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Abstract
Classification and regression trees, as well as their variants, are off-the-shelf meth-
ods in Machine Learning. In this paper, we review recent contributions within the 
Continuous Optimization and the Mixed-Integer Linear Optimization paradigms to 
develop novel formulations in this research area. We compare those in terms of the 
nature of the decision variables and the constraints required, as well as the optimiza-
tion algorithms proposed. We illustrate how these powerful formulations enhance 
the flexibility of tree models, being better suited to incorporate desirable properties 
such as cost-sensitivity, explainability, and fairness, and to deal with complex data, 
such as functional data.

Keywords Classification and regression trees · Tree ensembles · Mixed-integer 
linear optimization · Continuous nonlinear optimization · Sparsity · Explainability

Mathematics subject classification 90C11 · 90C30 · 62-07

1 Introduction

Extracting knowledge from data is a crucial task in Statistics and Machine Learn-
ing, and is at the core of many fields, such as Biomedicine (Jakaitiene et al. 2016; 
Pardalos et al. 2007); Business Analytics (Martens et al. 2007; Van Vlasselaer et al. 
2017), Computational Optimization (Khalil et al. 2016; Lodi and Zarpellon 2017), 
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Criminal Justice (Ridgeway 2013; Zeng et al. 2017), Cybersecurity (Kaloudi and Li 
2020; Martínez Torres et al. 2019), Health Care (Bertsimas et al. 2016; Souillard-
Mandar et al. 2016), Policy Making (Kleinberg et al. 2018; Wager and Athey 2018), 
Process Monitoring (Apsemidis et  al. 2020), Regulatory Benchmarking (Benítez-
Peña et al. 2020a; Esteve et al. 2020). Mathematical Optimization plays an impor-
tant role in building such models (Bertsimas and Shioda 2007; Fang et  al. 2013; 
Fountoulakis and Gondzio 2016; Goodfellow et al. 2016), in interpreting their out-
put (Carrizosa et al. 2020b; Dash et al. 2018; Rudin and Ertekin 2018; Ustun and 
Rudin 2016) or visualizing it (Carrizosa et al. 2017, 2018a, b, 2020a, c). See Bot-
tou et al. (2018), Gambella et al. (2020), Liberti (2020) for surveys reviewing the 
use of Mathematical Optimization in Machine Learning, and Carrizosa and Romero 
Morales (2013), Duarte Silva (2017), Palagi (2019), and Piccialli and Sciandrone 
(2018) for surveys focusing on specific methodologies.

Classification and regression trees (Loh 2014) are state-of-the-art methods based 
on recursive partitioning (Hastie et al. 2009). They are conceptually simple, show 
excellent learning performance, are computationally cheap, and routines and pack-
ages to train them are available in popular languages such as Python and R, and are 
also appealing in terms of interpretability (Freitas 2014; Hu et al. 2019; Lin et al. 
2020; Meinshausen 2010) because of their rule-based nature. This makes them 
popular in many applications, including, for instance, a credit scoring exercise for 
granting a loan, described in what follows for illustration purposes. There, we have 
a dataset of individuals characterized by demographic and financial predictor vari-
ables, among others, and, with this information, the model predicts whether custom-
ers will be good or bad payers. In Fig. 1, we have a stylized credit scoring tree that 
will help us visualize some of the concepts reviewed in this paper.

To construct a tree model, say T  , one has at hand a training sample 
I =

{(
xi, yi

)}
1≤i≤N , with xi ∈ ℝ

p the vector of predictor variables and yi the 
response variable of individual i. Note that wlog we assume categorical variables 
have been modeled through dummy ones, and thus replaced by a set of binary vari-
ables indicating the presence/absence of each category. The nature of the response 
variable depends on whether we are dealing with a classification or a regression 
task. For classification, yi ∈ {1,… ,K} is the class label associated with individual i, 
while for regression, yi ∈ ℝ is a continuous measurement.

The main goal of a classification and regression tree T  is to predict, as accurately 
as possible, the response variable y using the predictor variables x . On the top of this 
primary goal, other important characteristics may need to be considered, such as, 
e.g., cost-sensitivity constraints to protect risk groups (Kao and Tang 2014; Turney 
1995), fairness of the method avoiding the discrimination of groups that share sensi-
tive features such as gender and race (Aghaei et al. 2019; Miron et al. 2020; Romei 
and Ruggieri 2014; Zafar et  al. 2017), and explainability properties, e.g., sparsity 
and local interpretability of the tree model (Lundberg et al. 2020; Lundberg and Lee 
2017; Molnar et al. 2020; Ribeiro et al. 2016).

A tree model T  consists of a tree decision structure and a prediction structure. The 
tree decision structure of T  is defined by two elements, namely, the topology of the 
tree, i.e., the branch nodes �B and the leaf nodes �L , as well as the arcs between them, 
and the splitting rules applied at the branch nodes. The prediction structure is defined 
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by the (statistical) prediction models attached to the leaf nodes. To illustrate these con-
cepts, consider the topology of the tree model in Fig. 1, which consists of two branch 
nodes, Node 1 and Node 2, and three leaf nodes, Node 3, Node 4, and Node 5. This 
is a binary tree, since each branch node has two children. The root node is where all 
individuals of I  start. These individuals move along the tree according to the queries 
asked at the branch nodes. In this way, and after partitioning the training sample I  suc-
cessively, each individual ends up reaching exactly one leaf node, yielding I = ∪t∈�L

It 
with It ∩ It� = � for t ≠ t′ . In terms of splitting rules, the query asked in this example 
at the root node is whether predictor variable age is below 30, while at Node 2, we ask 
whether salary is below 50. The purpose of this splitting process is to ensure that 
individuals in the same leaf node follow the same pattern (i.e., they are from the same 
class or their response variable can be accurately predicted by a unique model, such as, 
for instance, a linear or a logistic model) and such pattern is expected to be also present 
at new individuals falling inside this leaf node. The prediction in leaf node t is chosen 
fitting a model to the subsample It . In Fig. 1, we can see that Node 4 predicts individu-
als as good payers, since this is the most frequent class (in bold font) in Node 4, while, 
following a similar argument, the other two leaf nodes predict as bad payers.

Once the tree model is built, the prediction of future data is done in a determin-
istic way. Given a new observation xnew , starting from the root node, and applying 
the queries at the branch nodes, it will end up in a leaf node, say t(xnew) ∈ �L . The 
prediction made for xnew is that associated with leaf node t(xnew) . In our example, a 
new individual of age 43 and salary 28 would end up in Node 3, and therefore, it 
would be predicted as a bad payer.

Fig. 1  A tree model T  to 
predict the good payers class 
vs the bad payers class, with 
�
B
= {Node 1, Node 2} and 

�
N
= {Node 3, Node 4, Node 5} ; 

orthogonal cuts age ≤ 50 and 
salary ≤ 30 ; and prediction 
good for Node 4 and bad for 
Node 3 and Node 5

Node 1

age ≤ 50age ≤ 50Is age ≤ 50?

Node 2

Is salary ≤ 30?

Node 3

good 45%

bad 55%

Node 4

good 80%

bad 20%

Node 5

good 30%

bad 70%

Yes No

Yes No
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Mathematical Optimization is present at the three elements that define a tree 
model, namely, topology design of the tree, branching, and prediction. First, we 
face the problem of designing the topology of the tree. This network design prob-
lem is often avoided, by, e.g., choosing a binary tree of depth D, for a given value 
of D. To make this decision more data-dependent, a larger tree is built and pruned 
afterward, collapsing existing leaf nodes into new ones containing more individu-
als. See, e.g., Sherali et  al. (2009) for structural properties of the optimization 
problem associated with the pruning step. In this way, one obtains a more parsi-
monious tree, which is expected to perform better for future individuals. Second, 
we have to decide the splitting rules at each branch node. It is common to see 
trees implementing splitting rules that correspond to so-called orthogonal cuts, 
i.e., queries involving a single predictor variable, say xj ≤ � . The choice of the 
predictor variable xj and the threshold value � can be modeled with 0-1 decision 
variables. However, it is common to see enumerative procedures being applied 
independently to each of the branch nodes, thus solving the problem locally and 
not globally. Although orthogonal cuts are popular (easy to build and to inter-
pret), higher efficiency can be achieved with more sophisticated splitting rules, 
such as, e.g., linear oblique cuts, i.e., queries of the form 

∑p

j=1
ajxj ≤ � . See, e.g., 

Street (2005) for the optimization of oblique cuts. Third, and last, we need to 
decide how predictions are made at each leaf node t ∈ �L . This boils down to 
solving an optimization problem for each t ∈ �L , the shape of which depends on 
the nature of the response variable. For instance, in a regression tree, predictions 
can be made with a linear model obtained through an Ordinary Least Squares 
model. See, e.g., Demirović and Stuckey (2020) for the optimization of other cri-
teria to measure the quality of prediction.

Because of the availability of more powerful hardware and the dramatic 
advances in optimization solvers over the last decades, there has been an 
increased interest by the Mathematical Optimization community to develop novel 
approaches to build classification and regression trees. In this paper, we review 
recent contributions within the Continuous Optimization and the Mixed-Integer 
Linear Optimization (MILO) paradigms, which both have shown good accura-
cies compared to the traditional heuristic approaches. We compare the Continu-
ous Optimization and the MILO models in terms of the nature of the decision 
variables and the constraints, as well as other characteristics related to extracting 
explainability results to aid Data-Driven Decision-Making. Having these power-
ful formulations enhances the flexibility of tree models to incorporate desirable 
properties in data science models, stemming from different fields of application, 
compared to the greedy heuristic approaches.

The remainder of the paper is organized as follows. In Sect. 2, we briefly go 
through the simplest (greedy heuristic) approaches to construct classification and 
regression trees, as well as extensions such as Random Forests, to understand 
how the one-shot optimization of the decisions across the whole tree is overcome. 
In Sect. 3, we review the Continuous Optimization and the MILO paradigms to 
build optimal decision trees, and how they compare against each other. In Sect. 4, 
we describe recent progress of the mathematical optimization community to 
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incorporate important desirable model properties in tree models, and pose new 
lines of research in this burgeoning area. Finally, Sect. 5 concludes the paper.

2  Greedy classification and regression trees

Throughout this section, we discuss optimization approaches that focus on the 
design of specific components of the tree model (Aglin et al. 2020; Bennett and Blue 
1996; Nijssen and Fromont 2010; Savickỳ et al. 2020). Section 2.1 reviews the basic 
steps of greedy heuristics to build classification and regression trees with orthogonal 
cuts. We continue with generalizations that aim at enhancing accuracy. In Sect. 2.2, 
we discuss tree models with more complex cuts, while Sect. 2.3 is devoted to models 
that combine a collection of trees. Finally, Sect. 2.4 challenges the greedy approach 

V10 = 1

V15 = 1

V2 = 0

V3 = 0

V5 = 0

V6 = 0

V1 = 0

V4 = 0

V14 = 0

V12 = 0

V14 = 0

V12 = 0

V5 = 0

V14 = 0

V12 = 0

V6 = 0

V5 = 0

1 1 1 1 2 1 2 2 1 2 2 2 3 2 2 3 3 4

yes no

1
2
3
4

Fig. 2  Illustration of CART for carevaluations obtained with the R package rpart (Therneau 
et al. 2015). There are 16 leaf nodes, predicting one of the four classes, namely unacceptable (1), accept-
able (2), good (3), or very good (4). The classification accuracy provided by this model is 88.1% , while 
71.3% of the predictor variables are used across the tree
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when the user needs to control other objectives in addition to the accuracy of the 
tree model.

2.1  Building a tree model with orthogonal cuts

Since constructing optimal binary classification and regression trees is known to 
be an NP-complete problem (Hyafil and Rivest 1976), early research traditionally 
focused on the design of greedy heuristic procedures (Yang et al. 2017) that require 
a low computational effort to build tree models with just orthogonal cuts. These are 
recursive partitioning methods that build the tree model in a forward stepwise search 
implementing orthogonal cuts, yielding binary trees, e.g., CART (Breiman et  al. 
1984) and QUEST (Loh and Shih 1997), or nonbinary trees, a.k.a. multi-way trees 
(Kim and Loh 2001), e.g., CHAID (Kass 1980) and C4.5 (Quinlan 1993). Figure 2 
depicts the tree model for carevaluations, a real-world dataset from the UCI 
Machine Learning repository (Blake and Merz 1998) with N = 1728 car evaluations 
divided into K = 4 classes. This is a dataset with a small number of features, p = 15 , 
used to predict whether the car evaluation is unacceptable, acceptable, good, or very 
good.

In these greedy heuristic approaches, a criterion is needed to guide the branching 
at each branch node. In our credit scoring example, at each branch node, one aims 
to leave (most of) the good payers at one branch and (most of) the bad payers at the 
other one. This has been done by optimizing some measure of the purity of a node 
with respect to the class split in a classification task, e.g., Gini index or entropy, or 
its homogeneity with respect to the response variable in a regression task, such as, 
e.g., mean squared error or mean absolute error. Purity, although popular, only meas-
ures classification accuracy in an indirect way, and therefore may not yield good 
generalization results (Fayyad and Irani 1992), and other criteria, such as Maximum 
Likelihood (Su et al. 2004), have been proposed. At any branch node, one searches 
for the splitting rule that yields the larger gain in purity or homogeneity of the chil-
dren versus the parent. For orthogonal cuts, this implies examining the gain for all 
the predictor variables and all possible values of threshold, as many as individuals 
in the parent node. Although, in principle, there may be an infinite amount of values 
for this threshold, just taking the midpoints between consecutive observed values of 
the predictor variable in the training sample suffices. We refer the reader to Liu et al. 
(2002) for a comprehensive review on enhancing classification and regression tree 
methods through the discretization of continuous predictor variables (Dougherty 
et al. 1995). The process of partitioning finishes when a stopping criterion is satis-
fied, for instance, when the requirement on the minimum number of individuals at 
leaf nodes would be violated. Then, a prediction is chosen in each of the leaf nodes. 
Commonly, for classification, a leaf node is labeled with the most frequent class in 
the set of individuals that have fallen into the node, while for regression, the predic-
tion equals to the average of the response variable on those individuals, which is the 
prediction given by a linear model with just an intercept and no predictor variables.

Trees built in this way may still overfit, and therefore, a post-pruning step is per-
formed to remove some unnecessary splits. Pruning is usually performed in a greedy 
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fashion in which leaf nodes are sequentially removed. While, in the forward phase, a 
purity criterion was considered, now, a criterion combining accuracy and tree com-
plexity is used. The removal of leaf nodes continues, while the value of the criterion 
improves. See Pangilinan and Janssens (2011) for a bi-objective approach to control 
both criteria.

To enhance their performance, the greedy procedures were extended in different 
directions, such as the use of global optimization approaches (Barros et al. 2011; Fu 
et al. 2003; Grubinger et al. 2014). Below, we will elaborate on two other important 
generalizations, namely, building trees with oblique cuts or based on combining a 
collection of trees.

2.2  Building a tree model with oblique cuts

The first enhancement relates to extending orthogonal splits to oblique, a.k.a. mul-
tivariate, splits, with implementations such as OC1 (Murthy et  al. 1994), oblique.
tree (Truong 2009), and HHCART (Wickramarachchi et al. 2016). Trees implement-
ing oblique cuts are more versatile and tend to generate smaller trees with better 
performance (Brodley and Utgoff 1995; Li et al. 2003). This improvement in accu-
racy comes with increasing computational times, since the enumerative procedure 
does not apply anymore and, instead, some sort of optimization problem has to be 
solved at each branch node. In addition, model interpretability may also be harmed. 
There have been some proposals to build oblique cuts using a baseline classification 
method at each branch node, such as Support Vector Machines (Orsenigo and Ver-
cellis 2003) or Logistic Regression (Truong 2009), such that the predictions obtained 
in this way split the parent node into children. Nevertheless, tackling the optimi-
zation of oblique cuts is already at the seminal papers of Bennett (Bennett 1992; 
Bennett and Blue 1996). For binary classification, she adjusts to the tree context 
the use of Linear Programming (LP) to build separating hyperplanes (Bennett and 
Mangasarian 1992). In Bennett (1992), the hyperplane that minimizes the average 
distance from the misclassified individuals to the hyperplane is modeled as an LP 
problem, while in Bennett and Blue (1996), for a fixed topology of the tree and fixed 
predictions at the leaf nodes, the problem of finding the optimal oblique cuts for all 
branch nodes is written as a set of disjunctive linear inequalities yielding a nonlinear 
problem. Since these approaches apply only to two-class problems, in Street (2005), 
multi-class problems are addressed. In Norouzi et al. (2015), and given the challenge 
of optimizing the empirical loss of the tree model, a convex–concave upper bound is 
optimized instead, using Stochastic Gradient Descent.

2.3  Building an ensemble of trees

The second enhancement of the strategy discussed in Sect. 2.1 relates to building 
models that combine the outputs given by a collection of trees, as opposed to a sin-
gle one, by, for instance, bagging or boosting trees (González et al. 2020). The main 
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exponent of bagging is Random Forests (Biau and Scornet 2016; Breiman 2001; 
Fawagreh et al. 2014; Genuer et al. 2017), while two of the most popular approaches 
to boosting are AdaBoost (Freund and Schapire 1997) and Gradient Boosting 
Machines (Friedman 2001, 2002).

Random Forests (RFs) bag (unpruned) orthogonal trees, and more recently 
oblique ones (Katuwal et al. 2020; Menze et al. 2011). The trees in the RFs are built 
independently of each other, on bootstrapped samples of individuals, where the vari-
able selection at each branch node is performed using a random subset of predictor 
variables. Hence, the trees built differ, because different samples of individuals and 
features are used. Once the trees are built following the greedy approach described 
above, RF predicts by combining the predictions of the single trees, e.g., through an 
average in regression or a majority vote in classification.

AdaBoost is an iterative procedure in which the so-called weak learners (trees of 
small depth), as well as the individuals, are assigned weights. Individuals for which 
the prediction was poor in the previous iterations are given a higher weight. Each 
iteration trains a new weak learner, calculates its error, and defines the weight of 
the weak learner as well as the weights of the individuals. In some variants of Ada-
Boost, the weights are optimized (Demiriz et al. 2002; Pfetsch and Pokutta 2020) 
with techniques such as column generation. While the basic version in classification 
is designed for two-class classification problems, there are also variants to deal with 
the multi-class case directly, such as in Hastie et al. (2009), where the authors show 
that this is equivalent to a forward stage-wise additive modeling algorithm, a.k.a. 
forward stage-wise boosting, that minimizes a novel exponential loss for multi-class 
classification.

Gradient Boosting Machines (GBMs) is also an iterative procedure based on 
combining weak tree learners but usually deeper than in AdaBoost. At the end of 
each iteration, the residual of the learner at hand is evaluated for each individual. 
These residuals become the response variable for the next iteration, and therefore, 
GBM can be seen as a stage-wise additive modeling algorithm. In each iteration, 
GBM performs a steepest descent minimization for a given loss function, such as 
mean squared error, mean absolute error, and huber loss functions for regression, 
and multi-class logistic likelihood for classification. One of the most popular imple-
mentations is XGBoost (Chen and Guestrin 2016), which is praised as highly accu-
rate and scalable.

RFs, as well as other methods combining tree models, give, in general, better 
accuracies than single greedy trees (Fernández-Delgado et al. 2014). However, this 
is at the expense of losing interpretability and increasing running times. Indeed, 
these models have a highly complex decision function, being thus less appealing to 
novel users. The way this lack of interpretability is often addressed is by giving a 
measure of variable importance, which are often based on permutations of the sam-
ple values (Altmann et al. 2010; Louppe et al. 2013; Strobl et al. 2008) or on Game 
Theory concepts from cooperative games, such as the Shapley value (Casalicchio 
et al. 2019; Molnar et al. 2018). Recently, there have also been some contributions 
to enhance model interpretability by replacing the complex model with a simpler 
surrogate, say a tree model, such that the output of both models is as close as pos-
sible. This approach is suggested in Vidal et  al. (2020), where the closest tree is 
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extracted using dynamic programming. Alternatively, one can extract a collection 
of rules, and techniques such as column generation may be used as in Birbil et al. 
(2020) or heuristics as in Bénard et al. (2019, 2020).

2.4  Shortcomings of the greedy approach

Classic classification and regression trees, as well as the extensions mentioned 
above, cannot easily include desirable global structural properties, such as model 
sparsity and cost-sensitivity, due to their greedy nature. Nonetheless, some attempts 
have been made to address this shortcoming. To enhance model interpretability, one 
wishes to perform feature selection to control the number of predictor variables used 
across the tree (Ruggieri 2019). The regularization framework in Deng and Runger 
(2012) adds to the criterion optimized in each branch node a penalty term for predic-
tor variables that have not appeared yet in the tree, so that the process is reluctant 
to use too many predictor variables, yielding a sparse tree model. This approach is 
refined in Deng and Runger (2013), by also including the importance scores of the 
predictor variables (Louppe et al. 2013; Strobl et al. 2008), obtained in a preprocess-
ing step running a preliminary RF. In the next section, we model sparsity explicitly, 
and thus, it can be optimized, as we do with the learning performance of the tree 
model. Similarly, the control on the performance of the tree model in critical/risk 
groups is done through cost parameters, such as penalizing with a higher cost the 
errors in the critical groups, as opposed to modeling the corresponding constraints 
explicitly as we will do in Sect. 4.

3  Optimal classification and regression trees

In recent times, and because of the dramatic improvements in hardware and opti-
mization solvers (Bixby 2012), many papers on building optimal (in some sense) 
classification and regression trees have appeared. In this section, we focus on the 
Continuous Optimization and the Mixed-Integer Linear Optimization paradigms 
(Bertsimas and Dunn 2017; Blanquero et al. 2020b; Firat et al. 2020; Günlük et al. 
2019). The reader is referred to, e.g., Verhaeghe et al. (2019) for a constraint pro-
gramming paradigm, an SAT one in Narodytska et al. (2018), Yu et al. (2020), and a 
dynamic programming one in Demirović et al. (2020). This section aims at compar-
ing the two paradigms in terms of type of decision variables and constraints required 
to model (1) the movement of individuals along the tree and (2) the prediction rule 
for new individuals.

3.1  Continuous optimization

In this section, we describe how Optimal Randomized Classification and Regres-
sion Trees work and what type of Nonlinear Continuous Optimization formulations 
have been provided in Blanquero et al. (2021, 2020a, b) to build them. Recall that 
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xi denotes the vector of predictor variables of individual i, i = 1,… ,N . Throughout 
this section, we typeset other vectors and matrices of decision variables in bold font.

In Optimal Randomized Classification and Regression Trees, the splitting rule at 
branch node t ∈ �B is probabilistic (Irsoy et al. 2012; Yang et al. 2018), i.e., individ-
uals move with a certain probability to the left child of t and with the complemen-
tary probability to the right one. This type of rule is modeled evaluating F(⋅) , the 
smooth CDF of a univariate continuous random variable, at the splitting rule in node 

t, yielding pit
(
a
⋅t,𝜇t

)
= F

(
1

p
a⊤
⋅t
xi − 𝜇t

)
 . See in Fig.  3 the probabilistic splitting 

rules at Nodes 1 and 2, where F is the CDF of a logistic random variable. With a 
probabilistic splitting rule, individual i moves along all paths in the tree. The proba-
bility distribution across the leaf nodes associated with individual i is defined by 
{Pit(a,�)}t∈�L . With the probabilities associated with the individuals and the predic-
tions at the leaf nodes, one can evaluate the total expected error of the randomized 
tree model. The goal of Optimal Randomized Classification and Regression Trees is 
to minimize the expected error as well as maximize the so-called local and the 

Node 1

How much is

age-50?

Node 2

How much is

salary-30?

Node 3

bad

Node 4

good

Node 5

bad

p1 =
1

1 + e(age-50)
1− p1

p2 =
1

1 + e(salary-30)
1− p2

Fig. 3  A randomized tree model T  to predict the good payers class vs the bad payers class, where F is 
the CDF of a logistic random variable
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global sparsity of the tree. These sparsity terms are modeled with LASSO terms and 
controlled with their corresponding parameters.

We present below the Continuous Optimization formulation for Optimal Ran-
domized Classification and Regression Trees in Blanquero et  al. (2021, 2020a, b) 
with the purpose of visualizing the conciseness of its feasible region. Before, we 
need to introduce some notation and decision variables:

Data

D  depth of the tree,
N

left
t

  set of ancestor nodes of leaf node t whose left branch takes part in 
the path from the root node to leaf node t, t ∈ �L,

N
right
t   set of ancestor nodes of leaf node t whose right branch takes part 

in the path from the root node to leaf node t, t ∈ �L,
Wyik

≥ 0  misclassification cost incurred when classifying an individual i, 
whose class is yi , in class k, yi, i = 1,… ,N, k = 1,… ,K,

F(⋅)  smooth CDF of a univariate continuous random variable symmet-
ric w.r.t. 0, used to define the probabilities for an individual to go 
to the left or the right child node in the tree,

�local, �global ≥ 0  local and global sparsity regularization parameters.

Decisions

ajt ∈ ℝ  coefficient of predictor variable j in the splitting rule at branch node t ∈ �B , 
with a =

(
ajt
)
j=1,…,p, t∈�B

 . The expressions aj⋅ and a
⋅t will denote the jth 

row and the tth column of a , respectively,
�t ∈ ℝ  independent term in the splitting rule at branch node t ∈ �B , with 

� =
(
�t

)
t∈�B

,
Ckt ≥ 0  probability of being assigned to class label k = 1,… ,K, for an individual 

at leaf node t, t ∈ �L , with C =
(
Ckt

)
k=1,…,K, t∈�L

.

Probabilities

pit
(
a
⋅t,�t

)
  probability of individual i going down the left branch at branch node t. 

Its expression is pit
(
a
⋅t,𝜇t

)
= F

(
1

p
a⊤
⋅t
xi − 𝜇t

)
 , i = 1,… ,N, t ∈ �B . 

Note that this probability is a smooth function of 
(
a
⋅t,�t

)
 , due to the 

smoothness of the CDF F.
Pit(a,�)  probability of individual i falling into leaf node t. Its expression is 

Pit(a,�) =
∏

t∈Nleft
t

pit
�
a
⋅t,�t

� ∏

t∈N
right
t

�
1 − pit

�
a
⋅t,�t

��
 , i = 1,… ,N, t ∈ �L, 

and is also a smooth function of (a,�).

With this notation, the Continuous Optimization formulation to build a rand-
omized classification tree model reads as follows:
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with

The objective function of Problem (1) has three terms. The first one is equal to the 
average misclassification cost in the training sample, while the second and the third 
ones are regularization terms. The second term addresses the local sparsity of the 
tree model, penalizing the �1-norm of the coefficients of the predictor variables in 
each of the splitting rules along the tree. The larger the parameter �local , the fewer 
predictor variables in the splitting rules, and thus, the tree model would be more 
similar to a tree with orthogonal cuts, which is much more interpretable. However, 
it is also important to control the global sparsity of the tree model, i.e., whether a 
given predictor variable is ever used by the tree model, and thus, the (hopefully few) 
predictor variables which really affect the classification/regression are identified. 
This is done in the third term of the objective function through summing for the dif-
ferent predictor variables the �∞-norm of the vector of coefficients associated with 
such variable, which forces these coefficients to be shrunk simultaneously across all 
branch nodes.

In terms of the feasible region F  , for each t ∈ �L , we need to impose semi-assign-
ment constraints as well as nonnegativity of Ckt to ensure that {Ckt}

K
k=1

 is a probability 
distribution for the class assignment in leaf node t ∈ �L . Note that, since the technol-
ogy matrix satisfies the total unimodularity property and the objective function is linear 

(1)

minimize
(a,�,C)∈F

1

N

N∑

i=1

∑

t∈�L

Pit(a,�)

K∑

k=1

Wyik
Ckt + �local

p∑

j=1

‖‖‖aj⋅
‖‖‖1 + �global

p∑

j=1

‖‖‖aj⋅
‖‖‖∞

(2)

F =

{
(a,�,C) ∈ ℝ

p|�B| ×ℝ
|�B| ×ℝ

K|�L| ∶

K∑

k=1

Ckt = 1,Ckt ≥ 0, ∀k = 1,… ,K ∀t ∈ �L

}
.

Node 1

age ≤ 50

Node 2

salary ≤ 30

Node 4

(Class 4 )

Node 5

(Class 3 )

Node 3

salary ≤ 30

Node 6

(Class 2 )

Node 7

(Class 1 )

-1

0

1

Fig. 4  Illustration of Optimal Randomized Classification Tree for carevaluations, with 
�global = �local = 0 . The classification accuracy of this model is 92.7% , while 100% of the predictor vari-
ables are used across the tree as well as in each of the three branch nodes. The magnitude of the coef-
ficients of the splitting rule in each branch node is visualized with a heatmap. The heatmap transitions 
from blue for negative coefficients, to red for positive ones, while white is chosen for values close to 0



17

1 3

Mathematical optimization in classification and regression…

for fixed (a,�) , there exists an optimal solution to Problem (1), such that Ckt ∈ {0, 1} , 
meaning that each leaf node predicts exactly one class. Figure 4 plots the Optimal Ran-
domized Classification Tree for carevaluations, with �global = �local = 0 , while 
Fig.  5 illustrates the trade-off between accuracy and global sparsity when �global is 
varied.

Once the tree model is built, the prediction of future data is done as follows. Let 
(a∗,�∗,C∗) be the optimal solution to Problem (1). The probability of individual i ∈ I  
being assigned to class k is equal to 

∑
t∈�L

Pit(a
∗,�∗)C∗

kt
 , for each k = 1,… ,K . For 

an incoming individual with predictor vector � , the probability of belonging to class k 
returned by the randomized tree is equal to:

where P
� t(⋅, ⋅) is defined similarly to Pit(⋅, ⋅) where � replaces �i . Note that Πk(⋅) is 

smooth in the continuous predictor variables, since the CDF F is assumed to be a 
smooth function. This means that even small changes in these variables will pro-
duce changes in Πk(⋅) . This is not the case for deterministic tree models such as 
CART and RF, where there are no changes at all in the class membership prob-
abilities when there are small changes in the continuous predictor variables. The 
output associated with each � is probabilistic, namely, the vector of probabilities (
Π1(�),… ,ΠK(�)

)
 . If a deterministic classification is sought, the class predicted for 

� is k(�) ∈ argmax{Πk(�), k = 1,… ,K}.
Problem (1) has (p + 1)|�B| + K|�L| continuous decision variables, associated 

with the coefficients of the predictor variables, including the independent terms, as 
well as with the class assignment, and |�L| linear constraints relating to the class 

(3)� → Πk(�) ∶=
∑

t∈�L

P
� t(a

∗,�∗)C∗
kt
,

Fig. 5  Trade-off between accuracy and global sparsity in Optimal Randomized Classification Trees for 
carevaluations where �global is varied
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assignment too. The first term in the objective function is smooth, while the other 
two terms are not, due to the �1 and �∞ norms. With standard techniques, we can 
find an equivalent smooth formulation, which can be given to any nonlinear solver 
that can deal with constrained problems. The number of nodes in the tree, and thus 
the number of decision variables in Problem (1), grows exponentially with the depth 
of the tree, D. Hence, solving Problem (1) may be time demanding for large or even 
moderate values of D. Fortunately, the computational experiments in Blanquero 
et  al. (2021, 2020a, b) illustrate that good accuracies can be achieved with small 
values of D, namely, D ≤ 4.

Several important remarks on Problem (1) follow. First, the feasible region F  in 
(2) speaks favorably toward the scalability of Problem (1) with respect to the size 
of the training sample. Indeed, when the number of individuals N grows, the fea-
sible region remains of the same size, since there are no decision variables directly 
relating to the individuals. Hence, although the evaluation of the objective function 
becomes more time demanding with larger N, the dimensionality of the problem to 
be solved remains the same. Second, there are two regularization terms that can help 
with feature selection, i.e., identify a subset of predictor variables with a good trade-
off between accuracy and sparsity. Third, we can perform with standard techniques a 
full sensitivity analysis to study the impact that predictor variables have on the class 
prediction for each individual. Recall that the function Πk(⋅) in (3) is smooth in the 
continuous predictor variables. Therefore, we have that small changes in the con-
tinuous predictor variables in a given individual lead to small changes in the values 
of the probabilities of class membership, since Πk(⋅) can be approximated by its first 
order Taylor expansion. This means that, for any individual, we can perform a full 
sensitivity analysis to study the impact that each continuous predictor variable has 
on the probability of class membership. This is a step forward toward local explain-
ability of tree models, addressed in Sect. 4.

To end this section, we note that Problem (1) can easily be modified for regres-
sion. Indeed, one needs to replace the information relating to the prediction of the 
K classes and the loss incurred, by the prediction of the (continuous) response at 
each leaf node and a suitable loss. In terms of prediction, one can use any regression 
model that is compatible with an optimization approach to learning, such as, e.g., 
a linear, a generalized linear, or an LASSO model. For each individual, the predic-
tion is the expected value of the predictions made at the different leaf nodes, using 
the probability distribution {Pit(a,�)}t∈�L . If we take, for instance, the mean squared 
error, we would have the following unconstrained problem:

As for Problem (1), and by rewriting the regularization terms, this can be reformu-
lated as a smooth problem with linear constraints. Other losses can be easily mod-
eled too, such as the mean absolute error or the quantile regression (Koenker and 

minimize
(a,𝝁,ã,�̃�)∈ℝ(p+1)(|𝜏B |+|𝜏L |)

1

N

N∑

i=1

(∑

t∈𝜏L

Pit(a,𝝁) (ã
⊤

⋅t
xi + �̃�t) − yi

)2

+ 𝜆local
p∑

j=1

‖‖‖(aj⋅, ãj⋅)
‖‖‖1 + 𝜆global

p∑

j=1

‖‖‖(aj⋅, ãj⋅)
‖‖‖∞.
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Hallock 2001; Kriegler and Berk 2010). These losses though need to be rewritten, 
in a similar fashion as for regularization terms, to ensure the smoothness of the 
objective function. For these losses, none of the decision variables is directly associ-
ated with the individuals, and therefore, the dimension of the optimization problem 
behind regression still does not depend on the size of the training sample N.

3.2  Mixed‑integer linear optimization

In this section, we review Mixed-Integer Linear Optimization (MILO) approaches to 
build Optimal Classification and Regression Trees. The key issue in this paradigm 
is that one controls the path each individual takes and thus calls for the modeling of 
(many) binary decision variables. We start with the approach in Bertsimas and Dunn 
(2017), Dunn (2018), and discuss how it compares to the continuous formulation in 
the previous section. We then continue by reviewing other relevant literature, which 
involves different decision variables and/or more sophisticated solution approaches.

In Bertsimas and Dunn (2017), the aim is to build a deterministic optimal binary 
tree of depth D guided by two objectives, namely, the misclassification error and 
the complexity of the tree, where the latter is measured as the summation across 
all branch nodes of the number of predictor variables used in the splitting rules. 
The MILO formulation in Bertsimas and Dunn (2017), OCT-H in Eq. (28) on pages 
1054–1055, requires the following notation and decision variables:

Data

D  depth of the tree,
� ≥ 0  complexity parameter in the objective function,

Decisions

dt ∈ {0, 1}  1 if a cut is applied at branch node t, t ∈ �B,
lt ∈ {0, 1}  1 if leaf node t contains individuals, t ∈ �L,
ajt ∈ [−1, 1]  coefficient of predictor variable j in the splitting rule at branch node t, 

j = 1,… , p, t ∈ �B,
�t ∈ ℝ  independent term in the splitting rule at branch node t, t ∈ �B,
zit ∈ {0, 1}  1 if individual i is in leaf node t, i = 1,… ,N, t ∈ �L,
Ckt ∈ {0, 1}  1 if leaf node t is labeled with class k, k = 1,… ,K, t ∈ �L,
sjt ∈ {0, 1}  1 if predictor variable j is used at branch node t, j = 1,… , p, t ∈ �B.

As in Sect.  3.1, d , l , a , � , z , C , and s denote the corresponding vector/matrix of 
decision variables. This formulation requires binary decision variables to define the 
topology of the tree, namely, d and l ; continuous decision variables a and � to define 
the splitting rules; binary decision variables z to control in which leaf node the indi-
viduals are placed by the tree model; binary decision variables C associated with 
the class prediction; and binary decision variables s to control the local sparsity of 
the tree model. This formulation requires more decision variables than Problem (1), 
many of them are binary, and the number of some of them, z , linearly depends on 
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the size of the training sample N. Therefore, as noted in Dunn (2018), this approach 
is only feasible for moderate values of N.

With regards to the objective function, it consists of two terms, and their linear 
combination through parameter � is to be minimized. The first term in the objec-
tive function represents the total misclassification error across all leaf nodes, 
assuming that individuals are assigned to the majority class in the leaf node they 
have been assigned to. Auxiliary decision variables are required to linearize the 
maximization in the majority class as well as big-M constraints linking them with 
variables Ckt . Thus, we cannot use the same arguments as in the previous section, 
to prove that the integrality constraints of Ckt can be relaxed without loss of opti-
mality. The second term of the objective function measures the local sparsity of 
the tree, by counting the number of predictor variables used at each branch node 
and summing these up, which can be done through decision variables s . This for-
mulation has a nonlinear objective function as in Problem (1), but as mentioned 
above, one can define additional variables and additional constraints to linearize 
it. In addition, the regularization terms in Problem (1) are replaced by a term that 
fully controls the local sparsity with binary decision variables. Global sparsity, 
although not modeled in Bertsimas and Dunn (2017), can be included, e.g., with 
an LASSO term as in Sect. 3.1, or by adding new binary decision variables and 
additional constraints, linking them to the existing ones s.

In terms of the feasible region, and as in Problem (1), we have the semi-
assignment constraints associated with C . In addition, there are other constraints 
that need to be included in the MILO formulation. Indeed, since this approach 
is deterministic, we need to impose that each individual reaches exactly one leaf 
node, and that z are well-defined, i.e., they are compatible with splitting rules 
applied at the branch nodes. There are well-defined constraints between s and 
d . We have big-M constraints to ensure that ajt = 0 if predictor variable j is not 
used in branch node t, i.e., sjt = 0 . There are also big-M constraints to ensure that 
zit = 0 if node t does not contain individuals, i.e., lt = 0 , as well as to force that 
the corresponding coefficients a and � to be zero if no split is applied at a branch 
node. Finally, we have to forbid that a branch node splits if its parent did not, 
except for the root node.

This formulation can be given to any MILO solver. As in Sect. 3.1, the compu-
tational experiments in Bertsimas and Dunn (2017) illustrate that good accuracies 
can be achieved with small values of D, but at a considerable computational cost 
for small and medium problem instances. To reduce this computational burden, a 
local search approach is proposed in Dunn (2018), where the MILO formulation 
is solved for the subproblems associated with branch nodes, thus yielding smaller 
formulations that are solved repeatedly. With this local search procedure, it is 
possible to deal with deeper trees, D ≤ 10 , more efficiently. However, it is harder 
to directly control, for instance, the global sparsity of the tree, a crucial issue 
if, on the top of having a procedure yielding high accuracies, identification of 
the relevant predictor variables is sought. Moreover, contrary to the randomized 
trees, we cannot perform a proper sensitivity analysis to explain how small per-
turbations on a given feature affect the prediction. This means that it is not easy 
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to identify the relevant variables for a given individual, while this is obtained as a 
byproduct for randomized trees.

The MILO formulation we have just described can be modified to implement 
orthogonal cuts by making a binary, while the feasible region and the objective func-
tion require some small changes. The formulation can also be modified to address a 
regression task (Dunn 2018), as we have done for Problem (1).

There are other approaches in the literature within the MILO paradigm. In Aghaei 
et al. (2020), a flow-based MILO formulation is proposed for binary predictor varia-
bles. A sink node is added to the tree, yielding a directed acyclic graph (Ahuja et al. 
1993). Only individuals ending up in the sink are correctly classified, while flow 
conservation constraints are imposed at the other nodes of the tree. In Firat et  al. 
(2020), an alternative formulation is proposed with new decisions variables associ-
ated with the paths from the root node to the leaf nodes and their splits, which is 
solved with a column generation-based heuristic. In Günlük et al. (2019), an MILO 
formulation for combinatorial splitting rules for categorical variables is proposed, 
i.e., rules defined by a subset of categories that move individuals to the left child 
node if the rule is satisfied and to the right child node, otherwise, yielding a binary 
representation of them (Carrizosa et al. 2019).

With the MILO approach, we face the curse of dimensionality, since the number 
of binary decision variables grows linearly with the size of the training sample N. 
Recent attempts to address this can be found in the literature. An alternative for-
mulation is proposed in Verwer and Zhang (2017), Verwer et al. (2017, 2019) with 
a more compact feasible region that aggregates some of the constraints described 
above. In Zhu et al. (2020), a subset of the training sample is selected in a preproc-
essing step using an LP problem, while, in Zantedeschi et al. (2020), a continuous 
relaxation is developed.

4  Challenges for the future

Throughout this paper, we have illustrated how powerful optimization is to con-
struct classification and regression tree models T  that show a good trade-off 
between accuracy and sparsity. This section is devoted to discuss new challenges 
posed by desirable properties we may want to seek or by the complexity of the 
data at hand, and the first steps that the Mathematical Optimization community 
has taken to give answers to them. The first research avenue we touch on consists 
of expanding the family of criteria under consideration: on the top of accuracy 
and sparsity, there may be other important requirements on T  , such as fairness, 
to ensure that T  protects sensitive groups (Romei and Ruggieri 2014), or explain-
ability, to ensure that the knowledge gained is actionable (Aouad et  al. 2019; 
Bertsimas et al. 2019; Cui et al. 2015; Höppner et al. 2020) in, for instance, the 
design of drug therapies (Mišić 2020). The second research avenue consists of 
designing tree models for more complex data: we will discuss the new challenges 
that arise when some of the predictor variables available to construct T  , or even 
the response, may not be continuous or categorical, and novel tree models are 
required with these new types of data. Although of interest, this section does not 
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address the asymptotic behavior of tree models: assuming data to be a random 
sample from a given distribution, an important question is to identify the statisti-
cal convergence of the random sequence of optimal trees and optimal values (e.g., 
optimal expected squared error in a regression tree) when the size of the training 
set goes to infinity. Very limited results are available in the literature, making 
strong assumptions on the structure of the tree models. The reader is referred to 
Biau et al. (2008), Denil et al. (2013), Scornet (2016), and Scornet et al. (2015) 
for some results in this line.

While there has been a paramount increase in the use of Machine Learning in 
Decision-Making, it is less well understood how models arrive to decisions. Yet, 
transparent (a.k.a. interpretable, comprehensible, understandable) models, (Cer-
quitelli et al. 2017; Hofman et al. 2017), are desirable in Medical Diagnosis (Frei-
tas 2014; Ustun and Rudin 2016), or Criminal Justice (Jung et al. 2017, 2020), to 
name a few. While a black-box model could be extremely good at predicting who 
would benefit from a policy intervention, policy makers should be able to explain 
why decisions are taken, as is evident, e.g., in the COVID-19 crisis. Moreover, 
transparency (Chen et al. 2017) is a must when, for instance, benchmarking the 
providers of utilities (Benítez-Peña et al. 2020a) or in credit scoring in consumer 
lending (Baesens et al. 2003), the reason being the so-called right-to-explanation 
in algorithmic decision-making, imposed by the European Union since 2018 
(European Commission 2020; Goodman and Flaxman 2017; Wachter et al. 2017). 
Although the term Explainable Artificial Intelligence (XAI) was coined a while 
ago, it is now tracking a lot of attention from different communities, see, e.g., 
Barredo Arrieta et  al. (2020), Gunning and Aha (2019), Holter et  al. (2018), 
Miller (2019).

There is a big body of literature relating to a common surrogate for explain-
ability, namely, model sparsity. The aim there is to perform feature selection to 
work with a smaller number of predictor variables as a first step toward explain-
ing the behavior of the model globally. This can be done after the model has 
been built, through variable importance measures, deleting those variables with 
a small importance (Cohen et al. 2007; Guyon and Elisseeff 2003). Examples of 
these measures were given in Sect. 2, and are based, for instance, on calculating 
the impact on accuracy by permuting the values of the feature under investiga-
tion, or, inspired by cooperative games, calculating the contribution toward the 
accuracy of the feature to any coalition of features. Alternatively, we can embed 
the sparsity in the optimization model solved to train the model, as we have seen 
in the optimal trees reviewed in the previous section, either with LASSO terms 
(Hastie et al. 2015) or zero-norm terms (Weston et al. 2003).

Equally important is to give local explanations, i.e., at the individual level, say 
x0 . Take, for instance, the stylized credit scoring tree in Fig.  1 and the customer 
discussed in the introduction of age 43 and salary 28. Recall this individual was 
assigned to the bad payers class, and therefore was denied the credit. The tree model 
in Fig.  1 has made this decision, because age is below 50 and salary is also 
below 30. This explanation, however, is of limited use to the individual who would 
still not understand how to improve the credit score to be labeled as good, and thus 
get the credit granted. Moreover, this type of explanations, i.e., the ones given by the 
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path from the root to the corresponding leaf node, can be arbitrarily long (Izza et al. 
2020). Instead, one can offer to individuals counterfactual explanations (Fernández 
et al. 2020; Lucic et al. 2020; Mothilal et al. 2020). See Karimi et al. (2020), Sokol 
and Flach (2019), Verma et al. (2020) for recent surveys on counterfactual explana-
tions. This is an explanation about how features need to change to obtain a different 
class prediction. For our individual at hand, with x0 = (43, 28) , we can say that we 
have labeled him/her as bad, but that with the same age and salary above 30, 
the label would have been good instead. This is an example of local explainability, 
(Molnar et al. 2020), in which the aim is to identify a small set of features and their 
corresponding value to make the prediction change.

The goal of local explainability is, therefore, to understand which are the predic-
tor variables that have the largest impact on the individual prediction. In case of 
a linear regression model, this analysis can naturally be performed using the coef-
ficients �j , j = 1,… , p , of the predictor variables. If variable j changes by Δj units, 
then the response variable changes by �jΔj units, which is clearly independent of the 
individual. For nonlinear models, one can make use of model-agnostic approaches 
to build local explanations, such as the so-called Local Interpretable Model-agnos-
tic Explanations (LIME) (Ribeiro et  al. 2016). The latter relies on building linear 
approximations to the model at x0 , using predictor vectors generated in the neigh-
borhood of x0 and predictions obtained with the original model. Although popular, 
there are a number of shortcomings to this approach around, for instance, the gen-
eration of data or the loss of accuracy, which have been addressed with enhance-
ments (Botari et al. 2020; Visani et al. 2020; Zhang et al. 2019), or with alternative 
approaches (Lundberg et al. 2020, 2018; Lundberg and Lee 2017).

Instead, and as advocated by Rudin (2019), it is better to work with models that 
can derive local explanations directly, as is the case for Neural Networks (Gevrey 
et  al. 2003) but also for the Optimal Randomized Classification and Regression 
Trees in Sect. 3.1. To illustrate this, and for simplicity, we consider a classification 
problem where all predictor variables are continuous. For an individual with predic-
tor variables x0 , we analyze how an infinitesimal change � ∈ ℝ

p in the predictor 
variables affects the probability Πk of being in class k, k = 1,… ,K . By linearizing 
Πk close to x0 , we have:

Thus, the matrix of partial derivatives

gives full information on the sensitivity of the class membership probabilities Πk 
around x0.

Even more, we can provide counterfactual explanations to an individual with 
x = x0 on what are the minimum changes to the predictor variables, such that the 

Πk(x
0 + �) ≈ Πk(x

0) +

p∑

j=1

�Πk

�xj
(x0) ⋅ Δj.

(
�Πk

�xj
(x0)

)

k = 1,…K

j = 1,… , p
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individual with x = x0 + � is predicted to be in class k∗ . Indeed, given a norm ‖ ⋅ ‖ 
and a set A ⊂ ℝ

p of allowed movements from x0 , one can solve a nonlinear problem 
of the form:

The use of Machine Learning models in socially sensitive decision-making calls for 
analyzing their fairness (Iosifidis and Ntoutsi 2019; Miron et al. 2020; Zafar et al. 
2017). The fairness can refer to the accuracy achieved in risk groups, for which the 
consequences of a wrong prediction are much more severe than for the rest (Kao and 
Tang 2014; Turney 1995). These examples abound, for instance, in medical diagno-
sis. The most natural way to handle this cost-sensitivity is to add the so-called per-
formance constraints, one for each risk group, to ensure that the accuracy achieved 
in an independent sample is acceptable, i.e., above a threshold. Second, fairness can 
also refer to avoiding that the outcome of the model discriminates groups of peo-
ple sharing sensitive features, such as gender or race, (Miron et al. 2020). This has 
gained attention due to the increase of automatization in decision-making, but also 
concerns that existing biases in data may be amplified by, not carefully built, data-
driven tools.

The goal is to build a model with high accuracy, but at the same time prevent 
any type of discrimination, either direct because it uses sensitive data, or indirect 
because the prediction is disproportionally negatively impacted in those individu-
als, although no sensitive features have been used. New criteria have been defined 
to achieve this, namely disparate treatment and disparate impact (Barocas and Selbst 
2016; Zafar et  al. 2017), and in recent works, optimal trees have been extended 
to include them (Aghaei et  al. 2019). The extension of the models in Sect. 3.1 to 
address this issue is straightforward. To illustrate this, and again wlog, we consider 
a classification problem. Suppose that we have a group S ⊂ {1,… ,N} of individu-
als to be protected against discrimination by Problem (1). We may impose that the 
average probability of being assigned to class k for individuals in S does not differ 
much from the average in the whole training sample I  . This can be model through 
the following constraint:

for 𝜀 > 0 sufficiently small.
We end the section with some considerations on other types of data, apart from 

continuous and binary, available to construct tree models that show a good trade-off 
between accuracy and sparsity. When building classification and regression models, 
there may be characteristics which are recorded as, for example, time-series data 
(Barrow and Crone 2016; Carrizosa et al. 2013; Saha et al. 2020), spatial data (Geor-
ganos et al. 2019), functional data (Balakrishnan and Madigan 2006; Möller et al. 
2016; Pospisil and Lee 2019; Rahman et al. 2019), text data (Martens and Provost 

minimize
�
‖�‖
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0 + �) ≥ Πk(x
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2014; Ramon et al. 2020), or network data (Óskarsdóttir et al. 2020), which are not 
captured appropriately by standard implementations of these models. This calls for 
new mathematical optimization formulations and/or numerical solution approaches 
to address these complexities adequately. The changes may stem from the functions 
we use to measure accuracy or sparsity. The typical losses such as the mean squared 
error or the expected misclassification cost may not be suitable to measure the accu-
racy for more complex response variables. In terms of sparsity, take, for instance, the 
case of time-series data, where we have an observation for each time period in the 
series, the response for this observation is the measurement in that time period and 
the features are the measurements in previous time periods, as in Benítez-Peña et al. 
(2020b) for the short-term predictions of the evolution of COVID-19. In this way, 
we have that individuals are characterized by p lags, but possibly other predictor 
variables. In addition to the ones described in Sect. 3, one may wish other types of 
sparsity, ensuring that only recent lags are used, or that as few as possible series are 
used in multivariate time-series (Tuncel and Baydogan 2018), or even more sophis-
ticated versions of sparsity for hierarchical ones (Athanasopoulos et al. 2017; Karmy 
and Maldonado 2019; Wickramasuriya et al. 2019). For classification and regression 
problems with functional data, i.e., functions xi ∶ [0, 1] → ℝ, one can easily adapt 
the models in Sect. 3.1 by replacing the definition of the probabilities pit

(
a
⋅t,�t

)
 at 

branch node t by, for instance:

where the thresholds c1, c2,… , cr−1 and the weights �1t, �2t,… , �rt are decision vari-
ables. See, for instance, (Blanquero et al. 2019, 2020) for a related approach in Sup-
port Vector Machines. The examples above show that new forms of losses and/or 
sparsity can be incorporated in both the Continuous Optimization and the MILO 
paradigms, by making changes to the objective function, but new decisions as well 
as new constraints may be required, yielding challenging Mixed-Integer Nonlinear 
Optimization formulations.

5  Conclusions

The impressive advances in hardware and software in the last decades have allowed 
the development of more powerful versions of classification and regression trees 
than classic ones. In this paper, we have reviewed recent Continuous Optimization 
and Mixed-Integer Linear Optimization formulations to build optimal classification 
and regression trees that trade off accuracy and sparsity, the latter understood as a 
proxy for interpretability. Contrary to standard classification and regression trees 
built in a greedy heuristic manner, formulating the design of the tree model as an 
optimization problem allows the inclusion, either as hard or soft constraints, of other 
important criteria. We have illustrated this flexibility for an important social crite-
rion, the fairness of the model, which aims to avoid predictions that discriminate 

F

(
�1t ∫

c1

0

xi(s) ds + �2t ∫
c2

c1

xi(s) ds +… �rt ∫
1

cr−1

xi(s) ds

)
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against race, or other sensitive data, and/or ensures an acceptable accuracy perfor-
mance for groups at risk. We have also shown how optimization provides in a natu-
ral way counterfactual explanations for individuals, enhancing the local explainabil-
ity of tree models. In the future, we foresee new optimization models which will be 
needed to tailor optimal trees to complex data arising in decision-making, yielding 
large-scale global optimization problems, usually with integer variables, and sophis-
ticated numerical optimization strategies are to be devised to address these challeng-
ing problems.
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