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ASYMPTOTIC VARIANCE OF NEWTON-COTES QUADRATURES
BASED ON RANDOMIZED SAMPLING POINTS

MADS STEHR,∗ Aarhus University

MARKUS KIDERLEN,∗ Aarhus University

Abstract

We consider the problem of numerical integration when the sampling nodes
form a stationary point process on the real line. In previous papers it was
argued that a näıve Riemann sum approach can cause a severe variance inflation
when the sampling points are not equidistant. We show that this inflation
can be avoided using a higher order Newton-Cotes quadrature rule which
exploits smoothness properties of the integrand. Under mild assumptions, the
resulting estimator is unbiased and its variance asymptotically obeys a power
law as a function of the mean point distance. If the Newton-Cotes rule is of
sufficiently high order, the exponent of this law turns out to only depend on
the point process through its mean point distance. We illustrate our findings
with the stereological estimation of the volume of a compact object, suggesting
alternatives to the well-established Cavalieri estimator.

Keywords: Point process; stationary stochastic process; randomized Newton-
Cotes quadrature; numerical integration; asymptotic variance bounds; renewal
process
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1. Introduction

Let f : R → R be an integrable function with compact support. We intend to
approximate the integral of f based on its values at finitely many random sampling
points. If X ⊂ R is a stationary point process with intensity 1/t > 0, the random
variable

V̂0(f) = t
∑
x∈X

f(x), (1.1)

is unbiased for
∫
f(x)dx due to Campbell’s theorem; see, e.g. [10, Chap. 3]. The

simplest situation is that of equidistant sampling points. In this case, we can write
X = t(U + Z), where U is a uniform random variable in the interval (0, 1), and the
estimator becomes

V̂ (f) = t
∑
k∈Z

f
(
t(U + k)

)
. (1.2)

The estimator (1.2) corresponds to systematic sampling with randomized start. Its
variance behaviour is well understood; see e.g. [7]. It was remarked in [2] and [14]
that the variance of (1.1) can be substantially larger in the non-equidistant case. The
purpose of the present paper, following an idea in [6], is to show and quantify that this
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variance increase can be reduced – essentially to the level of the equidistant case – using
Newton-Cotes quadrature approximations of sufficiently high order n ∈ N instead of
the crude sum (1.1).

The resulting Newton-Cotes estimator V̂n(f) is unbiased under mild assumptions;
see Theorem 2.1. To analyze the variance of V̂n(f), the refined Euler-MacLaurin theory
in [7] appears no longer to be sufficient, and we therefore extend the classical Peano
kernel theorem ([13, Theorem 3.2.3]) to locally finite, not necessarily equidistant sets
of nodes in Theorem 2.2. This allows us to give explicit variance bounds in Theorem
2.3 depending on the smoothness of the measurement function f . These bounds follow
a power law as functions of t. Interestingly, if the order of the Newton-Cotes estimator
is large enough (compared to the smoothness of f), the exponent of this power law
coincides with the exponent in the equidistant case – independently of the covariance
structure of X. However, if the Newton-Cotes order is too small, the exponent may
be worse than in the equidistant case, and it may depend on X. We introduce the
notion of strongly n-admissible point processes (see Definition 2.1 for details) and show
that the exponent for the variance bound is better for such point processes when n is
not large enough; see (2.7). In Theorems 2.4 and 2.5 this general theory is applied to
particular point process models: a model with i.i.d. perturbations of the equidistant
case and a renewal process. In both cases, explicit variance expansions are derived
for Newton-Cotes estimators of order n = 1 showing in particular that the power law
exponents in Theorem 2.3 in general can not be improved.

The paper is organized as follows. The main results, as outlined above, are stated
rigorously in the next section. In Section 3 more relevant notation is introduced,
the nth order Newton-Cotes estimator is formally derived, and the refined Peano
kernel theorem is proven. In Section 4 we derive integrability statements which will
be of relevance when proving the main results, Theorems 2.1 and 2.3, in Sections 5
and 6, respectively. In Section 7 we show that point processes from the perturbed and
cumulative model (renewal process) are strongly n-admissible for all n ∈ N, and we
derive the exact variance expressions presented in Theorems 2.4 and 2.5. Section 8
applies our findings to the stereological problem of volume estimation of a compact set
in R3 and contains a simulation study. Conclusions and ideas for future work can be
found in Section 9.

2. Main results

As for the estimators (1.1) and (1.2), throughout this paper we consider a point
process X with intensity 1/t and we apply Newton-Cotes quadratures to functions
evaluated at the points of X.

Let n ∈ N be given. We recall the definition of the nth order Newton-Cotes estimator
V̂n(f) from [6] for a fixed realization of X. On the interval from a point x0 ∈ X to its
nth right neighbour in X, say xn, the function f is approximated by a polynomial of
degree at most n ∈ N passing through the points {xj , f(xj)}nj=0, where x1 < . . . < xn−1

are the ordered points in X ∩ (x0, xn). V̂n(f) is then an average of the integral of the
concatenation of such approximations (composite rule) with respect to the starting
point chosen. The estimator V̂n(f) turns out to be a weighted average of f over all
points in X,

V̂n(f) =
∑
x∈X

α(x;X)f(x), (2.1)
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where the weights satisfy α(x;X) = tα(x/t;X/t) for all x ∈ X, where (when considered
random) X/t is of unit intensity; see (3.4) for details. We will see in Remark 5.1 that
α(x;X) = t when X = t(U+Z) is an equidistant process, and therefore, Newton-Cotes
estimators of any order coincide with (1.2) in the equidistant case.

When applying the estimator on randomized sampling points, we work under the
general assumption that a typical distance between two consecutive points has finite
positive and negative moments of all orders:

Assumption 2.1.

E0hj1 <∞ for all j ∈ Z. (2.2)

Here E0 is the expectation under the Palm-distribution of X, that is, the distribution
of X given that 0 ∈ X (see e.g. [10, sec. 3.3]), and h1 is the lag between 0 and its
right neighbour in X. Note that (2.2) holds for X if and only if it holds for aX for
all a > 0. Assumption 2.1 is certainly not necessary for the results to hold for a given
n, but finding a necessary and sufficient condition appears to be quite technical. Our
first result shows the unbiasedness of V̂n(f).

Theorem 2.1. Let n ∈ N and t > 0 be given and assume that X is a stationary point
process such that Assumption 2.1 is satisfied. Then V̂n(f) is unbiased:

EV̂n(f) =

∫
R
f(x)dx

for all integrable and real-valued functions f with compact support.

This will be shown in Section 5, where we also argue that Assumption 4.1 below, which
is weaker than Assumption 2.1, is sufficient to ensure unbiasedness. We also remark
that unbiasedness is known to hold for n = 1 without integrability conditions and for
n = 2 under a condition weaker than Assumption 4.1; see [6, Ex. 1 and Cor. 3].

Like in the case of classical quadrature, high order quadrature is reducing the
discretization error when the measurement function is smooth. We adopt a smoothness
condition which is in widespread use in stereological applications. For m, p ∈ N0∪{∞},
we say that a measurable function f with compact support is (m, p)-piecewise smooth
if it is in Ck(R) for k = max{m − 1, 0}, and all derivatives up to order m + p exist
and are continuous except in at most finitely many points, where they may have finite
jumps. Hence, if f is (m, p)-piecewise smooth, m is the smallest order of derivative of
f which may have jumps; see e.g. [7] for details on such functions. For our results to
hold, we require that p ≥ 1, however, the exact value of p is otherwise irrelevant. We
therefore state all results for (m, 1)-piecewise smooth functions. We say that a function
f is exactly (m, 1)-piecewise smooth if it is (m, 1)-piecewise smooth with discontinuous
mth derivative. We let Df (m) denote the finite set of discontinuity points of f (m), with

a 7→ Jf (m)(a) = lim
x→a+

f (m)(x)− lim
x→a−

f (m)(x)

denoting the corresponding jump-function.
Our second result expresses the discretization error

R(n)(f) = V̂n(f)−
∫
R
f(x)dx (2.3)
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in terms of higher order derivatives of f . We state it for a realization of X, that is,
we consider X as a deterministic, locally finite set of distinct points with convex hull
Conv(X) = R.

Theorem 2.2. (Refined Peano kernel theorem for Newton-Cotes estimation.)
Let n ∈ N be fixed. Given X and m ≤ n there exists a function Km such that

R(n)(f) =

∫
R
f (m+1)(r)Km(r)dr +

∑
a∈Df(m)

Jf (m)(a)Km(a)

for all (m, 1)-piecewise smooth functions f : R→ R.

Remark 2.1. The function Km will be called the mth Peano kernel. It is a piecewise
polynomial of order at most m+1 with coefficients given in terms of X. The mth Peano
kernel is explicitly given by (3.7), below. It is shown in Lemma 4.1 that for a stationary
point process X satisfying Assumption 2.1, Km is a stationary stochastic process on the
real line with finite absolute moments of any (positive) order. In particular, the mean
EKm(0) = EKm(r) and the covariance function Hm(s) = Cov(Km(r),Km(s+ r)) are
both finite and independent of r ∈ R.

As initially considered and shown in [9], the variance of (1.2) in the equidistant
case depends on jumps of high order derivatives of the measurement function; see
also [7, Chapter 5]. This is outlined in the following for comparison with the general
case. Let ∗ denote the convolution operator and let the reflection f̌ of f be defined as
f̌(x) = f(−x). When the measurement function f is (m, 1)-piecewise smooth, it can
be shown [7, Corollary 5.8] that the so-called covariogram g = f ∗ f̌ of f is (2m+ 1, 1)-
piecewise smooth. When f is exactly (m, 1)-piecewise smooth, one usually decomposes
the variance of V̂ (f) as

Var(V̂ (f)) = VarE(V̂ (f)) + Z(t) + o(t2m+2) (2.4)

when t ↓ 0. The Zitterbewegung Z(t), which is of order t2m+2, is a finite sum of terms
oscillating around 0, o(t2m+2) is a low-order remainder and the extension term

VarE(V̂ (f)) = t2m+2g(2m+1)(0+)cm (2.5)

explains the overall trend of the variance. Here cm = − 2B2m+2

(2m+2)! 6= 0, where Bk is the

kth Bernoulli number (see Section 6 below), and as such cm does not depend on t or
the function f , other than through its order of smoothness.

Motivated by stereological applications, and adopting the naming from [14], we will
mainly work with two classes of point process models. Both models are defined as
scalings of unit-intensity processes.

Example 2.1. (Perturbed model.) A stationary point process X with intensity 1/t
is from the perturbed model if it is derived from equidistant points by having i.i.d.
perturbations tEk, k ∈ Z, of every point, i.e. X = {t(U +k+Ek)}k∈Z; see Section 7.1.
Note that the perturbations may have a degenerate distribution concentrated at 0, and
hence the equidistant model is a particular instance of the perturbed model.

Example 2.2. (Model with cumulative errors.) A stationary point process X with
intensity 1/t is from the model with cumulative errors if X = tXu, where Xu is a
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unit-intensity two-sided stationary renewal process on the real line with holding times
ωi, i ∈ Z. In particular, the holding times {tωi} between two consecutive points of X
form an i.i.d. sequence; see Section 7.2.

If X is from the perturbed model (with non-degenerate perturbations), the variance
of (1.1) satisfies Var(V̂0(f)) = t2c′ + Z0(t) + o(t2) when m = 0 and Var(V̂0(f)) =
t3c′′+o(t3) when m ≥ 1 as t ↓ 0. This was shown in [14, Prop. 1] apart from the missing
Zitterbewegung term Z0(t) of order t2 in the first equation, which was omitted there
as it was erroneously claimed that the last term in [14, Eq. (A3)] is of order o(t2m+2).
Hence, for all m ≥ 1, the rate of decrease of V0(f) in the non-equidistant case is strictly
smaller than in the equisdistant case; cf. (2.5) for the latter. The behaviour is even
worse in the model with cumulative errors, as Var(V̂0(f)) = tc′′′ + o(t) for all m ≥ 0;
see [14, Prop. 2].

In order to formulate corresponding rates of decrease for Newton-Cotes estimators,
we need the notion of an admissible point process. The Peano kernel in the definition
of an admissible point process is explicitly given in (3.7) with m = n.

Definition 2.1. (Admissible point process.) Let X be a stationary point process
satisfying Assumption 2.1. For n ∈ N let Hn be the covariance function of Kn. Then
X is called strongly n-admissible if

∫ z
0
Hn(s)ds is uniformly bounded in z ≥ 0. X is

called weakly n-admissible if limz→∞
1
z

∫ z
0
Hn(s)ds = 0.

From the definition (3.7) of Km it is easily seen that X is weakly/strongly admissible
if and only if aX is weakly/strongly admissible for all constants a > 0. Admissibility is
closely related to ergodicity properties of the stationary field Kn, and hence to those of
X. In fact, if Kn has an exponentially decaying α-mixing coefficient (see, for instance,
[5, Subsection 1.3.2] for the definition of this coefficient), then [5, Theorem 3.(1), p. 9]
and the fact that EKn(0)2+ε <∞, ε > 0, imply that Hn(s) is exponentially decaying,
and hence, X is strongly n-admissible for all n ∈ N.

The covariance function Hn need not be decaying for X to be strongly n-admissible.
When X is from the perturbed model, the covariance function is closely related to
Bernoulli functions (see Section 6), which are 1-periodic functions integrating to 0 on
an interval of unit length. This is used in Lemma 7.1 to show that X is strongly
n-admissible for all n ∈ N. Concerning the model with cumulative errors, we show in
Lemma 7.3 that Hn is indeed exponentially decaying when assuming that the holding
times of the process have finite exponential moments. The proof relies on a result from
[1] concerning the convergence rate of convolutions of the renewal measure of a pure
renewal process.

Theorem 2.3. Let n ∈ N be given and assume that X is a stationary point process
with intensity 1/t > 0 such that Assumption 2.1 holds. If f is (m, 1)-piecewise smooth
and k = min{m,n}, the variance of the estimator (2.1) obeys

Var(V̂n(f)) ≤ ct2k+2 (2.6)

for some constant c, which does not depend on t.
If m > n and X is strongly n-admissible, then

Var(V̂n(f)) ≤ c′t2n+3 (2.7)

for some constant c′, which does not depend on t.
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If f is exactly (m, 1)-piecewise smooth with m < n, the decrease rate in (2.6)
is optimal. This is also true in the case m = n if X is weakly n-admissible; see
Remark 6.1.

When using the trapezoidal estimator, that is n = 1, we have exact expressions of
the asymptotic behaviour of the variance when X is from the perturbed model and the
model with cumulative errors. In the perturbed case, the rate of decrease of the upper
bound in (2.7) is optimal if the perturbations Ei are non-degenerate.

Theorem 2.4. Let X be from the perturbed model with intensity 1/t, and let µk be
the kth moment of the perturbations Ei. Assume that the measurement function f is
exactly (m, 1)-piecewise smooth with covariogram g = f ∗ f̌ . Then, for t ↓ 0,

Var(V̂1(f)) = −t2g′(0+)(µ2 + 1
6 ) + Z0(t) + o(t2), for m = 0, (2.8)

Var(V̂1(f)) = t4g(3)(0+) 1
12 (2µ2 + 2µ4 + 1

30 ) + Z1(t) + o(t4), for m = 1, (2.9)

Var(V̂1(f)) = t5g(4)(0) 1
8 (2µ4 + µ2µ4 − µ3

2 − µ2
3) + o(t5), for m ≥ 2, (2.10)

where the Zitterbewegung Zm(t) is given by (7.7). It is of order t2m+2, and it is a finite
sum of terms oscillating around 0. Moreover, if Ei has a density with a finite number
of finite jumps and m ≥ 2, the remainder o(t5) is explicitly given by

t6g(5)(0+) 1
720

(
−34µ2 − 90µ2

2 + 110µ4 + 180µ2µ4

− 180µ3
2 − 170µ2

3 + 8µ6 − 1
21

)
+ Z2(t) + o(t6).

(2.11)

We compare these findings with the equidistant case. The Zitterbewegung in (2.4)
is not present in the decomposition of Theorem 2.4 when m ≥ 2, or rather it is of lower
order and thus part of the low-order remainder. As the Bernoulli numbers satisfy B2 =
1
6 , B4 = − 1

30 and B6 = 1
42 , the extension term (2.5) becomes VarE V̂ (f) = −t2g′(0+) 1

6 ,

VarE V̂ (f) = t4g(3)(0+) 1
12

1
30 and VarE V̂ (f) = −t6g(5)(0+) 1

21
1

720 for m = 0, 1, 2,
respectively. Hence, the extension term of the trapezoidal estimator with perturbed
sampling can come arbitrarily close to (2.5) if the errors Ei are sufficiently small. Under
the model with cumulative errors, a corresponding statement holds as a consequence
of the following result.

Theorem 2.5. Let X be from the model with cumulative errors with intensity 1/t and
let the i.i.d. holding times ωi (of the unit-intensity process) satisfy Eeηω1 <∞ for some
η > 0. Define νk as the kth moment of ω1. Let the measurement function f be exactly
(m, 1)-piecewise smooth with covariogram g = f ∗ f̌ . Then, for t ↓ 0,

Var(V̂1(f)) = −t2g′(0+) 1
6ν3 + o(t2), for m = 0, (2.12)

Var(V̂1(f)) = t4g(3)(0+) 1
12

1
30 (6ν5 − 5ν23) + o(t4), for m = 1 . (2.13)

3. The Peano kernel representation

In this section we consider a locally finite set X ⊂ R such that Conv(X) = R, and
an integrable function f : R → R with compact support which is known at all points
in X. For any x ∈ X and j ∈ Z we define sj(x) = sj(x;X) as the jth successor
(predecessor for j < 0) of x in X, with s0(x) = x by definition. Hence, for j ≥ 1, sj(x)
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and s−j(x) are the unique points in X ∩ (x,∞) and X ∩ (−∞, x), respectively, such
that #(X ∩ (x, sj(x)]) = #(X ∩ [s−j(x), x)) = j. Note that

sj(x+ t;X + t) = sj(x;X) + t (3.1)

for all t ∈ R. For all x ∈ X and j ∈ Z we let hj(x) = hj(x;X) = sj(x;X)− sj−1(x;X)
be the distance from the jth successor (predecessor) of x to its left neighbour in X.
By (3.1),

hj(x+ t;X + t) = hj(x;X) (3.2)

for all t ∈ R. We now recall the principle of Newton-Cotes quadrature, adapted to an
infinite set of nodes; see [6] for details. On the interval [x, sn(x)], x ∈ X, the function
f is approximated by a polynomial of degree at most n ∈ N passing through the points
{sj(x), f(sj(x))}nj=0. The integral of this polynomial on [x, sn(x)] is

I(n)x (f) = I(n)x (f ;X) =

n∑
j=0

β
(n)
j (x)f(sj(x))

where

β
(n)
j (x) = β

(n)
j (x;X) =

∫ sn(x)

x

n∏
k=0
k 6=j

y − sk(x)

sj(x)− sk(x)
dy (3.3)

for x ∈ X. The approximation V̂n(f) = 1
n

∑
x∈X I

(n)
x (f) =

∑
x∈X α(x)f(x) is then

an average of the sum of the integral-approximations I
(n)
x with respect to the starting

point chosen. Here

α(x) = α(x;X) =
1

n

n∑
j=0

β
(n)
j (s−j(x)). (3.4)

Remark 3.1. From [13, Theorem 2.1.1.1] the integral approximation on an interval
[x, sn(x)] is exact whenever f = p is a polynomial of degree at most n. That is,

R
(n)
x (p) = 0, with the discretization error R

(n)
x defined by

R(n)
x (f) = R(n)

x (f ;X) = I(n)x (f)−
∫ sn(x)

x

f(y)dy, (3.5)

x ∈ X.

As shown in the supplementary material [12, ??], β
(n)
j is a rational function of point-

increments, and (3.2) then implies that

β
(n)
j (x+ t;X + t) = β

(n)
j (x;X) and α(x+ t;X + t) = α(x;X) (3.6)

for all t ∈ R and x ∈ X.
We are now ready to prove the refined Peano kernel theorem as stated in Theo-

rem 2.2. Given n, X, and m ∈ N0, the mth Peano kernel from Theorem 2.2 is defined
as

Km(r) = Km(r;X) =
1

m!n

∑
x∈X

1(x,sn(x)](r)R
(n)
x

(
(· − r)m+

)
. (3.7)
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The mapping x 7→ (x− r)m+ should be understood as

(x− r)m+ =

{
(x− r)m for x > r,

0 for x ≤ r.

Hence, Km is piecewise polynomial of degree at most m+1 with coefficients determined
by X.

Proof of Theorem 2.2. Fix n ∈ N and note that nR(n)(f) =
∑
x∈X R

(n)
x (f) due to

(2.3) and (3.5). For all x ∈ X and y ∈ [x, sn(x)], an induction argument using the
refined partial integration formula [7, Lemma 4.1] yields

f(y−) =

m∑
k=0

f (k)(x+)

k!
(y − x)k

+
1

m!

∑
a∈Df(m)∩(x,y)

Jf (m)(a)(y − a)m +
1

m!

∫ y

x

f (m+1)(t)(y − t)mdt,

for all (m, 1)-piecewise smooth functions f , m ∈ N0. We now assume m ≤ n. Using the

linearity of R
(n)
x , the fact that all polynomials of order at most n are integrated exactly,

and the fact that R
(n)
x commutes with integration, we find that (with all expressions

considered as functions of y)

m!R(n)
x (f)

= R(n)
x

( ∑
a∈Df(m)∩(x,y)

Jf (m)(a)(y − a)m +

∫ y

x

f (m+1)(t)(y − t)mdt
)

=
∑

a∈Df(m)∩(x,sn(x)]

Jf (m)(a)R(n)
x

(
(y − a)m+

)
+

∫ sn(x)

x

f (m+1)(t)R(n)
x

(
(y − t)m+

)
dt.

Changing the summation order, (3.7) implies that

R(n)(f) =
1

n

∑
x∈X

R(n)
x (f) =

∑
a∈Df(m)

Jf (m)(a)Km(a) +

∫
R
f (m+1)(t)Km(t)dt,

as claimed. �

Before proceeding, we state a useful lemma on continuity properties of the Peano
kernel. For r ∈ R we have

Km(r) =
1

m!n

∑
x∈X

1(x,s1(x)](r)

0∑
i=1−n

R
(n)
si(x)

(
(· − r)m+

)
.

The following result is a simple consequence of this representation and the fact that
polynomials of degree at most n are approximated exactly.
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Lemma 3.1. Fix n ∈ N and a locally finite point-set X with Conv(X) = R. Then, for
all x ∈ X and m ∈ N, the function Km is differentiable on (x, s1(x)) with derivative
−Km−1 and jump

JKm
(x) =

1

m!n
R(n)
x

(
( · − x)m

)
.

In particular, Km is (m− 1)-times continuously differentiable for all 1 ≤ m ≤ n.

4. Integrability properties

To argue that V̂n(f) is an unbiased estimator for
∫
f(x)dx when applied to random-

ized sampling points, we recall the notion of the Palm distribution of a stationary point
process X ⊂ R. It can be interpreted as the conditional distribution of X given that
0 ∈ X. We denote it by P0 with the corresponding expectation denoted by E0. When
considering the point process X under its Palm distribution, we will often suppress the
dependence on the point 0 ∈ X in the various expression, i.e. under P0 we for instance
write

si = si(0), hi = hi(0), β
(n)
j = β

(n)
j (0)

for all i ∈ Z and j = 0, . . . , n. In addition we write h = (h1, . . . , hn) and, for i ∈ Z,
h(si) = (h1(si), . . . , hn(si)) = (hi+1, . . . , hi+n) under P0. As mentioned in Section 1, a
weaker assumption than (2.2) is sufficient to ensure the unbiasedness of the estimator.

Assumption 4.1. For a given n ∈ N we assume that

E0

[
hm

hm′

]
<∞ (4.1)

for all multi-indices m,m′ ∈ Nn0 with |m| ∈ {n + 1, n + 2} and |m′| = n, where
|m| = |(m1, . . . ,mn)| =

∑n
k=1mk.

Using Hölder’s inequality and [6, Eq. (13)], one shows that Assumption 2.1 is stronger
than Assumption 4.1. In [12, ??] of the supplementary material it is shown that

the weight β
(n)
j (x) is a rational function of the point-increments (h1(x), . . . , hn(x)),

x ∈ X, where the numerator is a homogeneous polynomial of degree n + 1, and the
denominator is a non-vanishing homogeneous polynomial of degree n with non-negative
coefficients. From the fact that the Palm distribution is invariant under bijective point

shifts [6, Eq. (13)], it is easily seen that E0|β(n)
j (s−j)| <∞ for all j ∈ {0, · · · , n} when

Assumption 4.1 is satisfied, and consequently

E0|α(0)| <∞, (4.2)

see [12, ??] of the supplementary material. We conclude that either of the two
assumptions is sufficient to guarantee the Palm-integrability of α(0), which will be
used in the proof of Theorem 2.1.

To argue for the variance bounds presented in Theorem 2.3 we need higher-order
moment and translation invariance properties of the Peano kernel Km defined in (3.7).

Lemma 4.1. Let n ∈ N be given and assume that X is a stationary point process.
Then, for all m ∈ N0, Km is a stationary stochastic process. If Assumption 2.1 holds,
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Km(0) has finite absolute moments of all (positive) orders. Moreover, if X has intensity
γ, Km satisfies

EKm(0) = γE0JKm+1
(0) =

γ

(m+ 1)!n
E0R

(n)
0

(
( · )m+1

)
(4.3)

for all m ∈ N0. In particular, EKm(0) = 0 for all m < n.

Proof. Fix n ∈ N. For any r, s ∈ R and any locally finite pointset X, the Peano
kernel satisfies

Km(r + s;X) = Km(r;X − s). (4.4)

This follows from the definition of Km and

R(n)
x

(
(· − (r + s))m+ ;X

)
= R

(n)
x−s

(
(· − r)m+ ;X − s

)
, x ∈ X,

which in turn is a consequence of (3.1) and (3.6). Due to (4.4) the stationarity of Km

is inherited from the stationarity of the point process X.
We now prove that Km(0) has finite absolute moments. Let k ∈ N be given. For

arbitrary r ∈ R put Ir = {x ∈ X : r ∈ (x, sn(x)]}. Using Hölder’s inequality and some
rather crude upper bounds we obtain from (3.5) and (3.7)

∣∣Kk
m(0)

∣∣ ≤∑
x∈I0

∣∣R(n)
x

(
(·)m+

)∣∣k ≤∑
x∈I0

(sn(x))km
( n∑
j=0

|β(n)
j (x)|+ sn(x)

)k
.

By the refined Campbell Theorem [10, Theorem 3.5.3], (3.1) and (3.6) it follows that

E
∣∣Kk

m(0)
∣∣ ≤ γE0

∫ sn

0

xkm
( n∑
j=0

|β(n)
j |+ x

)k
dx ≤ γE0skm+1

n

( n∑
j=0

|β(n)
j |+ sn

)k
,

where γ is the intensity of X. By the supplementary material [12, ??], Assumption 2.1

and the fact that sn =
∑n
j=1 hj under P0, the variables sn and β

(n)
j have finite absolute

moments of all orders under P0. This implies that E|Kk
m(0)| <∞.

Equation (4.3) is a simple consequence of the refined Campbell Theorem [10, The-
orem 3.5.3], Lemma 3.1 and [6, Eq. (13)]. �

5. Unbiasedness of Newton-Cotes estimators

Proof of Theorem 2.1. Fix n ∈ N and let X ⊆ R be a stationary point process with
finite and positive intensity γ. As α satisfies (3.6) and α(0) is Palm-integrable by (4.2),
[6, Theorem 1] can be applied. It states that

EV̂n(f) = γE0[α(0)]

∫
R
f(x)dx (5.1)

holds for all integrable functions f : R → R with compact support. Hence, if we can
show that E0[α(0)] = γ−1, we have shown that V̂n(f) is unbiased.

For s ∈ R reuse the notation Is from the end of the previous section. When f is an
integrable function and |f | ≤ 1, (3.5) implies∑

x∈Is

|R(n)
x (f)| ≤

∑
x∈Is

( n∑
j=0

|β(n)
j (x)|+ (sn(x)− x)

)
.



Newton-Cotes with Randomized Sampling Points 11

The refined Campbell theorem [10, Theorem 3.5.3], (3.1) and (3.6) imply

E
∑
x∈Is

|R(n)
x (f)| ≤ γE0

∫ s

s−sn

( n∑
j=0

|β(n)
j |+ sn

)
dx = γE0

[
sn

n∑
j=0

|β(n)
j |+ s2n

]
<∞,

where the finiteness follows from the supplementary material [12, ??] and Assump-
tion 4.1, which is weaker than Assumption 2.1. Note that the finite upper bound does
not depend on s.

Now let r > 0 be given and consider the function fr = 1[0,r]. Recall that

R(n)(fr) = V̂n(fr)−
∫
R
fr(x)dx =

1

n

∑
x∈X

R(n)
x (fr)

is the error of the nth Newton-Cotes estimator. The Newton-Cotes approximation on
an interval [x, sn(x)] is exact for all polynomials of degree at most n, and in particular,

it is exact for constant functions. Hence, R
(n)
x (fr) = 0 whenever [x, sn(x)]∩{0, r} = ∅.

This implies

|ER(n)(fr)| ≤ E
∑
x∈I0

|R(n)
x (f)|+ E

∑
x∈Ir

|R(n)
x (f)| ≤ 2C,

for some finite C ∈ R which is independent of r. Equation (5.1) now implies

0 = lim
r→∞

1
rER

(n)(fr) = γE0α(0)− 1,

so E0α(0) = 1/γ as asserted. �

Remark 5.1. If X = t
(
U+Z

)
is the equidistant point process, α(x) = t for all x ∈ X.

In fact, the Palm version of X is the deterministic set tZ, (3.6) yields

α(x;X) = α(x− x;X − x) = α(0; tZ)

for all x ∈ X. Hence α = α(x) is deterministic, and V̂n(f) = α
∑
x∈X f(x). Assump-

tion 2.1 is trivially satisfied, so Theorem 2.1 implies the well-known fact that V̂n(f) is
unbiased for

∫
fdx. This is equivalent to α = t.

6. Asymptotic variance behaviour of Newton-Cotes estimators

In this and the following section we derive variance expressions showing the exact
dependence on the mean point distance t > 0. To this end, we will consider the Peano
kernel and its associated covariance function applied to the unit-intensity scaling of the
process X: Let the point process of interest X have intensity 1/t and define its unit-
intensity scaled process by Xu = X/t. Hence the Peano kernel Km( · ;Xu) with respect
to Xu remains unchanged when X is rescaled. To avoid intricate notation, we will
write Eu, Covu, Varu when expectation, covariance and variance are understood with
respect to Xu; for instance EuKm(r) = EKm(r;Xu). Similarly, the Palm-distribution
of Xu and its expectation are denoted P0

u and E0
u, respectively. Lastly, the covariance

function of Km applied to Xu is denoted by Hu
m(s) = Covu

(
Km(s+ r),Km(r)

)
for all

s, r ∈ R.
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Before proving Theorem 2.3, we recall the variance decomposition of the estimator
(1.2) in the equidistant case, as it shows great resemblance to the new non-equidistant
set-up. First we introduce the periodic Bernoulli functions Pm, which we define as in
[8, Paragraph 297]: Let (P̃m)∞m=0 be the sequence of rescaled Bernoulli polynomials,
which are defined inductively by P̃0(x) = 1, P̃1(x) = x− 1

2 and P̃ ′m+1 = P̃m, P̃m+1(0) =

P̃m+1(1) = 1
(m+1)!Bm+1, for m ∈ N, where Bm is the mth Bernoulli number. This

normalization is chosen as in [7] in order to ease comparison with the results there.
Then Pm(x) = P̃m(x−bxc) is the mth Bernoulli polynomial, evaluated at the fractional
part of x ∈ R. Note that Pm is continuous for all m 6= 1. When the measurement
function f is (m, 1)-piecewise smooth, the variance decomposes as [7, Chap. 5]

Var(V̂ (f)) = −t2m+2
∑

a∈Dg(2m+1)

Jg(2m+1)(a)P2m+2(at ) + o(t2m+2) (6.1)

as t ↓ 0. Here, g = f ∗ f̌ is the covariogram of f , and the term o(t2m+2) can
explicitly be given as −t2m+2

∫
R g

(2m+2)(s)P2m+2( st )ds. When the point process X is
not equidistant, we find a similar variance representation involving the Peano kernels
instead of the periodic Bernoulli functions.

Proposition 6.1. Let n ∈ N be given and assume that X is a stationary point process
with intensity 1/t such that Assumption 2.1 holds. If f is (m, 1)-piecewise smooth and
k = min{m,n}, then

(−1)k+1Var(V̂n(f)) = t2k+2
∑

a∈Dg(2k+1)

Jg(2k+1)(a)Hu
k (at )

+ t2k+2

∫
R
g(2k+2)(s)Hu

k ( st )ds.

(6.2)

If k = m < n or X is weakly n-admissible, the variance behaviour is determined by the
first term, as ∫

R
g(2k+2)(s)Hu

k ( st )ds = o(1)

for t ↓ 0.

Proof. The definition of α(x) and elementary calculations give

α(x;X) = tα(x/t;Xu)

for x ∈ X, so putting ft(x) = f(tx) we see that

V̂n(f) = tV̂n(ft;X
u), (6.3)

where the latter estimator is given in terms of the unit-intensity process Xu. As k ≤ n,
Theorem 2.2 implies

R(n)(ft;X
u) =

∫
R
f
(k+1)
t (s)Kk(s;Xu)ds+

∑
a∈D

f
(k)

t

Jf (k)

t
(a)Kk(a;Xu).
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Using f ′t(x) = tf ′(tx) whenever the derivative is defined, we arrive at

R(n)(ft;X
u) = tk

∫
R
f (k+1)(s)Kk( st ;X

u)ds+ tk
∑

a∈Df(k)

Jf (k)(a)Kk(at ;Xu).

Hence, using (6.3) and the unbiasedness of V̂n, we get

Var(V̂n(f)) = t2Varu(V̂n(ft)) = t2Eu(R(n)(ft))
2

= t2k+2Eu
(∫

R
f (k+1)(s)Kk( st )ds+

∑
a∈Df(k)

Jf (k)(a)Kk(at )
)2
. (6.4)

An application of [7, Prop. 5.7] yields

f (k+1) ∗ ˇf (k+1)(x) = (−1)k+1g(2k+2)(x)

−
∑

a∈Df(k)

Jf (k)(a)f (k+1)(a− x)−
∑

a∈Df(k)

Jf (k)(a)f (k+1)(a+ x), (6.5)

and furthermore the jumps of g(2k+1) are given by

Jg(2k+1)(a) =
∑

b∈Df(k)

Jf (k)(b)Jf (k)(b− a);

see [7, Eq. (5.12)]. The stationarity and square integrability of Kk from Lemma 4.1
implies that EuKk(r) and Hu

k (s) = Covu(Kk(r),Kk(s + r)) are both finite and in-
dependent of r ∈ R. Equation (6.2) now follows by expanding (6.4), applying (6.5),
and using the structure of Jg(2k+1) together with Fubini’s theorem. The latter may be
applied due to the square integrability of Kk and the fact that f (k+1) is bounded with
compact support.

We now show limt↓0
∫
R g

(2k+2)(s)Hu
k ( st )ds = 0 if k = m < n or X is weakly n-

admissible. The weak admissibility assumption yields

lim
t↓0

∫ 1

0

Hu
k ( st )ds = 0 (6.6)

for k = n. Equation (6.6) also holds for k = m < n without additional assumptions. In
fact, for k < n we have K ′k+1 = −Kk by Lemma 3.1 and thus using Fubini’s Theorem,∣∣∣∫ t

0

Hu
k (s)ds

∣∣∣ =
∣∣Covu

(
Kk(0),Kk+1(0)

)
− Covu

(
Kk(0),Kk+1(t)

)∣∣ ≤ c <∞,
where Hölder’s inequality and the stationarity of the Peano kernels have been used to
show that the constant c is independent of t. A substitution allows to derive (6.6) from
this.

Now fix k ≤ n and let ε > 0 be given. As g(2k+2) is integrable and bounded, there
is a simple function φ such that φ ≤ g(2k+2) and

0 ≤
∫
R
g(2k+2)(s)ds−

∫
R
φ(s)ds <

ε

2C
,
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where the finite constant C > 0 satisfies sups∈R |Hu
k (s)| ≤ C. This implies that∣∣∣∣∫

R
g(2k+2)(s)Hu

k ( st )ds−
∫
R
φ(s)Hu

k ( st )ds

∣∣∣∣ < ε

2
.

As φ is simple, (6.6) implies that limt↓0
∫
R φ(s)Hu

k ( st )ds = 0. We conclude that
|
∫
R φ(s)Hu

k ( st )ds| <
ε
2 for sufficiently small t > 0, and hence∣∣∣∣∫

R
g(2k+2)(s)Hu

k ( st )ds

∣∣∣∣ < ε

for such small t > 0. �

Proof of Theorem 2.3. Recall that k = min{m,n}. Due to Lemma 4.1 there exists
C <∞ such that sups∈R |Hu

k (s)| ≤ C, and we immediately see from (6.2) that

Var(V̂n(f)) ≤ t2k+2
(
C‖g(2k+2)‖∞λ(supp g) + C

∑
a∈Dg(2k+1)

|Jg(2k+1)(a)|
)
,

where λ(supp g) <∞ is the Lebesgue measure of the support of g. As g is (2k + 1, 1)-
piecewise smooth by [7, Corollary 5.8], the t-independent constant is finite, and (2.6)
therefore follows.

For the stronger result (2.7), note that m > n and hence g is (2n + 3, 1)-piecewise
smooth, and in particular g(2n+2) is continuous. An application of Proposition 6.1 to
the (n, 1)-piecewise smooth function f and a substitution gives

(−1)n+1Var(V̂n(f)) = t2n+3

∫
R
g(2n+2)(st)Hu

n(s)ds. (6.7)

Let b > 0 satisfy supp g ⊂ [−b, b]. As g(2n+3) is bounded and measurable, g(2n+2) is
absolutely continuous. As Hu

n is bounded and hence integrable on [−b/t, b/t] for any
t > 0, also the function V given by V (s) =

∫ s
−b/tH

u
n(y)dy is absolutely continuous on

[−b/t, b/t] with derivative Hu
n almost everywhere; see e.g. [4, Section 9.3] for details

on absolutely continuous functions. Furthermore, as X and therefore Xu are assumed
strongly n-admissible, V is bounded by a t-independent constant C ′, say. Partial
integration for absolutely continuous functions [4, Theorem 9] shows∫

R
g(2n+2)(st)Hu

n(s)ds =

∫ b/t

−b/t
g(2n+2)(st)Hu

n(s)ds = −t
∫ b/t

−b/t
g(2n+3)(st)V (s)ds,

where we used that g(2n+2) vanishes at ±b. Returning to (6.7) we find

Var(V̂n(f)) ≤ t2n+3t

∫ b/t

−b/t
|g(2n+3)(st)||V (s)|ds ≤ t2n+32b‖g(2n+3)‖∞C ′.

This proves the assertion. �

Remark 6.1. If f is exactly (m, 1)-piecewise smooth with m ≤ n and (6.6) is satisfied
with k = m, the variance

Var(V̂n(f)) = (−1)m+1t2m+2
∑

a∈Dg(2m+1)

Jg(2m+1)(a)Hu
m(at ) + o(t2m+2)
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is exactly of order t2m+2. This is easily seen by assuming that∑
a∈Dg(2m+1)

Jg(2m+1)(a)Hu
m(at )→ 0

as t→ 0, and using that g(2m+1) has a jump at 0. Applying (6.6) yields a contradiction.
In particular, the decrease rate in (2.6) is optimal if m < n or X is weakly n-admissible.

7. Variance behaviour under perturbed and cumulative sampling

In this section the general findings will be exemplified and made more explicit for
the perturbed model and the model with cumulative errors introduced in Examples 2.1
and 2.2, respectively.

7.1. Perturbed sampling

To construct the perturbed model, we let U be uniform on (0, 1) and independent
of the sequence of i.i.d. variables {Ei}i∈Z, where |Ei| < 1

2 almost surely and EE1 = 0.
The perturbed model is the stationary point process X = {xi}i∈Z for which xi =
t
(
U + i+ Ei

)
, for all i ∈ Z. Under its Palm distribution, we have

hk = t
(
1 + Ek − Ek−1

)
≤ 2t, (7.1)

k ∈ Z, so (2.2) is equivalent to

E(1 + E1 − E0)−j <∞ (7.2)

for all j ∈ N. For instance, (7.2) holds if there is ε > 0 such that |E0| ≤ 1
2 − ε almost

surely. For the scaled perturbed model Xu we define the shifted kernel K∗m by

K∗m(r) = Km(r + U ;Xu) = Km(r;Xu − U)

for m ∈ N0. Note that it only depends on the perturbations {Ei} and not on the initial
uniform translation, and thus it is not (necessarily) a stationary process. However, by

the i.i.d. structure of {Ei} and the fact that β
(n)
j is a rational function of point-

increments, we see that

K∗m(r)
D
= K∗m(r + k) (7.3)

for all k ∈ Z. This can be used to show that Xu (and equivalently X) is strongly
admissible.

Lemma 7.1. Let n ∈ N be given and assume that X is a stationary point process
from the perturbed model such that (7.2) holds. Then, for all m ∈ N0 and r ≥ 2n+ 2,

Hu
m(r) = Hu

m(r+ 1) and
∫ r+1

r
Hu
m(s)ds = 0. In particular, X is strongly n-admissible.

Proof. Fix n ∈ N and r ≥ 2n + 2. For such r, the independence between U and
{Ei} yields

Eu[Km(0)Km(r)] =

∫ 1

0

E[K∗m(−u)K∗m(r − u)]du =

∫ 1

0

E[K∗m(−u)]E[K∗m(r − u)]du.

(7.4)
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Equations (7.3) and (7.4) imply that Eu[Km(0)Km(r)] = Eu[Km(0)Km(r+ 1)] and by
stationarity of Km we conclude that Hu

m(r) = Hu
m(r + 1).

Returning to (7.4), we find by Fubini’s theorem, a substitution and the stationarity
of Km that ∫ r+1

r

Eu[Km(0)Km(s)]ds

=

∫ 1

0

E[K∗m(−u)]

∫ 1

0

E[K∗m(r + 1− u− s)]dsdu

=

∫ 1

0

E[K∗m(−u)]Eu[Km(r + 1− u)]du = (EuKm(0))2,

which yields the asserted properties of Hu
m. This clearly implies that Xu and equiva-

lently X are strongly n-admissible. �

In order to obtain explicit leading terms in Theorem 2.4 we state in the following
a connection between the covariance function Hu

m and certain periodic Bernoulli func-
tions. For our purpose, it is enough to consider m ∈ {0, 1}, but we also state that the
result holds for all m, when no perturbations are present.

Lemma 7.2. Let n = 1 and let X be from the perturbed model. Then

Hu
m(r) = (−1)mE[P2m+2(r + E1 − E0)] (7.5)

for m = 0, 1 and all |r| ≥ 4.
If X = t

(
U + Z

)
(hence Xu = U + Z) is the equidistant model, then

Hu
m(r) = (−1)mP2m+2(r) (7.6)

for all n ∈ N, m ≤ n and r ∈ R.

The proof of Lemma 7.2 can be found in the supplementary material of this paper;
see [12, ????]. As a consequence of (7.6), for the equidistant model X = t

(
U +Z

)
, the

variance representation (6.2) found using the Peano kernels coincides with the classical
variance representation (6.1) found using Euler-McLaurin formulae.

Before turning to the proof of Theorem 2.4, we emphasize that the integrability
condition (2.2), or equivalently, condition (7.2), was omitted in the statement of the
Theorem as we work with the trapezoidal rule. In fact, the unbiasedness of V̂1(f) for
all stationary point processes and integrable, compactly supported functions f was
already remarked in the paragraph following the statement of Theorem 2.1. Due to
(7.1), the weights satisfy

β
(1)
0 (x) = β

(1)
1 (x) = 1

2h1(x) ≤ t,
x ∈ X, which replaces condition (2.2) in all the arguments in Sections 5 and 6. The
assumptions of Proposition 6.1 are thus satisfied.

Proof of Theorem 2.4. Let m ∈ {0, 1}. The (2m+1)st derivative of the covariogram
g is an odd function, implying Jg(2m+1)(0) = 2g(2m+1)(0+). As X is strongly admissible,
Proposition 6.1 in combination with (7.5) yields the variance decomposition

Var(V̂1(f)) = (−1)m+1t2m+22g(2m+1)(0+)Hu
m(0) + Zm(t) + o(t2m+2),
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where the Zitterbewegung Zm(t) is given by

Zm(t) = −t2m+2
∑

a∈Dg(2m+1)\{0}

Jg(2m+1)(a)E[P2m+2(at + E1 − E0)]. (7.7)

The facts that Zm is a finite sum of terms each oscillating around 0 and that it is of order
t2m+2 follow from arguments similar to those of [7, Section 5.2] as f is assumed to be
exactly (m, 1)-piecewise smooth. By the refined Campbell Theorem [10, Theorem 3.5.3]

and the facts that EuK0(0) = 0 and EuK1(0) = 1
2E

0
u[R

(1)
0 ((·)2)] by (4.3), we find that

Hu
m(0) = Varu(Km(0)) satisfies

Hu
0 (0) = E0

u

∫ h1

0

( 1
2h1 − y)2dy = 1

12E
0
uh

3
1 , (7.8)

Hu
1 (0) = E0

u

∫ h1

0

( 1
2h1y −

1
2y

2)2dy − ( 1
12E

0
uh

3
1)2 = 1

120E
0
uh

5
1 − 1

144 (E0
uh

3
1)2. (7.9)

Using (7.1), it is elementary to conclude (2.8) and (2.9).
Now let m ≥ 2 be given and define H̃u

1 by H̃u
1 (s) = Hu

1 (s) + E[P4(s + E1 − E0)].
Due to Lemma 7.2, H̃u

1 (s) vanishes for |r| > 4. Since g(4) is continuous, an application
of Proposition 6.1 to the (1, 1)-piecewise smooth function f , Fubini’s theorem and the
refined partial integration formula [7, Lemma 4.1] yield

Var(V̂1(f)) = t5
∫
R
g(4)(st)H̃u

1 (s)ds− t6
∫
R
g(6)(s)E[P6( st + E1 − E0)]ds

− t6
∑

a∈Dg(5)

Jg(5)(a)E[P6(at + E1 − E0)].
(7.10)

As the last two terms in (7.10) are of order o(t5), we only have to simplify the first
term.

For all sufficiently small t > 0 and all s ∈ R with |s| ≤ 4 the function g(4) is
differentiable on the open interval with endpoints 0 and st, so there is a point ξst in
this interval such that

g(4)(st) = g(4)(0) + g(5)(ξst)st

by the mean value theorem. Inserting this into the first term of (7.10), and using the
fact that g(5) and H̃u

1 are bounded, yields

Var(V̂1(f)) = t5g(4)(0)

∫ 4

−4
H̃u

1 (s)ds+ o(t5) (7.11)

as t ↓ 0.
Noting that P4 integrates to 0 on each interval of unit length, another application of

Fubini’s theorem, the refined partial integration formula [7, Lemma 4.1] and Lemma 3.1
gives∫ 4

−4
H̃u

1 (s)ds =

∫ 4

−4
Hu

1 (s)ds

= Eu
([
K2(−4) +

∑
x∈Xu∩[−4,4]

JK2
(x)−K2(4)

](
K1(0)− EuK1(0)

))
.

(7.12)
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The arguments that lead to (7.4) in combination with (7.3) where r = −4 and k = 8
imply Eu[K2(−4)K1(0)] = Eu[K2(4)K1(0)], and the two marginal terms in the last ex-
pression of (7.12) cancel. Hence, by the refined Campbell Theorem [10, Theorem 3.5.3]
and the translation covariance of JK2

,∫ 4

−4
H̃u

1 (s)ds = Eu
∑

x∈Xu∩[−4,4]

JK2
(x)
(
K1(0)− EuK1(0)

)
= E0

uJK2
(0)

∫ 4

−4

(
K1(x)− EuK1(0)

)
dx =

2∑
j=−3

θj +Q.

(7.13)

where θj = E0
uJK2(0)

∫ sj+1

sj

(
K1(x)− EuK1(0)

)
dx and

Q = E0
uJK2

(0)

∫ s−3

−4

(
K1(x)− EuK1(0)

)
dx+ E0JK2

(0)

∫ 4

s3

(
K1(x)− EuK1(0)

)
dx.

Here we have used the fact that s3 ≤ 4, s5 ≥ 4, s−3 ≥ −4 and s−5 ≤ −4 under P0
u

(the Palm-distribution of Xu). Using Lemma 4.1, it is seen that JK2
(0) = (1/12)h31

and consequently that θj evaluates to E0
u(1/144)h31(h3j+1 − hj+1E0

uh
3
1). As hj+1 only

depends on the perturbations Ej+1 and Ej , we conclude by independence that θj = 0
for all |j| > 1. Moreover, a coupling argument shows that Q = θ3 + θ4 = 0. The Palm
expectation of JK2(0)

∫ s−3

−4
(
K1(x)−EuK1(0)

)
dx is unchanged when we put E−3 = E5,

E−4 = E4 and E−5 = E3. Under this coupling assumption, s−3 = s5−8, s−4 = s4−8,
s−5 = s3 − 8, h−3 = h5, and h−4 = h4, and hence

Q = E0
uJK2

(0)

∫ s5−8

−4

(
K1(x+ 8)− EuK1(0)

)
dx+ E0

uJK2
(0)

∫ 4

s3

(
K1(x)− EuK1(0)

)
dx

= E0
uJK2

(0)

∫ s5

s3

(
K1(x)− EuK1(0)

)
dx = θ3 + θ4.

Summarizing, we obtain from (7.13) that∫ 4

−4
H̃u

1 (s)ds = 1
144

1∑
j=−1

E0
uh

3
1(h3j+1 − hj+1E0

uh
3
1)

= 1
8 (2µ4 + µ2µ4 − µ3

2 − µ2
3),

where the last equality follows from lengthy and tedious –but elementary– calculations.
Inserting this into (7.11) yields the assertion (2.10).

The expression (2.11) of the remainder is found by different arguments which will
be detailed in the upcoming thesis [11]. �

7.2. Cumulative sampling

Before turning to the proof of Theorem 2.5, we state in Lemma 7.3 below that the co-
variance function of the Peano kernel decreases exponentially, from which admissibility
follows.

The unit-intensity scaled cumulative process Xu is a stationary point process with
i.i.d. holding times {ωi}i∈Z. We assume that ω1 has cumulative distribution function
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F with density wrt. Lebesgue measure such that F (0) = 0. Moreover, since Xu has
intensity 1, the holding times satisfy Eωi = 1. To explicitly construct the point process
Xu, the first point X0 of Xu ∩ (0,∞) is chosen with cumulative distribution function
G,

G(x) =

∫ x

0

F̄ (y)dy, x ≥ 0,

where F̄ (y) = 1 − F (y); see eg. [1, Chap. V: Cor. 3.6]. Note that the distribution
G has density F̄ . Given X0, the last point X−1 of X ∩ (−∞, 0) (i.e. largest point)
is chosen according to X−1 = X0 − ω∗, where ω∗ is the conditional distribution of
ω0 given ω0 > X0. This assures that X−1 < 0, and corrects [14], where ω0 was used
instead of ω∗. Having chosen increments {ωi}i6=0 independent of X−1, X0, and setting

x0 = X0, xi = X0 +
∑i
`=1 ω` and x−i = X−1 +

∑i−1
`=1 ω−`, for all i ∈ N, we obtain a

realization Xu = {xi}i∈Z of the cumulative point process. This construction implies
that the point interval containing the origin has the length weighted distribution, as
expected.

The following lemma is stated in terms of the scaled unit-intensity cumulative
process Xu, but it is easily seen that it might as well have been formulated in terms
of the process X with intensity 1/t.

Lemma 7.3. Let n ∈ N be given, and let the unit-intensity process Xu be from the
cumulative model such that Eeηω1 <∞ for some η > 0, and such that Assumption 2.1
is satisfied. Then

Hu
m(s) = O(e−εs), s→∞, (7.14)

for some ε > 0. In particular, Xu and X are strongly n-admissible.

Proof. The admissibility claim obviously follows from (7.14).

In the case of the trapezoidal estimator we can state the theorem without the
integrability assumption (2.2). This is because finite moments of the Peano kernel
only require (2.2) to be true for j ∈ N. As we assume that the increments have
exponential moments, they in particular have finite moments of any positive order,
and hence, all integrability results of the Peano kernels apply.

The proof relies on exponential decays in renewal theory, and we refer to [1, Chap-
ter V] for an introduction. Moreover, for fixed n ∈ N and all m ∈ N0, we will explicitly
use the fact that Km(s) depends on n points of the underlying point process to each
side of s.

Let n ∈ N and m ∈ N0 be given. Let N = (N(s))s≥0 be a pure renewal process with
increments {ωi}i∈N, and let U be the corresponding renewal measure. Also, let y0 = 0

and yi =
∑i
`=1 ω` for i ∈ N, that is, Xu ∩ (0,∞) = {X0 + yi}i∈N0

. Then yi ∼ F ∗i for
all i ∈ N. Define ψ : [0,∞)→ R by ψ(s) = E[Km(s;N)1yn−1≤s] = E0

u[Km(s)1sn−1≤s],

and let ψ̃ : [0,∞)→ R be given by

ψ̃(s) = E[Km(s;N)1yn−1≤s1yn>s] = E0
u[Km(s)1sn−1≤s1sn>s].

Then ψ(s) = U ∗ ψ̃(s). This can be seen by a renewal argument obtaining the renewal
equation ψ = ψ̃ + ψ ∗ F , which has the desired solution. Another rather intuitive
approach is to condition on the nth to last point of N prior to s happening at time
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x ∈ [0, s), which has probability U(dx)F̄ ∗ F ∗(n−1)(s − x). Now we initialize a new
independent pure renewal process at time x and we obtain, integrating over [0, s],

ψ(s) =

∫ s

0

E[Km(s− x;N) | yn−1 ≤ s− x, yn > s− x]F̄ ∗ F ∗(n−1)(s− x)U(dx)

=

∫ s

0

ψ̃(s− x)U(dx)

= U ∗ ψ̃(s).

The exponential moment assumption implies F̄ (s) = O(e−ηs), which in turn implies

that also Ḡ(s) = O(e−ηs), as s→∞. Moreover, G ∗ F ∗i(s) = O(e−ηs), s→∞, for all
i ∈ N. We consider

EuKm(0)Km(s) = EuKm(s)Km(0)1X0+y2n−2≤s + EuKm(s)Km(0)1X0+y2n−2>s,

and an application of Cauchy-Schwarz inequality yields

EuKm(s)Km(0)1X0+y2n−2>s ≤ [EuK2
m(s)K2

m(0)]1/2P(X0 + y2n−2 > s)1/2

≤ C
(
G ∗ F ∗(2n−2)(s)

)1/2
for some finite C. Hence EuKm(s)Km(0)1X0+y2n−2>s = O(e−ηs/2) as s → ∞, and
(7.14) therefore follows once we show that

EuKm(s)Km(0)1X0+y2n−2≤s = (EuKm(0))2 +O(e−εs) (7.15)

for some ε > 0, as s → ∞. We apply a renewal argument conditioning on the nth
arrival in Xu ∩ (0,∞), that is, conditioning on the value of X0 + yn−1 ∼ G ∗ F ∗(n−1),
and then initializing a new independent pure renewal process,

EuKm(s)Km(0)1X0+y2n−2≤s

=

∫ s

0

Eu
[
Km(0)Km(s)1X0+y2n−2≤s | X0 + yn−1 = v

](
G ∗ F ∗(n−1)

)
(dv)

=

∫ s

0

E
[
Km(s− v;N)1yn−1≤s

]
Eu
[
Km(0) | X0 + yn−1 = v

](
G ∗ F ∗(n−1)

)
(dv)

=

∫ s

0

ψ(s− v)Eu
[
Km(0) | X0 + yn−1 = v

](
G ∗ F ∗(n−1)

)
(dv).

Since EuKm(0) = E0
uJKm+1(0) due to (4.3), an application of Fubini’s theorem yields∫ ∞

0

ψ̃(s)ds = E
∫ yn

yn−1

Km(s;N)ds

= EKm+1(y+n−1;N)− EKm+1(y−n ;N) = EuKm(0),

and consequently, by [1, Chapter VII: Thm. 2.10(iii)],

ψ(s) = U ∗ ψ̃(s) = EuKm(0) +O(e−ε
′s) (7.16)
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for some 0 < ε′ < η, as s → ∞. Furthermore, by another application of Cauchy-
Schwarz inequality, we conclude that∫ s

0

Eu
[
Km(0) | X0 + yn−1 = v

](
G ∗ F ∗(n−1)

)
(dv)

= EuKm(0)− EuKm(0)1X0+yn−1>s

= EuKm(0) +O(e−ηs/2)

(7.17)

as s→∞. Combining (7.16) and (7.17) yields (7.15). �

As for the perturbed model, Theorem 2.5 is stated without Assumption 2.1. This
is because the strong admissibility and the variance decomposition are satisfied for
the trapezoidal rule, when assuming (2.2) for j ∈ N only. This relaxed assumption is
ensured by the finite exponential moments of the increments.

Proof of Theorem 2.5. Let m ∈ {0, 1}. As X is strongly admissible, Proposition 6.1
in combination with the decrease rate (7.14) yields the variance decomposition

Var(V̂1(f)) = (−1)m+1t2m+22g(2m+1)(0+)Hu
m(0) + o(t2m+2).

From (7.8) and (7.9) and the fact that E0
uh

j
1 = νj , we conclude (2.12) and (2.13). �

8. An application in stereology

To illustrate the general theory, we describe a geometric application that also was
the original motivation for this work. In stereology, the volume of a compact object
Y ⊂ R3 can be approximated from sections with equidistant and parallel planes with
joint normal direction ν in the unit sphere S2, if the area of each intersection profile is
accessible; see [3, Chap. 7].

Formally, if f(x) is the area of the intersection of Y with the plane {y ∈ R3 : νT y =
x} positioned at a signed distance x ∈ R from the origin along ν, the integral

∫
fdx

coincides with the volume of Y by Fubini’s theorem. If f(x) is available at all points of
the equidistant stationary point process X = t(U +Z), the volume-estimator (1.2) can
be used and is called the (classical) Cavalieri estimator. When f(x) is known at the
points of a stationary point process X with intensity 1/t, the so-called (generalized)
Cavalieri estimator (1.1) can be used. However, as outlined above, the generalized
Cavalieri estimator does not exploit the smoothness of f and thus has a suboptimal
decrease rate as t ↓ 0. We therefore suggest employing Newton-Cotes estimators (of
appropriate order) instead.

This section is devoted to Monte Carlo simulations illustrating the advantage of the
new estimators when the sampling points are not equidistant. For illustration purposes
we start considering the Euclidean unit ball Y = {z ∈ R3 : ‖z‖ ≤ 1}. In this case, the
measurement function is

f(x) = 1[−1,1](x)π(1− x2),

which is a (1,∞)-piecewise smooth function as f ′ has jumps and is piecewise linear.
Applying the classical Cavalieri estimator to such a function yields the extension

term VarE(V̂ (f)) = π2

90 t
4 due to (2.5). Using sampling by the perturbed model or

the model with cumulative errors we expect that the generalized Cavalieri estimator
decreases at a rate of 3 and 1, respectively, whereas the trapezoidal estimator (n = 1)
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and Simpson’s estimator (n = 2) decreases at a rate of 4 in both point-models, an
asymptotic behaviour visible in Figure 1 below. It shows the empirical variances of
those three estimators based on 2000 Monte Carlo simulations as functions of the mean
number of sections, that is 2/t, with the variance plot including the extension term of
the classical Cavalieri estimator and the extension term of the trapezoidal estimator
as given by the dominating terms in (2.9) and (2.13) for the perturbed and cumulative
model, respectively. The variances in this and the following figures are shown in a
double-logarithmic scale with α and α̂ being the theoretical and approximate rates
of decrease (α̂ has been found by the least squares method applied to the datapoints
where 15 ≤ 2/t ≤ 40).
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Perturbed sampling: Variance for the ball

(a) Perturbed sampling
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(b) Cumulative sampling

Figure 1: Empirical variance for the volume estimation of the unit ball in R3 based on
perturbed sampling with Ei ∼ Unif((−s, s)) and sampling with cumulative errors with ωi ∼
Unif((1−c, 1+c)). We choose s and c such that the average relative deviation (the coefficient
of error) of the point-increment from the ideal increment 1 is 5%. In both figures, the graph
of the trapezoidal estimator (solid dark grey) is almost completely hidden by the graph of
Simpson’s estimator (solid grey), and the trapezoidal extension term (dashed dark grey) is
almost identical to the classical extension term (dashed black).

The graphs of Figure 1 are characteristic for the behaviour of variances and ex-
tensions terms for objects with (1, 1)-piecewise smooth measurement functions. For
instance ellipsoids, or, more generally, strictly convex bodies lead to the same variance
behaviour apart from the facts that intercepts of these curves may be shifted and the
Zitterbewegung may differ.

For comparison, we therefore give another example, where the measurement function
exhibits a higher order of smoothness. The measurement function

f(x) = 1[−1,1](x)
π

2
(1 + cosπx),

is obtained from a spindle shaped body of revolution, if all section planes are orthogonal
to the rotation axis. The corresponding convex body is illustrated in [6, Fig. 4]. The
measurement function f is (2,∞)-piecewise smooth. Using this measurement function,

the extension term of the classical estimator is VarE(V̂ (f)) = π6

60480 t
6. Figure 2

shows empirical variances based on perturbed sampling with the two extension terms
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included, where the extension term of the trapezoidal estimator is given as the sum of
the dominating terms in (2.10) and (2.11). In Figure 2a we use small perturbations
to illustrates the fact that the dominating term in (2.10) can be made arbitrarily
small. Hence, a decrease rate of 6 for the variance of the trapezoidal estimator can
be a good approximation with small perturbations, as the trapezoidal extension term
is approximately given by 1.7 · 10−4t5 + 3.0 · 10−2t6 here. Even when we consider
100 ≤ 2/t ≤ 200, we only obtain an approximate decrease rate of α̂ = 5.66. For
comparison, Figure 2b gives a better illustration of the actual asymptotic rate of
decrease which corresponds to the bound from Theorem 2.3, that is, α = 5. Here
we use larger perturbations, which in turn gives an approximate trapezoidal extension
term of 0.043t5 + 0.25t6. Increasing the number of intersecting planes to 2/t ≤ 100 the
actual rate is even more apparent, as we here obtain an approximate decrease rate of
α̂ = 5.19.
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(a) 5% CE (small perturbations)
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(b) 20% CE (large perturbations)

Figure 2: Empirical variance for the volume estimation of a spindle shaped body of revolution
in R3 based on perturbed sampling with Ei ∼ Unif((−s, s)). We choose s such that the
coefficient of error (CE) of the point-increments are 5% (left) and 20% (right).

The last two simulations are meant to illustrate the findings in Theorem 2.3 for
point process models where we do not have explicit formulae for the extension term.
The first is the already discussed model with accumulated errors. To illustrate the
wide range of point process models to which our results apply, we also simulated from
the Matérn hard core process of type II; see [10, sec. 3.5 pp. 93-94], which satisfies the
strong integrability assumption (2.2). The empirical variances for the aforementioned
spindle shaped body are depicted in Figure 3. It is worth noticing that the variance of
the trapezoidal estimator under the Matérn model seem to satisfy the strong bound of
Theorem 2.3, that is (2.7). Increasing the number of intersecting planes to 2/t ≤ 100
the result is more clear, as we find approximate decrease rates of α̂ = 4.94 and α̂ = 6.07
for the trapezoidal estimator and Simpson’s estimator, respectively.

9. Conclusions and future work

Estimating integrals based on known randomized sampling points with unequal
increments, we have shown that higher order Newton-Cotes quadratures are to be
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(a) Cumulative sampling
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Figure 3: Empirical variance for the volume estimation of a spindle shaped body in R3 based
on sampling with cumulative errors with ωi ∼ Unif((1−c, 1+c)) and sampling with a Matérn
hard core process of type II with intensity 1 and a hard core distance of 0.4. The value of c
is chosen such that the coefficient of error of the increment is 5%.

preferred over näıve Riemann sums, as they are unbiased and have a faster decrease
in variance for decreasing average point-increment. In particular, if the measurement
function is exactly (n, 1)-piecewise smooth, applying nth order Newton-Cotes estima-
tion yields an upper bound of the variance decreasing at the same rate as the variance
based on equidistant sampling, that is, a rate of 2n+2. Applying nth order estimation
to a function with smoothness of order, say, m > n, the variance has an upper bound
with a rate of decrease of 2n + 2 in the general case, whereas the bound decreases
at the rate 2n + 3 if the set of sampling points is strongly n-admissible. We have
shown that point processes from the perturbed and cumulative models are strongly
admissible and thus the strong bound holds in these cases. Based on a simulation
study of the trapezoidal estimator it appears that also sampling from Matérn’s hard
core model of the second kind satisfies the strong bound. From a practical point
of view the trapezoidal estimator is very interesting as the unbiasedness does not
require any integrability conditions of the underlying sampling model. Applying this
estimator to perturbed and cumulative sampling we have found asymptotic variance
expressions, with an overall trend arbitrarily close to the trend of the equidistant
case if the perturbations are small and the increments are close to 1, respectively.
This asymptotic trend can be calculated if only the derivatives of the covariogram of
the measurement function is known at 0, and if moments of the perturbations and
increments, respectively, can be computed. This observation allows in principle to
estimate the extension term of the variance from measurements of sampling positions
and sampled areas in analogy to established methods in the classical, equidistant case.
We intend to carry out this program in a future study.

It is an open question if the variance bounds in Theorem 2.3 are optimal in all
cases. As the rate of decrease in (2.6) is optimal if the model is weakly admissible
or the order of the estimator exceeds the order of smoothness of the measurement
function, we expect that the rate in (2.6) is optimal for any stationary point process
satisfying the assumptions of the theorem. Similarly we know that the bound presented
in (2.7) yields the optimal decay-rate when n = 1 under the perturbed model (assuming
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non-degenerate perturbations), and thus it is of interest to investigate whether this is
the case for all n in perturbed sampling and in general for any admissible point process
with unequal increments.
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SM1. Integrability properties

As mentioned in Section 4 the weight β
(n)
j (x) is particularly simple.

Lemma SM1.1. For all n ∈ N, x ∈ X and j = 0, . . . , n, the weight β
(n)
j (x) is a

rational function of point-increments,

β
(n)
j (x) =

q
(n)
j (h1(x), . . . , hn(x))

p
(n)
j (h1(x), . . . , hn(x))

where q
(n)
j : (0,∞)n → R is a homogeneous polynomial of degree n + 1, and p

(n)
j :

(0,∞)n → R is a non-vanishing homogeneous polynomial of degree n with non-negative

coefficients.

Proof. Fix x ∈ X, n ∈ N and j ∈ {0, . . . , n}, and consider β
(n)
j (x) as defined by

(3.3). Recall that points in X are distinct and therefore all point-increments are strictly

positive. At first we note that the denominator of the integrand in (3.3) is constant

with each term in the product satisfying

sj(x)− sk(x) =


∑j

`=k+1 h`(x) for j > k,

−
∑k

`=j+1 h`(x) for j < k,

and hence
n∏

k=0
k 6=j

(sj(x)− sk(x)) = (−1)n−jp
(n)
j (h1(x), . . . , hn(x)),

∗ Postal address: Centre for Stochastic Geometry and Advanced Bioimoaging (CSGB), Department

of Mathematics, Aarhus University, Ny Munkegade 118, 8000 Aarhus C, Denmark.
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where p
(n)
j : (0,∞)n → R is the polynomial defined by

p
(n)
j (y1, . . . , yn) =

(j−1∏
k=0

j∑
`=k+1

y`

)( n∏
k=j+1

k∑
`=j+1

y`

)
.

The definition of p
(n)
j implies that it is non-vanishing with non-negative coefficients

and that p
(n)
j (λy1, . . . , λyn) = λn p

(n)
j (y1, . . . , yn) for any λ ∈ (0,∞). That is, it is

homogeneous of degree n.

With the abbreviation s̃k(x) = sk(x)− x =
∑k

`=1 h`(x), a substitution yields∫ sn(x)

x

n∏
k=0
k 6=j

(y − sk(x)) dy =

∫ s̃n(x)

0

n∏
k=0
k 6=j

(y − s̃k(x)) dy,

for k ≥ 0. The right side of this equation is a polynomial of degree at most n + 1 in

(s̃0(x), . . . , s̃n(x)), as all its derivatives of order n+ 2 vanish. We therefore can define

the polynomial q
(n)
j : (0,∞)n → R by

q
(n)
j (h1(x), . . . , hn(x)) = (−1)n−j

∫ s̃n(x)

0

n∏
k=0
k 6=j

(y − s̃k(x)) dy.

A substitution argument shows that the right side is homogeneous of degree n + 1 as

a function of (s̃0(x), . . . , s̃n(x)) and thus also as a function of (h1(x), . . . , hn(x)). This

shows the assertion. �

Assuming either Assumption 2.1 or Assumption 4.1, this representation ensures the

Palm integrability of α(0), which is used in the proof of Theorem 2.1.

Lemma SM1.2. Fix n ∈ N. If X is a stationary point process such that (4.1) is

satisfied, then

E0|β(n)
j (s−j)| <∞ (SM1.1)

for all j = 0, . . . , n, and consequently E0|α(0)| <∞.

Proof. From Lemma SM1.1 we find real constants {c(n,j)m } and non-negative con-

stants {a(n,j)m′ } such that

|β(n)
j (s−j)| =

∣∣∣ ∑
m∈Nn

0

|m|=n+1

c(n,j)m h(s−j)
m
∣∣∣

∑
m′∈Nn

0

|m′|=n

a
(n,j)
m′ h(s−j)

m′
≤

∑
m∈Nn

0

|m|=n+1

|c(n,j)m |h(s−j)
m

a
(n,j)
m′0

h(s−j)m
′
0

,
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where m′0 is a multi-index such that a
(n,j)
m′0

> 0 which exists by Lemma SM1.1. By

linearity (SM1.1) is satisfied whenever

E0

[
h(s−j)

m

h(s−j)m
′

]
= E0

[
hm

hm′

]
<∞, (SM1.2)

for all multi-index m and m′ in Nn
0 with |m| = n+ 1 and |m′| = n, where the equality

is a consequence of the fact that the Palm distribution is invariant under bijective point

shifts; see [1, Eq. (13)]. The right side of (SM1.2) is finite by Assumption 4.1. �

SM2. Peano kernels, Bernoulli functions and variance in perturbed

sampling

In this section we consider the relation between the Peano kernels Km and the

Bernoulli functions Pm when we sample Xu = {U + Ek + k}k∈Z from the perturbed

model (recall that Xu is scaled to have unit-intensity). Note that the unit-intensity

equidistant model is obtained with degenerate perturbations concentrated at 0. As in

Section 7 we work with the shifted kernel, K∗m, defined by

K∗m(r) = Km(r + U) = Km(r;X∗),

where X∗ = Xu − U = {Ek + k}k∈Z is the shifted process. From (7.3) the shifted

kernel is periodic in law with period 1. Recall that the 1st Bernoulli function is given

by P1(r) = P̃1(r − brc), with P̃1(r) = r − 1
2 for r ∈ R.

Lemma SM2.1. Let n ∈ N be given and let Xu be a unit-intensity process from the

perturbed model such that (2.2) is satisfied. Let X∗ = {xk}k∈Z, with xk = Ek + k, be

its shifted process. For all r ∈ R, K∗0 satisfies

EK∗0 (r) = −EP1(E0 − r) + E
[ 1

n

n∑
j=0

β
(n)
j (x0)j

]
− n

2
+Q(r), (SM2.1)

where

Q(r) =

E1E0≥r[ 1n
∑n

j=0 β
(n)
j (x−j)− 1] for r < 1

2 ,

E1E0≥r−1[ 1n
∑n

j=0 β
(n)
j (x−j)− 1] for r ≥ 1

2 .

Furthermore, if EK∗0 (r) = −EP1(E0 − r) for all r ∈ R, then

Hu
m(r) = (−1)mE[P2m+2(r + E1 − E0)] (SM2.2)
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for m ≤ n and all |r| ≥ 2n + 2. If the perturbations are degenerate, that is Xu is the

unit-intensity equidistant model, (SM2.2) is true for all r ∈ R.

Proof. By (7.3) it is enough to consider r ∈ [0, 1). Let n ∈ N and r ∈ [0, 1) be given.

Recall that

nK∗0 (r) =
∑
i∈Z

1xi<r≤xi+1

0∑
`=1−n

R(n)
xi+`

((· − r)0+).

Only the summands with i = −1, 0, 1 can be non-zero, and thus

nK∗0 (r) = 1E0≥rA−1(r) + 1E0<r1E1≥r−1A0(r) + 1E1<r−1A1(r),

where, for i = −1, 0, 1,

Ai(r) =

0∑
`=1−n

R(n)
xi+`

((· − r)0+) =

0∑
`=1−n

n∑
j=0

β
(n)
j (xi+`)1`+j≥1 −

n∑
`=1

(xi+` − r).

We let q0 and q1 be the i.i.d. variables defined by q0 = (E0 − r) − bE0 − rc and

q1 = (E1 − r)− bE1 − rc. We will consider the cases r < 1
2 and r ≥ 1

2 separately.

Let r < 1
2 be given. As E1 ≥ r − 1 the kernel simplifies as

nK∗0 (r) = 1E0≥rA−1(r) + 1E0<rA0(r).

Note that q0 = E0 − r when E0 ≥ r, and q0 = E0 − r + 1 when E0 < r. Using

the independence of the perturbations, EEi = 0, and the representation of the second

power sum, we find

E1E0≥rA−1(r) = E1E0≥r

( n∑
j=0

0∑
`=1−j

β
(n)
j (x`−1)− nP̃1(q0) + (n− 1)E0 −

n2

2

)
,

E1E0<rA0(r) = E1E0<r

( n∑
j=0

0∑
`=1−j

β
(n)
j (x`)− nP̃1(q0) + nE0 −

n2

2

)
.

Constant functions are approximated exactly, and hence
∑n

j=0 β
(n)
j (x0) = xn − x0 =
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En − E0 + n. An index-shift in the former term above then implies

EK∗0 (r) = −EP̃1(q0) + E
[ 1

n

n∑
j=0

0∑
`=1−j

β
(n)
j (x`)

]
− n

2
+ E1E0≥r

[ 1

n

n∑
j=0

β
(n)
j (x−j)− 1

]
= −EP1(E0 − r) + E

[ 1

n

n∑
j=0

β
(n)
j (x0)j

]
− n

2
+ E1E0≥r

[ 1

n

n∑
j=0

β
(n)
j (x−j)− 1

]
,

where the last equality follows as β
(n)
j (x`) equals β

(n)
j (x0) in law, as they are rational

functions of identically distributed increments.

Now let r ≥ 1
2 be given. Then E0 < r and the kernel simplifies as

nK∗0 (r) = 1E1≥r−1A0(r) + 1E1<r−1A1(r).

Note that q1 = E1 − r + 1 when E1 ≥ r − 1, and q1 = E0 − r + 2 when E1 < r − 1.

With similar arguments as above we find that

E1E1≥r−1A0(r) = E1E1≥r−1

( n∑
j=0

0∑
`=1−j

β
(n)
j (x`)− nP̃1(q1) + (n− 1)E1 −

n2

2

)
,

E1E1<r−1A1(r) = E1E1<r−1

( n∑
j=0

0∑
`=1−j

β
(n)
j (x`+1)− nP̃1(q1) + nE1 −

n2

2

)
.

By the i.i.d. property of the perturbations and the exact arguments as above we

conclude that

EK∗0 (r) = −EP1(E0 − r) + E
[ 1

n

n∑
j=0

β
(n)
j (x0)j

]
− n

2
+ E1E0≥r−1

[ 1

n

n∑
j=0

β
(n)
j (x−j)− 1

]
when r ≥ 1

2 . This proves the first part of the lemma.

To show (SM2.2), we note that

EK∗m(r)− EuKm(0) = −EPm+1(E0 − r) (SM2.3)

for all r ∈ R. This is seen by induction using Fubini’s theorem, the relations P ′m =

Pm−1 and K ′m = −Km−1, the fact that EuKm(0) = 0 for all m < n (see Lemma 4.1),
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and the continuity properties of the kernels and polynomials. For |r| ≥ 2n + 2, the

perturbations in Km(r;Xu) = K∗m(r−U) and Km(0;Xu) = K∗m(−U) are independent.

With EU , EX∗ and EE0,E1
denoting the expectations with respect to the given variables,

(SM2.3) and independence then implies

Hu
m(r) = EUEX∗ [K

∗
m(r − U)− EuKm(0)]EX∗ [K

∗
m(−U)− EuKm(0)]

= EE0,E1EU [Pm+1(U + E0 − r)Pm+1(U + E1)]

= (−1)mE[P2m+2(r + E1 − E0)],

(SM2.4)

where the last equality is shown in the proof of [2, Prop. 5.2]. This shows (SM2.2).

If the model has degenerate perturbations concentrated at 0, (SM2.4) is true for all

r ∈ R with X∗ = Z deterministic. This concludes the proof. �

Corollary SM2.1. Let n ∈ N be given. If Xu = U+Z is the unit-intensity equidistant

model, then

Hu
m(r) = (−1)mP2m+2(r)

for m ≤ n and all r ∈ R.

Proof. Fix n ∈ N. Note that X∗ = Z and therefore it is deterministic. From

Lemma SM2.1 it suffices to show that K∗0 (r) = −P1(−r) for r ∈ [0, 1). Also, the

weights β
(n)
j (x) do not depend on x ∈ X∗, and we therefore denote the common

weights by β
(n)
j . As polynomials of degree 1 are approximated exactly, we find that

1

n

n∑
j=0

β
(n)
j = 1 and

1

n

n∑
j=0

β
(n)
j j =

n

2
.

Returning to (SM2.1), we conclude that K∗0 (r) = −P1(−r). �

Corollary SM2.2. Let n = 1. If Xu is from the unit-intensity perturbed model, then

Hu
m(r) = (−1)mE[P2m+2(r + E1 − E0)]

for m ∈ {0, 1} and all |r| ≥ 4.

Proof. Since β
(1)
0 (x) = β

(1)
1 (x) = 1

2h1(x), x ∈ Xu, holds for all point processes Xu,

it is easily seen that Eβ(n)
1 (E0) = 1

2 and Q(r) = 0. The result follows from (SM2.1). �
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