

Abstract

The concept of DevOps, a cultural movement and technical solution that combines

development and operations, has gained considerable interest from practitioners since

its introduction 2009. The increased attention is grounded in the exceptional value

proposition that DevOps promises. However, organizations still lack practical evidence

on the adoption and maturing of DevOps. Motivated by the increased attention on

DevOps, this thesis investigates how organizations can mature their DevOps approach

through a longitudinal paired-case study of two Danish organizations. Based on 26

interviews with various IT professionals, we adopt a maturity model and process theory

to facilitate a broader understanding of DevOps and the processes within. We not only

identify several drivers and capabilities that can mature an organization's DevOps

approach but also contribute to the existing research by defining crucial challenges and

pitfalls associated with DevOps. Our research pioneers the discussion of whether

organizations can become too DevOps mature. This discussion contributes to a critical

view of maturity models that may assist individual organizations in assessing the

optimal level of maturity.

1

Preface

Reference Standard

When referencing literature, this thesis will utilize the American Psychological Association (APA)

standard. The APA standard consists of the following structure: (Author, Year of publishing). This

standard is very widely used within research, and by the vast majority of the literature included in

this thesis, why this thesis will utilize the same method for consistency and readability. A comprised

list of the literature that has been referenced in this thesis will be available in the bibliography at the

end of the thesis.

When this thesis references interviews, both from the primary and secondary data, the reference will

appear in the following way: (Respondent X, Organization, Year). A list of all respondents, with

corresponding numbers, is found in section 11 Appendices.

Acknowledgments

We want to extend our sincerest gratitude towards the supervisor of the thesis, Till Winkler, for his

availability and guidance throughout the process of writing. Furthermore, we express our gratefulness

to the two case organizations, Topdanmark and Proactive, for allowing us the opportunity to perform

a case study within the companies and delegating resources to the cause. The close collaboration

between the researchers and each of the case companies is much appreciated. Lastly, we express our

gratitude towards Associate Professor at the IT University of Copenhagen, Oliver Krancher, for his

valuable inputs and guidance in shaping the thesis.

2

Table of Contents
Preface .. 1

Reference Standard .. 1

Acknowledgements .. 1

1 Introduction .. 6

1.2. Research Question... 8

1.4. Structure of Thesis .. 9

2 Literature Review ... 12

2.1. Literature Review Method .. 13

2.2. Fundamentals of DevOps .. 15

2.3. DevOps Challenges ... 17

2.4. DevOps Culture... 18

2.5. DevOps Value ... 21

2.6. Software Maturity Models .. 24

2.7. DevOps Maturity Models.. 26

3 Methodology .. 31

3.1. Research Philosophy ... 31

3.2. Research Approach ... 32

3.3. Research Design .. 33

3.4. Longitudinal Analysis ... 35

3.5. Data Collection ... 36

3.5.1. Operationalization .. 36

3.5.2. Primary Data .. 37

3.5.3. Secondary Data .. 40

3.5.4. Referencing Interview Quotes ... 41

3.6. Data Analysis .. 41

3

4 Case Descriptions ... 43

4.1. ProActive .. 43

4.2. Topdanmark .. 44

5 Analytical Framework.. 46

5.1. Maturity Assessment ... 46

5.2. Process Theory .. 47

6 Within-Case Analysis .. 49

6.1. ProActive Maturity Assessment.. 49

6.1.1. Previous Level of Maturity .. 49

6.1.2. Current Level of Maturity .. 51

6.1.3. Summary .. 58

6.2. Topdanmark Maturity Analysis .. 59

6.2.1. Previous Level of Maturity .. 59

6.2.2. Current Level of Maturity .. 62

6.2.3. Summary .. 70

6.3. Visual Maps .. 72

6.3.1. Issue Domains .. 72

6.3.2. Boxes .. 73

6.3.3. Direct and Indirect Relationships ... 73

6.3.4. Maturity Indicators ... 74

6.4. Visual Map of ProActive .. 75

6.5. Visual Map of Topdanmark .. 76

7 Comparative Analysis .. 77

7.1. Procedural Analysis .. 77

7.2. Challenges ... 80

7.3. Findings ... 85

4

8 Discussion .. 88

8.1. Organizational Size ... 88

8.2. Organizational Structure ... 88

8.3. Tools and Infrastructure .. 91

8.4. Communication ... 93

8.5. Tenure, Competences, and Mindset .. 94

8.6. Fragmented Planning Activities .. 95

8.7. The Perceived Value of DevOps Maturity .. 96

8.8. Implications for Theory .. 100

8.9. Implications for Practice ... 100

8.10. Limitations .. 101

8.11. Future Research... 103

9 Conclusion ... 105

10 Bibliography... 107

11 Appendices ... 112

11.1. Appendix A – Competence Model (Feijter et al. 2018) .. 113

11.2. Appendix B – Focus Areas and Capabilities (Feijter et al., 2018)...................................... 114

11.3. Appendix C – Interview Guide ... 120

11.4. Appendix D – Primary Data.. 122

11.5. Appendix E – Secondary Data .. 123

5

Table of Figures

Figure 1: Structure of thesis ... 11

Figure 2: The fundamentals of DevOps ... 16

Figure 3: The Topham Model by Inbar et al. (2013) ... 26

Figure 4: The maturity model by Mohamed (2015) .. 27

Figure 5: The Focus Area Model by Feijter et al. (2018) .. 29

Figure 6: Snippet of the interview guide .. 39

Figure 7: Assessment of ProActive's previous level of maturity (2015) ... 50

Figure 8: Assessment of ProActive's current level of maturity (2020) .. 52

Figure 9: ProActive's DevOps maturity progression ... 58

Figure 10: Assessment of Topdanmark's previous level of maturity (2015) 60

Figure 11: Assessment of Topdanmark's current level of maturity (2020) 63

Figure 12: Topdanmark’s DevOps maturity progression .. 70

Figure 13: Visual map of ProActive .. 75

Figure 14: Visual map of Topdanmark .. 76

Figure 15: The fully embedded topology (Skelton & Pais, 2019) ... 90

Figure 16: The DevOps team silo (Skelton & Pais, 2019)... 90

Table of Tables

Table 1: Concept matrix ... 12

Table 2: Overview of operationalization ... 37

Table 3: Overview of respondents (primary data) ... 38

Table 4: Overview of respondents (secondary data) (Nielsen et al., 2017) 40

file://///Users/niklastastum/Desktop/Thesis%20on-going.docx%23_Toc40364652
file://///Users/niklastastum/Desktop/Thesis%20on-going.docx%23_Toc40364663
file://///Users/niklastastum/Desktop/Thesis%20on-going.docx%23_Toc40364664
file://///Users/niklastastum/Desktop/Thesis%20on-going.docx%23_Toc40364665
file://///Users/niklastastum/Desktop/Thesis%20on-going.docx%23_Toc40364666

Introduction | 6

1 Introduction

Previously, the traditional approach to software development included a distinct handover of code

from development to operations, enforcing clear work and cultural boundaries between the two. Now,

the growing need for the ability to release new applications, features, and bug fixes daily has led

many organizations to explore new strategies for software development. Building on lean and agile

practices, the DevOps concept has emerged and significantly impacted the entire IT and software

industry with the promise of end-to-end automation of software development and delivery (Ebert et

al., 2016). DevOps is derived from the combination of the two words, development and operations,

and intends to blend these practices into one efficiently operating cohesion to overcome the traditional

boundaries (Lwakatare, Kuvaja, & Oivo, 2015).

Research has revealed that IT organizations experience staggering amounts of cost due to unplanned

downtime in applications (Elliot, 2014). Furthermore, Elliot (2014) reports that, on average, 25% of

an application's development and operations life cycle is considered wasteful and unnecessary. These

are some of the problems scholars believe that DevOps can diminish. Ebert et al. (2016) report that

the successful adoption of DevOps improves cycle times by 10 to 30% while reducing cost by up to

20% due to mutual understanding of requirements, maintenance, service, and product evolution.

Though DevOps creates benefits, it also brings particular challenges for companies. The challenges

of achieving DevOps include the integration of a supportive technical architecture and a shift in

culture and mindset (Ebert et al., 2016).

Without the combination of a supportive technical architecture and an embedded DevOps culture,

organizations seeking to adopt DevOps cannot function effectively (Elliot, 2014). Walls (2013)

emphasizes this exact combination as the key to successfully adopting DevOps. Walls (2013)

highlights DevOps as a cultural movement combined with software development practices, in which

organizations tend to neglect the cultural element. Feijter et al. (2017) report similar findings and

stress the need for the effective combining of technical and cultural aspects.

Streams of literature have emerged in an attempt to address, explore, and explain potential approaches

for the successful adoption of DevOps. Some draw on the traditional theory of maturity models,

seeking to identify the capabilities and characteristics that mature software organizations utilizing

Introduction | 7

DevOps have (Mohamed, 2015; Feijter et al., 2018; Inbar et al., 2013). Collectively, these studies

provided an understanding of the capabilities and characteristics necessary for organizations to

achieve maturity in DevOps.

However, DevOps as a research concept is somewhat new; as such, the existing amount of literature

on DevOps maturity and adoption is somewhat scarce and limited in terms of practical evidence. The

currently available literature on DevOps maturity has several limitations, such as models lacking

empirical validation in terms of accuracy and applicability due to the low number of cases

investigated (Feijter et al., 2018). The lack of specificity is further a limitation as the existing maturity

research puts limited emphasis on which areas and events in the DevOps maturing process that are

most impactful on organizations (Zarour et al., 2019). Existing research has shown DevOps to be a

complicated measure, causing these types of cookbook-style models to be challenging to follow, as

they do not account for the individual characteristics of the investigated organizations (Ebert, 2016).

Moreover, as the general assumption of maturity models is that it is always favorable to progress

maturity, the existing research does not account for the aspect of organizations becoming too DevOps

mature (Zarour et al., 2019; Gasparaité & Ragaišis, 2019).

This thesis will study the maturity process of organizations by analyzing the adoption of DevOps by

two Danish organizations over five years. The analysis covers an assessment of the previous and

current levels of maturity, in addition to challenges and benefits related to the adoption of DevOps.

In the analysis, we apply the latest research to understand the underlying concepts and capabilities

associated with the concept of DevOps.

For the assessment of the investigated companies’ maturity level, we adopt the maturity model

developed by Feijter et al. (2018) as our analytical framework. Additionally, we utilize process theory

for establishing an overview of how the two case organizations have approached DevOps. As part of

our research, we investigate commonalities and differences across the two cases to find results that

can contribute to the limited knowledge base of DevOps. Lastly, we discuss the possibilities of

whether organizations can become too DevOps mature.

Introduction | 8

1.2. Research Question

Addressing the presented limitations of current research, the question framing this thesis is:

How can organizations mature their DevOps approach?

To answer the research question adequately, we address the following sub-questions:

• What are the drivers and capabilities that progress DevOps maturity?

• What hinders organizations from maturing DevOps?

• Is it possible for organizations to become too DevOps mature?

Introduction | 9

1.4. Structure of Thesis

The following section presents the structure of the thesis. We describe each section and finally

visualize the structure in a model to form an overview of the thesis.

Section 1 introduces the thesis and the limitations of current research that we have identified in the

investigation of the topic. This section also presents the specific research question and the related

sub-questions that together serve as the focal point of the research.

Section 2 presents the existing streams of literature on the investigated topic of DevOps. Here, we

explore previous literature on the fundamental characteristics of DevOps, associated challenges, and

the value-adding activities related to DevOps. Furthermore, the aspect of maturity is introduced by

explaining the origins of software maturity models. In connection with this, we review current

maturity models associated with DevOps. This section also documents the methodology used to

establish the literature review, including the methods used to find relevant research and create a

concept matrix.

Section 3 explains the methodology and the paradigmatic basis of the research. Initially, the section

describes the paradigmatic and epistemological approach to the study. Subsequently, we present an

introduction to the research design and the longitudinal perspective involved in the thesis. As the

other decisions related to the empirical approach are rationalized based on these choices, it is natural

for this to be determined as the first part of the methodology. Furthermore, we describe the

operationalization process that serves as a link between the theoretical and empirical levels. Finally,

we present the empirical considerations, including the empirical sources, the data collection

techniques, and the analysis of the collected data.

Section 4 offers a presentation of the two investigated case organizations. This entails a brief

description of each organization’s history, the industry where they are situated as well as their

approach to software development.

Section 5 presents the analytical framework utilized in the analysis. This includes the adopted

maturity model for assessing the maturity levels of the two case organizations and an introduction to

process theory and the used sensemaking strategy (visual mapping strategy).

Introduction | 10

Section 6 consists of the first part of the analysis, a within-case analysis. The within-case analysis is

composed of an assessment of the previous and current levels of maturity within the two

organizations. This is followed by two visual maps, one for each organization, to highlight the

temporal aspect of the DevOps maturing process.

Section 7 consists of the second part of the analysis, a comparative analysis. The comparative analysis

includes a procedural analysis of commonalities and differences found in the within-case analysis.

Furthermore, we compare the challenges experienced by each organization. Lastly, the findings from

the analysis are summarized.

Section 8 consists of a discussion of the findings. The findings are compared with the previous

literature and critically evaluated. Besides, we discuss whether an organization can become too

DevOps mature. This section also contains the implications for theory and practice, and an

introduction to the possible limitations of the research. Finally, we present possible areas for future

research.

Section 9 concludes the thesis with an answer to the research question, we initially presented.

Introduction | 11

Figure 1: Structure of thesis

Literature Review | 12

2 Literature Review

In this section, we review previous research on DevOps and maturity models, and the underlying

concepts of both, concerning their implications for organizations within the field of software

development. This literature review will utilize a concept-centric approach that will allow for a

systematic method to review several relevant themes. The themes are closely tied to the concept of

DevOps and have shown continuously throughout the literature. Within recent years, DevOps has

steadily become more articulated in literature, yet there are still complex and incongruous elements

tied to DevOps that emphasize the necessity for a concept-centric approach. The concept-centric

approach provides the reader with a comprehensive and fulfilling depiction of DevOps and the

underlying concepts. The use of a concept-centric approach will ensure that all relevant aspects of

the DevOps concept are divulged, which in turn will establish a firm foundation for advancing

knowledge (Pfeffer & Sutton, 2006).

Table 1: Concept matrix

Author(s)

Concepts

DevOps

Fundamentals
Challenges Culture Value

DevOps

Maturity

Cusick (2019) X

Gasparaite & Regaisis

(2019)
 X

König & Steffens (2018) X X (X)

Becker et al. (2009) (X)

Ebert (2016) X X X

Feijter et al (2017) X X X X X

Feijter et al (2018) X X X X X

Mohamed (2015) X X X X X

Mohamed (2016) X X X

Lwakatare et al. (2015) X X

Walls (2013) X X X X

Aiello & Sachs (2016) X X X

Reed (2014) X

Edwards (2010) X X

Literature Review | 13

Krancher et al. (2018) X

Elliot (2014) X X X

Gill et al. (2017) X X X X

Dingsøyr & Lassenius

(2016)
 X X

Wiedemann et al.

(2019)
 X X X

Kim (2018) X X X

Ghantous & Gill (2017) X X

Riungu-Kalliosaari et al.

(2016)
 X X

König & Steffens (2018) X X

Lu & Ramamurthy

(2011)
 X X

Virmani (2015) X X X

Zarour et al. (2019) X X

Inbar et al. (2013) X X X X

The chosen literature used to encompass the concept of DevOps, and the use of maturity models

within, is presented in the concept matrix in Table 1. The matrix includes the chosen concepts that

have shown continuously throughout the literature. The concepts are carefully chosen due to their

importance, relevance, and impact on the adoption and maturing of DevOps.

2.1. Literature Review Method

We review a substantial amount of current literature of DevOps to conduct a comprehensive and

fulfilling literature review. To locate the research chosen for further investigation and included in this

literature review, we have utilized selected databases. The primary literature databases used in finding

relevant research have, in this thesis, been Google Scholar and CBS Libsearch. We utilize other

databases such as Research Gate, Elsevier, and Jstor as secondary databases. These have been utilized

to find specific articles or used for their “related articles” feature that has shown to uncover articles

with relevance in the discussion of DevOps.

According to Jalali & Wohlin (2012), if a systematic literature review begins with an offset in

database searches, some relevant keywords, connected to the investigated topic, should be defined.

Literature Review | 14

These keywords should then be included when searching through several databases. Typically, a

useful and relevant publication is published in one of the more prominent journals or well-known

conferences as these have a reputation of quality. According to Jalali & Wohlin (2012), the initial

phase of database searching will reveal a substantial amount of literature within the field of the

investigated topic. The available research will then need to be filtered to fit the specific research topic.

Due to the possible sizeable amount of research, articles should be hastily reviewed on included

keywords or by abstract to determine relevance for the specific research topic. It is proposed by

Webster & Watson (2002) that the review of the literature connected to the researched topic is close

to finalization when the researchers no longer are being introduced to new concepts in the articles.

In the search for relevant literature for use in this thesis, we include the following keywords in the

searches on Google Scholar and CBS Libsearch: DevOps, DevOps culture, DevOps value, “Maturity

models”, “DevOps Maturity models”, DevOps challenges, and “Continuous Delivery”. Note that

quotation marks encompass some of the keywords to create key phrases. Had the keywords not been

encompassed by quotation marks, then the databases would have searched for each word in the

phrases by itself, and would therefore not have the same meaning or relevance since the databases

would locate anything including either of the words.

The database search approach was utilized in the initial phase to locate literature for the theoretical

grounding of this thesis. However, due to DevOps being a relatively new and comprehensive concept,

the amount of relevant literature was not overwhelming. This is not to be misunderstood with there

not being a substantial number of articles that include the somewhat popularized word of DevOps,

but the number of articles that comprehensively researched and wrote about DevOps in detail was

relatively scarce.

In contrast to the database search, Webster & Watson (2002) propose a slightly different approach to

systematic literature reviews in the field of information systems. They propose to use a method

reminiscent of snowballing as the primary method to find literature. Snowballing is a known

technique from systematic literature reviews, where the search for literature is based on the reference

list or citations of a research paper to identify additional research (Wohlin, 2014). However, instead

of using the snowballing technique in the first phase of the literature search, we have applied it in the

later phases, as we found relevant literature through the databases. Webster & Watson (2002)

Literature Review | 15

advocate using both backward and forward snowballing. Backward snowballing consists of finding

additional literature from the reference list of the already chosen articles. The forward snowballing

approach is concerned with finding citations to the papers. This thesis has utilized both backward and

forward snowballing in the later phases of locating literature, but backward snowballing has been

most prominent.

2.2. Fundamentals of DevOps

Software companies that offer internet-based services or Software as a Service (SaaS) have now

mostly transitioned away from the traditional delivery methods that were characterized by extensive

functionality deliveries, delivered with a specific interval (e.g., monthly, quarterly or bi-annually).

Now, a lot of these companies can and strive to deliver a solid stream of smaller functionality daily

instead of delivering substantial updates of functionality in the predetermined interval (Ebert et al.,

2016).

This paradigm change towards continuous delivery and continuous deployment of software

functionality brings both challenges and opportunities for most companies (Lwakatare et al., 2015).

The concept of DevOps was introduced by Patrick Debois, known as "The Father of DevOps", to

facilitate this paradigm change. DevOps was initially presented at the DevOps Days conference in

September 2009 (Mamatha & Kiran, 2018), but the concept was not entirely new to the field. DevOps

was born primarily due to the increasing adoption of cloud services that changed the way software

development traditionally worked (Smith, 2011). DevOps is a contraction of the two words,

Development and Operations, and it seeks to break down the traditional silos between the

development teams and the operations teams in companies by integrating the two worlds using

automated development, test, deployment, and monitoring.

While DevOps resides within IT organizations and is directly tied to technology, it is, first of all, an

organizational shift in culture, where instead of having development, quality assurance (QA), and

operations teams performing functions separately, cross-functional teams are created with a focus on

continuous feature deliveries (Ebert et al., 2016).

Literature Review | 16

DevOps establishes a culture of end-to-end responsibility of functions and features that ensures

system compatibility of developed code and, thereby, mitigate the risk of encountering traditional

problems. The traditional problems are often tied to code “being thrown over the wall” and not seen

again by developers until the code does not build or function in the system on the date of delivery,

where everything is compiled. If carried out successfully, DevOps help to deliver value continuously

in a faster and more consistent manner while reducing problems tied to miscommunication between

team members as well as hastening problem resolution (Ebert et al., 2016).

To reach a level of success, however, DevOps requires companies to increase communication

amongst stakeholders, implement automation, and improve agility in designing, delivering and

operating software products and services (Lwakatare et al., 2015). Furthermore, a high degree of

automation is needed to make quality deliveries with short cycle times, which extends to a mandatory

need for tools in DevOps. As such, choosing and utilizing the right tools is crucial for any organization

that seeks to adopt a thriving DevOps culture.

DevOps can be applied to extremely varying delivery models but needs to be tailored to the individual

environment and product architecture (Ebert et al., 2016). Thus, the tools that underlie the automation

services of DevOps, chosen by the individual organization, need to reflect the environment and

product architecture of that organization. These tools need to be integrated into the complete process

from build and continuous integration to logging and monitoring.

Figure 2: The fundamentals of DevOps

Literature Review | 17

2.3. DevOps Challenges

Within the existing research of DevOps, many different challenges have emerged and shown to have

a direct impact on the success of a DevOps implementation (Elliot, 2014; Ghantous & Gill, 2017;

Riungu-Kalliosaari et al., 2016). Of these challenges, the culture and mindset within the organization

are regarded as predominant to the success of an organization’s approach to DevOps. Shifting the

culture to support the DevOps ideal is paramount, and cultural inhibitors that block collaboration

within teams will hinder the organization from achieving the actual value of DevOps. Merging roles,

sharing responsibilities, and rethinking the daily workflows are among some of the initiatives that

make DevOps seem scary to the majority of team members (Ghantous & Gill, 2017). This thesis

adopts the view of DevOps culture as a vital factor in the implementation and use of DevOps, for

which reason the cultural aspect of DevOps will be further elaborated separately in the section 2.4

DevOps Culture.

Another commonly recognized key impediment that organizations must be aware of is the

communication within the team. Organizations often experience insufficient communication between

the development and operations teams, which will produce detrimental outcomes. The reduced flow

of information can be traced back to the predefined roles in which the team members still are

ingrained. For instance, developers still care more about release frequencies, whereas operations still

focus on the stability of the system, leading to a disjointed process (Riungu-Kalliosaari et al., 2016).

Moreover, communication is often formal and done through documents or emails due to the

separation of team members. Removing formal communication channels will ease the

communication as the information flow can move a lot faster, while simultaneously fostering and

establishing a stronger relationship between the development and operations (Walls, 2013).

Another obstacle presented by previous research is the fragmented planning activities that occur

during the development process. Development and operations often do not cooperate when new

development projects are about to be launched, which means that the requirements, as well as the

expectations for a given feature, might not align between the two teams. For instance, operations are,

most of the time, not included in the initial phase of the development, resulting in negligence of

system stability or other system requirements (Elliot, 2014). Moreover, fragmented planning

activities challenge the automation of the software development process. Due to operations not being

Literature Review | 18

initially included, it forces a distinct handover, which might limit the operations team's ability to

implement automated practices such as testing, monitoring, and deployment (Ghantous & Gill, 2017).

Riungu-Kalliosaari et al. (2016) highlight heterogeneous environments and immature infrastructures

as obstacles that can challenge organizations in adopting DevOps successfully. Heterogeneous

environments are characterized by a high degree of complexity. They are often comprised of

components from different vendors, making it very difficult to build replicates of these types of

environments for test and release scenarios. Consequently, automated practices become unreliable as

tailored implementation measures are necessary, forcing teams to consistently maintain components

that otherwise would need less attention (Riungu-Kalliosaari et al., 2016). In continuation of this,

Ghantous & Gill’s (2017) research identified tools as another significant challenge as development

and operation teams use completely different toolsets and metrics. While the clash between tools

most likely roots back to the resistance to change, teams should aim to reduce the number of must-

haves and align the infrastructure to support the overall goals of the organization.

Prior research also identifies the size of the organization as a barrier that can hinder the adoption of

DevOps. Generally, smaller organizations have an advantage over larger ones when it comes to

change management, as they can fine-tune resources in order to influence the behavior of the

individual team members (Walls, 2013; Riungu-Kalliosaari et al., 2016). Besides, small organizations

have a more favorable position to react faster to changes in the environment, providing them with a

competitive advantage (Riungu-Kalliosaari et al., 2016). However, having defined teams that can

support the change might help larger organizations mitigating the risk of incurring challenges due to

size.

2.4. DevOps Culture

As discussed, DevOps is not solely a question of technology, but also a question of culture. According

to Walls (2013), DevOps is as much about culture as it is about tools. In more detail, Walls (2013)

refers to DevOps as "being a cultural movement combined with a number of software development

practices that enable rapid development". A viewpoint that contains many similarities with the one

of Feijter et al. (2017), presenting six drivers towards DevOps, the first being "a culture of

collaboration". The importance of encompassing a culture of collaboration is stressed in the vast

Literature Review | 19

majority of available academic literature as one of the most fundamental things when adopting

DevOps (Ebert, 2016; Feijter et al., 2018; Lwakatare et al., 2015).

The reason behind the importance of establishing a thriving DevOps culture is due to the breaking

down of silos and the transition from the traditional teams to the new, cross-functional teams

(Lwakatare et al., 2015; Feijter et al., 2017). Bridging the gap between development and operations,

and other stakeholders such as testing and QA teams are often not perceived to be the most

challenging task when adopting the DevOps concept. However, according to Ebert (2016), it is

something that most organizations underestimate, leading to the entire initiative going awry. When

an organization attempts to bridge the gap between the Dev and Ops teams, and perhaps other teams,

it is not sufficient to simply suggest a culture of collaboration. Instead, a genuine effort must be made

to actively change the mindset of the affected people (Lwakatare et al., 2015; Walls, 2013). The

individual teams have, like most other independent teams, gradually created their own shared culture

of performing work and communicating.

The procedures of which a development team and an operations team would undergo in processing

and solving an identical problem is most likely very different, even though the two teams work in the

same organization. The challenges in creating a culture of collaboration between two distinctive

teams are partly due to the mindset, but also the team's perception of the other team has an influence.

The operations team might perceive the developing team as cumbersome and exasperating, and

contrariwise the development team perceives the operations team as being quick, dirty, and

unscrupulous (Ebert, 2016). As such, adopting a DevOps culture is complex and essential for the

success of the DevOps initiative. The available research and literature are in concurrence concerning

the importance of culture within DevOps, but in some quarrel regarding what elements and aspects

are involved in a thriving culture.

According to Walls (2013), talking about culture in absolute terms and endeavoring to generalize and

create a formula of a thriving DevOps culture is ludicrous, because of no two groups, and thereby

cultures, being alike. The view of Walls is opposed by Feijter et al. (2017), however, accentuating

that while there is no universal and standardized solution for the perfect DevOps culture, a general

guideline can be created. The general guideline would include a set of aspects and capabilities that

Literature Review | 20

are important for a DevOps culture, and would then be tweaked and tailored to the individual

organization (Feijter et al., 2017; Feijter et al., 2018).

Within the developed competence model of Feijter et al. (2017; 2018), culture and collaboration are

boiled down to five focus areas: Team Organization, Communication, Trust and Respect, Knowledge,

and Release Alignment (please refer to Appendix A). According to the researchers, the area of culture

and collaboration is the most prominent of the model. The focus areas of Feijter et al. (2017; 2018)

are rather self-explanatory but revolve around creating a culture that enables teamwork, knowledge

sharing, and alignment between internal and external dependencies to timely deploy software.

While Walls (2013) does not advocate for a generalized guideline of culture, she has proposed four

vital cultural characteristics that can help to mitigate friction between the development and operation

teams when they are united. The characteristics of Walls (2013) are, to some extent, similar to those

of Feijter et al. (2017; 2018). The four characteristics are Open Communication: Incentive and

Responsibility Alignment, Respect, and Trust. The first characteristic of open communication is

articulated by Walls (2013) as being fundamental for a DevOps team.

A DevOps team needs to be able to discuss the product regarding requirements, features, schedule,

resources, production, build, and many other areas. The second characteristic of incentive and

responsibility alignment is centered around motivation and reward for team members of the DevOps

team. An optimal team unites around the core goal of the organization, which should be to create the

best product for customers of the business. As such, developers should not be rewarded for delivering

many lines of code and impressive features, and operations should not be punished when the code

does not run as expected in a production environment. Instead, the DevOps team should be rewarded

when the product, collectively, is excellent, and customer happiness is maintained (Walls, 2013).

The suggested characteristic of open communication segues very neatly into the characteristic of

respect. Respect should be inherent in any team but is increasingly vital in those of DevOps culture.

As discussed, DevOps teams are comprised of different people with diverse skills and mindsets.

When a team contains distinct members and is driven by a culture where communication is essential,

it is increasingly important to have respect for one another (Walls, 2013). It is not necessary for team

members to like each other, but they need to respect and listen to everyone as well as have respectful

Literature Review | 21

discussions and recognize the value of the contributions of diverse team members (Walls, 2013;

Feijter et al., 2017).

Lastly, Walls (2013) express the importance of establishing trust within the team. Walls (2013)

accentuates that within a DevOps culture, tools will not matter if there is distrust. Each team member,

or function, of a DevOps team, needs to trust that everyone is doing what they can and in the best

way to achieve success and not to introduce failure for specific people or functions; developers must

trust that the QA team is not incentivized by sabotaging developers success.

Consequently, it is essential, when transitioning to or working within, a DevOps team to have a focus

on the culture and communication through the various aspects presented above. For a DevOps team

to be successful, there has to be an emphasis on creating a culture that promotes open communication,

knowledge sharing, trust and respect, teamwork, and alignment of motivation and expectations of

release and quality.

As culture is a detached term, it is challenging to quantify it and promote a best practice, since it is

relying solely on the affected people and their mindsets. The challenge of quantifying culture is

further backed by the lack of established knowledge within the area of culture in DevOps teams. The

majority of the available literature agrees that culture and communication are crucial for a DevOps

team, but only the research of Walls (2013) and Feijter et al. (2017; 2018) identify specific focus

areas or characteristics that are increasingly essential for DevOps teams.

As such, there is no solid grounding and foundation for what the optimal DevOps culture is, and if it

is plausible to determine what that culture is. As there is no solid theoretical foundation for what an

optimal DevOps culture is, the measurement and assessment of such will be prone to an increased

amount of subjectivity. Therefore, this thesis recognizes a lack of research within the field of

quantifying and measuring culture in a DevOps organization.

2.5. DevOps Value

Most of the research suggests that successful adoption of DevOps in an organization will deliver

value to that organization (Ebert, 2016; Elliot, 2014). As previously mentioned, the mere introduction

of DevOps does not necessarily create value, and as such, most of the research establishes

Literature Review | 22

prerequisites of culture and capabilities when discussing value generation through DevOps. Thus,

when discussing value in this literature review, it presupposed that the organizational DevOps

approach is a success. When discussing value generation in DevOps, it is essential to determine what

value is to efficaciously discuss and compare the available theory and cases of DevOps. As

mentioned, there is a consensus on the positive generation of value through DevOps in the available

literature. However, there are few scholars that debate what exactly value is and what the term covers

in the context of DevOps.

The preponderance of the reviewed literature proposes that the value gained from DevOps is

organizational agility (König & Steffens, 2018; Ebert, 2016; Krancher, Luther, & Jost, 2018; Aiello

& Sachs, 2016; Reed, 2014; Mohamed, 2016). However, the focus and assumption of what

organizational agility is and what it incorporates differentiate between the scholars and cases. Some

explain organizational agility as faster value delivery to the customer (Köning & Steffens, 2018); and

some invoke the decrease of miscommunication and errors, and accelerated problem resolution, as

the driver (Ebert, 2016). Some see the ability to integrate small amounts of code gradually to avoid

future problems as agility (Aiello & Sachs, 2016), and yet others see some of the mentioned

advantages, all of them, or something completely different as being organizational agility (Reed,

2014; Krancher et al., 2018).

As such, organizational agility can be seen as an umbrella term that incorporates some or all of the

mentioned capabilities, and perhaps many more, suggesting that the assessment of agility in

organizations is prone to an aspect of subjectivity. To simplify, the definition of organizational agility

used in this thesis will be the one of Lu & Ramamurthy (2011): "The ability to cope with rapid,

relentless, and uncertain changes and thrive in an environment of continually and unpredictably

changing opportunities". Due to the term of organizational agility reaching across a large area of

capabilities, it needs to be fractured into tangible processes within the organization to understand the

value drivers in DevOps organizations. Therefore, the aspect of value generation within the area of

DevOps needs further examination to determine a more precise definition comprehensively.

Gill et al. (2017) and Virmani (2015) introduce several benefits tied to DevOps that increase the

overall value and profitability of the concept. The most important of the value-driving benefits are

enhanced internal communication, especially between the development and operation teams; a

Literature Review | 23

reduction in human errors; a more streamlined and effective production pipeline from development

to the customer; and the possibility of quick continuous customer feedback by providing software in

an operations environment for use without unnecessary delays.

Dingsøyr & Lassenius (2016) enforce the aspect of faster customer feedback loops and general

stakeholder empowerment, but also introduce a benefit comprised of organizational visibility. The

organizational visibility is apparent through the fact that continuous development of software to

market increases the visibility of the organization in the market, which can increase the customer

base. Also, an organization can be recognized for its innovative and technological characteristics in

using DevOps, which in turn can reflect positively on the organizational brand.

Wiedeman et al. (2019) present two levels of benefits that drive value: The organizational level and

the team level. Within the organizational level are the rapid customer feedback and the increased

speed of delivery on software features to customers that leads to enhanced customer satisfaction and

profitability. The team level includes aspects such as the increased collaboration between employees

and improved work-life balance of employees.

Kim (2018) introduce three main, more managerial value drivers of DevOps. Firstly, faster time-to-

market through reduced cycle times and higher deploy rates. Secondly, increased quality in both

availability and change success rate as well as fewer failures. Lastly, increased organizational

effectiveness through increased time spent on value-adding activities, less waste, and increasing value

delivery to customers.

As such, there are several value-adding activities of DevOps presented in the available literature. The

capabilities presented through the works of Gill et al. (2017), Virmani (2015), Dingsøyr & Lassenius

(2016), Wiedeman et al. (2019), and Kim (2018) are all arguably part of the organizational agility but

deem more measurable and tangible.

Walls (2013) introduce several values that can measure some of the capabilities presented above.

These are average time-to-market for new features, software deployment time, number of defects

detected in testing before production release, and performance and user feedback. The values

presented by Walls (2013) are arguably targeted upon measuring the organizational level benefits. In

Literature Review | 24

contrast, the team-level benefits of collaboration and communication inter-organizationally, as well

as the work-life balance of employees, can be extensively more challenging to determine the value

of why the assessment of such is going to be more prone to the subjectivity of the researchers. Thus,

there is an inconsistent definition of DevOps value in the existing literature. In this thesis, we view

organizational agility as being the primary value derived from DevOps.

2.6. Software Maturity Models

IT systems enable organizations to improve their capabilities, processes, practices, structures, and

knowledge, all of which have a direct impact on the competitiveness of an organization.

Responsibility for effective and efficient use and design of IT systems depends on the organizational

IT management (Becker, Knackstedt & Pöppelbuß, 2009). The main goal is to continually improve

the organizational IT performance to establish IT excellence and, thus, enable a more productive and

competitive business. However, continually improving and maturing the IT of organizations requires

an assessment of the current state of the IT capabilities, systems, and services. This assessment entails

an identification of the goals, external requirements, and benchmarks of the organization, as the level

of IT maturity varies from business to business. Assessing the current state of organizational IT

capabilities, systems, and services can be problematic as it is challenging to determine precisely what

and how to measure, as well as what to compare the capabilities to, in order to assess the current state

(Becker et al., 2009).

Maturity models are excellent tools for addressing these issues. They are among the most common

theory in the field of improving organizational performance (Khoshgoftar & Osman, 2009). Maturity

models are ideal for deriving helpful information used for prioritizing improvement measures as well

as denoting the maturity progression. There are hundreds of different maturity models, each focusing

on their specific area of expertise (Khoshgoftar & Osman, 2009). Despite the difference in fields of

practice, a maturity model usually consists of a sequence of maturity levels, each representing a stage

of requirements or objectives that the organization must achieve. The organization progresses from

one level to the next by achieving the objectives defined in the specific maturity model. Maturity

levels cannot or should not be skipped as each level provides a necessary foundation for the next level

(Khoshgoftar & Osman, 2009).

Literature Review | 25

Software process maturity models typically stem from either the initially prevalent Capability

Maturity Model (CMM) or the evolved version, Capability Maturity Model Integrated (CMMI). The

software process maturity models help to describe the underlying practices and principles for

maturing a software process and, thus, help organizations achieve maturity through well-defined steps

in order to increase the software process and quality (Ramanujan & Kesh, 2004).

The CMM model was initially introduced by The Software Engineering Institute (SEI) that was

established by the American government to define software standards for the Department of Defense

as well as seeking to improve their overall software quality. The initial purpose of the model was to

serve as a control mechanism to ensure the quality and processes of a contractor (Ramanujan & Kesh,

2004). Despite laying the foundation for future maturity models, the CMM model is criticized for

having several architectural flaws. The model utilizes an activity-based approach to measure the

maturity of software processes. This approach leads organizations to an inadequate level of maturity

as completing the predefined activities should, according to the model, advance the organization to

the level of maturity. However, there is no way to quantify whether the activities were completed in

the required manner, and thus, organizations may achieve a higher but false level of maturity (Royce,

2002). Several other models have later been built upon the groundwork of the CMM model, trying to

incorporate solutions and disciplines to the critical challenges faced by the CMM. However, with the

increasing number of models and their different focus areas, organizations that seek to implement

process maturity models have difficulties selecting one that matches their needs. To overcome the

inconsistencies, overlaps, and integration problems, the CMMI was developed as an initiative to

integrate the many different process maturity models into one unified set (Royce, 2002).

The CMMI model introduced numerous improvements, with the two main parts being more flexible

and result oriented. In terms of flexibility, the CMMI allows for a staged and more continuous method

compared to the waterfall approach applied by the CMM. Furthermore, the movement from a

sequential approach to an iterative lifecycle allows the CMMI to integrate the latest best practices

from the concerned industry continually. Even though the CMMI uses a similar activity-based

approach, the emphasis on the outcome and results are far more significant compared to the somewhat

outdated CMM (Royce, 2002). With the model being result-oriented, organizations using the CMMI,

rather than the CMM, will likely get a more applicable or actual impression of their software maturity.

This will assist them in planning and advancing their processes as well as improving their software

Literature Review | 26

quality. The CMMI model has laid the foundation for other maturity models to emerge within agile

environments to assist organizations in assessing their maturity level (Royce, 2002; Ramanujan &

Kesh, 2004).

2.7. DevOps Maturity Models

Reviewing the literature on DevOps shows that there are several maturity models related to the topic.

However, based on Gasparaite & Ragaišis' (2019) research, only three of the existing DevOps

maturity models should be considered for further investigation as they are deemed more

comprehensive compared with other models. Zarour et al.’s (2019) research support this claim as

their study identified seven DevOps maturity models, of which three are the same models that are

considered relevant by Gasparaite & Ragaišis (2019). The models that were identified as adequate

for future studies, and therefore included in this study, are The Hewlett Packard Enterprise Model,

hereafter referred to as the Topham model, by Inbar et al. (2013); Samer I. Mohamed’s (2015)

maturity model; and the Focus Area Model by Fejter et al. (2017).

The comparison study by Zarour et al. (2019) showed that most DevOps maturity models follow

either the CMM or the evolved CMMI. Inbar et al.’s (2013) Topham model (Figure 3) is subject to

these findings as it is aligned with the standards of the CMMI model. The Topham model consists of

five maturity levels and is designed to cover the complete lifecycle of an application or service. Inbar

et al. (2013) have defined three dimensions as measure areas: Process, automation, and collaboration.

Figure 3: The Topham Model by Inbar et al. (2013)

Literature Review | 27

The model was initially introduced to cover the full lifecycle of an application or service, but it lacks

simplicity and specificity, according to Gasparaite & Ragaišis (2019). Organizations should,

therefore, seek to utilize the Topham model as a guideline rather than to implement it as an

organizational instrument for assessing the level of DevOps maturity. Furthermore, the Topham

model does not contain a level 0, and therefore, it does not account for organizations that are yet to

implement any form of DevOps mechanisms. In detail, all organizations are level 1 by default,

indicating that they do have some knowledge and structures in place for the use of DevOps, which

might not be the case (Zarour et al., 2019).

Mohamed’s (2015) proposed maturity model (Figure 4) is an evolved version of the previously

described Topham model. Mohamed’s model has the same five levels of maturity, compared to the

Topham model, but differs as it is measured against four dimensions: Communication/collaboration,

automation, quality, and governance. Similarly, the purpose of the model is to cover the entire

lifecycle of an application or service (Mohamed, 2015).

Figure 4: The maturity model by Mohamed (2015)

At the initial level, collaboration and communication are purely ad-hoc, and new deployments are

only released when all parties feel they are ready, which leads to deployments being heavily reliant

Literature Review | 28

on individual talent. As deployments are reliant on individual talent, it is challenging to predict

whether a service or application is of production quality. Furthermore, the release process is

dependent on numerous manual steps, as no automation is implemented in the process, which can

force the release cycle to take multiple days or weeks. Additionally, the process is not governed and,

therefore, perceived as uncontrolled. At this level of maturity, customers will often experience errors

in functionality due to the number of manual steps in the process (Mohamed, 2015). The levels of

maturity advance similarly to the Topham model, where every level is defined with features of

incremental changes to each of the four dimensions (Zarour et al., 2019). At the final level of maturity,

the collaboration is enriched with a constructive environment, tools, and processes. The process is

issued with smart automation to maximize throughput, which allows the team to initiate failures to

see if the system acts according to the defined actions, leading to a state of continuous improvement

of quality. Organizations at this level of maturity can initiate business experiments to find new ways

of delivering value to customers (Mohamed, 2015).

Although Mohamed's (2015) maturity model implements an additional dimension as well as seeking

to be more result-oriented, it still lacks facets in the same areas as the Topham model. Organizations

should seek to utilize the model as a guideline rather than try to implement it as an assessment tool.

This is mainly due to the models presenting the approach to DevOps in a simplified manner, which

means it can be challenging to apply the models in complex organizational situations.

Another approach to a DevOps maturity model is the Focus Area Model by Feijter et al. (2018). The

model distinguishes itself from the traditional maturity model due to its focus area architecture. The

Focus Area Model (Figure 5) is designed to enable a fine-grained maturity process for organizations,

which is why the model contains ten levels of maturity compared to the traditional five (Feijter et al.,

2017; 2018). The Focus Area Model is built on the foundation of a competence model that identifies

three main perspectives: Culture and collaboration; product, process, and quality; and foundation.

Each perspective is comprised of different focus areas that all are deemed relevant for the DevOps

maturity of an organization (Feijter et al., 2017). The focus areas are individually characterized by

several capabilities that are represented as letters in the model. The capabilities are placed in the

model corresponding to the level of maturity. For instance, the first defined capability within team

organization is A - separate teams, whereas the last defined capability is D – Cross-functional teams

Literature Review | 29

with knowledge overlap. The positioning of the capabilities is based on prior research as well as the

dependencies among the capabilities. For example, there is a need for establishing some form of

communication before any knowledge sharing can take place (Feijter et al., 2017; 2018). A detailed

description of the 63 capabilities can be found in Appendix B.

Figure 5: The Focus Area Model by Feijter et al. (2018)

The Focus Area Model is, by far, the largest and most comprehensive DevOps maturity model

available. Unlike the two other models, the Focus Area Model tries to identify which parts of the

software process, and in which order, organizations should seek to focus on to mature their DevOps

approach. However, the model is based on data derived from one organization; hence the model might

be prone to bias, which impacts the generalization of the results (Feijter et al., 2017). Furthermore,

the focus areas, as well as the capabilities, are yet to be validated by DevOps experts, and thus, the

applicability of the maturity model could be questioned (Gasparaite & Ragaišis, 2019).

Generally, the available DevOps maturity models all approach the concept differently but somewhat

align in terms of the capabilities described in each model. For instance, communication or deployment

automation seems to be rather identically perceived by the different models. However, the models

differ in their definition of what is required to reach the highest level of maturity. Also, the individual,

organizational needs are not accounted for in the models, as the level of maturity might not bring the

same marginal value for every organization (Gasparaite & Ragaišis, 2019).

Literature Review | 30

Research on DevOps maturity models is scarce, indicating the general lack of empirical studies that

document and validate the adoption of DevOps maturity models. Another concern regarding the

DevOps maturity models is the lack of assessment methods for determining or estimating the current

level of maturity (Zarour et al., 2019).

Methodology | 31

3 Methodology

This section presents the methodological considerations and choices we have made in this thesis. We

elaborate on the adopted research philosophy, research approach, and research design, and the

longitudinal aspect. Also, we describe the utilized data as well as the empirical methods used for data

collection and processing.

3.1. Research Philosophy

This thesis utilized the pragmatic paradigm in the investigation of DevOps in the two case

organizations. The goal of this thesis is to investigate how organizations can mature their DevOps

approach. As we aim to contribute knowledge to a reasonably unknown subject, we deem pragmatism

as a good fit due to the acceptance of multiple realities existing in empirical inquiries (Creswell &

Clark, 2011).

In the pragmatic paradigm, there is a focus on the research question and central problem, how the

problem is solved, and what the cause of the problem is. Furthermore, pragmatism brushes aside the

division of qualitative and quantitative research by attending the researchers' focus on the

investigation of a particular concept (Feilzer, 2010). Thus, the relatively open boundaries of

pragmatism allowed us to select methods solely based on their suitability for addressing the research

question.

In this thesis, we further seek to produce knowledge from the investigation of the two case

organizations that apply to other settings under varying practical circumstances. The pragmatic

paradigm offers epistemological justification for combining multiple sources of knowledge to find

workable solutions and gain an understanding of people and the world in which we reside and practice

(Nowell, 2015). Moreover, the primary goal of pragmatic knowledge creation is to produce

knowledge, to which controlled improvements or changes of human existence can be made

(Goldkuhl, 2012). As part of the investigation, workflows, culture, challenges, and level of maturity

within DevOps are examined in the case organizations, resulting in a discussion of findings that could

deem practically relevant and useful for the case organizations or other organizations looking to adopt

or mature DevOps.

Methodology | 32

Thus, we believed that a different paradigm could not have achieved the same desired result. For

instance, the use of positivism could have generated entirely different results, since positivism aims

to produce knowledge that can be generalized to a large scale. Positivists risk neglecting softer

elements such as individuals’ understanding and perceptions of critical events or issues, which would

have left significant gaps in essential knowledge of the case organizations (Lan, 2018). If this thesis

had focused upon creating knowledge that could be directly replicated in other settings, such as

creating a general framework, a positivistic approach would have been more applicable. Another

alternative is the interpretive paradigm that, for years, has been an established and adapted paradigm

for qualitative research. However, interpretivism seeks merely to observe the world, whereas the

intention of this thesis is not only to observe but to intervene and to generate knowledge for action

and change (Goldkuhl, 2012).

Goldkuhl (2012) emphasizes a need for a larger paradigmatic consciousness, as qualitative research

of information systems frequently couples pragmatism and interpretivism, but often implicitly. As

such, we follow this observation, as we see the coupling between pragmatism and interpretivism as

necessary due to “the difficulties in reducing the complex social and technical phenomena in IS-

fields” (Goldkuhl, 2012). Therefore, the coupling of the two paradigms within this thesis is made

consciously and explicitly due to the complex construct of the DevOps concept that involves both

social and technical aspects.

3.2. Research Approach

In practice, it is often difficult, when working with social science projects – especially case studies –

to separate inductive and deductive approaches, due to the two research approaches being woven into

each other and occurring concurrently throughout the entire research process (Andersen, 2014).

The pragmatic research philosophy allows us, unlike the positivistic and interpretive research

philosophies, to integrate more than one research approach within the same study (Nowell, 2015). As

this thesis sought to investigate a specific situation in two case organizations through a theoretical

lens of maturity models and previous literature on DevOps, we utilized deductive reasoning. Thus,

the initial processes of creating a knowledge foundation, shaping the right research question, and

constructing the interview guide through operationalization as well as the initial data handling of

coding, analysis, and interpretation were conducted through deductive reasoning. However, in the

Methodology | 33

later analysis and interpretation of the collected data, it was appropriate to deliberate on how valid

and generalizable the contexts and findings are. When raising these questions of whether the results

from the investigation can apply to other organizations, we introduced inductive reasoning. Thus, we

utilize both research approaches to address the research question of this thesis comprehensively.

3.3. Research Design

A research design is a designation for the approach to how the concept that is the subject of the

investigation is explored. In more detail, the research design represents the combination of techniques

that are utilized in the collection, analysis, and interpretation of data. The purpose of choosing the

right research design is to ensure that the obtained data and documentation are capable of, as

unequivocally as possible, to guarantee a sufficient answering of the research question (Andersen,

2014). As such, the chosen techniques of analysis and interpretation must reflect and support the

means of the data collection and the posed research question.

As this thesis sought to investigate the presence and maturity of DevOps in two different

organizations, the research method was conducted as a paired-case study. According to Yin (2002),

the approach of case studies is very widely utilized within all areas of social science, such as

sociology, history, and economy, and even more widely used in academic projects and theses within

the area of social science. The paired-case study method enables the researchers to investigate an

extended range of variables in two settings or organizations, to produce reliable explanations or

depictions of the investigated topic, specific to the investigated organizations.

According to Kruuse (2007), there is a tendency to consider case studies as being qualitative

investigations. It is not meant to discard any case studies that are based on quantitative data or include

quantitative aspects, but the majority of research with a case study method is typical of qualitative

characteristics. The presence of qualitative characteristics is no exception in this thesis, as we derived

the data that laid the foundation for the investigation from interviews. The qualitative data included

is of both primary and secondary character as the research relies on data collected from different

sources, times, and people. We further elaborate on the origin and specifications of the data in section

3.5 Data Collection.

Methodology | 34

There were two main reasons for the choice of conducting interviews and basing the thesis on

qualitative data. The first reason was due to the topic of investigation and the approach the research

question proposes. As the majority of literature on DevOps highlights the importance of culture, it

requests the investigation of softer elements that are not bound in hard data, such as culture and

collaboration. When investigating elements that are bound in human behavior and interaction, it can

be complicated to capture the entirety of something so complex using quantitative data, compared to

qualitative data, and especially interviews, where respondents can explain and elaborate on their

answers (Kruuse, 2007).

The second reason behind the choice of using interviews, and thereby qualitative data, was the

dependency on the secondary data this thesis utilizes. The secondary data of this thesis stems from

interviews conducted in the two case organizations in 2015. As the previous data originates from

semi-structured interviews, it was appropriate to utilize the same or a similar data collection technique

to ensure consistency and increase comparability between the data points. However, this is not to

reject the possibility of using different data collection techniques in a longitudinal study. To ensure

the comparability of the data and increase the validity of the results, it is advocated to utilize

consistent methods when collecting data (Holland, Thomson, and Henderson, 2006).

When conducting interviews to investigate a selected topic, it is essential to consider the desired

number and type of respondents. This further raises questions on how to choose the right respondents

that can contribute to the most valuable data to encompass all aspects of the investigated topic fully.

The desire is to say something about all elements, in this case, the organizations and DevOps teams,

by choosing certain people or teams to investigate, which introduces the term of inference. Inference

means to predict something about the total population, based on a subpopulation (Andersen, 2014).

The reasoning behind introducing inference is due to the considerable amount of resources it would

take to investigate every single person connected to DevOps in the two organizations. As such, we

only chose a certain number of respondents from both organizations. However, an important aspect

here was to ensure the presence of at least one respondent from each affected department, group, or

team so that the least amount of valuable data was left uncovered.

As this thesis utilized the paired-case study method, it is defined as an intensive study due to the

examination of few cases in order to understand causes and effects in-depth rather than as extensive

Methodology | 35

research using a large number of cases to determine commonalities in a population (Andersen, 2014).

Examples of intensive research are often seen in case studies that investigate few survey units

(organizations) in a vast amount of areas. Compared to an extensive study, such as a public opinion

polling that investigates many survey units (people) in a relatively small amount of variables, such as

their political stance. We have chosen to conduct an intensive study and focus solely on ProActive

and Topdanmark, due to the numerous aspects included in the concept of DevOps that needs

examination.

3.4. Longitudinal Analysis

This thesis utilizes a qualitative longitudinal paired-case study as the research design in the

investigation of DevOps in ProActive and Topdanmark. This specific research design has allowed

for a thorough examination of the DevOps concept over five years in the two case organizations.

Qualitative research is particularly appropriate for examining processes through its attention to

context and particularities, which allowed us to research the individual cultures and processes in each

organization. Qualitative longitudinal research is predicated on the investigation and interpretation

of change over time and process in social contexts (Holland et al., 2006). As this thesis utilized

secondary data collected from the case organizations in 2015, the longitudinal aspect was introduced.

The longitudinal element has allowed for an investigation of causal relationships in (social) processes

and change over time (Holland et al., 2006). With the combination of qualitative and longitudinal

research, we adopted a research design that aligned with the use of maturity models and process

theory to facilitate the answering of the research question.

According to Holland et al. (2006), the vast majority of longitudinal research is conducted using

quantitative methods and data. The rationale behind a preponderance of quantitative longitudinal

research is that qualitative longitudinal research is often affected by funding pressures and a lack of

time among the researchers. As we used secondary data that was already collected, we did not

encounter the mentioned challenges that qualitative longitudinal research is usually subject to.

If this thesis did not include a longitudinal aspect, it would not have been possible to investigate the

case organizations to the same extent. The absence of a longitudinal element would have profoundly

impacted the investigation of organizational processes over time. Additionally, it would have limited

Methodology | 36

the use of process theory, and visual maps, to identify causal relationships and possible patterns of

events within organizational adoption and use of DevOps.

3.5. Data Collection

This section describes the empirical methods we have utilized by detailing the involved data, research

methods, and techniques as well as their rationality towards this research. In our research, we solely

applied qualitative data but introduced data triangulation, as the applied data stems from different

sources, times, and people (Flick, 2004). We elaborate on the empirical methods used for data

collection, data processing, and data analysis were directly associated with the research design, and

a clear understanding of the different selected methods and their connection to the research design.

3.5.1. Operationalization

Operationalization is a central activity within the analytical realization process, and was used in this

thesis to translate theoretical concepts into empirically measurable entities (Andersen, 2014). The

purpose of the operationalization activity was to ensure that the collected data was accurate and could

be used for further analysis.

Theoretical concepts are typically multidimensional and can be complex to break down into

individual variables, why an essential activity in the operationalization is to identify all the variables

associated with a theoretical concept. The identified variables can afterward be selected concerning

their relevance to the research scope (Andersen, 2014). Besides, it can be difficult to measure

variables that directly reflect the theoretical concept. For instance, theoretical concepts such as culture

and mindset are complicated to measure and require additional attention. Such theoretical concepts

require disintegration to replacement variables, or the summation of a set of multiple small empirical

entities, to yield a useful result (Andersen, 2014).

We performed the operationalization activity prior to the data collection to establish a link between

the theoretical foundation and the empirical elements. The theoretical foundation consists solely of

the knowledge base established in the literature review. Based on the knowledge base, theoretical

concepts were derived and broken down into empirical variables. We designed detailed questions for

the qualitative interviews with the variables as the foundation. Please refer to Table 2 for the complete

operationalization table.

Methodology | 37

Table 2: Overview of operationalization

3.5.2. Primary Data

In this thesis, we solely used qualitative data as the study investigated aspects that were difficult to

measure and quantify, including aspects such as company culture and employee mindset. The primary

data provided a contemporary image of the two case companies' adoption and approach to the DevOps

concept. Weeks before the primary interviews, we conducted two informal, unstructured interviews

with contacts from each case organization. As part of these interviews, we defined the scope of the

research and agreed upon access to resources (i.e., selected respondents from each case organization).

In collaboration with the two organizations, we based the selection of respondents on the individual

respondent's role and involvement with DevOps.

Theory Opertionalization Question

Communication
- How do you commincate within the team?

- Do you use any special methods or communication channels (mail, chat, etc.)?

Knowledge Sharing

- Has there been made any effort to include everybody in every team member's

process?

- Are every team member included in the entire process from development to

deployment?

Collaboration - How do you cooperate in the team?

Team organization

- When the team was established did you notice any differences in culture between

the teams that were put together?

- Was there done any effort in bringing down the formal wall between the entities?

Trust & Respect

- Do you feel that all team members have respect for and listen to one and other?

- Do you feel that all team members have respect for one and other's role

descriptions?

- Is there a sense of a common goal within the team?

Release

- What is the process from a feature in development to production?

- How do you decide what features to develop for customers?

- How often do you deploy new features?

- How long time does it take for a finished feature to reach the customer?

Monitoring - Do you monitor your software/product?

Automation
- How much of your process from development to production is automated

(integration, test, deployment)?

Technical infrastructure - How is the underlying infrastructure of your product?

Tools - Is there an alignment between the tools you use in the team?

Incident handling
- If something goes wrong in production how do you handle it?

- Do you experience less erros after adopting DevOps?

Organizal structure and size
- Do you feel like your team size or organizational structure has had any effect

positive or negative on your apporach to DevOps?

Obstacles
- Have you encoutered any large problems within the team?

- Is that something that hinders you from progressing with DevOps?

General value
- Do you feel that the transition to DevOps has provided any value? And is there

more to gain?

Time to market
- Has your time to market been reduced after the introduction to DevOps?

- Do you see it as an advantage that you can deploy more often than before?

Organizational brand
- Do you feel that the introduction of DevOps have improved your organizational

branding (more technological/innovative brand)?

Customer feedback and satisfaction
- Has your customers been more involved after the introduction of DevOps?

- Has your customer satisfaction increased?

Culture

Process

Challenges

Value

Methodology | 38

We collected the primary data through semi-structured interviews held with the employees from the

two investigated case organizations. The data collection technique of semi-structured interviews was

selected as it provided a relatively open setting, which helps the respondents to perceive the interview

as a conversation rather than an interrogation (Andersen, 2014). We chose the semi-structured

technique as opposed to the structured technique, as it acknowledges that meanings of words and

extent of vocabulary can vary among respondents, which we deemed essential as DevOps can be a

complex concept. Furthermore, the data collection technique allowed the respondents to delve and

emphasize points that they felt were the most relevant (Barriball & White, 1994).

The flexibility of the semi-structured interview is an advantage when conducting research, where

language barriers exist, as the interviewer can select exact words that ensure the validity and

reliability of the data, which is the case of this thesis, as non-native English speakers are part of the

respondents (Barriball & White, 1994). Furthermore, the flexibility of the technique allowed us to

exceed the constructed interview guide and ask additional questions regarding relevant areas that

could appear during the interview or to acquire information about uncovered topics (Andersen, 2014).

Please refer to Table 3 for an overview of the interviews and the role of respondents.

Table 3: Overview of respondents (primary data)

Respondent

number

Organization Role/Title Approximate

duration (min)

1 ProActive Developer 60

2 ProActive Senior Developer 40

3 ProActive Tester 30

4 ProActive Technical Product Delivery Manager 60

5 ProActive Technical Product Delivery Manager

(retrospective interview)

40

6 Topdanmark Developer 30

7 Topdanmark Developer 40

8 Topdanmark Product Owner 50

9 Topdanmark Developer (Hawks) 40

10 Topdanmark IT Development Manager and Architect 60

11 Topdanmark Scrum Master 30

Methodology | 39

12 Topdanmark DevOps Specialist (IT Operations) 30

13 Topdanmark IT Development Manager and Architect

(retrospective interview)

70

The developed interview guide consists of the questions extracted from the operationalization

activity. However, questions related to the history of the organizations were only included in

interviews with long-tenured employees. The interview guide served as a guiding structure in the

interviews. However, we made attempts to continuously adjust the questions to be as relevant as

possible to the individual respondent. Furthermore, we deliberately chose to include a minimum of

theoretical terminology in the questions to avoid any confusion among the respondents. Figure 6

shows a snippet of the interview guide (please refer to Appendix C for the full-sized version).

Figure 6: Snippet of the interview guide

The interview agenda and further information about the topic were not distributed to the respondents

before the interviews, as it was made clear at the preliminary interviews that the respondents had

either been introduced internally to DevOps or worked with it daily. We initially scheduled the

interviews to be conducted at the headquarters of the two case companies. However, due to the

outbreak of the COVID-19 virus forcing all Danish companies to close office spaces, only four of the

scheduled interviews were held in person. Consequently, we conducted the majority of the interviews

as virtual meetings through Microsoft Teams. The interviews were in either English or Danish based

on the preference of the individual respondent. The duration of the interviews ranged between 30-60

minutes and were all audio-recorded and subsequently transcribed.

Methodology | 40

Two retrospective interviews were successively held with employees from the case organizations to

obtain additional insight into their DevOps approach. The two respondents in the retrospective

interviews were selected based on their tenure at the organizations, as the need for data on the exact

occurrence of specific events, decisions, and activities was necessary for further analysis. We

encouraged the respondents to research the events before the interview and kept an informal

atmosphere to provide the respondents with time to recollect. The retrospective interviews were

conducted as unstructured interviews using Microsoft Teams and were likewise audio-recorded and

subsequently transcribed.

3.5.3. Secondary Data

Due to the applied longitudinal research design of this research, the necessity for data from other time

points was a requirement. Therefore, we included secondary data from previous research conducted

by Nielsen, Winkler, & Nørbjerg (2017) in this research. The interviews from their research were

likewise from ProActive and Topdanmark. They collected the data in 2015 from 15 role-specific

interviews (five at Proactive, ten at Topdanmark) with different stakeholders (please refer to Table 4

for an overview of the interviews and role of respondents).

Table 4: Overview of respondents (secondary data) (Nielsen et al., 2017)

Respondent

number

Organization Role/Title Approximate

duration (min)

14 ProActive Director Solutions N/A

15 ProActive Product Owner N/A

16 ProActive Developer/Solutions Architect N/A

17 ProActive Tester N/A

18 ProActive IT Professional (IT Operations) N/A

19 ProActive Director Solutions

(retrospective interview)

N/A

20 Topdanmark Service Owner N/A

21 Topdanmark Specialist N/A

22 Topdanmark Product Owner N/A

23 Topdanmark Application and Architecture

Responsible

N/A

Methodology | 41

24 Topdanmark Developer N/A

25 Topdanmark Service Owner, Specialist, Release

Manager (IT Operations)

N/A

26 Topdanmark Service Owner N/A

Secondary data is defined as data that was initially collected for a different purpose but reused to

explore new research areas (Andersen, 2014). Nielsen et al.'s (2017) research paper investigated how

companies or teams adopting DevOps could assess their fulfillment of essential DevOps elements.

While their research differs in scope, it provided valuable insights and reusable data for assessing the

organizations’ previous level of DevOps maturity. Nielsen et al. (2017) utilized the semi-structured

interview technique for collecting their data, which is the same technique applied in this thesis for the

collection of the primary data.

3.5.4. Referencing Interview Quotes

Most of the interviews are in Danish (both from the primary and secondary data). Accordingly, we

translated all quotes cited in the thesis to English. We have translated all quotes to the best of our

ability while trying to maintain the original meaning and emotions of the individual respondent.

3.6. Data Analysis

The interviews resulted in a rather large and comprehensive set of transcribes. We coded the

transcribes to apply structure to the data through categorization, where responses were connected to

the presented theory. The coding process was conducted on both the primary and secondary data to

ease and rationalize the further handling and interpretation of the data.

The coding process included two stages of coding. Firstly, the transcribes were coded according to

relevance for the analysis and the research question. In this stage, we coded the transcribes to

correspond with three levels of relevance: Relevant, potentially relevant, and irrelevant. Of these, the

two categories, relevant and potentially relevant, were included in the further coding. The parts coded

as irrelevant in the transcribes were mainly small talk and answers of respondents that were not

relevant to DevOps and therefore excluded from further analysis.

Methodology | 42

The different fragments were color-coded in the following way: relevant fragments were highlighted

with a green color, potentially relevant fragments were highlighted with an orange color, and

irrelevant fragments were not highlighted. After we conducted the first stage of coding, the transcribes

were fragmented into smaller, more relevant parts, where all irrelevant data was excluded from further

analysis.

In the second stage of the coding process, we coded the relevant and potentially relevant fragments

to chosen concepts presented in the theoretical foundation of the thesis. In this stage, we coded the

data fragments to address one or more of the following:

• Culture and collaboration

• Product, process, and quality

• Foundation (technical infrastructure)

• DevOps Value

• Challenges

• Time (specific mentions of timeframe)

We based the selected theoretical concepts for the second coding stage on their pertinency towards

the research question. Culture and collaboration; product, process, and quality; and foundation

directly relates to the maturity model used for assessing the drivers and capabilities for progressing

DevOps maturity. To determine what hinders organizations from maturing their DevOps approach,

we coded the fragments to challenges related to the two organizations’ DevOps approaches. By

coding fragments to DevOps value revealed areas that generated value for the two organizations.

Lastly, coding fragments according to time assisted in the creation of visual maps. By coding the

relevant fragments of the transcribes to their connection with the chosen concepts, the data set became

more tangible for the later interpretation and analysis.

Case Description | 43

4 Case Descriptions

4.1. ProActive

ProActive is a Danish consultancy firm that assists private and public organizations with their digital

transformations (ProActive, 2020). ProActive is one of the leading Microsoft partners in Scandinavia

and is specialized in the technologies developed by Microsoft. In short, they describe that their main

activity is to “help make it easy, clear, and advantageous to use modern technology” (ProActive,

2020). The headquarters of ProActive is in Copenhagen, but they have smaller offices located in

Odense, Aarhus, and Aalborg. ProActive was founded in 1997 and currently employs approximately

250 people (ProActive, 2020).

Despite being a well-established consultancy firm, ProActive also develops a software product,

IntraActive, which is an intranet product based on Microsoft’s platforms, SharePoint Online and

Office 365. IntraActive is a traditional intranet that serves as an internal platform providing the users

with access to essential tools and documents while also affording enhanced internal communication.

The development of the product started in 2013 as an intranet project for a customer. However, due

to the growing demand for a standardized intranet product, ProActive decided to form a dedicated

intranet team in 2014. IntraActive is sold to multiple companies covering a broad range of industries

within both the public and private sectors. The majority of the customers are located in Denmark,

with few exceptions in Sweden, Brazil, and Germany (IntraActive, 2020).

The team behind IntraActive consists of 15 employees, of which 13 are at the headquarters in

Copenhagen. The two remaining employees are based in Brazil and are contracted through a Brazilian

software company. The team is split into two smaller groups: the business team and the technical

team. The business team includes the product owners, marketing responsible, and the team director.

The technical team consists of all the developers, one dedicated operations employee, and a product

manager (Respondent 1, ProActive, 2020).

IntraActive was initially delivered as a typical software where the customer bought the product, and

the ownership was transferred. The product was updated through a quarterly release cycle, but

customers had to buy the new releases separately as this was not included in the product. All updates

were manually installed and could take several days to perform as customer solutions typically

Case Description | 44

included multiple customizations that were not compatible with new versions. However, due to

changing demands regarding software products as well as time-consuming development inflicted

with many manual steps, the IntraActive team decided to change their delivery model. ProActive

transitioned from a traditional delivery model to a Software as a Service (SaaS) delivery model in

2019. With the change to SaaS, ProActive introduced a continuous delivery setup within the

IntraActive team. The new SaaS delivery model brought multiple benefits, but also specific

requirements, for the internal release setup as well as the team culture (Respondent 5, ProActive,

2020).

4.2. Topdanmark

Topdanmark is a Danish insurance company that offers a wide range of insurance packages and

financial services to both private and commercial customers. Topdanmark was founded in 1899 and

is today the second-largest insurance company in Denmark. They currently employ 2400 people

spread across the country, with their headquarters being in Ballerup (Topdanmark, 2020).

To support the business, Topdanmark employs an extensive IT department consisting of 400

employees. The IT department is divided into three divisions: development, operations, and a DevOps

team. Development consists of several small teams that built web applications for Topdanmark’s

platforms. Connected to each development team are a product owner and a scrum master that oversee

facilitating the development process. The operations teams handle the traditional operation tasks of

monitoring software and hardware, incident handling, and configuration, and provisioning of

technical environments. The DevOps team is in charge of building pipelines, version control,

selecting and distributing tools, and other tasks associated with Topdanmark’s delivery model

(Respondent 10, Topdanmark, 2020).

All of Topdanmark's applications are built in-house. This decision originates from an IT project in

the early 2000s, where Topdanmark needed a new integration layer. However, as no supplier could

deliver the functionality needed, they decided to develop it themselves (Respondent 10, Topdanmark,

2020). This philosophy has, over the years, led Topdanmark to build large systems, dependent on its

mainframe, that are specifically tailored to their business needs. Topdanmark’s mainframe has been

active for multiple decades. Thus, the old mainframe is not compatible with today’s DevOps

Case Description | 45

technologies, which is why Topdanmark three years ago started a transition to becoming a more

cloud-based company.

The management and employees of Topdanmark have a desire to transition away from the mainframe,

but it has not been possible due to technical and economic reasons. Because of the dependencies of

many systems on the mainframe, and the desire to become more cloud-based, Topdanmark’s software

development has been divided into two distinct processes with individual teams and technical

architectures: The Top-Up process and the Continuous Delivery process (CD-process).

The Top-Up process contains several of Topdanmark’s applications, including the CRM system of

the organization. All applications within the Top-Up process are somewhat dependent on the

mainframe. Due to the dependencies on the mainframe, Topdanmark cannot adopt a continuous

delivery model to the Top-Up process. The Top-Up process has scheduled deployments

approximately 10-12 times per year (Respondent 10, Topdanmark, 2020). The CD-process contains

Topdanmark’s newer applications and most frontend solutions. Servers and applications within the

CD-process are hosted by Amazon Web Services (AWS). The “ICE-WEB” team is responsible for

all newer applications and is the only team developing to the CD-process. The introduction of the

AWS setup allowed Topdanmark to implement continuous delivery and thus provided them the

ability to release software daily. However, due to the connections to the mainframe, a large number

of complete applications are stuck in a limbo between test and production, waiting for the next release

cycle of the mainframe (Respondent 10, Topdanmark, 2020).

Analytical Framework | 46

5 Analytical Framework

This section will elaborate on the theories and models applied for analyzing and interpreting the

acquired data. Despite advancing on the knowledge gained from the literature review, we adopt a

maturity model for assessing the previous and current level of maturity of the two case organizations

in the analysis. For the inclusion of the temporal aspect, we utilize process theory in the form of visual

maps to visualize the sequence of DevOps related events performed in each organization during the

last five years.

5.1. Maturity Assessment

We opted to use the Focus Area Model by Feijter et al. (2018) for assessing the maturity of the two

organizations as we deemed it the most reliant, due to the scale and comprehensiveness of the model.

In contrast to the other maturity models (Mohamed, 2015; Inbar et al., 2013), the Focus Area Model

provides a set of measurable capabilities, which ease the maturity assessment task of the two

organizations. Each area defined in the model possesses a set of capabilities that define the level of

maturity of the respective area. However, worth noting is that the model lacks clarity in some areas.

For instance, the level of maturity in terms of configuration management is not defined beyond level

five as the highest-rated capability is placed at this level (please refer to Figure 5). The lack of defined

levels applies to multiple areas in the model and is also present in between levels. For example, there

are three undefined levels between capability A and B in the communication area. Thus, the model

introduces a certain amount of subjectivity as we are required to estimate whether the investigated

organization is in between levels or has ascended beyond the defined capabilities.

Another limitation of the Focus Area Model is the absence of certain concepts that are relevant to an

organization’s adoption and maturity of DevOps. For example, the model does not include aspects

such as the employees’ mindset and perception of DevOps. However, these types of softer concepts

are a general lack of DevOps maturity models due to the challenging measurability of these. We are

aware of this shortcoming and, therefore, try to incorporate these continuously throughout the

analysis to get a more unobstructed view of the organizations' DevOps approaches. Furthermore, we

recognize that assessing any focus area to level 10 reflects that the organization cannot improve within

that area. However, we assess all focus areas according to the capabilities provided by Feijter et al.

Analytical Framework | 47

(2018), and the assessment is therefore not a completely accurate depiction of the possible future

levels of maturity due to the rapidly changing possibilities and environment of DevOps.

In section 6 Within-Case Analysis, focus areas, capabilities, and levels will be referenced in the text

with the use of italics.

5.2. Process Theory

When conducting dynamic studies, variance and process theory tend to emerge. Both theories put

their emphasis on events, activities, and decisions. However, variance theory focuses on the

relationship between the dependent and independent events as the theory seeks to provide

explanations for outcomes and causes. Complementary to variance theory, process theories are

concerned with the sequence and development of events that lead to an outcome. Thus, it is essential

to understand patterns in events to develop process theories (Langley, 1999).

According to Langley (1999), process data collected from organizational contexts is characterized by

several traits that make the data challenging to analyze. This is primarily due to the temporal

characteristics of the data that can influence the precision, duration, and relevance of the data.

Furthermore, the data deals with sequences of events where the background trends that shape a

specific event are not included; hence the researchers have a difficult time grasping the underlying

aspects. Process data also typically involves multiple units of analysis, making the data ambiguous

and complex, as it can be challenging to determine which data to isolate as the reason for a specific

event or decision (Langley, 1999).

The nature of process data is complex and ambiguous; hence it is paramount that an analysis strategy

is adopted that helps facilitate the move from a multifaceted data base to a clear theoretical

understanding. Langley (1999) proposes seven generic strategies for the sensemaking of process data.

The strategies should not be regarded as step-by-step guides but rather as generic approaches to ensure

theoretical understanding. The strategies can be used in combinations for breaking down the

complicated data base. Despite presenting seven different sensemaking strategies, we only adopt one

strategy for the analysis in this research: Visual mapping strategy.

Analytical Framework | 48

Process data analysis may involve the manipulation of words, numbers, or matrices and graphical

forms (Langley, 1999). According to Langley (1999):

"visual graphical representations are particularly attractive for the analysis of process data

because they allow for simultaneous representation of a large number of dimensions, and they

can easily be used to show precedence, parallel processes, and the passage of time."

The use of visual maps to analyze process data is an attractive approach, as it allows for the illustration

of several issue domains and parallel events as well as providing a clear indication of the temporal

perspective. It is, however, important to highlight that visual maps serve as an intermediary step

between the raw data and a more robust understanding of the concepts that are analyzed. As such, it

is essential to move the visual map from a descriptive representation of process data to a

taxonomically higher level (Langley, 1999). This is done through a comparison of multiple process

maps for finding common sequences of events and activities that can facilitate a broader

understanding of DevOps.

As such, in this thesis, we will utilize visual mapping to display the collected process data. The visual

mapping strategy will allow for a large quantity of process data to be displayed in relatively little

space. Additionally, the visual mapping strategy can be a useful tool in developing theoretical ideas

(Langley, 1999), which further backends the choice of strategy, since the intention is to analyze the

process data to discover patterns concerning DevOps.

Within-Case Analysis | 49

6 Within-Case Analysis

6.1. ProActive Maturity Assessment

In this section, we assess the maturity level of ProActive for two states in time: the previous state

(2015) and the current state (2020). The assessment of the previous state will serve as a reference

point, and thus the assessment of this state of maturity will be more narrow. The assessment of the

current state will be more in-depth to provide an insight into the current development cycle, culture,

and technical infrastructure of the company. All focus areas of the Focus Area Model are included in

the maturity assessment, but will not all be explicitly described, due to the large number of focus

areas included in the model.

6.1.1. Previous Level of Maturity

The organizational structure of the IT department in ProActive was in 2015 split into the two

traditional groups: development and operations. The teams were separated by location, and their

communication mainly took place through email, documents, or quarterly meetings associated with

an upcoming software release. This traditional separation meant that each team had different

objectives and tasks, resulting in a lack of alignment. Especially the transfer of knowledge between

the teams is observed to cause many problems. One employee describes the teamwork between the

two teams: “It is a challenge to make this continuous transfer of knowledge all the time because

things happen relatively quickly in the product, but operations are always a bit behind” (Respondent

14, ProActive, 2015). We, therefore, determine the knowledge sharing of ProActive to level 5 (B), as

there was a presence of knowledge sharing, but the knowledge was not shared actively. The

communication is rated level 6 (C), due to the presence of direct communication among employees.

Figure 7 shows the complete assessment of ProActive’s previous level of maturity.

Firstly, it was not always the same people from the operations team that was responsible for the

release and installation of new versions, which meant that additional time had to be spent on

introducing the process. Secondly, the operations team was also responsible for handling other tasks,

which resulted in installations of new product versions dragging out to a point where new releases

would exceed ones that were yet to be installed on the customers' environments. As such, we rate the

release alignment as level 3 (A), as there was a shared understanding of releases, but no internal

release heartbeat was present.

Within-Case Analysis | 50

Figure 7: Assessment of ProActive's previous level of maturity (2015)

ProActive previously delivered its product through a traditional release cycle, where a new version

was released every four months. The release of new versions was a partly automated process that

required a consultant from the operations team to manually run deployment scripts to install a new

version on a client's environment. Each customer required a unique installation, and these could take

multiple days, due to system dependencies, such as a SharePoint crawl (i.e., a crawl that is executed

by Microsoft to gather data on SharePoint sites and update accordingly) that the organization had no

control over (Respondent 18, ProActive, 2015). As ProActive had a fixed release heartbeat, releasing

every four months, we rate the release heartbeat at level 5 (B).

In terms of the build automation, the team ran automated builds every night for internal test

environments (level 3 - B). The automated build process was issued with broken build detection and

gated check-ins. The development team also utilized traditional manual code quality monitoring

methods, such as pair programming and code reviews (Respondent 16, ProActive, 2015). As such,

we evaluate ProActive’s approach to development quality improvement at level 7 (C), due to the

fulfillment of multiple quality improvement measures.

According to a product owner, the testing process was a strictly manual as there were no automated

tests in place, neither in the form of integration nor unit tests (Respondent 15, ProActive, 2015). The

testing process showed to be an obstacle for software development due to the postponement of testing

Within-Case Analysis | 51

to the very end of the release cycle. The absence of automated tests and a continuous testing process

led to rushed workflows that mainly resulted in delays or the introduction of known errors in the

product. Due to the absence of automation, we assessed the test automation at level 4 (B).

In 2015, ProActive had almost no focus on monitoring and performance-optimizing and was heavily

reliant on customer feedback for feature errors and performance issues. At this time, the monitoring

and incident handling processes were carried out by the operations team (Respondent 18, ProActive,

2015), who were yet to be merged with the development team. Due to the inadequate knowledge

sharing between the two teams, a situation where developers had limited insights into the performance

of their applications occurred. The absence of continuous performance monitoring led to an

uncertainty in product performance, which hampered the team’s ability to act proactively to product

failures. We, therefore, rate the incident handling of ProActive at level 2 (A), as the process of

handling failures was purely reactive.

ProActive has historically followed the evolvement of Microsoft's applications. As such, ProActive

used the predated version of Azure DevOps, Visual Studio Team Services (VSTS), in 2015.

According to an employee, VSTS was the central configuration management system and was used to

provision the internal development environments (Respondent 19, ProActive, 2015). Thus, we

determine the configuration management of ProActive to be at level 5 (C). VSTS included many of

the functionalities known from Azure DevOps today, why we presume that the level of configuration

management in ProActive in 2015 was already at a high level.

Despite the lack of cross-functional teams and the required technical setup, ProActive was in a

favorable starting position to adopt the DevOps concept, due to the fulfillment of crucial agile

principles, and their willingness to follow and adopt new upcoming trends. As such, we assess

ProActive’s overall previous level of maturity to be on a relatively high level compared to the amount

of emphasis put on DevOps by ProActive in 2015.

6.1.2. Current Level of Maturity

6.1.2.1. Culture and Collaboration

ProActive has historically worked with agile software development, which has provided them a

favorable starting position in adopting DevOps. We observe this in the embedded culture that exists

Within-Case Analysis | 52

in the product team, IntraActive, today. The IntraActive team has fully adopted the ideal DevOps

team structure as all employees share the same office space, and the clear distinction between Dev

and Ops people is removed. According to a developer, the roles within the team are somewhat shared;

however, the individual employees have separate job descriptions and focus areas that lean towards

either development or operations (Respondent 1, ProActive, 2020). Nevertheless, the different tasks

tend to overlap, indicating that no team member is stuck in a fixed role and, thus, the team avoids a

situation where an employee possesses a large amount of tacit knowledge. Due to the merge of teams

and roles, we perceive ProActive to have reached the highest level of team organization, thus rating

them as level 10. Figure 8 shows the complete assessment of ProActive’s current level of maturity.

Figure 8: Assessment of ProActive's current level of maturity (2020)

The structure of the team has fostered a strong relationship between the employees and created a

sense of a common goal within the team, where every team member has a share in the product quality.

One employee expresses: "I really see a predominant tendency, at least in our team, for everyone to

have significant co-responsibility in everything we develop" (Respondent 4, ProActive, 2020).

According to a senior developer, the culture exhibits a feeling of trust and respect within the team,

and the diversity of opinions and values is highly rated due to the belief that diversity facilitates

meaningful discussions that improve the teamwork (Respondent 2, ProActive, 2020). Consequently,

we consider ProActive to have achieved an ideal team environment, why we determine the trust and

respect to be at the highest level possible (10).

Within-Case Analysis | 53

ProActive employs multiple communication and knowledge sharing tools on both a team and

organizational level. On a team level, the primary communication is through social interactions and

face-to-face meetings due to the team members sharing the same office space. The team's primary

communication tools are Microsoft Teams and the SharePoint platform that stores all documents

created during the software development (Respondent 4, ProActive, 2020). The implementation of

Microsoft Teams has changed a lot in the team culture, especially in the areas of collaboration and

knowledge sharing, and one employee describes the tool as “an essential communication tool for us”

(Respondent 4, ProActive, 2020). The team also has daily standup-meetings, weekly team meetings,

and occasional retrospectives in conjunction with their agile development approach. Furthermore, the

IntraActive team hosts quarterly “Community meetings” with their customers. At these meetings, the

team highlights some of the latest features released while the customers share knowledge on how

they use their intranet solution (Respondent 4, ProActive, 2020).

On an organizational level, ProActive uses Microsoft Yammer for establishing Communities of

Practice to enable knowledge sharing across teams. The Yammer platform consists of numerous

groups all labeled with a specific topic; for example, “Microsoft Azure” that all employees can freely

join upon interest. Within the Yammer groups, new initiatives and solutions to issues are shared

between the group members (Respondent 4, ProActive, 2020). As such, we assess ProActive’s

communication and knowledge sharing within and across teams to be on a high level of maturity due

to the centralization of communication. However, ProActive has not expressed to be actively seeking

to improve their communication by adopting or trying new forms of communication, and as such, we

rate the communication of ProActive to have achieved capability D at level 9.

Internally the team is aligned concerning software releases; however, as mentioned, the IntraActive

product is built on SharePoint. Despite ProActive being an official Microsoft partner, we assume that

ProActive does not have extensive knowledge of the release cycle and roadmap of SharePoint.

According to an employee, ProActive rely heavily on the information that Microsoft posts through

their official channels for their roadmap planning and release cycle (Respondent 3, ProActive, 2020).

This information is, however, not always accurate and sometimes completely lacking. This absence

of information can cause situations where Microsoft develops similar applications to those of

ProActive and, thus, limit the value of IntraActive, leading to wasted development time. In worst-

Within-Case Analysis | 54

case scenarios, ProActive could face downtime or significant issues in their product if Microsoft

releases changes that directly affect the setup of IntraActive. ProActive has measures in place to

mitigate the risk of such situations occurring (Respondent 3, ProActive, 2020), but it is evident that

there is a lack of external release alignment, due to external dependencies. Thus, we deem ProActive

to have a high level of release alignment (level 8 - B), but as a consequence of the external

dependencies, they still face challenges in this area.

6.1.2.2. Product, Process, and Quality

ProActive exhibits the use of continuous delivery as the IntraActive team can release new code daily

through their Azure DevOps solution. However, the company has an agreement with their customers

to only release new functionality or changes from Monday to Thursday due to the lack of support

resources during the weekends, with hotfixes being an exception to this agreement (Respondent 4,

ProActive, 2020).

The IntraActive team uses Git as their version control system as it is one of the two options available

in Azure DevOps, with the other being TFS. Moreover, ProActive has a defined branch and merge

strategy for its software development. All new code must be developed on a feature branch

(Respondent 4, ProActive, 2020). A feature branch strategy is based on developers creating a specific

branch when developing a feature, and then working on that feature independently from the shared

or master branch. When the feature is done, it is merged into the shared or master branch, with a pull-

request, to integrate the new feature into the working code base seamlessly (Shibab, Bird, &

Zimmermann, 2012).

Furthermore, the team utilizes feature toggles to be able to release smaller bits of code continuously

(Respondent 2, ProActive, 2020). These coding measures ensure a clean code base and should

theoretically help mitigate the number of errors occurring in software development. As ProActive

utilizes best practices within the area of branch and merge and exhibits an urge to improve in this

area continuously, we rate them to have achieved the highest level possible (10) and thereby

exceeding the defined capabilities. ProActive has not expressed the adoption of new development

quality improvement measures, such as automated code quality monitoring, why we assess the level

of development quality improvement to be unchanged at level 7.

Within-Case Analysis | 55

The deployed Azure DevOps solution offers a myriad of tools that supports the DevOps approach

from end-to-end. The platform handles everything from integration to build to deployment, and the

developer solely needs to click one button to release code:

"DevOps is so simple in its form, and the tooling is so advanced today that you do not really

have to do anything. If you were asking me five years ago, I would definitely tell you the

scripts that I had to write to make things build and deploy, but today I do not have to write

anything. I am just going to assist it by clicking around." (Respondent 2, ProActive, 2020).

ProActive uses, amongst other things, gated check-ins as code needs to be built before deployed to

an environment that prevents code from breaking running environments, thereby increasing the

quality of the software development (Respondent 2, ProActive, 2020). ProActive is yet to automate

their release cycle fully and, thus, achieve a continuous deployment setup, where code automatically

is released to production when it surpasses the automatic testing phase. However, according to an

employee, this is a conscious choice made by the team, as they wish to preserve a setup where an

employee actively has to perform the release (Respondent 4, ProActive, 2020). As such, we estimate

ProActive’s deployment automation to have achieved capability C (level 7). In ProActive's

continuous delivery setup, all manual processes in the release cycle are yet to be removed. The

onboarding process of new customers is still a manual process that requires manual creation of

required sites and resources. However, the team is actively pursuing a solution to the problem but is

yet to discover the most optimal way (Respondent 4, ProActive, 2020).

ProActive makes use of automatic tests in their software development. This includes integration and

unit tests that run every time new code is built as well as daily API tests that verify that all necessary

endpoints are available. If an integration or unit test fails, the build is automatically abandoned, and

the release is rejected (Respondent 1, ProActive, 2020). In addition to the automated tests, ProActive

also conducts manual validation tests before releasing to production. These manual validation tests

are a requirement set by the team and can be performed by any team member. However, ProActive

does not use or expressed the desire to use recoverability or resilience tests (Respondent 1, ProActive,

2020), which means that in case of failure, the system will not selfheal or roll back to a previously

functioning version. Consequently, the company still has quality measures they can improve on to

Within-Case Analysis | 56

achieve a higher level of maturity within test automation, why we assess ProActive’s approach to test

automation on level 8 (D).

Monitoring is primarily done through the tool, Application Insights, which is a part of the Azure

toolchain. Application Insights allows the team to monitor their services’ and applications’

performances and help them diagnose issues. According to a senior developer, the team’s use of

Application Insights was limited to a more reactive approach due to the lack of logged data. As a

measure to overcome, ProActive has implemented telemetric data in its applications, allowing them

to get a real-time view of the product’s performance (Respondent 2, ProActive, 2020). With this

change, the team has shifted their incident handling from being purely reactive and reliant on

customer feedback to a proactive approach allowing them to fix incidents before they get reported.

The monitoring is yet to be fully automated and still requires some manual interference; hence, there

are still some minor improvements to be achieved, why we rate ProActive’s approach to incident

handling at level 9 (D).

6.1.2.3. Foundation

The team structure and the merged roles that exist in ProActive ensure that the architecture of the

product is aligned. According to a developer, all team members are involved in the development and

release cycle (Respondent 1, ProActive, 2020). As such, we assume that there exists a continuous

alignment in both the software and technical architectures. Despite the internal alignment in

architecture, there still exist challenges in terms of external alignment due to the dependency on

SharePoint. Changes in the architecture of SharePoint might not align with the architecture of

IntraActive due to a lack of information regarding new releases from Microsoft. As ProActive has

internal alignment but still is hampered by significant external technical dependencies that influence

their product, we evaluate the level of architecture alignment at level 7 (B).

For configuration management, the company utilizes an automated approach through Azure DevOps

as well as other tools within the Azure Portal. Configuration management streamlines the delivery of

software and applications by automating the build-out of systems quickly and efficiently. A few years

ago, configuration management was something organizations actively had to devise a strategy and

implementation plan for. Nowadays, there is an extensive collection of tools available that handle

configuration management seamlessly and automatically, specifically for Platform-as-a-Service

Within-Case Analysis | 57

(PaaS) solutions (Whyte, Stasis, & Lindkvist, 2016). Every aspect of the IntraActive product is stored

and managed inside the Azure Portal. This includes databases, middleware, SDKs, APIs, and more

(Respondent 2, ProActive, 2020). Thus, the use of the Azure Portal secures a strong relationship

between the required configuration items, while simultaneously supporting the items with version

control, as this is a feature within the toolchain of Azure. As such, the tools provide ProActive with

a relatively high level of maturity concerning configuration management, contrary to the low priority

put on the discipline. However, the same required capabilities to reach a high level of configuration

management were already available in the predecessor to Azure DevOps, VSTS; hence we rate

ProActive’s configurations management to be unchanged at level 5.

ProActive operates with multiple deployment environments: development, test, first-release, and

production (Respondent 4, ProActive, 2020). The development environment is, as the name suggests,

restricted to development. The test environment is where the validation tests are performed, and the

first-release environment is ProActive’s internal intranet solution hence a production-like

environment. The many deployment environments streamline the development cycle and seek to help

minimize the number of errors. However, each of ProActive's customers has its own production

environment that may contain many different customizations, which could impact new releases and,

in the worst case, make them fail. Some errors can only be detected in the final production

environment despite the many code quality initiatives (Respondent 4, ProActive, 2020).

ProActive’s infrastructure allows them to deploy new applications directly to each customer tenant

quickly. As SharePoint is a preconfigured platform, ProActive is not required to configure or

provision customer environments, which is another benefit of the infrastructure. Furthermore, some

of the components inside SharePoint can be reused or evolved by ProActive, thus, saving them

development time. Contrariwise, specific decisions on application architectures will be predefined by

SharePoint due to the compatibility issue. According to an employee, the on-going requirement to

maintain compatibility with SharePoint can conflict with existing parts of the product, which means

that the team sometimes has to restructure existing code for it to function on the SharePoint platform

(Respondent 3, ProActive, 2020). Besides occasional compatibility issues, the infrastructure of

IntraActive allows for ProActive to deploy new applications fast and without friction, while

exploiting the many benefits of SharePoint and Azure. Therefore, we rate ProActive’s infrastructure

at level 8 (D).

Within-Case Analysis | 58

6.1.3. Summary

ProActive has exploited its favorable starting position for adopting DevOps and exhibits a mature

and robust adoption of the DevOps concept today. They have since 2015 merged the two traditional

teams into one cross-functional team where the roles and tasks overlap. Furthermore, they have

defined clear communication and knowledge-sharing protocols through tools such as Microsoft

Teams and Yammer, which have helped facilitate the development of the advantageous DevOps

culture. Figure 9 shows a detailed view of maturity development in ProActive.

Figure 9: ProActive's DevOps maturity progression

On the technical side of DevOps, ProActive has moved from a fixed release cycle to a continuous

delivery setup. Their connection to Microsoft and their willingness to follow the new initiatives and

evolvements within the applications from Microsoft have improved ProActive’s approach to

development. The Azure Portal today is a big part of the development and operation in the IntraActive

product as it provides the tools the necessary tools for continuous development and improvement.

Especially monitoring and optimization have seen significant improvements in ProActive as they

have shifted their reactive incident handling to an analytical and proactive approach that allows them

to fix errors before they get reported by customers. Even though the company has positively

progressed in terms of DevOps, there are still multiple areas they can improve on, such as

configuration management and test automation.

Within-Case Analysis | 59

6.2. Topdanmark Maturity Analysis

In this section, the maturity level of Topdanmark will be assessed for two states in time: a previous

state (2015) and the current state (2020). The assessment of the previous state will serve as a reference

point, and thus the assessment of this state of maturity will be more narrow. The assessment of the

current state will be more in-depth to provide an insight into the current development cycle, culture,

and technical infrastructure of the company. All focus areas of the Focus Area Model are included in

the maturity assessment, but will not all be explicitly described, due to the large number of focus

areas included in the model.

6.2.1. Previous Level of Maturity

In 2015, Topdanmark’s organizational structure and team organization were primarily affected by the

shift towards an agile organization three years prior. The IT-department was split into smaller teams

that each focus on their area, which was something that the employees still were getting used to

(Respondent 20, Topdanmark, 2015). According to an employee, the organization was split into

distinct silos, with a clear separation between the development and operations teams:

“There is and has always been a sort of ‘us’ and ‘them’ thing between development and

operations. In operations, you can hear them say ‘them up on the first floor,’ maybe it is the

business, but it is also development, so there definitely is some ‘us and them.’ We also say

‘them down in operations’, so down in operations (…) So the way we refer to each other in is

not promoting shared core values. It (the culture) is maintaining this division” (Respondent

20, Topdanmark, 2015).

Furthermore, it is apparent that Topdanmark did not have any cross-functional teams that included

developers and operations team members (Respondent 21, Topdanmark, 2015; Respondent 22,

Topdanmark, 2015). However, as Topdanmark had a tester assigned to every development team, the

team organization is rated at level 2 (B). Figure 10 shows the complete assessment of Topdanmark’s

previous level of maturity.

Within-Case Analysis | 60

Figure 10: Assessment of Topdanmark's previous level of maturity (2015)

According to an employee, due to the average tenure of employees being more than ten years, the

culture was very fixed, and there was a general idea of not being able to change the culture to support

the cross-functional teams without putting in a great effort. The communication between the

developers and operations was almost non-existent, with the majority of the communication being

finger-pointing in the light of incidents, suggesting an achieved capability C at level 6 (Respondent

22, Topdanmark, 2015). Topdanmark had implemented a cross-organizational knowledge sharing

platform, IBM’s Connections (now HCL Connections), but according to several of the employees in

Topdanmark, there were not many employees that used it, and there did not exist a sufficient overview

of what information was available on the platform (Respondent 20, Topdanmark, 2015; Respondent

22, Topdanmark, 2015). At the time, there was no communication platform specific to the

organization, so it was up to the individual team to choose how they preferred to communicate. The

knowledge sharing of Topdanmark is, therefore, evaluated to be at level 3 (A).

The release heartbeat of Topdanmark in 2015 was fixed across the organization. Since Topdanmark

was following the Top-Up process, they had a total of 10 releases per year with one at the end of

every month (excluding December and July). As such, it is clear that Topdanmark did not have any

continuous delivery process with ongoing deployments to production at that moment, but the release

heartbeat was fixed nonetheless (level 5 - B). A lot of the processes in Topdanmark were done

manually at the time, including testing (Respondent 20, Topdanmark, 2015; Respondent 22,

Within-Case Analysis | 61

Topdanmark, 2015; Respondent 23, Topdanmark, 2015). However, the ambition of transitioning

towards a continuous delivery model with automated processes was clear: “Now we want to shift

towards using continuous delivery, and then the test process will become automated and ongoing

during the entire process” (Respondent 24, Topdanmark, 2015).

Some processes were automated in Topdanmark at the time: build and configuration management

were automated through the tools used in Topdanmark and are, therefore, assessed to have achieved

capability B (level 3). Furthermore, the branching and merging were done using Git. We deem that

Topdanmark utilized a feature branch strategy as a branching/merging strategy (Respondent 24,

Topdanmark, 2015), and we assign the branch and merge focus area to level 5 (C). This branching

and merging strategy suggests that Topdanmark had gated check-ins on code, thereby fulfilling

capability C (level 7) of the development quality improvement focus area.

Subsequently to features being deployed to the production environment, the incident handling of

Topdanmark was entirely reactive (level 2 - A). Accordingly, all incidents that occurred from the

production environment was either reported by the system, as a result of malfunctioning code or

system errors, or by customers that contacted the support team in Topdanmark. A developer described

the handover process between development and operations as: “The code goes into production, and

when something goes wrong, then you meet operations” (Respondent 24, Topdanmark, 2015). As

such, the communication between the two teams was limited, and the incident handling was often

precarious due to the lack of knowledge sharing (Respondent 21, Topdanmark, 2015).

The technical infrastructure of Topdanmark was largely affected by the mainframe, as almost all

systems were dependent on the mainframe to some extent (Respondent 20, Topdanmark, 2015).

While the mainframe was considered a problem and a substantial obstacle in the pursuit of continuous

delivery, it is accentuated that: “all applications that use backend services are not isolated, we are

not going to find ourselves in a situation where we exhibit services that do not have backend services”

(Respondent 25, Topdanmark, 2015). Due to all services being dependent on the mainframe,

Topdanmark had an alignment between the software and technical architecture since any software

with backend calls that was not supported by the mainframe would not function. As such, the “old

mainframe”, as it is referred to (Respondent 20, Topdanmark, 2015), was a significant obstacle for

Topdanmark in implementing continuous processes, but it ensured architecture alignment between

Within-Case Analysis | 62

the software and technical layers (level 2 - A). The infrastructure focus area is mainly concerned with

the technical environments of the organization, and as we deem Topdanmark to have a partly

automatically provisioned infrastructure they are assigned a B (level 6) for this capability.

6.2.2. Current Level of Maturity

6.2.2.1. Culture and Collaboration

Topdanmark has not successfully adopted a DevOps culture as it is described in the available

literature, where the silos between the development and operations team are broken down to create a

united team that covers the entire process from development to monitoring the application in

production. They have, however, adopted the DevOps concept on their own terms to fit their specific

situation. The reason behind Topdanmark not having adopted the advocated culture could be

explained by the organization’s large size, a very high average tenure of employees, lack of skills,

management decisions, or something completely different, which will be further investigated later in

the analysis.

The communication within the development teams in Topdanmark is defined as structured according

to the maturity model of Feijter et al. (2018), due to the teams following Scrum and having daily

stand-ups, retrospectives after release to production, and including product managers in the entire

process of development. However, the communication between the development and operations

teams is kept on the minimum, and there is a rigid handover process when a finished feature or

function is developed and is going to production. Due to the lack of operations teams inclusion in the

daily stand-ups and retrospectives, the communication in Topdanmark is not assessed to fulfill all

requirements needed for capability D. We, Therefore, determine the communication at level 8. Figure

11 shows the complete assessment of Topdanmark’s current level of maturity.

As described in the literature, in any organizational DevOps setup, knowledge sharing between

entities is crucial. In the case of Topdanmak, it is even more accurate due to the handover process

between development and operations. As the operations teams are not included in any of the

development processes, and thereby necessarily do not have any knowledge concerning the

developed applications, the knowledge sharing in the handover process is crucial. When asked about

the knowledge sharing process in Topdanmark, a manager replies:

Within-Case Analysis | 63

” That is something we are not so good at in general in Topdanmark. We are extremely helpful

and help each other whenever one is in need (…), but we are not so good at systemizing

knowledge and informing other people about what is going on so they can learn from it.”

(Respondent 10, Topdanmark, 2020).

Figure 11: Assessment of Topdanmark's current level of maturity (2020)

Topdanmark is determined to have a constructive culture, but they lack some engagement and

structure in their knowledge sharing process. However, knowledge sharing has been improved in the

past year. In December 2018, Topdanmark introduced Office 365, and with it, Microsoft Teams into

the organization, which allows for a centralized platform for knowledge sharing. The introduction of

a shared platform has taken the knowledge sharing between the teams to “another level” (Respondent

10, Topdanmark, 2020). Topdanmark has improved the knowledge sharing within the organization

to level 5 by achieving centralized knowledge sharing (B), but still has much room for improvement.

To mature their knowledge sharing processes, active steps can be taken towards a more active

knowledge sharing culture, where development and operations employees engage in active

discussions about the possibilities of their solutions or provide training to each other. Actively

engaging such knowledge sharing processes will help the teams to fully grasp the work processes of

each other, which likely will result in better teamwork and a more efficient handover process.

Within-Case Analysis | 64

As a step towards a higher level of knowledge sharing, some employees of Topdanmark have

established communities of practice, where common passions between the employees are shared.

Communities of practice are an excellent way of sharing knowledge and are something Feijter et al.

(2018) include as the highest capability of knowledge sharing in the Focus Area Model. According

to an employee, however, some of these communities of practice have particular prerequisites, such

as attendees knowing specific coding languages (Respondent 10, Topdanmark, 2020). Starting these

communities of practice is an initiative towards a more thriving DevOps culture, but having

prerequisites of existing knowledge for attendees could profoundly influence the type of employee

that attends. With the prerequisite of knowing coding languages, there is a high chance that the

attendee base will consist primarily of developers. If Topdanmark has aspirations of creating DevOps

communities of practice to enhance the knowledge sharing between development and operations

teams, the discussed areas of interest should perhaps be of a more general characteristic so they can

harvest the advantage of having diverse employees from different teams participate. While the

presence of communities of practice suggests that Topdanmark has achieved capability D of

knowledge sharing, they cannot advance to this level without fulfilling the requirements of capability

C, where more steps towards an active knowledge sharing culture have to be taken.

Another element that is presented in the literature and included as a focus area in the Focus Area

Model, as an essential part of a DevOps culture, is trust and respect amongst employees. Topdanmark

has a decentralized organizational structure, where responsibility is allocated to the individual teams

and units. There is an ingrained trust from management in the ability of each team to make the

decisions that are most appropriate for them. From the interviews, it is apparent that there is a high

level of respect between the employees, leading to an assessment of level 7 (B) in trust and respect.

The high level of respect could be connected to the high tenure of employees in Topdanmark.

Following the data presented in the interviews, the average tenure of employees in the IT-department

of Topdanmark is around 10-20 years (Respondent 12, Topdanmark, 2020). With an average tenure

of more than a decade, employees have been working together very long and have, all things held

constant, done their job well enough to be respected for it.

Feijter et al. (2018) introduce core values and a shared goal as a driver of trust and respect. The

development and operations teams should be rewarded as a group when a release is successful, as

well as having a high level of transparency and prevent blaming in faulty situations. As of now, it is

Within-Case Analysis | 65

clear that there is no clear vision of a shared goal between the teams and that Topdanmark has not

implemented any group rewards when a feature or application finishes the cycle from development

to functioning in production. The development and operations teams have individual measures and

rewards for the accomplishments, varying across teams, and management has not focused upon

creating a shared goal (Respondent 6, Topdanmark, 2020).

Because of the software development process being divided into the Top-Up process and the CD-

process, the internal release alignment is difficult for Topdanmark to achieve. This is mainly due to

the two processes having adverse deployment patterns and teams not adhering to a common sprint

cadence (Respondent 11, Topdanmark, 2020). However, Topdanmark is deemed to have improved

on the alignment within each of the processes since 2015. We therefore assess Topdanmark’s release

alignment to level 6 with an inability to achieve capability B, currently, due to the diverse processes.

6.2.2.2. Product, Process, and Quality

Following Topdanmark’s decentralized organizational structure, the process of developing and

following code through to production and monitoring differs from team to team. However, there are

similarities across the teams. In the development process, Git is utilized by the vast majority of

developers across the organization for version control and merging code. According to a manager,

most teams have implemented a feature branch strategy for developing code to integrate new features

into the working code base seamlessly (Respondent 10, Topdanmark, 2020). The teams in

Topdanmark are very aware of shortening the lifespan of the created feature branches to a maximum

lifespan of 2-3 days. The advantage of having short-lived branches is due to the minimized risk of

incurring conflicts and bugs when integrating with the master branch (Shibab et al., 2012).

When code is committed to the master branch in Topdanmark, it does not go directly to the production

environment but instead to a staging environment from which deployment can take place.

Topdanmark further uses Jenkins for integrating the code into production. Due to the possibilities a

tool like Jenkins provides, Topdanmark could potentially remove the staging environment from their

process and push code directly to production, but they prefer to complete the step of pushing to

production manually. In the process of integrating code, Topdanmark uses Docker and Jenkins to

build the software automatically. We, therefore, rate build automation at level 5 (C). However,

according to the DevOps specialist in IT operations, not all teams’ developing processes support the

Within-Case Analysis | 66

automatic build, and some do not have the competences or knowledge to include it in the process

(Respondent 12, Topdanmark, 2020).

When releasing developed code to production, feature toggles are often used in a DevOps setup.

Feature toggles provide the functionality of hiding published functionality from users of the system.

Released features are then hidden behind a wall, but the code is pushed to production and working

correctly. By using feature toggles, small parts of a feature can be released to production, without

being visible to users, making it possible to continuously test and monitor parts of the solution while

the rest is being built (Respondent 13, Topdanmark, 2020). According to an employee, the

functionality of feature toggles is available in the organization, and some teams already use it, but it

is constrained, and it is not something that has been introduced widely to the organization

(Respondent 13, Topdanmark, 2020). However, as feature toggles are a possibility in the development

of Topdanmark and the earlier capabilities are fulfilled by the feature branch strategy, we have

assessed the branch and merge focus area to have achieved capability D (level 7).

Following the completed development of a feature, it is tested. The testing process in Topdanmark

varies from team to team and is not perceived to be very structured. Most of the teams are in a stage

between manual and automated testing, utilizing both. Most teams have a dedicated tester or a product

owner that tests developed functionality to make sure it meets the requirements. Some teams have

thorough integration tests, and some use Test Driven Development (TDD) in the development

process. There are instances of unit tests, both manual and automatic. Non-functional tests, such as

baseline-tests, have also been introduced in some teams but left out in others. As such, the testing

capabilities and processes vary a lot between the teams, and the perception is that no teams know

entirely what the possibilities are within the organization regarding testing and that the teams are not

aware of the processes of other teams. A manager mentions that “either the teams have an interest in

testing, or else they have no interest in test and have not built anything yet” (Respondent 10,

Topdanmark, 2020). While the testing within Topdanmark varies between teams, they are determined

to fulfill the requirement of automated systematic testing, and we accordingly rate the test automation

at level 5 (C).

To centralize, structuralize, and to get an insight into the quality of the developed code within

Topdanmark, they have recently implemented SonarQube (Respondent 10, Topdanmark, 2020).

Within-Case Analysis | 67

SonarQube is an open-source tool that can perform continuous code inspection and quality

monitoring. The implementation of SonarQube has made it possible for Topdanmark to analyze all

the code in their Git repositories to identify if any significant shortcomings or low quality is apparent

in the existing code. Aside from being used as an analytic tool on existing code, SonarQube is also

utilized when developing new code to ensure high quality in any releases. As Topdanmark both have

gated check-ins and automated code quality monitoring, the development quality improvement is

rated to have achieved capability D (level 8). Topdanmark recently used SonarQube to ascertain how

many of their projects that had a code coverage of 80% or higher in unit tests, which exemplifies one

of the possible uses of the tool (Respondent 10, Topdanmark, 2020).

When a feature or application is developed and tested, the next step in the process is releasing and

deploying the application to the production environment. Primarily due to technical dependencies

and culture differences, the release alignment and deployment phase of Topdanmark is characterized

by complexity. Firstly, the IT architecture of Topdanmark is built around a legacy system but has,

during the later years, been slowly restructured towards supporting a newer technological model. The

backend is split between their mainframe, hosted locally in Topdanmark, and AWS that allows for a

cloud-based and serverless backend. The decision of which backend is utilized relies heavily on the

application and dependent systems. Secondly, according to an employee, the culture is still imprinted

by a “us and them”-view between the development and operations team (Respondent 10,

Topdanmark, 2020).

Further, the traditional release culture of releasing code in large batches has yet to transition to a more

continuous release culture, where features and applications are sliced, for a large part of the

developing teams (Respondent 11, Topdanmark, 2020). These two factors of technical dependencies

and culture arguably have an impact on the release and deployment process for Topdanmark.

However, as Topdanmark has continuous delivery on the CD-process, the deployment automation is

assessed to be at level 7 (C). Currently, Topdanmark cannot succeed beyond level 7 as the

organization has to adhere to the regulatory compliance of segregation of duties that hinders them

from implementing continuous deployment.

The release heartbeat of Topdanmark also differs depending on whether the release takes place as

part of the Top-Up process or CD-process. On the CD-process, where the architecture and tools allow

Within-Case Analysis | 68

for it, the ICE-WEB team can release as often as they determine necessary. In the data, there is a

slight inconsistency in how often the team can deliver features and hotfixes. We estimate it to be

anywhere between several times a day to once a week, which, regardless, is a lot more often than in

the past. In contrast, releases on the Top-Up process are dependent on the mainframe, and the release

heartbeat in unchanged since 2015 with deliveries about once a month (10-12 times a year).

According to one employee, frontend features on the Top-Up process would be able to deliver more

often than once a month, but since the frontend solution, and perhaps any new or changed APIs, are

dependent on the backend, it would not make sense to release the frontend (Respondent 8,

Topdanmark, 2020). Thus, frontend solutions on the Top-Up process are determined to be deployed

once a month because of the dependencies.

Topdanmark is focusing on improving its abilities to slice functionality for releases. As mentioned,

the organization is still affected by the traditional mindset of batch releases. Slicing frontend

functionality is less critical on the Top-Up process than the CD-process, due to the backend batch

release model. However, on the CD-process, the ability to slice functionality and release it

sequentially has shown to be advantageous for Topdanmark. According to a scrum master, some

teams within the CD-process are good at slicing functionality and release to production continuously

using feature toggles, but some teams still see the new way of slicing functionality as a challenge

(Respondent 11, Topdanmark, 2020).

Nonetheless, we assess the release heartbeat of Topdanmark at level 7. The reason behind placing

Topdanmark between two capabilities is due to the added focus on gradual releases in the near future.

An employee informs us that Topdanmark is looking to implement a tool to handle feature toggles

that allows them to release to specific customers at a time, and thereby introduce gradual releases

(Respondent 13, Topdanmark, 2020). Thus, they have not achieved the gradual release capability yet,

but are arguably very close to achieving it.

The different environments of Topdanmark are monitored by their support team, Hawks, who are a

vital part of operations. When incidents occur in any of the environments, Hawks determine where

the incident originated and contact the responsible team or fix it themselves if possible. As of now,

Hawks are trying different tools and models to be more proactive on incidents through the monitoring

of environments and systems. However, according to a developer in Hawks, the majority of incidents

Within-Case Analysis | 69

are reported by customers using the applications (Respondent 9, Topdanmark, 2020). As such, the

majority of the incident handling in Topdanmark is reactive, but there is a focus on transitioning to

become more proactive. Therefore, we do not assess Topdanmark to have achieved the capability of

proactive incident handling, as the majority is still reactive, and we accordingly place them at level

6.

6.2.2.3. Foundation

Due to the existence of both the Top-Up process and the CD-process, it is complicated to determine

the architecture alignment within Topdanmark. The alignment between the technical structure of the

CD-process and the application and business layer is adequate, less so for the Top-Up process. The

longstanding mainframe and database have shown to be a ball and chain for Topdanmark and a

challenge for architecture alignment. Currently, they are trying to develop frontend in a new and

modern way but based on archaic thinking of backend. The software and technical architecture

alignment are existing, but the overall maturity of their architecture alignment is specifically low.

Almost all the interviewed employees are aware of the challenges the mainframe poses and see the

motivation in moving to a more compatible system. As more people in Topdanmark are becoming

aware of the problems, and the architecture alignment gains an increased focus, we have advanced

the architecture alignment by one level to level 3. Unchanged from the previous maturity assessment,

the architecture alignment is still the weakest focus area of all and should, therefore, act as a red light

for Topdanmark as something that needs increased attention.

As a central part of the technical foundation in a DevOps setup, lies configuration management. It

was not possible to obtain any data in the interviews regarding the configuration management within

Topdanmark directly. However, through the use of different tools, configuration management should

be automated. Within Topdanmark, Docker is responsible for a large part of the configuration, and

Git is responsible for version control. Specifically, for the CD-process, the automated configuration

management tool, AWS Config, is available through the use of AWS. As such, we determine

Topdanmark to have achieved level 5 (C) of configuration management. Notably, configuration

management is not something Topdanmark has expressed to focus on, but rather something that is

simply handled through the implemented tools.

Within-Case Analysis | 70

The provisioning and infrastructure of the environments within Topdanmark is, once more,

challenging to determine, due to the separated processes. In the CD-process, the infrastructure is

automatically provisioned and administered through the serverless setup provided by AWS. It is

important to emphasize that this does not correctly depict the entire organization, as the Top-Up

process is tied to the mainframe, where more manual provisioning of the infrastructure is needed.

However, the maturity level of the infrastructure of environments within Topdanmark is determined

by them supporting automatic provisioning through the tools that are available within the

organization, and therefore accordingly assessed to level 8 (D).

6.2.3. Summary

Topdanmark has managed to adopt certain aspects of the DevOps concept in their processes to suit

their specific situation. The culture and organizational structure are currently not adhering to the

principles that are presented in the available literature, where silos are broken down, and

responsibility of developed features is shared from development to production and monitoring. In the

five years from 2015 to 2020, Topdanmark has not drastically developed in the area of culture and

collaboration, from the parameters in the Focus Area Model. Figure 12 shows a detailed view of the

maturity development in Topdanmark.

Figure 12: Topdanmark’s DevOps maturity progression

Within-Case Analysis | 71

However, the implementation of Microsoft Teams as a cross-organizational communication platform

has improved their knowledge sharing. The implementation of a central communication channel has

also indirectly improved their team organization since it has made it easier for employees to get into

contact with employees from different teams. In 2016 the DevOps team within Topdanmark was

created. Following the decision of Topdanmark’s management on not merging development and

operations, the creation of the DevOps team was an essential step towards a DevOps culture. The

reason for Topdanmark not having successfully adapted a DevOps culture can be tied to several

factors, which we will further discuss as a part of the thesis.

Since the introduction of DevOps by Topdanmark’s management in 2015, the organization has

significantly advanced within the process, product, and quality section of the Focus Area Model. The

improvement of processes within developing, testing, deploying, and monitoring is primarily tied to

the implementation of several useful tools in the organization. Tools such as Jenkins, Docker, and

SonarQube have significantly increased the efficiency and quality of processes tied to developing and

delivering the software of Topdanmark. Furthermore, the introduction of AWS and serverless

development have made it possible for the organization to continuously deliver software and

automatically provision the infrastructure in their ICE-WEB team.

Furthermore, the incident handling of Topdanmark has become partly proactive with the introduction

of real-time monitoring. Topdanmark’s mainframe and Top-Up Process is still a significant obstacle

in the process of progressing in DevOps maturity. The management and employees of Topdanmark

understand the complications tied to having the mainframe, and they are steadily trying to phase it

out. However, the management acknowledges that it will be many years before the mainframe is

completely phased out.

While Topdanmark, during the previous five years, has positively progressed in terms of DevOps

maturity, there are still multiple areas they can improve on. Specifically, the culture, organizational

structure, mindset, and technical architecture are obstacles in progressing and becoming more mature

within DevOps.

Within-Case Analysis | 72

6.3. Visual Maps

In the visual maps, events that are connected to the DevOps process, directly or indirectly, in the two

case organizations are displayed as boxes. Events that have occurred in the case companies are placed

on the map according to the data, and to the best of our knowledge, but we cannot ensure that the

context of all events, particularly the timeframe of said events, are entirely accurate. During the

retrospective interviews, each case organization representative was presented with an event timeline

and had the opportunity to comment on the timeline to mitigate the risk of inaccuracy in the visual

process maps. The exact context of the parameters in the visual maps is explained in detail in the

following. Figure 13 and Figure 14 show the visual maps of ProActive and Topdanmark,

respectively.

6.3.1. Issue Domains

Most process theories relate the events to different categories regarding the outcome (Winkler &

Günther, 2012). Langley (1999) refer to these categories of domains in which events occur as issue

domains. As our analysis is focused upon investigating the processes within DevOps, we have chosen

three relevant issue domains: Organization, IT, and Business.

In the visual maps, the issue domain of organization encapsulates events that relate to organizational

structure, culture, communication, collaboration, and knowledge sharing. The organizational issue

domain closely resembles the “culture and collaboration” area of the Focus Area Model. The IT issue

domain encompasses all events relating to the technical infrastructure, and the implementation and

utilization of tools. Lastly, the business domain contains all events that are related to business,

management decisions, or external assistance (e.g., hiring of external consultants).

Due to many aspects of DevOps impacting multiple of the issue domains, the event will be placed in

the issue domain where it is considered most dominant. However, events can be placed in more than

one issue domain if determined necessary to become hybrid mappings. An example of a hybrid

mapping is in the event of implementing Office 365 in the organizations. In this example, it introduces

a different way of communicating internally in the organization (organization); it is an extensive

collection of tools that needs to be implemented and assisted by the existing technical infrastructure

(IT); and it could be an effort to centralize communication, increase efficiency, and decrease costs of

Within-Case Analysis | 73

inter-organizational communication (business). In the visual maps, we illustrate hybrid mappings

using swim lanes and overlapping boxes.

6.3.2. Boxes

All the events or states are illustrated graphically as boxes. The form of the boxes indicates which

type of event it represents. To avoid introducing unnecessary complexity into the visual maps, there

are only four types of events: Decisions or initiatives, activities, external dependencies, and general

information or state.

A decision or initiative regarding DevOps within the organization is represented with a round-

cornered rectangle. Similarly, an activity is represented by a sharp-cornered rectangle. External

dependencies, such as a third-party supplier of software or regulatory requirements, are depicted as

ovals. Lastly, hexagons are used to declare any general information or state about the company that

is relevant for the DevOps processes within. The majority of the boxes are illustrated in a fixed size.

However, the boxes can differ in width, to illustrate the timeframe of the event, or in length, to

illustrate hybrid-mapping. In the further analysis, we reference events and states in-text with the use

of italics.

6.3.3. Direct and Indirect Relationships

The events in the visual map all have a connection to another event, be that precedent or subsequent.

These relationships between events are illustrated as one of two lines. We differentiate between direct

(solid line) and indirect (dashed line) relationships. Direct relationships exhibit a precise temporal

sequence and causal dependency and can, therefore, also be regarded as transitions that form the

process (Winkler & Günther, 2012). An example of a direct relationship is the decision to introduce

the DevOps concept in an organization (event A) leads to a merging of the development and

operations teams (event B). As such, event A is the predecessor of event B, and event B would not

have occurred if event A had not occurred beforehand.

An indirect relationship can be regarded as a weaker causal dependency, where causality is used in

a probabilistic way (Winkler & Günther, 2012). For example, the decision to merge the development

and operations teams (event B) might increase the likelihood of a developer or operations employee

Within-Case Analysis | 74

with high tenure to leave the company (event C). In this scenario, event B increased the probability

of event C to happen, but event C could have occurred regardless of event B having occurred.

6.3.4. Maturity Indicators

To intertwine process theory with maturity theory and to further the understanding of which processes

influence the maturity level of an organization, maturity indicators are included in the visual maps.

The maturity indicators are adjoined to certain events that are determined to have a notable impact

on the DevOps maturity of the organizations. The type and severity of impact on maturity are based

on both the data obtained from the organizations and the capabilities defined by Feijter et al. (2018).

The visual maps include three types of maturity indicators: Inhibiting or interrupting elements,

facilitating elements, and augmenting elements.

Inhibiting or interrupting elements are internal or external events that inhibit interest in, slow down,

or interrupt ongoing DevOps processes. The inhibiting or interrupting elements are depicted as

negatively signed (-) symbols on events. An example of such an event is the large turnover of

employees in ProActive in 2016 that resulted in lost knowledge and skills and the restructuring of a

completely new team.

Facilitating elements are internal or external events that facilitate or accelerate DevOps maturity of

the organizations. Facilitating elements are shown on our visual maps using positive-signed (+)

symbols on events. An example of an event with a facilitating element is the implementation of

SonarQube in Topdanmark. While implementing SonarQube is not something that revolutionizes the

maturity of Topdanmark, the introduction of continuous code inspection will increase the code quality

and is a step towards a more DevOps mature organization.

Lastly, augmenting elements are internal or external events that have a close positive correlation with

the DevOps maturity of the organizations. Augmenting elements are depicted as double-positive-

signed (++) symbols on events. An example of such is the complete implementation of continuous

delivery in ProActive. The implementation of continuous delivery is something that has dramatically

impacted the DevOps processes of the organization positively, both according to the employees of

ProActive and the maturity model of Feijter et al. (2018).

Within-Case Analysis | 75

6.4. Visual Map of ProActive

Figure 13: Visual map of ProActive

Within-Case Analysis | 76

6.5. Visual Map of Topdanmark

Figure 14: Visual map of Topdanmark

Comparative Analysis | 77

7 Comparative Analysis

7.1. Procedural Analysis

The evidence generated through the case studies shows that both organizations, prior to investigating

DevOps, already fulfilled important agile principles, providing them with favorable starting positions

for adopting DevOps. Each company has capitalized on this initial advantage and matured its DevOps

approach significantly throughout the last five years. However, ProActive has managed to mature its

organization in terms of both cultural and technical aspects, whereas Topdanmark has mainly

improved in technical areas. Despite these outcomes, a consistent set of similarities in the events and

activities performed by the companies emerged from the case studies.

Both companies have achieved the aspiration to move from a traditional release cycle to a continuous

delivery setup. ProActive has fully transitioned to a continuous delivery approach with the change

from being a conventional product to IntraActive becoming a SaaS. Likewise, Topdanmark has taken

initiatives towards continuous delivery and deploy some applications daily, but the technical

infrastructure still cripples the CD-process. The development and standardization of the technologies

and tools that support the possibility of continuous development and delivery are found to have a

significant impact on this transition. With ProActive’s history as a Microsoft partner, they have

adapted their software development to the tools developed by Microsoft. This strategy allows

ProActive to continuously renew its software development while also following best practices, as

Microsoft is one of the most prominent leaders and influencers in the industry. Topdanmark has

sought to adopt a similar strategy by using tools issued by AWS, but due to the infrastructure issues,

they do not yet receive the full value of this strategic approach. Thus, following industry leaders such

as Microsoft and Amazon have piloted the way for a mature DevOps approach for the two case

studies.

As a related effect, the companies also exhibit commonalities in terms of changed infrastructure. As

part of the movement towards DevOps, both companies have become more cloud-based. ProActive

has had their on-site servers replaced with Azure and uses exclusively cloud-based hosting for all

their applications. Furthermore, ProActive has had its technical infrastructure restructured and has

developed its own API to be able to deploy the desired SaaS delivery model. Topdanmark has,

following a failed TopWin project, moved all ICE-WEB applications to AWS. As a measure to

Comparative Analysis | 78

discontinue the use of on-site hosting, Topdanmark hired external consultants to help move additional

web-solution to AWS in the spring of 2019. Despite the success of shifting multiple web-applications

to AWS, Topdanmark still has some on-site hosting today.

A consistent finding that emerged in both cases is the increased attention on product monitoring and

optimized incident handling. For example, Topdanmark's introduction of Dynatrace initially in the

operations teams and later in the development teams for better performance monitoring and faster

error fixing. Topdanmark has significantly improved their monitoring, but still has cultural problems,

such as developers not wanting to take additional responsibility, which blocks the progress. Also, the

choice of monitoring tool is found to have a significant influence. Similar initiatives have been

performed in ProActive in the form of Application Insights as well as the implementation of telemetry.

With these measures, ProActive has moved their incident handling to a proactive approach. The use

of Application Insights, was in the case of ProActive, an obvious choice as it is part of the Azure

platform developed by Microsoft, hence the employees already knew the platform.

Conversely, Topdanmark has chosen to implement a third-party tool in the form of Dynatrace, which

is compatible with their other tools and systems but has no specific connection. Thus, forcing the

employees to add yet another platform to their workflows. Moreover, Dynatrace was initially chosen

by the operations teams and then later implemented in the development teams, which has led to

resistance towards Dynatrace by the developers as they do not consider the tool to be sufficient.

In terms of tests, the findings from the two cases emphasize increased attention on automated tests.

The use of integration and unit tests is present in both companies as integrated parts in their build and

release pipelines. However, the use of manual tests still exists in the two case companies. In

ProActive, they make use of manual validation tests that must be completed before any feature or

change can be moved to production. Likewise, Topdanmark has a dedicated tester connected to each

development team that is responsible for testing any feature making its way to production.

Topdanmark has, nevertheless, sought to increase the number of automated tests by introducing tools

such as SonarQube for monitoring the percentage of code covered by automated tests.

The importance of streamlined communication is evident in the two case studies. Both companies

have previously used various forms of communication platforms over the past few years, including

Comparative Analysis | 79

technologies such as Lync, IBM Connections, and Skype for Business. However, with the

implementation of Microsoft Teams, communication among teams and employees has been improved

substantially. The ability to ask questions or facilitate discussions with a broader crowd of employees

enhanced the knowledge sharing process, especially in the case of ProActive that deems Microsoft

Teams essential to their work and almost indispensable. In contrast, Topdanmark does use Microsoft

Teams, which undeniably has improved their internal communication, but they are yet to centralize

all the communication to one platform. The implantation of Microsoft Teams in Topdanmark has

improved the alignment and knowledge sharing between teams, but there are still obstacles to

surmount to heighten the communication in the organization.

Sufficient evidence from the two case studies shows that the need for structured and centralized

documentation is essential to enhance DevOps maturity. Both companies have taken healthy

initiatives to improve documentation. ProActive had before the research already implemented an

intranet solution but supplemented this in 2018 by implementing a central documentation platform

as well as setting up tools for automatic API documentation. At Topdanmark, a new SharePoint

intranet was launched in 2020 to ensure a centralized approach to documentation. Furthermore,

Topdanmark has also implemented the use of Gitbook for code documentation.

An interesting finding from the two case studies that correlate with previous literature was the

necessity for cross-functional teams and merge roles. The companies have approached this in two

completely different ways. ProActive has followed the theoretical approached and merged the

operations and development teams into one. On the contrary, Topdanmark has created a new team, a

so-called dedicated DevOps team, whose role is to act as a gap closer between the two traditional

teams. In the case of ProActive, it is apparent that the merge of teams has moved them from a

disjointed culture of “us” and “them” to a culture that exhibits a sense of co-responsibility, trust, and

respect. In Topdanmark's case, it is different, as the newly created DevOps team has acted more like

a functional link, providing the necessary tools for the continuous delivery process, rather than a

cultural link between the development and operations teams. In fact, with the creation of the DevOps

team, Topdanmark has introduced yet another entity with its own culture and perceptions towards

software development. Topdanmark has acknowledged that moving the DevOps team to the

development team would be a step in the right direction; however, they also believe that dedicated

change management is required to encompass a thriving DevOps culture.

Comparative Analysis | 80

7.2. Challenges

As mentioned in the literature review section of this thesis, many different challenges have emerged

and shown to have a direct impact on the success of a DevOps adoption. In the existing research, the

most predominant challenges have been tied to the culture and mindset of employees, communication

within the teams, fragmented planning activities, heterogeneous environments, and immature

technical infrastructures, or the size of the investigated organizations (Elliot, 2014; Ghantous & Gill,

2017; Riungu-Kalliosaari et al., 2016). In this section of the analysis, we investigate and identify

which challenges ProActive and Topdanmark have encountered in their DevOps processes.

Simultaneously, we investigate whether any challenges have overlapped in the two case organizations

during the last five years, and what the drivers and possible resolutions of the specific challenges are.

In both case organizations, fragmented planning activities have shown to be challenging.

Development and operations often do not cooperate when new development projects are about to be

launched, which means that the requirements, as well as the expectations for a given feature, might

not align between the two teams. The neglected inclusion of all team members in the entire

development process, from start to finish, has created problems in the organizations. While the

existing literature focuses primarily on the cooperation between development and operations, both

ProActive and Topdanmark have also encountered problems by not including certain employees

outside of the development and operations teams early enough. Five years ago, ProActive

encountered issues due to testers not being included early in the development process. By not being

included in the initial development and planning of certain features or applications, the testers did not

have any real insight into the processes and concept of the developed entity and could, therefore, not

test it accordingly (Respondent 17, ProActive, 2015). ProActive has later made significant efforts

towards including every team member in the entire development cycle of new features. By including

everyone, ProActive has mitigated the risk of such an issue occurring again.

In Topdanmark, there are similar examples of fragmented planning activities. In both the previous

and current data, developers have expressed issues connected to specific processes where they are

not included sufficiently. In 2015, developers found it troubling not to be an essential part of the

selection of user stories. According to an employee, business user stories were prioritized over

technical user stories, due to the employees selecting the user stories having a business perspective

Comparative Analysis | 81

rather than a technical perspective. The developers were not included in the selection of user stories.

They could, therefore, not explain individual technical user stories and get the business employees to

“acknowledge the value of them (technical user stories) and why they should not be deemphasized”

(Respondent 20, Topdanmark, 2015). Today, user stories are selected by the designated product

owner of each team, and the developers of Topdanmark have not expressed any more extensive

inclusion of them in the process. However, we did not perceive it to be an issue in the recent

interviews.

A more significant issue raised by developers in Topdanmark in the new interviews was the exclusion

in decisions about the selection of specific central tools. Seemingly, the operations teams have a “veto

right” (Respondent 10, Topdanmark, 2020) on the selection of monitoring tools. In late 2015,

Dynatrace was introduced in Topdanmark to be used by the operations teams for monitoring

applications in the production environment. The intention was to introduce Dynatrace to the

development team later as well and thereby provide them with the possibility of monitoring their

developed applications. However, no developers were included in the decision to implement

Dynatrace, and ostensibly the monitoring tool is not compatible with the AWS solution in the ICE-

WEB team. Dynatrace can monitor the activity on the frontend solution but cannot trace calls

downwards in the technical stack. The development team must implement other tools for monitoring

of their web solutions running AWS, which sequentially results in increasing costs and complexity

of the technical infrastructure. Had the developers been included before the implementation, a more

suitable tool could have been chosen, mitigating the risk of encountering the present challenges.

A challenge in DevOps not thoroughly covered by the existing literature is external dependencies.

Both ProActive and Topdanmark have encountered challenges in their DevOps processes derived

from external dependencies. As ProActive is a Microsoft partner, IntraActive is based on SharePoint.

External dependencies are introduced by having a product based on a third-party provider or external

partner. In the case of ProActive, it has led to prior challenges in the configuration of deployments,

since the configuration was dependent on a SharePoint crawl that ran in an unidentified interval

(Respondent 18, ProActive, 2020). With the development of its own API, ProActive has taken steps

towards bypassing the dependency of the SharePoint crawl. However, ProActive is still subject to

difficulties when SharePoint implements changes. A change in a dependent module of SharePoint

Comparative Analysis | 82

could potentially have an impact on the IntraActive product and cause a restructuring of DevOps

processes or the product itself.

In the case of Topdanmark, the primary challenges of external dependency are connected to

regulatory compliance. Due to Topdanmark being an insurance company, it is subject to specific

regulatory laws of the Danish state, such as special VAT-laws and requirements for data storage. For

example, Topdanmark cannot deduct the VAT from purchases and therefore has to pay a 20% markup

compared to companies in other industries, which could influence the potential purchase of DevOps

tools and decisions concerning the technical infrastructure (Respondent 26, Topdanmark, 2015).

Nevertheless, the purchase of tools and decisions about infrastructure is circumstantial, and one could

argue that a 20% markup on everything should not affect the individual purchase since the company

is also exempt from paying VAT to the Danish government. However, crucial regulatory compliance

that Topdanmark is subject to is the audit requirement of segregation of duties. In deployment to

production environments, it is a regulatory requirement for insurance companies to have segregation

of duties (Respondent 26, Topdanmark, 2015; Respondent 12, Topdanmark, 2020). As such,

developers of Topdanmark will not be able to push their developed code to the production

environment without approval from a superior manager. Thereby, the regulatory compliance of

Topdanmark introduces internal dependencies as well that have an impact on the deployment process.

If there are not any superior managers available at a certain point in time, it has a significant impact

on the continuous delivery process.

The findings of Walls (2013) and Riungu-Kalliosaari et al. (2016) show that organizational size is

often a challenge in the adoption and use of DevOps technologies. They found that larger

organizations are often hindered with DevOps due to their size and inability to react as fast as smaller

organizations. However, in the investigation of ProActive and Topdanmark, we have not found any

indication of challenges directly correlated with the size of the organizations. We have found a

correlation between challenges and several factors that could be derived from the organizations’ size

but are not so explicitly. In our research, we find organizational structure, tenure of employees, and

competences of employees pose a more prominent challenge than the size of the organization.

Both ProActive and Topdanmark have faced challenges in cross-team collaboration in the traditional

organization structure of silo-divided teams. After ProActive’s development and operations teams

Comparative Analysis | 83

were merged, the employees have not accentuated any of the identical challenges in interdisciplinary

work. The risk of incurring challenges of interdependency and cross-team collaboration that existed

has been mitigated as a result of combining the teams. Notably, challenges of interdependency and

cross-team collaboration can still occur in ProActive’s new organizational structure, but no

challenges like those mentioned in the previous data have occurred since the merger. Most of the

interviewed employees of Topdanmark are currently reporting challenges of cross-team collaboration

and interdependency as a result of their organizational structure. The challenges Topdanmark is

facing currently within interdisciplinary work are very much alike those from 2015. The consistent

organizational structure could be a result of the large size of the organization, but is, according to the

employees, a result of legacy systems and management decisions (Respondent 8, Topdanmark, 2020).

In 2016, Topdanmark’s DevOps team was created, but we have not found any significant impact on

the organizational structure and mitigation of preexisting challenges thereof, other than adding an

additional silo. There are still challenges of interdisciplinary processes within Topdanmark, but after

Microsoft Teams is implemented, employees are reporting a significant reduction of complexity in

cross-team collaboration as a result. Thus, both organizations have incurred challenges of

interdependency and cross-team collaboration in a silo-divided organizational structure, and merging

the development and operations teams is found to mitigate the risk of such challenges occurring.

Furthermore, we found Microsoft Teams to reduce the complexity of cross-team collaboration,

regardless of organizational structure.

Topdanmark has incurred challenges originating from the tenure and competences of employees. In

both the previous and current data, employees of Topdanmark have emphasized the long tenure of

employees and competences thereof as hindering the progression with DevOps. The extent to which

employees accentuate this challenge varies, but as it is mentioned in the majority of the interviews, it

should be investigated further. The tenure of many employees of Topdanmark exceeds two or more

decades, which is much higher than ProActive. The long tenure of Topdanmark’s employees has

made the culture subject to more rigid mindsets and a lack of newer competences. According to the

DevOps specialist, Topdanmark hired such employees to excel and function within the older systems,

and with the change to newer technologies, their competencies are insufficient. “People have not

been hired with the purpose of knowing DevOps. There is a large gap of competences between the

employees we have, and the people needed in a DevOps culture.” (Respondent 12, Topdanmark,

2020). Exactly what competencies employees with longer tenure in Topdanmark lack is not explicitly

Comparative Analysis | 84

disclosed in the interviews. However, following the assertion from a senior developer in ProActive

(Respondent 2, ProActive, 2020), alongside the continuous improvement and availability of DevOps

tools and practices, it becomes increasingly undemanding to use DevOps technologies.

Correspondingly, requirements for technical competences of employees will, in the future, likely be

lower. However, currently, competences of employees with longer tenure in Topdanmark is seen as

a challenge in the organization's DevOps processes. The lack of competences is arguably also

connected to the absence of any formal training of employees within the organization. We find the

lack of training to be a relevant factor in the widening of the competence gap within Topdanmark.

The mindsets of employees in Topdanmark, and especially those of longer tenure, are being reported

as rigid and a challenge in the adoption of a thriving DevOps culture by several employees

(Respondent 7, Topdanmark, 2020; Respondent 24, Topdanmark, 2015). Many employees in

Topdanmark are not open to and adequately motivated to undertake new processes in their workflow.

Several developers will find it difficult to actively engage in operation tasks and vice versa

(Respondent 7, Topdanmark, 2020). As the foundation of DevOps is to share responsibilities and

tasks across areas of operations in the development and operations teams, we find the rigid mindset

of some employees in Topdanmark as a challenge hereof.

In ProActive, rigid mindsets were existent five years ago but is not so currently. Thereby, ProActive

has managed to change the mindsets of employees to suit a DevOps culture better. A possible

explanation for the change of mindsets and the absence of challenges related to competences could

be the large turnover of employees in ProActive in 2016. While the large turnover of employees in

ProActive was challenging for the organization in many ways, as it replaced almost all employees in

the IntraActive team, it could also have mitigated the risk of incurring challenges related to mindsets

and competences of employees. As a completely new team was to be introduced in ProActive, the

DevOps competencies of hired employees would be something that was considered.

Furthermore, as all employees were hired into a team starting “from scratch”, no existing workflows

and processes of the individual employee had to be transitioned away from, thereby increasing the

motivation of new employees and making it easier to adopt a thriving DevOps culture. Consequently,

both Topdanmark and ProActive have been challenged by rigid mindsets, whereas ProActive has

Comparative Analysis | 85

successfully managed to overcome the challenge. Whether the resolution of the challenge in

ProActive is directly corresponding with the introduction of a new team needs further research.

In contrast to the cultural challenges that can emerge in a DevOps setup, Topdanmark has incurred

challenges due to their technical infrastructure. Topdanmark's mainframe that has existed since IT

was introduced in the company and traditionally hosted all systems has proven to be a significant

challenge in the adoption of DevOps. Topdanmark “traditionally built everything to last for 40 years,

which means that the turning radius is bigger than a small upcoming webshop” (Interview X, TopD,

old). Thereby, the technical dependencies of the organization are complicated to navigate when

transitioning to a decoupled architecture with continuous elements. According to a developer, the

legacy systems of Topdanmark pose a more significant challenge than the culture and people

(Respondent 7, Topdanmark, 2020). The management of Topdanmark has been aware of the

challenges engendered by the mainframe and tried to vanquish it with the TopWin project. However,

due to economic reasons, the TopWin project was scrapped, leaving the technical infrastructure

unchanged. Topdanmark has instead chosen a slower transition away from the traditional mainframe,

but we deem the current technical infrastructure to have a noteworthy negative impact on

Topdanmark’s ability to deliver software continuously and integrate best practice DevOps processes.

7.3. Findings

The analysis of the two case organizations, both individually and compared, has provided us with a

number of findings. The findings from the analysis are specific to the investigated organizations and

will be presented as such. The generalizability of the findings is further discussed in section 8

Discussion. The essential findings from the analysis are presented below (the findings are not

hierarchized, or in any other way prioritized, according to importance):

▪ Organizational size is not found to have a direct impact on the DevOps approach of the

organizations.

▪ Organizational structure is found to have an impact on the DevOps approach of the two

organizations.

▪ Tenure and competences of employees are found to have an impact on the DevOps approach

of the two organizations.

▪ A DevOps mindset amongst employees is necessary for a thriving DevOps culture.

Comparative Analysis | 86

▪ A central communication and knowledge sharing platform has thoroughly enhanced the

communication and cross-team collaboration within the organizations.

▪ Both organizations have significantly enhanced automation and technical processes as a result

of using DevOps tools.

▪ Fragmented planning activities have shown to be challenging for both organizations.

▪ Topdanmark’s technical infrastructure, and dependencies thereof, have a significant impact

on the ability to implement continuous processes.

Existing literature has found the organizational size to be a challenge in the implementation and use

of DevOps technologies, stating that larger organizations are often hindered with DevOps due to their

size and inability to react as fast as smaller organizations. However, in the investigation of ProActive

and Topdanmark, we have not found any indication of challenges directly correlated with the size of

the organizations. The organizational size of the investigated organizations can, however, have

influenced several other factors that have shown to be challenging, but no direct link is found.

Both ProActive and Topdanmark have faced challenges of interdependency and cross-team

collaboration in the traditional organization structure of silo-divided teams. Merging the

development and operations teams is found to mitigate the risk of such challenges occurring. In

Topdanmark, the consistent organizational structure could be a result of the large size of the

organization but is inherently a result of legacy systems and management decisions.

Topdanmark has furthermore incurred challenges originating from the tenure and competences of

employees. The long tenure of employees and competences thereof is hindering the progression with

DevOps within the organization and has done so during the last five years. The tenure of many

employees of Topdanmark exceeds two or more decades, which is much higher than ProActive.

Long-tenured employees were hired to excel and function within the older systems, and with the

change to newer technologies, their competencies are insufficient. The lack of competences is very

likely also connected to the fact that there has not been introduced any formal training of employees

in DevOps technologies. As such, the lack of training in DevOps technologies can be seen as a

relevant factor in the widening of the competence gap within Topdanmark.

Comparative Analysis | 87

As the foundation of DevOps is to share responsibilities and tasks across areas of operations in the

development and operations teams, a DevOps mindset is necessary. Rigid mindsets amongst

employees are, therefore, a challenge in the adoption of a thriving DevOps culture. Both Topdanmark

and ProActive have been challenged by rigid mindsets, whereas Topdanmark is still being negatively

affected by the mindsets of employees, and especially long-tenured employees, while ProActive has

successfully managed to overcome the challenge.

ProActive and Topdanmark have incurred challenges in communication and knowledge sharing in

cross-team collaboration. Implementing Microsoft Teams as a central communication and

knowledge sharing platform is found to have significantly reduced the complexity within

communication and cross-team collaboration in both organizations.

We found that both organizations have made noteworthy progress in the product, process, and quality

area of the maturity assessment during the last five years, primarily due to the utilization of DevOps

tools. Automation and technical processes can be significantly enhanced with the wide availability

of DevOps tools and relative simplicity in the implementation and use of such tools. There exists a

challenge in choosing the right tools that will integrate with the technical foundation and processes

of the organization seamlessly.

In both case organizations, fragmented planning activities have shown to be challenging. In

immature DevOps setups, development and operations often do not cooperate when launching new

development projects, which means that the requirements, as well as the expectations for a given

feature, might not align between the two teams. It is likewise essential to incorporate affected teams

in decisions about infrastructure and DevOps technologies. Furthermore, we found that it is not solely

essential to include development and operations, but other teams or critical people, such as testers, as

well.

Topdanmark has incurred challenges due to their technical infrastructure of legacy systems and

dependencies thereof. We found that the technical infrastructure has a significant negative impact on

the ability to deliver software continuously and integrate best practice DevOps processes.

Discussion | 88

8 Discussion

8.1. Organizational Size

The organizational size is not found to have impacted the adoption and maturity of DevOps within

the two organizations. However, we acknowledge that the size of the organization could have

indirectly influenced the organization's DevOps approach. Equal to the research of Nielsen et al.'s

(2017), we found that the challenges faced by Topdanmark have been more noticeable compared to

ProActive. Topdanmark has experienced persistent challenges throughout the last five years and is

yet to overcome some key issues. This could be directly correlated to the higher number of employees

involved in the software development, which means that a larger number of cultural understandings

and perceptions exist. Generally, large organizations are more rigid and require formal structures and

procedures to capitalize on change, whereas smaller organizations can easier adapt to shifts in the

market (Lee & Xia, 2006). Thus, we argued that large organizations must increase their focus on

cultural differences to achieve the desired DevOps culture.

Typically, the number of developers highly outweighs the number of operations people in software

product organizations (Edwards, 2010). As such, it can be claimed that the size of an organization

directly impacts its possibility to achieve the preferred cross-functional teams advocated for in

DevOps research. At Topdanmark, there are a higher number of developers compared to operations

employees (Respondent 9, Topdanmark, 2020; Respondent 12, Topdanmark, 2020), thereby

corresponding to the findings of Edwards (2010). If Topdanmark were to merge the development and

operations teams, each operations employee would still have to range over multiple development

teams. Thus, it might mitigate cultural differences but the operations people would still not be fully

integrated into the development teams. Though we found no direct correlation between organizational

size and DevOps maturity, organizational size arguably has an impact on the structure of the

organization.

8.2. Organizational Structure

In our research, we found the organizational structure of the investigated organizations to have an

impact on the DevOps approach. In more detail, an organizational structure with divided development

and operations teams incurred more challenges in interdependency and cross-team collaboration. On

the contrary, we found that an organizational structure that consists of merged development and

Discussion | 89

operations teams mitigated the risks of incurring such challenges. As mentioned, the organizational

size can arguably have an impact on the organizational structure, and questions can be raised about

larger organizations’ ability to break down silos and facilitate a merging of the development and

operations teams.

In the case of Topdanmark, we found no correlation between the organization’s size and

organizational structure. Instead, we found that the inability to transition to a DevOps organizational

structure, where development and operations are merged, could be explained by the technical

architecture, management, and workflow consistency (i.e., “We have always done it like that”).

Furthermore, there are numerous examples of much larger companies than Topdanmark that have

successfully changed their organizational structure to facilitate DevOps, such as Google, Amazon,

and Netflix (Diaz et al., 2018). These three corporate giants are all supported by an organizational

structure of merged development and operations teams and have all been existent before DevOps was

introduced and have therefore presumably transitioned from another organizational structure. Google,

Amazon, and Netflix are arguable of entirely different characteristics than Topdanmark, which leaves

questions of the effect of factors like industry, technical infrastructure, employees, and product on

the organizational structure, rather than the size of the company. It is essential to underline that we

do not disregard the size of an organization to have an impact on the organizational structure, but

there exist more dominant factors concerning DevOps than size, as we have found in our research.

There are differences in the organizational structure of ProActive and Topdanmark, while both

organizations are trying to facilitate a thriving DevOps culture. From our research, it is clear that

ProActive has been more successful in achieving such. However, as mentioned, there is no “one-size-

fits-all” for DevOps cultures, as every organization is different. Skelton & Pais’ (2019) research on

organizational structures, or “topologies”, exemplifies some of the unique team structures that can,

or cannot, facilitate a thriving DevOps culture. Skelton & Pais’ (2019) research is based mainly on

Conway’s Law, stating that “organizations which design systems… are constrained to produce

designs which are copies of the communication structures of these organizations”. Thus, further

weakening the view of a single, identifiable DevOps culture. Skelton & Pais (2019) present two

different types of organizational structures: “DevOps team topologies” and “DevOps anti-types”. Of

these, DevOps team topologies are different, working organizational structures that support DevOps,

and DevOps anti-types are “bad-practice” organizational structures.

Discussion | 90

The organizational structures of ProActive and Topdanmark are depicted in Figure 15 and Figure 16,

respectively. ProActive’s organizational structure is what Skelton & Pais (2019) refer to as the “fully

embedded topology”. The fully embedded topology is reminiscent of minimal separation between

development and operations, and is, according to Skelton & Pais (2019), ideal for organizations with

a single main web-based product or service. As such, the fully embedded topology is a particularly

good fit for ProActive.

For Topdanmark, however, we found that the creation of the DevOps team did not have a significant

impact on the organizational structure and DevOps approach, other than creating another silo

internally. In the research of Skelton & Pais (2019), the organizational structure of having a

development, operations, and DevOps team can either be seen as a DevOps team topology or a

DevOps anti-type, mainly depending on the intent and longevity of the structure. The creation of a

DevOps team can be a rewarding topology if the goal is to bring the development and operation teams

closer together towards a fully embedded or more collaborative topology and eventually make itself

obsolete. However, this organizational structure must be a temporary structure with the longevity of

a maximum of 1 or 2 years. Otherwise, it becomes a DevOps anti-type, and merely another silo in the

organizational structure that broadens the distance between the development and operations teams.

In the case of Topdanmark, their organizational structure can, by now, arguably be identified as a

DevOps anti-type. In our research, we found Topdanmark’s current organizational structure to be

recognized as a factor that creates many difficulties regarding cross-team collaboration. Following

Skelton & Pais’ (2019) research, Topdanmark should have made the DevOps team obsolete several

years ago to avoid introducing additional challenges in their DevOps approach. According to the

findings of Diaz et al. (2018), the strategic decision to create a separate DevOps team instead of

Figure 16: The DevOps team silo (Skelton

& Pais, 2019)

Figure 15: The fully embedded topology

(Skelton & Pais, 2019)

Discussion | 91

merging development and operations is often due to financial limitations. To simplify, “Most

companies cannot afford to extend DevOps to all their development teams, so they are organizing

their people around teams that are supported by a DevOps team” (Diaz et al., 2018). As Topdanmark

is relatively large, the financial costs of merging the development and operations teams would

arguably be very high, and substantially higher than in a smaller organization such as ProActive.

While the financial costs are not the reason behind the current organizational structure, the rising cost

within a large organization like Topdanmark is acknowledged.

As such, we argue that the organizational structure and DevOps topology have a tremendous impact

on the organizational ability to adopt a thriving DevOps culture. When comparing ProActive and

Topdanmark, it is clear that ProActive has incurred significantly fewer difficulties in their DevOps

approach, after the merging of its development and operations teams. We further argue that

organizational size does not impact the organizational structure significantly. However, we recognize

the possible rising financial costs of breaking down organizational silos that positively correlate with

organizational size. Based on Skelton & Pais’ (2019) research, we recommend that Topdanmark

either rapidly make an effort towards making the DevOps team obsolete, and merge the development

and operations teams, or choose another topology and incorporate it in its DevOps strategy, in order

to mitigate the risk of incurring additional challenges in cross-team collaboration.

8.3. Tools and Infrastructure

In our research, we incorporate two main findings that appertain to the technical aspect of DevOps.

These are concerning the impact of DevOps tools and technical infrastructure on the DevOps adoption

of an organization. Both ProActive and Topdanmark have made tremendous progress in their

technical DevOps processes due to the implementation and utilization of various DevOps tools.

However, in the case of Topdanmark, we found that the tightly coupled technical infrastructure

introduced setbacks to the DevOps processes of the organization.

When comparing the current maturity assessments of ProActive and Topdanmark, it becomes evident

that both organizations have made significant progress within the Product, Process, and Quality

section. As most areas within the Product, Process, and Quality section can be condensed to

automation processes, it is likely as a result of the implementation and utilization of DevOps tools.

This aspect aligns with the statement of a senior developer in ProActive: “DevOps is so simple in its

Discussion | 92

form, and the tooling is so advanced today that you do not really have to do anything […]”

(Respondent 2, ProActive, 2020). The wide range and specificity of DevOps tools can be due to the

“Cambrian explosion of DevOps tools”, as described by Kersten (2018). The Cambrian explosion of

DevOps tools is manifested in the rising market of DevOps tools that has been formed to fill the gap

created by the waterfall model’s displacement (Kersten, 2018). The term covers the growing number

of DevOps tool vendors that each are trying to provide a repository or automation layer for a segment

of the software value stream. The DevOps toolchain’s specialization is following the growing

complexity of software development, which can explain the full range of DevOps tools and the

advancement of such tools. Therefore, organizations arguably stand before a decision to choose the

right tools between the plentiful supply that will integrate seamlessly into the processes and technical

infrastructure of the organization. However, the effort and costs required for implementing the tools

are decreasing and are mainly dependent on the technical infrastructure of the organization.

We found the use and implementation of tools to be significantly improved in the decoupled

architecture of ProActive. With a more modularized architecture, it is possible to upgrade smaller

parts of the system independently, and it introduces shorter wait times for build, test, and deployment

results (Smeds, Nybom, & Porres, 2015). On the contrary, Topdanmark incurred challenges due to

the monolithic architecture of its mainframe, making it tremendously more difficult to implement

tools and utilize them to the intended extent. However, focusing on the ICE-WEB team within

Topdanmark that has a more decoupled architecture, without dependency on the mainframe, it is

possible to see the difference, as the ICE-WEB team has introduced a lot more automation. As such,

Topdanmark is not getting the most out of their DevOps approach, as their legacy systems cripple

them.

In 2014, the TopWin project was initiated to transition away from the legacy systems, but the project

was scrapped. Retrospectively it might have been the correct decision. Following the research of

Kersten (2018) and Elliot (2014), transitioning away from legacy systems or trying to adjust them to

meet DevOps practices can be tremendously expensive and dangerous. Elliot (2014) has found that

IT organizations that have tried to custom adjust their technical infrastructure to meet DevOps

practices have a failure rate of 80%, which advocates for the critical requirement of replacing or

adding new tools to the existing infrastructure. Following the research of Kersten (2018) and Elliot

(2014), if Topdanmark once again makes a strategic decision to improve its position with the technical

Discussion | 93

infrastructure to meet DevOps practices, the management should aim to disintegrate the monolithic

infrastructure and replace it with a decoupled counterpart. However, restructuring the technical

infrastructure entirely will arguably be tremendously costly due to the numerous dependencies, and

the decision to do so is perhaps not economically feasible. Furthermore, the aspect concerning the

need of Topdanmark to progress their DevOps approach and maturity level, and if a replacement of

the technical infrastructure is rationalized, will be further discussed below.

8.4. Communication

Through the investigation of ProActive and Topdanmark, we found that a central communication and

knowledge sharing platform has significantly enhanced the communication and cross-team

collaboration within the two organizations. Both organizations have implemented Microsoft Teams,

which has shown to be a catalyst for streamlining communication and knowledge sharing through its

channel structure and file support integration. This implementation aligns with extant research on

communication tools within software development, where findings show a staggering increase in the

use of chat-based systems such as Microsoft Teams (Silva, Gilson, & Galster, 2019; Alkadhi et al.,

2017). According to Alkadhi et al. (2017), the increase in chat systems’ popularity is due to the

numerous decisions that development teams make throughout the software lifecycle. Developers and

operations require team members’ opinions as a continuous flow of information is needed to

constitute a rationale for the many decisions and actions performed (Alkadhi et al., 2017). Similar to

other IT systems, the use of chat-based communication requires the employees’ acceptance to achieve

the value it generates (Silva et al., 2019).

Though the two organizations have experienced similar value from the implementation of a central

communication and knowledge sharing platform, the use of such is more integrated into the daily

work of ProActive compared to Topdanmark. In the case of Topdanmark, we found no correlation

between communication practices and organizational size. However, the less integrated use of

Microsoft Teams in Topdanmark can arguably be connected to the number of employees and the need

for additional acceptances towards the system. In contrast, ProActive's fast adoption of Microsoft

Teams can be rooted in the attachment and partnership with Microsoft as well as the origins of their

product, an intranet. ProActive is arguably experts in the field of communication and collaboration

systems and even more so when it comes to products developed by Microsoft. Thus, the acceptance

Discussion | 94

and integration of Microsoft Teams are achieved more rapidly and seamlessly in an environment like

the one of ProActive.

8.5. Tenure, Competences, and Mindset

Topdanmark has experienced challenges originating from the long tenure and lack of DevOps

competencies of employees, which hinders them from progressing with DevOps. Barriers will emerge

when a transformation, such as adopting DevOps, is performed. Changing the way of thinking and

acting will most likely meet resistance, and the main problem is often related to the culture and

mindset of the employees (Anderson & Anderson, 2011). In Dam, Oreg, & Schyns’s (2008) research

on change management, they found a positive correlation between organizational tenure and change

resistance. Organizational changes are often tied to changes in the employees' daily work, which is

why long-tenured employees are less inclined to accept changes in their work situations, as it must

be assumed that they are satisfied with their current job situation. Thus, long-tenured employees may

exhibit greater resistance to the change. Furthermore, long-tenured employees are expected to have

invested in their jobs by acquiring skills or knowledge, which in turn can be a factor of resistance due

to the fear of diminishing these investments (Dam et al., 2008). This rationale agrees with our findings

at Topdanmark, where several developers and operations, whose employment exceeds multiple

decades, have exhibited resistance towards DevOps, as they do not feel the need to undertake

operations tasks or vice versa.

DevOps does not have any specified methodologies; hence companies are obliged to develop

competences and practices for DevOps continuously. The on-going development of competences and

practices is accentuated as a challenging process, and is, in ProActive and Topdanmark, characterized

by retrospectives and a “learn-by-doing” approach (Respondent 9, Topdanmark, 2020).

Consequently, employees must receive gradual training in line with the development of the company's

DevOps approach (Diaz et al., 2018). In the case of Topdanmark, it is unknown exactly which

DevOps competences the employees are lacking. However, the company has not tried to eradicate

this challenge by conducting formal training sessions. This could arguably be connected to the

company's divergent focus on DevOps. Topdanmark has over the last five years presented DevOps

as a new initiative to the employees on several occasions, which indicates a lack of strategic

alignment. The management’s fluctuation on DevOps was manifested in the interviews with the

employees as we experienced that multiple employees did not know what DevOps is or what the

Discussion | 95

purpose of DevOps in Topdanmark is. As such, it can be argued that a lack of a transparent strategy

has had an impact on the employees' interest in the concept, and as a consequence, the employees

have not felt compelled to learn the new contexts or change their work habits. To address this

problem, Topdanmark should establish transparency in its IT strategy as well as align DevOps

expectations between employees and management.

In the research of Diaz et al. (2018), it was found that convincing people of the purposes and values

achieved from building strong relationships between development and operations are challenging.

Some of the developers in Topdanmark are, as described by one employee: "developers with a capital

D" (Respondent 7, Topdanmark, 2020), and are therefore not interested in undertaking operational

tasks or share development tasks with operations. Whether this is due to misgivings towards losing

their jobs or just general disinterest in DevOps needs further research.

Another concern could be the fear of being overburdened with additional responsibilities associated

with operations or vice versa. Taking on additional responsibilities could lead to the loss of time to

focus on their preferred role and, thus, affect their productivity (Smeds et al., 2015). These concerns

contribute to a mindset and culture of "if it is not broken, do not fix it”, where employees’ willingness

to share, communicate, and collaborate is reasonably narrow. Elliot (2014) found that cultural

inhibitors that prevent the establishment of these cross-functional relationships were the most

prominent DevOps challenge. A staggering 56.7% of the investigated cases in Elliot’s (2014) research

reported cultural inhibitors as the biggest challenge for DevOps adoption. Although the tooling in

DevOps has become so technologically advanced and can assist organizations in the DevOps

transitions, it cannot resolve cultural impediments. As such, organizations like Topdanmark need to

surmount these cultural barriers to achieve a successful DevOps approach.

8.6. Fragmented Planning Activities

Elliot (2014) identifies fragmented processes as one of the most prominent DevOps challenges. In

the investigation of ProActive and Topdanmark, we found a similar result as both companies had

experienced challenges associated with fragmented planning activities. Finding the right balance

between what employees to include in the planning of new features was shown to be a challenging

task, as it is costly to include every involved employee. On the contrary, excluding specific roles for

the initial planning can lead to obstacles later in the software development cycle, as critical

Discussion | 96

perspectives from either a development or operational view can be missing. ProActive decided to

include every team member in the planning of new features by hosting several workshops where both

business and technology-related topics are discussed (Respondent 4, ProActive, 2020). At

Topdanmark, they are yet to figure out how to eradicate this issue as the planning process still follows

a random approach where individual employees are included upon availability (Respondent 8,

Topdanmark, 2020). The aspect of including developers in the decisions of implementing specific

tools will also have to be addressed by Topdanmark, as it has resulted in challenges and a further

divide between the teams. Thus, planning activities should include a collection of employees that

represent the development, operations, and business side of the organization to mitigate the risk of

incurring related problems in the future.

8.7. The Perceived Value of DevOps Maturity

ProActive and Topdanmark have significantly improved their DevOps approach, thereby reaching a

higher level of DevOps maturity. The general presumption is that there is a positive correlation

between maturity and value, i.e., a higher level of maturity leads to an increase in value. However, it

is essential to discuss the validity of this presumption and the boundaries of the expected value, as

these might differ across organizations. Furthermore, the aspect of becoming too DevOps mature,

where the marginal value gained from a higher level of maturity is lower than the costs, is not covered

by existing literature. Thus, the aspect of becoming too DevOps mature is further discussed.

With the introduction of DevOps, and the maturity progress during the last five years, both ProActive

and Topdanmark have experienced an increase of value in several overlapping areas. Some of these

include increased organizational agility (e.g., faster time to market) and a significant reduction of

deployment costs. Topdanmark’s ICE-WEB team exhibits considerable reductions in deployment

time, from weeks to minutes, as previously fixed release schedules have been replaced by the ability

to deploy continuously. One employee from Topdanmark describes the improvement as:

"In our Top-Up process, we had a minimum time-to-market called 14 days. There you really

had to be sharp if you could do it in 14 days [...] with the CD-process today, you have a

process time consisting of your build time and your deployment time, so about 5+5 minutes."

(Respondent 12, Topdanmark, 2020).

Discussion | 97

ProActive has experienced similar gained value from increased organizational agility, thereby

coinciding with the research on DevOps value from the existing literature. The introduction of

continuous delivery in ProActive and the ICE-WEB team of Topdanmark has reduced the deployment

costs significantly in their DevOps adoption. This aligns Gruver & Mouser’s (2015) research, who

found that the implementation of DevOps and agile principles will decrease the marginal cost of

delivering a new feature to almost nothing. As such, the adoption of DevOps has shown to provide

organizations with measurable benefits in the form of reduced cost, in addition to the intangible

benefits presented in the existent literature.

Following the research of Dingsøyr and Lassenius (2016), the introduction of DevOps in

organizations has a positive effect on the organization’s brand. Both ProActive and Topdanmark have

experienced the introduction of DevOps to have a positive impact on their organizational brand.

However, we did not find the recognition of the improved brand to come from the customers, as it is

described in the literature. Instead, ProActive and Topdanmark accentuated the positive effect of

having DevOps on the attraction and acquisition of talent. As such, the improvement on the

organizational brand that DevOps can provide is not seen as a significant value, when focusing on

customers, but instead realized when the organizations are hiring new employees. We argue that the

introduction of DevOps does not improve the organizational brand towards customers, as the average

customer does not know, or perhaps care, how software is developed and delivered by the

organizations’, as long as it reaches the customer. Introducing DevOps in organizations could

improve customer satisfaction, but not directly the customers’ perception of the organization’s brand.

The impact of having DevOps within the organization on attracting employees can be tremendously

difficult to measure, as it is purely subjective to the new employee. Also, we argued that a higher

level of DevOps maturity will not significantly impact the attraction of employees, as it is perceived

to be the presence of DevOps and not the level of DevOps maturity that attracts possible employees.

Following the brief discussion of realized value within the case organizations, questions can be raised

concerning the possibility of deriving significant additional value from DevOps and whether further

progress with DevOps is economically feasible. It can be argued whether a higher level of maturity

directly correlates with an increase in value given that all organizations do not benefit equally from

progressing with DevOps. The existing research on DevOps maturity models does not cover the

aspect of becoming too mature, and it is solely mentioned in the future research of the existing

Discussion | 98

literature. Consequently, in answering the question of whether organizations can become too DevOps

mature, we cannot draw parallels to existing research, and we will therefore have to base it on the

cases of ProActive and Topdanmark that we have investigated.

As previously stated, Topdanmark's technical infrastructure hinders them from fully integrating

continuous delivery to all parts of their software development cycle. From a theoretical perspective,

especially, this is seen as a tremendous challenge that prohibits Topdanmark from further progressing

with DevOps. However, it is essential to consider the individual case and rationalize the existing

research to practice. While the technical infrastructure of Topdanmark indeed is a significant

challenge in progressing with DevOps, it is essential to consider if it is feasible for the organization

to become more mature, and transition away from their technical infrastructure, as the costs

concerning that transition, are momentous (as seen in the scrapped TopWin project).

As such, we adopt the view of not only what hinders organizations’ in DevOps and if they can mature,

but also whether they should mature. When working with maturity models, we find it essential to

argue the blatant assumption of “more is better” and discuss the maturity levels of the case

organizations in specific relation to their situation. When looking at the two case organizations, it is

clear that they are of vastly different characteristics, indicating that they might differ individually

concerning their optimal level of maturity. ProActive and Topdanmark have significant differences

in industry, product, and customers, arguably leading to a varying need for the ability to provide

software continuously.

ProActive's product is an intranet, and such an application intends to provide the users with a platform

for collaboration, communication, and knowledge sharing on a daily basis. For example, Copenhagen

Business School uses the IntraActive product, where 20.000+ students and faculty rely on the intranet

to get information and interact with the university daily (IntraActive, 2020). When so many users

potentially interact with a system every day, it is arguable that the need for continuous releases of

features and bugfixes is higher than in a system with fewer users and less repetitive usage.

Furthermore, the need for a high level of DevOps maturity increases, as SharePoint is one of

ProActive’s external dependencies in delivering software. This is because SharePoint is a SaaS, and

since IntraActive is built on SharePoint, ProActive has to continually revisit the development of their

product to ensure compatibility between SharePoint and IntraActive.

Discussion | 99

With a higher need for continuous processes and a more mature DevOps approach, it is likely

advantageous for ProActive to continuously improve their DevOps approach and progress their

maturity to a prodigious level to meet the expectations, their product demands. Currently, ProActive

still lacks automation in certain areas that have been highlighted by the developers, such as

onboarding of customers, but the mindset within ProActive is to continuously improve and “always

become better” (Respondent 2, ProActive, 2020). Therefore, we argue that ProActive can still gain

value from improving their DevOps processes, as their technical infrastructure allows for it, their

product and customers require it, and the marginal benefits arguably outweigh the marginal costs.

In the case of Topdanmark, the circumstances are quite different. Contrary to ProActive, Topdanmark

delivers applications within the insurance industry, where customers do not have the same

requirements and use patterns. It is very improbable that customers in the insurance industry are using

the applications on a daily or weekly basis, and therefore, the need for system changes and features

become less severe than in the case of ProActive. Besides, several of Topdanmark’s applications rely

on dependencies to their mainframe, and it will not be possible to deploy any full-stack changes in

the software continuously as a result of the monthly mainframe deployments. Topdanmark’s

applications arguably do not constitute a high level of DevOps maturity due to their customers and

technical infrastructure capabilities. However, Topdanmark could benefit from maturing DevOps on

an organizational and cultural level to achieve higher development quality.

Following the analysis and subsequent discussion on DevOps maturity within the two case

organizations, we have found the answer to becoming too DevOps mature to be purely circumstantial.

From our research, an organization cannot reach a point of DevOps maturity where it is disparaging

of efficiency or damaging to the organization. We argue that organizations can reach a level of

DevOps maturity, where it is no longer economically feasible for them to progress in maturity.

However, it depends significantly on the context of the individual organization, and the organization’s

circumstances concerning several factors such as industry, product(s), customers, and technical

capabilities.

Discussion | 100

8.8. Implications for Theory

Our research represents major contributions to the existing theory and practice on DevOps maturity

and DevOps in general. We have identified multiple activities, challenges, and aspects for

consideration of any organization that seeks to adopt or progress its DevOps approach successfully.

As such, our research contributes to the existing knowledge base by expanding the knowledge found

in the existing research.

In summary, our research highlights the importance of structuring development and operations teams

to facilitate cross-functional collaboration. In agreement with the existing literature, we found that a

merge of teams is the optimal choice due to the mitigation of interdependencies. We further enhance

the existing literature by emphasizing the need for encompassing a healthy DevOps culture where

development and operations possess a positive mindset towards DevOps. Furthermore, our research

acknowledges previous findings that highlight the significant influence of technical infrastructures

and the rise of DevOps tools on the adoption and progression of DevOps maturity. We also recognized

fragmented planning activities as an obstacle that can impact the development and DevOps approach

of software organizations, similar to the extant literature. However, contrary to existing literature, we

found the organizational size not to impact the DevOps maturity of an organization.

Our research presents interesting new findings, as well. We found that optimal communication and

knowledge sharing within DevOps teams can be established through a centralized platform such as

Microsoft Teams. The use of such a platform enables a strong relationship between development and

operations. Moreover, we identified tenure and competences to be a notable influence in the adoption

of DevOps. The impact of tenure and lack of competences was not yet covered in the existing

literature on DevOps. However, our findings do align with the existing literature on change

management. Lastly, we found that circumstantial parameters, such as industry and type of product,

affect the necessity for DevOps maturity as our research found that the marginal benefit derived from

DevOps, in some cases, is exceeded by the associated marginal cost.

8.9. Implications for Practice

In software product organizations, adopting DevOps is challenging. It requires a fit between the

development and operation teams, which is highly dependent on the success of the integration of the

teams, and the ability of team members to share and take on additional tasks and responsibilities.

Discussion | 101

DevOps may also require substantial investments in collaboration, knowledge sharing, technical

infrastructure, and organizational culture.

With the growing adoption of DevOps, organizations are wondering what the value proposition of

DevOps is and how they can harness it. Our study suggests DevOps’ primary value proposition is

organizational agility, and more specifically, increased efficiency in the development, deployment,

monitoring, and incident handling of a software product. The mere introduction of DevOps may,

however, not necessarily produce greater organizational agility. We see that our research has practical

implications in three aspects.

Firstly, our analysis provides a detailed view of the case organizations’ processes and decisions

concerning DevOps, and the progression of their level of maturity, during the last five years.

ProActive and Topdanmark can utilize our analysis as an assessment of their current state within

DevOps, and as a reflecting tool that can drive future strategic decisions. Furthermore, our research

identifies several challenges and shortcomings in the case organizations’ DevOps approaches that are

hindering, or need more attention, for the organizations to progress further with DevOps.

Secondly, our research and findings provide great insight for other software product organizations

looking to adopt DevOps or mature their DevOps approach. Our analysis studied the cause and effect

relationship of events in DevOps that ultimately resulted in challenges or success for the investigated

case organizations. Thus, our findings consolidate the prior works and contribute by showing how

problems and solutions are related to the processes of DevOps.

Lastly, we discuss the presence of an optimal level of DevOps maturity, where it is no longer

economically feasible for organizations to progress in maturity. As prior work not thoroughly covered

the circumstantial element of maturity, our discussion concerning the need for progressing DevOps

maturity can act as input in strategic decisions of organizations faced with similar predicaments.

8.10. Limitations

In the process of conducting research, we have found several limitations that merit consideration.

Here, we present the limitations that we have deemed to be most significant to our research. We do

Discussion | 102

not disregard the presence of unmentioned limitations, but only those with striking importance for

our research are included in the following.

Working with two distinct cases in this paired-case study has provided another dimension to the

analysis. While the two organizations have different characteristics (i.e., age, size, industry,

organizational structure), they have found themselves in a similar situation of adopting DevOps

across their organizations. Due to both organizations adopting DevOps, and within the same timeline,

it has made them possible for comparison. The unique characteristics of ProActive and Topdanmark

can be seen as a limitation and a benefit. Because of the differences in the two cases, questions can

be raised about the appropriate comparison. Are the adoption and use of DevOps enough for a direct

comparison, or should the cases carry more similarities for an adequate comparative analysis?

Contrariwise, the differences of the case organizations be a benefit in the comparative analysis. In

recognition of differences in size, industry, organizational structure, and other variables, the research

can be constructed to incorporate the differences, and investigate the possible impact of such factors

on an identical situation. As such, the paired-case comparison of this thesis highlights possible

patterns and differences in the adoption of DevOps that is applicable on a general or specific level.

However, careful consideration should be taken when applying the findings of this research to other

cases.

The application of the results on a general level can be argued due to the sample size of the

comparative analysis. The reliability of the findings in the analysis is increased compared to a single-

case study, but the results are still circumstantial (Andersen, 2014). To increase the reliability of the

findings, we could have included more case organizations in the analysis. However, while

incorporating more case organizations would improve reliability, it would also require vastly higher

amounts of time and resources. Furthermore, if more case organizations were to be included, it would

need previous data from the past five years, which would be very difficult to obtain and increase the

number of resources accordingly. As such, we recognize that the results of the analysis are not to be

generalized insouciantly but instead contributed to the existing knowledge base within DevOps

research and qualitative longitudinal research.

The data used in this thesis consists of both secondary and primary data. Both data sources are

generated through the data collection technique of semi-structured interviews. With this method,

Discussion | 103

certain biases can occur and influence the data. When conducting interviews, social desirability

should always be considered as respondents seek to present themselves in the most socially desired

way (Barriball & White, 1994). For example, developers could be assumed to portray their efforts

and work in the best possible way. Thus, social desirability can contribute to the weakening of

reliability, as data affected by this is not methodologically transparent. The risk of respondent

misinterpretation is another factor relevant to this thesis, as the consistency of stimulus in semi-

structured interviews is dependent on the interviewer’s ability to convey equivalence of meaning to

maintain comparability (Barriball & White, 1994). The semi-structured technique allows the

interviewer to rephrase and change the wording if it benefits the respondents’ understanding of the

question. This type of freedom opens the risk for differences in answers due to misinterpretations of

the questions (Andersen, 2014).

Moreover, the respondents from the secondary data were anonymized, and we did not have the

opportunity to ensure that we interviewed the same employees. However, as a measure to overcome

this issue, respondents for the primary data were selected based on the roles included in Nielsen et

al.’s (2017) research to reach the highest level of comparability. Thus, comparability between the two

data sets is slightly reduced, but it is not considered to have a significant impact on the results.

The retrospective interviews of this thesis were centered around events and activities that occurred in

between the two data points (2015 and 2020). We asked the two respondents to recall and describe

events that influenced their software development cycle and DevOps approach. There is a likelihood

that the two respondents have forgotten essential events or could not recall exact details of occurred

events.

8.11. Future Research

The limitations section showed that the research came with some limitations, which form input to

future research. First, as this thesis is based on a paired-case study, and thereby a sample size of only

two organizations, it has an impact on the reliability of our findings. Especially those of our findings

that contradict existing research or contribute new knowledge can benefit from further investigation.

The impact of factors such as organizational size and structure as well as mindset, competences, and

tenure of employees still require more research to determine. Notably, these factors do not need the

boundaries of a longitudinal research design to be further investigated. Second, our research suggests

Discussion | 104

that more research on the effect of industry on DevOps is needed. We propose that the industry of

organizations contribute to a circumstantial element that influences the DevOps adoption of

organizations and their optimal level of maturity and is an aspect that calls for additional research.

Third, our research pioneers the discussion concerning the possibility for an organization to become

too DevOps mature. As this aspect is not covered by existing literature, it requires more research with

new empirical entities to be justified. Concurrently, such research can further investigate the existence

of an optimal level of DevOps maturity for different organizations. Fourth and last, more research

and empirical work are vitally needed to practice and validate the use of DevOps maturity models.

As the knowledge base of DevOps maturity is rather scarce, is merits additional research to be

justified as well as to increase the generalizability and applicability of DevOps maturity models.

Conclusion | 105

9 Conclusion

The constantly changing business- and technical requirements for IT products have caused a

paradigm change towards continuous delivery that allows organizations to release code faster to the

market. With this paradigm shift, the DevOps software development philosophy has emerged. While

DevOps reside within the world of software development and is directly coupled to technology, it is

first and foremost a question of culture. DevOps advocates for breaking down the traditional walls of

development and operations to align incentives through culture, automation, monitoring, and test.

Despite the increased attention on DevOps by practitioners, research on the adoption and maturing of

DevOps is still rather scarce. As such, this thesis sought to address how organizations can mature

their DevOps approach.

We found several drivers and capabilities that can progress organizations’ DevOps maturity. In line

with other studies, we found that the merging of the two traditional teams of development and

operations can accelerate a DevOps culture and improve organizations’ DevOps approach. In

conjunction, organizations that are unable to merge Dev and Ops teams can create a dedicated

DevOps task force to facilitate the maturing process. However, such task force should act as a catalyst

and not a permanent solution.

Through the investigation of two Danish organizations, we found that encompassing a thriving

DevOps culture is essential for an organization’s approach to DevOps. Without a positive mindset

towards cross-functional collaboration and the willingness to undertake tasks and responsibility that

reside outside an employee’s traditional field of work, the philosophy of DevOps cannot function

effectively. We found the introduction of a central platform for communication and knowledge

sharing to improve cross-functional collaboration and foster strong relationships between Dev and

Ops.

The number of DevOps tools is increasing, and the availability of specialized tools can provide

organizations with an advantage in DevOps. Specifically, the automation of technical processes can

be aided by the utilization of tools, and thereby assist in progressing the maturity of technical aspects

within DevOps. Thus, organizations stand before a decision of choosing the right tools that will

integrate seamlessly into their technical infrastructure.

Conclusion | 106

Furthermore, we identified factors that hinder organizations from maturing DevOps. First, we

observed tenure and competences of employees to be highly influential on DevOps maturity. Long-

tenured employees were less prone to embrace the organizational changes triggered by DevOps and

thereby less interested in acquiring the necessary competences for a successful DevOps approach.

Second, we found the exclusion of certain roles in planning activities of organizations to be a

challenge in the development processes and implementation of DevOps technologies. Third, we

conclude that the technical infrastructure of an organization significantly influences the adoption of

DevOps. We found that a decoupled infrastructure is superior to a monolithic infrastructure in

maturing DevOps.

As part of our research, we investigated the possibility for organizations to become too DevOps

mature. We take a critical stand towards the blatant assumption of maturity models where “more is

better” and pioneer the discussion of whether organizations should seek to further mature their

DevOps approach. We conclude organizations cannot ascend to a level of DevOps maturity that is

disparaging of efficiency or damaging to the organization. We assess that organizations can reach a

point where it is no longer economically feasible to progress their DevOps maturity. This assessment

is bound by circumstantial parameters concerning the individual organization, such as industry,

product, customer, and technical capabilities.

By concentrating on the identified drivers and capabilities from this research, organizations can

successfully mature their DevOps approach. Acknowledging the challenges found and applying focus

to comprehend these can provide organizations with a stronger position for maturing DevOps. Lastly,

organizations should critically evaluate their surrounding circumstances and assess the value derived

from increased effort towards DevOps maturity.

Bibliography | 107

10 Bibliography

Aiello, B., & Sachs, L. (2016). Agile Application Lifecycle Management: Using DevOps to Drive

Process Improvement. Addison-Wesley Professional.

Akshaya, H. L., Vidya, J., & Veena, K. (2015). A basic introduction to devops tools. International

Journal of Computer Science & Information Technologies, 3(6), 5-6.

Alkadhi, R., Lata, T., Guzmany, E., & Bruegge, B. (2017, May). Rationale in development chat

messages: an exploratory study. 2017 IEEE/ACM 14th International Conference on Mining

Software Repositories (MSR), 436-446.

Andersen, I. (2014). Den skinbarlige virkelighed: Vidensproduktion i samfundsvidenskaberne (2

ed., Vol. 5). Samfundslitteratur.

Anderson, D., & Anderson, L. A. (2011). Nøglen til ledelse af forandring: strategier for bevidst

forandringslederskab (Vol. 1). Gyldendal Business.

Barriball, L., & While, A. (1994). Collecting Data Using a Semi-Structured Interview: A

Discussion Paper. Journal of Advanced Nursing(19), 328-335.

Becker, J., Knackstedt, R., & Pöppelbuß, J. (2009). Developing maturity models for IT

management. Business & Informations systems engineering, 1(3), 213-222.

Creswell, J. W., & Clark, V. L. (2011). Designing and Conducting Mixed Methods Research.

SAGE.

Cusick, J. J. (2019). A Survey of Maturity Models from Nolon to DevOps and Their Applications in

Process Improvement.

Dam, K. v., Oreg, S., & Schyns, B. (2008). Daily work contexts and resistance to organisational

change: The role of leader–member exchange, development climate, and change process

characteristics. Applied Psychology, 2(57), 313-334.

Diaz, J., Almaraz, R., Pérez, J., & Garbajosa, J. (2018). DevOps in practice: an explanatory case

study. Proceedings of the 19th International Conference on Agile Software Development:

Companion (XP ’18).

Dingsøyr, T., & Lassenius, C. (2016). Emerging themes in agile software development:

Introduction to the special section on continuous value delivery. Information and Software

Technology, 77, 56-60.

Ebert, C., Gallardo, G., Hernantes, J., & Serrano, N. (2016). DevOps. Ieee Software, 33(3), 94-100.

Edwards, D. (2010). What is DevOps?

Bibliography | 108

Elliot, S. (2014). DevOps and the cost of downtime: Fortune 1000 best practice metrics quantified.

International Data Corporation (IDC).

Feijter, R., Overbeek, S., Vilet, R., Jagroep, E., & Brinkkemper, S. (2018). DevOps competences

and maturity for software producing organizations. Enterprise, Business-Process and

Information Systems Modeling, 244-259.

Feijter, R., Vliet, R., Jagroep, E., Overbeek, S., & Brinkkemper, S. (2017). Towards the adoption of

DevOps in software product organziations: A Maturity model approach. Technical Report

Series, (UU-CS-2017-009).

Feilzer, Y. M. (2010). Doing Mixed Methods Research Pragmatically: Implications for the

Rediscovery of Pragmatism as a Research Paradigm. Journal of Mixed Methods Research,

4(1), 6-16.

Flick, U. (2004). Triangulation in qualitative research. A companion to qualitative research, 3, 178-

183.

Gasparaité, M., & Ragaišis, s. (2019). Comparison of devops maturity models. IVUS.

Ghantous, G. B., & Gill, A. (2017). DevOps: Concepts, Practices, Tools, Benefits, and Challenges.

PACIS 2017 proceedings.

Gill, A. Q., Loumish, A., Riyat, I., & Han, S. (2018). DevOps for information management systems.

VINE Journal of information and knowledge management systems.

Goldkuhl, G. (2012). Pragmatism vs interpretivism in qualitative information systems research.

European Journal of Information Systems, 21(2), 135-146.

Holland, J., Thomson, R., & Henderson, S. (2006). Qualitative Longitudinal Research: A discussion

paper. London: London South Bank University.

Inbar, S., Yaniv, S., Gil, P., Eran, S., Olga, K., & Ravi, S. (2013). DevOps and OpsDev: How

Maturity Model Works.

Jalali, S., & Wohlin, C. (2012). Systemativ Literature Studies: database searches vs. backward

snowballing. Proceedings of the 2012 ACM-IEEE International Symposium on emperical

software engineering and measurement, 29-38.

König, L., & Steffens, A. (2018). Towards a Quality Model for DevOps. Continuous Software

Engineering & Full-scale Software Engineering, 37-43.

Kersten, M. (2018). A cambrian explosion of DevOps tools. IEEE Annals of the History of

Computing(2), 14-17.

Bibliography | 109

Khoshgoftar, M., & Osman, O. (2009). Comparison of maturity models. 2009 2nd IEEE

International Conference on Computer Science and Information Technology, 297-201.

Kim, G. (2018). Top 11 things you need to know about DevOps.

Krancher, O., Luther, P., & Jost, M. (2018). Key Affordences on Platform-as-a-Service: Self-

Organzation and Continuous Feedback. Journal of Management Information Systems, 35(3),

776-812.

Kruuse, E. (2007). Kvalitative forskningsmetoder I psykologi og beslægtede fag. København:

Akademisk forlag.

Lan, P. (2018). A review of key paradigms: positivism, interpretivism and critical inquiry.

Langley, A. (1999). Strategies for theorizing from process data. Academy of Management review,

4(24), 691-710.

Langley, A., & Truax, J. (1994, September). A process study of new technology adoption in smaller

manufacturing firms. Journal of management studies, 5(31).

Lee, G., & Xia, W. (2006). Organizational size and IT innovation adoption: A meta-analysis.

Information & Management, 8(43), 975-985.

Lu, Y., & Ramamurthy, K. (2011). Understanding the link between information technology

capability and organizational agility: an empirical examination. MIS Quarterly, 35(4), 931-

954.

Lwakatare, L. E., Kuvaja, P., & Oivo, M. (2015, May). Dimensions of DevOps. International

Conference on Agile Software Development, 212-217.

Mamatha, C., & Kiran, S. R. (2018). Implementation of DevOps Architecture in the project

development and deployment with help of tools.

Mohamed, S. I. (2015). DevOps shifting software engineering strategy: Value based perspective.

IOSR Journal of Computer Engineering (IOSR-JCE), 17(2), 51-57.

Mohamed, S. I. (2016). DevOps maturity calculater DOMC-value oriented approach. International

Journal of Engineering Research & Science (IJOER), 2(2).

Nielsen, P. A., Winkler, T. J., & Nørbjerg, J. (2017). Closing the IT Development-Operations Gap:

The DevOps Knowledge Sharing Framework. BIR Workshops.

Nowell, L. (2015). Pragmatism and integrated knowledge translation: exploring the compatabilities

and tensions. Nursing Open, 2(3), 141-148.

Pfeffer, J., & Sutton, R. I. (2006). Evidence-based management. Harvard Business Review, 84(1),

62.

Bibliography | 110

ProActive. (2020). IntraActive. Retrieved from IntraActive: https://intraactive.dk/

ProActive. (2020). Om Os. Retrieved from ProActive: https://www.proactive.dk/om-os

Ramanujan, S., & Kesh, S. (2004). Comparison of knowledge management and CMM/CMMI

implementation. Journal of American Academy of Business, 4(1/2), 271-275.

Reed, P. J. (2015). DevOps in Practice. O'Reilly Media.

Riungu-Kalliosaari, L., Mäskinen, S., Lwakatare, L. E., Tiihonen, J., & Männistö, T. (2016,

November). DevOps adoption benefits and challenges in practice: a case study. Internation

Conference on Product-Focused Software Process Improvement, 590-597.

Rong, G., Zhang, H., & Shao, D. (2016, May). CMMI guided process improvement for DevOps

projects: an exploratory case study. Proceedings of the International Conference on

Software and Systems Process, 76-85.

Royce, W. (2002). CMM vs. CMMI: From conventional to modern software management. The

Rational Edge, 2.

Shibab, E., Bird, C., & Zimmermann, T. (2012, September). The effect of branching strategies on

software quality. Proceedings of the ACM-IEEE International Symposium on Empirical

software engineering and measurement, 301-310.

Silva, C. C., Gilson, F., & Galster, M. (2019, November). Comparison Framework for Team-Based

Communication Channels. International Conference on Product-Focused Software Process

Improvement, 315-322.

Skelton, M., & Pais, M. (2019). Team Topologies: Organizing Business and Technology Teams for

Fast Flow. IT Revolution.

Smeds, J., Nybom, K., & Porres, I. (2015, May). DevOps: a definition and perceived adoption

impediments. International Conference on Agile Software Development, 166-177.

Smith, D. M. (2011). Hype cycle for cloud computing. Gartner Inc., Stamford.

Tallon, P. P., Queiroz, M., Coltman, T., & Sharma, R. (2019). Information technology and the

search for organizational agility: A systematic review with future research possibilities. The

Journal of Strategic Information Systems, 2(28), 218-237.

Virmani, M. (2015). Understanding DevOps & bridging the gap from continuous integration to

continuous delivery. Fifth International Conference on Innovative Computing Technology

(INTECH), 78-82.

Walls, M. (2013). Building a DevOps culture. O'Reilly Media, Inc.

Bibliography | 111

Webster, J., & Watson, R. T. (2002). Analyzing the past to prepare for the future: Writing a

literature review. MIS Quaterly, 13-23.

Whyte, J., Stasis, A., & Lindkvist, C. (2016). Managing change in the delivery of complex projects:

Configuration management, asset information and ‘big data’. International Journal of

Project Management, 2(34), 339-351.

Wiedemann, A., Forsgren, N., Wiesche, M., Gewald, H., & Krcmar, H. (2019). Research for

practice: the DevOps phenomenon. Communications of the ACM, 62(8), 44-49.

Winkler, T. J., & Günther, O. (2012). Explaning the Governance of Software as a Service

Applications: A Process View. Multikonferenz der Wirtschaftsinformatik (MKWI) 2012

Proceedings, 599-612.

Yin, R. (2002). Case Study Research – Design and Methods. London: SAGE Publications.

Zarour, M., Alhammad, N., Alenzi, M., & Alsarayrah, K. A. (2019). Research on DevOps Maturity

Models.

Appendices | 112

11 Appendices

Appendices

A

Appendices | 113

11.1. Appendix A – Competence Model (Feijter et al. 2018)

Appendices | 114

11.2. Appendix B – Focus Areas and Capabilities (Feijter et al., 2018)

CC - Communication

A. Indirect communication communication between interdisciplinary professionals, among which

are Dev and Ops professionals, is indirectly established (e.g. through managers, procedures). B.

Facilitated communication direct communication between interdisciplinary professionals, among

which are Dev and Ops professionals, is facilitated by management by stimulating professionals to

communicate directly. C. Direct communication direct interdisciplinary communication between

professionals, among which are Dev and Ops professionals while working towards a release is

present. This direct communication could occur through mailing lists, per- sonal contact etc. D.

Structured communication a structure for interdisciplinary communication is in place (e.g. by

holding daily standups and retrospectives with interdisciplinary professionals including Dev and Ops,

and by maintaining contact with (product) management to discuss about impediments along the way,

work to be done the upcoming sprints, and the technical debt situation, among others). E.

Communication improvement communication among management and interdisciplinary

professionals, including Dev and Ops, is improved (e.g. by adopting and trying out new

communication practices from industry, learning from experiences and by tracking projects or using

instruments such as skill matrices and peer feedback mechanisms over time).

CC - Knowledge sharing

A. Decentralized knowledge sharing knowledge is shared between interdisciplinary professionals,

among which are Dev and Ops professionals in a decentralized way (i.e. through notes or documents).

B. Centralized knowledge sharing knowledge is shared between inter- disciplinary professionals,

among which are Dev and Ops professionals, through centralized knowledge sharing fa- cilities. C.

Active knowledge sharing knowledge is shared actively between interdisciplinary professionals,

among which are Dev and Ops professionals. D. Communities of practice knowledge is shared

through communities of practice, which are composed of multidisciplinary professionals that share a

common interest.

CC - Trust and respect

Appendices | 115

A. Culture of trust and respect imitation dynamics, level of autonomy, and planning are open for

collaboration and creation of trust and respect between interdisciplinary professionals, among which

are Dev and Ops people. An example here is a DevOps duty rotation where developers take on

operational tasks. B. Culture of trust and respect facilitation a culture of trust and respect is

facilitated by management. Facilitation by management means that management should not manage

by fear, but should act as a servant leader that supports professionals in day-to-day tasks, has an

understanding of operational tasks, and allows interdisciplinary professionals, among which are Dev

and Ops professionals, to learn quickly from mistakes. C. Culture of trust and respect shared core

values the culture of trust and respect between interdisciplinary professionals, among which are Dev

and Ops professionals, is maintained by following shared core values such as rewarding Dev and Ops

as a group when a release is successful, being transparent and open towards one another to prevent

blaming, and working towards shared goals.

CC - Team organization

A. Separate teams separate teams are present (e.g. development teams, operations teams etc). B.

Cross functional teams excluding Ops cross functional teams are present that exclude operations

(e.g. teams consisting of developers and testers are present). C. Cross functional teams including

Ops cross functional teams are present that include operations. D. Cross functional teams with

knowledge overlap cross functional teams are present in which professionals have boundary cross-

ing knowledge (e.g. T-shaped professionals that have Dev and Ops knowledge).

CC - Release alignment

A. Roadmap alignment alignment with dependent internal and external stakeholders (e.g. third

parties) is considered in the roadmap. B. Internal release heartbeat alignment the release heartbeat

is aligned with dependent internal stakeholders. An example of such an alignment could be reflected

in adopting the same deployment moments or adhering to a common sprint cadence. C. External

release heartbeat alignment the release heartbeat is aligned with dependent external stakeholders

such as third parties from which software is used in the development of a product.

 PPQ - Release heartbeat

Appendices | 116

A. Requirements and incidents gathering and prioritization Functional and nonfunctional

requirements and incidents are gathered from and prioritized with internal stakeholders and external

stakeholders (e.g. customers). B. Fixed release heartbeat and validation a fixed release heartbeat

is present and validation of functionality occurs with internal stakeholders and external stakeholders

(e.g. customers) by demoing the functionality on a test or acceptance environment or the like. C.

Production requirements and incident gathering functional and nonfunctional requirements and

incidents are gathered from production by monitoring the production environment(s). D. Gradual

release and production validation functionality is released gradually (e.g. functionality is first

released to internal stakeholders, whereafter it is released to stakeholders that have close bonds with

the organization. Finally, the software is released to end-customers) and validation of functionality

occurs in production. E. Feature experiments experiments are run with slices of features in order

to support the prioritization of the contents in the backlog (e.g. A/B testing). F. Release heartbeat

improvement the value stream is continuously improved by identifying and eliminating activities

that do not add any value, shortening lead times and shortening feedback loops such as the time

between feedback moments with the customer.

PPQ - Branch and merge

A. Version controlled source code source code is stored under version control. B.

Branching/merging strategy a branching/merging strategy is adhered to that allows multiple

developers to collaborate and allows code to be branched and merged. C. DevOps branch-

ing/merging strategy a branching/merging strategy is adhered to that is DevOps compatible. An

example of such a strategy is trunk based development. D. Feature toggles feature toggles are used

to release functionality to customers by making completed functionality available.

PPQ - Build automation

A. Manual build creation a software build is created manually. B. Automated build creation a

build is cre- ated automatically (e.g. by running a scheduled build at night). C. Continuous build

creation a CI build is created after each check-in to verify that the integrated code still yields a

working software build.

PPQ - Development quality improvement

Appendices | 117

A. Manual code quality monitoring manual code quality improvement mechanisms are in place

such as pair programming, code reviews, and adherence to code conventions. B. Broken build

detection broken software builds are detected, made visual and quickly repaired. C. Gated check-in

gated check-ins are performed. D. Automated code quality monitoring code quality is monitored

automatically (e.g. automated code reviews). E. Quality gates quality gates are defined against which

the quality of code is measured.

PPQ - Test automation

A. Systematic testing Manual unit and acceptance tests are performed systematically. B. Advanced

systematic testing manual integration (chain) and regression tests are performed systematically and

test driven development practices are used in testing such as using mocking frameworks and writing

unit tests before writing code. C. Automated systematic testing automated unit and nonfunctional

tests are performed systematically. D. Advanced automated systematic testing automated

regression, integration (chain) and acceptance tests are performed systematically. E. Automated

recoverability and resilience testing automated recoverability and resilience tests are randomly

performed in production.

 PPQ - Deployment automation

A. Manual deployment software is deployed to environments in a manual fashion. In addition,

rollback is possible, where data is brought back to a stable state. B. Partly automated deployment

software is deployed automatically to some environments. C. Continuous delivery deployment to

all environments occurs in an automated manner (e.g. via self service deployments), where data

model changes are also processed automatically. D. Continuous deployment each check-in is

continuously deployed to production, where data model changes are also processed and automated

rollback is possible.

PPQ - Release for production

A. Definition of done a definition of done that incorporates development and testing criteria, among

others to be complied with during a sprint, is followed. B. Definition of release a definition of release

that incor- porates Ops criteria (e.g. verifying whether the software works in production) to be

complied with before releasing to customers, is followed. C. Done according to customer

Appendices | 118

functionality is declared done when customer satisfaction has been reached. D. Automated mate-

rial generation Supporting materials such as release documentation, training documentation etc. are

automatically generated.

PPQ - Incident handling

A. Reactive incident handling incidents are reactively acted upon by interdisciplinary professionals,

among which are Dev and Ops professionals. B. Proactive incident handling incidents are

proactively acted upon by interdisciplinary professionals, among which are Dev and Ops

professionals C. Blameless root cause detection root causes are identified without blaming one

another by conducting blameless postmortems involving both Dev and Ops. D. Automated root

cause detection the identification of root causes of incidents is supported by analytics.

F - Configuration management

A. Manual configuration management Supported versions of configuration items (e.g. OS,

middleware etc.) and their relationships are managed manually, for instance in documents or excel

sheets. B. Automated configuration management Supported versions of con- figuration times and

their relationships are managed in a configuration management tool. C. Version controlled

configuration management Supported versions of the configuration items and their relationships

are managed in version control.

F - Architecture alignment

A. Software and technical architecture alignment the software architecture of an application is

aligned with a technical architecture before a release. B. Continuous architecture evolvement the

software and technical architecture evolve mutually in a continuous fashion in such a way that these

architectures are continuously aligned and kept up to date.

F - Infrastructure

A. Manually provisioned infrastructure infrastructure such as development, test, acceptance and

produc- tion infrastructure is available and provisioned manually. B. Partly automatically

provisioned infrastructure A part of the infrastructure between development and production is

Appendices | 119

equivalent in terms of configuration and hardware and some or all environments are provisioned

automatically. C. Automatically provisioned infrastructure infrastructure between development

and pro- duction is equivalent in terms of configuration and hard- ware and provisioned

automatically. D. Managed platform services platform services (such as a web server and a

database server) are preconfigured in the plat- form and allow for applications being directly

deployed, among others, while rights and rolls are managed per en- vironment. This is also known as

platform as a service.

Appendices | 120

11.3. Appendix C – Interview Guide

Area of Concern Question

Introduction • What is your current job description?

• How long have you been at this company?

• Can you describe your tasks and responsibilities?

The Company • How would you describe the company culture?

• What is the organizational IT structure?

The Teams • Where are the different teams located?

• How do you communicate within the team?

o Do you use any special methods or communication

channels (mail, chat, etc.)?

o Do you use any specific knowledge sharing platform?

• When the team was established did you notice any differences

in culture between the teams that were put together?

o Was there done any effort in bringing down the formal

wall between the entities?

o Do you feel that all team members have respect for and

listen to one and other?

• Is there a sense of a common goal within the team?

o Are the teams rewarded in any specific way? What are

they measured on?

The Process • What is the process from a feature in development to

production?

• How do you decide what features to develop for customers?

• How often do you deploy new features?

• Is every team member included in the entire process from

development to deployment?

• How long time does it take for a finished feature to reach the

customer?

Appendices | 121

• How much of your process from development to production is

automated (integration, test, deployment)?

• How do you monitor your software/product?

o If something goes wrong in production how do you

handle it?

• Do you experience less errors after adopting DevOps?

Challenges • Have you encountered any large problems within the team?

• Is that something that hinders you from progressing with

DevOps?

• Do you feel like your team size or organizational structure has

had any effect on your approach to DevOps?

Value • Has your time to market been reduced after the introduction

to DevOps?

• Do you see it as an advantage that you can deploy more often

than before?

• Do you feel that the introduction of DevOps has improved your

organizational branding (more technological/innovative

brand)?

• Have your customers been more involved after the

introduction of DevOps?

• Has your customer satisfaction increased?

• Are customers involved in the process of developing features?

• Do you feel that the transition to DevOps has provided any

value? And is there more to gain?

Final Questions • Is there anything you want to add?

• What do you think is the most important thing when discussing

DevOps?

Appendices | 122

11.4. Appendix D – Primary Data

Please refer to the uploaded .zip-file for access to the primary data

List of Respondents

Interview transcripts 2020: ProActive A/S .. 1

Respondent 1 – Developer ... 2

Respondent 2 – Senior Developer .. 8

Respondent 3 - Tester .. 14

Respondent 4 – Technical Product Delivery Manager .. 17

Respondent 5 – Technical Product Delivery Manager (Retrospective interview)............... 26

Interview transcripts 2020: Topdanmark A/S .. 29

Respondent 6 - Developer .. 29

Respondent 7 – Developer ... 33

Respondent 8 – Product Owner ... 39

Respondent 9 – Hawks (Developer) .. 47

Respondent 10 – IT Development Manager and Architect.. 53

Respondent 11 – Scrum Master ... 61

Respondent 12 – DevOps Specialist in IT Operations ... 66

Respondent 13 – IT Development Manager and Architect (Retrospective Interview) 71

Document: Primary Data

Appendices | 123

11.5. Appendix E – Secondary Data

Please refer to the uploaded .zip-file for access to the secondary data (Nielsen et al., 2017)

List of Respondents

Interview transcripts 2015: ProActive A/S .. 1

Respondent 14 – Director Solutions (IT Development) .. 2

Respondent 15 – Product Owner (IT Development) ... 11

Respondent 16 – Developer/Solutions Architect (IT Development) ... 26

Respondent 17 – Tester (IT Development) .. 41

Respondent 18 – IT Professional (IT Operations) ... 58

Respondent 19 – Director Solutions (IT Development / Follow-up Interview) 74

Interview transcripts 2015: Topdanmark A/S .. 80

Respondent 20 - Arkitektur & Metode/Agil Udvikling & Test – Service Owner (SE) 80

Respondent 21 – Arkitektur & Metode /Agil Udvikling & Test – Specialist 98

Respondent 22 - IT Skade (IT Development) – Product Owner (PO) ... 112

Respondent 23 - IT Skade (IT Development) – Application and Architecture Responsible (AAA)

 .. 129

Respondent 24 – IT Skade (IT Development) – Developer... 142

Respondent 25 – Applikationsplatform / IT Process Management (IT Operations) – Service Owner

(SE), Specialist, Release Manager (RM) ... 163

Respondent 26 - IT Metode (IT Operations) –Service Owner (SE) ... 191

Document: Secondary Data

	Abstract
	Preface
	Reference Standard
	Acknowledgments

	1 Introduction
	1.1.
	1.2. Research Question
	1.3.
	1.4. Structure of Thesis

	2 Literature Review
	2.1. Literature Review Method
	2.2. Fundamentals of DevOps
	2.3. DevOps Challenges
	2.4. DevOps Culture
	2.5. DevOps Value
	2.6. Software Maturity Models
	2.7. DevOps Maturity Models

	3 Methodology
	3.1. Research Philosophy
	3.2. Research Approach
	3.3. Research Design
	3.4. Longitudinal Analysis
	3.5. Data Collection
	3.5.1. Operationalization
	3.5.2. Primary Data
	3.5.3. Secondary Data
	3.5.4. Referencing Interview Quotes

	3.6. Data Analysis

	4 Case Descriptions
	4.1. ProActive
	4.2. Topdanmark

	5 Analytical Framework
	5.1. Maturity Assessment
	5.2. Process Theory

	6 Within-Case Analysis
	6.1. ProActive Maturity Assessment
	6.1.1. Previous Level of Maturity
	6.1.2. Current Level of Maturity
	6.1.3. Summary

	6.2. Topdanmark Maturity Analysis
	6.2.1. Previous Level of Maturity
	6.2.2. Current Level of Maturity
	6.2.3. Summary

	6.3. Visual Maps
	6.3.1. Issue Domains
	6.3.2. Boxes
	6.3.3. Direct and Indirect Relationships
	6.3.4. Maturity Indicators

	6.4. Visual Map of ProActive
	6.5. Visual Map of Topdanmark

	7 Comparative Analysis
	7.1. Procedural Analysis
	7.2. Challenges
	7.3. Findings

	8 Discussion
	8.1. Organizational Size
	8.2. Organizational Structure
	8.3. Tools and Infrastructure
	8.4. Communication
	8.5. Tenure, Competences, and Mindset
	8.6. Fragmented Planning Activities
	8.7. The Perceived Value of DevOps Maturity
	8.8. Implications for Theory
	8.9. Implications for Practice
	8.10. Limitations
	8.11. Future Research

	9 Conclusion
	10 Bibliography
	11 Appendices
	11.1. Appendix A – Competence Model (Feijter et al. 2018)
	11.2. Appendix B – Focus Areas and Capabilities (Feijter et al., 2018)
	11.3. Appendix C – Interview Guide
	11.4. Appendix D – Primary Data
	11.5. Appendix E – Secondary Data

