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Abstract

This document focuses on the implementation and development of a momentum in-

vestment strategy. Instead of considering the past movements of stock prices as signals for

investments, the positions are based on forecast estimations of asset prices. Predictions

are based on a dynamic linear representation of the Fama French three factors model.

Kalman recursion allows to filter out noise free estimates of the regression coefficients and

to predict asset returns. The simulated investment strategies are able to overperform the

market portfolio with statistical significance in a control environment, but performances

start to suffer once market frictions are introduced.
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1 Introduction

In economics, researchers are used to analyze relevant variables by analyzing historical data

and try to model their relationships. They can be interested in assessing the relationship

between the wage and education level among individuals, or measuring the group effect

of separating males and females in order to catch the gender effect on wealth redistribu-

tion. For these basic questions, economic literature provides powerful tools for estimating

relationships and try to model causality among variables. For example, a least square

regression model can be applied to model the correlation between dependent and indepen-

dent variables. Assessing if these relationships will continue or variate in the future is a

different question. Information about the past can be used for forecasting, but uncertainty

will always be a major problem for future estimations. Every economic model requires

and imposes assumptions in order to control uncertainty, and relaxing these assumptions

may to a dramatic rise of model complexity.

The forecasting of financial variables has always been a prominent area of finance and

economics literature. Every investor seeks to wisely predict future movements of stocks,

bonds and other financial instruments to trade based on this information. One of the most

famous model for stock return analysis is the Fama French three factor model. In their

model, the two authors describe the returns of a portfolio or stock with the returns of

three factors. It allows to describe the returns of a specific asset or portfolio by analysing

its sensitivities to the returns of three factors. The historical co-movements with the three

factors signal how the analysed stock react to the factors movements. This information

can be used to predict future developement of the stock price. Future predictions are

usually based on modelling techniques able to analyze past trend and incorporate current

information for future estimations. These estimates are created from employing time-

series, cross-sectional or longitudinal data in statistical models. These quantitative models

are used to forecast data by taking historical information as input. A powerful tool which

started to be employed in economic forecasting during the last century is the Kalman filter.

This is a linear quadratic estimator able to model time series observations and filter out

statistical noise to produce estimates of unknown variables. Proper tool of engineering,

the Kalman filter has been widely accepted as a valuable tool for econometricians for its

powerful flexibility and robust results.

The aim of this document is to create an investment strategy where the signals for
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portfolio rebalancing are backed and controlled by a forecasting recursion in order to

develop a quantitative equity momentum strategy. The goal is to combine the flexibility

of the Kalman filter and the predictive power of the Fama French three factors model to

create an investment strategy and test it on real data. These strategies fall under the

category of quantitative equity investments, proper of active portfolio manager.

The outline of the document is the following. First, the theoretical foundations required

to understand the models are presented. This accounts for general notions of investment

strategies, asset pricing techniques, Bayesian statistics and State Space modelling. Then,

the documents presents the model for two different amount of financial assets. Once data

are presented and analysed, the results of the filtering recursion and the discussion of the

performances conclude the document. Proposal for further studies are written after the

document conclusion.
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2 Active and Passive Investment

People invest in financial assets for different reasons but with the same goal of increasing

the value of the initial invested capital. Investors can be generally separated into two

categories: active and passive investors. Active investors believe that financial markets

are not completely efficient, and try to extrapolate returns from those inefficiencies. By

studying market anomalies, hedge fund managers undertake an active position in the

market and trade against those anomalies. For example, if a company is believed to present

over-stated earnings or flawed business plan which does not seem suitable to create profits,

an informed hedge fund manager can undertake a short position on the underlying. The

investment position is based on the idea that the real financial situation of the company

is not reflected in the price, and the hedge fund manager believes the price will burst

soon. While active investors focus on seeking price anomalies, passive investors firmly

believe in the Efficient Market Hypothesis developed by Fama(1970). These investors

believe that prices carry all the available market information and that they will never

be able to extrapolate positive reward from actively seeking market inefficiencies. In

this sense, passive investors rely on the basic argument of portfolio diversification. By

creating portfolios of well diversified stocks, passive investors will plug their savings in

mean-variance optimal portfolios and risk free assets.

Passive investment strategies are proper of investors placing their resources in well-

diversified portfolios of stocks. Passive investors believe financial markets to be efficient.

Market prices fully reflect the available information so that it is not possible to trade

against mispriced stocks. Stock returns develop as stationary stochastic processes for

which no investor can develop profitable predictions of future price developments. A pas-

sive investor creates a mean-variance optimal portfolio and gets rewarded by the equity risk

premium over the risk-free asset. A mean-variance optimal portfolio refers to the Modern

Portfolio theory introduced by Markowitz(1952). Investors are assumed to be risk-adverse

and invest in different stocks by maximizing the expected return for a given level of risk. It

formalizes the concept of diversification by showing how the portfolio volatility decreases

by including a higher number of assets and the concept of risk-return profile of an investor.

This represents the foundation of passive investment and many economists formalized re-

laxed version of the MV-efficient portfolio, like the basic model of long-term investments

for multi-period investments of Samuelson(1969) and Merton(1969,1971). The fundamen-
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tal critic to the basic MV-framework is that the model simplifies the real world decision of

investor in asset allocation. In the MV-framework, the investors share the same beliefs on

expectation, variance and correlation of financial assets. Relaxing this assumption leads

to a more realistic representation of the real financial world and it introduces possible

market anomalies.

Active investors believe market to be inefficient. They focus on trying to beat the

market and get reward by trading against market inefficiencies. Active investment has

been object of controversial studies and opinions. Sharpe(1991) focused on the relation-

ship between returns and fees, and concluded that if the market return is calculated as

the average between passive and active investments, passive investment return will always

be higher than the active investment due to the higher level of fees for the latter strat-

egy. Pedersen(2016) points out that the arithmetic of Sharpe does not hold because he

does not consider the difference between the difference between informed and uninformed

managers. Passive investors need to rebalance their positions if the market portfolio com-

position changes, and Sharpe assumed they can trade for free. In real world, this is does

not hold due to market frictions and capital structuring decisions like IPOs and share

repurchases. Academia common perception of active investment during last century was

that active mutual funds have no skills and are not able to create substantial returns over

the market, stated in Jensen (1968) and Fama(1970). During the last two decades, studies

showed how some managers have been able to pick well performing stocks and create supe-

rior alpha performance, as pointed out in Fama(2010), Kosowski(2006), Kosowski(2007),

Jagannathan(2010).

Even if agents are assumed to be rationale and to develop decision-making processes

based a pure utility criteria, real word decisions suffer by biases. In 2017, the Nobel prize in

economic sciences has been awarded to professor Richard H. Thaler for his contributions

to behavioural economics. Central part of Thaler studies has been the incorporation

realistic assumptions into decision processes of individuals. In his findings, he highlights

how a human being is not completely a homo oeconomicus, and that his decisions are not

completely rationale. If decisions are not completely rational, it means they contain errors.

If these errors are applied to financial decisions having effects to the financial markets,

they can have positive or negative effects on prices, but since these actions are not rational

it becomes difficult (if not impossible) to understand them. In financial markets, these

anomalies are defined market anomalies. Market anomalies are defined events moving away
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prices from their fair value. Fair value prices can be defined as efficient-market prices, in

the sense of Fama(1970). However, empirical data shows how market can be defined

as efficiently inefficient market1. Markets are enough efficient to discourage uninformed

asset managers to undertake active investment strategies, but also enough inefficient to

permit able investment managers with superior information to beat the market and create

positive alpha performance. Informed managers are able to beat the market, which means

exploit market inefficiencies to profit. In Fama framework, this profit should always be

zero and investors should not try to catch it since developing these active investment

strategies carry opportunity costs. During the last two decade, the market efficiency has

been heavily discussed. While promoters of efficient prices still believes market to be fully

efficient, it seems that informed investors are able to beat the market and gain active

investment profits, but the markets are efficient enough to discourage uninformed and

unskilled managers to undertake active investment strategies.

1For reference, Pedersen(2016).
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3 Asset Pricing Model

3.1 The Capital Asset Pricing Model

Optimal investment decision for an individual investor relies on various inputs. One of

these is the expected return of the assets available for investors. In investment theory the

expected return of a specific asset is referred to as the first moment of the asset’s return

distribution. This means that this quantity need to be estimated in a certain way. The

most famous used tool for asset pricing is called Capital Asset Pricing Model, sometimes

called just CAPM2. This asset pricing technique builds on the Markowitz mean-variance

portfolio theory (MV). CAPM and MV are both essential models for the research area

of financial markets and investment theory, and they both represent the basics of any

kind of more sophisticated asset pricing model and portfolio strategy. To understand the

basic concept of the CAPM is necessary to introduce few key concepts. The CAPM relies

and refers to the market portfolio, which is defined as the portfolio of all the risky assets

available in the financial market. This portfolio is created by incorporating all the assets

in the market at a certain point in time. The value of the market portfolio is created as

the sum of the single value of all the pooled assets. This has an important implications for

the expected return and variance of this portfolio. Given a specific portfolio, its expected

return and variance can be computed as:

E[r] =
n∑
i

wiri

Var[r] = w
′
Σw

where
n∑
i

wi = 1

wi =
MVi∑n
i MVi

From this specification of the first two moments of the return distribution of the market

portfolio is possible to see how the portfolio weights are set depending on the market

capitalization MVi of every asset i = 1, .., n. With a total number of assets equal to n,

the portfolio balances the weight so that the sum of all the weights is equal to 1.

2For reference, Treynor (1961), Sharpe (1964), Lintner (1965), Mossin (1966).
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The Sharpe ratio of a market portfolio is always positive. By plotting the relationship

of asset return ri with the standard deviation σi it is possible to define another important

concept for asset pricing, the Capital Market Line. This line connects the risk free rf

return/risk combination with the return/risk combination of the market portfolio. Since

the risk free has zero risk by definition, its volatility is equal to zero. The slope of the

equation can be easily calculated and is equal to:

E[rm]− rf
σ[rm]

Given a universe of stocks and a risk free asset with non constrainted investors with

mean-variance preferences, if they all share the same beliefs on the asset returns and the

market is in equilibrium, the followings statements hold:

• the tangency portfolio is equal to the market portfolio of all risky assets

• each investor combines risk-free and market portfolio for the optimal investment

strategy

• for any risk asset i, the following equation holds:

E[ri]− rf = βi(E[rm]− rf )

where

βi =
Cov[ri, rm]

V ar[rm]

3.2 Implications of the Capital Asset Pricing Model

The main result of the CAPM is that βi is the determinant of any positive risk premium

of a certain asset. By looking at how beta is constructed, it is easily to see that it is just a

ratio between two covariances. At the numerator, the covariance refers to the relationship

between a specific asset and the market portfolio, while the denominator is the covariance

of the market portfolio with itself, which represents its variance. Covariances are measures

of variability, and in this case variability is the key aspect determining the risk premium

of a specific asset. An asset i which has a positive covariance with the market portfolio

should provide high returns with the market portfolio is high and low returns when the

market return is already down. The risk premium of this asset will be higher. An asset j
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with negative covariance will instead provide negative returns with positive returns of the

market portfolio but positive returns when the market portfolio is in a depression state.

The risk premium of the asset is expected to be lower. These two results come straight

from the math above but can be also explained by economic theory. An asset which moves

with the market will be unable to protect an investor in case of downturn and investors

will not be interested in it. To make it interesting, it needs to provide a positive risk

premium over the risk free rate. On the other side, investors will be attracted from an

asset which provide returns in turmoil periods, with lower or even negative risk premium.

3.3 The Security Market Line

As described above, the result of the CAPM is the link between the risk premium of an

asset return and its beta, described as the ratio between the asset covariance with the

market portfolio and the variance of the latter. This relationship is not always respected

because of the tight restrictions set at the beginning of the model and because of the

complexity of financial markets and investors decisions. When the model does not hold,

a new variable needs to be put inside this equation. For example, if the expected risk

premium is higher than the one predicted from the model, the CAPM equation is:

E[ri]− rf > βi(E[rm]− rf )

The market excess return of the asset i is higher than the premium predicted by the

CAPM. If the opposite is true, the relationship is:

E[ri]− rf < βi(E[rm]− rf )

In this case the CAPM predicted a higher risk premium than the market excess return.

In both case the disequality can get back to an equation by inserting a new variable called

α which refers to the misspricing of the expected return predicted by the CAPM. The

equation goes:

E[ri]− rf = αi + βi(E[rm]− rf )

From both academic and pratiction point of views, this new variable is often referred as

the abnormal excess return of the asset i. In asset pricing theory, the main goal is to get

a measure of the price of an asset by analysing the risk it carries and the possible gains
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for picking such an investment strategy. If the real return of this asset is equal to the

estimated one, there is no possibility of making an extra profit: the return an investor

will get will be equal to the one she estimated before undertaking such investment. This

concept is crucial for active investors like hedge fund managers which seek for abnormal

profits. While passive investors rely on asset pricing techniques and choose to invest

capitals in portfolios by believing in the efficiency of financial markets, active investors

seek for market misspricings and arbitrage opportunities in order to achieve ’abnormal

returns’ or, in jargon terms, they look for ’alphas’.

The Security Market Line SML is the line linking risk free and market portfolio return

in a Cartesian plane with CAPM Betas in the x-axis and expected returns in the y-axis.

This representtion is the most important for CAPM because it directly show possible

inefficiencies of the model, the so-called ’abnormal returns’ or ’alphas’. If an asset is

correctly priced, the couple (βi, E[ri]) lays over the SML, otherwise there is a misspricing.

If the point plots below (above) the SML, the asset is overpriced (underpriced) according

to the CAPM. The vertical distance between the point and the line is the alpha of the

stock return.

3.4 Critics

The general idea of CAPM is that it is unable to price the return of assets and that

the Security Market Line is flatter than predicted3, leading to underestimated expected

returns of low-beta stocks and overestimated expected returns of high-beta stocks, having

a robust effect on the price of stocks. The final conclusion is that the model need to adjust

for other explanatory variables in order to provide more robust estimations of expected

returns.

3.5 Factor Models

Factor models assume that the covariation in asset returns comes from their linear depen-

dence with common factors. The idea comes from the fact that economic variables affect

all the financial assets and that the magnitudes of the effects change for every different

asset. Since CAPM suffers by having just one explanatory variable, factor models can be

useful to compare its result with the one of models with more explanatory variables.

3For reference Black(1972), Fama(1973).
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3.6 Basic Properties of Factor Models

A one-factor model represents the general belief that a system as the following exist:

ri = E[ri] + βi(F − E[F ]) + ei, i = 1, 2, ..N

The model can be reformulated in terms of excess return as following:

ri − rf = E[ri − rf ] + βi(F − E[F ]) + ei, i = 1, 2, ..N

By assuming the total number of stocks in the current universe equal to N , the one-

factor model implies that the return of every stock is linked to its expected value plus an

error ei ∼ N(0, σei) and a premium from the factor F. Properties are:

Cov[F, ei] = 0, i = 1, 2, ..N

Cov[ei, ej ] = 0 i, j = 1, 2, ..N i 6= j

Cov[ei, ei] = σei

The factor F affecting all the N asset returns is orthogonal to errors and errors between

different assets are orthogonal to each other. From these properties:

Cov[ri, F ] = βiV ar[F ]

which defines βi as

βi =
Cov[ri, F ]

V ar[F ]

This result should be familiar for the reader. It is not far from the general result of the

CAPM described above. Now, the first two moments of the one-factor model can be

defined as following:

E[ri] = E[ri] + βri + βi(F − E[F ])

V ar[ri] = β2
i V ar[F ] + V ar[ei]

Cov[ri, rj ] = βiβjV ar[F ]

The results come from the combination of all the previous properties and the general
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formula for calculating the variance of two random variables. It is easy to see how the

covariances of every asset is defined on the basis of its relationship to the factor F. The

return variance can be decomposed into two parts, the first part is the systematic risk while

the second one is the idiosyncratic risk, and its covariance with another asset completely

depend on the two betas and the factor variance V ar[F ]. Assets’ sensitivity to the common

factor F become the crucial variable for the parametrization of covariance matrices. A

major advantage of factor model is the reduced number of parameters required to estimate

the covariance matrix of a portfolio optimization problem. For example, a covariance

matrix with N finacial assets requires estimating N variances and N(N−1)
2 covariances

while imposing a factor model will require 2N + 1 parameters.

If returns follow a one-factor model, the expected returns are of the form

E[ri] = rf + βiP

where P is equal to the risk premium associated with the factor F. Combining this result

with the one-factor model representation of an asset return in terms of excess return will

lead to

ri − rf = βi(rp − rf ) + ei

where

βi =
Cov[ri, rP ]

V ar[rP ]

3.7 The Single-Index Model

This one-factor model has been developed by Sharpe(1960) and it represents a basic one-

factor model where the factor F is the return of a market portfolio. For estimation, a

stock market index is taken as the benchmark for the market portfolio. The model is

ri − rf = αi + βi(rm − rf ) + ei

For estimation, it is common to apply a least-square method like OLS in order to estimate

the parameters.
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3.8 Multi-Factor Models

In the case of a multifactor model, the return of an asset depends on how it varies respect

to a certain number of factors plus an error term. The model goes as following:

ri = E[ri] + βi(F − E[F ]) + ei i = 1, 2, ..., N

where

βi =


βi,1

...

βi,J

 F =


F1

...

FK

 E[F ] =


E[F1]

...

E[FK ]



3.9 The Fama-French models

The best known multifactor model is the Fama-French three factor model developed by

Fama-French(1992). The model is an extension of the Single-Index factor model where

the two economists added two new factors. The three factors are:

1. Market factor: the return of the market portfolio

2. Small-minus-Big SMB factor: the return of a portfolio of stocks going long on com-

panies with small market value and shorting companies with high market value

3. High-minus-Low HML factor: the return of a portfolio of stocks going long on com-

panies with high book-to-market B/M value and shorting the stocks with low B/M

The rationale behind these two new factors is based on economic theory and empirical

results. Many studies showed that companies with lower market capitalization are able to

produce higher return than companies with high level of equity. The main reason for the

value factor relies on the intrinsic value of a stock and on behavioural biases of investors.

When a stock has a high B/M, it means that its book value is high if compared with

its market value, and opposite for low B/M. The main argument relies on the fact that a

stock with high B/M is said to be cheap since its intrinsic value is high if compared with

the market value. Stock price is volatile and suffers by behavioural biases caused by herd

behaviour and uninformed investors, while the intrinsic value is a more stable measure

of the real value of a stock. The investment strategy which focuses on this relationship

between book and market value of equity is called value investing. Rosenberg Reid and

Lanstein(1985) showed the value effect. Stocks of companies with high book to market
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have higher average returns than predicted by CAPM while low book to market have lower

return than the one suggested by betas.

Similarly, Banz(1981) shows the size effect and how empirical average returns on small

size listed companies are higher than the predicted returns from CAPM. On another

formulation of the model, Fama and French add two more factors for the Fama-French

five factors model. These two factors are:

1. Robust-minus-Weak RMW factor: the return of a portfolio of stocks with long posi-

tion on the most profitable stocks and short positions on the least profitable stocks

2. Conservative-minus-Aggressive factor: the return of a portfolio of stocks with long

position in companies investing conservatively and shorting companies with more

aggressive investment policies
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4 Bayesian Statistics

The Bayesian approach differs from the classic frequentist approach by considering the

concept of probability from another perspective. The focus of Bayesian statistics relies on

the Bayes rule and conditional probability properties. Let’s define two events, A and B,

and define the joint probability of these two event by:

P (A ∩B) = P (A|B)P (B)

where P (A|B) is the conditional probability of event A conditioned on event B and P (B)

is the marginal probability of event VB. By basic properties of probability, the joing

probability can also be written as:

P (A ∩B) = P (B|A)P (A)

From this equality, it is possible to define the Bayes rule. The Bayes rule develops in the

following formula:

P (A|B) =
P (B|A)P (A)

P (B)

This concept is simple but still powerful, and it represents the basic idea behind Bayesian

statistics. Let’s make a simple example. Suppose a biologist is interested in analysing the

impact of the steady increase of temperatures on the ozone depletion. The model will con-

tain some measurements, for example the degrees in various cities in a particular period

of time, but it will also contain an unknown parameter, for example the impact of elec-

tricity usage on temperature rise. While the biologist can measure the past temperatures,

it cannot directly evaluate the impact of electricity usage impact. Let’s define B as the

observed event and A as the event of interest. The researcher can sample a total number

of temperatures and model this sample with a certain probability law. Let’s define Y as

a random variable modelling the observed temperatures and θ an unknown parameter,

which the research need to estimated. The Bayes rule goes as following:

π(θ|y) =
π(y|θ)π(θ)

π(y)

where π(y) refers to the density function of Y and

1. π(y) is the marginal density of the observed temperatures
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2. π(θ) is called prior distribution

3. π(y|θ) is the conditional distribution of the observed values

For a certain realization of the random variable Y = y, π(y) represents the marginal

density of the observed temperatures, that is the unconditioned probability law governing

this phenomena. It is possible to retrieve marginal probabilities by integrating out the

conditional probability for the conditioned variables. In practice, the marginal probability

can be computed as:

π(y) =

∫
π(y|θ)π(θ)dθ

The prior density π(θ) represents the unconditioned probability law governing the

unknown parameter. As concerned from the model, this is related to an initial hypothesis

or idea about the density structure of this parameter. It is common to utilize preexisting

data or information to set an initial hypothesis for this distribution. The conditional

distribution π(y|θ) represents an additional probability law set by the researcher given

the unknown parameter θ. The so-called ”Bayesian learning process” relies on this basic

rule and to these conditional probabilities. In this simple example, the learning process

concerns studying the conditional distribution of the unknown given a specific observation

of the variable Y by taking advantage of the conditional probabilities set by the researcher

and by the Bayes rule.

Bayesian statistics can be applied to various sciences, and economics is one of these.

In particular, Bayesian statistics is a useful alternative for time series analysis. The focus

of this important area of statistical studies relies on the study of how random variables

develop over time and how to forecast their values. In a Bayesian framework, the Bayes rule

and its properties can be applied to update and adjust the knowledge of the probabilistic

structure of θt and t. Let’s assume the biologist decides to specify the observed temperature

over time as a time series. The Bayes rule becomes:

π(θ|y1:t) =
π(y1:t|θ)π(θ)

π(y1:n)

Where π(y1:t) is the joint distribution of y1, ...yt.

The major change is about the probability distribution of the random variable Yt. Now,

the biologist needs to define the density function of all the observed temperatures for the

whole observed period 1, ..., t, which represents the time when the researchers develops the
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model. This is a joint probability distribution, it represents the probability structure of

a set of t random variables where Y1 = y1, Y2 = y2,.., Yt = yt, where upper case letters

refer to random variables while lower case letters refer to specific realization of variables.

Striclty speaking, these t variables are no more ”random” since time is passed and the

biologist has been able to observed them. The joint probability refers to the odds of the

having these t variables Yi with these specific realizations yi, for i = 1, .., t. The issue here

is how to model the structure of these joint probabilities. A basic property of statistics

called ’independence’ states that if an event A and an event B are independent, the joint

probability of these two events is:

P (A ∩B) = P (A|B)P (B) = P (A)P (B)

It is easy to understand the point of this rule. If A and B are independent, it means that

knowing the probability structure of event A will not help to understand the probability

structure of B, and viceversa. This turns to:

P (A|B) = P (A)

P (B|A) = P (B)

This simplifies the probability framework of joint probabilities. In theory if events

are independent, their joint density function is represented by the product of the marginal

density functions. In practice, evaluating independency between random variables is still a

major area of study of statistics and a problem that every statisticians face during studies.

Assuming independency is a simple assumption which facilitates model estimation and

calculation.

A property of Dynamic Linear Models refers to the dependence structure of Y1, ..., Yn by

saying that these random variables are conditional independent and identically distributed

given θ. Given this characteristic, the conditional joint probability can be computed as:

π(y1:t|θ) =

t∏
i=1

π(yi|θ)

By combining the previous formula for the Bayesian rule with this property of observ-

ables in DLMs, it comes that:
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π(θ|y1:t) =
π(y1:t|θ)π(θ)

π(y1:n)
=

∏t
i=1 π(yi|θ)π(θ)

π(y1:n)

This shows the argument for the recursion in DLMs and in particular for the filtering

procedure. The posterior density of the parameter θ can be computed recursively since the

conditional independence of the observables Yi. In Bayesian statistics is used to described

and write posterior densities with a special symbol which means ”proportional to”. This

a way of eliminating all the density elements which are independent from the interest

variable. For example:

π(θ|y1:t) ∝
t∏
i=1

π(yi|θ)π(θ)

The missing element is the joint distribution of the observables. This is independent

of any realization of the unknown parameter and so it is common to say that it represents

a mere proportional factor for the final posterior density. The conditional independence

property facilitates the computations of the posterior density function. The learning pro-

cess for the posterior density only requires the information at the previous state in time.

More specifically, at time t− 1 the prior for time t is:

π(θ|y1:t−1) ∝
t−1∏
i=1

π(yi|θ)π(θ)

The likelihood is π(yt|y1:t−1, θ) but can be simplified to π(yt|θ) due to the conditional

independence of Yi. The Bayes rule gives:

π(θ|y1:t−1, yn) ∝
t−1∏
i=1

π(yi|θ)π(yn)π(θ)

The conditional independence property simplifies the estimation of models working

with conditional independence by reducing the computational workload. At every point

in time when a new observation is retrived, the new posterior density just requires the

i.i.d. probability densities of the singular Yi conditioned to the unknown parameter θ.

4.1 Prior and Model Specification

In order to start the learning process, the researcher needs to specify the model and to set

the prior for the interested event. This means setting π(y|θ) and π(θ). The first density is

given and decided by the model of the researcher, the second density function should refer
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to a genuine and honest espression of the phenomena the researcher wants to study. Here,

it is common to utilize other studies as starting point for evaluating a model. A major

concern for this distribution is about computational issues which can be in part avoided

by using conjugate priors. The choice of a prior refers to setting both π(y|θ) and π(θ)

and the latter is said conjugate for a model specified by the former if the density family

representing π(θ) is the same also for the posterior density π(θ|y). For example, setting a

Gaussian density function for π(θ) triggers a Gaussian posterior density function, which

means that the Gaussian family is conjugate to the model specified by π(y|θ). To check if

a prior is conjugate for the desidered model, it is required to check the resulting likelihood

function of the posterior density resulting from the Bayes rule.

4.2 Bayesian Inference for Unknown Quantities

The two main approaches for estimating unknown parameters are maximum likelihood

estimation and Bayesian inference. The former is the classic approach for parameter es-

timation of frequentist statistics. After observing a set of n random variables distributed

with a specific probability law, for example Gaussian probability distribution, the max-

imum likelihood estimation consists in creating the joint probability distribution of the

observed variables and optimizing the function. The optimization procedure will maximize

the joint probability: strictly speaking, this means to maximize the chances of observing

the n observed values for the n random variables. The optimal argument of the maximum

will represent the unknown parameters of the model. The latter approach is the Bayesian

approach for parameter estimation. After imposing an initial idea of the unknown values,

the Bayesian learning procedure and a sampling algorhythm will update the estimation of

the unknown parameters. For Bayesian statistics, unknown parameters are considered as

random quantities, and every time a new observation comes in, the algorithm updates the

best guess for these random quantities. The most important drawdown of Bayesian infer-

ence is the computational issue underlying the posterior densities calculations. Bayesian

inference is computationally demanding if models are complex but Markov Chain Monte

Carlo methods help to reduce the intensive task of posterior distribution calculations.

4.3 Markov Chain Monte Carlo

In Bayesian statistics an unknown parameter is treated as an unknown quantity. To gather

information about the quantity, it is common to estimate the posterior density function of
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the unknown by applying the Bayes rule and Bayesian learning procedure above described.

Unfortunately, posterior distributions are not always analytically treatable and numerical

methods need to be applied. A way to overcome this problem is to rely on the law of

large number underpinning the concept of Monte Carlo simulation. For example, if a

model requires an estimate of a specific unknown random variable ψ, it can be simulated

by running a Monte Carlo simulation with significant number of simulations. Then, the

sample mean of the simulated sample will be referred to as an approximated value of the

desider variable ψ. This works also for functions of ψ, like:

Eπ(g(ψ)) ≈ N−1
N∑
j=1

g(ψj) (1)

where π(.) is the posterior distribution from which the sample is generated and N

refers to the number of simulations. The problem relies on the statistical properties of

the sample. In theory, to have a reliable and independent estimate of a parameter it is

required to collect an i.i.d. sample. In practise, i.i.d. assumption is strong and sometimes

unfeasible. This turns out to dependent sample, rather than independent. As described

above, Markov chains are stochastic processes where each state of the chain depends only

on the previous state but it is independent of the others. This property of Markov chains

is called memorylessness and can be applied in the sampling procedure without damaging

the law of large number property of Monte Carlo simulations. By combining these two

concepts, this kind of sampling procedures are called Markov Chain Monte Carlo (MCMC).

4.4 Gibbs Sampler

Markov Chain Monte Carlo methods are powerful tools which combine the law of large

numbers and the memoryless property of Markov chains. Among the various methods, the

Gibbs sampler is widely applied for sampling the posterior distribution of a multivariate

random variables. The idea of Gibbs sampling relies on basic assumptions of MCMC

and leads to a robust sample of the multivariate posterior distribution. Suppose the

unknown quantity is still ψ and it is a multivariate random variable. This means that

ψ = [ψ(1), ψ(2), .., ψ(m)]. If ψ evolves as a Markov chain, it respects the memorylessness

principle. By imposing an initial arbitrary point of ψ, the Gibbs sampler will draw each

of the m values one by one, by conditioning every draw just on the previous draw. In

this way, the final sample will respect the memorylessness property of Markov chain and
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will generate a path dependent multivariate sample which can be used to create a proper

guess for the unknown quantity ψ by Monte Carlo method.

4.5 Diagnostics

After running the simulation for the Markov chain, it is important to check if it converged.

The output of the Gibbs sampler needs to reach the stationary distribution and this can

be assessed by checking the autocorrelation function of parameters or by checking if the

sample mean is stable once a substantial number of simulations are cut as burn in. The

burn-in part of the simulated value is intended as a total number of simulations required by

the Markov-chain to reach its equilibrium distribution. Strictly speaking, after plugging

some prior hypothesis for the unknown parameters, the Markov chain needs to wash out

the information of a possible poor prior. By burning a part of the simulated sample, the

simulation is able to assess a better Monte Carlo estimate of unknown parameters.
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5 State Space Model

5.1 Definition

A state space model is a mathematical model representing a particular physical system.

It links a set of input, output and state variables which are able to specify and define the

system over time. The model represents the law underpinning the evolution of the system

and allows to study how the input and state variables affect the output values. In control

engineering, input and output variables are related by differential equations represented

by matrices and vector spaces. Even tough this is a tool proper of control engineering, it

has been applied to many other sciences. In economics, the analysis of how data develop

over time has been an area of great significance and interest for researchers, policy makers,

investors and many other institutions. State space models can be used to model univariate

and multivariate time series and it lends itself a elegant tool for econometricians. More

specifically, econometricians need powerful and flexible tools able to model and understand

data, whether they are data on GDP of a major economy or irregular economic data from

an emerging market. A first major credit to SSM concern nonstationary time series. The

classic tools for time series analysis are the ARMA models estimated by the Box-Jenkins

method where nonstationary time series need a preliminary transformation. State space

models can be defined in a specific way in order to achieve the same results of an ARMA

model. In this case the model is defined as the state space model representation of this

particular ARMA model. The power of SSM is that it can properly handle nonstationary

data and show possible instability in the mean level and in the variance of a specific series,

analyze structural breaks or even proceed with missing observations.

5.2 Properties of a State Space Model

First step is to consider a specific series of data, in this case a time series (Yt)t≥1. For

simplicity, it is usual to define the dependence of the observations over time as Markovian.

The reason lies within the elegant proprieties of this process. (Yt)t≥1 is a Markov chain if

and only if for any t > 1,

π(yt|y1:t−1) = π(yt|yt−1)

A main characteristic of a Markov chain is that the probability of each event only depends

on the probability of the previous event. This is referred to as the ’memoryless’ property
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of a Markov process. In this setup, it can be argue that the conditional probability of

the random variable Yt conditioned on all the past realizations (y1, .., yt−1) is equal to

the conditional probability of the random variable Yt conditioned on the last value yt−1.

Stricly speaking, this means that the information up to time t− 1 is the same information

as the one carried just at time t−1. This characteristic simplifies the definition of the joint

probability distribution of the observable time series (Yt) and allows it to be treatable,

even if the Markovian structure is not always able to properly describe the evolution of the

underlying system. A State space model is defined after two time series: (Yt : t = 1, 2..)

representing the observable time series of data and (θt : t = 0, 1, ..) representing the

unobservable time series of state variables. The two main characteristics of a SSM are:

• θt is a Markov chain

• Conditionally to θt, (Yt) dependes only on θt and not on other values of Yt at any

other point in time

These two proprieties mean that the SSM is fully defined by three density function:

1. π(θ0): Initial distribution of the state variable θt

2. π(θt|θt−1): Conditional distribution of the state variable with the previous value

3. π(yt|θt): Conditional density of the observed variable with the state variable

These results come from the structure of the SSM. At any point in time, the observed

variable Yt depends only on the state variable θt and not on any future or past values

of itself. In term of conditional probability distribution, this means that the probability

distribution of Yt conditioned to all its past realizations (Y1, ..., Yt−1) and (θ0, ..., θt−1)

reduces to π(yt|θt).

A general SSM can be defined by two equations. The first equation is called ’obser-

vation equation’ and concerns the evolution of the observable variable Yt. The second

equation is called ’state equation’ and explains the structure of the unobservable variable

θt, also called state variable. The general model can be written as following:

Yt = ht(θt, vt)

θt = gt(θt−1, wt)
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In this very general formulation, the system is defined by two functions ht and gt.

These two functions can be defined as linear or nonlinear and it is important to properly

fit the evolution scheme of the two variables of the system, Yt and θt. However, the

nonlinearity of the system dramatically increases the computational requirement of the

fitting recursion of the model.

5.3 State Estimation

The main point of state space modelling is to study the evolution of an observable variable

with the help of a defined system. This system lies on the observation and state equation

linking observable and unobservable variables. In a more mathematical point of view,

the word ’state space’ refers to the finite-dimensional vector space over the set of real

numbers R. Every single state of the system can be represented as a vector within the

collection of vectors forming the vector space. Since the vectors are all defined over the set

of real numbers, the state space is an Euclidean Space. For a defined state space model,

the aim is to combine all the properties of the model in order to make inference on the

unobserved variable and to forecast the evoulution of the system. It is also possible to look

backward to its evolution, by starting from a certain point in time and going back toward

the starting point. In state space modelling, it is usual to distinguish between three type

of state estimation: filtering, forecasting and smoothing.

5.4 Dynamic Linear Model

Dynamic linear models turn to be very powerful tools for forecasting and many other sta-

tistical applications on the basis of the Markovian property of the variables and statistical

properties of the Gaussian distribution. A specific and important class of SSM is repre-

sented by the Dynamic Linear Model class, also called Gaussian linear state space model.

The main characteristic of this class concerns the normality of the random vectors and

the initial distribution of the state variable θt. More specifically, a general time-variant

DLM can be written as following:

Yt
mx1

= Ft
(m×p)

θt
(p×1)

+ vt
(m×1)

vt ∼ N(0, Vt)

θt
(p×1)

= Gt
(p×p)

θt−1
(p×1)

+ wt
(p×1)

wt ∼ N(0,Wt)

where m referes to the total number of time series treated in the model and p refers to
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the total number of unobservable variables in the model. The two series of random errors

are Gaussian white noise vectors and are assumed to be uncorrelated with each other

and with any other variables of the model. In particular, this means that the covariance

matrices of the random errors can be defined as following:

E(vtv
T
s ) =


Vt if t = s

0 otherwise

E(wtw
T
s ) =


Wt if t = s

0 otherwise

The matrices Ft, Gt define the evolution of the system. The first matrix links the state

variable θt with the observation variable Yt, while the second matrix links the state variable

θt with its first lagged value. For simplicity, the matrices are assumed to be known, which

means that the system evolution is known, but this is not always the case. If treated as

unknowns, these two matrices can be estimated from data.

5.5 Kalman Filter

A state space model is defined by two types of variables, where the state vector is made by

unobservable quantities. As defined before, the characteristics of the SSM and the model

specification allow to infer the values of these unobservable quantities. The starting point

for the study of a DLM is to set the initial distribution of the state vector, which is defined

as:

θ0 ∼ N(m0, C0)

Once this distribution is parametrized, the model can recursively compute the forecast

of the state vector and the observation vector at any point in time. Let’s suppose that

the time span of interest goes from time t = 1 to t = T . At any point in time, the model

can be used to calculate the one-step-ahead predictive distribution of the state vector θt

and the observation vector Yt. Once these two distributions are retrieved, the model is

able to update the inference of the state vector. This is the filtering recursion: at any

point in time, the recursion computes the one-step-ahead distributions of Yt and θt, and

updates the inference on the state vector once the new observation is available. This is the

main aim of SSM: creating a forecast for an unobserved vector of variables and adjust the
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forecast once a new set of observations are available. Once the system is set, this becomes

and extremely powerful tool. More specifically, the filtering recursion requires:

1. π(θt|y1:t−1): the one-step-ahead predictive distribution of the state vector condi-

tioned on all the past values of the observable vector

2. π(yt|y1:t−1): the one-step-ahead predictive distribution of the observable vector con-

ditioned on all the past values of the observable vector

The result of the filtering recursion is the filtering distribution of the state vector

π(θt|y1:t).

These three density functions are defined as following:

π(θt|y1:t−1) =

∫
π(θt|θt−1)π(θt−1|y1:t−1)dθt−1

π(yt|y1:t−1) =

∫
π(yt|θt)π(θt|y1:t−1)dθt

π(θt|y1:t−1) =
π(yt|θt)π(θt|y1:t−1)

π(yt|1:t−1)

The derivation of these three density functions relies on the Markovian property of the

state vector, the conditional independence of the observable vector and the Bayes rule for

conditional probability.

5.6 Kalman Filter for Dynamic Linear Models

One of the main reason of the popularity of dynamic linear models is the computational

ease granted by the powerful properties of the Gaussian distribution. In particular, the

computations for the probability distributions described above start to be computationally

heavy once the dimension of the vectors and the time span increase. By talking about com-

putational requirement, the filtering recursion of dynamic linear models are considerably

simplified because of the Gaussian property of the model. In particular, the solution to

the filtering problem of DLMs is given by the Kalman filter. The proof of the result relies

on the general properties of the multivariate Gaussian distribuion and on the properties

of linear state space models. Let’s define again a classic DLM:

Yt = Ftθt + vt vt ∼ N(0, Vt)

θt = Gtθt−1 + wt wt ∼ N(0,Wt)
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By following the initial definition of the starting distribution of the state vector θ0 ∼

N(m0, C0), it is easy to see that:

θt−1 ∼ N(mt−1, Ct−1)

As described above, the filtering procedure requires three different density functions. The

main advantage of the DLM properties is that the three density functions are defined in

closed form by the first two moments of the their distributions. Since the model contains

Gaussian random variables, the first and the second moment of the distribution are suffi-

cient statistics. Let’s suppose to have information until time t − 1. This means that the

last observation is represented by the realized vector of observed values yt−1. The first

step for the filtering recursion is to forecast the one-step-ahead distributions of the two

variables of interest, the observed variable Yt and the unobserved state variable θt. In this

case, the Gaussian property of the DLM helps the filtering recursion by allowing the two

distributions to be fully specified with their first two moments. In particular, this leads

to the following distribution:

θt|t−1 ∼ N(at, Rt)

at = E(θt|y1:t−1) = Gtmt−1

Rt = V ar(θt|y1:t−1) = GtCt−1G
′
t +Wt

yt|t−1 ∼ N(ft, Qt)

ft = E(yt|y1:t−1) = Ftat

Qt = V ar(yt|y1:t−1) = FtRt−1F
′
t + Vt

This elegant solution relies on the combination of the Markovian property of the state

vector θt, the conditional independence of Yt and the Gaussian property of the DLM. More

specifically, the joint distribution of (θ0, θ1, .., θt, Y1, Y2, ..Yt) is defined as:

π(θ0:t, y1:t) = π(θ0)
t∏

j=1

π(θj |θj−1)π(yj |θj)

This is a multivariate normal density function representing the joing distribution of the

all the state variables and all the observed variables until time t. [ talk about integrate
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out to get marginal distributions] The one-step-ahead forecast distribution of the state

vector is the best forecast of the the unobserved variables for the next step in the time

span, in this case time t. The filtering recursion is not done yet, since to conclude the

recursion from time t − 1 to time t the model needs to incorporate the new observation

of the variable Yt at time t and update the prediction of the unobserved state variables

for time t. Stricly speaking, once the new observation Yt kicks in, the recursion is able to

produce the filtered distribution of θt. The filtered distribution is defined as following:

θt|y1:t ∼ N(mt, Ct)

mt = E(θt|y1:t) = at +RtF
′
tQ
−1
t (Yt − Ftat)

Ct = V ar(θt|y1:t) = Rt −RtF
′
tQ
−1
t FtRt

By summing up, the Kalman filter is a recursion algorithm which allows to recur-

sively project the prediction distribution of observed/unobserved variables and update the

projection of the unobserved variables once a new observation kicks in. The estimation-

correction philosophy of the Kalman filter recursion is the same as the linear inference

problem of a Bayesian system.

5.7 Kalman Smoother for Dynamic Linear Models

The most attractive feature of the Kalman filter on DLMs is the sequential estimation of

forecasted and filtered values for observable variables and unobservable states. At every

point in time, the filter elaborates the one-step forward forecast of the observables and

unobservables, yt|t−1 and θt|t−1. When the new observation yt is retrived, the forecasted

values are corrected with the Kalman gain matrix, leading to the noise-free estimates of

the two categories of variables, the so-called filtered values. Another interesting feature

of the filter activates once all the observations are gathered. When time time variable t

hits the end of the time series, T , it is possible to compute a backward estimate of the

unobservable states. This procedure is called smoothing, because it compute the noise-

free estimate of the unobservables by conditioning the expectation on joint probability

distribution of the entire sample of observation. For a DLM described as above, the

Kalman smoother recursion starts at t = T and computes the conditional distributions

of the states θt given the entire set of information for yt. The smoothing distribution is
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defined as following:

θt|y1:T ∼ N(ht, Ht)

ht = E(θt|y1:T ) = mt + CtG
′
t+1tR

−1
t+1(ht+1 − at+1)

Ht = V ar(θt|y1:T ) = Ct − CtG
′
t+1R

−1
t+1(Rt+1 −Ht+1)R−1

t+1Gt+1Ct

Inside this formulas it can be seen the filtered estimates for time t and also the predictive

estimates for time t. It is important to highlight that since this recursive algorhythm runs

backwards, it requires a starting point from the last observation at time T . By comparing

the first smoothed estimate and last filtered estimate for time t = T , it is easy to see that

these quantities are the same, so that:

hT = mT

HT = CT
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6 Model

6.1 Seemingly Unrelated Regression

In statistics, linear regression is a tool used to model relationships between a dependent

variable y and one or more independent variables x1, .., xn. A large number of different

estimation methods have been developed over time and they all differ in computational

procedures and theoretical assumptions. In its most common estimation, a univariate

or multivariate linear regression is estimated by applying a least square method called

Ordinary Least Squares method. The procedure for OLS estimation is to minimize the sum

of squared residuals SSE and create closed form solution for the unknown parameters. For

example, the basic asset pricing tool of the CAPM is a simple univariate regression model

estimated with OLS technique. The dependent variable is represented by the interested

stock excess return time series, and the unique independent variable is the market portfolio

return time series. By estimating the βM , the model is calculating a ratio between two

variability measures. In particular, βM = Cov(ri,rm)
V ar(rm) represents a ratio between the a

measurement of the joint variability of stock i with the market portfolio, and the total

variability of the market portfolio. In this setting, the economic intuition of the CAPM

relies on the correlation between the stock and the market portfolio. In case more stocks

are observed, the analysis will require to compute a regression model as CAPM for every

stock. In this case, the regression models can be estimated equation by equation in a joint

setting of OLS. In particular, this joint system assumes orthogonality among error series.

This means that cross-equation error terms are uncorrelated, and the covariance matrix of

the system error terms is a diagonal matrix. In order to relax this assumption and model

cross-equation correlation among error terms, Seemingly unrelated model can be applied.

This category represents an extension of the basic system of multivariate regressions since

it allows the error terms to be correlated and remove the orthogonality principle. The gain

in estimation is reflected by a superior and more informative structure of the covariance

matrix. This category of econometrical models refers to the Generalized least squares

methods (GLS), which represents the techniques for estimating unknown parameters in a

linear setting where residuals are correlated among each other. The classic reasoning for

GLS is that neither ordinary nor weighted least squares are able to produce statistically

efficient inferences on the unknown parameters. A further analysis can be done with

simultaneous equations model. This category of models refer to a set of linear simultaneous
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equations modelled by Generalized Method of Moments (GMM) of Instrumental Variable

(IV). Modelling error term correlation among different OLS regressions seems to achieve

a higher specification of the underlying system. A standard linear regression model for

modelling the relationships between two time series is:

Yt = α+ βXt + et

The two variables have only a temporal dimension since their values change over time.

The regression is equivalent to:


y1

...

yn


(nx1)

=


1 x1

...
...

1 xn


(n×2)

α
β


(2x1)

+


e1

...

en


(nx1)

The two coefficients for the regression are estimated by minimizing the sum of squared

residuals. A more interesting case would be to consider dynamic regressions, where the

coefficients are evaluated in their temporal evolution. The regression would be:

Yt = αt + βtXt + et

6.2 Dynamic Linear Modelling of Seemingly Unrelated Regression

A solution for this problem can be found through dynamic linear modelling. The most

common solution is to create two state equation, one for α and one for β, and model them

as independent random walks. This means create two AR(1) processes with Φ = 1 and

assume the two processes to be orthogonal. The following notation is atipical since this

DLM is based on an univariate observation variable, but its understanding will ease to

understand more complex DLMs. This univariate DLM becomes:

yt =
(

1 xt

)
(1×2)

αt
βt


(2×1)

+ et et ∼ N(0, σe)
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αt
βt


(2×1)

=

1 0

0 1


(2×2)

αt−1

βt−1


(2×1)

+

wαt
wβt


(1x1)

wαt
wβt

 ∼ N(0,W )

where

W =

σwα 0

0 σwβ


The indexes for the variables help to have the correct intuition on how DLMs work.

Every observation of the vector Yt and the OLS information matrix X can be seen as a

row by row slice of the temporal dimension of the observed dependent and independent

variables. At every point in time, the variables are treated in the DLM in order to model

the evolution of the state variables, αt and βt. At every point in time, the Kalman filter

will forecast yt+1|t, αt+1|t and βt+1|t
4. Then, when the filtered values are estimated, the

DLM will roll to the next observation period.

If the number of coefficients increase, nothing needs to be changed and this presented model

still holds, but a new operator needs to be insert if the number of modelled observed time

series. Suppose the considered SUR model has now two stock return time series. The

SUR model for these two stocks becomes:

y1,t

y2,t


(2×1)

=
((

1 rMt rSt rHt

)
⊗ I2

)
(2×1)×(2×4)


αt

βMt

βSt

βHt


(8×1)

+

v1,t

v2,t


(2x1)

v1,t

v2,t

 ∼ N(0, V )


αt

βMt

βSt

βHt


(8x1)

=




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⊗ I2


(4×2)×(4×2)


αt−1

βMt−1

βSt−1

βHt−1


(8x1)

+


wαt

wβ
M

t

wβ
S

t

wβ
H

t


(8x1)


wαt

wβ
M

t

wβ
S

t

wβ
H

t

 ∼ N(0,W )

4t + 1|t and t|t− 1 have the same meaning.
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where

αt =

α1,t

α2,t

 βMt =

βM1,t
βM2,t

 βSt =

βS1,t
βS2,t

 βHt =

βH1,t
βH2,t



wαt =

wα1,t
wα2,t

 wβ
M

t =

wβM1,t

wβ
M

2,t

 wβ
S

t =

wβS1,t

wβ
S

2,t

 wβ
H

t =

wβH1,t

wβ
H

2,t



The Kronecker product ⊗ is a linear algebra operator which represents the generalization

of the outer product from vectors to matrices. This operator is not equal to the matrix

operator, which is a completely different operation. In particular:

A⊗B =


a11B a12B · · · a1mB

a21B a11B · · · a2mB
...

...
. . .

...

an1B an2B · · · anmB


The intuition for the Kronecker product relies on the basic relationship between depen-

dent and independent variables in classic multivariate regression models. In such category

of models, it is common to regress a vector of observations over a multivariate collection of

regressors. The system described above is a collection of more regression models sharing

the same independent variables. The Kronecker product combined with an identity matrix

of order m activates the regressors for all the m regressions, where m refers to the number

of regressions stack in the system.

In order to model a higher number of stock returns time series, a ten stocks DLM rep-

resentation of the Fama French three factors regression is estimated. The model presented

above will be extended in order to capture ten time series. This will lead to a significant

increase of the dimension of the vectors and matrices required for the model to work. In

particular, the model is:


y1,t

...

y10,t


(10×1)

=
((

1 rMt rSt rHt

)
⊗ I10

)
(10×1)×(10×4)


αt

βMt

βSt

βHt


(40×1)

+


v1,t

...

v10,t


(10×1)


v1,t

...

v10,t

 ∼ N(0, V )
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αt

βMt

βSt

βHt


(40×1)

=




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⊗ I10


(10×4)×(10×4)


αt−1

βMt−1

βSt−1

βHt−1


(10×4)

+


wαt

wβ
M

t

wβ
S

t

wβ
H

t


(40×1)


wαt

wβ
M

t

wβ
S

t

wβ
H

t

 ∼ N(0,W )

where

αt =


α1,t

...

α10,t

 βMt =


βM1,t

...

βM10,t

 βSt =


βS1,t

...

βS10,t

 βHt =


βH1,t

...

βH10,t



wαt =


wα1,t

...

wα10,t

 wβ
M

t =


wβ

M

1,t

...

wβ
M

10,t

 wβ
S

t =


wβ

S

1,t

...

wβ
S

10,t

 wβ
H

t =


wβ

H

1,t

...

wβ
H

10,t



The complete model can be found in the appendix. The same conditions stated for

the initialization of the two stocks model are valid and holds also for ten stocks with the

adjuments for the matrices dimension.

6.3 Kalman Filter Recursion

The Kalman filter recursion is an iterated algorhythm and it requires an arbitrary starting

point for the first observation. The common practice is to start by assigning the initial

state vector equal to a prior hypothesis of their values. This can be seen as the analyst’s

best guess of the initial values of the unobservable states. In order to express complete

ignorance about the states, it is common to set the initial value of the state equation equal

to a vector of zero, so that:

m0 =


0
...

0


For the initial covariance matrix C0, setting an initial value starts to be more involving.
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As defined by Hamilton(1994), if the eigenvalues of the observation model matrix Ft⊗ Im

are all inside the unit circle, the state equation θt is covariance-stationary. In this case,

the covariance matrix of θ0 is set as:

vec(C0) = [Im×m − (G⊗G)]−1vec(W )

The problem in here is that the model treated in this document relies on an identity matrix

state system matrixG. This means that this definition of the initial state covariance matrix

is not suitable. To correct this issue, the initial matrix C0 is set in order to express complete

ignorance on the real covariance structure of the state variables. The final specification

for starting the Kalman filter recursion is:

m0 =


0
...

0

 C0 =


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1


The formula presented above for the general definition of a Seemingly Unrelated Re-

gression holds for the model. Since the database has been set up with daily observation,

a series of numerical instability problems have been encountered. A major problem of the

recursion has been connected to the positive definiteness and symmetry of iterated co-

variance matrices. A non-positive definiteness matrix is singular and cannot be inverted,

and the Kalman recursion heavily relies on inverted matrices. To overcome this numerical

issue, it is required to apply a sort of numerical optimization able to increase the numer-

ical stability of the recursion. A robust algorhythm able to achieve this stability is the

Singular Value Decomposition5. SVD is a matrix factorization which is here applied to

deal with the vector space of the posterior covariance matrix, and with the orthonality

issues arising from the numerical instability of the algorhythm. In short, the SVD helps

to increase the stability of the numerical optimization and to reduce the possibility of cre-

ating singular covariances matrices. The posterior covariance matrix Ct defined through

SVD is: C−1
t = F

′
tV
−1Ft +R−1

t The final step is to invert the matrix.

5For reference, Wang(1992).
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6.4 Markov Chain Monte Carlo for Multivariate Random Variables

The covariance matrices of observables and unobservables can be evaluated with Markov

Chain Monte Carlo methods. This means modelling Bayesian inferences for unknown ma-

trices. In case of univariate random variable, the basic assumption is to impose the prior

of the unknown variance as an inverse-Gamma prior. In case of multivariate observations,

the priors of variance-covariance matrices are modelled as inverse-Wishart priors6, a mul-

tivariate estension of Gamma distribution. In particular, for the above described SUR

model the Gibbs sampler works to draw a sample from estimating the posterior density

function π(θ0:T , ψ|y1:T )

Φ0 = V −1 Φi = W−1
i for i = 1, .., 4

W = blockdiag(W1,W2,W3,W4)

where ψ = [Φ0,Φ1,Φ2,Φ3,Φ4] represents the list of unknown parameters which need to

be estimated through MCMC methods.

The model assumes Φ0, ..,Φ4 to be independently distributed as Wishart random vari-

ables, Φi ∼Wi(vi, Si) for i = 0, 1, .., 4

The sampling can be divided in two parts. In the first part, the states θ0:T are sampled

iteratively by using an algorithm called Forward filtering backward sampling FFBS. In

the second part, the sampler computes the full conditional distribution of the unknown

parameters.

6.5 Gibbs Sampler and FFBS Algorithm

In the first part of the sampling procedure, the FFBS algorithm runs the Kalman filter

recursion for updating the filtered estimates of the unobservable states, and then runs the

Kalman smoother to get the total period joint probability distribution of the unobservable

states. The idea of FFBS is to gather the filtered unobservable states from time t = 0 to

time t = T by running the filter, then compute the smoothed values of the unobservable

states once all the observations are available, in order to create a Markov chain of the

state variables.

In the second part of the sampling procedure, the sampler needs to draw simulated values

6This is so because it is usual to work with precision instead of variances, where precisions are merely
their inverses.
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of the unknown covariances from the Markov chain simulated series of unobservable states

created in the first part of the sampling procedure. The sampler will draw a random value

from the distribution of interest at every iteration, and estimate an expected value for

the unknown by Monte Carlo method once the iterations are concluded. The posterior

density function of the model is proportional to:

T∏
t=1

Nyt(Ftθt,Φ
−1
0 )Nθt(Gθt−1,Φ

−1)Nθ0(m0, C0)WΦ0(v0, S0)

h∏
i=1

WΦi(vi, Si)

where

Φ = W−1

and the index on every distribution refers to the random variable it specifies.

In particular, the full conditional distribution of Φ0 is

W (v0 +
T

2
, S0 +

SSy
2

)

where SSy =
∑T

t=1(yt − Ftθt)(yt − Ftθt)
′

The full conditional distributions of the other four covariances are

Wi(vi +
T

2
, Si +

SSi
2

)

where

SSi =

T∑
t=1

SSii,t

SSt =


SS11,t · · · SS1h,t

...
...

. . .

SSh1,t · · · SShh,t


To facilitate the simulation, it is convenient to express the Wishart hyperparameters

as7:

v0 = (δ0 +m− 1)/2 vj = (δj + pj − 1)/2 for j = 1, .., 4

and

S0 =
V0

2
Sj =

Wj,0

2
for j = 1, .., 4

7The modus operandi of fixing hyperparameters has been inspired by Petris(2009).
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Where V0 and Wj,0 represent the starting hypothesis for the simulation, m is the total

number of observed series for yt and pj is the total number of state variables treated by the

covariance matrix j. Since every covariance matrix Wj calculates the variance-covariance

measures for one of the four coefficients in the Fama French regression among the observed

series, in this model m = pj for all the covariances matrices. In this way:

E(V ) =
1

δ0 − 2
V0 E(Wj) =

1

δj − 2
Wj,0 for j = 1, .., 4

The full conditional distribution are then:

W
(δ0 +m+ T

2
,
V0

SSy

)

Wj

(δj + pj + T

2
,
Wj,0

SSj

)

To respect the properties of MCMC and create a robust sample from the posterior density

function, it is common to discard a total number of simulation as so-called burn-in and

evaluate the unknown quantities through Monte Carlo methods for the rest of the sample.

In this document the total number of simulations for the two stocks SUR is 30000, and for

the ten stocks is 10000. The burn-in is set to 80% of simulated values. The starting values

of V and W are set as uninformative prior in order to express a total ignorance of the

possible values of the covariances. Then, for every simulation the sampler draws a Markov

chain of unobservable states and samples five covariance matrices. The covariances are

saved as global values for V and W , in order to start the following recursion with the

new drawn covariance matrices. As described above, the MCMC needs to converge the

its stationary distribution. When drawn covariances are set as new initial values for

the MCMC recursion, the FFBS will filter and smooth a new Markov chain with the

previously drawn covariance matrices. After several simulations, this procedure should

force the MCMC to converge to its stationary distribution. The ergodic means of the

diagonals of V and W are plotted in the appendices.

As for the Kalman filter, the Markov Chain Monte Carlo is a recursive process and it

requires a starting point for simulating the error covariances. To start it, it is required

to set values for the variables in the Wishart hyperparameters. After several simulations,
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the parameters have been set equal to:

Table 1: Variables for Wishart hyperparameters

Parameters

δ0 300
δ1 30
δ2 30
δ3 30
δ4 30

These parameters express the prior uncertainty of the covariances. It is difficult to

express honest priors, and it is common to use data-dependent priors or model them after

several simulations of the system. The initial covariance matrices are set with huge initial

variables in order to express an extreme high level of uncertainty about the correct values

of the unknown quantities. All the initial matrices are set as diagonal matrices where all

the values are set equal to 100,000.

V0 = (δ0 − 2)


100, 000 · · · 0

...
. . .

...

0 · · · 100, 000

 W1 = (δ1 − 2)


100, 000 · · · 0

...
. . .

...

0 · · · 100, 000



W2 = (δ2 − 2)


100, 000 · · · 0

...
. . .

...

0 · · · 100, 000

 W3 = (δ3 − 2)


100, 000 · · · 0

...
. . .

...

0 · · · 100, 000



W4 = (δ4 − 2)


100, 000 · · · 0

...
. . .

...

0 · · · 100, 000


Even if the numbers on the diagonal axis seem to be extremely high and not relatable

for the daily covariances of unobservable errors, the Markov Chain Monte Carlo simulation

quickly adjust for this completely uninformative initial value.
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6.6 Momentum Investment Strategy

Quantitative equity investing strategies are model driven active investments. These strate-

gies try to discover market anomalies by apply computational statistics on financial models.

The focus of these strategies is on the correct computer implementation of the investment

strategy, since these investment decisions are completely computer based. The positive

aspect of quantitative investing is the completely absence of behavioural issues, since de-

cisions are just based on model results. Data accuracy becomes prominent for correct

investments, and strategy are usually backtested on historical data. During the last two

decades, these strategies have been heavily deployed by hedge funds trying to create al-

pha returns. Quantitative investing can be categorized into fundamental quant, statistical

arbitrage, high frequency trading. The difference among these three categories is on the

rebalancing timing and information signals.

Among the various active investment strategies, in the last two decades a particular strat-

egy became central in market efficiency debate. In finance, momentum is the empirical

persistence of past price movements into future adjustments. If prices grew in the past 3,6

or 12 months, empirical data seem to confirm that they will grow further, and same goes

for prices falling down. Momentum is a market anomaly, since predicting future stock

prices is impossible and forecasting their values can be just done with a certain degree of

uncertainty by looking at companies’ term sheets and future contracts.

Momentum investing is widely diffused among hedge fund managers and can be consid-

ered into two different dimensions. Cross-sectional momentum considers a certain universe

of stocks, and uses past prices are signals for investment positions. This strategy will be

long positive-performing stocks and short with negative-performing peers. In this way, the

strategy will try to exploit the market anomaly of price movement persistence. Time-series

momentum considers single stocks in their time dimension and sets positions only based

on their single performances over time.

This market anomaly is still a debated argument among financial economists and seem

to be caused by behavioural biases like:

1. Price underreaction/overreaction: when the intrinsic value of a stocks shifts, market

price does not immediately shift to its new intrinsic value due to contrarian investors

which do not share the same idea of intrinsic value, leading to a slow adjustment of

market price which can be exploited by informed investors
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2. Herd behaviour: overreacting investors can move their portfolios based to irrational

exuberance and increase the volatility of prices

3. Financial institutions seeking to stabilize prices and wages instead of maximizing

expected return

4. Liquidity problems or risk management rules can tie up investment policy of investors

5. Anchoring biases lead investors to be overconfident on their investment decisions

even if wrong

6. Confirmation bias lead investors to increase their position when prices decrease in

order to survive the prices decrease, moved also by anchoring biases

Even if momentum strategies are usually based on the past movement of stock prices

in cross-sectional or time-series dimension, a forecasting algorhythm can be exploited in

order to develop an hybrid active investment strategy which is a combination of fundamen-

tal quantitative equity strategy and momentum investing. The Kalman filter for the Fama

French DLM allows to forecast asset return. In particular, the filtering recursion is able

to predict asset return one-step before the observation date. A quantitative investment

strategy can be developed and based on the Kalman filter forecast recursion for the observ-

able variable yt. The rebalance signals for the investment strategy are set as the one-step

forecasted returns resulting from the filtering recursion. At every point in time, the model

will provide the forecast for the following daily stock returns. The investment strategy

will take long positions on assets with positive forecasted returns and short positions on

assets with negative returns. Every time the filter runs, it will automatically decide where

to invest. Once the investment rule is set, it is necessary to set a rebalance strategy. The

portfolio needs to modify its composition in time by following the signals, but this cannot

be done every day otherwise the portfolio will suffer by major losses caused by transac-

tion costs. Also, it is not realistic to rebalance a portfolio every day. The rebalancing

timespans for this strategy are set to 3,5,7 and 10 days. They will set the rebalancing

dates. The filtering recursion will be evaluated among the whole considered period and

the rebalancing will be triggered only during rebalancing dates.
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7 Data

Dynamic linear models can be applied to univariate or multivariate time series. In this doc-

ument, the observed variables are represented by the financial stock return of listed com-

panies. These data can be easily downloaded from public sources or from data providers

like Bloomberg or Reuters. For this document, the data have been gathered from Yahoo

Finance, Bloomberg, and imported in Python. The downloaded data refer to the time

series of adjusted closing prices. For every stock, the series of adjusted prices refer to the

entire period of public trading of the stocks. This means that all the series have different

starting points. For simplicity, before starting the recursion, the data have been cleaned so

that the considered periods for the two and ten stocks SUR DLM refer only to the period

when all the stocks were traded. Then, daily returns are calculated as percentage variation

between opening and closing prices. The factors required for the Fama French factor anal-

ysis are provided by professor French in his personal website. The downloaded factors refer

to the US research return data directly managed by professor French. Once the database

is done, the analysis can start. All the required operations have been self-developed in

Python through scientific packages for numerical analysis, data management, visualization

and statistical tools. Every calculation and every graph has been self-produced on Python.

7.1 Dynamic Linear Model - 2 stocks

The two selected stocks for the first SUR model are Apple and IBM. From the historical

data of a stock, it is possible to capture its sample distribution and sample moments. If the

returns are assumed to be distributed as Gaussian Normal random variables, sample mean

and sample variance are sufficient statistics for the true unknown population distribution8.

These two statistics are enough to describe the Gaussian family of probability distribution.

To gather more information about the tails and how centered a distribution is, it is useful to

compute also the third and fourth moment of the sample distribution. However, skewness

and kurtosis are not treated in this analysis.

Both stocks have long series of prices. IBM has a longer one but it has been truncated

in order to consider only the period when both stocks were listed9. Apple price was steady

8For an exhaustive definition of sufficient statitics refer to Mukhopadhyay(2000).
9Even if not applied in the analysis, Kalman filter can handle missing observation. For more, Koop-

man(2012)
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until 2007, which is exactly the year when the company presented the first iPhone, then

the price had a huge bump until nowadays. For IBM, it is possible to see the effect of the

Dot-com bubble of the second half of nineties and the downturn of the first years of the

new century. Since prices are non-stationary process, it is useful to analyze stock returns.

1982
1987

1992
1997

2002
2007

2012
2017

0

50

100

150

200
AAPL
IBM

Figure 1: Historical price - two stocks SUR

It is easy to see that Apple return has been more volatile than IBM among the analyzed

period of time. Both series seem to be stationary since they oscillate around a mean of

zero, even if there have been some major movements like around 2002 for Apple and

around 1990 for IBM. The historical distributions are plotted with their Gaussian kernel

density estimate. The historical distributions of daily returns of Apple and IBM are both

non-exactly normal. The non-Gaussian distribution of the historical returns is one of the

critics of the model which will be discussed at the end of the document.

For a statistical analysis of return predictability, the classic Box-Jenkins approach can

be applied to investigate the autocorrelation function. From the figure, the null hypothesis

of statistical zero autocorrelation is rejected just for the first lag for both stocks.

In statistical inference, it is usual to work with stationary processes since non-stationarity

can cause problems. For example, when dealing with empirical data, it is common to as-

sume that samples are made of independent and identically distributed random variables.

Independency is a powerful assumption which relaxes the issues related with statistical

modelling. Another example is spurious regression. When performing a regression, if the
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Figure 2: Historical returns - two stocks SUR
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Figure 3: Autocorrelation function

residual series is non-stationary, the regression is spurious. This is usually the case when

the regression shows high value of R2 but there is no real relationship between dependent

and independent variables. A process is non-stationary if it has a unit root among the

roots of the characteristic equation. This equation is a polynomial form upon which de-

pends the solution of the ordinary differential equation specifying the process. If one of
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Table 2: Descriptive statistics - two stocks SUR

AAPL IBM

Observations 9501 9501
µ 0.001 0.001
σ 0.029 0.017

Min -0.519 -0.235
Q1 -0.013 -0.008
Q2 0.000 0.000
Q3 0.015 0.009

Max 0.332 0.132

the roots is equal to one, the process has a unit root and it is not covariance-stationary.

A basic test for the presence of a unit root in a time series is the Augmented Dickey Fuller

test. In this test, the null hypothesis is that the series has a unit root. In the current anal-

ysis, both return series are tested and results suggest they both are covariance-stationary.

As it is commonly shown in literature, stock prices show trends. The log transformation

of stock prices is a time series with order of integration one, I(1), so taking the difference

of log transformed stock prices leads to stationary measurement of stock returns. Another

way of de-trending the series is to compute the daily return series, as it is done in this

document. As described above, SSM can handle nonstationary series and is in this sense

more flexible than more classic tools like Box-Jenkinks ARMA models.

Table 3: Unit root - two stocks SUR

Augmented Dickey Fuller

AAPL IBM

Test statistic -4.00 -21.43
p-value 0.001 0.000

used lag 16 22

Critical Values

1% -3.431 -3.431
5% -2.862 -2.862

10% -2.567 -2.567

The first basic tool for asset pricing is the Capital Asset Pricing Model, so-called

CAPM. It is represented by a simple univariate regression where the dependent variable

is given by the excess return of the asset under analysis, while the independent variable is
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the market excess return. For the analysis, the regression is computed for both stocks and

the market excess return is given by the SP500 excess return. Both stocks show positive

and significant market beta, which means that both stocks co-move with the market in

both rise and fall periods. Apple variations are higher than the SP500 since its market

beta is higher than one, while IBM moves less proportionally to the market index. The

constant is significant for both stocks: in asset pricing this means that part of the returns

of Apple and IBM are not statistically explained by the CAPM. There is a part of return

which can be, called abnormal return, which is not captured by the model. There is space

for improvement.

Table 4: CAPM - two stocks

AAPL IBM

βM 1.2732*** 0.9468***
(0.025) (0.013)

α 0.001*** 0.0003**
(0.000) (0.000)

Observation 9448 9448
R2 0.215 0.362
Adj-R2 0.215 0.362
F-Test 2581 5363
Log-Likelihood: 21053 27306

A more sophisticated model is the Fama French 3 factors model. The idea is to

capture a higher part of co-movement of returns by passing to a multivariate regression.

As described above, the model controls for Small/Big and Value/Growth portfolio returns.

Besides the size coefficient of Apple and IBM’s measure of unexplained return, all the other

coefficients are significant. The unexplained return measure of IBM is represented by α

and it is not statistically different from zero, meaning that the three factors model is able

to capture and explain IBM’s return and it is more reliable than the CAPM. For Apple

this does not hold, since α is still statistically different from zero. The two new coefficients

allow to better understand the nature of the underlying stock returns. Negative size effect

refers to companies with high market cap, and negative value refers to growth stocks.

7.2 Dynamic Linear Model - 10 stocks

For the ten stock model, the selected stocks are: Apple, IBM, Boeing Co, Boston Scientific

Corp, Walt Disney, FedEx, General Electric, Johnson Johnson, JP Morgan and Nike. As
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Table 5: Fama French - two stocks

AAPL IBM

βM 1.203*** 0.8969***
(0.025) (0.013)

βS -0.0201 -0.338***
(0.046) (0.024)

βH -0.8387*** -0.3382***
(0.048) (0.025)

α 0.0011*** 0.0004
(0.000) (0.000)

Observation 9448 9448
R-squared 0.239 0.385
Adj-R-squared 0.239 0.385
F-Test 989.6 1969
Log-Likelihood: 21203 27477

for the two stocks model, the data analysis relies on asset pricing tools, unit root tests,

descriptive statistics and price plots. The histogram returns and return time series are

omitted since they all resemble the previously presented plots for two stocks. All the

returns seem to be non-normally distributed and move around a mean of zero. The

autocovariance function has no significant lag after the first one.
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Figure 4: Stock prices - 10 stocks SUR
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Table 6: Descriptive statistics - 10 stocks

AAPL IBM BA BSX DIS

Observation 6558 6558 6558 6558 6558
µ 0.001 0.001 0.001 0.001 0.001
σ 0.029 0.018 0.019 0.025 0.019

Min -0.519 -0.155 -0.176 -0.267 -0.184
Q1 -0.013 -0.008 -0.009 -0.012 -0.009
Q2 0.000 0.000 0.000 0.000 0.000
Q3 0.014 0.009 0.010 0.012 0.009

Max 0.332 0.132 0.155 0.261 0.160

FDX GE JNJ JPM NKE

Observation 6558 6558 6558 6558 6558
µ 0.001 0.001 0.001 0.001 0.001
σ 0.019 0.018 0.013 0.021 0.024

Min -0.145 -0.128 -0.158 -0.198 -0.207
Q1 -0.009 -0.008 -0.006 -0.009 -0.010
Q2 0.000 0.000 0.000 0.000 0.000
Q3 0.010 0.009 0.007 0.010 0.011

Max 0.139 0.197 0.122 0.174 0.251

Table 7: Augmented Dickey Fuller - 10 stocks

Augmented Dickey Fuller

AAPL IBM NKE JPM JNJ

Test statistic -18.13 -17.82 -49.09 -14.93 -26.06
p-value 0 0 0 0 0

used lag 20 22 22 35 10

Critical Values

1% -3.431 -3.431 -3.431 -3.431 -3.431
5% -2.862 -2.862 -2.862 -2.862 -2.862

10% -2.567 -2.567 -2.567 -2.567 -2.567

GE FDX DIS BA BSX

Test statistic -15.11 -60.02 -33.36 -14.58 -23.91
p-value 0 0 0 0 0

used lag 26 1 6 35 12

Critical Values

1% -3.431 -3.431 -3.431 -3.431 -3.431
5% -2.862 -2.862 -2.862 -2.862 -2.862

10% -2.567 -2.567 -2.567 -2.567 -2.567
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As expected, the sample distributions of all the stocks are very similar. Every stock

return moves around a mean of zero with almost same volatility and presents no unit root.

Table 8: CAPM - 10 stocks

AAPL IBM BA BSX DIS

βM 1.1445*** 0.9009*** 0.9323*** 0.943*** 1.0408***
(0.028) (0.016) (0.017) (0.025) (0.016)

α 0.001*** 0.0002 0.0004** 0.0003 0.0002
(0) (0) (0) (0) (0)

Observation 6558 6558 6558 6558 6558
R-squared 0.202 0.329 0.314 0.175 0.39

Adj-R-squared 0.201 0.329 0.314 0.175 0.39
F-Test 1655 3210 3002 1391 4188

Log-Likelihood: 14734 18475 18031 15434 18401

FDX GE JNJ JPM NKE

βM 0.9868*** 1.134*** 0.5668*** 0.8389*** 1.4994***
(0.017) (0.014) (0.013) (0.02) (0.018)

α 0.0003* 0.0002 0.0004*** 0.001*** 0.0003
(0) (0) (0) (0) (0)

Observation 6558 6558 6558 6558 6558
R-squared 0.327 0.491 0.229 0.206 0.506

Adj-R-squared 0.327 0.491 0.229 0.206 0.506
F-Test 3185 6336 1947 1698 6712

Log-Likelihood: 17852 19196 19875 16855 17553

The CAPM is able to explain the excess return of few stocks like IBM, BSX, DIS, GE

and NKE since it captures and explain all their excess returns. The alpha coefficients of

these stocks are not statistically different from zero. For the rest, the part of the return

series remains unexplained since alphas are statistically different from zero. Note that the

CAPM results for AAPL and IBM are here different since the total number of considered

days is equal to 6558 and it is lower than the number of observations for the two stocks

SUR model. This is so because the ten stocks SUR consider only the daily observations

of all the joint stocks, and drops all the observations for which at least one stock was not

listed.

The three factors model is able to improve the asset pricing of unexplained returns but

AAPL, JNJ and JPM alpha coefficients remain unexplained.
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Table 9: Fama French - 10 stocks SUR

AAPL IBM BA BSX DIS

βM 1.1274*** 0.8951*** 0.937*** 0.9415*** 1.0437***
(0.028) (0.016) (0.017) (0.025) (0.016)

βS 0.0758 -0.2243*** -0.0681* -0.0148 -0.1233***
(0.053) (0.03) (0.033) (0.049) (0.031)

βH -0.6973*** -0.3519*** 0.1711*** 0.049 0.069*
(0.052) (0.029) (0.032) (0.047) (0.03)

α 0.001** 0.0003 0.0004 0.0003 0.0002
(0) (0) (0) (0) (0)

Observation 6558 6558 6558 6558 6558
R-squared 0.224 0.346 0.318 0.175 0.392

Adj-R-squared 0.224 0.346 0.318 0.175 0.392
F-Test 632.4 1157 1019 464.4 1409

Log-Likelihood: 14829 18563 18050 15435 18414

FDX GE JNJ JPM NKE

βM 0.9929*** 1.1437*** 0.5682*** 0.8403*** 1.5297***
(0.017) (0.014) (0.012) (0.02) (0.016)

βS 0.1** -0.3426*** -0.4859*** 0.0001 -0.3406***
(0.033) (0.027) (0.024) (0.039) (0.031)

βH 0.3066*** 0.2631*** -0.1604*** 0.0607 1.1468***
(0.032) (0.026) (0.023) (0.038) (0.03)

α 0.0003 0.0002 0.0004*** 0.001*** 0.0002
(0) (0) (0) (0) (0)

Observation 6558 6558 6558 6558 6558
R-squared 0.336 0.515 0.276 0.206 0.607

Adj-R-squared 0.336 0.514 0.276 0.206 0.607
F-Test 1107 2315 832.6 566.8 3380

Log-Likelihood: 17898 19348 20081 16856 18308
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8 Results

8.1 Filtered and Forecasted State Variables - 2 stocks

To avoid problems linked to in-sample performance measurements for the portfolios, the

Markov Chain Monte Carlo recursions for the Bayesian inference of the covariance matrices

of observed and unobserved error terms have been computed for a restricted amount of

time in order to show ignorance of the future stock prices and evaluate an out-of-sample

performance of each portfolio. Once the MCMC recursion has converged, the Monte Carlo

estimate of the observed and unobserved error covariances are plugged in the model to run

the Kalman filter and Kalman smoother. As described above, after running the recursion

from time t = 0 to time t = T , the model is able to filter out the unobservable states from

noisy observations. In the presented model, the unobservables states are represented by

the relevant coefficients of the Fama French regression.

The Markov Chain Monte Carlo estimated covariances matrices are:

V =

 0.000132 0.00000298

0.00000298 0.000128



W1 =

 0.00131 0.0000061

0.0000061 0.0013

 W2 =

 0.0013 0.00000349

0.00000349 0.00132



W3 =

 0.00131 −0.0000153

−0.0000153 0.00127

 W4 =

 0.00137 0.0000117

0.0000117 0.00136


where W = blockdiagonal(W1,W2,W3,W4).

The following graphs refer to the last three years values for filtered and forecasted

unobservable states. This facilitates to visualize the properties of data. The plots for the

full sample can be found in the appendix.

The first coefficient αt is a measure of the excess abnormal return over the asset

pricing model. This is the most important measure for active investors like hedge fund

managers. These investors seek to gain reward in any possible state of the market and

they try to have a zero exposure to the market movement, which translates into a total β

of zero. In a basic model as CAPM, the expected excess return of a portfolio is:

E[ri] = α+ βE[rm] = α
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Figure 5: Filtered and one-step forecasted αt

Generally, creating alpha returns is difficult and it can be entitled to hedge fund

manager skills, and sometimes luck. The result from the filtering recursion generates the

one-step forecast value αt|t−1 and the filtered estimate αt|t. The forecasted value αt|t−1

is the optimal forecast of αt created at time t − 1. The filtered value αt|t is the noise-

free estimate of αt calculated at time t right after the new observation of the empirical

returns yt comes in. The one-step forecast series is perfectly following the filtered value,

signaling that the forecasted value for α is a robust estimate of its filtered estimate. The

estimates evolve around a mean of zero, resembling a stationary process, but has some

spikes and downturn among the whole series. The time series of filtered α is similar to

the empirical stock returns. This graph seems to confirm the non-predictability of alpha

returns. Since the time series resemble a stationary process, it seems not possible to

predict future development of abnormal excess returns.

The sensitivity to the market portfolio is an important measurement for investors and

risk managers. This coefficient is crucial for create robust hedging strategies, evaluate the

market risk of a portfolio of stocks, assess how market shocks affect portfolio performances

and many other arguments. Market movement impacts on a specific stock is expected to

vary over time. This is linked to the equity premium returned by that stock. A high value
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Figure 6: Filtered and one-step forecasted βMt

of βM means that positive market movements positively affect the excess return of the

stock. The last three years filtered values of the market sensitivity are highly volatile and

diverging. The two underlyings have been affected in opposite directions. The series seem

to be cyclical, since there is no major trend.

The size factor is related to the market capitalization of companies. Values are mostly

negative, since both Apple and IBM are companies with high market values of equity. The

series present high volatility with huge jumps.

The value factor is related to the relationship between the book value of equity and

the listed price. The filtered estimates seem to be less volatile and more stable than

the other two factor series. There are no major jumps like the size factor series. This

could be related to the behavioural biases affecting price opinions. Anchoring biases,

underreaction/overreaction on prices and the slow adjustment of price opinion can be the

reason why the filtered estimate variations are less volatile than the other factors.

Forecasted prices are plotted with real price series. The forecasted prices use one-step

ahead predicted returns from the Kalman recursion algorhytm. The plotted values for the

forecasted prices are plotted for the following day, in order to compare the forecasted price
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Figure 7: Filtered and one-step forecasted βSt
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Figure 8: Filtered and one-step forecasted βHt

with the real price. This means that, for example, at time t = 1000 the real price is the

traded price at t = 1000 while the forecasted price refers to t|t− 1 = 1000|999. This is the
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Figure 9: Stock price forecasting for two stocks

forecast computed at time t = 999.

Forecasted prices are able to follow the real price series, but at some point they start

to create overestimations. This can be explained by the decision of running the Gibbs

sampler for a restricted period of time. To create an out-of-sample measurement of the

performances of the investment strategies, the inference for unknown parameters has been

restricted. Strictly speaking, the Gibbs sampler evaluates the unknowns on a reduced

set of observations, accounting to 10 years for the two stocks SUR and 5 years for the

ten stocks SUR. Since the overestimations refer to the last periods of observed returns, it

seems reasonable to expect error covariances to be slightly biased.

8.2 Filtered and Forecasted State Variables - 10 stocks

In the analysis of the quantitative strategy, it will become clear that two stocks are not

enough to create a portfolio with an acceptable volatility. In order to assess how the

strategy may perform with a higher number of stocks, and reduce the risk measure of the
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strategy, the previously presented two stocks SUR is applied to a total of ten stocks. The

eight new stocks are: Boeing (BA), Boston Scientific Corporation (BSX), Walt Disney

(DIS), FedEx (FDX), General Electric (GE), Johnson Johnson (JNJ), JP Morgan (JPM)

and Nike (NKE). In this case, the total number of estimated coefficients are fourty and

data visualization becomes cumbersome. Filtered estimates plots can be found in the

appendix. Also, rolling regressions have been computed and rolling coefficients can be

compared to filtered estimates. The rolling regressions accounted for 365 observations,

with a window of 1 day. Asset forecasted prices for the ten stocks SUR seem to confirm

that the model is reliable since the filtering recursion is able to produce sound forecasts

for the one-step forecasted asset return. However, the forecasted prices of some stocks are

significantly higher than the listed prices. This may be connected with the decision of

evaluating the errors covariance matrices with Bayesian inference over a reduced amount

of time. The reason for this choice is to evaluate the quantitative strategy performances

in a out-of-sample framework. The Gibbs sampling procedure has been concentrated over

a reduce period of observed returns, and the performances have been calculated within

the remaining period only. This should improve the attendability of the performances and

wipe in-sample issues.

Modelling ten stocks leads to five covariances matrix of dimension 10x10. The con-

vergence of the simulation can be assessed by plotting the Monte Carlo estimate of the

entries of each covariance matrix. In order to represent a feasible and more understable

visualization of the estimates, the following plots will just consider the diagonals of the

five covariances matrices.

8.3 Momentum Strategy - 2 stocks

The first quantitative investment portfolio contains positions on Apple and IBM. The first

day of observation has been December 12th 1980. The above described MCMC recursion

for Bayesian inference has been iterated for 30,000 times over a timespan of 10 years.

After the two covariance matrices have been estimated by Monte Carlo methods, the

Kalman recursion provides the one-step ahead forecast of the observed variables which

represent the information signal for computer based rebalances. At every point in time,

the algorhythm will evaluate the position for Apple and IBM based on the one-step ahead

forecast and modify the position once the rebalancing date comes. Here, the simulated

portfolio has been analyzes with four rebalancing dates: 3 days, 5 days, 7 days and 10
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Figure 10: Stock price forecasting for two stocks
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days. The perfomance in log-linearized scale is the following.
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Figure 11: Quantitative strategy with two stocks

As expected, the total number of days between two rebalances is crucial for the portfolio

performance. The 10 days portfolio has the worst performance and it is never able to bet

the market portfolio. The 3 days portfolio has the best performance, with a market

capitalization of almost twice the 5 days portfolio in log-scaled measure. The EQ portfolio

is an equally weighted portfolio of Apple and IBM. It is clear that the quantitative strategy

for the two stocks SUR is not optimal for any rebalancing period higher than 3 days, since

the equally weighted portfolio is able to provide a higher capitalization of the final portfolio.

The 60/40 portfolio is created with a weight of 60% on SP500 and 40% on the bond index,

where the bond index refers to the Barclays US Unhedged Bond Index.

This gives a higher picture of the portfolio performance. Expected returns increase

for every portfolio and for every rebalancing timespan, but the volatility seems to be

constant. Volatility is a major concern when strategies are not enough diversificated. A

higher number of stocks might help to reduce the portfolio variability, while the expected

return, and so the Sharpe ratio, is linearly connected to the number of rebalances in a

fixed amount of time.

Hedge fund managers are not always interested in earning an investment return greater

than that of the SP500. This investment point of view should be proper of a passive
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Table 10: Performance for the two stocks quantitative strategy

3 days AAPL IBM Portfolio 7 days AAPL IBM Portfolio

Expected return 44.2% 42.7% 41.3% Expected return 18.3% 13.6% 13.7%
Volatility 46.6% 26.6% 27.5% Volatility 46.7% 26.7% 30.3%

Sharpe Ratio 0.949 1.605 1.501 Sharpe Ratio 0.392 0.511 0.451

5 days AAPL IBM Portfolio 10 days AAPL IBM Portfolio

Expected return 23.9% 15.6% 15.9% Expected return 8.1% 7.7% 5.7%
Volatility 46.7% 26.7% 25.9% Volatility 46.7% 26.7% 25.6%

Sharpe Ratio 0.513 0.582 0.616 Sharpe Ratio 0.173 0.287 0.223

investor: he will try to optimize a portfolio selection of attractive stocks and to gain

equity premiums for his stock picking activity. Here, the concept of opportunity cost

kicks in. If the passive investor is not able to create a positive extra return his passive

investment benchmark (SP500), economic theory says he should invest his money on an

index tracking this benchmark and employ his time in another utility-increasing activity.

This concept does not hold for an hedge fund manager, because his goal is not to beat the

SP500 but to make money in every market condition. A good hedge fund manager is able

to provide positive returns during both the upside and downside of the business cycle.

Even if the market is plunging, an informed investor is able to capture market anomalies

and trade against them in order to provide positive returns to his clients. Even if the

SP500 is not the right benchmark for an hedge fund manager, it stills represent a good

measure of the total amount of money an investor can make in financial markets without

having any kind of information about the picked stocks. To have a wider picture of the

quantitative investment portfolio here described, a one sample t-test for excess return over

the SP500 can be performed to assess if the portfolio is able to create an average return

statistically different from zero. This basic statistical procedure is used to determine if

a sample of observations can have been sampled from a population with a specific true

mean. The statistic for test is calculated as

t-stat =
ȳ − µ
σ̂√
n

where ȳ is the sample mean, µ is the tested true mean of the population, σ̂ is the sample

standard devation and n is the total number of observation. This statistics is distributed

as a Standard normal distribution and if its value is bigger than 2 or lower than -2 it
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means that the p-value of the test is lower than the significance level of 5

Table 11: t-test for two stocks quantitative strategy

3 days 5 days 7 days 10 days

t-stat 5.38 1.38 0.7 -0.29
p-value 0.000 0.160 0.470 0.770

From the t-statistics for different rebalancing data is clear that the 3 days rebalanc-

ing portfolio is able to generate a positive and statistically significant extra profit over

the market portfolio. From 5 days on, the timespan of rebalancing is too wide and the

portfolios are no able to statistically outperform the SP 500. A two stocks investment

strategy does not seem to be reliable. Rebalancing every 3 days is quite unrealistic for

most investors. Also, the controlled environment of complete absence of market frictions

enhanced the performances. The 5,7 and 10 days rebalance strategies are not optimal.

The 10 days rebalancing portfolio does not outperform the SP500. The 5 and 7 days

portfolios are able to rise more than the SP500 after 2008. This sounds unrealistic since

financial crisis of subprimes in 2008 created a shortage of liquidity in financial markets.

Transaction costs linked to liquidity became a huge problem for investors. In the current

setting, the computer based rebalanced was neither constraint nor affected by costs linked

to bid-ask spread and other liquidity measures. Even if an additional analysis should be

undertaken, it seems clear that the strategy needs to include a higher number of stocks to

diversify its composition

8.4 Momentum Strategy - 10 stocks

Since volatility was almost constant for every portfolio created out of two stocks, an

example with a higher number of stocks can be useful to evaluate if it is possible to

diversify a quantitative investment portofolio. In this case, the eight new stocks are:

Boeing (BA), Boston Scientific Corporation (BSX), Walt Disney (DIS), FedEx (FDX),

General Electric (GE), Johnson Johnson (JNJ), JP Morgan (JPM) and Nike (NKE). The

joint observations for these ten stocks start on May 19th 1992 and the MCMC estimates

the error covariances over a timespan of 5 years in order to reduce the computational

requirements of the simulations. The portfolio performance analysis starts on May 19th

1997 in order to cut the first 5 years of information computed in the Bayesian inference.
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Figure 12: Quantitative strategy with ten stocks without fees

As for two stocks and as expected, a shorter timespan for rebalancing leads to superior

performance for the quantitative investment portofolio. It is clear how the increased

number of stocks enhances the performance of all the portfolios since the SP500 is the

worst performing portfolio among the five considered. The market capitalization of the 3

days portfolio is 1.5 times the 5 days portfolio in log-scaled measurements. An interesting

feature of the portfolios is their performance during the financial crisis of 2008. This could

again be explained by the controlled environment for their simulated paths. The complete

absence of market frictions like liquidity problems and margin calls could explain how they

outperformed the SP500 in this simulated environment. It is interesting to note how the

quantitative strategy starts now to be much more profitable than the equally weighted

portfolio. The diversification benefit is responsible for this major improvement of the

general strategy.

Table 12: Performance for 10 stocks quantitative strategy

Portfolio

Average 35.0% 18.9% 17.4% 10.4%
Volatilty 15.6% 15.4% 15.6% 15.3%

SR 2.24 1.22 1.11 0.66
Rebalance 3 days 5 days 7 days 10 days

Including eight more stocks in the portfolio creates a massive shift in the risk-adjusted
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performance measure. The 3 days portfolio is able to create a SR of more than two while

the volatility decreased for almost 30 percent for every rebalancing timespan. This huge

shift in the profitability of the strategy is due to the significant gains in diversification.

Portfolio volatilities are now around 15 percent. As before, a t-test for statistically sig-

nificant excess return over the SP500 can create a reliable benchmark measure of the

portfolios performances.

Table 13: t-test for 10 stocks quantitative strategy

3 days 5 days 7 days 10 days

t-stat 5.38 2.54 2.14 1.07
p-value 0.000 0.011 0.032 0.280

The 10 days portofolio is the only portfolio not able to deliver a statistically significant

positive extra return. The increased number of stocks modelled through the Kalman filter

recursion and treated in the strategy lead to a superior performance able to statistically

beat the SP500 from a 3 to 7 days rebalancing timespan. A higher number of stocks

improved the strategy from a risk-adjusted point of view.

8.5 Momentum Strategy and Proportional Fees - 10 stocks

In order to relax the strong assumption of absence of market frictions, the portfolio per-

formances has be modelled with a proportional fee on investments. A proportional fee hits

whenever the investor changes position on a particular asset, and it is proportional to the

invested value. For computations, a proportional fee can be treated as a negative return

of the invested amount. Every type the position on an asset changes, the return for the

following period will be:

ri,t+1 =
Pi,t+1 − Pi,t

Pi,t
− τ1{sign(post×post+1)<0}

where τ is the percentage of proportional fees and 1{sign(post×post+1)<0} is an indicator

function which is equal one if the position on asset i changes from time t to t+ 1.

The graphics are presented for three different level of fees: 0.05%, 0.5% and 1%.

Starting from the top, a small fee does not modify the previous performance order since
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Figure 13: Quantitative strategy with ten stocks and fees

all the portfolios are able to outperform the SP500 in log-scaled measurements. Once the

fee increases by 10 times to 0.5%, there is a significant downshift for the curves but they

still gain more than the market portfolio. Once the fee fixes at 1%, there is no portfolio

able to deliver more than the SP500. It is interesting to note how the ripples of the curves
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change. The most significant ripples can be seen during the last financial crisis and their

magnitude increase as the fees increase. For 1% fee, there is a huge bounce back after

the financial crisis which stops around 2013. As fees increase, all the observed portfolio

start to be more noisy. At every point in time, the performances sway and oscillate among

trends. As expected, a longer period among rebalances can help to dampen down the

performance drag. For a 1% proportional fee, the 10 days portfolio is the most acceptable

investment choice, but it is still unable to deliver more than the market option.

Regarding the equally weighted portfolio, it is highly inefficient when fees are kept low

but it starts to gain positions once fees increase. When fees are at 1%, it becomes the

best pick for maximizing the market capitalization of invested capital.

Table 14: Performane for 10 stocks quantitative strategy with fees

3 days Portfolio 7 days Portfolio

Average 32.8% 13.6% -7.8% Average 16.5% 8.1% -1.1%
Volatilty 15.6% 15.2% 15.1% Volatilty 15.5% 15.4% 15.3%

SR 2.11 0.89 -0.51 SR 1.05 0.53 -0.07

Fees 0.05% 0.50% 1.00% Fees 0.05% 0.50% 1.00%

5 days Portfolio 10 days Portfolio

Average 17.6% 6.2% -6.4% Average 9.8% 4.2% -2.0%
Volatilty 15.4% 15.2% 15.2% Volatilty 15.3% 15.1% 15.1%

SR 1.14 0.41 -0.42 SR 0.64 0.27 -0.13

Fees 0.05% 0.50% 1.00% Fees 0.05% 0.50% 1.00%

Performances start to fall down as fees increase, leading also to negative expected

returns once fee touches 1%.

There is no portfolio able to statistically overperform the market portfolio except for

the 3 days portfolio when proportional fees amount to 0.05% of financial returns. Including

fees showed and confirmed the downside of the strategy.
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Table 15: t-test for 10 stocks quantitative strategy with fees

Fee 0.05% 3 days 5 days 7 days 10 days

t-stat 5.036 2.33 1.98 0.9706
p-value 0.000 0.019 0.047 0.330

Fee 0.5% 3 days 5 days 7 days 10 days

t-stat 1.826 0.44 0.55 0.022
p-value 0.060 0.650 0.576 0.981

Fee 1% 3 days 5 days 7 days 10 days

t-stat -1.78 -1.677 -1.03 -1.03
p-value 0.073 0.093 0.299 0.301

9 Conclusion

This document focused on the implementation and developement of a quantitative mo-

mentum strategy. Instead of just considering the past months movements of stock prices,

the investment signals were based on forecast estimations of asset prices. The predictive

power has been borrowed from the Fama French three factors model in a state space rep-

resentation of their asset pricing regression. State space modelling allowed to consider

regression coefficients in their time dimensions and the Kalman filter recursion has able

to extrapolate the unobservable factors of the Fama French three factors and filter them

out from noisy observations.

The final result of performance analysis showed how two stocks are not enough to create

a reliable and profitable strategy in a controlled environment with no market frictions

like fees, unless the rebalancing time span is kept short. This seems to be unrealistic

for most investors. Volatility is another major concern. To diversificate and improve

the risk-adjusted performance, the ten stocks strategy has been evaluated on a frictions-

free environment and in presence of proportional fees. Increasing the total number of

stocks for the quantitative strategy created a massive shift in the risk-adjusted evaluation.

The major improvement is on the volatility measure of the strategy. Diversification is

a renowed concept for passive investment strategies and it can also be applied in the

current example. A one sample t-test showed how the investment strategy for ten stocks

is able to overperform the market portfolio with statistical significance. When fees are
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introduced, performance start to suffer major losses. If fees are low, the portfolios are still

able to outperform the market portfolio with statistical significance. When fees increase,

the strategies start to be unprofitable. An equally weigthed portofolio is able to create a

major utility gain when fees start to increase. This reduces the profitability of this active

strategy.

The strategy is suitable for investors able to minimize the impact of transaction costs

and are able to trade within short horizons. However, a more concerned analysis ac-

counting for more transaction costs and market imperfections might help to assess a more

reliable analysis of the strategy performances. For example, bid-ask spread can be used

as a proxy of the liquidity of an asset in order to pick the most liquid stocks. Including

liquid stocks in the quantitative strategy will reduce the impact of liquidity costs. A sup-

plementary analysis of the selected stocks might also help to improve the performances of

the strategy. Diversification should help to reduce the volatility of the strategy.

To summarize the results found in the document, the Fama French three factors dy-

namic linear model is capable of producing reliable signals for developing a quantitative

equity strategy based on momentum and the Kalman filtering recursion. The strategy is

profitable in a controlled environment. However, transaction costs have a massive impact

on the performance of the strategy.
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10 Further Studies and Criticisms

10.1 Model checking

The model applied in this document is a linear state space model representation of a

factor model regression where the regression coefficients are estimated through the kalman

filter recursion. As seen before, the DLM one-step forecasted value for the observable is

E(Yt|y1:t−1). A way of checking the underlying model is to check the process property of

the innovations, defined as:

et = yt − E(Yt|y1:t−1) = yt − Ftat

This is defined as the forecast error of the forecast observable variable, which has been

crucial for the rebalancing process of the quantitative investment strategy. In DLM, et is

expected to be a Gaussian process. To check this property, it is required to standardize

et in order to model it as a standard Gaussian multivariate distribution. Since et is a

vector of forecast error, the basic univariate standardization process is not precise. To

standardardize the vectors, the process becomes:

1. Calculate V ar(et) = FtCtF
′
t + V

2. Decompose V ar(et)
−1 by Cholesky decomposition so that V ar(et)

−1 = GtG
′
t

3. Standardize the error vectors G
′
tet ∼ N(0,Σ) where Σ is an identity matrix

4. Create a univariate sample of standardized errors by collecting every univariate error

in every error vector for the entire observated time

Errors are far to be related to a N(0, 1). They resemble a t-student distribution.

This may be because the historical distributions of the asset returns are not normally

distributed, but they are distributed as t-student random variables. This leads to fatter

tails and higher probability mass of extremely high and extremely low returns. This finding

has been enlighted in financial economics literature and it is a major drawdown of most of

financial economics theories. To properly deal with this property of empirical returns, it

would have been required to develop a nonlinear State Space Model where the observation

variable is distributed as a t-student random variable. This has not be done because a

nonlinear State Space Model is no more a DLM, and all the property of the Kalman filter
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Figure 14: Filtered and smoothed βMt

are no more applicable. The computational requirements for such SSM are much more

involving and high than the once required to produce this document. Describing empirical

asset returns with normal distributions has been a widely and accepted approximation

which helps to model the economics underpinning financial econometrics. By concluding,

a possible extension of this thesis would be expanding the analysis to a nonlinear SSM for

factor investing.

10.2 Out-of-sample Investment Performance

The quantitative investment strategy has been developed by estimating the error covari-

ances V and W for a restricted period, in particular the timespan for their inference was 10

years for the two stocks model and 5 years for the ten stocks model. The difference has been

decided to ease the simulations, as described above. Evaluating the investment strategy

for the remaining periods has been a robust approximation for assessing an out-of-sample

measurement of the investment performance. The unique drawdown of the out-of-sample

property is found in the calculation of yt|t−1. It is calculated as the best estimate of the

future asset return for time t, conditioned on being at time t − 1, but in its formula-

tion E(yt|t−1) = Ftat meaning that the prediction incorporates the future development

of the regressors of the Fama French model. To have a completely robust out-of-sample

measurement of the investment strategy, the matrix Ft needs to be estimated.
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10.3 Monte Carlo Particle Filter

As stated above, in order to parametrize the unknown covariances through Bayesian infer-

ence, the Gibbs sampler has to simulate a complete Markov chain of unobservable states

θt over the time dimension. This powerful tool for estimating the chains required to sam-

ple the covariances are highly inefficient for sequential updating. Stricly speaking, every

time a new observation period t kicks in, it forces the Gibbs sampler to create a new

Markov chain of unobservables. In other words, if the sampler simulates a chain from

time t = T, T − 1, .., 0 and a new observation hits at time t = T + 1, the previously sim-

ulated chain is useless since the starting point of the memoryless process starts now at

time t = T + 1. In the last decade, new methods for a more efficient sequential update

have been developed. Recently, a new simulation approach called Sequential Monte Carlo

has been adopted by econometricians. Sequential Monte Carlo provides an alternative to

the Gibbs sampler recursion10. This simulation method is related to the family of par-

ticle filter, a family of Monte Carlo algorhytm applied in signal processing and Bayesian

statistics. The Bayesian inference for the errors covariances can be estimated with this

approach and a possible estension could be comparing the two methods and the effects on

filtered estimates.

10Liu(2001).
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11 Appendix

11.1 Graphs for SUR and MCMC diagnostics
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Figure 15: Filtered and smoothed βMt
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Figure 16: Filtered and smoothed βMt
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Figure 17: Filtered and smoothed βSt
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Figure 18: Filtered and smoothed βHt
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Figure 19: Filtered and smoothed αt
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Figure 20: Filtered and smoothed βMt
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Figure 21: Filtered and smoothed βSt
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Figure 22: Filtered and smoothed βHt
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Figure 23: Filtered and smoothed αt
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Figure 24: Filtered and smoothed βMt
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Figure 26: Filtered and smoothed βHt
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Figure 27: MCMC diagnostics for observable error covariances vi
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Figure 28: MCMC diagnostics for unobservable error covariances for α
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Figure 29: MCMC diagnostics for unobservable error covariances for βM
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Figure 30: MCMC diagnostics for unobservable error covariances for βS
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Figure 31: MCMC diagnostics for unobservable error covariances for βH
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11.2 Dynamic Linear Model - 10 Time Series

y1,t

y2,t

y3,t

y4,t

y5,t

y6,t

y7,t

y8,t

y9,t

y10,t



=
((

1 rMt rSt rHt

)
⊗ I10

)

αt

βMt

βSt

βHt

+



v1,t

v2,t

v3,t

v4,t

v5,t

v6,t

v7,t

v8,t

v9,t

v10,t





v1,t

v2,t
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v4,t

v5,t

v6,t

v7,t
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v9,t

v10,t



∼ N(0, V )


αt

βMt

βSt

βHt

 =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⊗ I10
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 ∼ N(0,W )

where

αt =
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α8,t

α9,t

α10,t
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wαt =
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