23 9.1 .0000
2.1.1 73.4 .0000 14.9 .0000 7641 0.8 2124
2.1.2 73.2 .0000 14.8 .0000 8840 0.8 .2091
Systematic 2.1.3 70.4 .0001 19.2 .0000 7314 -1.9 9679
risk - S C 2.1.4 70.7 .0000 19.8 .0000 78 -1.8 .9639
2.1.5 72.2 .0005 11.3 .0000 120 1.8 .0325
2.1.6 84.7 .0001 28.9 .0000 164 -1.2 .8755
2.2.1 102.0 .0000 3.0 .0318 7641 1.7 .0430
2.2.2 99.5 .0000 2.6 .0523 8840 1.8 .0387
Systematic 2.2.3 143.9 .0000 3.9 .0107 7314 2.6 .0046
risk - LnS C 2.2.4 142.3 .0000 3.8 .0107 78 2.6 .0047
2.2.5 150.0 .0000 5.7 .0009 120 2.6 .0042
2.2.6 194.6 .0000 2.2 .0881 164 3.5 .0002
2.3.1 65.5 .0000 18.3 .0000 7344 0.4 .3285
2.3.2 65.8 .0000 18.2 .0000 8719 0.4 .3631
Systematic 2.3.3 77.5 .0000 19.4 .0000 7300 -0.9 .8265
risk - S A 2.3.4 78.1 .0000 20.1 .0000 70 -0.9 .8145
2.3.5 72.2 .0005 11.2 .0000 126 1.6 .0587
2.3.6 83.1 .0001 26.2 .0000 133 -0.3 .6066
2.4.1 107.2 .0000 3.0 .0331 7343 1.7 .0424
Systematic
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Table 19: Test for heteroskedasticity, normality, correct specifica-

tion and multicollenarity

2.4.2 102.9 .0000 2.6 .0555 8719
2.4.3 171.0 .0000 2.8 .0397 7300
2.4.4 170.8 .0000 2.8 .0411 70

2.4.5 150.0 .0000 4.2 .0068 126
2.4.6 183.9 .0000 2.3 .0763 133

1.6

2.3

2.3

2.4

2.0

.0506

.0101

.0095

.0084

.0206

1: S and LnS is spread and the natural logarithm of spreads as the dependent variable, respectively. A
and C is adjusted and composite rating dummies, respectively. “Differences” is for studies testing the
spread differences between CLOs and corporate bonds. “Systematic risk” is for studies testing systematic

risk in CLOs
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10.7

10.7.1

Stata code

Generation of data set for CLOs

Data generation - Structured.do - Printed on 10-05-2020 09:08:29

1

oUW

O w W

12
13
14

15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

**This code 1s used to generate the CLO data set used to test H2 to H6. The data set is
also used as input for generating the data set for testing Hl. This section entails
importing and appending data from excel, selection steps in stata, variable generation
and finally some descriptive statistics.

clear

** Get primary sheet

import excel "C:\Users\petyde\Desktop\Speciale\Data\Master - Hardcoded v2.xlsx", sheet
("Western Europe") firstrow case(lower)

generate date=issue date

**Merge with others

merge m:1 date using "C:\Users\petyde\Desktop\Speciale\Data\Ready to use
data\Treasury yield.dta"

drop if merge==

drop merge

*

merge m:m date using "C:\Users\petyde\Desktop\Speciale\Data\Ready to use
data\currency swap diff.dta"

drop if merge==

drop merge

*

merge m:1 date using "C:\Users\petyde\Desktop\Speciale\Data\Ready to use data\Implied
volatility.dta"

drop if merge==

drop merge

** Data cleaning
**Cleaning of data

**Kun floating med price 100
keep if coupon type=="FLOATING"
keep if issue price==100

**Kun med spreads
drop if spread==.

**Drop years which the rating variable is not working
generate year=yofd(issue date)
drop 1if year<2017

**Remove other currencies than EUR
keep if currency=="EUR"

**Drop meaningless values
drop if credit support<0
drop if credit support>100 & credit support<1000

**Kun callables
drop if iscallable==

**Drop redundant variables
drop usdlOyearyield

drop gbplOyearyield

drop coupon

drop wac

drop syndicates

drop syndicates2

drop syndicates3

drop exchanges

drop date

**Variable making
**Variable making

**Principal in millions
generate principalmio=orig bal/1000000

** Interaction term
generate betaxn=beta*loan number
**Year dummies

**create year dummies
forvalues i=17/20 {
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Data generation - Structured.do - Printed on 10-05-2020 09:08:30

69 set seed i

70 generate year 20 i'=(year==201i")

71 }

72 **Month dummies

73 generate month=month (issue date)

74

75 **create year dummies

76 forvalues i=1/12 {

77 set seed i’

78 generate month "i'=(month=="1")

79 }

80

81 **Geography for collateral dummies

82 generate col geo BE=(country of collateral=="BE")

83 generate col geo ES=(country of collateral=="ES")

84 generate col_geo IT=(country of collateral=="IT")

85 **Mixed as omitted

86

87 **Geography for SPV dummies

88 generate spv_geo BE=(country=="BELGIUM")

89 generate spv_geo IE=(country=="IRELAND")

90 generate spv_geo IT=(country=="ITALY")

91 generate spv_geo LU= (country=="LUXEMBOURG")

92 generate spv geo ES=(country=="SPAIN")

93 *Netherlands as omitted

94

95 **Composite rating dummies

96 generate comp aaa=(composite rating=="AAA")

97 generate comp nr=(composite rating=="NR")

98

99 **Gen specifics

100 generate s comp aap=(composite rating=="AA+")

101 generate s comp aa=(composite rating=="AA")

102 generate s comp aam=(composite rating=="AA-")

103 generate sum comp aa=s comp aap+s comp aat+s comp aam

104 generate comp aa=(sum comp_ aa>0)

105 drop sum_comp_aa

106

107 generate s comp ap=(composite rating=="A+")

108 generate s comp a=(composite rating=="A")

109 generate s comp am=(composite rating=="A-")

110 generate sum comp a=s comp apts comp ats comp am

111 generate comp a=(sum comp a>0)

112 drop sum comp a

113

114 generate s_comp bbbp=(composite rating=="BBB+")

115 generate s comp bbb=(composite rating=="BBB")

116 generate s comp bbbm=(composite rating=="BBB-")

117 generate sum comp bbb=s comp bbbp+s comp bbb+s comp bbbm

118 generate comp bbb=(sum comp bbb>0)

119 drop sum_comp bbb

120

121 generate s comp bbp=(composite rating=="BB+")

122 generate s comp bb=(composite rating=="BB")

123 generate s comp bbm=(composite rating=="BB-")

124 generate sum comp bb=s comp bbp+s comp bb+s comp bbm

125 generate comp bb=(sum comp bb>0)

126 drop sum comp bb

127

128 generate s comp bp=(composite rating=="B+")

129 generate s _comp b=(composite rating=="B")

130 generate s comp bm=(composite rating=="B-")

131 generate sum comp b=s comp bp+s comp b+s comp bm

132 generate comp b=(sum comp ©b>0)

133 drop sum comp b

134

135 generate s comp cccp=(composite rating=="CCC+")

136 generate s comp ccc=(composite rating cce")

137 generate s comp cccm=(composite rating=="CCC-")

138

139 generate s comp ccp=(composite rating=="CC+")

140 generate s comp cc=(composite rating=="CC")

141 generate s comp ccm=(composite rating=="CC-")

142

143 generate s_comp_cp=(composite rating=="C+")
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Data generation - Structured.do - Printed on 10-05-2020 09:08:30

144 generate s comp c=(composite rating=="C")

145 generate s_comp cm=(composite rating=="C-")

146

147 **Rating refinement creation

148 **Moodys adjustment

149 replace moodys rating="A2" if moodys rating=="(P)A2"

150 replace moodys_rating="RAa2" if moodys rating=="(P)Aa2"

151 replace moodys_rating="Baa2" if moodys_rating=="(P)Baa2"

152

153 **S&P adjustment

154 replace sp rating="AAA" if sp rating=="(P)AAA"

155 replace sp rating="AA" if sp rating=="(P)AA"

156 replace sp rating="A" if sp rating=="(P)A"

157 replace sp rating="BBB" if sp rating=="(P)BBB"

158

159 generate rating adj=sp rating

160

161 **Moodys addition

162 **For N.A.

163 replace rating adj="AAA" if sp rating=="N.A." & moodys rating=="Aza"

164

165 replace rating adj="AA+" if sp rating=="N.A." & moodys_ rating=="Aal"

166 replace rating adj="AA" if sp rating=="N.A." & moodys_rating=="RAa2"

167 replace rating adj="AA-" if sp rating=="N.A." & moodys rating=="Aa3"

168

169 replace rating adj="A+" if sp rating=="N.A." & moodys rating=="Al"

170 replace rating adj="A" if sp rating=="N.A." & moodys rating=="A2"

171 replace rating adj="A-" if sp rating=="N.A." & moodys rating=="A3"

172

173 replace rating adj="BBB+" if sp rating=="N.A." & moodys rating=="Baal"

174 replace rating adj="BBB" if sp rating N.A." & moodys rating=="Baa2"

175 replace rating adj="BBB-" if sp rating=="N.A." & moodys rating=="Baa3"

176

177 replace rating adj="BB+" if sp rating=="N.A." & moodys rating=="Bal"

178 replace rating adj="BB" if sp rating=="N.A." & moodys rating=="Ba2"

179 replace rating adj="BB-" if sp rating=="N.A." & moodys rating=="Ba3"

180

181 replace rating adj="B+" if sp rating=="N.A." & moodys rating=="B1"

182 replace rating adj="B" if sp rating=="N.A." & moodys rating=="B2"

183 replace rating adj="B-" if sp rating=="N.A." & moodys rating=="B3"

184

185 replace rating adj="CCC+" if sp rating=="N.A." & moodys rating=="Caal"

186 replace rating adj="CCC" if sp rating N.A." & moodys rating=="Caa2"

187 replace rating adj="CCC-" if sp rating=="N.A." & moodys rating=="Caa3"

188

189 replace rating adj="CC+" if sp rating=="N.A." & moodys rating=="Cal"

190 replace rating adj="CC" if sp rating=="N.A." & moodys rating=="Ca2"

191 replace rating adj="CC-" if sp rating=="N.A." & moodys rating=="Ca3"

192

193 replace rating adj="C+" if sp rating=="N.A." & moodys rating=="C1"

194 replace rating adj="C" if sp rating=="N.A." & moodys rating=="C2"

195 replace rating adj="C-" if sp rating=="N.A." & moodys rating=="C3"

196

197 **For NR

198 replace rating adj="AAA" if sp rating=="NR" & moodys rating=="Aaa"

199

200 replace rating adj="AA+" if sp rating=="NR" & moodys rating=="Aal"

201 replace rating adj="AA" if sp rating=="NR" & moodys rating=="Ra2"

202 replace rating adj="AA-" if sp rating=="NR" & moodys rating=="Aa3"

203

204 replace rating adj="A+" if sp rating=="NR" & moodys rating=="Al"

205 replace rating adj="A" if sp rating=="NR" & moodys rating=="A2"

206 replace rating adj="A-" if sp rating=="NR" & moodys rating=="A3"

207

208 replace rating adj="BBB+" if sp rating=="NR" & moodys rating=="Baal"

209 replace rating adj="BBB" if sp rating NR" & moodys rating=="Baa2"

210 replace rating adj="BBB-" if sp rating=="NR" & moodys rating=="Baa3"

211

212 replace rating adj="BB+" if sp rating=="NR" & moodys rating=="Bal"

213 replace rating adj="BB" if sp rating=="NR" & moodys rating=="Ba2"

214 replace rating adj="BB-" if sp rating=="NR" & moodys rating=="Ba3"

215

216 replace rating adj="B+" if sp rating=="NR" & moodys rating=="Bl"

217 replace rating adj="B" if sp rating=="NR" & moodys rating=="B2"

218 replace rating adj="B-" if sp_rating=="NR" & moodys_rating=="B3"
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219

220 replace rating adj="CCC+" if sp rating=="NR" & moodys rating=="Caal"

221 replace rating adj="CCC" if sp rating=="NR" & moodys_rating=="Caal"

222 replace rating adj="CCC-" if sp rating=="NR" & moodys rating=="Caa3"

223

224 replace rating adj="CC+" if sp rating=="NR" & moodys rating=="Cal"

225 replace rating adj="CC" if sp rating=="NR" & moodys rating=="Ca2"

226 replace rating adj="CC-" if sp rating=="NR" & moodys_rating=="Ca3"

227

228 replace rating adj="C+" if sp rating=="NR" & moodys rating=="C1"

229 replace rating adj="C" if sp rating=

230 replace rating adj="C-" if sp rating==

231

232 **Fitch addition

233 **For N.A.

234 replace rating adj="AAA" if fitch rating=="AAA" & rating adj=="N.A."

235

236 replace rating adj="AA+" if fitch rating=="AA+" & rating adj=="N.A."

237 replace rating adj="AA" if fitch rating=="AA" & rating adj=="N.A."

238 replace rating adj="AA-" if fitch rating=="AA-" & rating adj=="N.A."

239

240 replace rating adj="A+" if fitch rating=="A+" & rating adj=="N.A."

241 replace rating adj="A" if fitch rating=="A" & rating adj=="N.A."

242 replace rating adj="A-" if fitch rating=="A-" & rating adj=="N.A."

243

244 replace rating adj="BBB+" if fitch rating=="BBB+" & rating adj=="N.A."

245 replace rating adj="BBB" if fitch rating=="BBB" & rating adj=="N.A."

246 replace rating adj="BBB-" if fitch rating=="BBB-" & rating adj=="N.A."

247

248 replace rating adj="BB+" if fitch rating=="BB+" & rating adj=="N.A."

249 replace rating adj="BB" if fitch rating=="BB" & rating adj=="N.A."

250 replace rating adj="BB-" if fitch rating=="BB-" & rating adj=="N.A."

251

252 replace rating adj="B+" if fitch rating=="B+" & rating adj=="N.A."

253 replace - B" if fitch rating=="B" & rating adj=="N.A."

254 replace rating adj="B-" if fitch rating=="B-" & rating adj=="N.A."

255

256 replace rating adj="CCC+" if fitch rating=="CCC+" & rating adj=="N.A."

257 replace rating adj="CCC" if fitch rating=="CCC" & rating adj=="N.A."

258 replace rating adj="CCC-" if fitch rating=="CCC-" & rating adj=="N.A."

259

260 replace rating adj="CC+" if fitch rating=="CC+" & rating adj=="N.A."

261 replace rating adj="CC" if fitch rating=="CC" & rating adj=="N.A."

262 replace rating adj="CC-" if fitch rating=="CC-" & rating adj=="N.A."

263

264 replace rating adj="C+" if fitch rating=="C+" & rating adj=="N.A."

265 replace rating adj="C" if fitch rating=="C" & rating adj=="N.A."

266 replace rating adj="C-" if fitch rating=="C-" & rating adj=="N.A."

267

268 **For NR

269 replace rating adj="AAA" if fitch rating=="AAA" & rating adj=="NR"

270

271 replace rating adj="AA+" if fitch rating=="AA+" & rating adj=="NR"

272 replace rating adj="AA" if fitch rating=="AA" & rating adj=="NR"

273 replace rating adj="AA-" if fitch rating=="AA-" & rating adj=="NR"

274

275 replace rating adj="A+" if fitch rating=="A+" & rating adj=="NR"

276 replace rating adj="A" if fitch rating=="A" & rating adj=="NR"

277 replace rating adj="A-" if fitch rating=="A-" & rating adj=="NR"

278

279 replace rating adj="BBB+" if fitch rating=="BBB+" & rating adj=="NR"

280 replace rating adj="BBB" if fitch rating=="BBB" & rating adj=

281 replace rating adj="BBB-" if fitch rating=="BBB-" & rating adj=="NR"

282

283 replace rating adj="BB+" if fitch rating=="BB+" & rating adj=="NR"

284 replace rating adj="BB" if fitch rating=="BB" & rating adj=="NR"

285 replace rating adj="BB-" if fitch rating=="BB-" & rating adj=="NR"

286

287 replace rating adj="B+" if fitch rating=="B+" & rating adj=="NR"

288 replace - » "B" & rating adj=="NR"

289 replace rating adj="B-" if fitch rating=="B-" & rating adj=="NR"

290

291 replace rating adj="CCC+" if fitch rating=="CCC+" & rating adj=="NR"

292 replace rating adj="CCC" if fitch rating=="CCC" & rating adj=="NR"

293 replace rating adj="CCC-" if fitch rating=="CCC-" & rating adj=="NR"
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294
295 replace rating adj="CC+" if fitch rating=="CC+" & rating adj=="NR"
296 replace rating adj="CC" if fitch rating=="CC" & rating adj=="NR"
297 replace rating adj="CC-" if fitch rating=="CC-" & rating adj=="NR"
298
299 replace rating adj="C+" if fitch rating=="C+" & rating adj=="NR"
300 replace rating adj="C" if fitch rating=="C" & rating adj=="NR"
301 replace rating adj="C-" if fitch rating=="C-" & rating adj=="NR"
302
303 **refinement rating dummies
304 generate adj refinement aaa=(rating adj=="AAA")
305
306 generate adj_refinement aap=(rating adj=="AA+")
307 generate adj refinement aa=(rating adj=="AA")
308 generate adj refinement aam=(rating adj=="AA-")
309
310 generate adj refinement ap=(rating adj=="A+")
311 generate adj_refinement a=(rating adj=="A")
312 generate adj refinement am=(rating adj=="A-")
313
314 generate adj refinement bbbp=(rating adj=="BBB+")
315 generate adj refinement bbb=(rating adj=="BBB")
316 generate adj refinement bbbm=(rating adj=="BBB-")
317
318 generate adj refinement bbp=(rating adj=="BB+")
319 generate adj_refinement bb=(rating adj=="BB")
320 generate adj refinement bbm=(rating adj=="BB-")
321
322 generate adj refinement bp=(rating adj=="B+")
323 generate adj refinement b=(rating adj=="B")
324 generate adj_refinement bm=(rating adj=="B-")
325
326 generate adj refinement cccp=(rating adj=="CCC+")
327 generate adj refinement ccc=(rating adj=="CCC")
328 generate adj refinement cccm=(rating adj=="CCC-")
329
330 generate adj refinement ccp=(rating adj=="CC+")
331 generate adj refinement cc=(rating adj=="CC")
332 generate adj refinement ccm=(rating adj=="CC-")
333
334 generate adj refinement cp=(rating adj=="C+")
335 generate adj refinement c=(rating adj cm)
336 generate adj refinement cm=(rating adj=="C-")
337
338
339 **Nonrefinement rating dummies
340
341 generate sum adj aaa=adj refinement aaa
342 generate adj aaa=(sum adj aaa>0)
343 drop sum adj aaa
344
345 generate sum adj aa=adj refinement aap+adj refinement aatadj refinement aam
346 generate adj aa=(sum adj aa>0)
347 drop sum adj aa
348
349 generate sum adj a=adj refinement ap+adj refinement at+adj refinement am
350 generate adj a=(sum adj a>0)
351 drop sum adj a
352
353 generate sum adj bbb=adj refinement bbbp+adj refinement bbb+adj refinement bbbm
354 generate adj bbb=(sum adj bbb>0)
355 drop sum adj bbb
356
357 generate sum adj bb=adj refinement bbp+adj refinement bb+adj refinement bbm
358 generate adj bb=(sum adj bb>0)
359 drop sum adj bb
360
361 generate sum adj b=adj refinement bp+adj refinement b+adj refinement bm
362 generate adj b=(sum adj b>0)
363 drop sum adj b
364
365 generate sum adj ccc=adj refinement cccptadj refinement ccct+adj refinement cccm
366 generate adj ccc=(sum adj ccc>0)
367 drop sum adj ccc
368
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369 generate sum adj cc=adj refinement ccptadj refinement cc+adj refinement ccm
370 generate adj cc=(sum_adj cc>0)

371 drop sum_adj_cc

372

373 generate sum adj c=adj refinement cp+adj refinement c+adj refinement cm

374 generate adj_c=(sum_adj_c>0)

375 drop sum adj c

376

377 replace adj aaa=. if rating adj=="N.A."

378 replace adj aa=. i1f rating adj=="N.A."

379 replace adj a=. if rating adj=
380 replace adj bbb=. if rating adj

381 replace adj_bb=. if rating adj=="N.A."
382 replace adj b=. if rating adj=="N.A."
383
384 replace adj aaa=. if rating adj=="NR"
385 replace adj aa=. if rating adj=="NR"
386 replace adj_a=. if rating adj=="NR"
387 replace adj bbb=. if rating adj=="NR"
388 replace adj bb=. if rating adj=="NR"
389 replace adj b=. if rating adj=="NR"
390
391 replace comp_aaa=. if composite rating=="NR"
392 replace comp aa=. if composite rating=="NR"
393 replace comp a=. i1f composite rating=="NR"
394 replace comp bbb=. if composite rating=="NR"
395 replace comp bb=. if composite rating=="NR"
396 replace comp b=. if composite rating=="NR"
397
398 **systematic risk driver interaction terms for composite ratings
399 **Loan numbers
400 generate nxaaa comp=loan number*comp aaa
401 generate nxaa comp=loan number*comp aa
402 generate nxa comp=loan number*comp a
403 generate nxaaa adj=loan number*adj aaa
404 generate nxaa adj=loan number*adj aa
405 generate nxa adj=loan number*adj a
406
407 **Beta
408 generate betaxaaa comp=beta*comp aaa
409 generate betaxaa comp=beta*comp aa
410 generate betaxa comp=beta*comp a
411 generate betaxaaa adj=beta*adj aaa
412 generate betaxaa adj=beta*adj aa
413 generate betaxa adj=beta*adj a
414
415 **Credit support
416 generate creditsupportxaaa comp=credit support*comp aaa
417 generate creditsupportxaa comp=credit support*comp aa
418 generate creditsupportxa comp=credit support*comp a
419 generate creditsupportxaaa adj=credit support*adj aaa
420 generate creditsupportxaa adj=credit support*adj aa
421 generate creditsupportxa adj=credit support*adj a
422
423 generate lnspread=ln(spread)
424
425 **Preparing sector weightings
426 rename capitalgoods s capital goods
427 rename householdpersonalproducts s household personal products
428 rename commercialprofessionalservic s professional services
429 rename healthcarelevell s healthcare
430 rename informationtechnologylevell s info tech
431 rename consumerservices s consumer services
432 rename mediaentertainment s media entertainment
433 rename retailing s retail
434 rename telecommunicationservices s telecommunication
435 rename transportation s transportation
436 rename utilities s utilities
437 rename energy S energy
438
439
440 **Descriptive statistics
441 **Beta
442 summarize beta
443 histogram beta
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444

445 **Credit support

446 summarize credit support if comp_ aaa==

447 summarize credit support if comp aa==

448 summarize credit support if comp a==1

449 summarize credit support

450 summarize credit support »

451 summarize credit support if comp b==

452

453 **Industry weightings

454 summarize s capital goods automobilesandcomponents diversifiedfinancials
foodbeveragetobacco materials consumerdurablesapparel consumerdurablesapparel
s_household personal products s professional services s healthcare s _info tech
s consumer services s media entertainment s retail s telecommunication s transportation
s utilities s energy

455

456 **Loan numbers

457 summarize loan number, detail

458 summarize loan number if year==2017, detail

459 summarize loan number if year==2018, detail

460 summarize loan number if year==2019, detail

461 summarize loan number if year==2020, detail

462

463

464
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1 **This code is used to conduct regression analyses for the CLO data set and to test
hypothesis H2 to H6. For each regression analyses conducted, a series of assumption tests
are conducted as described in the thesis.

2

3 **Regressions - Spreads 1.

4 eststo clear

5 ** Regressions for non-refinement composite rating 1.1

6 * K

7 eststo: regress spread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds, cluster (dealticker)

: ;

10 eststo: regress spread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds comp aaa comp aa comp a comp bbb comp bb comp b, cluster(dealticker)

11

12 ** 2.1.1 + Systematic risk

13 eststo: regress spread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds comp aaa comp aa comp a comp bbb comp bb comp b loan number beta
betaxn credit support, cluster (dealticker)

14

15 **Adjusted R squared

16 di e(r2 a)

17

18 **Variance Inflation factor

19 vif

20

21 **Ramseys RESET test

22 ovtest

23

24 **fitted value and residuals scatter plot

25 predict yhatl 1 3, xb

26 predict url 1 3, resid

217 twoway scatter url 1 3 yhatl 1 3, yline(0)

28

29 **Normality of residuals

30 swilk url 1 3

31

32 **H4: Loan number

33 test Db[loan number]=0

34 local sign n=sign( b[loan number]

35 display "HO: coef <=0 p-value = " ttail(r(df r), sign n'*sqrt(r(F))

36

37 **H5: Beta

38 test Db[beta]=0

39 local sign beta=sign( b[beta])

40 display "HO: coef <=0 p-value = " ttail(r(df r), sign beta'*sqgrt(r(F)))

41

42 **H6: Beta*N

43 test Db[betaxn]=0

44 local sign betaxn=sign( b[betaxn])

45 display "HO: coef <=0 p-value = " ttail(r(df r), sign betaxn'*sqrt(r(F)))

46

47 **H6: Seniority

48 test Db[credit support]=0

49 local sign credit support=sign( b[credit support])

50 display "HO: coef <=0 p-value = " ttail(r(df r), sign credit support'*sqrt(r(F
)))

51

52 **H7: Total impact

53 test loan number beta betaxn credit support

54

55 **BP hetero test

56 quietly regress spread eurlOyearyield diffl0 impliedvolatility wal at issue

principalmio numbonds comp aaa comp aa comp a comp bbb comp bb comp b loan number beta
betaxn credit support

57 hettest eurlOyearyield diffl0 impliedvolatility wal at issue principalmio
numbonds comp aaa comp_aa comp_a comp bbb comp bb comp b loan number beta betaxn
credit support

58

59 ** 2.1.2 4+ geo for SPV and underlying loans

60 eststo: regress spread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds comp aaa comp aa comp a comp bbb comp bb comp b col geo BE
col geo ES col geo IT spv geo BE spv geo IE spv geo IT spv geo LU spv geo ES loan number
beta betaxn credit support, cluster(dealticker)

61
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62 **Adjusted R squared

63 di e(r2_a)

64

65 **Variance Inflation factor

66 vif

67

68 **Ramseys RESET test

69 ovtest

70

71 **fitted value and residuals scatter plot

72 predict yhatl 1 4, xb

73 predict url 1 4, resid

74 twoway scatter url 1 4 yhatl 1 4, yline(O)

75

76 **Normality of residuals

77 swilk url 1 4

78

79 **H4: Loan number

80 test Db[loan number]=0

81 local sign n=sign( b[loan number])

82 display "HO: coef <=0 p-value = " ttail(r(df r), sign n'*sqrt(r(F)))

83

84 **H5: Beta

85 test b[beta]=0

86 local sign beta=sign( b[beta])

87 display "HO: coef <=0 p-value = " ttail(r(df r), sign beta'*sqrt(r(F)))

88

89 **H6: Beta*N

90 test b[betaxn]=0

91 local sign betaxn=sign( b[betaxn])

92 display "HO: coef <=0 p-value = " ttail(r(df r), sign betaxn'*sqrt(r(F)))

93

94 **H6: Seniority

95 test b[credit support]=0

96 local sign credit support=sign( b[credit support])

97 display "HO: coef <=0 p-value = " ttail(r(df r), sign credit support'*sqrt(r(F
)))

98

99 **H7: Total impact

100 test loan number beta betaxn credit support

101

102 **BP hetero test

103 quietly regress spread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds comp aaa comp aa comp a comp bbb comp bb comp b col geo BE
col geo ES col geo IT spv geo BE spv geo IE spv geo IT spv geo LU spv geo ES loan number
beta betaxn credit support

104 hettest eurlOyearyield diffl0 impliedvolatility wal at issue principalmio
numbonds comp aaa comp aa comp a comp bbb comp bb comp b col geo BE col geo ES col geo IT
spv_geo BE spv geo IE spv geo IT spv geo LU spv geo ES loan number beta betaxn
credit support

105

106 ** 2.1.3 + time dummies

107 eststo: regress spread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds comp aaa comp aa comp a comp bbb comp bb comp b col geo BE
col geo ES col geo IT spv geo BE spv geo IE spv geo IT spv geo LU spv geo ES year 2018
year 2019 year 2020 month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9
month 10 month 11 month 12 loan number beta betaxn credit support, cluster (dealticker)

108

109 **Adjusted R squared

110 di e(r2 a)

111

112 **Variance Inflation factor

113 vif

114

115 **Ramseys RESET test

116 ovtest

117

118 **fitted value and residuals scatter plot

119 predict yhatl 1 5, xb

120 predict url 1 5, resid

121 twoway scatter url 1 5 yhatl 1 5, yline(0)

122

123 **Normality of residuals

124 swilk url 1 5

125
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126 **H4: Loan number

127 test Db[loan number]=0

128 local sign n=sign(_b[loan number])

129 display "HO: coef <=0 p-value = " ttail(r(df r), sign n'*sqrt(r(F)))

130

131 **H5: Beta

132 test b[beta]=0

133 local sign beta=sign(_bl[beta])

134 display "HO: coef <=0 p-value = " ttail(r(df r), sign beta'*sqgrt(r(F)))

135

136 **H6: Beta*N

137 test Db[betaxn]=0

138 local sign betaxn=sign(_b[betaxn])

139 display "HO: coef <=0 p-value = " ttail(r(df r), sign betaxn'*sqrt(r(F)))

140

141 **H6: Seniority

142 test blcredit support]=0

143 local sign credit support=sign(_b[credit support])

144 display "HO: coef <=0 p-value = " ttail(r(df r), sign credit support'*sqrt(r(F
)))

145

146 **H7: Total impact

147 test loan number beta betaxn credit support

148

149 **BP hetero test

150 quietly regress spread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds comp aaa comp aa comp a comp bbb comp bb comp b col geo BE
col geo ES col geo IT spv geo BE spv geo IE spv geo IT spv geo LU spv geo ES year 2018
year 2019 year 2020 month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9
month 10 month 11 month 12 loan number beta betaxn credit support

151 hettest eurlOyearyield diffl0 impliedvolatility wal at issue principalmio
numbonds comp aaa comp aa comp a comp bbb comp bb comp b col geo BE col geo ES col geo IT
spv geo BE spv geo IE spv geo IT spv geo LU spv geo ES year 2018 year 2019 year 2020
month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9 month 10 month 11 month 12
loan number beta betaxn credit support

152

153 ** 2.1.4 - betaxn

154 eststo: regress spread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds comp aaa comp aa comp a comp bbb comp bb comp b col geo BE
col geo ES col geo IT spv _geo BE spv geo IE spv geo IT spv geo LU spv geo ES year 2018
year 2019 year 2020 month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9
month 10 month 11 month 12 loan number beta credit support, cluster(dealticker)

155

156 **Adjusted R squared

157 di e(r2_a)

158

159 **Variance Inflation factor

160 vif

161l

162 **Ramseys RESET test

163 ovtest

164

165 **fitted value and residuals scatter plot

166 predict yhatl 1 6, xb

167 predict url 1 6, resid

168 twoway scatter url 1 6 yhatl 1 6, yline(0)

169

170 **Normality of residuals

171 swilk url 1 6

172

173 **H4: Loan number

174 test b[loan number]=0

175 local sign n=sign( b[loan number])

176 display "HO: coef <=0 p-value = " ttail(r(df r), sign n'*sqrt(r(F)))

177

178 **H5: Beta

179 test bl[betal=0

180 local sign beta=sign( b[betal)

181 display "HO: coef <=0 p-value = " ttail(r(df r), sign beta'*sqgrt(r(F)))

182

183 **H6: Seniority

184 test blcredit support]=0

185 local sign credit support=sign( b[credit support])

186 display "HO: coef <=0 p-value = " ttail(r(df r), sign credit support'*sqrt(r(F
)))
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187
188 **H7: Total impact
189 test loan number beta credit support
190
191 **BP hetero test
192 quietly regress spread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds comp aaa comp aa comp a comp bbb comp bb comp b col geo BE
col geo ES col geo IT spv_geo BE spv_geo IE spv_geo IT spv_geo LU spv_geo ES year 2018
year 2019 year 2020 month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9
month 10 month 11 month 12 loan number beta credit support
193 hettest eurlOyearyield diffl0 impliedvolatility wal at issue principalmio
numbonds comp aaa comp_aa comp_a comp bbb comp bb comp b col geo ] BE col _geo_ES col geo IT
spv_geo BE spv_geo_ IE spv_geo IT spv_geo LU spv_geo ES year 2018 year 2019 year 2020
month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9 month 10 month 11 month 12
loan number beta credit support
194
195
196 ** 2.1.5 (6) + beta/rating interaction terms
197 eststo: regress spread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds comp aaa comp aa comp a comp bbb comp bb comp b col geo BE
col geo ES col geo IT spv_geo BE spv _geo IE spv geo IT spv_geo LU spv_geo ES year 2018
year 2019 year 2020 month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9
month 10 month 11 month 12 loan number beta credit support betaxaaa _comp betaxaa _comp
betaxaicomp, cluster (dealticker)
198
199 **Adjusted R squared
200 di e(r2_a)
201
202 **Variance Inflation factor
203 vif
204
205 **Ramseys RESET test
206 ovtest
207
208 **fitted value and residuals scatter plot
209 predict yhatl 1 7, xb
210 predict url 1 7, resid
211 twoway scatter url 1 7 yhatl 1 7, yline(0)
212
213 **Normality of residuals
214 swilk url 1 7
215
216 **H4: Loan number
217 test Db[loan number]=0
218 local sign n=sign( b[loan number]
219 display "HO: coef <=0 p-value = " ttail(r(df r), sign n'*sqrt(r(F))
220
221 **H5: Beta
222 test b[beta]=0
223 local sign beta=sign( b[beta]l)
224 display "HO: coef <=0 p-value = " ttail(r(df r), sign beta'*sqrt(r(F)))
225
226 **H6: Seniority
227 test b[credit support]=0
228 local sign credit support=sign( b[credit support])
229 display "HO: coef <=0 p-value = " ttail(r(df r), sign credit support'*sqrt(r(F
)))
230
231 **H7: Total impact
232 test loan number beta credit support
233
234 **BP hetero test
235 quietly regress spread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds comp aaa comp aa comp a comp bbb comp bb comp b col geo BE
col geo ES col geo IT spv _geo BE spv geo IE spv geo IT spv geo LU spv geo ES year 2018
year 2019 year 2020 month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9
month 10 month 11 month 12 loan number beta betaxn credit support betaxaaa betaxaa betaxa
nxaaa nxaa nxa
236 hettest eurlOyearyield diffl0 impliedvolatility wal at issue principalmio
numbonds comp aaa comp aa comp a comp bbb comp bb comp b col geo BE col geo ES col geo IT
spv_geo BE spv _geo IE spv _geo IT spv_geo LU spv_geo ES year 2018 year 2019 year 2020
month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9 month 10 month 11 month 12
loan number beta betaxn credit support betaxaaa betaxaa betaxa nxaaa nxaa nxa
237
238 ** 2.1.6 (6) + sector weightings
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239 eststo: regress spread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds comp aaa comp aa comp a comp bbb comp bb comp b col geo BE
col geo ES col geo IT spv_geo BE spv_geo IE spv_geo IT spv_geo LU spv_geo ES year 2018
year 2019 year 2020 month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9
month 10 month 11 month 12 loan number beta credit support s capital goods
s household personal products s professional services s info tech s consumer services
s media entertainment s retail s telecommunication s transportation s utilities s energy,
cluster (dealticker)

240

241 **Adjusted R squared

242 di e(r2 a)

243

244 **Variance Inflation factor

245 vif

246

247 **Ramseys RESET test

248 ovtest

249

250 **fitted value and residuals scatter plot

251 predict yhatl 1 8, xb

252 predict url 1 8, resid

253 twoway scatter url 1 8 yhatl 1 8, yline(0)

254

255 **Normality of residuals

256 swilk url 1 8

257

258 **H4: Loan number

259 test Db[loan number]=0

260 local sign n=sign( b[loan number]

261 display "HO: coef <=0 p-value = " ttail(r(df r), sign n'*sqrt(r(F))

262

263 **H5: Beta

264 test Db[beta]=0

265 local sign beta=sign( b[beta])

266 display "HO: coef <=0 p-value = " ttail(r(df r), sign beta'*sqgrt(r(F)))

267

268 **H6: Seniority

269 test blcredit support]=0

270 local sign credit support=sign( b[credit support])

271 display "HO: coef <=0 p-value = " ttail(r(df r), sign credit support'*sqrt(r(F
)))

272

273 **H7: Total impact

274 test loan number beta credit support

275

276 **BP hetero test

2717 quietly regress spread eurlOyearyield diff1l0 impliedvolatility wal at issue
principalmio numbonds comp aaa comp aa comp a comp bbb comp bb comp b col geo BE
col geo ES col geo IT spv geo BE spv geo IE spv geo IT spv geo LU spv geo ES year 2018
year 2019 year 2020 month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9
month 10 month 11 month 12 loan number beta credit support s capital goods
s household personal products s professional services s info tech s consumer services
s media entertainment s retail s telecommunication s transportation s utilities s energy

278 hettest eurlOyearyield diffl0 impliedvolatility wal at issue principalmio
numbonds comp aaa comp aa comp a comp bbb comp bb comp b col geo BE col geo ES col geo IT
spv_geo BE spv _geo IE spv _geo IT spv_geo LU spv_geo ES year 2018 year 2019 year 2020
month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9 month 10 month 11 month 12
loan number beta credit support s capital goods s household personal products
s professional services s info tech s consumer services s media entertainment s retail
s telecommunication s transportation s utilities s energy

279

280

281 ** Regressions for adjusted rating 1.2.

282 wx

283 eststo: regress spread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds, cluster (dealticker)

284

285 Hx

286 eststo: regress spread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds adj aaa adj aa adj a adj bbb adj bb adj b, cluster(dealticker)

287

288 **2.3.1

289 eststo: regress spread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds adj aaa adj aa adj a adj bbb adj bb adj b loan number beta betaxn
credit_support, cluster (dealticker)
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290

291 **Adjusted R squared

292 di e(r2_a)

293

294 **Variance Inflation factor

295 vif

296

297 **Ramseys RESET test

298 ovtest

299

300 **fitted value and residuals scatter plot

301 predict yhatl 2 3, xb

302 predict url 2 3, resid

303 twoway scatter url 2 3 yhatl 2 3, yline(0)

304

305 **Normality of residuals

306 swilk url 2 3

307

308 **H4: Loan number

309 test b[loan number]=0

310 local sign n=sign( b[loan number])

311 display "HO: coef <=0 p-value = " ttail(r(df r), sign n'*sqgrt(r(F)))

312

313 **H5: Beta

314 test b[beta]=0

315 local sign beta=sign( bl[betal)

316 display "HO: coef <=0 p-value = " ttail(r(df r), sign beta'*sqrt(r(F)))

317

318 **H6: Beta*N

319 test b[betaxn]=0

320 local sign betaxn=sign( b[betaxn])

321 display "HO: coef <=0 p-value = " ttail(r(df r), sign betaxn'*sqrt(r(F)))

322

323 **H6: Seniority

324 test b[credit support]=0

325 local sign credit support=sign( b[credit support])

326 display "HO: coef <=0 p-value = " ttail(r(df r), sign credit support'*sqgrt(r(F
)))

327

328 **H7: Total impact

329 test loan number beta betaxn credit support

330

331 **BP hetero test

332 quietly regress spread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds adj aaa adj aa adj a adj bbb adj bb adj b loan number beta betaxn
credit support

333 hettest eurlOyearyield diffl0 impliedvolatility wal at issue principalmio
numbonds adj aaa adj aa adj a adj bbb adj bb adj b loan number beta betaxn credit support

334

335 **k2.3.2

336 eststo: regress spread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds adj aaa adj aa adj a adj bbb adj bb adj b col geo BE col geo ES
col geo IT spv geo BE spv geo IE spv geo IT spv geo LU spv geo ES loan number beta betaxn
credit support, cluster(dealticker)

337

338 **Adjusted R squared

339 di e(r2 a)

340

341 **Variance Inflation factor

342 vif

343

344 **Ramseys RESET test

345 ovtest

346

347 **fitted value and residuals scatter plot

348 predict yhatl 2 4, xb

349 predict url 2 4, resid

350 twoway scatter url 2 4 yhatl 2 4, yline(0)

351

352 **Normality of residuals

353 swilk url 2 4

354

355 **H4: Loan number

356 test Db[loan number]=0

357 local sign_n=sign(_b[loan number])
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358 display "HO: coef <=0 p-value = " ttail(r(df r), sign n'*sqrt(r(F)))

359

360 **H5: Beta

361 test b[beta]=0

362 local sign beta=sign( b[beta])

363 display "HO: coef <=0 p-value = " ttail(r(df r), sign beta'*sqrt(r(F)))

364

365 **H6: Beta*N

366 test b[betaxn]=0

367 local sign betaxn=sign( b[betaxn])

368 display "HO: coef <=0 p-value = " ttail(r(df r), sign betaxn'*sqrt(r(F)))

369

370 **H6: Seniority

371 test b[credit support]=0

372 local sign credit support=sign( b[credit support])

373 display "HO: coef <=0 p-value = " ttail(r(df r), sign credit support'*sqrt(r(F
)))

374

375 **H7: Total impact

376 test loan number beta betaxn credit support

377

378 **BP hetero test

379 quietly regress spread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds adj aaa adj aa adj a adj bbb adj bb adj b col geo BE col geo ES
col geo IT spv _geo BE spv geo IE spv geo IT spv geo LU spv geo ES loan number beta betaxn
credit support

380 hettest eurlOyearyield diffl0 impliedvolatility wal at issue principalmio
numbonds adj aaa adj aa adj a adj bbb adj bb adj b col geo BE col geo ES col geo IT
spv_geo BE spv geo IE spv geo IT spv geo LU spv geo ES loan number beta betaxn
credit support

381

382 ** 2.3.3

383 eststo: regress spread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds adj aaa adj aa adj a adj bbb adj bb adj b col geo BE col geo ES
col geo IT spv _geo BE spv geo IE spv geo IT spv geo LU spv geo ES year 2018 year 2019
year 2020 month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9 month 10
month 11 month 12 loan number beta betaxn credit support, cluster (dealticker)

384

385 **Adjusted R squared

386 di e(r2 a)

387

388 **Variance Inflation factor

389 vif

390

391 **Ramseys RESET test

392 ovtest

393

394 **fitted value and residuals scatter plot

395 predict yhatl 2 5, xb

396 predict url 2 5, resid

397 twoway scatter url 2 5 yhatl 2 5, yline(0)

398

399 **Normality of residuals

400 swilk url 2 5

401

402 **H4: Loan number

403 test b[loan number]=0

404 local sign n=sign( b[loan number])

405 display "HO: coef <=0 p-value = " ttail(r(df r), sign n'*sqrt(r(F)))

406

407 **H5: Beta

408 test bl[betal]=0

409 local sign beta=sign( b[betal)

410 display "HO: coef <=0 p-value = " ttail(r(df r), sign beta'*sqgrt(r(F)))

411

412 **H6: Beta*N

413 test bl[betaxn]=0

414 local sign betaxn=sign( b[betaxn])

415 display "HO: coef <=0 p-value = " ttail(r(df r), sign betaxn'*sqrt(r(F)))

416

417 **H6: Seniority

418 test blcredit support]=0

419 local sign credit support=sign( b[credit support])

420 display "HO: coef <=0 p-value = " ttail(r(df r), sign credit support'*sqrt(r(F
)))

Page 7

109



Regressions - Structured.do* - Printed on 10-05-2020 09:32:53

421

422 **H7: Total impact

423 test loan number beta betaxn credit support

424

425 **BP hetero test

426 quietly regress spread eurlOyearyield diffl0 impliedvolatility wal at issue

principalmio numbonds adj aaa adj aa adj_a adj bbb adj bb adj b col geo BE col geo ES
col geo IT spv_geo BE spv_geo IE spv_geo IT spv_geo | LU spv_geo ES year 2018 year 2019
year 2020 month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9 month 10
month 11 month 12 loan number beta betaxn credit support

427 hettest eurlOyearyield diffl0 impliedvolatility wal at issue principalmio
numbonds adj_aaa adj_aa adj_a adj bbb adj bb adj b col geo BE col _geo_ES col geo_ IT
spv_geo_ BE spv_geo_ IE spv_geo IT spv_geo_ U spv_geo ES year 2018 year 2019 year 2020
month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9 month 10 month 11 month 12

loan number beta betaxn credit support

428

429 ** 2.3.4

430 eststo: regress spread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds adj aaa adj aa adj a adj bbb adj bb adj b col geo BE " col _geo ES
col geo IT spv _geo BE spv geo IE spv geo IT spv geo LU spv geo ES year 2018 year 2019
year 2020 month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9 month 10
month 11 month712 loaninumber beta credltisupport cluster (dealticker)

431

432 **Adjusted R squared

433 di e(r2 a)

434

435 **Variance Inflation factor

436 vif

437

438 **Ramseys RESET test

439 ovtest

440

441 **fitted value and residuals scatter plot

442 predict yhatl 2 6, xb

443 predict url 2 6, resid

444 twoway scatter url 2 6 yhatl 2 6, yline(0)

445

446 **Normality of residuals

447 swilk url 2 6

448

449 **H4: Loan number

450 test b[loan number]=0

451 local sign n=sign( b[loan number]

452 display "HO: coef <=0 p-value = " ttail(r(df r), sign n'*sqrt(r(F))

453

454 **H5: Beta

455 test bl[betal]=0

456 local sign beta=sign( b[betal)

457 display "HO: coef <=0 p-value = " ttail(r(df r), sign beta'*sqgrt(r(F)))

458

459 **H6: Seniority

460 test blcredit support]=0

461 local sign credit support=sign( b[credit support])

462 display "HO: coef <=0 p-value = " ttail(r(df r), sign credit support'*sqrt(r(F
)))

463

464 **H7: Total impact

465 test loan number beta credit support

466

467 **BP hetero test

468 quietly regress spread eurlOyearyield diffl0 impliedvolatility wal at issue

principalmio numbonds adj aaa adj aa adj a adj bbb adj bb adj b col geo BE col geo ES
col geo IT spv geo BE spv geo IE spv geo IT spv geo LU spv geo ES year 2018 year 2019
year 2020 month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9 month 10
month 11 month 12 loan number beta credit support

469 hettest eurlOyearyield diffl10 impliedvolatility wal at issue principalmio
numbonds adj aaa adj aa adj a adj bbb adj bb adj b col geo BE col geo ES col geo IT
spv geo BE spv geo IE spv geo IT spv geo LU spv geo ES year 2018 year 2019 year 2020
month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9 month 10 month 11 month 12

loan number beta credit support

470
471 Fx2.3.5
472 eststo: regress spread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds adj aaa adj aa adj a adj bbb adj bb adj b col geo BE col geo ES
col_geo IT spv_geo BE spv_geo IE spv_geo IT spv_geo LU spv_geo ES year 2018 year 2019
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year 2020 month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9 month 10
month 11 month 12 loan_ number beta credit support betaxaaa _adj betaxaa adj betaxa _adj,
cluster(dealtlcker)

473

474 **Adjusted R squared

475 di e(r2 a)

476

477 **Variance Inflation factor

478 vif

479

480 **Ramseys RESET test

481 ovtest

482

483 **fitted value and residuals scatter plot

484 predict yhatl 2 7, xb

485 predict url 2 7, I‘eSld

486 twoway scatter url 2 7 yhatl 2 7, yline(0)

487

488 **Normality of residuals

489 swilk url 2 7

490

491 **H4: Loan number

492 test b[loan number]:O

493 local sign n=sign( b[loan number])

494 display "HO: coef <=0 p-value = " ttail(r(df r), sign n'*sqrt(r(F)))

495

496 **H5: Beta

497 test Db[beta]=0

498 local sign beta=sign( blbetal)

499 display "HO: coef <=0 p-value = " ttail(r(df r), sign beta'*sqgrt(r(F)))

500

501 **H6: Seniority

502 test Db[credit support]=0

503 local sign credit support=sign( b[credit support])

504 display "HO: coef <=0 p-value = " ttail(r(df r), sign credit support'*sqrt(r(F
)))

505

506 **H7: Total impact

507 test loan number beta credit support

508

509 **BP hetero test

510 quietly regress spread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds adj aaa adj aa adj a adj bbb adj bb adj b col geo BE col geo ES
col geo IT spv geo BE spv geo IE spv geo IT spv geo LU spv geo ES year 2018 year 2019
year 2020 month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9 month 10
month 11 month 12 loan number beta betaxn credit support betaxaaa betaxaa betaxa nxaaa
nxaa nxa

511 hettest eurlOyearyield diffl0 impliedvolatility wal at issue principalmio
numbonds adj aaa adj aa adj a adj bbb adj bb adj b col geo BE col geo ES col geo IT
spv_geo BE spv geo IE spv_geo IT spv _geo LU spv_geo ES year 2018 year 2019 year 2020
month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9 month 10 month 11 month 12
loan number beta betaxn credit support betaxaaa betaxaa betaxa nxaaa nxaa nxa

512

513 **2.3.6

514 eststo: regress spread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds adj aaa adj aa adj a adj bbb adj bb adj b col geo ! BE col _geo_ES
col geo IT spv geo BE spv geo IE spv geo IT spv geo LU spv geo ES year 2018 year 2019
year 2020 month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9 month 10
month 11 month 12 loan number beta credit support s capital goods
s _household personal products s professional services s info tech s consumer services
s media entertainment s retail s telecommunication s transportation s utilities s energy,
cluster (dealticker)

515

516 **Adjusted R squared

517 di e(r2 a)

518

519 **Variance Inflation factor

520 vif

521

522 **Ramseys RESET test

523 ovtest

524

525 **fitted value and residuals scatter plot

526 predict yhatl 2 8, xb

527 predict url 2 8, resid
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528 twoway scatter url 2 8 yhatl 2 8, yline(0)

529

530 **Normality of residuals

531 swilk url 2 8

532

533 **H4: Loan number

534 test Db[loan number]=0

535 local sign n=sign(_b[loan number]

536 display "HO: coef <=0 p-value = " ttail(r(df r), sign n'*sqrt(r(F))

537

538 **H5: Beta

539 test b[beta]=0

540 local sign beta=sign(_bl[beta])

541 display "HO: coef <=0 p-value = " ttail(r(df r), sign beta'*sqgrt(r(F)))

542

543 **H6: Seniority

544 test blcredit support]=0

545 local sign credit support=sign(_b[credit support])

546 display "HO: coef <=0 p-value = " ttail(r(df r), sign credit support'*sqrt(r(F
)))

547

548 **H7: Total impact

549 test loan number beta credit support

550

551 **BP hetero test

552 quietly regress spread eurlOyearyield diffl0 impliedvolatility wal at issue

principalmio numbonds adj aaa adj aa adj_a adj bbb adj bb adj b col geo BE col geo ES

col geo IT spv geo BE spv geo IE spv geo IT spv geo LU spv geo ES year 2018 year 2019

year 2020 month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9 month 10

month 11 month 12 loan number beta credit support s capital goods

s household personal products s professional services s info tech s consumer services

s media entertainment s retail s telecommunication s transportation s utilities s energy
553 hettest eurlOyearyield diffl0 impliedvolatility wal at issue principalmio

numbonds adj aaa adj aa adj a adj bbb adj bb adj b col geo BE col geo ES col geo IT

spv_geo BE spv geo IE spv geo IT spv geo LU spv geo ES year 2018 year 2019 year 2020

month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9 month 10 month 11 month 12

loan number beta credit support s capital goods s _household personal products
s professional services s info tech s consumer services s media entertainment s retail
s telecommunication s transportation s utilities s energy

554

555

556 **Regressions - 1lnSpreads 2.

557 eststo clear

558 ** Regressions for non-refinement composite rating 2.1.

559 ok

560 eststo: regress lnspread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds, cluster (dealticker)

561

562 ok

563 eststo: regress lInspread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds comp aaa comp aa comp a comp bbb comp bb comp b, cluster(dealticker)

564

565 o 2.2.1

566 eststo: regress Inspread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds comp aaa comp aa comp a comp bbb comp bb comp b loan number beta
betaxn credit support, cluster (dealticker)

567

568 **Adjusted R squared

569 di e(r2 a)

570

571 **Variance Inflation factor

572 vif

573

574 **Ramseys RESET test

575 ovtest

576

577 **fitted value and residuals scatter plot

578 predict yhat2 1 3, xb

579 predict ur2 1 3, resid

580 twoway scatter ur2 1 3 yhat2 1 3, yline(0)

581

582 **Normality of residuals

583 swilk ur2 1 3

584

585 **H4: Loan number
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586 test Db[loan number]=0

587 local sign n=sign( b[loan number])

588 display "HO: coef <=0 p-value = " ttail(r(df r), sign n'*sqrt(r(F)))

589

590 **H5: Beta

591 test b[beta]=0

592 local sign beta=sign( bl[beta])

593 display "HO: coef <=0 p-value = " ttail(r(df r), sign beta'*sqrt(r(F)))

594

595 **H6: Beta*N

596 test b[betaxn]=0

597 local sign betaxn=sign( b[betaxn])

598 display "HO: coef <=0 p-value = " ttail(r(df r), sign betaxn'*sqrt(r(F)))

599

600 **H6: Seniority

601 test blcredit support]=0

602 local sign credit support=sign( b[credit support])

603 display "HO: coef <=0 p-value = " ttail(r(df r), sign credit support'*sqrt(r(F
)))

604

605 **H7: Total impact

606 test loan number beta betaxn credit support

607

608 **BP hetero test

609 quietly regress lnspread eurlOyearyield diffl0 impliedvolatility wal at issue

principalmio numbonds comp aaa comp aa comp a comp bbb comp bb comp b loan number beta

betaxn credit support

610 hettest eurlOyearyield diffl0 impliedvolatility wal at issue principalmio
numbonds comp aaa comp aa comp a comp bbb comp bb comp b loan number beta betaxn

credit support

611

612 Fx2.2.2

613 eststo: regress lnspread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds comp aaa comp aa comp a comp bbb comp bb comp b col geo BE
col geo ES col geo IT spv geo BE spv geo IE spv geo IT spv geo LU spv geo ES loan number
beta betaxn credit support, cluster(dealticker)

614

615 **Adjusted R squared

616 di e(r2 a)

617

618 **Variance Inflation factor

619 vif

620

621 **Ramseys RESET test

622 ovtest

623

624 **fitted value and residuals scatter plot

625 predict yhat2 1 4, xb

626 predict ur2 1 4, resid

627 twoway scatter ur2 1 4 yhat2 1 4, yline(0)

628

629 **Normality of residuals

630 swilk ur2 1 4

631

632 **H4: Loan number

633 test Db[loan number]=0

634 local sign n=sign( b[loan number])

635 display "HO: coef <=0 p-value = " ttail(r(df r), sign n'*sqrt(r(F)))

636

637 **H5: Beta

638 test b[beta]=0

639 local sign beta=sign( b[betal)

640 display "HO: coef <=0 p-value = " ttail(r(df r), sign beta'*sqrt(r(F)))

641

642 **H6: Beta*N

643 test b[betaxn]=0

644 local sign betaxn=sign( b[betaxn])

645 display "HO: coef <=0 p-value = " ttail(r(df r), sign betaxn'*sqrt(r(F)))

646

647 **H6: Seniority

648 test blcredit support]=0

649 local sign credit support=sign( b[credit support])

650 display "HO: coef <=0 p-value = " ttail(r(df r), sign credit support'*sqrt(r(F
)))

651
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652 **H7: Total impact

653 test loan number beta betaxn credit support

654

655 **BP hetero test

656 quietly regress lnspread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds comp aaa comp aa comp a comp bbb comp bb comp b col geo BE
col geo ES col geo IT spv_geo BE spv_geo IE spv_geo IT spv_geo LU spv_geo ES loan number
beta betaxn credit_ support

657 hettest eurlOyearyield diffl0 impliedvolatility wal at issue principalmio
numbonds comp aaa comp aa comp a comp bbb comp bb comp b col geo BE col geo ES col geo IT
spv_geo BE spv _geo IE spv geo IT spv _geo LU spv_geo ES loan number beta betaxn
credit support

658

659

660 **2.2.3

661 eststo: regress lnspread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds comp aaa comp aa comp a comp bbb comp bb comp b col geo BE
col geo ES col geo IT spv_geo BE spv_geo IE spv_geo IT spv_geo LU spv_geo ES year 2018
year 2019 year 2020 month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9
month 10 month 11 month 12 loan number beta betaxn credit support, cluster(dealticker)

662

663 **Adjusted R squared

664 di e(r2_a)

665

666 **Variance Inflation factor

667 vif

668

669 **Ramseys RESET test

670 ovtest

671

672 **fitted value and residuals scatter plot

673 predict yhat2 1 5, xb

674 predict ur2 1 5, resid

675 twoway scatter ur2 1 5 yhat2 1 5, yline(0)

676

677 **Normality of residuals

678 swilk ur2 1 5

679

680 **H4: Loan number

681 test b[loan number]=0

682 local sign n=sign( b[loan number])

683 display "HO: coef <=0 p-value = " ttail(r(df r), sign n'*sqrt(r(F)))

684

685 **H5: Beta

686 test b[beta]=0

687 local sign beta=sign( bl[betal)

688 display "HO: coef <=0 p-value = " ttail(r(df r), sign beta'*sqrt(r(F)))

689

690 **H6: Beta*N

691 test b[betaxn]=0

692 local sign betaxn=sign( b[betaxn])

693 display "HO: coef <=0 p-value = " ttail(r(df r), sign betaxn'*sqrt(r(F)))

694

695 **H6: Seniority

696 test b[credit support]=0

697 local sign credit support=sign( b[credit support])

698 display "HO: coef <=0 p-value = " ttail(r(df r), sign credit support'*sqgrt(r(F
)))

699

700 **H7: Total impact

701 test loan number beta betaxn credit support

702

703 **BP hetero test

704 quietly regress lInspread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds comp aaa comp aa comp a comp bbb comp bb comp b col geo BE
col geo ES col geo IT spv_geo BE spv _geo IE spv geo IT spv_geo LU spv _geo ES year 2018
year 2019 year 2020 month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9
month 10 month 11 month 12 loan number beta betaxn credit support

705 hettest eurlOyearyield diffl0 impliedvolatility wal at issue principalmio
numbonds adj aaa adj aa adj a adj bbb adj bb adj b col geo BE col geo ES col geo IT
spv_geo BE spv _geo IE spv _geo IT spv_geo LU spv_geo ES year 2018 year 2019 year 2020
month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9 month 10 month 11 month 12
loan number beta betaxn credit support

706

707 ¥k 2.2.4
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708 eststo: regress lnspread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds comp aaa comp aa comp a comp bbb comp bb comp b col geo BE
col geo ES col geo IT spv_geo BE spv_geo IE spv_geo IT spv_geo LU spv_geo ES year 2018
year 2019 year 2020 month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9
month 10 month 11 month 12 loan number beta credit support, cluster(dealticker)

709

710 **Adjusted R squared

711 di e(r2_a)

712

713 **Variance Inflation factor

714 vif

715

716 **Ramseys RESET test

717 ovtest

718

719 **fitted value and residuals scatter plot

720 predict yhat2 1 6, xb

721 predict ur2 1 6, resid

722 twoway scatter ur2 1 6 yhat2 1 6, yline(0)

723

724 **Normality of residuals

725 swilk ur2 1 6

726

727 **H4: Loan number

728 test b[loan number]=0

729 local sign n=sign( b[loan number])

730 display "HO: coef <=0 p-value = " ttail(r(df r), sign n'*sqrt(r(F)))

731

732 **H5: Beta

733 test b[beta]=0

734 local sign beta=sign( b[betal)

735 display "HO: coef <=0 p-value = " ttail(r(df r), sign beta'*sqrt(r(F)))

736

737 **H6: Seniority

738 test b[credit support]=0

739 local sign credit support=sign( b[credit support])

740 display "HO: coef <=0 p-value = " ttail(r(df r), sign credit support'*sqgrt(r(F
)))

741

742 **H7: Total impact

743 test loan number beta credit support

744

745 **BP hetero test

746 quietly regress lInspread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds comp aaa comp aa comp a comp bbb comp bb comp b col geo BE
col geo ES col geo IT spv_geo BE spv _geo IE spv geo IT spv_geo LU spv _geo ES year 2018
year 2019 year 2020 month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9
month 10 month 11 month 12 loan number beta credit support

747 hettest eurlOyearyield diffl0 impliedvolatility wal at issue principalmio
numbonds adj aaa adj aa adj a adj bbb adj bb adj b col geo BE col geo ES col geo IT
spv_geo BE spv _geo IE spv _geo IT spv_geo LU spv_geo ES year 2018 year 2019 year 2020
month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9 month 10 month 11 month 12
loan number beta credit support

748

749

750 **2.2.5

751 eststo: regress lnspread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds comp aaa comp aa comp a comp bbb comp bb comp b col geo BE
col geo ES col geo IT spv geo BE spv geo IE spv geo IT spv geo LU spv geo ES year 2018
year 2019 year 2020 month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9
month 10 month 11 month 12 loan number beta credit support betaxaaa comp betaxaa_ comp
betaxa comp, cluster (dealticker)

752

753 **Adjusted R squared

754 di e(r2 a)

755

756 **Variance Inflation factor

757 vif

758

759 **Ramseys RESET test

760 ovtest

761

762 **fitted value and residuals scatter plot

763 predict yhat2 1 7, xb

764 predict ur2_ 1 7, resid
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765 twoway scatter ur2 1 7 yhat2 1 7, yline(0)

766

767 **Normality of residuals

768 swilk ur2 1 7

769

770 **H4: Loan number

771 test Db[loan number]=0

772 local sign n=sign(_b[loan number])

773 display "HO: coef <=0 p-value = " ttail(r(df r), sign n'*sqrt(r(F)))

774

775 **H5: Beta

776 test b[beta]=0

777 local sign beta=sign(_bl[beta])

778 display "HO: coef <=0 p-value = " ttail(r(df r), sign beta'*sqgrt(r(F)))

779

780 **H6: Seniority

781 test blcredit support]=0

782 local sign credit support=sign(_b[credit support])

783 display "HO: coef <=0 p-value = " ttail(r(df r), sign credit support'*sqrt(r(F
)))

784

785 **H7: Total impact

786 test loan number beta credit support

787

788 **BP hetero test

789 quietly regress lnspread eurlOyearyield diffl0 impliedvolatility wal at issue

principalmio numbonds comp aaa comp aa comp a comp bbb comp bb comp b col geo BE
col geo ES col geo IT spv geo BE spv geo IE spv geo IT spv geo LU spv geo ES year 2018
year 2019 year 2020 month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9
month 10 month 11 month 12 loan number beta betaxn credit support betaxaaa betaxaa betaxa
nxaaa nxaa nxa

790 hettest eurlOyearyield diffl0 impliedvolatility wal at issue principalmio
numbonds comp aaa comp aa comp a comp bbb comp bb comp b col geo BE col geo ES col geo IT
spv_geo BE spv geo IE spv geo IT spv geo LU spv geo ES year 2018 year 2019 year 2020
month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9 month 10 month 11 month 12

loan number beta betaxn credit support betaxaaa betaxaa betaxa nxaaa nxaa nxa

791

792

793 **2.2.6

794 eststo: regress lInspread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds comp aaa comp aa comp a comp bbb comp bb comp b col geo BE
col geo ES col geo IT spv geo BE spv geo IE spv geo IT spv geo LU spv geo ES year 2018
year 2019 year 2020 month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9
month 10 month 11 month 12 loan number beta credit support s capital goods
s _household personal products s professional services s info tech s consumer services
s media entertainment s retail s telecommunication s transportation s utilities s energy,
cluster (dealticker)

795

796 **Adjusted R squared

797 di e(r2 a)

798

799 **Variance Inflation factor

800 vif

801

802 **Ramseys RESET test

803 ovtest

804

805 **fitted value and residuals scatter plot

806 predict yhat2 1 8, xb

807 predict ur2 1 8, resid

808 twoway scatter ur2 1 8 yhat2 1 8, yline(0)

809

810 **Normality of residuals

811 swilk ur2 1 8

812

813 **H4: Loan number

814 test b[loan number]=0

815 local sign n=sign( b[loan number])

816 display "HO: coef <=0 p-value = " ttail(r(df r), sign n'*sqrt(r(F)))

817

818 **H5: Beta

819 test bl[betal]=0

820 local sign beta=sign( b[betal)

821 display "HO: coef <=0 p-value = " ttail(r(df r), sign beta'*sqgrt(r(F)))

822
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823 **H6: Seniority

824 test blcredit support]=0

825 local sign credit support=sign(_b[credit support])

826 display "HO: coef <=0 p-value = " ttail(r(df r), sign credit support'*sqrt(r(F
)))

827

828 **H7: Total impact

829 test loan number beta credit support

830

831 **BP hetero test

832 quietly regress lnspread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds comp aaa comp aa comp a comp bbb comp bb comp b col geo BE
col geo ES col geo IT spv_geo BE spv_geo IE spv_geo IT spv_geo LU spv_geo ES year 2018
year 2019 year 2020 month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9
month 10 month 11 month 12 loan number beta credit support s capital goods
s household personal products s professional services s info tech s consumer services
s media entertainment s retail s telecommunication s transportation s utilities s energy

833 hettest eurlOyearyield diffl0 impliedvolatility wal at issue principalmio
numbonds comp aaa comp aa comp a comp bbb comp bb comp b col geo BE col geo ES col geo IT
spv_geo BE spv geo IE spv geo IT spv geo LU spv geo ES year 2018 year 2019 year 2020
month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9 month 10 month 11 month 12
loan number beta credit support s capital goods s _household personal products
s_professional services s _info_tech s consumer services s media entertainment s retail
s telecommunication s transportation s utilities s energy

834

835

836 ** Regressions for adjusted rating 2.2.

837 Hx

838 eststo: regress Inspread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds, cluster(dealticker)

839

840 Hx

841 eststo: regress lnspread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds adj aaa adj aa adj a adj bbb adj bb adj b, cluster(dealticker)

842

843 k2,401

844 eststo: regress lnspread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds adj aaa adj aa adj a adj bbb adj bb adj b loan number beta betaxn
credit support, cluster(dealticker)

845

846 **Adjusted R squared

847 di e(r2 a)

848

849 **Variance Inflation factor

850 vif

851

852 **Ramseys RESET test

853 ovtest

854

855 **fitted value and residuals scatter plot

856 predict yhat2 2 3, xb

857 predict ur2 2 3, resid

858 twoway scatter ur2 2 3 yhat2 2 3, yline(0)

859

860 **Normality of residuals

861 swilk ur2 2 3

862

863 **H4: Loan number

864 test Db[loan number]=0

865 local sign n=sign( b[loan number])

866 display "HO: coef <=0 p-value = " ttail(r(df r), sign n'*sqrt(r(F)))

867

868 **H5: Beta

869 test b[beta]=0

870 local sign beta=sign( b[beta])

871 display "HO: coef <=0 p-value = " ttail(r(df r), sign beta'*sqrt(r(F)))

872

873 **H6: Beta*N

874 test b[betaxn]=0

875 local sign betaxn=sign( b[betaxn])

876 display "HO: coef <=0 p-value = " ttail(r(df r), sign betaxn'*sqrt(r(F)))

877

878 **H6: Seniority

879 test b[credit support]=0

880 local sign_credit_support=sign(_b[credit_support])
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881 display "HO: coef <=0 p-value = " ttail(r(df r), sign credit support'*sqrt(r(F
)))

882

883 **H7: Total impact

884 test loan number beta betaxn credit support

885

886 **BP hetero test

887 quietly regress lnspread eurlOyearyield diffl0 impliedvolatility wal_ at issue
principalmio numbonds adj aaa adj aa adj a adj bbb adj bb adj b loan number beta betaxn
credit support

888 hettest eurlOyearyield diffl0 impliedvolatility wal at issue principalmio
numbonds adj aaa adj_aa adj_a adj bbb adj bb adj b loan number beta betaxn credit support

889

890 k2,402

891 eststo: regress lInspread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds adj aaa adj aa adj a adj bbb adj bb adj b col geo BE col geo ES
col geo IT spv_geo BE spv_geo IE spv_geo IT spv_geo LU spv_geo ES loan number beta betaxn
credit support, cluster (dealticker)

892

893 **Adjusted R squared

894 di e(r2 a)

895

896 **Variance Inflation factor

897 vif

898

899 **Ramseys RESET test

900 ovtest

901

902 **fitted value and residuals scatter plot

903 predict yhat2 2 4, xb

904 predict ur2 2 4, resid

905 twoway scatter ur2 2 4 yhat2 2 4, yline(0)

906

907 **Normality of residuals

908 swilk ur2 2 4

909

910 **H4: Loan number

911 test Db[loan number]=0

912 local sign n=sign( b[loan number])

913 display "HO: coef <=0 p-value = " ttail(r(df r), sign n'*sqrt(r(F)))

914

915 **H5: Beta

916 test Db[beta]=0

917 local sign beta=sign( blbeta])

918 display "HO: coef <=0 p-value = " ttail(r(df r), sign beta'*sqgrt(r(F)))

919

920 **H6: Beta*N

921 test Db[betaxn]=0

922 local sign betaxn=sign( b[betaxn])

923 display "HO: coef <=0 p-value = " ttail(r(df r), sign betaxn'*sqrt(r(F)))

924

925 **H6: Seniority

926 test Db[credit support]=0

927 local sign credit support=sign( b[credit support])

928 display "HO: coef <=0 p-value = " ttail(r(df r), sign credit support'*sqrt(r(F
)))

929

930 **H7: Total impact

931 test loan number beta betaxn credit support

932

933 **BP hetero test

934 quietly regress lnspread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds adj aaa adj aa adj a adj bbb adj bb adj b col geo BE col geo ES
col geo IT spv geo BE spv geo IE spv geo IT spv geo LU spv geo ES loan number beta betaxn
credit support

935 hettest eurlOyearyield diffl0 impliedvolatility wal at issue principalmio
numbonds adj aaa adj aa adj a adj bbb adj bb adj b col geo BE col geo ES col geo IT
spv geo BE spv geo IE spv geo IT spv geo LU spv geo ES loan number beta betaxn
credit support

936

937 k% 2.4.3

938 eststo: regress lnspread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds adj aaa adj aa adj a adj bbb adj bb adj b col geo BE col geo ES
col geo IT spv geo BE spv geo IE spv geo IT spv geo LU spv geo ES year 2018 year 2019
year_ 2020 month_2 month_ 3 month_4 month 5 month_ 6 month_ 7 month_ 8 month_9 month_ 10
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month 11 month 12 loan number beta betaxn credit support, cluster (dealticker)

939

940 **Adjusted R squared

941 di e(r2 a)

942

943 **Variance Inflation factor

944 vif

945

946 **Ramseys RESET test

947 ovtest

948

949 **fitted value and residuals scatter plot

950 predict yhat2 2 5, xb

951 predict ur2 2 5, resid

952 twoway scatter ur2 2 5 yhat2 2 5, yline(O0)

953

954 **Normality of residuals

955 swilk ur2 2 5

956

957 **H4: Loan number

958 test Db[loan number]=0

959 local sign n=sign( b[loan number])

960 display "HO: coef <=0 p-value = " ttail(r(df r), sign n'*sqrt(r(F)))

961

962 **H5: Beta

963 test b[beta]=0

964 local sign beta=sign( bl[beta])

965 display "HO: coef <=0 p-value = " ttail(r(df r), sign beta'*sqrt(r(F)))

966

967 **H6: Beta*N

968 test b[betaxn]=0

969 local sign betaxn=sign( b[betaxn])

970 display "HO: coef <=0 p-value = " ttail(r(df r), sign betaxn'*sqrt(r(F)))

971

972 **H6: Seniority

973 test blcredit support]=0

974 local sign credit support=sign( b[credit support])

975 display "HO: coef <=0 p-value = " ttail(r(df r), sign credit support'*sqrt(r(F
)))

976

977 **H7: Total impact

978 test loan number beta betaxn credit support

979

980 **BP hetero test

981 quietly regress lnspread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds adj aaa adj aa adj a adj bbb adj bb adj b col geo BE col geo ES
col geo IT spv geo BE spv geo IE spv geo IT spv geo LU spv geo ES year 2018 year 2019
year 2020 month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9 month 10
month 11 month 12 loan number beta betaxn credit support

982 hettest eurlOyearyield diffl0 impliedvolatility wal at issue principalmio
numbonds adj aaa adj aa adj a adj bbb adj bb adj b col geo BE col geo ES col geo IT
spv geo BE spv geo IE spv geo IT spv geo LU spv geo ES year 2018 year 2019 year 2020
month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9 month 10 month 11 month 12
loan number beta betaxn credit support

983

984 **k2.4.4

985 eststo: regress lnspread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds adj aaa adj aa adj a adj bbb adj bb adj b col geo BE col geo ES
col geo IT spv geo BE spv geo IE spv geo IT spv geo LU spv geo ES year 2018 year 2019
year 2020 month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9 month 10
month 11 month 12 loan number beta credit support, cluster(dealticker)

986

987 **Adjusted R squared

988 di e(r2 a)

989

990 **Variance Inflation factor

991 vif

992

993 **Ramseys RESET test

994 ovtest

995

996 **fitted value and residuals scatter plot

997 predict yhat2 2 6, xb

998 predict ur2 2 6, resid

999 twoway scatter ur2_2 6 yhat2 2 6, yline(0)
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1000

1001 **Normality of residuals

1002 swilk ur2 2 6

1003

1004 **H4: Loan number

1005 test Db[loan number]=0

1006 local sign n=sign( b[loan number])

1007 display "HO: coef <=0 p-value = " ttail(r(df r), sign n'*sqrt(r(F)))

1008

1009 **H5: Beta

1010 test b[beta]=0

1011 local sign beta=sign( bl[beta])

1012 display "HO: coef <=0 p-value = " ttail(r(df r), sign beta'*sqrt(r(F)))

1013

1014 **H6: Seniority

1015 test blcredit support]=0

1016 local sign credit support=sign( b[credit support])

1017 display "HO: coef <=0 p-value = " ttail(r(df r), sign credit support'*sqrt(r(F
)))

1018

1019 **H7: Total impact

1020 test loan number beta credit support

1021

1022 **BP hetero test

1023 quietly regress lnspread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds adj aaa adj aa adj a adj bbb adj bb adj b col geo BE col geo ES
col geo IT spv_geo BE spv_geo IE spv_geo IT spv_geo LU spv_geo ES year 2018 year 2019
year 2020 month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9 month 10
month 11 month 12 loan number beta credit support

1024 hettest eurlOyearyield diffl0 impliedvolatility wal at issue principalmio
numbonds adj aaa adj aa adj a adj bbb adj bb adj b col geo BE col geo ES col geo IT
spv geo BE spv geo IE spv geo IT spv geo LU spv geo ES year 2018 year 2019 year 2020
month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9 month 10 month 11 month 12
loan number beta credit support

1025

1026

1027 ** 2.4.5

1028 eststo: regress lnspread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds adj aaa adj aa adj a adj bbb adj bb adj b col geo BE col geo ES
col geo IT spv _geo BE spv geo IE spv geo IT spv geo LU spv geo ES year 2018 year 2019
year 2020 month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9 month 10
month 11 month 12 loan number beta credit support betaxaaa adj betaxaa adj betaxa adj,
cluster (dealticker)

1029

1030 **Adjusted R squared

1031 di e(r2 a)

1032

1033 **Variance Inflation factor

1034 vif

1035

1036 **Ramseys RESET test

1037 ovtest

1038

1039 **fitted value and residuals scatter plot

1040 predict yhat2 2 7, xb

1041 predict ur2 2 7, resid

1042 twoway scatter ur2 2 7 yhat2 2 7, yline(0)

1043

1044 **Normality of residuals

1045 swilk ur2 2 7

1046

1047 **H4: Loan number

1048 test Db[loan number]=0

1049 local sign n=sign( b[loan number])

1050 display "HO: coef <=0 p-value = " ttail(r(df r), sign n'*sqrt(r(F)))

1051

1052 **H5: Beta

1053 test Db[beta]=0

1054 local sign beta=sign( b[beta])

1055 display "HO: coef <=0 p-value = " ttail(r(df r), sign beta'*sqgrt(r(F)))

1056

1057 **H6: Seniority

1058 test b[credit support]=0

1059 local sign credit support=sign( b[credit support])

1060 display "HO: coef <=0 p-value = " ttail(r(df_r), sign credit support'*sqrt (r(F
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)))

1061

1062 **H7: Total impact

1063 test loan number beta credit support

1064

1065 **BP hetero test

1066 quietly regress lnspread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds comp_aaa comp_aa comp_a comp_ bbb comp bb comp b col geo BE
col geo ES col geo IT spv geo BE spv geo IE spv geo IT spv geo LU spv geo ES year 2018
year 2019 year 2020 month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9
month 10 month 11 month 12 loan number beta betaxn credit_ support betaxaaa betaxaa betaxa
nxaaa nxaa nxa

1067 hettest eurlOyearyield diffl0 impliedvolatility wal at issue principalmio
numbonds comp aaa comp aa comp a comp bbb comp bb comp b col geo BE col geo ES col geo IT
spv_geo BE spv geo IE spv geo IT spv geo LU spv geo ES year 2018 year 2019 year 2020
month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9 month 10 month 11 month 12

loan number beta betaxn credit support betaxaaa betaxaa betaxa nxaaa nxaa nxa

1068

1069 *HE2.4.6

1070 eststo: regress lInspread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds adj aaa adj aa adj a adj bbb adj bb adj b col geo BE col geo ES
col geo IT spv_geo BE spv_geo IE spv_geo IT spv_geo LU spv_geo ES year 2018 year 2019
year 2020 month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9 month 10
month 11 month 12 loan number beta credit support s capital goods
s _household personal products s professional services s info tech s consumer services
s media entertainment s retail s telecommunication s transportation s utilities s energy,
cluster (dealticker)

1071

1072 **Adjusted R squared

1073 di e(r2 a)

1074

1075 **Variance Inflation factor

1076 vif

1077

1078 **Ramseys RESET test

1079 ovtest

1080

1081 **fitted value and residuals scatter plot

1082 predict yhat2 2 8, xb

1083 predict ur2 2 8, resid

1084 twoway scatter ur2 2 8 yhat2 2 8, yline(0)

1085

1086 **Normality of residuals

1087 swilk ur2 2 8

1088

1089 **H4: Loan number

1090 test b[loan number]=0

1091 local sign n=sign( b[loan number]

1092 display "HO: coef <=0 p-value = " ttail(r(df r), sign n'*sqrt(r(F))

1093

1094 **H5: Beta

1095 test bl[betal]=0

1096 local sign beta=sign( b[betal)

1097 display "HO: coef <=0 p-value = " ttail(r(df r), sign beta'*sqgrt(r(F)))

1098

1099 **H6: Seniority

1100 test blcredit support]=0

1101 local sign credit support=sign( b[credit support]

1102 display "HO: coef <=0 p-value = " ttail(r(df r), sign credit support'*sqrt(r(F
)))

1103

1104 **H7: Total impact

1105 test loan number beta credit support

1106

1107 **BP hetero test

1108 quietly regress lnspread eurlOyearyield diffl0 impliedvolatility wal at issue
principalmio numbonds adj aaa adj aa adj a adj bbb adj bb adj b col geo BE col geo ES
col geo IT spv geo BE spv geo IE spv geo IT spv geo LU spv geo ES year 2018 year 2019
year 2020 month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9 month 10
month 11 month 12 loan number beta credit support s capital goods
s household personal products s professional services s info tech s consumer services
s media entertainment s retail s telecommunication s transportation s utilities s energy

1109 hettest eurlOyearyield diffl0 impliedvolatility wal at issue principalmio
numbonds adj aaa adj aa adj a adj bbb adj bb adj b col geo BE col geo ES col geo IT
spv_geo_BE spv_geo_IE spv_geo_IT spv_geo_LU spv_geo_ ES year 2018 year 2019 year 2020
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month 2 month 3 month 4 month 5 month 6 month 7 month 8 month 9 month 10 month 11 month 12
loan number beta credit support s capital goods s_household personal products
s_professional services s _info_ tech s consumer services s media entertainment s retail
s telecommunication s transportation s utilities s energy
1110
1111
1112
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10.7.3 Generation of data set for CBs and CLOs

Data generation - Differences.do* - Printed on 10-05-2020 09:55:43

1 **This code is used for generating the data set containing both CLOs and corporate bonds
to test H1l. This section entails importing and appending data from excel, selection steps
in stata, variable generation and finally some descriptive statistics.

2

3 clear

4

5 **Adjust structured debt data

6 use "C:\Users\petyde\Desktop\Speciale\Data\Ready to use data\Structured
debt\Structured debt.dta"

7

8 **Create structured dummy

9 generate structured=1

10
11 **Create geogrpahy dummies
12 rename spv_geo IT geo IT
13 rename spv_geo ES geo_ ES
14 rename spv_geo LU geo LU
15 rename spv_geo_ BE geo_ BE
16 rename spv geo IE geo IE
17 generate geo NL=0
18 generate geo FR=0
19 generate geo_ DE=0
20 generate geo GB=0
21 generate geo CH=0
22 generate geo NO=0
23 generate geo_ SE=0
24 generate geo_ DK=0
25 generate geo US=0
26 generate geo FI=0
27 generate geo GR=0
28 generate geo_ PT=0
29 generate geo AT=0
30
31 **Delete redundant variables
32 drop currency
33 drop issue date
34 drop coupon_type
35 drop loan number
36 drop country of collateral
37 drop credit support
38 drop sp rating
39 drop moodys rating
40 drop fitch rating
41 drop issue price
42 drop mostsenior
43 drop leadmgr
44 drop iscallable
45 drop numbonds
46 drop currencyfromtheloans
47 drop currencyrisk
48 drop betaxn
49 drop col geo BE
50 drop col geo ES
51 drop col geo IT
52 drop adj refinement aaa
53 drop adj refinement aap
54 drop adj refinement aa
55 drop adj refinement aam
56 drop adj refinement ap
57 drop adj refinement a
58 drop adj_refinement am
59 drop adj refinement bbbp
60 drop adj refinement bbb
61 drop adj refinement bbbm
62 drop adj refinement bbp
63 drop adj refinement bb
64 drop adj refinement bbm
65 drop adj refinement bp
66 drop adj refinement b
67 drop adj refinement bm
68 drop adj refinement cccp
69 drop adj refinement ccc
70 drop adj refinement cccm
71 drop adj refinement ccp
72 drop adj_refinement_cc
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73 drop adj refinement ccm

74 drop adj refinement cp

75 drop adj_refinement c

76 drop adj refinement cm

77 drop adj aaa

78 drop adj aa

79 drop adj_a

80 drop adj_ bbb

81 drop adj bb

82 drop adj b

83 drop adj ccc

84 drop adj_cc

85 drop adj_c

86 drop rating adj

87

88 save "C:\Users\petyde\Desktop\Speciale\Data\Ready to use data\Difference in
structured and unstructured debt\Structured.dta"

89

90 **Prepare unstructured debt data

91 clear

92 import excel "C:\Users\petyde\Desktop\Speciale\Data\Corporate debt - 20-04
hardcoded.xlsx", sheet ("Pure") cellrange (A2:K314) firstrow case(lower)

93

94 rename issue dtvalue date

95

96 **Merge with others

97 merge m:1 date using "C:\Users\petyde\Desktop\Speciale\Data\Ready to use
data\Treasury yield.dta"

98 drop if merge==

99 drop merge

100 *

101 merge m:m date using "C:\Users\petyde\Desktop\Speciale\Data\Ready to use
data\currency swap diff.dta"

102 drop if merge==

103 drop merge

104 *

105 merge m:1 date using "C:\Users\petyde\Desktop\Speciale\Data\Ready to use data\Implied
volatility.dta"

106 drop if merge==

107 drop merge

108

109 **Create structured dummy

110 generate structured=0

111

112 **Allign names

113 rename idvalue name

114 rename rating composite rating

115 rename yearstoaveragelife wal at issue

116

117 **drop redundant variables

118 drop columnl

119 drop classification nameclassificati

120 drop classificationlevel

121 drop usdlOyearyield

122 drop gbplOyearyield

123

124 **Create same variables

125 **Principal in millions

126 generate principalmio=orig bal/1000000

127

128 **Year dummies

129 generate year=yofd(date)

130 **create year dummies

131 forvalues i=17/20 {

132 set seed "i'

133 generate year 20 i'=(year==201i")

134 }

135 **Month dummies

136 generate month=month (date)

137

138 **create month dummies

139 forvalues i=1/12 {

140 set seed i’

141 generate month "i'=(month=="1")

142 }
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143
144 **Composite rating dummies
145 generate comp aaa=(composite rating=="AAA")
146 generate comp nr=(composite rating=="NR")
147
148 **Gen specifics
149 generate s_comp aap=(composite rating=="AA+")
150 generate s_comp aa=(composite rating=="AA")
151 generate s comp aam=(composite rating=="AA-")
152 generate sum comp aa=s comp aap+s comp aat+s comp aam
153 generate comp_ aa=(sum comp_aa>0)
154 drop sum_comp_aa
155
156 generate s comp ap=(composite rating=="A+")
157 generate s comp a=(composite rating=="A")
158 generate s comp am=(composite rating=="A-")
159 generate sum_comp a=s_comp_ap+s_comp_a+s_comp_am
160 generate comp_a=(sum_comp_a>0)
161l drop sum comp a
162
163 generate s_comp bbbp=(composite rating=="BBB+")
164 generate s_comp bbb=(composite rating BBB")
165 generate s_comp bbbm=(composite rating=="BBB-")
166 generate sum comp bbb=s comp bbbp+s comp bbb+s comp bbbm
167 generate comp_bbb=(sum_comp_ bbb>0)
168 drop sum_comp bbb
169
170 generate s comp bbp=(composite rating=="BB+")
171 generate s comp bb=(composite rating=="BB")
172 generate s comp bbm=(composite rating=="BB-")
173 generate sum comp bb=s comp bbp+s comp bb+s comp bbm
174 generate comp bb=(sum comp bb>0)
175 drop sum comp bb
176
177 generate s comp bp=(composite rating=="B+")
178 generate s _comp b=(composite rating=="B")
179 generate s_comp bm=(composite rating=="B-")
180 generate sum comp b=s comp bp+s comp b+s comp bm
181 generate comp b=(sum comp ©b>0)
182 drop sum comp b
183
184 generate s comp cccp=(composite rating=="CCC+")
185 generate s comp ccc=(composite rating cce")
186 generate s comp cccm=(composite rating=="CCC-")
187
188 generate s _comp ccp=(composite rating=="CC+")
189 generate s comp cc=(composite rating=="CC")
190 generate s comp ccm=(composite rating=="CC-")
191
192 generate s comp cp=(composite rating=="C+")
193 generate s _comp c=(composite rating=="C")
194 generate s comp cm=(composite rating=="C-")
195
196 generate dav= n
197 generate dealticker=10000+dav
198 drop dav
199
200
201 **Create geogrpahy dummies
202 =
203 generate geo FR=
204 generate geo IT=
205 generate geo DE=
206 generate geo ES=
207 generate geo GB=
208 generate geo_ CH=
209 generate geo NO=
210 generate geo SE=
211 generate geo DK=
212 generate geo LU=
213 generate geo BE=
214 generate geo US=
215 generate geo FI=
216 generate geo GR=(country=="GR"
217 generate geo_ PT=(country=="PT"
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218 generate geo AT=(country=="AT")
219 generate geo_ IE=0
220
221 **Append with structured debt
222 append using "C:\Users\petyde\Desktop\Speciale\Data\Ready to use data\Difference in
structured and unstructured debt\Structured dealticker.dta"
223
224 **drop meaningless spreads
225 drop if spread<0
226
227 **Mean deviating - To ifer on intercepts
228 ** wal
229 summarize wal at issue
230 return list
231 generate dev wal at issue=wal at issue-r (mean)
232
233 ** principalmio
234 summarize principalmio
235 return list
236 generate dev principalmio=principalmio-r (mean)
237
238 ** Treasury yield
239 summarize eurlOyearyield
240 return list
241 generate dev eurlOyearyield=eurlOyearyield-r (mean)
242
243 **Difference in swaps
244 summarize diffl0
245 return list
246 generate dev diffl0=diffl0-r (mean)
247
248 **Volatility
249 summarize impliedvolatility
250 return list
251 generate dev impliedvolatility=impliedvolatility-r (mean)
252
253 **Interaction terms
254 generate devwalxstructured=dev wal at issue*structured
255 generate aaaxstructured=comp aaa*structured
256 generate aaxstructured=comp aa*structured
257 generate axstructured=comp a*structured
258 generate bbbxstructured=comp bbb*structured
259 generate bbxstructured=comp bb*structured
260 generate bxstructured=comp b*structured
261 generate devprinxstructured=dev principalmio*structured
262
263 generate geo NLxstructured=geo NL*structured
264 generate geo FRxstructured=geo FR*structured
265 generate geo ITxstructured=geo IT*structured
266 generate geo DExstructured=geo DE*structured
267 generate geo_ ESxstructured=geo ES*structured
268 generate geo GBxstructured=geo GB*structured
269 generate geo CHxstructured=geo CH*structured
270 generate geo NOxstructured=geo NO*structured
271 generate geo SExstructured=geo SE*structured
272 generate geo DKxstructured=geo DK*structured
273 generate geo LUxstructured=geo LU*structured
274 generate geo BExstructured=geo BE*structured
275 generate geo USxstructured=geo US*structured
276 generate geo FIxstructured=geo FI*structured
277 generate geo_ GRxstructured=geo GR*structured
278 generate geo PTxstructured=geo PT*structured
279 generate geo ATxstructured=geo AT*structured
280 generate geo IExstructured=geo IE*structured
281
282 generate dev eurlOyearyieldxstructured=dev eurlOyearyield*structured
283 generate dev difflOxstructured=dev diffl0*structured
284 generate dev impliedvolatilityxstructured=dev impliedvolatility*structured
285
286 **Adjust ratings
287 replace comp aaa=. if composite rating=="NR"
288 replace comp aa=. if composite rating=="NR"
289 replace comp a=. if composite rating=="NR"
290 replace comp bbb=. if composite rating=="NR"
291 replace comp bb=. if composite rating=="NR"
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292 replace comp b=. if composite rating=="NR"
293
294 **Inspread
295 drop lnspread
296 generate lnspread=ln (spread)
297
298 **Country adjustments
299 replace country="BE" if country=="BELGIUM"
300 replace country="IE" if country=="IRELAND"
301 replace country="IT" if
302 replace country="LU" if
303 replace country="NL" if country=="NETHERLANDS"
304 replace country="ES" if country=="SPAIN"
305
306 **Descriptive statistics
307 ** Spread across years and asset type
308 estpost summarize spread if year==2017 & structured==1
309 est store spread 17_1
310 estpost summarize spread if year==2018 & structured==
311 est store spread 18 1
312 estpost summarize spread if year==2019 & structured==
313 est store spread 19 1
314 estpost summarize spread if year==2020 & structured==
315 est store spread 20 1
316
317 esttab spread 17 1 spread 18 1 spread 19 1 spread 20 1 using table2.pdf, replace
318
319 summarize spread if year==2017 & structured==
320 summarize spread if year==2018 & structured==
321 summarize spread if year==2019 & structured==
322 summarize spread if year==2020 & structured==
323
324 **Ratings across years and asset type
325 tabulate composite rating if structured==1 & year==2017
326 tabulate composite rating if structured==1 &
327 tabulate composite rating if structured==1 &
328 tabulate composite rating if structured==1 & year==2020
329
330 tabulate composite rating if structured==0 & year==2017
331 tabulate composite rating if structured==0 & year==2018
332 tabulate composite rating if structured==0 & year==2019
333 tabulate composite rating if structured==0 & year==2020
334
335 **Geographic exposure across years and asset type
336 tabulate country if structured==1 & year==2017
337 tabulate country if structured==1 & year==2018
338 tabulate country if structured==1 & year==2019
339 tabulate country if structured==1 & year==2020
340
341 tabulate country if structured==0 & year==2017
342 tabulate country if structured==0 & year==2018
343 tabulate country if structured==0 & year==2019
344 tabulate country if structured==0 & year==2020
345
346 **Descriptive statistics per variable
347 **Spreads
348 summarize spread if structured==1, detail
349 summarize spread if structured==0, detail
350
351
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1 **Regressions - Spreads 1.
2 eststo clear
3 ** Regressions for spreads 1.
4 * K
5 eststo: regress spread structured dev eurlOyearyield dev diffl0
dev_impliedvolatility dev wal at issue dev principalmio, cluster(dealticker)
'g * K
8 eststo: regress spread structured dev eurlOyearyield dev diffl0
dev impliedvolatility dev wal at issue dev principalmio comp aaa comp aa comp a comp bbb
comp bb comp b, cluster(dealticker)
9
10 ** 1.1.1 + Time dummies
11 eststo: regress spread structured dev eurlOyearyield dev diffl0
dev impliedvolatility dev wal at issue dev principalmio comp aaa comp aa comp a comp bbb
comp bb comp b year 2018 year 2019 year 2020 month 2 month 3 month 4 month 5 month 6
month_7 month 8 month_9 month 10 month 11 month 12, cluster (dealticker)
12
13 **Adjusted R squared
14 di e(r2 a)
15
16 **Variance Inflation factor
17 vif
18
19 **Ramseys RESET test
20 ovtest
21
22 **fitted value and residuals scatter plot
23 predict yhatl 3, xb
24 predict url 3, resid
25 twoway scatter url 3 yhatl 3, yline(0)
26
27 **Normality of residuals
28 sktest url 3
29
30 **BP hetero test
31 quietly regress spread structured dev eurlOyearyield dev diffl0
dev impliedvolatility dev wal at issue dev principalmio comp aaa comp aa comp a comp bbb
comp bb comp b year 2018 year 2019 year 2020 month 2 month 3 month 4 month 5 month 6
month 7 month 8 month 9 month 10 month 11 month 12
32 hettest structured dev _eurlOyearyield dev diffl0 dev impliedvolatility
dev _wal at issue dev principalmio comp aaa comp aa comp a comp bbb comp bb comp b
year 2018 year 2019 year 2020 month 2 month 3 month 4 month 5 month 6 month 7 month 8
month 9 month 10 month 11 month 12
33
34
35 ** 1.1.2 + Geo dummies
36 eststo: regress spread structured dev eurlOyearyield dev diffl0
dev impliedvolatility dev wal at issue dev principalmio comp aaa comp aa comp a comp bbb
comp bb comp b geo NL geo FR geo IT geo DE geo ES geo GB geo CH geo NO geo SE geo DK
geo LU geo BE geo US geo FI geo GR geo PT geo AT year 2018 year 2019 year 2020 month 2
month 3 month 4 month 5 month 6 month 7 month 8 month 9 month 10 month 11 month 12,
cluster (dealticker)
37
38 **Adjusted R squared
39 di e(r2_a)
40
41 **Variance Inflation factor
42 vif
43
44 **Ramseys RESET test
45 ovtest
46
47 **fitted value and residuals scatter plot
48 predict yhatl 4, xb
49 predict url 4, resid
50 twoway scatter url 4 yhatl 4, yline(0)
51
52 **Normality of residuals
53 sktest url 4
54
55 **BP hetero test
56 quietly regress spread structured dev eurlOyearyield dev diffl0
dev impliedvolatility dev wal at issue dev principalmio comp aaa comp aa comp a comp bbb
comp_bb comp b geo NL geo FR geo IT geo DE geo ES geo GB geo CH geo NO geo SE geo DK
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geo LU geo BE geo US geo FI geo GR geo PT geo AT year 2018 year 2019 year 2020 month 2
month 3 month 4 month 5 month 6 month 7 month 8 month 9 month 10 month 11 month 12
57 hettest structured dev_eurlOyearyield dev _diffl0 dev_impliedvolatility
dev wal at issue dev principalmio comp aaa comp aa comp a comp bbb comp bb comp b geo NL
geo FR geo IT geo DE geo ES geo GB geo CH geo NO geo SE geo DK geo LU geo BE geo US geo FI
geo_GR geo PT geo AT year 2018 year 2019 year 2020 month 2 month 3 month 4 month 5
month 6 month 7 month 8 month 9 month 10 month 11 month 12

58

59

60 ** 1.1.3 (3) + Rating/structured interactions

61 eststo: regress spread structured aaaxstructured aaxstructured axstructured
bbbxstructured bbxstructured bxstructured dev_eurlOyearyield dev diffl0
dev_impliedvolatility dev_wal at issue dev _principalmio comp aaa comp aa comp a comp bbb
comp bb comp b year 2018 year 2019 year 2020 month 2 month 3 month 4 month 5 month 6
month 7 month 8 month 9 month 10 month 11 month 12, cluster(dealticker)

62

63 **Adjusted R squared

64 di e(r2_a)

65

66 **Variance Inflation factor

67 vif

68

69 **Ramseys RESET test

70 ovtest

71

72 **fitted value and residuals scatter plot

73 predict yhatl 5, xb

74 predict url 1 5, resid

75 twoway scatter url 5 yhatl 5, yline(0)

76

717 **Normality of residuals

78 sktest url 5

79

80 **BP hetero test

81 quietly regress spread structured aaaxstructured aaxstructured axstructured

bbbxstructured bbxstructured bxstructured dev eurlOyearyield dev diffl0
dev_impliedvolatility dev wal at issue dev principalmio comp aaa comp aa comp a comp bbb
comp bb comp b year 2018 year 2019 year 2020 month 2 month 3 month 4 month 5 month 6
month 7 month 8 month 9 month 10 month 11 month 12

82 hettest structured aaaxstructured aaxstructured axstructured bbbxstructured
bbxstructured bxstructured dev eurlOyearyield dev diffl0 dev impliedvolatility
dev wal at issue dev principalmio comp aaa comp aa comp a comp bbb comp bb comp b
year 2018 year 2019 year 2020 month 2 month 3 month 4 month 5 month 6 month 7 month 8
month 9 month 10 month 11 month 12

83
84
85 ** 1.1.4 (5) + WAL principal interactions
86 eststo: regress spread structured aaaxstructured aaxstructured axstructured
bbbxstructured bbxstructured bxstructured devwalxstructured devprinxstructured
dev _eurlOyearyield dev diffl0 dev impliedvolatility dev wal at issue dev principalmio
comp aaa comp_aa comp a comp bbb comp bb comp b year 2018 year 2019 year 2020 month 2
month 3 month 4 month 5 month 6 month 7 month 8 month 9 month 10 month 11 month 12,
cluster (dealticker)
87
88 **Adjusted R squared
89 di e(r2 a)
90
91 **Variance Inflation factor
92 vif
93
94 **Ramseys RESET test
95 ovtest
96
97 **fitted value and residuals scatter plot
98 predict yhatl 6, xb
99 predict url 6, resid
100 twoway scatter url 6 yhatl 6, yline(0)
101
102 **Normality of residuals
103 sktest url 6
104
105 **BP hetero test
106 quietly regress spread structured aaaxstructured aaxstructured axstructured
bbbxstructured bbxstructured bxstructured devwalxstructured devprinxstructured
dev_eurlOyearyield dev_diffl0 dev_impliedvolatility dev_wal_at_ issue dev_principalmio
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comp aaa comp_aa comp a comp bbb comp bb comp b year 2018 year 2019 year 2020 month 2
month 3 month 4 month 5 month 6 month 7 month 8 month 9 month 10 month 11 month 12
107 hettest structured aaaxstructured aaxstructured axstructured bbbxstructured
bbxstructured bxstructured devwalxstructured devprinxstructured dev eurlOyearyield
dev diffl0 dev impliedvolatility dev wal at issue dev principalmio comp aaa comp aa comp a
comp bbb comp bb comp b year 2018 year 2019 year 2020 month 2 month 3 month 4 month 5
month 6 month 7 month 8 month 9 month 10 month 11 month 12

108

109

110 ** 1.1.5 (6) + yield interactions

111 eststo: regress spread structured aaaxstructured aaxstructured axstructured
bbbxstructured bbxstructured bxstructured devwalxstructured devprinxstructured
dev_eurlOyearyieldxstructured dev_difflOxstructured dev_impliedvolatilityxstructured
dev eurlOyearyield dev diffl0 dev impliedvolatility wal at issue principalmio comp aaa
comp aa comp a comp bbb comp bb comp b year 2018 year 2019 year 2020 month 2 month 3
month 4 month 5 month 6 month 7 month 8 month 9 month 10 month 11 month 12, cluster(
dealticker)

112

113 test dev eurlOyearyieldxstructured dev difflOxstructured
dev_impliedvolatilityxstructured

114

115 **Adjusted R squared

116 di e(r2_a)

117

118 **Variance Inflation factor

119 vif

120

121 **Ramseys RESET test

122 ovtest

123

124 **fitted value and residuals scatter plot

125 predict yhatl 7, xb

126 predict url 7, resid

127 twoway scatter url 7 yhatl 7, yline(0)

128

129 **Normality of residuals

130 sktest url 7

131

132 **BP hetero test

133 quietly regress spread structured aaaxstructured aaxstructured axstructured

bbbxstructured bbxstructured bxstructured devwalxstructured devprinxstructured
dev eurlOyearyieldxstructured dev difflOxstructured dev impliedvolatilityxstructured
dev eurlOyearyield dev diffl0 dev impliedvolatility wal at issue principalmio comp aaa
comp aa comp a comp bbb comp bb comp b year 2018 year 2019 year 2020 month 2 month 3
month 4 month 5 month 6 month 7 month 8 month 9 month 10 month 11 month 12

134 hettest structured aaaxstructured aaxstructured axstructured bbbxstructured
bbxstructured bxstructured devwalxstructured devprinxstructured
dev eurlOyearyieldxstructured dev difflOxstructured dev impliedvolatilityxstructured
dev eurlOyearyield dev diffl0 dev impliedvolatility wal at issue principalmio comp aaa
comp aa comp a comp bbb comp bb comp b year 2018 year 2019 year 2020 month 2 month 3
month 4 month 5 month 6 month 7 month 8 month 9 month 10 month 11 month 12

135

136 ** Regressions for lnspreads 2.

137 ok

138 eststo: regress lnspread structured dev eurlOyearyield dev diffl0
dev_impliedvolatility dev_wal at issue dev_principalmio, cluster(dealticker)

139

140 ** 4+ ratings

141 eststo: regress lnspread structured dev eurlOyearyield dev diffl0
dev impliedvolatility dev wal at issue dev principalmio comp aaa comp aa comp a comp bbb
comp bb comp b, cluster (dealticker)

142

143 ** 1.2.1 + Time dummies

144 eststo: regress lnspread structured dev eurlOyearyield dev diffl0
dev impliedvolatility dev wal at issue dev principalmio comp aaa comp aa comp a comp bbb
comp bb comp b year 2018 year 2019 year 2020 month 2 month 3 month 4 month 5 month 6
month 7 month 8 month 9 month 10 month 11 month 12, cluster (dealticker)

145

146 **Adjusted R squared

147 di e(r2_a)

148

149 **Variance Inflation factor

150 vif

151

152 **Ramseys RESET test
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153 ovtest

154

155 **fitted value and residuals scatter plot
156 predict yhat2 3, xb

157 predict ur2 3, resid

158 twoway scatter ur2 3 yhat2 3, yline(0)
159

160 **Normality of residuals

161l sktest ur2 3

162

163 **BP hetero test

164 quietly regress lnspread structured dev eurlOyearyield dev diff10

dev_impliedvolatility dev_wal at issue dev _principalmio comp aaa comp aa comp a comp bbb
comp bb comp b year 2018 year 2019 year 2020 month 2 month 3 month 4 month 5 month 6
month 7 month 8 month 9 month 10 month 11 month 12

165 hettest structured dev eurlOyearyield dev diffl0 dev impliedvolatility
dev_wal at issue dev principalmio comp aaa comp aa comp a comp bbb comp bb comp b
year 2018 year 2019 year 2020 month 2 month 3 month 4 month 5 month 6 month 7 month 8
month 9 month 10 month 11 month 12

166

167

168 ** 1.2.2 + Geo dummies

169 eststo: regress lnspread structured dev_eurlOyearyield dev _diff10
dev impliedvolatility dev wal at issue dev principalmio comp aaa comp aa comp a comp bbb
comp bb comp b geo NL geo FR geo IT geo DE geo ES geo GB geo CH geo NO geo SE geo DK
geo LU geo BE geo US geo FI geo GR geo PT geo AT year 2018 year 2019 year 2020 month 2
month 3 month 4 month 5 month 6 month_ 7 month 8 month 9 month 10 month 11 month 12,
cluster (dealticker)

170

171 **Adjusted R squared

172 di e(r2 a)

173

174 **Variance Inflation factor

175 vif

176

177 **Ramseys RESET test

178 ovtest

179

180 **fitted value and residuals scatter plot

181 predict yhat2 4, xb

182 predict ur2 4, resid

183 twoway scatter ur2 4 yhat2 4, yline(0)

184

185 **Normality of residuals

186 sktest ur2 4

187

188 **BP hetero test

189 quietly regress lnspread structured dev eurlOyearyield dev diffl0

dev impliedvolatility dev wal at issue dev principalmio comp aaa comp aa comp a comp bbb
comp bb comp b geo NL geo FR geo IT geo DE geo ES geo GB geo CH geo NO geo SE geo DK
geo LU geo BE geo US geo FI geo GR geo PT geo AT year 2018 year 2019 year 2020 month 2
month 3 month 4 month 5 month 6 month 7 month 8 month 9 month 10 month 11 month 12

190 hettest structured dev eurlOyearyield dev diffl0 dev impliedvolatility
dev wal at issue dev principalmio comp aaa comp aa comp a comp bbb comp bb comp b geo NL
geo FR geo IT geo DE geo ES geo GB geo CH geo NO geo SE geo DK geo LU geo BE geo US geo FI

geo_GR geo PT geo AT year 2018 year 2019 year 2020 month 2 month 3 month 4 month 5

month 6 month 7 month 8 month 9 month 10 month 11 month 12

191

192

193 ** 1.2.3 (3) + Rating/structured interactions

194 eststo: regress lnspread structured aaaxstructured aaxstructured axstructured
bbbxstructured bbxstructured bxstructured dev eurlOyearyield dev diffl0
dev impliedvolatility dev wal at issue dev principalmio comp aaa comp aa comp a comp bbb
comp bb comp b year 2018 year 2019 year 2020 month 2 month 3 month 4 month 5 month 6
month 7 month 8 month 9 month 10 month 11 month 12, cluster(dealticker)

195

196 **Adjusted R squared

197 di e(r2 a)

198

199 **Variance Inflation factor

200 vif

201

202 **Ramseys RESET test

203 ovtest

204
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205 **fitted value and residuals scatter plot

206 predict yhat2 5, xb

207 predict ur2 5, resid

208 twoway scatter ur2 5 yhat2 5, yline(0)

209

210 **Normality of residuals

211 sktest ur2_ 5

212

213 **BP hetero test

214 quietly regress lnspread structured aaaxstructured aaxstructured axstructured

bbbxstructured bbxstructured bxstructured dev eurlOyearyield dev diffl0
dev_impliedvolatility dev wal at issue dev principalmio comp aaa comp aa comp a comp bbb
comp_bb comp b year 2018 year 2019 year 2020 month 2 month 3 month 4 month 5 month 6
month 7 month 8 month 9 month 10 month 11 month 12

215 hettest structured aaaxstructured aaxstructured axstructured bbbxstructured
bbxstructured bxstructured dev eurlOyearyield dev diffl0 dev impliedvolatility
dev_wal at issue dev principalmio comp aaa comp aa comp a comp bbb comp bb comp b
year 2018 year 2019 year 2020 month 2 month 3 month 4 month 5 month 6 month 7 month 8
month 9 month 10 month 11 month 12

216

217

218 ** 1.2.4 (5) + WAL principal interactions

219 eststo: regress lnspread structured aaaxstructured aaxstructured axstructured
bbbxstructured bbxstructured bxstructured devwalxstructured devprinxstructured
dev _eurlOyearyield dev diffl0 dev impliedvolatility dev wal at issue dev principalmio
comp aaa comp_aa comp a comp bbb comp bb comp b year 2018 year 2019 year 2020 month 2
month 3 month 4 month 5 month 6 month_ 7 month 8 month 9 month 10 month 11 month 12,
cluster (dealticker)

220

221 **Adjusted R squared

222 di e(r2 a)

223

224 **Variance Inflation factor

225 vif

226

227 **Ramseys RESET test

228 ovtest

229

230 **fitted value and residuals scatter plot

231 predict yhat2 6, xb

232 predict ur2 6, resid

233 twoway scatter ur2 6 yhat2 6, yline(0)

234

235 **Normality of residuals

236 sktest ur2 6

237

238 **BP hetero test

239 quietly regress lnspread structured aaaxstructured aaxstructured axstructured

bbbxstructured bbxstructured bxstructured devwalxstructured devprinxstructured

dev _eurlOyearyield dev diffl0 dev impliedvolatility dev wal at issue dev principalmio

comp aaa comp_aa comp a comp bbb comp bb comp b year 2018 year 2019 year 2020 month 2

month 3 month 4 month 5 month 6 month 7 month 8 month 9 month 10 month 11 month 12

240 hettest structured aaaxstructured aaxstructured axstructured bbbxstructured

bbxstructured bxstructured devwalxstructured devprinxstructured dev eurlOyearyield

dev diffl0 dev impliedvolatility dev wal at issue dev principalmio comp aaa comp aa comp a
comp bbb comp bb comp b year 2018 year 2019 year 2020 month 2 month 3 month 4 month 5

month 6 month 7 month 8 month 9 month 10 month 11 month 12

241

242

243 ** 1.2.5 (6) + yield interactions

244 eststo: regress lnspread structured aaaxstructured aaxstructured axstructured
bbbxstructured bbxstructured bxstructured devwalxstructured devprinxstructured
dev eurlOyearyieldxstructured dev difflOxstructured dev impliedvolatilityxstructured
dev eurlOyearyield dev diffl0 dev impliedvolatility wal at issue principalmio comp aaa
comp aa comp a comp bbb comp bb comp b year 2018 year 2019 year 2020 month 2 month 3
month 4 month 5 month 6 month 7 month 8 month 9 month 10 month 11 month 12, cluster(
dealticker)

245

246 test dev eurlOyearyieldxstructured dev difflOxstructured
dev_impliedvolatilityxstructured

247

248 **Adjusted R squared

249 di e(r2 a)

250

251 **Variance Inflation factor
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252 vif

253

254 **Ramseys RESET test

255 ovtest

256

257 **fitted value and residuals scatter plot

258 predict yhat2 7, xb

259 predict ur2 7, resid

260 twoway scatter ur2 7 yhat2 7, yline(0)

261

262 **Normality of residuals

263 sktest ur2 7

264

265 **BP hetero test

266 quietly regress lnspread structured aaaxstructured aaxstructured axstructured
bbbxstructured bbxstructured bxstructured devwalxstructured devprinxstructured
dev_eurlOyearyieldxstructured dev _difflOxstructured dev impliedvolatilityxstructured
dev_eurlOyearyield dev _diffl0 dev_impliedvolatility wal at issue principalmio comp aaa
comp aa comp a comp bbb comp bb comp b year 2018 year 2019 year 2020 month 2 month 3
month 4 month 5 month 6 month 7 month 8 month 9 month 10 month 11 month 12

267 hettest structured aaaxstructured aaxstructured axstructured bbbxstructured
bbxstructured bxstructured devwalxstructured devprinxstructured
dev_eurlOyearyieldxstructured dev_difflOxstructured dev_impliedvolatilityxstructured
dev eurlOyearyield dev diffl0 dev impliedvolatility wal at issue principalmio comp aaa
comp aa comp a comp bbb comp bb comp b year 2018 year 2019 year 2020 month 2 month 3
month 4 month 5 month 6 month 7 month 8 month 9 month 10 month 11 month 12

268

269
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