
COPENHAGEN BUSINESS SCHOOL

MASTER THESIS

The Impact of Structural Oil Market

Shocks on Stock Markets

Author:

Fabio BETTIOL (124362)

Supervisors:

Kristian MILTERSEN

Natalia KHORUNZHINA

A thesis submitted in partial fulfillment of the requirements for the

degree of M.Sc. in Advanced Economics and Finance (Cand. Oecon)

Pages: 78

Characters: 142,204

May 15, 2020





iii

COPENHAGEN BUSINESS SCHOOL

Abstract

Master of Science

The Impact of Structural Oil Market

Shocks on Stock Markets

by Fabio BETTIOL (124362)

In this thesis, we examine whether oil market shocks exert heterogeneous effects

on the stock markets of six oil-exporting countries and four oil-importing countries.

To investigate this issue, we adopt a two-stage approach. First, following Kilian

(2009), we estimate a structural vector autoregression (SVAR) model and identify

three structural shocks which are responsible for changes in oil prices. Second,

through a set of linear regression models, we analyze the behaviour of the stock

markets in relationship with the oil market shocks. Our main findings can be sum-

marized as follows. First, we find that oil market shocks impact on the stock re-

turns of all six oil-exporting countries whereas they only affect the stock returns of

one oil-importing country. For the oil-exporting countries, positive demand-side

oil shocks increase stock returns in Canada, Norway, Russia, Saudi Arabia and the

U.A.E whereas positive oil supply shocks adversely affect stock returns in Mexico.

For the oil-importing countries, a positive aggregate demand shock increases stock

returns in India. Second, we find that positive aggregate demand shocks induce

more stock market co-movement among oil-exporting countries. On the other hand,

none of the three structural shocks exert an effect on the stock market co-movement

among oil-importing countries.
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Chapter 1

Introduction

On April 20, 2020, for the �rst time in history, the U.S. oil prices plummeted below

zero. That means oil producers were willing to pay buyers to take the commodity

off their hands over fears that storage capacity could soon run out (BBC, 2020). Ex-

tending the time horizon, oil prices have been falling almost monotonously since

the beginning of the year. These events can be primarily attributed to the impact of

the 2019 novel coronavirus (COVID-19) disease. In particular, the COVID-19 pan-

demic has caused signi�cant shocks in oil supply and demand leading to falling oil

prices. According to the U.S. Energy Information Administration (2020) report, the

plunge in oil prices has been primarily driven by the economic slowdown caused by

the pandemic and, to a lower extent, by a sudden increase in oil supply following

the interruption of previously agreed upon production cuts among the OPEC and

partner countries.1

At the same time, oil companies such as Shell and Exxon, have reacted to the

oversupply issues by delaying new projects (Strachan, 2020). Likewise, oil depen-

dent countries face a particularly testing time, with a gloomy present and uncertain

future. Emerging economies reliant on oil exports are especially exposed to this envi-

ronment given their low level of industry diversi�cation other than energy. Several

oil and gas pre-construction projects in the Middle East and in Russia are currently

facing further scrutiny as doubts grow about their viability in the present economic

climate (Strachan, 2020). Developed economies are also suffering from the current

status of the oil market. On April 1, 2020, Aker Solutions, an engineering company

1The Energy Information Administration (EIA) is an agency of the U.S. Federal Statistical System
responsible for collecting, analyzing, and disclosing energy information to promote sound policymak-
ing and public understanding of energy dynamics.
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which provides services to unlock energy from sources such as oil and gas, laid off

400 employees in Norway with further 6000 cuts expected in the following months.

On May 4, 2020, Norway's PM disclosed a package of measures intended to assist

the oil and gas industry during the health crisis. In the same way, Canadian oil

companies have shut down many facilities as low oil prices push down revenues.

Needless to say, the adverse effects on real economic activity following these events

should be anticipated by the stock markets. 2

Although the current situation is unprecedented, oil shocks of different mag-

nitudes and directions have continuously shaped the international stock markets

through the years. As a matter of fact, there is a bulk of literature arguing that stock

price movements can be accounted for by the impact of oil shocks.3 Understanding

the reaction of the stock markets to oil shocks is fundamental for policymakers and

market participants making �nancial decisions. Besides, we can expect that the im-

pact of oil shocks across markets differs contingent the country's economic structure,

such as its net position in the global oil market.

With these premises we believe it is of interest investigating whether oil shocks

exert heterogeneous effects on the stock markets of different countries.

More speci�cally, the �rst issue we aim to examine is whether oil shocks have

a different impact on the stock returns of net oil-exporting and net oil-importing

countries. We draw this distinction based on the simple hypothesis that oil shocks

which increase (decrease) oil prices should positively (negatively) affect stock returns in an

oil-exporting economy whereas the reverse holds true for an oil-importing economy.

If this hypothesis holds, we can also expect that oil shocks affect the common be-

haviour of the stock markets of countries that belong to each of the two groups. Formally,

the second issue we delve into is whether oil shocks increase the stock market co-

movement among oil-exporting countries, and analogously, among oil-importing

countries.

To investigate these issues, we consider six oil-exporting countries (Canada, Mex-

ico, Norway, Russia, Saudi Arabia and the U.A.E.) and four oil-importing countries

2Fama (1990, p. 1107) argues that a large fraction of the variation of stock returns can be explained
by forecasts of real activity.

3Degiannakis, Filis, and Arora (2018) provide a detailed review of the literature on oil prices and
stock markets.
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(China, Germany, India and the U.S.).

For the empirical investigation, we adopt a two-stage approach.

First, following Kilian (2009), we estimate a structural vector autoregression (SVAR)

model and identify three structural shocks which are responsible for changes in oil

prices. The three shocks are de�ned as oil supply shocks, aggregate demand shocks

and oil-speci�c demand shocks.

Second, through a set of linear regression models, we analyze the behaviour of

stock returns and stock market co-movements in relationship with the oil shocks.

Distinguishing the underlying source of oil price changes is important in order to

understand stock market reactions. As illustrated by Kilian and Park (2009), studies

that ignore the source of oil shocks tend to �nd no statistically signi�cant relation-

ships between oil shocks and stock prices.

Most of the existing studies on oil prices and stock returns have focused on ei-

ther oil-importing countries (see, e.g., Cunado and Perez De Gracia (2005)) or oil-

exporting countries (see, e.g., Basher, Haug, and Sadorsky (2018)), whereas the few

studies which have compared the two groups have reached con�icting conclusions

(see, e.g., Apergis and Miller (2009); Zhu et al. (2016)). In addition, most of the liter-

ature has focused on traditional markets only. Thus, with our sample of countries,

which includes both traditional and emerging markets, we can give our contribu-

tion to the literature. Also, to the best of our knowledge, the linkage between oil

shocks and stock market co-movement has been analyzed only by Yang, Wang, and

Wu (2013). In this regard, we provide new insights on such relationship by using a

different set of countries, methodology and sample period compared to their work,

as well as by discriminating between traditional and emerging markets.

The key �ndings of our study can be summarized as follows.

First, we �nd that oil market shocks impact on the stock returns of all six oil-

exporting countries whereas they only affect the stock returns of one oil-importing

country. For the oil-exporting countries, demand-side oil shocks affect stock returns

in Canada, Norway, Russia, Saudi Arabia and and the U.A.E whereas unanticipated

oil supply shocks only matter for stock returns in Mexico. The direction of the shocks

is consistent with the hypothesis for which oil price increases (decreases) exert a

positive (negative) effect on stock returns in economies reliant on oil exports. For
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the oil-importing countries, only India's stock market reacts to oil market shocks.

An unanticipated aggregate demand shock, which raises oil prices, has a positive

effect on Indian stock returns, meaning that economic growth in India tends to dom-

inate the negative impact of higher oil prices. In general, the hypothesis for which

higher (lower) oil prices adversely (positively) affect stock returns in oil-importing

economies is not supported by our results.

Second, we �nd that positive aggregate demand shocks increase the stock mar-

ket co-movement among oil-exporting countries. On the other hand, none of the

three structural shocks exert an effect on the stock market co-movement among oil-

importing countries. Hence, our results corroborate the �ndings of Yang, Wang, and

Wu (2013). In addition, positive supply shocks, that exert downward pressures on

oil prices, induce more co-movement between the Canadian and Norwegian stock

markets.

The remainder of this text is organized as follows. In Chapter 2 we lay out a

brief survey of the literature. In Chapter 3 we provide an overview of the oil market

and the theoretical transmission channels through which changes in oil prices affect

stock returns. In Chapter 4 we describe the data employed in this thesis. In Chapter

5 we outline the econometric models used in the empirical analysis. In Chapter 6

we present the outcome of the empirical analysis and show that our results are not

sensitive to an alternative proxy of global oil prices. In Chapter 7 we conclude by

outlining the main implications of our �ndings and provide suggestions for future

research.
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Chapter 2

Literature Review

In this chapter, we survey the major contributions to the literature on oil and stock

markets. We begin by providing an overview of the most relevant oil market mod-

els employed by researchers through the years. We continue with a summary of the

key �ndings on the relationship between oil and the macroeconomy. Lastly, we de-

scribe the main developments on the rich literature studying the effects of oil market

shocks on stock returns.

2.1 Oil Market Models

Huntington et al. (2013) categorize oil market models into three groups: structural,

computational and reduced form (or �nancial) models. The variety in approaches is,

at least in part, explained by the scope of the study at hand. Different elements char-

acterize each type of model, and none of the models fully represent the complexity

of actors and relations at play in the oil market. Conversely, the scope of a model is

to simplify a complex real-world phenomenon and provide useful insights to stake-

holders such as policymakers, �rm managers and investors. A brief description of

the three categories is given as follows.

Structural modelsfocus on fundamental microeconomic theories about the objec-

tives, constraints and behaviours of market actors. Typically these models rely upon

a limited number of variables like oil supply and demand. Despite the convoluted

mathematical structure, the models give insights into the driving forces of the mar-

ket.

Computational models, instead, employ a broad set of factors which might affect

the oil market. By relying on heavy computing power, these models describe the
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market in great detail and, hence, are commonly used by oil-related organizations

such as the OPEC Secretariat and the EIA.

Reduced form or �nancial models, unlike the �rst two categories, aim at investi-

gating short-term price movements without necessarily explaining in great detail

the fundamental analysis. Within this framework, researchers adopt time series

methods in order to explain the, possibly time-varying and asymmetric, relation-

ships among oil prices and other variables. The vector autoregression (VAR) is the

most popular family of reduced form models. In recent years, structural vector au-

toregression (SVAR) models have gained increased interest from both industry and

academia. Compared to its reduced-form version, a SVAR model facilitates the eco-

nomic explanation of observed and predicted �uctuations in oil prices. SVAR mod-

els offer several tools which allow the econometric speci�cation to match with the

design of the oil market. For example, econometricians often impose parametric or

sign restrictions on the structural equations to simulate the magnitude of the elastic-

ities of oil supply and demand. The SVAR model shares the bene�ts of its reduced

form version, as well as the advantages of the conventional structural models in

terms of economic interpretation. Since this study builds upon a SVAR model, it is

worth describing in greater detail the advantages and limitations of such methodol-

ogy.

The general VAR model extends the univariate autoregressive (AR) model to

capture the evolution of different time series in a multivariate framework. Intro-

duced by Sims (1980), the SVAR model tries to recover economic shocks from ob-

servable variables by imposing a minimum set of assumptions. As pointed out by

Huntington et al. (2013) the power of this model critically rests on whether the im-

posed restrictions are economically sound. The key advantage of a SVAR model is

that it allows the researcher to tackle endogeneity problems as in the case in which

one simultaneously models supply and demand of crude oil. 1

Several authors have used SVAR models with parametric restrictions to under-

stand the oil markets dynamics. All these studies show how crucial is to correctly

1In econometrics, endogeneity broadly refers to situations in which an explanatory variable is cor-
related with the error term (Wooldridge, 2009, p. 87).
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state the economic assumptions governing the oil market in order to obtain a well-

speci�ed model. However, we shall point out that the literature has not yet reached

clear-cut conclusions regarding the set of identifying assumptions to be imposed in

a SVAR model of the oil market.

Two pivotal studies in the literature on oil market models are the works of Hamil-

ton and Herrera (2004) and Kilian (2009). The work of Hamilton and Herrera (2004)

emphasizes the importance of the identifying assumptions. The authors provide a

critique to the results of Bernanke, Gertler, and Watson (1997) who demonstrated

that the effect of oil shocks on the macroeconomy was much smaller than previ-

ously thought. Using monthly data, Bernanke, Gertler, and Watson (1997) speci�ed

a VAR model with seven lags based on the results of the Akaike Information Cri-

terion (AIC). 2 Hamilton and Herrera (2004) challenge this choice as it ignores sea-

sonality which is a critical feature in commodity markets. The authors claim that

setting, at least, twelve lags in the model is a more appropriate choice to capture sea-

sonal patterns. In fact, by repeating the analysis of Bernanke, Gertler, and Watson

(1997), with an adequate number of lags, Hamilton and Herrera (2004) show how

the largest effects of an oil shock do not appear until three or four quarters after the

shock. This �nding underlines the importance of lag length selection for setting up

a proper oil market model and the fact that standard econometric tools may be in

contrast with real-life phenomena.

The study of Kilian (2009) dramatically contributes to the literature on oil mar-

kets and sets the ground for a number of subsequent studies. The author proposes

a model which is capable of identifying the different sources of oil shocks and their

relative importance in determining the real price of oil. The author's model iden-

ti�es three forces characterizing the �uctuations of oil prices, namely oil supply

shocks, aggregate demand shocks and oil-speci�c demand shocks. The latter re�ect

the movements in precautionary demand for crude oil driven by concerns regard-

ing future oil supply shortfalls. By showing that "not all the oil price shocks are alike",

Kilian (2009) challenges the strong-held belief that an increase in oil prices generates

the same effect regardless of the underlying cause of that increase.

2In econometrics, it is common practice to use information criteria to set the optimal lag length of a
univariate or multivariate time series model.
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2.2 Oil and the Macroeconomy

Oil prices interact with a variety of economic variables, including output, in�ation

and interest rates. For this reason, a wide range of empirical studies examines the

impact of oil shocks on macroeconomic factors.

The work of Hamilton (1983) provides one of the �rst evidence of the link be-

tween oil and the macroeconomy. The author illustrates that the majority of post-

war recessions in the U.S., until 1972, was preceded by sharp increases in oil prices.

However, a main concern in applied work is the presence of a third set of in�uences

driving the relationship between two variables. Hamilton (1983) provides evidence

for claiming that the link between oil prices and output was indeed nonspurious. To

prove this, he studies the role of oil within the macroeconomic system of Sims (1980),

which consists of three price variables, two output variables and money supply, and

demonstrates that none of the six variables exhibited any unusual behaviours in the

year before the oil price spikes that could have been used statistically to predict the

oil episodes.

Following Hamilton (1983), a bulk of literature points toward possible asymme-

tries in the nexus between oil prices and the macroeconomy. The motivation behind

these studies is connected to the occurrence of two events that shaped the oil market

in the 1970s and 1980s. The 1979 oil crisis, in the wake of the Iranian Revolution,

led to a dramatic increase in oil prices which was followed by a recession. The 1986

oil price collapse, on the other hand, was not followed by an economic expansion as

one might have expected given the inferred symmetry of oil price ups and downs.

The work of Mork (1989) is one of the �rst studies on the asymmetric effects of oil

price changes on the macroeconomy. The author extends the framework of Hamil-

ton (1983) by distinguishing between the different impacts of oil price increases and

decreases. The key �ndings are the presence of a strong negative correlation be-

tween oil price increases and economic growth and the lack of any signi�cant effects

of oil price decreases on output. Mork, Olsen, and Mysen (1994) further develop the

analysis on asymmetric effects to include a range of OECD countries and con�rm

that the impacts of oil surges and dips are substantially different. Hamilton (2010)

also argues for a nonlinear relationship between oil prices and output growth.
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More recent studies have broadened the spectrum of macroeconomic variables

under investigation. Cunado and Perez De Gracia (2005) shed light on the repercus-

sion of an oil price increase on the consumer price index (CPI) of six Asian countries

over the period 1975-2002. They report that this impact is short-lived but more sig-

ni�cant when oil prices are de�ned in local currencies. Cologni and Manera (2008)

combine the relationships among oil prices, in�ation and interest rates under a coin-

tegrated VAR model. The authors �nd evidence for signi�cant effects of oil shocks

on the in�ation level for �ve G-7 countries. Besides, they note that in�ationary

shocks are transmitted to the real economy through higher interest rates. 3

2.3 Oil and Stock Markets

In the last two decades, the relationship between oil prices and �nancial variables

has increasingly caught the attention of empirical researchers. A large body of litera-

ture has focused on the link between oil shocks and international stock markets, nev-

ertheless, no consensus has been reached on the matter. The papers relating oil and

stock price movements are very heterogeneous in their scopes, econometric models

and types of data employed. In loose terms, these studies can be classi�ed in three

ways. A �rst distinction can be made with respect to the type of data employed. Re-

searchers have typically used either �rm-level data or sector-level data on stock mar-

kets. A second distinction is made on the basis of whether the researchers are inter-

ested in modelling the mean, the variance or both of oil and stock market variables.

A third distinction characterizes the frequency of data utilised. On the one hand,

researchers prefer to use daily data mostly for studying the dynamic correlations

and volatility spillovers between oil and stock prices. On the other hand, monthly

data are used for structural models which incorporate the effects of oil shocks on the

fundamental value of stock prices.

For brevity, we only survey the studies which have investigated the effect of oil

shocks on stock returns.4

3This transmission mechanism is referred to as monetary channel and is discussed in Chapter 3.
4An oil (market) shock is de�ned as a variation in the price of oil propelled by an unanticipated

change in oil market fundamentals (Degiannakis, Filis, and Arora, 2018). It follows that oil price
changes and oil shocks cannot be treated as synonyms.
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One of the �rst investigations on the nexus between oil shocks and stock markets

is the paper by Jones and Kaul (1996). In their work, the authors try to understand

whether the reactions of Canadian and U.S. stock markets to oil shocks could be

justi�ed by current and future changes in real cash �ows and changes in expected

returns. The main �nding is that the feedback of stock prices to oil shocks can be

completely accounted for by the impact of these shocks on real cash �ows alone.

Using the oil price decomposition proposed by Kilian (2009), Kilian and Park

(2009) illustrate that the source of oil shock matters for the response of the U.S. stock

market. In particular, stock prices react minimally to supply-side oil shocks, whereas

demand-side oil shocks explain a signi�cant part of the variation in U.S. stock prices.

A plausible explanation for the weak impact of oil supply shocks is that production

restrictions can be somehow anticipated, and thus discounted, by market partici-

pants. On the other hand, oil price increases, which are driven by rising aggre-

gate demand, face a positive response from the stock markets. Oil-speci�c demand

shocks lead to an adverse reaction of stock prices as the uncertainty in the oil market

is transmitted to the �nancial markets. Kilian and Park (2009) conclude that the re-

sponses of stock prices to innovations in the crude oil market re�ect in part changes

in expected returns and in part changes in expected dividend growth.

Turning to the studies which focus on stock markets of oil-importing and oil-

exporting countries, Apergis and Miller (2009) evaluate the impact of oil shocks on

the stock markets of various developed countries. The authors report results which

are similar to the ones of Kilian and Park (2009), but do not �nd clear evidence of dis-

tinct patterns in the behaviour of oil-importing and oil-exporting countries. Basher,

Haug, and Sadorsky (2011) combine oil prices, exchange rates and stock returns in

a SVAR model of emerging countries. As it was the case in Kilian and Park (2009),

oil supply shocks do not seem to be an important factor for explaining stock returns

compared to demand-driven shocks. The authors highlight possible heterogeneous

responses of countries which are net oil-producers and net-oil consumers. Fang and

You (2014) examine the responses of Newly Industrialized Countries (NICs) to oil

shocks. The authors report that while the Indian and Russian stock markets react to

demand-side oil shocks, returns on the Chinese stock market do not manifest any

signi�cant response.
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Chapter 3

Theoretical Framework

This study focuses on the dynamics of oil prices by integrating fundamental supply

and demand factors. Hence, it is pertinent to lay out the basic foundation of the

global crude oil market. Also, it is of interest to understand how oil market shocks

may affect stock returns. Consequently, we sketch out the theoretical transmission

channels linking oil price changes and stock returns.

3.1 About Oil

In this section, we introduce the reader to the basic chemical properties of oil and

re�ned products, and distil the most fundamental reasons why oil is a unique com-

modity. We continue by providing knowledge about global supply and demand

forces which shape the market for this commodity. It is worth mentioning that most

of the information outlined in the following pages is extracted from the work of

Paltseva (2019).

3.1.1 Properties

Crude oil is a mixture of liquid hydrocarbons (compounds composed mainly of hy-

drogen and carbon), though it may also contain some nitrogen, sulfur, oxygen, met-

als and other chemical elements. The composition of the mixture varies from �eld

to �eld. Types of oil are primarily distinguished on the basis of different properties.

Two of the main properties of oil are density and gravity. The former refers to the

mass per unit of volume whereas the latter denotes the ratio of density of oil over

density of water. Gravity affects the re�ning technology, type, quality and amount
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of products obtained from crude oil. For instance, lighter "crudes" yield more liq-

uid fuels such as petrol, diesel and jet fuels and the re�ning is relatively easy. On

the other hand, heavier "crudes" are more dif�cult to re�ne, and the yield of (most

demanded) liquid fuels is lower. Another feature is viscosity which is a measure

of �uid's internal resistance to �ow ("thickness"). Viscosity is important for crude

oil as wells production is affected by it. More viscous crude oil is harder and more

costly to extract. Oil is also classi�ed depending on the amount of sulfur contained

in it. Sulfur represents the 0.1%-6.0% of the crude oil's composition. Sulfur and other

metals are impurities that need to be removed, or at least minimized, during the re-

�ning process. Typically, "sweet" crude oil contains less than 1% of sulfur, whereas

"sour" crude oil presents a percentage of sulfur higher than that. Roughly 75% of

world oil reserves is "sour". Lastly, it is worth noting that these distinctions are very

broad-based in comparison to the enormous variation in types of oil in the world. 1

3.1.2 Demand

According to the EIA, in 2017 the world consumption of oil amounted to 98 million

barrels per day with a very uneven distribution across the globe. The U.S. and China

account for 35% of world oil consumption, and just ten countries consume 60% of

global oil (see Figure 3.1a). As reported on The World Factbook website, the major

oil-importing countries are in order: the U.S., China, India, Japan and South Korea

(see Figure 3.1b).2 It is also worth noting that the European Union imports roughly

twice as much crude oil as the U.S. as of 2017. In the last couple of decades oil

consumption growth has been mostly positive, with the exception of the 2007-2008

�nancial crisis. According to the forecasts of British Petroleum (2019), the share of

oil will be falling in the following years but it will still be large. Most of the future

consumption growth is expected to be from non-OECD countries.

Another important aspect of the demand is the oil consumption by sector. Cur-

rently, global oil demand is driven by the transportation sector. According to the

report of the Organization of the Petroleum Exporting Countries (2019), this trend

1Kenny (2007) lists 187 different types of crude oil.
2The World Factbook is a database of the U.S. Central Intelligence Agency (CIA). Data are available

at https://www.nationsencyclopedia.com/WorldStats/CIA-World-Factbook-Oil-consumption.
html .
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FIGURE (3.1) Crude Oil Demand

(A ) Crude Oil Consumption (B) Crude Oil Imports

Notes: Crude oil consumption and imports in thousand barrels per day. Data
from The World Factbook based on 2015-2018 estimates.

is expected to continue in the next future. Again, this tendency will be mostly due

to the rising demand for cars coming from developing countries. British Petroleum

(2019) forecasts that Asian dependence on oil is going to increase. Conversely, the

demand of OECD countries' transport sector will likely decline due to alternative

technological solutions which may also improve the ef�ciency of oil use.

Turning to the oil-importing countries included in our sample, Figure 3.2 shows

the annual oil consumption per capita in China, Germany, India and the U.S. for

the period 2006-2016.3 What stands out in Figure 3.2 is the massive difference in

consumption per capita between the developed and emerging countries.

In 2020, following the COVID-19 outbreak, global oil demand is expected to de-

cline for the �rst time after 2009 (International Energy Agency, 2020). 4 The drop in

demand is mainly driven by the deep contraction in oil consumption in Asia and by

the major disruptions to global trade.

3Unfortunately, data on oil imports over time is not available. Also, note that oil consumption and
imports for these countries may be substantially different. For instance, a large share of oil consump-
tion in the U.S. comes from own production.

4The International Energy Agency (IEA) is an intergovernmental organization which acts as an
energy policy adviser to its member countries.



14 Chapter 3. Theoretical Framework

FIGURE (3.2) Annual Oil Consumption per Capita

Notes: Own calculations based on data from British Petroleum (2019) and the
World Bank for the period 2006-2016.

3.1.3 Supply

Having surveyed the magnitude of oil consumption, it is normal to ask ourselves

how to satisfy all this demand. Discoveries of conventional oil have gone from

roughly 55 billion barrels per year during the 1960s to less than 15 billion barrels

per year during the 2000s, with an approximately monotonic decrease over the pe-

riod (International Energy Agency, 2014). Hence, it is legit to ask whether the world

is, or soon will be, running out of oil. The hypothesis that oil and gas reserves would

be exhausted soon has been around since the 1970s. In this respect, Smil (2000, p. 28)

writes:

"In 1977 the Workshop on Alternative Energy Strategies predicted that oil sup-

ply would peak between 1994–1997 and fail to meet rising demand afterwards.

A year later the U.S. Central Intelligence Agency concluded that the global out-

put “must fall within a decade ahead,” and that the world “does not have years

in which to make a smooth transition to alternative energy sources.” Latest ex-

haustion forecasts see the decline of conventional oil output setting in before

2010."

At the same time, by looking at the reserves-to-production ratio (RPR), we note that
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the ratio has been stable for the last 30 years.5 This surprising �nding is motivated

by the fact that the ratio is based on proved reserves. The latter include "quantities

that geological and engineering information indicate, with reasonable certainty, can be recov-

ered in the future from known reservoirs under existing economic and operating conditions"

(Johansson et al., 2012, p. 434). Put differently, proved reserves ought to be econom-

ically recoverable. As a result of technology and market conditions changes, and

new (unconventional) types of energy availability, the stock of proven reserves have

been increasing in spite of the low discovery rate. Proved reserves more than dou-

bled over the last 35 years. According to the estimates of British Petroleum (2019),

Venezuela had the highest amount of proved oil reserves by the end of 2018, fol-

lowed by Saudi Arabia and Canada. Clearly, this does not imply that oil and other

non-renewable sources are everlasting. Simply, it means that new technologies may

delay the depletion of these resources for human use. However, economic and politi-

cal factors may matter as much as technological and geological ones. Oil and natural

resources in general are highly concentrated in few areas of the world, which implies

a big role for the geopolitics.

In 2019, the U.S. was the largest oil-producing country with a global market

share of roughly 20%. The second and third largest oil producers were Russia and

Saudi Arabia, respectively (see Figure 3.3a). As it was the case for consumption,

also production is very unevenly allocated around the globe. Indeed the top 10 oil-

producing countries account for a market share of 71%.

Since the U.S. is in the �rst place for both oil production and consumption, we

would expect a different picture when looking at oil exports. In fact, the U.S. only

ranks in the 23th position in oil exports by country. The three major oil exporters

are, instead, Saudi Arabia, Russia and Iraq (see Figure 3.3b). In the next 20 years oil

supply is expected to increase with a larger share coming from non-OPEC countries.

In particular, experts predict a booming production of unconventional oil such the

U.S. shale, Brazilian deepwater and Canadian oil sands.

Focusing on the oil-exporting countries in our sample, Figure 3.4 displays the oil

5The RPR ratio indicates the remaining lifespan (in years) of a natural resource, given a production
rate, and is calculated as

RPR=
Amount of known resource
Amount produced per year
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FIGURE (3.3) Crude Oil Supply

(A ) Crude Oil Production (B) Crude Oil Exports

Notes: Crude oil production and exports in thousand barrels per day. Data
from The World Factbook based on 2014-2018 estimates.

rents, as a percentage of GDP, for Canada, Mexico, Norway, Russia, Saudi Arabia

and the U.A.E. for the period 1990-2017.6 It is interesting to note how the series

�uctuate in concert with the major oil events. For instance, all the series spike during

the oil price surge of the early 2000s and plummet during the oil price collapse amid

the 2007-2008 �nancial crisis. Also, Figure 3.4 highlights the evident oil dependence

of the GCC countries.7

As it was for the demand, also the supply of oil has experienced an unprece-

dented situation in the recent months. In March 2020, Russia refused the proposal

of Saudi Arabia to jointly cut oil production to balance the effects of the COVID-19

pandemic on demand. This triggered a dispute which lasted for weeks until the his-

torical deal of cutting global oil production by nearly 10% was reached on April, 12.

Notwithstanding, the extent of the unbalancing of oil markets appears well beyond

the reach of this agreement (Tagliapietra, 2020).

6Oil rents are the difference between the value of crude oil production and total costs of production.
For more details about oil rents by country, please consult https://data.worldbank.org/indicator/
NY.GDP.PETR.RT.ZS.

7The Gulf Cooperation Council (GCC) is a regional intergovernmental union whose member coun-
tries are Bahrain, Kuwait, Oman, Qatar, Saudi Arabia, and the United Arab Emirates.
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FIGURE (3.4) Oil Rents (% of GDP)

Notes: Data from the World Bank for the period 1990-2017.

3.1.4 Market

Despite the utterly complex structure of the industry, global oil value chain can be

summarized in three phases: upstream, transportation and downstream (Paltseva,

2019).

The �rst phase begins with the negotiations between �rms and sovereign states

to access exploration and development of any natural resource discovered. Negotia-

tions often take years or even decades. For example, the Chad–Cameroon Petroleum

Development and Pipeline Project was completed in June 2003, whereas attempt to

develop oil resources in the region date back to the 1960s. Next, the transportation

phase requires sophisticated technology and planning to transfer the commodity.

The main ways to transfer oil from one place to another is through pipelines and

ships (tankers). The last phase is dedicated to activities such as re�ning and market-

ing of oil. Crude oil can be re�ned into a variety of end products such as motor fuels,

jet fuel, heating oil, asphalt and others. Re�ning decisions are based on the market

demand as well as the type of oil available. Oil and gas value chains may overlap

downstream with the production of petrochemicals.

The oil industry is composed by a mix of state-owned companies (NOCs) and

private companies (IOCs) and includes both large international and small companies

(in downstream). Among the largest players in the market we �nd names like British
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Petroleum, ExxonMobil, Saudi Aramco and Shell.

In general, oil prices are determined by supply and demand at the global level.

On the one hand, supply is driven by the availability of resources, technology, force

majeure, geopolitics and industry regulation. On the other hand, the major factors

driving the demand are GDP growth, consumers' preferences, energy ef�ciency and

the presence of oil substitutes. The balance between demand and supply is also

governed by the local and global environmental policies in place. Despite being a

global commodity, most crude oil in the world is not sold in the market. Instead,

it is often sold from producer to consumer directly or in smaller market segments.

Typically, contracts are not publicly observable, therefore it is problematic to infer

the fair price of the commodity. However, the price in these contracts is usually

set relative to one of the benchmarks. The main crude oil benchmarks are the West

Texas Intermediate (WTI), Brent Crude and Dubai Crude. Oil prices are evaluated by

the Price Reporting Agencies (PRAs) such as Platts and Argus Media. Furthermore,

there exists a physical spot market and a market of various �nancial instruments

(forwards, futures, swaps, options, etc.). Relative benchmark pricing may depend

on market conditions, subject to arbitrage. For instance, in the beginning of 2011 the

spread between Brent and WTI grew as a consequence of excess U.S. supply of crude

oil, relative to re�ning capacity. The spread eventually closed in mid-2014 when the

U.S. cut production in response to falling oil prices (Paltseva, 2019).

Given the recent developments, it is worth mentioning the role of unconven-

tional oil, which is produced through non traditional ways of extraction. Uncon-

ventional oil production has raised many environmental concerns within the public

due to higher CO 2 emissions, heavy use of water, energy intensity and possible land

disturbance. Among the different techniques used to extract unconventional oil, the

most famous is by far the hydraulic fracturing, commonly known as "fracking". Hy-

draulic fracturing is not a novel technique as it was invented in the very end of the

19th century and used since the 1940s both in the U.S. and in the Soviet Union. How-

ever, for a long time it was only used to stimulate vertical wells in conventional oil

reservoirs. Technological improvements made this technique �nancially pro�table

to use for wider production. Even though shale oil is widely present around the

world, hydraulic fracturing has had a crucial contribution to the boom of U.S. oil



3.2. Oil and Stock Prices 19

production. Shale and tight oil production skyrocketed since the early 2000s going

from a daily production of less than 0.5 million barrels to more than 4.5 million bar-

rels in 2014. The shale revolution in the U.S. triggered a decrease in imports and an

increase in oil supply outside the country. This behaviour put pressure on prices and

OPEC behaviour, eventually leading to changes in the geopolitical climate.

3.2 Oil and Stock Prices

Even though oil price changes are often considered an important determinant for

understanding �uctuations in stock prices, there is no clear consensus about the

linkage between oil and stock markets among economists. Therefore, it is relevant to

try to discern what are the theoretical transmission mechanisms by which oil price

changes can affect stock markets. In a recent paper, Degiannakis, Filis, and Arora

(2018) identify �ve distinct transmission channels.

3.2.1 Stock Valuation Channel

The stock valuation channel is the direct transmission mechanism by which oil prices

in�uence stock prices and, thus, stock returns. First, it is useful to de�ne stock re-

turns, Ri ,t , as

Ri ,t = ln
�

Pi ,t

Pi ,t � 1

�
(3.1)

where ln is the natural logarithm and Pi ,t is the stock price of �rm i at time t.8 The

linkage between oil and stock markets starts from the consideration that the current

price of a stock should be determined by its discounted future cash �ows. Formally,

Pi ,t =
N

å
n= t+ 1

E
�

CFn

(1 + r)n

�
(3.2)

where CF is the cash �ow at time n, r is the discount rate and E(�) is the expectation

operator. Therefore, any factor which could affect the discounted future cash �ows

should have a signi�cant effect on the asset price (Huang, Masulis, and Stoll, 1996).

Most importantly, oil prices can affect expected cash �ows by in�uencing either the

numerator or the denominator of equation (3.2) or both.

8Throughout the thesis we refer to the terms returns and log returns interchangeably.
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Since oil is a real resource and a key input for production, any increase of its price

causes a rise in costs faced by oil-user �rms (cost production effect). This reper-

cussion triggers a reduction of pro�ts and eventually a decrease in shareholders'

value. On the other hand, for an oil-producer �rm the oil price increase results in

higher pro�t margins and thus increased expected cash �ows, holding everything

else equal.9 As a consequence, the effect on a speci�c stock depends on whether the

underlying �rm is a net producer or a net consumer of oil. Intuitively, we would ex-

pect oil-producing �rms to exhibit a bullish behaviour in times of upward oil price

pressures, whereas the reverse holds true for oil-consuming �rms. An important

issue for this study is whether we can extend the �rmwide argument to a nation-

wide context. In other words, if the mechanism described above applies to net oil-

exporting countries and net oil-importing countries.

3.2.2 Monetary Channel

Oil prices can also affect stock prices via the expected discount rate, also referred to

as required return. Intuitively, the required return re�ects the time value of money

and the risk premium demanded by investors. According to Mohanty and Nandha

(2011), the discount rate incorporates, at least in part, expected in�ation and ex-

pected real interest rates.

Theoretically, companies adversely affected by rising oil prices should transmit

the increased production costs to consumers by applying higher prices. At national

level, higher oil prices adversely affect the balance of payments of a net oil-importing

country, putting downward pressure on the country's foreign exchange rates and

putting upward pressure on the expected domestic in�ation rate. Assuming the

pass-through from companies to consumers takes place, we would expect a response

from the monetary authority in order to control higher in�ationary pressures. 10

A typical action taken by a central bank is to increase short-term interest rates

(Basher and Sadorsky, 2004).11 Higher short-term interest rates exert two effects

9Hence, the stock valuation channel exerts an effect on the numerator of equation (3.2) only.
10According to a study of Cologni and Manera (2008) for the G-7 countries, unexpected oil shocks

trigger monetary policy responses directed to �ght in�ation. As a result, policymakers face a trade-off
between controlling in�ation and reducing output through higher interest rates.

11Here, we have to assume that the monetary authority follows some type of rules like the well-
known Taylor rule (Taylor, 1993).



3.2. Oil and Stock Prices 21

on stock prices. First, they lead to higher commercial borrowing rates for any fu-

ture �rm investments. 12 Second, due to increased borrowing costs, �rms have fewer

positive net present value (NPV) projects causing a reduction in cash �ows. Hence,

the response of the monetary authority, following positive changes in oil prices, in-

creases (reduces) the denominator (numerator) of equation (3.2), depressing stock

prices overall.

It should be noted that the magnitude of such effects heavily hinges on the cen-

tral bank's credibility to stabilize in�ation. A highly credible monetary authority

maintains in�ation expectations close to the in�ation target regardless of the oil price

increase. This argument clearly does not hold for a central bank with low credibility.

3.2.3 Output Channel

The output channel refers to the mechanism through which oil price �uctuations

affect aggregate output. There exists a rich literature examining this transmission

mechanism (see, e.g., Hamilton (1983); Kilian (2008a); Kilian (2008b)). Via this chan-

nel, positive oil price changes impact on aggregate output through both a production

cost effect and an income effect.

As we have already described the former, we now focus on the latter. The income

effect can be seen as a reduction in the discretionary income of households caused by

an increase of retail prices as well as gasoline and heating oil prices (Bernanke, 2006).

A decrease in income leads to lower consumption and thus aggregate output which

further diminishes labor demand. 13 Svensson (2005) shows how an increase in the

relative price of an imported commodity, like oil, deteriorates the terms-of-trade for

an oil-importing country, eventually causing lower income and a negative wealth

effect on consumption. Intuitively, the stock market of a country which heavily relies

on oil imports reacts negatively to such events.

It is important to stress that the validity of these arguments hold for an oil-

importing economy. Conversely, an oil-exporting country experiences, ceteris paribus,

12This effect is manifested via the bank lending channel of monetary policy. A central bank's policy
change affects the amount of credit that banks issue to �rms and consumers which in turn affects the
real economy.

13Edelstein and Kilian (2009) try to quantify the direct effect on real consumption caused by energy
price shocks and �nd that these shocks are an important factor in explaining U.S. real consumption
growth.
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a positive income shock due to increased oil revenues. If this positive dynamic more

than offsets the negative effect of increased production costs, then an upward change

in stock prices is expected.

More dif�cult is to assess how such developments affect different sectors of the

economy of an oil-exporting country. It can be foreseen that certain sectors bene�t

more than others from an oil price increase. Nevertheless, there could be positive

spillovers across industries following an oil price increase and, hence, the basic idea

of the output channel ought to hold, in general.

3.2.4 Fiscal Channel

The �scal channel is chie�y concerned with oil-exporting countries which are �nanc-

ing physical and social infrastructure using their oil revenues (Degiannakis, Filis,

and Arora, 2018). Following a surge in oil prices, oil royalties for governments in

oil-producing countries may increase and potentially lead to higher public expen-

diture. Many studies investigate the effects of oil price increases on government

spending behaviour in developing oil-exporting countries. 14

Theoretically, private consumption and government spending can be considered

either as complements or substitutes. In the former case, an expansionary �scal

policy boosts household consumption and thus �rms' expected cash �ows. In the

latter case, instead, the opposite effect realizes due to the crowding out effect. This

concept refers to the phenomenon for which an expansionary �scal policy drives

down, or even wipes out, private sector spending.

In light of these considerations, the �scal channel could be either bene�cial or

detrimental for stock returns in an oil-exporting economy.

3.2.5 Uncertainty Channel

The last transmission mechanism linking oil price �uctuations and stock returns is

the uncertainty channel of Brown and Yucel (2002). These authors claim that up-

ward oil price �uctuations cause higher uncertainty in the real economy resulting

from shifts in in�ation, aggregate demand and output. Degiannakis, Filis, and Arora

14See, for example, Dizaji (2012) for the case of Iran.
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(2018) add that increased economic uncertainty may reduce �rms' demand for irre-

versible investments as companies cannot foresee whether the increase in energy

prices will be long-lasting or transitory.

Furthermore, higher oil prices may also affect the risk premium component of

stock prices. The risk premium re�ects the extra return investors demand as a com-

pensation for the risk that the cash �ows might not materialize after all, given the

outlook for corporate earnings. In this sense, the effect of uncertainty driven by

higher oil prices is twofold: a decrease in companies' expected cash �ows as well as

an increase of equity risk premia.

Finally, the studies of Bernanke (1983) and Edelstein and Kilian (2009) support

the validity of the uncertainty channel. Bernanke (1983) argues that uncertainty

is propagated to households which respond by reducing consumption of durable

goods . Edelstein and Kilian (2009) claim that increased incentives for households to

save and for companies to delay investments dampen economic growth prospects

and stock returns.

3.2.6 Summary of the Channels

We have described �ve transmission channels which are in line with the literature

on oil prices and stock markets. Before proceeding further, it is useful to raise three

considerations about these theoretical transmission mechanisms.

First, the combination of effects within a speci�c channel or across different chan-

nels may generate ambiguous responses of the stock markets. For instance, through

the output channel, increases in oil prices generate both a negative production cost

effect and a positive income effect in an oil-exporting country. Basher, Haug, and

Sadorsky (2018) illustrate that the weight of these effects depends on the elasticity

of demand for oil and the time horizon considered (i.e. short-run versus long-run

elasticities). Even though we would expect the income effect to dominate in an oil-

exporting economy, the empirical evidence might be fuzzy.

Second, the pass-trough from oil prices to stock returns does not exclude possi-

ble delayed effects which are not directly imputable to oil price �uctuations. For in-

stance, an oil-exporting country may bene�t from higher oil prices due to increased

revenues. Nevertheless, an appreciation of the local currency, following the oil price
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increase, may deteriorate the balance of trade of this country and this would even-

tually lead to a new equilibrium. 15

Third, we do not try to explicitly disentangle the speci�c transmission channels

since this would require a larger array of variables and, possibly, more sophisticated

models, such as dynamic stochastic general equilibrium (DSGE) models.16 Instead,

the scope of this study is to pin down the reactions of oil-exporting and oil-importing

countries to different oil market shocks based on the simple hypotheses outlined in

Chapter 1, while keeping in mind the broad implications of the �ve channels.

15Basher, Haug, and Sadorsky (2016) identify substantial exchange rate appreciation pressures in
oil-exporting countries following oil price increases driven by aggregate demand shocks.

16One of the hardest challenges for economists is to examine how a speci�c variable impacts on
another, ceteris paribus. Clearly, the problem of isolating this effect is particularly relevant within a
macroeconomic framework, like the one of the present study, in which several factors are at play.
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Chapter 4

Data

In this chapter we shortly outline the data employed in the empirical analysis. We

rely on two different types of data. In the �rst stage, oil market data is used for

estimating the SVAR model, whereas in the second stage, stock market data is used

for estimating the linear regression models.

4.1 Oil Market Variables

In order to construct the oil market structural shocks, we employ three variables: the

percentage change in global crude oil production, an index of real economic activity

and the log returns of the real price of oil. Data are collected at a monthly frequency

for the period 1986:1-2017:1.

First, we use a measure of world oil supply, sourced from the EIA, which is mea-

sured in thousand barrels per day. Figure 4.1a shows the historical evolution of the

series. To obtain the percentage change in global oil production, we calculate the log

difference of the series and transform it into percentages.

Second, we use the index of real economic activity constructed by Kilian (2009) as

a proxy for aggregate demand. The series is obtained from the dataset of Zhou (2019)

which is publicly available on the Journal of Applied Econometrics Data Archive.

The index is based on dry cargo single voyage ocean freight rates and is designed

to capture �uctuations in the demand for industrial commodities at a global level

(Kilian, 2009, p. 1055). Since global economic activity is the most relevant determi-

nant of the demand for transport services, increases in freight rates, given a largely

inelastic supply of suitable ships, are indicative of a higher demand for industrial
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FIGURE (4.1) Oil Market Variables

(A ) World Oil Production (B) Real Economic Activity Index

(C) WTI

commodities, including oil. Kilian (2009) constructs this measure from the equal-

weighted average of the percent growth of shipping rates which is then de�ated by

the U.S. CPI.1 This proxy has been used by several authors studying the oil market

(see, e.g., Kilian and Park (2009); Fang and You (2014); Zhu et al. (2016); Basher,

Haug, and Sadorsky (2018); Zhou (2019)). Figure 4.1b displays the �uctuations in

real economic activity over time.

Third, as a proxy for global oil prices we employ the WTI spot price measured

in U.S. Dollars per barrel. 2 The series is sourced from the St. Louis Federal Reserve

Economic Database (FRED). Figure 4.1c illustrates that oil prices have experienced

some important peaks and troughs during the years. The main events that took

1For a detailed description of the construction of this index, the reader is referred to Kilian (2009,
pp. 1055-1058).

2Since it is primarily sourced from the U.S., WTI is the main crude oil benchmark for North America.
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place in the period under investigation are discussed in Chapter 6. To obtain the

real price of oil, we de�ate the WTI nominal price by the U.S. CPI, sourced from the

FRED. Then, we compute the log returns of the real price of oil using formula (3.1)

and convert them into percentages.

4.2 Stock Market Variables

Our dataset comprises stock market data of six oil-exporting countries (Canada,

Mexico, Norway, Russia, Saudi Arabia and the U.A.E.) and four oil-importing coun-

tries (China, Germany, India and the U.S.). In addition, we include a proxy for global

stock markets which serves as a control variable in the second stage of our methodol-

ogy. Table A.1 in Appendix A provides information about the stock market indices

employed in this study. Differences in sample periods among countries are solely

due to data availability. Figures 4.2a-4.3d illustrate the historical evolution of the

stock market indices.

To obtain the real stock returns we follow the same procedure adopted for com-

puting the real log returns of oil prices. The only difference is that we use the

country-speci�c CPIs to de�ate the nominal stock indices. 3 Again, the CPIs are

sourced from the FRED.

To de�ne the sample, we ful�ll the following �ve criteria. First, all the countries

have a well established stock market.4 Second, the selected countries are in the top

15 oil-importers and oil-exporters. 5 Third, the countries are a mixture of traditional

stock markets and emerging stock markets. This source of heterogeneity could po-

tentially provide interesting insights in the empirical analysis. Fourth, the countries

represent different geographical markets. For this reason we include Germany even

though it ranks after Japan and South Korea in terms of oil imports (see Figure 3.1b),

since the Asian market is already represented by China and India. Fifth, the net

oil position of a country has not changed over the sample period. This means that

3Note that we use the U.S. CPI to de�ate the stock indices of the GCC countries as those are denom-
inated in U.S. Dollars. In this sense, stock returns in Saudi Arabia and the U.A.E. can be seen from the
perspective of an U.S. investor.

4In this respect, some concerns may arise about the inclusion of Saudi Arabia and the U.A.E. in our
sample. We follow Basher, Haug, and Sadorsky (2016) who have assessed the validity of including the
GCC countries using a measure based on market capitalization.

5We base our choice upon the latest available ranking of the The World Factbook.
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FIGURE (4.2) Stock Indices of Oil-exporting Countries

(A ) Canada (B) Mexico

(C) Norway (D) Russia

(E) Saudi Arabia (F) United Arab Emirates
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FIGURE (4.3) Stock Indices of Oil-importing Countries

(A ) China (B) Germany

(C) India (D) United States
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an oil-importer or an oil-exporter has belonged to the same category for the whole

period.

Table 4.1 displays the summary statistics of the stock return series. It is worth

noting that the U.A.E. is the only country which exhibits a negative mean return and

is also the country with the highest volatility of returns. This can be explained by the

fact that the sample period for this country is quite short and includes the 2007-2008

�nancial crisis. In general, the stock returns of the emerging markets exhibit higher

volatilities compared to the ones of established markets.

TABLE (4.1) Descriptive Statistics of the Stock Return Series

Country N Mean St. Dev. Min Pctl(25) Pctl(75) Max

CAN 372 0.261 4.301 � 25.919 � 1.783 2.920 12.642

MEX 302 0.464 6.990 � 35.938 � 2.897 4.698 17.814

RUS 195 0.380 8.330 � 35.345 � 4.135 5.058 19.439

NOR 372 0.519 6.515 � 32.243 � 2.793 4.723 15.366

SAU 155 0.121 7.899 � 27.719 � 3.734 4.339 17.585

UAE 132 � 0.702 9.428 � 39.317 � 5.607 4.430 21.493

CHN 234 0.253 8.056 � 27.978 � 4.691 4.954 29.116

GER 349 0.543 6.054 � 28.694 � 2.443 4.404 19.387

IND 234 0.256 7.199 � 28.660 � 3.585 4.919 24.221

USA 372 0.425 4.424 � 24.803 � 1.997 3.166 11.747

World 372 0.305 4.461 � 20.113 � 2.107 2.954 10.316

Notes: N is the number of observations, St. Dev. is the standard deviation, Pctl(25) and
Pctl(75) are the 25th and 75th percentiles, respectively.
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Methodology

In this chapter we direct our attention to the methodology used to investigate the

effect of oil market shocks on international stock markets. We start by describing the

preliminary tests used to get a �rst idea of the properties of our data. Testing for sta-

tionarity and cointegration of the oil market variables is crucial in order to correctly

set up the oil market model. We proceed by outlining the two-stage approach. The

�rst step consists of decomposing oil prices into three structural shocks through a

SVAR model à la Kilian.1 In the second step, we de�ne the linear regression models

which link stock markets to these structural shocks. Lastly, we discuss the issue of

structural breaks in time series analysis.2

5.1 Stationarity

5.1.1 De�nition

Stationarity is a key concept in time series analysis. In a very intuitive way, station-

arity means that the statistical properties of a process generating a time series do

not change over time. Stationarity is crucial because many useful analytical tools,

statistical tests and models rely on it. Hence, a stationary time series is much easier

to model, investigate and predict (Palachy, 2019). Also, testing for stationarity is a

precondition for cointegration analysis which is discussed in the following pages.

1The expression à la Kilian has been extensively used in the oil market literature ever since the
introduction of the oil price decomposition technique of Kilian (2009).

2Notice that the notation may slightly change from one section to the other. However, the notation
is consistent within each section.
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Using the de�nition of Enders (2015, p. 52), a stochastic process, yt , having a

�nite mean and variance, is covariance (or weak) stationary if for all t and t � s,

E(yt ) = E(yt � s) = m

E [(yt � m)2] = E [(yt � s � m)2] = s2
y

E [(yt � m)(yt � s � m)] = E [(yt � j � m)(yt � j � s � m)] = gs

(5.1)

where m, s2
y and gs are all constants.3 Simply put, a series is covariance stationary if

its mean and autocovariances are unaffected by a change of the time origin.4

In practice, data being stationary is the exception rather than the rule. For ex-

ample, often raw variables have to be transformed by taking natural logarithms to

stabilize their variance. Besides, several variables have (deterministic or stochastic)

trends that must be explicitly removed or modeled to ensure stationarity. 5

A typical situation in which the assumption of stationarity does not hold occurs

when a time series has a stochastic trend (or unit root). The simplest case of a unit

root process is the well-known Random Walk (RW) series

yt = yt � 1 + ut (5.3)

where ut is white noise.6 Rewriting equation (5.3) recursively backward and impos-

ing an initial condition on y0, we obtain

yt = yt � 2 + ut � 1 + ut

= yt � 3 + ut � 2 + ut � 1 + ut

=
...

= y0 +
t

å
i= 1

ui

(5.4)

3The second and third equations in (5.1) can also be rewritten as

Var(yt ) = Var(yt � s) = s2
y

Cov(yt , yt � s) = Cov(yt � j , yt � j � s) = gs
(5.2)

4For a detailed explanation of stationarity, the reader is referred to Enders (2015, pp. 51-55).
5A trend in a time series variable can be seen as a systematic upward or downward movement over

time (Kilian and Lütkepohl, 2017, p. 20).
6A time series is called white noise if it represents a sequence of identically distributed random

variables with �nite mean, �nite variance and no serial correlation (Tsay, 2010, p. 36).
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It is easy to note that the variance of equation (5.4) is time-dependent. A shock to the

series will have a persistent effect violating the requirements for reliable statistical

inference.

Another issue with non-stationary series is related to the concept of spurious

regressions. The latter refers to the situation in which two series are signi�cantly

correlated, even though a real relationship between the two does not exist (McCal-

lum, 2010, p. 321). Statistical inference based on spurious regressions is misleading.

The only case in which two non-stationary series have a meaningful interpretation

occurs when these series are cointegrated.

A common technique for tackling a unit root problem is differencing a series

until it becomes stationary. A series that needs to be differenced d times in order

to achieve stationarity is de�ned as integrated of order d or, more simply, an I (d)

series.

One way to analyze the stationarity properties of a series is the visual inspection

of its autocorrelation function (ACF). The lag- k sample autocorrelation function of a

yt series is de�ned as

r k =
å T

t= k+ 1(yt � m)(yt � k � m)

å T
t= 1(yt � m)2

(5.5)

where mdenotes the unconditional mean and 0 � k < T � 1 (Tsay, 2010, p. 31). As a

rule of thumb, the ACF of a stationary series should converge geometrically to zero,

whereas persistence in the ACF is an indicator of a unit root process.

5.1.2 Unit Root Tests

The inspection of the ACF of a series is one useful way for detecting stationarity.

Alternatively we can rely on ad hoc tests such the Augmented Dickey-Fuller (ADF),

Phillips-Perron (PP) and Kwiatkowsky, Phillips, Schmidt and Shin (KPSS) tests. 7

The �rst two tests belong to a broader class of Dickey-Fuller (DF) tests. To un-

derstand the essence of a DF test, we start with a simple �rst-order autoregressive,

AR(1), process

yt = r yt � 1 + ut (5.6)

7Ideally, the results of all these tests should bring us to the same conclusions. In applied work,
however, the results of different stationarity tests may be divergent.
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which can be rewritten as

Dyt = ( r � 1)yt � 1 + ut

= dyt � 1 + ut

(5.7)

where D is the �rst difference operator. There are three main versions of the DF test,

1. test for a unit root:

Dyt = dyt � 1 + ut (5.8)

2. test for a unit root with drift:

Dyt = a0 + dyt � 1 + ut (5.9)

3. test for a unit root with drift and deterministic trend:

Dyt = a0 + a1t + dyt � 1 + ut (5.10)

In each case, the null hypothesis is that the yt series has a unit root, i.e. H0 : d = 0.

The main pitfall of these speci�cations is that they often cannot distinguish be-

tween true unit root processes (d equals zero) and near unit root processes (d is close

to zero). Since the tests are computed on the residual term, it is not possible to use

the standard t-distribution for obtaining the critical values. To overcome this issue,

Dickey and Fuller (1979) have tabulated an ad hoc distribution whose critical values

depend on which of the three versions of the test is used as well as on the sample

size.

The ADF test extends the general framework of equation (5.10) to

Dyt = a0 + a1t + dyt � 1 + g1Dyt � 1 + ...+ gp� 1Dyt � p+ 1 + ut (5.11)

Thanks to the inclusion of lagged values of the dependent variable, the ADF for-

mulation handles possible autocorrelation in the residual term. 8 In the empirical

analysis we employ all the three versions of the ADF test. 9

8Note that for brevity we have only reported the equation for the case of a unit root with drift and
deterministic trend. However, the same approach applies to the other two cases.

9We refer to ADF( t 1) for the baseline version, to ADF( t 2) for the version with drift, and to ADF( t 3)
for the version with drift and deterministic trend.
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A possible limitation of the ADF test is that it assumes the homoskedasticity of

the error term, ut , in equation (5.6). The PP test of Phillips and Perron (1988) corrects

this de�ciency by accounting for both autocorrelation and heteroskedasticity in the

error term. The main difference compared to the ADF test is that the PP test makes

a non-parametric correction to the test statistic by using the Newey and West (1987)

heteroskedasticity and autocorrelation consistent (HAC) covariance matrix estima-

tor.

Another prominent test for detecting the presence of a unit root is the KPSS test

of Kwiatkowski et al. (1992). The latter is a useful complement to the DF tests since

for "economic" reasons we would prefer having the null hypothesis of stationarity. 10

The idea behind this test is best explained using the following equation

yt = xt + ut (5.12)

where ut is stationary and xt is a RW series such that

xt = xt � 1 + vt (5.13)

where vt � i .i.d.(0,s2
v ). If s2

v equals zero, then xt = x0 for every t and, thus, yt is

stationary. The null hypothesis of stationarity can be formally stated as

H0 : s2
v = 0 (5.14)

Similar to the ADF test, the KPSS test can detect stationarity either around a mean

or a trend. For future reference, we de�ne the former case as KPSS(c) test and the

latter case as KPSS(t ) test. Simulated critical values are also available.

10A disadvantage of the DF-like tests is that they require strong evidence to reject the null hypothesis
of a series being non-stationary.
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5.2 Cointegration

5.2.1 De�nition

Cointegration is a fundamental concept in multivariate time series analysis. In econo-

metric terms, cointegration refers to any long-run relationship among non-stationary

variables (Enders, 2015, p. 346). Formally, two stochastic processes are cointegrated

if they have the same order of integration and share the same stochastic trend. Coin-

tegrated variables generally show similar developments over time. Different statis-

tical methods have been conceived for detecting cointegration. For the purpose of

this study, a cointegration analysis is performed to establish the validity of a VAR

model over a vector error-correction (VEC) model. To this end, we employ two tests

for cointegration: the Engle-Granger methodology and the Johansen procedure.

5.2.2 Engle-Granger Approach

Enders (2015, pp. 360-364) provides a clear illustration of the Engle-Granger ap-

proach. For simplicity, suppose that two variables, y1t and y2t , are assumed to be

I (1) and we want to determine whether there exists an equilibrium relationship be-

tween these series. Engle and Granger (1987) propose a two-step methodology to

determine if two I (1) series are cointegrated of order one, i.e. CI(1, 1). In the �rst

step, we must test the order of integration of the variables employing, for instance,

the unit root tests mentioned above. If both variables are stationary, then it is not

necessary to proceed further since standard time series methods apply to stationary

variables. If the variables are integrated of different orders, we can conclude that

they are not cointegrated. Instead, if the results of the unit root tests suggest that y1t

and y2t are I (1) series, we can proceed with the second step in which we derive the

long-run equilibrium relationship.

The long-run equilibrium relationship takes the form

y1t = b0 + b1y2t + #t (5.15)

where we can denote the residual sequence from equation (5.15) by #̂t . As pointed
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out by Enders (2015, p. 361), the#̂t series contains the estimated values of the de-

viations from the equilibrium relationship. If #̂t is stationary, then y1t and y2t are

cointegrated of order one, i.e. CI(1, 1). It is convenient to check whether the resid-

ual sequence is stationary by using a DF test of the form

D#̂t = d#̂t � 1 + et (5.16)

in which the null hypothesis is again H0 : d = 0. As already mentioned before, if

the residuals et of equation (5.16) do not appear to be white noise, an ADF test can

be implemented instead. More importantly, as we do not observe the actual errors,

#t , but only their estimates, #̂t , we cannot rely on the ordinary DF critical values and

instead we should use the critical values interpolated using the response surface of

MacKinnon (2010).

Finally, if the null hypothesis of no cointegration is rejected, then the residu-

als from the long-run equilibrium relationship can be used to estimate the error-

correction model (ECM).

5.2.3 Johansen Procedure

An alternative way for detecting cointegration is the well-known Johansen proce-

dure. Enders (2015, p. 374) illustrates that the Johansen procedure can be seen as

a multivariate version of the DF test. Recall that in equation (5.7) we test the null

hypothesis H0 : d = 0 to determine the stationarity of a time series. Using the

same logic, if we transform equation (5.7) into a VAR system, then the stationar-

ity of the model itself can be tested. This transformed VAR model is called vector

error-correction (VEC) model. 11

To explain the transformation from a VAR to a VEC model, consider a VAR(1)

model including two variables, y1t and y2t , and no deterministic terms. Let yt be

a 2 � 1 vector containing y1t and y2t , yt � 1 be a 2� 1 vector containing the lagged

values of the two series, A1 be a 2� 2 matrix containing the slope coef�cients and #t

11Since the VEC model is not employed in the empirical analysis, we do not describe it thoroughly
here. However, the interested reader is referred to Kilian and Lütkepohl (2017, pp. 75-108) for a com-
prehensive analysis of the topic.
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be the 2� 1 vector of residuals. This model can be written as

yt = A1yt � 1 + #t (5.17)

and subtracting yt � 1 from both sides, and rearranging terms yields the VEC model

Dyt = P yt � 1 + #t (5.18)

where P = � ( I2 � A1) and I2 denotes the 2� 2 identity matrix. The reader can im-

mediately notice that equations (5.17) and (5.18) are the analogous versions of equa-

tions (5.6) and (5.7) in a multivariate fashion. Similar to the DF test, the Johansen

methodology tests whether the rank of the matrix P in equation (5.18) equals zero.12

Based on the rank of P , three scenarios might occur (Zagler, 2004, p. 166). First,

if the rank of P is zero then the system in equation (5.18) has two different stochas-

tic trends and, thus, there is not any cointegrating relationship between the two

variables. Second, when P has full rank, we can de�ne a separate linear long-run

relationship for each equation in the VAR system which implies that all variables

are stationary (Enders, 2015, p. 359). Third, if P has reduced rank, then there is

cointegration between the two variables. 13

Generally, the Johansen procedure tests the rank ofP sequentially, starting from

the null hypothesis of H0 : rank = 0 and then H0 : rank � 1 and so forth. The

rank of P indicates the number of cointegrating relationships and, correspondingly,

the number of common stochastic trends in the system. For example, a general n-

variable system has r cointegrating relationships and (n � r) common trends. As it

was the case for the DF test, the critical values of the Johansen procedure are sensi-

tive to the presence of deterministic terms in the model. 14

12The rank of a general matrix A is de�ned as the maximum number of linearly independent
columns of A.

13In the example above, with two variables, reduced rank implies a rank equal to one.
14For an overview of the different speci�cations of the Johansen procedure, please consult Enders

(2015, pp. 389-393).
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5.3 Structural Vector Autoregression

In this section, we present the �rst stage of our methodology. Along the lines of

Kilian (2009), we construct a SVAR model aimed at decomposing the real price of

crude oil into three components. In particular, the VAR model of Sims (1980) has

the desirable property that the model variables are treated symmetrically so that all

variables are jointly endogenous. We begin by outlining the three-variable oil market

model. Next, we show the properties of a reduced-form VAR model and its stability

conditions. Lastly, we extend the reduced-form VAR model in order to identify the

structural innovations of interest. 15

5.3.1 Model Overview

Let yt = ( Dprod t , reat , Drpo t )
0be the vector of monthly observations where Dprod t

denotes the percentage change in global crude oil production, rea t is a global real

economic activity index and Drpo t is the �rst log difference of the real price of oil. 16

Then, the reduced-form VAR representation is

yt = u +
24

å
i= 1

A iyt � i + #t (5.19)

where u is a deterministic term, A i for i = 1, . . . , 24 are 3� 3 parameter matrices and

#t is a three-dimensional zero mean white noise process. The sample period covered

in this study is 1986:2-2017:1.17

The general setting of the model in (5.19) is motivated as follows. First, we set

24 lags in order to capture the long cycles of global commodity markets. In this

regard, Kilian and Zhou (2017) advise to include at least two years of monthly lags.

Under�tting the VAR model could potentially lessen the importance of aggregate

demand-driven oil shocks. Consequently, we do not make use of the conventional

information criteria in order to establish the lag length of the VAR model. 18 Second,

15From this point forward we refer to the terms innovation, shock and disturbance interchangeably.
16The only difference compared to Kilian (2009) is that we utilise the changes in the real price of oil

rather than its level form since we want a VAR model composed of stationary series only.
17However the model results are available from 1988:2 since we lose 24 observations from lagging

the three variables.
18For our data, the Akaike Information Criterion (AIC) points toward a VAR(2) model. The latter

speci�cation would be clearly improper for the study of the oil market.
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we include monthly dummy variables to capture seasonal effects which are usually

present in energy markets (Back, Prokopczuk, and Rudolf, 2012). Third, we include

roughly 30 years of data which should be able to capture the different types of oil

market shocks over time. As explained by Kilian and Zhou (2017), the identi�cation

of a structural VAR model rests on the presence of suf�cient variation in the data

driven by each shock. This assumption may not hold if a too short sample is chosen.

5.3.2 Reduced-form Model

A general form of the model in (5.19) with p lags and no deterministic terms can be

represented as

yt =
p

å
i= 1

A iyt � i + #t (5.20)

where yt , for t = 1, . . . ,T, denotes aK-dimensional vector of time series data, A i is a

K � K matrix of autoregressive slope coef�cients, and #t is the K-dimensional vector

of zero mean innovations. The innovations are assumed to be serially uncorrelated,

granted the correct lag length has been chosen, but are allowed to be mutually cor-

related with variance-covariance matrix

S# = E(#t#0
t ) (5.21)

Consequently, the error term is a white noise process #t � i .i.d.(0,S#). The main

point of the VAR( p) model in (5.20) is that it expresses the current values of the

data as a linear function only of its own lagged values and lagged values of the

other model variables up to some prespeci�ed maximum lag order p (Kilian and

Lütkepohl, 2017, p. 2).

In order to test the hypothesis of no serial correlation in the estimated reduced-

form residuals #̂t , a Breusch-Godfrey Lagrange Multiplier (LM) test can be imple-

mented.19 The Breusch-Godfrey LM statistic is based upon the auxiliary regression

#̂t = u + A1yt � 1 + . . .+ Apyt � p + B1#̂t � 1 + . . .+ Bh#̂t � h + u�
t (5.22)

19For a better description of this test, the reader is referred to Breusch (1978) and Godfrey (1978).
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where the #̂t with t � 0 are replaced by zero and u�
t is an auxiliary error term (Kilian

and Lütkepohl, 2017, pp. 53-54). The null hypothesis is de�ned as

H0 : B1 = . . . = Bh = 0 (5.23)

and correspondingly the alternative hypothesis implies that at least one of these

coef�cients differs from zero. As an additional check, we also test for serial correla-

tion of the reduced-form residuals using a small sample correction of the Breusch-

Godfrey LM test which was proposed by Edgerton and Shukur (1999).

Finally, we must say that the simple model in (5.20) has little power for the pur-

pose of this study. A transformation to a structural form of (5.20) is therefore needed.

5.3.3 Stability

As pointed out by Kilian and Lütkepohl (2017, p. 2), SVAR analysis hinges on the

presumption that the data generating process (DGP) is well approximated by a

reduced-form VAR. In applied work, a key feature for assessing the appropriate-

ness of a reduced-form VAR model is its stability. In loose terms, a stable process is

one that does not diverge to in�nity (i.e. an explosive process). The concept of sta-

bility is well illustrated by Lütkepohl (2007, pp. 12-18). Consider the simple VAR(1)

model:

yt = u + A1yt � 1 + #t (5.24)

where u is a deterministic term. Then, imposing an initial condition on y0 and iter-

ating forward in (5.24) yields

y1 = u + A1y0 + #1

y2 = u + A1(u + A1y0 + #1) + #2

y2 = ( IK + A1)u + A2
1y0 + A1#1 + #2

=
...

yt = ( IK + A1 + . . .+ A t � 1
1 )u + A t

1y0 +
t � 1

å
j= 0

A j#t � j

(5.25)
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where IK denotes theK � K identity matrix. All the yt , for t > 0, are a function of just

y0 and the error terms. The reader can immediately recognize that equation (5.25)

resembles equation (5.4) in a multivariate framework. 20

Notice that if all the eigenvalues, l , of matrix A1 are smaller than one in absolute

value, substitution in (5.25) can continue and yt can be written as

yt =
u

( IK � A1)
+

¥

å
j= 0

A j
1#t � j (5.26)

= m+
¥

å
j= 0

A j
1#t � j (5.27)

where mdenotes the unconditional mean of the model. Hence, a VAR(1) model is

called stable if and only if all the eigenvalues of A1 are smaller than one in modulus

or equivalently

det( IK � A1z) 6= 0 for jzj � 1 (5.28)

where det(�) is the determinant of the matrix in parenthesis. The inequality in (5.28)

can be generalized to a VAR(p) model whose stability condition is de�ned as

det( IK � A1z � A2z2 � . . . � Apzp) 6= 0 for jzj � 1 (5.29)

and is called the reverse characteristic polynomial of the VAR( p) process. If the roots

of the reverse characteristic polynomial do not lie in and on the complex unit circle

then the VAR( p) process is stable (Lütkepohl, 2007, p. 16). Lastly, it is worth men-

tioning that in a VAR( p) model with K variables there are Kp roots.21

5.3.4 Structural Model

Going back to the reduced-form VAR in (5.20), we can estimate the model parame-

ters by least squares (LS) methods applied separately to each of the model equations

(Pfaff, 2008). In fact, the ordinary least squares (OLS) estimators are both consistent

and ef�cient under the assumption of #t � i .i.d.(0,S#).

20The only difference is that here we have introduced the deterministic term u, however the conclu-
sions would have not changed if we had omitted it.

21We have provided an overview of the topic. For the mathematical derivation of the stability con-
ditions, please consult Lütkepohl (2007, pp. 12-18).
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Nevertheless, the properties of a reduced-form model may be unsatisfactory for

two reasons. First, the model in (5.20) allows for an unrestricted number of lags but

does not allow for contemporaneous relationships among the variables. Since eco-

nomic theory often links variables contemporaneously, the model in (5.20) must be

adjusted accordingly. 22 The second de�ciency of the reduced-form VAR is that its

error terms are in general mutually correlated. Hence, we would like to decompose

these error terms into mutually orthogonal innovations. Orthogonality is important,

for instance, when we try to quantify the effect of a shock to one equation, holding

all other shocks constant.23 If the error terms are correlated, then a shock to one

equation is associated with shocks to other equations and, thus, the ceteris paribus

assumption is violated. In a regression context, like the one in the second stage of

our methodology, it is essential that the constructed oil market shocks are orthogo-

nal variables. As illustrated by Basher, Haug, and Sadorsky (2016), if orthogonality

holds, the innovation series are uncorrelated with other included and omitted vari-

ables in the regression model and their estimated coef�cients are unbiased. 24

To overcome these two limitations, we can model the instantaneous relations

between the system variables by means of a SVAR model. A conventional approach

is to convert the reduced-form model in (5.20) into its structural representation,

Ayt = A �
1yt � 1 + . . .+ A �

pyt � p + A#t

A �
j = A A j

(5.30)

for j = 1, . . . ,p and

A#t = Bet (5.31)

where et � i .i.d.(0, IK) and, A and B are two K � K invertible matrices. From (5.31)

we can infer that there are as many structural innovations as variables in the model

22Alternatively, we can think of the instantaneous relationships as naturally hidden in the correlation
structure of S# (Amisano and Giannini, 1997, p. 15).

23What econometricians call impulse-response analysis (IRA).
24Under this scenario, the only consequence of the omitted variable bias is an increase in the residual

variance in the regression.
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and that the structural innovations are, by de�nition, orthogonal (Kilian and Lütke-

pohl, 2017, p. 109). The SVAR model in (5.30) can also be rewritten as

Ayt ( IK � A1L � A2L2 � . . . � ApLp) = A#t = Bet (5.32)

where L is the lag operator.25

The so-calledAB-model of Amisano and Giannini (1997) is a common approach

for "orthogonalizing" the innovations in a short-run VAR model. 26 The AB-model

suits well our purpose since the simultaneous equation system in (5.31) is postulated

for the reduced-form errors #t directly rather than for the observable variables yt

(Lütkepohl, 2007, p. 364).27

Solving for the reduced-form errors

#t = A � 1Bet (5.33)

and substituting for (5.21), we then obtain the variance-covariance matrix of #t :

S# = E [(A � 1Bet )(A � 1Bet )0] (5.34)

= E [(A � 1Bet )e0
tB

0(A � 1)0] (5.35)

= A � 1BE(ete0
t )B

0(A � 1)0 (5.36)

= A � 1BSeB0(A � 1)0 (5.37)

= A � 1BIKB0(A � 1)0 (5.38)

= A � 1BB0(A � 1)0 (5.39)

For notational convenience, we also de�ne

P = A � 1B (5.40)

25The lag operator is de�ned to be a linear operator such that for any value of a time series yt ,
Li yt � yt � i and for any constant c, Lc � c.

26The terminology short-run stems from the fact that we impose restrictions on the contemporaneous
responses among the variables. Alternatively, we could have estimated a long-run SVAR model along
the lines of Blanchard and Quah (1989).

27Indeed, all we care about for the estimation in the second stage is the set of orthogonal innovations.



5.3. Structural Vector Autoregression 45

and obtain the �nal version of the variance-covariance matrix as

S# = PP0 (5.41)

Recall that, as we employ three variables (K = 3) in our VAR(24) model, the variance-

covariance matrix in (5.41) has a 3� 3 structure of the form

S# =

2

6
6
6
6
6
6
4

s11 s12 s13

s21 s22 s23

s31 s32 s33

3

7
7
7
7
7
7
5

=

2

6
6
6
6
6
6
4

p11 p12 p13

p21 p22 p23

p31 p32 p33

3

7
7
7
7
7
7
5

2

6
6
6
6
6
6
4

p11 p12 p13

p21 p22 p23

p31 p32 p33

3

7
7
7
7
7
7
5

0

=

2

6
6
6
6
6
6
4

p11 p12 p13

p21 p22 p23

p31 p32 p33

3

7
7
7
7
7
7
5

2

6
6
6
6
6
6
4

p11 p21 p31

p12 p22 p32

p13 p23 p33

3

7
7
7
7
7
7
5

(5.42)

where si j and pi j , for i, j = 1, 2, 3, are the parameters of matricesS# and P, respec-

tively.

At this point, however, we encounter a problem. Given its symmetric nature,

the variance-covariance matrix S# has 3(3+ 1)
2 free parameters.28 On the other hand,

the right-hand side (RHS) of equation (5.42) presents nine unknown parameters. To

illustrate the point that it is not possible to uniquely solve equation (5.41), we write

28Trivially, the symmetry of S# comes from the fact that s12 = s21, s13 = s31 and s23 = s32.
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down the nine equations from the system in (5.42) as

s11 = p2
11 + p2

12 + p2
13 (5.43)

s12 = p11p21 + p12p22 + p13p23 (5.44)

s13 = p11p31 + p12p32 + p13p33 (5.45)

s21 = p21p11 + p22p12 + p23p13 (5.46)

s22 = p2
21 + p2

22 + p2
23 (5.47)

s23 = p21p31 + p22p32 + p23p33 (5.48)

s31 = p31p11 + p32p12 + p33p13 (5.49)

s32 = p31p21 + p32p22 + p33p23 (5.50)

s33 = p2
31 + p2

32 + p2
33 (5.51)

In the system above, there are three sets of equations which are identical, namely

equations (5.44) and (5.46), equations (5.45) and (5.49), and equations (5.48) and

(5.50). Since we have six independent equations to solve for nine unknown pa-

rameters, the system is not identi�ed unless some restrictions on the P matrix are

imposed.

5.3.5 Identi�cation

Even though there exists a variety of alternative strategies for achieving identi�ca-

tion, we follow Kilian (2009) and employ a recursively identi�ed SVAR model. More

speci�cally, this model is identi�ed by means of short-run exclusion restrictions

on the model variables. Imposing exclusion restrictions is the most common ap-

proach for reducing the number of parameters to estimate in a SVAR model. In sim-

ple words, this identi�cation strategy limits the contemporaneous feedback among

some of the model variables.

Imposing restrictions on the P matrix implies reducing the number of free pa-

rameters of both the A and B matrices. Recall that the A and B matrices have nine

elements each whereas the matrix S# has six free parameters only. Therefore the
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order condition for identi�cation requires

2 � 9 � 6 = 12

total restrictions to be placed on the A and B matrices.29 Following Amisano and

Giannini (1997, pp. 18-19) we de�ne the two matrices of interest as

A =

2

6
6
6
6
6
6
4

1 0 0

a21 1 0

a31 a32 1

3

7
7
7
7
7
7
5

(5.52)

and

B =

2

6
6
6
6
6
6
4

b11 0 0

0 b22 0

0 0 b33

3

7
7
7
7
7
7
5

(5.53)

The form of the A matrix provides the recursive structure, while the diagonal ma-

trix B "orthogonalizes" the effects of the innovations. 30 Most importantly, we have

restricted six parameters in each matrix, ful�lling the order condition for identi�ca-

tion. The P matrix resulting from (5.40) is lower triangular (i.e. the three elements

above the principal diagonal are equal to zero) and therefore the variance-covariance

S# in (5.41) can be uniquely identi�ed. By imposing the minimum amount of restric-

tions, we obtain what is called a short-run just-identi�ed SVAR model. 31

Amisano and Giannini (1997, p. 20) show that the parameters in the matrices A

and B can be estimated by minimizing the negative of the concentrated log-likelihood

function,

ln Lc(A,B) = �
KT
2

ln (2p ) +
T
2

ln jA j2 �
T
2

ln jBj2 �
T
2

tr (A0B0� 1B� 1AS̃#) (5.54)

29For a VAR model containing K variables the order condition can be generalized to include

2K2 �
K(K + 1)

2

restrictions.
30Notice that this identi�cation scheme reproduces the effects of a Choleski decomposition.
31We could have imposed more restrictions than the ones dictated by the order condition, resulting

in an overidenti�ed model.
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where K is the number of parameters in the model, T is the sample size, tr(�) is

the trace of the matrix in parenthesis and S̃# is the estimate of the reduced-form

variance-covariance matrix. The log-likelihood function in (5.54) can be estimated

using numerical methods. More speci�cally, we employ the scoring algorithm which

is embedded in the "vars" R package of Pfaff (2008).32

The �nal step consists of retrieving the structural shocks by combining the reduced-

form errors, estimated with LS methods, and the parameters of the A and B matrices,

estimated with numerical methods. Then by substituting for P in (5.33), we obtain

#t = Pet (5.55)

which is the �nal equation relating the reduced-form and structural errors. Using

the terminology of Kilian and Lütkepohl (2017, p. 109), P is de�ned as the struc-

tural impact multiplier matrix as it includes the short-run restrictions imposed to

the SVAR model.

Since our interest lies in the structural errors, we rearrange equation (5.55) into

et = P� 1#t (5.56)

and obtain the desired orthogonal innovations.

5.3.6 Ordering

In the context of this study, equation (5.55) can be formally represented as

#t =

0

B
B
B
B
B
B
@

#Dprod
t

#rea
t

#Drpo
t

1

C
C
C
C
C
C
A

=

2

6
6
6
6
6
6
4

p11 0 0

p21 p22 0

p31 p32 p33

3

7
7
7
7
7
7
5

0

B
B
B
B
B
B
@

eoil supply shock
t

eaggregate demand shock
t

eoil-speci�c demand shock
t

1

C
C
C
C
C
C
A

(5.57)

32For a more detailed description of the AB-model, the interested reader is referred to Amisano and
Giannini (1997, pp. 48-59).
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The representation in (5.57) matches with the oil market model of Kilian (2009, p. 1058).

For simplicity, we rename the elements of the vector of structural innovations to

et = [ es
t , ed

t , eidi
t ]0

where eidi
t refers to a residual shock designed to capture idiosyncratic oil demand

shocks (Kilian and Murphy, 2010).

Each row of the system in (5.57) can be viewed as an equation by multiplying

each term on the RHS such that

#Dprod
t = p11e

s
t (5.58)

#rea
t = p21e

s
t + p22ed

t (5.59)

#Drpo
t = p31e

s
t + p32ed

t + p33eidi
t (5.60)

The reduced-form errors, #t , are expressed as weighted averages of the mutually

uncorrelated innovations, et , with the elements of matrix P serving as weights.

Along the lines of Kilian (2009), the three structural shocks in (5.57) are inter-

preted as follows: es
t represents unexpected innovations to the global supply of crude

oil; ed
t captures disturbances to oil demand due to changes in global demand for

industrial commodities; and eidi
t seizes the innovations which cannot be explained

by the �rst two shocks. Hence, the residual shock eidi
t should primarily capture the

movements in precautionary demand for crude oil driven by the uncertainty regard-

ing future oil supply. 33

A rationale for the ordering of the variables in (5.57) is given as follows. First,

global supply of crude oil does not respond to innovations in the demand for oil

within the same month (i.e. a vertical short-run oil supply curve) due to the high ad-

justment costs of oil production and uncertainty about the future state of the oil mar-

ket. This assumption seems reasonable because supply decisions are made based on

expectations of medium-term demand. 34 Second, while aggregate demand responds

to oil supply shocks within the same month, it takes more than a month for the global

33To a lower extent, eidi
t can also capture changes in oil demand which are not explained by variations

in present demand for industrial commodities. For instance, an increased preference for more fuel-
ef�cient cars would result in lower demand for oil, given the same level of global economic activity.

34Theoretical support for this assumption is provided by Anderson, Kellogg, and Salant (2018).
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economic activity to react to oil-speci�c demand shocks. 35 This conjecture is in line

with the sluggish adjustments of global real economic activity following movements

in oil prices (Kilian, 2009, p. 1059).36 Third, the real price of oil responds to shocks

to both oil supply and global real economic activity within the same month. This

assumption seems plausible as any exogenous changes in oil production or aggre-

gate demand are immediately transmitted to oil prices (Basher, Haug, and Sadorsky,

2016).37

5.4 Linear Regression Models

The second stage of our analysis consists of specifying a set of linear regression mod-

els aimed at disentangling the effects of the structural shocks on stock markets.

To address the question of how stock returns respond to different oil market

shocks, a linear regression model is estimated for each stock market,

sri ,t = b0,i + b1,ie
s
i,t + b2,ie

d
i,t + b3,ie

idi
i,t + b4,iWi ,t + ui ,t (5.61)

where sri ,t is the real stock return for country i at time t. The shock variables come

from the previously estimated SVAR model. We also include the log returns of a

world stock market index, W, to control for in�uences on stock returns other than

oil shocks. We do not include lagged values of the structural shocks as extra explana-

tory variables because we assume a certain degree of ef�ciency of the stock markets.

For the U.S., we adjust the model in (5.61) such that

sri ,t = b0,i + b1,ie
s
i,t + b2,ie

d
i,t + b3,ie

idi
i,t + b4,iWi ,t � 1 + ui ,t (5.62)

where the only difference consists of lagging by one period the variable that controls

for global stock market returns. This choice is motivated by the fact that a large share

35Kilian and Zhou (2017) establish the validity of this assumption for the business cycle index em-
ployed in this study.

36Given that changes in global real activity are sluggish, one could also restrict the contemporaneous
response of aggregate demand to oil supply innovations, i.e. imposing p21 = 0 in the system in (5.57).
However, Kilian and Lütkepohl (2017, pp. 225-226) argue that the estimate of p21 is empirically close
to zero, even though the parameter is left unrestricted.

37The oil price collapse amid the COVID-19 outbreak is a real-life example that supports this conjec-
ture.
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of the MSCI World Index is composed of U.S. stocks and ignoring endogeneity in a

regression model could potentially lead to invalid statistical inference. 38

With the second regression model we try to understand whether the oil shocks

increase the stock market co-movement among oil-exporting countries, and anal-

ogously, among oil-importing countries. Stock market co-movement is a relevant

subject in �nance, mainly due to its role for asset allocation, portfolio diversi�ca-

tion and risk management (Jach, 2017). In our context, the term co-movement refers

to the phenomenon in which two (or more) time series tend to move in sync. The

literature provides several quantitative methods for computing the degree of stock

market co-movement. We follow Yang, Wang, and Wu (2013, p. 1237) and use the

degree of market dispersion to measure how closely different stock markets �uc-

tuate together. In order to proxy the degree of market dispersion, we employ the

cross-sectional standard deviation (CSSD) index of Christie and Huang (1995). The

latter is formally de�ned as

CSSDj,t =

s
å N

i= 1(sri ,t � srj,t )2

N � 1
(5.63)

where sri is de�ned above and srj,t is the cross-sectional average of theN returns

in the aggregate portfolio j at time t.39 As described by Christie and Huang (1995),

this index quanti�es the degree to which stock returns of different countries tend

to plunge and surge together. The main intuition behind equation (5.63) is that the

larger the level of market dispersion (CSSD), the lower the degree of stock market

co-movement. To study how oil market shocks affect the stock market co-movement

of a group of country, we specify the following linear regression model,

CSSDj,t = b0,j + b1,je
s
j,t + b2,je

d
j,t + b3,je

idi
j,t + uj,t (5.64)

where CSSDj,t denotes the stock market dispersion proxy for portfolio j at time t.

All the regression models are estimated by OLS methods using the Newey and

38As of 2020 the U.S. has a weight of 64,34% on the composition of the MSCI World Index. Also,
the decision of using lagged world stock returns is driven by the absence of suitable alternatives. The
best option would have been the MSCI World excluding USA Index which is not accessible. On the
other hand, time series of Exchange Traded Funds (ETFs) tracking the performance of developed stock
markets, excluding the U.S., are not long enough to cover the sample period of interest.

39The portfolio includes the stock returns of either oil-exporting countries or oil-importing countries.
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West (1987) heteroskedasticity and autocorrelation consistent (HAC) covariance ma-

trix estimator. 40.

More importantly, we assume that the oil market shocks are predetermined vari-

ables with respect to changes in stock prices. This assumption is crucial to rule out

any feedback effects from stock returns to oil shocks within the same month, since

including explanatory variables which are not strictly exogenous would invalid sta-

tistical inference. The assumption of predetermined oil market shocks with respect

to macroeconomic and �nancial variables is supported in Kilian (2009). In addition,

Kilian and Vega (2011) show that there are no contemporaneous responses from U.S.

macroeconomic aggregates to innovations in oil prices at daily and monthly hori-

zons.41 Given the leading role of the U.S. within the global economy, we believe it is

fair to assume that the results of Kilian and Vega (2011) can be extended to the other

countries in our sample.

Finally, it is worth noting that most of the stock return series do not cover the

full estimation period (1986:2-2017:1). In order to deal with this issue, we follow

the recommendation of Kilian and Zhou (2017) and recover the shocks from the

SVAR model estimated on the full sample, but �t the linear regression models on the

country-speci�c subsamples.

5.5 Structural Breaks

The issue of detecting structural breaks in time series is very relevant. Many macroe-

conomic and �nancial time series regularly present structural changes. The latter

may arise for several reasons. For instance, breaks may occur following new market

regulations, �nancial crisis, changes in central banks' targets etc.

40As long as the independent variables are strictly exogenous, heteroskedasticity or autocorrelation
in the errors does not cause bias or inconsistency in time series regressions. Nevertheless, OLS standard
errors and tests statistics are no longer valid, even asymptotically, in the presence of serial correlation
(Wooldridge, 2009, pp. 412-414)

41Also, several authors have placed �nancial variables below the oil market variables in their re-
cursively identi�ed SVAR models, indicating no feedback effects from the �nancial markets to the oil
market (see, e.g., Kilian and Park (2009) and Kang, Ratti, and Yoon (2014)).
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To better understand the concept of structural breaks, we follow Zeileis et al.

(2002) and consider the standard linear regression model

yi = x0
i bi + ui (5.65)

where i = 1, . . . ,n and ui � i .i.d.(0,s2).42 Moreover, xi = ( 1,xi2, . . . ,xik)0denotes a

K � 1 vector of observations of the explanatory variables, with the �rst component

equal to unity, and bi is the K � 1 vector of regression coef�cients. A test for struc-

tural breaks establishes whether the vector of coef�cients bi is time invariant. The

null hypothesis of no structural changes is formally stated as

H0 : bi = b0 (5.66)

for i = 1, . . . ,n. Correspondingly, the alternative hypothesis implies that the coef�-

cient vector varies over time.

In what follows, let b̂(n) be the OLS estimate of the regression coef�cients based

on all the n available observations so that the OLS residuals can be denoted as

ûi = yi � x0
i b̂

(n) (5.67)

with the variance estimate

ŝ2 =
1

n � K

n

å
i= 1

û2
i (5.68)

There are various statistical methods for testing the null hypothesis in (5.66)

building upon the OLS residuals in (5.67). The most common way for detecting

structural breaks in a time series regression is the Chow test. One way to perform

the Chow test is to divide the dataset in two subsets and check the equality of pa-

rameters in the following way:

(SSR� (SSR1 + SSR2)) / K
(SSR1 + SSR2)/ (n � 2K)

(5.69)

where SSRis the sum of squared OLS residuals (Enders, 2015, p. 103).

However, this procedure presents three main shortcomings. First, we need to

42Notice that we have changed the time subscript from t to i.
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have enough observations to create two separate subsamples. This is a main concern

in our case, as some of the stock return series present no more than ten years of data.

Splitting an already short sample would strongly undermine statistical inference.

Second, the Chow test assumes that we know the timing of the structural break. This

assumption is, of course, hard to be met in practice. Our sample presents a number

of events which could potentially be responsible for structural breaks. Third, the

test speculates that the models in the two subsamples have the same variance. This

equality assumption should be itself tested.

In light of these drawbacks, we rule out the possibility of using the Chow test for

our analysis. A much easier and more ef�cient way for detecting structural changes

is to test for the presence of endogenous breaks. An endogenous break is described

as a change occurring at a not prespeci�ed date (Enders, 2015, p. 104). More specif-

ically, we employ a statistical method which has gained increasing success in recent

years: the OLS-CUSUM test. The latter belongs to the generalized �uctuation test

framework of Kuan and Hornik (1995). The OLS-CUSUM test, �rst proposed by

Ploberger, Krämer, and Kontrus (1989), is meant to capture structural breaks in the

linear regression model based on the cumulative sums of the error terms. More pre-

cisely, it builds upon an empirical �uctuation process (efp) that captures the move-

ments in the OLS residuals.

The OLS-CUSUM type empirical �uctuation process is de�ned as

W0
n (t) =

1
ŝ

p
n

bntc

å
i= 1

ûi (5.70)

where W(t), for 0 � t � 1, is the Standard Brownian Motion (or Wiener Process),

bntc is the integer part of nt, and ûi and ŝ come from equations (5.67) and (5.68),

respectively. The limiting process for W0
n (t) starts in zero at t = 0 and goes back to

zero at t = 1. Zeileis et al. (2002, pp. 4-5) point out that the limiting process of the efp

in (5.70) is known and consequently the critical boundaries can be computed. The

probability of crossing these boundaries under (5.66) is a. If the OLS-CUSUM efp

exceeds, at some point in time, these boundaries then the �uctuation is improbably

large and hence (5.66) should be rejected at the signi�cance levela.43

43For more details about the generalized �uctuation tests, the reader is referred to Zeileis et al. (2002).
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Chapter 6

Empirical Results

In this chapter, we outline the results of the two-stage procedure. We start by show-

ing the outcome of the preliminary tests. Next, we describe the estimation results of

the �rst stage and make sure that the VAR model is well-speci�ed. We proceed by

showing the results of the linear regression models and assess the stability of their

parameters over time. We conclude with a robustness test in which we employ an

alternative proxy for global oil prices.

6.1 Preliminary Tests

6.1.1 Unit Root Test Results

Before estimating the VAR model, it is appropriate to test for the unit root properties

of the series. As explained before, a VAR model containing nonstationary data might

lead to a spurious regression problem, resulting in unreliable estimates.

Table 6.1 shows the test statistics of the unit root tests conducted on the original

and differenced series. As explained in Chapter 4, the global oil production and

the real oil price series were originally transformed by taking natural logarithms.

The optimal lag length of the ADF test is chosen based on the Akaike Information

Criterion (AIC). 1

The global oil production series shows mild indications of trend stationarity, as

displayed by the test statistic of ADF( t 3). The PP test barely rejects the unit root

hypothesis at the 10% signi�cance level. However, the null hypothesis of stationarity

1The formula for the AIC is
AIC = T � ln (SSR) + 2n

where T is the number of usable observations and n is the number of parameters estimated.
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TABLE (6.1) Results of the Unit Root Tests for the Oil Market Vari-
ables

Panel A: Original series

ADF( t 1) ADF( t 2) ADF( t 3) PP KPSS(c) KPSS(t )

prod t 1.153 � 0.858 � 3.446b � 3.397c 2.573a 0.300a

reat � 4.123a � 4.114a � 4.118a � 3.477b 0.168 0.150b

rpo t � 0.021 � 2.296 � 2.888 � 2.790 1.426a 0.239a

Panel B: Differenced series

ADF( t 1) ADF( t 2) ADF( t 3) PP KPSS(c) KPSS(t )

prod t � 18.072a � 18.125a � 18.122a � 26.406a 0.071 0.034

reat � 15.329a � 15.322a � 15.309a � 16.054a 0.058 0.056

rpo t � 12.469a � 12.456a � 12.445a � 14.855a 0.083 0.079

Notes: Test statistics of the unit root tests outlined in Chapter 5. a, b and c denote statistical
signi�cance at the 1%, 5%, and 10% level, respectively.

is �rmly rejected at the 1% level using the KPSS tests. Conversely, the stationarity of

the differenced series is supported by the results of all the six tests.

The ADF tests support the stationarity of the real economic activity series as the

null hypothesis is rejected at the 1% signi�cance level in all three cases. The KPSS

test version with a trend, KPSS(t ), provides only weak evidence against stationarity

(rejection at the 5% level). Another reason to support the I (0) nature of the series is

the fact that the real economic activity index is already detrended and, according to

Kilian and Murphy (2010), stationary by construction. For completeness, we provide

the unit root test results for the differenced series in Panel B of Table 6.1.

The real oil price series is clearly nonstationary since oil prices have dramatically

�uctuated over the sample considered (see Figure 4.1c). In fact, the ADF and PP tests

cannot reject the null hypothesis at any levels, whereas the KPSS tests suggest the

presence of a unit root in the series (rejection at the 1% level). The last row of Panel

B of Table 6.1 reveals that rpot is indeed an I (1) series.

6.1.2 Cointegration Test Results

Next, we test for cointegration between the two I (1) series. If global crude oil pro-

duction (prod t) and the real price of oil (rpo t) were cointegrated, then we would
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need to include the error-correction term in the VAR model. 2

First, we conduct the Engle-Granger methodology. We regress the crude oil pro-

duction series on the real price of oil series and save the residuals.3 The ACF of the

estimated residuals is displayed in Figure B.1 in Appendix B. The residuals show a

high degree of persistence that is con�rmed by the results of the ADF test. In fact,

the test statistic of the ADF test is -2.303 which is not smaller than the corresponding

critical values of MacKinnon (2010). In our case, with more than 300 observations,

the 10% critical value is equal to -3.067 (see Table B.1 in Appendix B).4

As an additional check, we also perform the Johansen procedure for cointegra-

tion. Table 6.2 illustrates that the null hypothesis of no cointegration between the

two variables cannot be rejected at the 10% signi�cance level.

Since both the Engle-Granger methodology and the Johansen procedure do not

provide evidence of cointegration, we rule out the possibility of a VEC model.

6.2 Oil Market Model

6.2.1 Preliminary Checks

In light of the results of the unit root and cointegration tests we proceed by estimat-

ing the VAR model in (5.19). The latter is composed of three I (0) series:Dprodt , reat

and Drpot .

Each of the three equations in the VAR system contains 24 lags, a constant and

seasonal dummy variables. We do not report the OLS estimates for the VAR equa-

tions since they are not of direct interest for the purpose of this study. 5 However, it is

interesting to report that the monthly dummy variables are statistically signi�cant.

This basic point underscores the importance of considering seasonality in oil market

models as claimed by Hamilton and Herrera (2004).

Turning to the analysis of the error terms, we see that the ACFs of the reduced-

form residuals indicate absence of autocorrelation (see Figures B.2a-B.2c in Appendix

2The vector error-correction (VEC) model can be seen as a restricted VAR model.
3As noted by Enders (2015, pp. 360-364), either prodt or rpo t can be used as the dependent variable.
4Notice that using the critical values of the Dickey-Fuller table would be very misleading (Enders,

2015, pp. 360-364). In the present case, for instance, we would reject the null hypothesis of nonstation-
ary residuals at the 5% signi�cance level.

5We omit the results also for a matter of space since each of the three equations includes 84 param-
eters.
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TABLE (6.2) Results of the Johansen Procedure for prodt and rpo t

Type Rank Test Statistic 90% Con�dence Level

l trace R=0 11.36 15.66

R� 1 1.32 6.50

l max R=0 10.03 12.91

R� 1 1.32 6.50

Notes: l trace and l max denote the trace statistic and max-eigenvalue statistic, respectively.

B). In fact, all the spikes lie within the two blue dashed lines which denote the sig-

ni�cance threshold. Only Figure B.2a presents a signi�cant spike at lag 18 which is

most likely spurious and, thus, not relevant. In addition, Table 6.3 displays the re-

sults of two multivariate tests for no serial correlation in the reduced-form residuals.

Neither the Breusch-Godfrey test nor the Edgerton-Shukur test can reject the null

hypothesis of no serial correlation.

TABLE (6.3) Results of the Multivariate Tests for Serial Correlation
in the Reduced-form Residuals

Type Test Statistic p-value

BG 53.962 0.169

ES 0.900 0.660

Notes: BG and ES denote the Breusch-Godfrey and the Edgerton-Shukur tests, respectively.

The absence of serial correlation in the reduced-form residuals does not imply,

however, lack of mutual correlation among them. Table 6.4 shows that the reduced-

form residuals are indeed correlated with each other. This highlights the importance

of estimating the structural form of a VAR model. Including the reduced-form resid-

uals in the second stage would be clearly wrong since the explanatory variables in

the regression models should be independent.

The reduced-form VAR model also meets the stability condition since the reverse

characteristic polynomial of the process has no roots in and on the complex unit

circle (Lütkepohl, 2007, p. 16). As a �nal check for the reduced-form VAR model, we

check whether its parameters are time invariant. Kilian and Lütkepohl (2017, pp. 69-

72) point out that the stationarity of a VAR model is violated not only if the stability
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TABLE (6.4) Correlation Matrix of the Reduced-form Residuals

Dprod rea Drpo

Dprod 1.000

rea � 0.021 1.000

Drpo � 0.106 0.151 1.000

condition does not hold but also if the model parameters change over time. It turns

out that the OLS-CUSUM test for structural breaks outlined in Chapter 5 can also

be adopted in a multivariate framework. 6 Figure B.3 in Appendix B provides clear

evidence for the time invariance of the model parameters since in none of the three

cases the empirical �uctuation processes exceed the 5% critical boundaries.

6.2.2 Structural Oil Market Shocks

The reduced-form VAR model appears to be well-speci�ed as it passes all the di-

agnostic checks: no serial correlation in the residuals, stability of the process and

time invariance of the model parameters. The next step consists of estimating the

structural form using the AB-model of Amisano and Giannini (1997) and obtain the

orthogonal innovations.

Figures 6.1a-6.1c plot the time paths of the oil market structural shocks. The latter

have been summed up by quarters to improve readability. The �rst thing we notice

is that the oil supply shock series presents higher volatility in the very �rst part of the

sample. On the other hand, the aggregate demand shock series �uctuate more in the

second part of the sample, especially after the 2008-2009 global economic recession.

Figures 6.1a-6.1c show that, at any point in time, the real price of oil responds to a

multitude of oil market shocks.

A historical explanation of the different shocks is given as follows.

In 1985, amid a dispute among OPEC members, Saudi Arabia decided it would

no longer attempt to sustain the price of oil by diminishing production and, con-

versely, began producing at full capacity. This turbulent period, in the mid to late

6The CUSUM test was originally proposed for linear regression models, however Ploberger,
Krämer, and Kontrus (1989) establish its validity in dynamic models.
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