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Abstract

I introduce a method for simulating aggregate dynamics of heterogeneous-agent models where log

permanent income follows a random walk. The idea is to simulate the model using a counterfactual

permanent-income-neutral measure which incorporates the effect that permanent income shocks have on

macroeconomic aggregates. With the permanent-income-neutral measure, one does not need to keep

track of the permanent-income distribution. The permanent-income-neutral measure is both useful for

the analytical characterization of aggregate consumption-savings behavior and for simulating numerical

models. Furthermore, it is trivial to implement with a few lines of code.

*I am grateful for helpful comments from Jeppe Druedahl, Kasper Kragh-Sørensen, and Erik Öberg.
�kha.eco@cbs.dk, Copenhagen Business School.
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1 Introduction

The heterogeneous-agent macroeconomic paradigm emphasizes the importance of rich heterogeneity at the

micro level for macroeconomic aggregates. Although conceptually appealing, realistic heterogeneous-agent

models are computationally challenging to solve, requiring the modeler to weigh computational tractabil-

ity against a realistic description of the economic environment. It is therefore important to find model

descriptions which are simultaneously realistic and computationally tractable.

A strand of the heterogeneous-agent literature, following Zeldes (1989), Deaton (1991), and Carroll

(1997), models income as subject to fully permanent income shocks and transitory income shocks.1 Not

only does a unit-root process for log permanent income match the data well, but such an income process,

combined with CRRA preferences, permits a simple description of household behavior (e.g., consumption)

in terms of permanent income Pt and normalized cash-on-hand mt := Mt/Pt (where Mt is cash on hand)

on the convenient functional form Ct = Ptc(mt).

Being able to describe micro-level consumption behavior in terms of normalized cash on hand, without

explicit reference to permanent income, helps keep the computational problem tractable since a state variable

in the household problem can be eliminated. Furthermore, the elimination of permanent income as a state

variable has permitted a relatively precise theoretical description of household behavior. (Carroll, 2020)

However, the computational tractability and theoretical clarity is lost when describing macro-level consump-

tion behavior. For aggregate variables such as aggregate consumption, it is not sufficient to keep track of

the distribution of households along the normalized cash-on-hand dimension since one needs to weigh the

households by their permanent income. It is therefore seemingly necessary to keep track of the distribution

of households both with respect to normalized cash on hand and with respect to permanent income, and the

tractability gained at the micro level is lost when aggregating over all households.

This paper shows a way to recover both computational tractability and theoretical clarity for the macro-

level behavior of models with fully permanent income shocks. I introduce a sufficient statistic for aggregate

variables such as aggregate consumption, the permanent-income-weighted distribution, and show that there

is a simple way to characterize the law of motion for the permanent-income-weighted distribution. The

law of motion for the permanent-income-weighted distribution is equivalent to the law of motion for the

distribution of normalized cash-on-hand with the adjustment that permanent income shocks are drawn

using a counterfactual permanent-income-neutral measure which oversamples the positive permanent income

shocks and undersamples the negative permanent income shocks. To be precise, if the objective distribution

of permanent income shocks is given by a density function fη(η), then the permanent-income-neutral measure

1Zeldes (1989), Deaton (1991), and Carroll (1997), as well as, e.g., Gourinchas and Parker (2002) and Campbell and Cocco
(2007) use an income process with permanent income shocks to study micro-level household behavior. More recently, the setup
has been used to study aggregate macroeconomic behavior by McKay (2017), Carroll et al. (2017), Carroll et al. (2019) and
Harmenberg and Öberg (2019).
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is given by f̃η(η) := ηfη(η).

Using the permanent-income-neutral measure together with Szeidl (2013)’s characterization of when a

stable invariant distribution of cash on hand exists, I characterize when a stable invariant permanent-income-

weighted distribution exists. I then prove the conjecture from Carroll (2020) that, in the long run, aggregate

consumption grows at the same rate as aggregate income.

The permanent-income-neutral measure also yields computational improvements. As an example, I show

how using the permanent-income-neutral measure improves the precision of Monte Carlo simulations of the

household distribution for an Aiyagari model. The implementation of the permanent-income-neutral measure

is trivial, simply replace fη(η) by f̃η(η) in the code when aggregating the model.

The disposition of the paper is as follows. In Section 2, I introduce notation and prove the main theorem of

the paper, a characterization of the law of motion for the permanent-income-weighted distribution. In Section

3, I use the main theorem to theoretically characterize the aggregate behavior of buffer-stock savings models.

In Section 4, I show how the permanent-income-neutral measure can be used to improve computations.

Section 5 comments on the similarities with the risk-neutral measure used in asset pricing and concludes.

2 Main Theorem

In this section, I consider the problem of aggregating models with fully permanent income shocks. It is

assumed that behavior at the micro level has been solved for through, e.g., value-function iteration or other

methods.

In preparation for the main theorem, I introduce the class of models under consideration. The mod-

els are ones such that the state space m × P consists of a normalized-state dimension m (e.g., normalized

cash on hand) and a permanent-income dimension P. The law of motion for permanent income only de-

pends on previous-period permanent income and the permanent-income shock while the law of motion for

the normalized-state dimension depends on the previous-period normalized-state dimension, possibly other

shocks, and the permanent income shock but not the previous-period permanent income. This relatively

abstract formulation nests, e.g., the canonical buffer-stock savings model (Carroll, 1997), models with risky

assets (Haliassos and Michaelides, 2003), and models with durable goods subject to non-convex adjustment

costs (Harmenberg and Öberg, 2019) (in this case, the normalized state is two dimensional). For simplic-

ity, the exposition presumes no aggregate shocks but aggregate dynamics can easily be accommodated by

introducing time subscripts for the law of motion.

Formally, a model with permanent-income shocks that allows normalization is described by

1. a multiplicative law of motion for permanent income Pt ∈ P = R+ given by Pt+1 = Gηt+1Pt where

G is the growth rate of permanent income and the shock ηt+1 is drawn from the probability density
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function fη(ηt+1) such that Eηt+1 = 1

2. and a law of motion for the normalized state as described by a density kernel φ(mt+1,mt,ηt+1), i.e.,

the probability density function for the normalized state mt+1 ∈ m ⊆ Rk given the previous state

mt ∈ m and the permanent-income shock ηt+1 ∈ R+.

With these primitives, the Markov operator that maps a distribution ψt ∈ D(m× P) to the next-period

distribution ψt+1 ∈ D(m× P) is explicitly described by

ψt+1(mt+1,Pt+1) =

∫
φ

(
mt+1,mt,

Pt+1

GPt

)
fη

(
Pt+1

GPt

)
1

GPt
ψt(mt,Pt)dmtdPt. (1)

Often, we are interested in the distribution of households along the normalized-state dimension, “forget-

ting” the permanent-income dimension. The following definition introduces the distribution of households

along the normalized-state dimension.

Definition 2.1. The marginal distribution (along the normalized-state dimension) is defined as ψmt (mt) :=∫
ψt(mt,Pt)dPt.

The evolution of the marginal distribution is easy to simulate, just simulate the evolution of many

households and do not bother keeping track of the permanent-income dimension. However, for computing

aggregates such as aggregate consumption, a different distribution along the normalized-state dimension is

needed. Intuitively, we need to weigh households by their permanent income. Since consumption scales with

permanent income, the consumption of a household i is given by the consumption function Cit = c(mit)Pit.

Therefore, aggregate consumption is given by

Ct =

∫
c(mt)Ptψt(mt,Pt)dmtdPt

=

∫
c(mt)

(∫
Ptψt(mt,Pt)dPt

)
dmt.

Capturing the integral inside the parenthesis, we introduce the following notation:

Definition 2.2. The permanent-income-weighted distribution is defined as ψ̃mt (mt) := G
−t

∫
Ptψt(mt,Pt)dPt.

Total consumption is then given as a growth factor Gt times the integral of normalized consumption over

the permanent-income-weighted distribution,

Ct = G
t

∫
c(mt)ψ̃

m
t (mt)dmt. (2)

Note that the permanent-income-weighted distribution is a sufficient statistic for computing aggregate

consumption, aggregate savings and similar aggregate variables where household behavior is weighted by

4



permanent income. The main result of this paper is that there exists an explicit characterization of the

law of motion of the permanent-income-weighted distribution ψ̃mt without reference to the full state ψt.

Furthermore, the law of motion for the permanent-income-weighted distribution ψ̃mt is similar to the law of

motion for the marginal distribution ψmt .

Theorem 2.1. The law of motion for ψm
t is given by

ψmt+1(mt+1) =

∫
φ (mt+1,mt,ηt+1) fη (ηt+1)ψ

m
t (mt)dmtdηt+1 (3)

and the law of motion for ψ̃m
t is given by

ψ̃mt+1(mt+1) =

∫
φ (mt+1,mt,ηt+1) f̃η (ηt+1) ψ̃

m
t (mt)dmtdηt+1 (4)

where f̃η(ηt+1) := ηt+1fη(ηt+1). We call the distribution f̃η the permanent-income-neutral measure.

Proof. Write ψ̃m,α
t := G−αt

∫
Pαt ψt(mt,Pt)dPt. The two distributions ψmt and ψ̃mt are the special cases

with α = 0 and α = 1 respectively. The law of motion for ψ̃m,α
t is given by

ψ̃m,α
t+1 (mt+1) = G

−α(t+1)

∫
Pαt+1ψt+1(mt+1,Pt+1)dPt+1

= G−α(t+1)

∫
Pαt+1φ

(
mt+1,mt,

Pt+1

GPt

)
fη

(
Pt+1

GPt

)
1

GPt
ψt(mt,Pt)dmtdPtdPt+1

= G−α(t+1)

∫
ηαt+1G

αPαt φ (mt+1,mt,ηt+1) fη (ηt+1)ψt(mt,Pt)dmtdPtdηt+1

=

∫
φ (mt+1,mt,ηt+1)η

α
t+1fη (ηt+1)

(
G−αt

∫
Pαt ψt(mt,Pt)dPt

)
dmtdηt+1

=

∫
φ (mt+1,mt,ηt+1)η

α
t+1fη (ηt+1) ψ̃

m,α
t (mt)dmtdηt+1,

where the first equality is true by definition, the second equality by Equation 1, the third equality by the

change of variable dηt+1 = dPt+1

GPt
, the fourth by Fubini’s theorem, and the fifth by definition.

Remark 2.1. With CRRA utility, household period utility is given by C1−γ/(1 − γ). By setting α = 1 − γ,

the proof of Theorem 2.1 also describes the law of motion for ψ̃m,1−γ
t which is the sufficient statistic for

aggregate welfare. Similarly, the proof explicitly characterizes the law of motion for ψ̃m,2
t , the sufficient

statistic for computing consumption squared. It is therefore possible to compute cross-sectional consumption

variance by keeping track of ψ̃mt and ψ̃m,2
t .

The law of motion for the permanent-income-weighted distribution is obtained by formally replacing the

permanent-income shock distribution fη(η) with the permanent-income-neutral shock distribution f̃η(η) :=

ηfη(η). What is the intuition behind this result? The marginal distribution ψmt describes how the households
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are distributed along the normalized-state dimension while the permanent-income-weighted distribution

describes how the units of permanent income are distributed along the normalized-state dimension. A

particular realization of the permanent-income shock η affects f(η) households, but in terms of permanent

income these households are now given weight η×f(η). Therefore, if we want to keep track of the distribution

of permanent income along the normalized-state dimension, we have to use the permanent-income-neutral

measure.

Theorem 2.1 suggests an immediate way to simulate the permanent-income-weighted distribution, and

thereby the evolution of aggregate variables. Take any method that simulates the evolution of households

along the normalized-state dimension. It can straightforwardly be adapted to simulate the evolution of

the permanent-income-weighted distribution: just change the probability distribution for permanent income

shocks from fη to f̃η when simulating the distribution.

3 Theoretical characterization of aggregate behavior in buffer-

stock saving models

Theorem 2.1 is the main result of the paper. In this section, I show how the theorem allows a characterization

of aggregate behavior in buffer-stock savings models, extending the work of Szeidl (2013) and Carroll (2020).

Consider the following model from Szeidl (2013), similar to Carroll (1997) and Haliassos and Michaelides

(2003). There is a continuum of infinitely-lived households with stochastic labor income facing a menu of two

financial securities: A risky investment S and a safe bond B. The household faces borrowing and short-sales

constraints so that the portfolio shares are between zero and one for both assets. The agent solves the

problem

maxE0

∞∑
t=0

βt
C1−γ
t

1 − γ
s.t. Ct + Bt + St =Mt,

Mt+1 = StRt+1 + BtRf + Yt+1,

Yt+1 = Pt+1εt+1,

Pt+1 = PtGηt+1,

St > 0,

Bt > 0,

where Mt is the cash on hand of the household. The household’s permanent income is denoted Pt and grows

at rate G, subject to a permanent income shock ηt. The labor income is also subject to a transitory income

shock εt. Both ηt and εt are non-negative, independent and i.i.d. with mean 1. The gross return on the
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risky investment, Rt+1, is non-negative, i.i.d., independent of labor income, with ERt+1 > Rf finite and the

excess return Rt+1 − Rf assumes both non-negative and non-positive values with positive probability.

The consumer problem can be reformulated in terms of normalized variables mt = Mt/Pt, ct = Ct/Pt

and consumer behavior scales linearly with permanent income. Szeidl (2013) provides a characterization of

when a stable invariant distribution of mt, ψ
m, exists. The proof, mutatis mutandi, directly translates to

a characterization of when a stable invariant permanent-income-weighted distribution, ψ̃m, exists for this

environment.

Consider the version of the above model without labor income (i.e., G = 0). It is well known that, without

labor income, consumption is proportional to cash on hand and the portfolio share of the risk investment

is constant. In this auxilliary model, let b∗ denote the optimal share of consumption out of cash on hand,

Ct = b
∗Mt, let a∗ denote the optimal share of risky investment, and write R∗p,t+1 = a∗Rt+1 + (1 − a∗)Rf.

With these preliminaries, Szeidl (2013) proves the following result:

Proposition 3.1 (from Szeidl (2013)). There exists a stable invariant marginal distribution ψm if

E log[R∗p,t+1(1 − b∗)] < E log[Gηt+1]. (5)

Furthermore, if

E log[R∗p,t+1(1 − b∗)] > E log[Gηt+1] (6)

then there does not exist an invariant marginal distribution.

Using Theorem 2.1, the following proposition which is a simple extension of Szeidl (2013)’s result, provides

a characterization of when a stable invariant permanent-income weighted distribution exists:

Proposition 3.2 (adapted from Szeidl (2013)). There exists a stable invariant permanent-income weighted

distribution ψ̃m if

E log[R∗p,t+1(1 − b∗)] < Ẽ log[Gηt+1] (7)

where the expectation Ẽ is taken with respect to the permanent-income-neutral measure given by the density

function f̃η(ηt+1) = ηt+1f(ηt+1). Furthermore, if

E log[R∗p,t+1(1 − b∗)] > Ẽ log[Gηt+1] (8)

then there does not exist an invariant permanent-income-weighted distribution.

Proof. By Theorem 2.1, the law of motion for ψmt is the same as the law of motion for ψ̃mt , except fη is
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replaced by f̃η. Therefore, the condition of Szeidl (2013) translates except the expectation is taken with

respect to the permanent-income-neutral measure.

Note that E log[Gηt+1] < Ẽ log[Gηt+1] so the existence of a stable invariant marginal distribution is

sufficient but not necessary to ensure the existence of a stable invariant permanent-income-weighted distri-

bution. For some parameter values, there does not exist a stable invariant marginal distribution but there

exists a stable invariant permanent-income-weighted distribution. Intuitively, a stable invariant marginal

distribution does not exist if sufficiently many households have their normalized cash on hand mt increasing

in an unbounded fashion. This happens for households who see their permanent income falling many times

in a row. However, for the permanent-income-weighted distribution, these households contribute much less

to the aggregate (since their permanent income fell) and therefore the condition for the existence of a stable

invariant permanent-income-weighted distribution is less restrictive.

Armed with Proposition 3.2, we can now prove a conjecture from Carroll (2020).

Proposition 3.3 (conjecture from Carroll (2020)). Under the conditions of Proposition 3.2, aggregate con-

sumption grows at the same rate as permanent income in the long run.

Proof. Recall that Ct = Gt
∫
c(mt)ψ̃

m
t (mt)dmt. Given the existence of a stable invariant permanent-

income-weighted distribution ψ̃m, in the long run we have

Ct+1 = Gt+1

∫
c(m)ψ̃m(m)dm = G

(
Gt

∫
c(m)ψ̃m(m)dm

)
= GCt (9)

so Ct+1

Ct
= G.

Similarly, aggregate savings grows at the same rate as permanent income.

Following Carroll (2020), denote by M the cross-sectional average. We can compute aggregate consump-

tion in two ways. First, we can use the objective measure,

Ct =

∫
c(mt)Ptψt(mt,Pt)dmtPt = M[c(mt)Pt] = G

tM[c(mt)] + Covt(c(mt),Pt). (10)

Second, we also have

Ct = G
t

∫
c(mt)ψ̃

m
t (mt)dmt = G

tM̃[c(mt)] (11)

where M̃[·] is taken with respect to the permanent-income-weighted distribution. Therefore, we get the result

that

Covt(c(mt),Pt/G
t) = −

(
M[c(mt)] − M̃[c(mt)]

)
. (12)
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Figure 3.1: The steady-state permanent-income-weighted distribution of normalized wealth plotted together
with the marginal distribution.

In other words, the covariance between permanent income and consumption is the gap in average normalized

consumption between the marginal distribution and the permanent-income-weighted distribution.

In terms of the distribution of permanent income shocks, the permanent-income-neutral measure stochas-

tically dominates the objective measure since it overweights the positive permanent income shocks and

underweights the negative permanent income shocks. Therefore, the resulting dynamics in cash on hand un-

der the permanent-income-neutral measure is stochastically dominated by the dynamics under the objective

measure. Figure 3.1 shows the permanent-income-weighted distribution and the marginal distribution of nor-

malized wealth from the Aiyagari model of Section 4, note that the permanent-income-weighted distribution

has substantially less normalized wealth. Since the permanent-income-weighted distribution is stochastically

dominated by the marginal distribution along the permanent-income dimension, the aggregate economy is

more financially constrained than the average household in the economy.

4 Using the permanent-income-neutral measure for computations

To compute aggregate behavior of heterogeneous-agent models, an integral part is to compute model aggre-

gates such as aggregate consumption and aggregate investment. By simulating the law of motion for the

permanent-income-weighted distribution ψ̃mt instead of the law of motion for the (full) distribution ψt, we

reduce the dimensionality of the relevant state space needed to compute model aggregates. Furthermore,
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since the permanent-income dimension of the state space is unbounded with the permanent-income distribu-

tion featuring a fat tail, eliminating this dimension is associated with sizeable computational improvements.2

In this section, I solve an Aiyagari model with and without using the permanent-income-neutral measure.

The Aiyagari model is a minimal example where computation of cross-sectional aggregates is needed to

solve for the equilibrium, and it therefore serves as an introduction to the application of the permanent-

income-neutral measure. Note however that the method is applicable in all settings where cross-sectional

aggregates are needed for the computation of equilibria, for example when computing aggregate dynamics in

the presence of aggregate shocks using, e.g., the Krusell and Smith (1998) algorithm. I describe the economic

environment of the Aiyagari model including parameter values, in Appendix A. The model is similar to

Carroll et al. (2017) and in comparison with Aiyagari (1994), there are two differences. First, the income

process features fully permanent income shocks. Second, to maintain a stationary income distribution, I

introduce a perpetual-youth structure as in Blanchard (1985).

In the literature, e.g., McKay (2017), Carroll et al. (2017) and Carroll et al. (2019), it is necessary to

introduce a perpetual-youth structure to maintain a stationary income distribution and compute aggregate

variables. However, using the permanent-income-neutral measure, it is not necessary to have a well-defined

income distribution in order to compute model aggregates.3 I nonetheless introduce the perpetual-youth

structure in order to compare simulating the model with and without the permanent-income-neutral measure.

To compute the steady-state equilibrium, we employ a simple bisection algorithm. Guess that the equi-

librium value of aggregate capital K lies in [Klow,Khigh].

1. Set K = 0.5Klow + 0.5Khigh.

2. Compute return on capital R and wage w given K.

3. Solve for the normalized consumption function c(·) using the endogenous-grid method.

4. Simulate a panel of households and compute the average value of end-of-period assets P(m− c(m)).

5. If E[P(m− c(m))] > K, set Klow = K. Else, set Khigh = K.

6. Start over, and iterate until Khigh − Klow < ε.

The permanent-income-neutral measure helps with Step 4. The laws of motion for the full distribution

ψt and the permanent-income-weighted distribution are given by Table 4.1. To quantify the computational

improvement from using the permanent-income-weighted distribution, I simulate 1,000 households for N

periods where N = 103, 104, 105, 106 using both the standard law of motion for ψt and the law of motion

for the permanent-income-weighted distribution ψ̃mt . In Figure 4.1, the standard error of total savings is

2The permanent-income distribution features a fat tail in McKay (2017), Carroll et al. (2017) and Carroll et al. (2019).
3This is reminiscent of Constantinides and Duffie (1996)’s model of asset prices. In their model, the income distribution is

degenerate but asset prices are well defined.
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Distribution Law of motion Shock distributions

ψt m ′ = ε ′ + R (m−c(m))
η′ ε ′ ∼ fε

P ′ = Pη ′ η ′ ∼ fη

ψmt m ′ = ε ′ + R (m−c(m))
η′ ε ′ ∼ fε

η ′ ∼ fη

ψ̃mt m ′ = ε ′ + R (m−c(m))
η′ ε ′ ∼ fε

η ′ ∼ f̃η

Table 4.1: The laws of motion for the joint distribution ψt of both normalized cash on hand and permanent
income, the marginal distribution of normalized cash on hand ψmt , and the permanent-income-weighted
distribution of normalized cash on hand ψ̃mt . The permanent-income-neutral measure is given by f̃(η) =
ηf(η).

plotted against the number of periods.4 The standard error is decreasing in the number of periods for both

the permanent-income-neutral simulation and the standard simulation, with the standard error proportional

to the inverse square root of the number of periods. There is however a large gap between the standard

errors of the two simulation methods, the standard error of the estimate of total savings using the permanent-

income-neutral measure is only 17% of the standard error using the standard simulation method. Therefore,

to achieve a given precision using the permanent-income-neutral measure one only needs a sample of size

0.172 = 3% of the size required using the standard simulation method. In other words, the speedup for the

simulation is more than thirtyfold.

This speedup is substantial since most of the computation time is spent simulating the model, as shown

in Table 4.2.5 I solve the model using the algorithm outlined above with (i) the endogenous-grid method

with 300 grid points, and (ii) Monte-Carlo simulation using 1000 households for 10,000 periods using the

permanent-income-neutral measure. The standard error of the estimate of aggregate saving is 0.05 and the

bisection algorithm takes two minutes on a MacBook Pro. For comparison, I then solve the model without

the permanent-income-neutral measure, with 1000 households for 339,000 periods. The standard error of

the estimate of aggregate saving is still 0.05 and the bisection algorithm takes an hour on a MacBook Pro.

Compatibility with other simulation methods In the computational exercise, the simulation was

conducted using stochastic Monte-Carlo simulation to highlight that the permanent-income-neutral measure

is trivial to use. An alternative approach to simulation is non-stochastic simulation (Young, 2010), where

4View the 1,000 households as random draws. The standard error is then the cross-sectional standard deviation of average
capital divided by

√
1000.

5That it takes a long time to simulate the model rather than solving for optimal behavior is consistent with what Carroll
et al. (2019) write in the documentation of their code, which uses an improved variant of Monte-Carlo simulation: “The HA-
DSGE mode takes roughly 16 hours to solve the sticky and frictionless versions, and will display progress toward finding the
equilibrium aggregate saving rule after each iteration. The very long run time for HA-DSGE is largely due to the extremely
large number of periods.”
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Figure 4.1: The standard error of the estimate of aggregate savings from the simulation of 1,000 households for
N periods where N = 103, 104, 105, 106, for both the standard simulation method and using the permanent-
income-neutral measure.

P-I-N simulation Standard simulation

Computation time endogenous-grid method 1.8s 1.6s
Computation time simulation 119.0s 3610.3s

Total computation time 120.8s 3612.0s

Table 4.2: Computation times for solving the Aiyagari model with and without the permanent-income-
neutral measure. The number of periods for the standard simulation is 33.9 times the number of periods for
the permanent-income-neutral simulation, to keep the standard error of the estimate of aggregate savings
constant.
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the transition dynamics are summarized by a discretized transition matrix. One of the advantages of non-

stochastic simulation is that the stationary distribution can be computed as the eigenvector associated with

the largest eigenvalue of the transition matrix. The major potential drawback with non-stochastic simulation

is that it suffers from a curse of dimensionality. As the dimensionality of the state space N grows, the size

of the transition matrix N2 grows even faster. Although there are ways around this curse of dimensionality,

see in particular Tan (2020), using the permanent-income-neutral measure is a trivial way to reduce the

dimensionality of the state space.

5 Discussion

The role of the permanent-income-neutral measure is analogous to the role of the risk-neutral measure in

asset pricing. In asset pricing, the price of an asset, e.g. a stock, S depends on the payoff d and the stochastic

discount factor Λ,

S︸︷︷︸
Price

= E[Λd] = R−1E[d]︸ ︷︷ ︸
Discounted expected return

+ cov (Λ,d)︸ ︷︷ ︸
Risk premium

(13)

where R = 1/E[Λ]. Notice the structural similarity with Equation 10. In asset pricing, the main challenge is

the covariance between the stochastic discount factor and the payoff, i.e. pricing risk. In heterogeneous-agent

macroeconomics, the main difficulty is the covariance between permanent income and the normalized state.

In both cases, it helps to perform a change of measure to the risk-neutral measure/permanent-income-neutral

measure.

Lately, following Achdou et al. (2014), there has been an explosion of work with heterogeneous-agent

models in continuous time. How can we use the permanent-income-neutral measure in this setting? The

mathematical machinery necessary, Girsanov’s theorem, is well known in mathematical finance and directly

applicable (for a textbook treatment of Girsanov’s theorem for economists, see Björk (2009)). Let permanent

income follow a geometric Brownian motion, dPt = gPtdt + σPtdWt. Aggregate consumption is given by

E[Ptc(mt)]. Girsanov’s theorem states that E[Ptc(mt)] = egtEQ[c(mt)] where the dynamics under the

equivalent-martingale measure Q is given by replacing dWt = σdt + dWQ. Therefore, to simulate the

model under the permanent-income-neutral measure, formally replace dWt by σdt+dWQ in the stochastic

differential equation for the evolution of mt.

To conclude, the permanent-income-neutral measure both provides a simple computational improvement

for simulating heterogeneous-agent models with permanent income shocks and helps clarify the theoretical

properties of these models. The improvement in computational performance is as close to a free lunch as

possible, since it only requires replacing fη with f̃η in pre-existing code for simulating the model.
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A Appendix

The household consumption-saving problem is

max
{Bt,Ct}

∞
t=0

E0

∞∑
t=0

βt
C1−γ
t

1 − γ
s.t. Bt + Ct = Yt + RBt−1, (14)

Yt = Ptεt, (15)

Pt = Pt−1ηt, (16)

with B−1,P−1, ε0,η0 given at time 0 and εt ∼ Fε, ηt ∼ Fη i.i.d with Eη = Eε = 1.

There is a continuum of households solving the household problem described by Equations 14-16. To

maintain a stationary income distribution, we employ a perpetual-youth structure. All households face a

probability ω of dying each period. When a household dies, it is replaced by a newborn with no initial assets

and permanent income P = 1. Total capital K is given by the cross-sectional average bond holdings E[Bt], or

equivalently E[Pt(at−c(at))]. The wage w and gross return on capital R are determined by a Cobb-Douglas

production function Y = Kα.

A steady state equilibrium is given by

i A consumption function c(·) that solves Equations 14-16 given R and w,

ii A stationary distribution of households ψ over the state space m×P generated by the shock distributions
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fη, fε, the probability ω of death χ = 1, and the micro dynamics

m ′ =

wε
′ + R (m−c(m))

η′ χ ′ = 0,

wε ′ χ ′ = 1,

P ′ =

Pη
′ χ ′ = 0,

1 χ ′ = 1.

iii Market clearing for capital and factor-price determination,

K =

∫
m×P

(m− c(m))PdmdP,

R =
αKα−1 + (1 − δ)

1 −ω
,

w = (1 − α)Kα.

The return R is multiplied by a factor 1/(1 − ω), with the interpretation that the assets of a dead

household is distributed among the living households.

A.1 Parameters

The subjective discount factor is set to β = 0.97 and risk aversion is set to γ = 1. The transitory shock is log-

normally distributed with σε = 0.158 and the permanent shock is log-normally distributed with ση = 0.073.

Capital depreciation is set to δ = 0.025 and the capital share is set to α = 0.33. The death rate is set to

ω = .005.
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