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Abstract

Smart Cities strive to leverage information and communication technologies in order to ana-
lyze the growing amount of available data on the ecosystems of modern cities with the aim
of making central infrastructure components and services of a city more interconnected and
efficient. A key element of this is knowledge about future conditions which can be obtained
through forecasting models. The most recent developments seen in the M4 and M5 forecasting
competitions illustrate how far Machine Learning methods have evolved. Therefore, this paper
compares and contrasts established statistical forecasting models, ensemble methods as well
as recurrent neural networks with respect to point forecasts and prediction intervals. Using
publicly available high-frequency data from the New York City Open Data platform, we ana-
lyze large univariate time series of traffic flows and Emergency Medical Services (EMS) data.
We detect multiple levels of seasonality in the high-frequency data considered in this paper,
which complicates finding suitable forecasting models. We find that recurrent neural networks
produce the most accurate point forecasts and uncertainty measures for traffic data. For the
EMS data, our results show that both recurrent neural networks and Exponential Smoothing
state space models which can account for complex seasonal patterns perform best with respect
to point forecasts, whereas the quality of the prediction intervals of the latter is the highest.
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Section 1

Introduction

Forecasting takes up a major role in corporations with respect to product demand planning,
revenue predictions as well as inventory resource planning. All major technology companies in-
cluding Google, Amazon and Uber now apply Machine Learning techniques to time series data
in order to deliver highly accurate forecasts. For instance, Uber critically relies on marketplace
forecasts to direct employed drivers to areas of high demand in order to increase trip counts
and revenues. This field has historically been taken up by traditional statistical forecasting
methods. Machine learning methods have been developed and refined to the point that they
now pose a serious challenge to purely statistical forecasting methods in the area of forecasting.
Breiman et al. (2001) argue that there are two cultures with respect to statistical modeling
of data which he labels as data modeling and algorithmic modeling. The first approach is
based on the assumption of a stochastic data model and modeling response variables as a
function of predictor variables, noise and parameters. On the other hand, the second approach
is based on finding a function f(x), an unknown algorithm, which operates on x to predict the
response variables y. The first modeling approach is the one underlying traditional statistical
methods and the second approach, algorithmic modeling, underlies Machine Learning methods.
Ahmed, Atiya, Gayar, and El-Shishiny (2010) come up with a large-scale comparison study
based on the M3 competition dataset that provides an overview of commonly used machine
learning models for time series forecasting. The most compelling evidence for the importance
of machine learning methods in the context of forecasting is the fact that the best performing
model emerging from the 2020 M4 forecasting competition, which involves 100,000 time series,
was a combination of Exponential Smoothing (ETS) methods and a recurrent neural network
(RNN) (Makridakis, Spiliotis, & Assimakopoulos, 2020). Januschowski et al. (2020) distinguish
among methods to forecast a large number of similar series by estimating parameters jointly
for all series (global methods) and methods which estimate parameters independently for each
series (local methods). The aforementioned winning forecasting model provided by Smyl (2020)
consists of a globally trained Exponential Smoothing model and locally trained Long Short
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Term Memory neural networks (LSTMs). However, since we have collected two individual data
sets for our analyses, we are concerned with local modeling.
For the purpose of this paper, the field of Smart City is chosen as a contemporary application
domain of forecasting methods. The concept of a Smart City refers to the use of Information
and Communication Technologies (ICT) in order to analyze and integrate the growing amount
of available data on the ecosystems of our cities with the goal of making central infrastructure
components more interconnected and efficient, which could significantly improve residents’
quality of life in the cities of the future. New York City is a prime example of a city with
good data availability and the commitment to develop into a Smart City. One major challenge
which is faced by its Intelligent Transportation Systems (ITS) is the accurate prediction of
traffic flows in order to mitigate congestion and the emission of pollutants.
Another forecasting challenge is faced by the public health sector, namely that of Emergency
Medical Services (EMS) demand forecasting, which is concerned with predicting the number
of emergency incidents that require the dispatch of ambulances and medical personnel. Accu-
rate forecasts can help to ensure that the limited number of resources available can be used
efficiently to deal with every incident.

Research design. Our research design with the aim to compare the forecasting performance
of traditional statistical methods and that of Machine Learning methods is based on the re-
search strategy of a case study which involves collecting two sources of evidence in the form
of high-frequency data from two Smart City domains. We empirically investigate how well
the predictions of the considered forecasting models generalize to previously unseen data and
compute test error metrics. We also compare the quality of prediction intervals by computing
commonly used evaluation metrics. We conduct time series analysis, a statistical methodology
which inherently tracks observations repeatedly collected at a certain interval over time.

Main contribution. The purpose of this paper is to compare and contrast existing traditional
models for time series forecasting with more recently emerged machine learning models such as
ensemble models as well as recurrent neural networks. We concentrate our analyses on high-
frequency hourly data from a Smart City context. A common characteristic of high-frequency
data is the presence of multiple seasonal patterns and we explore the performance of forecasting
models that can account for this complexity. In the M4 competition, by contrast, hourly data
form only a minor part of the collection of time series amounting to less than 1 percent.1

1Makridakis et al. (2020) state that only 414 time series out of the 100,000 used in the M4 competition are
of hourly frequency.
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For these purposes, data sets from New York City Open Data2, which are publicly available, are
retrieved and the aforementioned methods are put to use in the selected Smart City domains
of traffic forecasting and EMS demand forecasting.
Our results can be of use to smart city planners within the domains of traffic prediction and
EMS resource planning since we provide accurate high-frequency point forecasts at an hourly
frequency and we also quantify the associated uncertainties through the provision of prediction
intervals.

Structure of the paper. Our paper proceeds as follows: Section 2 is concerned with outlining
the concept of a Smart City and summarizing the previous research that has been done in the
fields of traffic forecasting (Section 2.1) as well as forecasting demand for Emergency Medical
Services (Section 2.2). Section 3 gives a technical background on the forecasting methods
which are employed in this paper. Section 3.1 provides an introduction regarding recurring
terminology and evaluation metrics in the context of time series forecasting. Section 3.2 presents
the theoretical background of traditional statistical models such as the Seasonal Autoregressive
Integrated Moving Average model (SARIMA) as well as Exponential Smoothing models and
its extensions. Section 3.3 contains a theoretical background on the functional principles and
pitfalls of ensemble methods in a time series context. In Section 3.4, functional principles
of neural network architectures, which are suitable for time series forecasting, are explained.
Section 4 contains a description of the data sets employed in this paper. Analyses, results and
robustness checks are presented in Section 5 and discussed in Section 6. Section 7 concludes.

2See https://opendata.cityofnewyork.us/.
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Section 2

Smart City

The concept of a smart city is hard to define universally and a large variety of definitions can
be found in the literature. However, Meijer and Bolívar (2016) identify three main streams of
literature when it comes to the way of thinking about smart cities: a technological, a human
resources and a governance focus. The first stream of literature considers technology as a
defining characteristic of a smart city. Information and Communication Technologies (ICT)
are employed in order to make central infrastructure components and services of a city, such
as city administration, health care, transportation or public safety, more intelligent, inter-
connected and efficient. The other two characteristics identified contribute to a more holistic
understanding of a smart city by adding the importance of collaboration among the citizens
and the importance of their provision of inputs, e.g. through mobile devices, to the big picture.

Ismagilova, Hughes, Dwivedi, and Raman (2019) add that the ICTs used to implement the
urban development vision of a smart city include smart hardware devices such as smartphones,
smart vehicles and wireless sensors, but also comprise mobile networks and data storage tech-
nologies such as cloud platforms as well as software applications such as big data analytical
tools.
Tascikaraoglu (2018) evaluates the role of forecasting methods in smart city applications and
states that the importance of forecasting in this context stems from the necessity to obtain
knowledge about plausible future conditions of the smart systems that are supposed to be
managed efficiently, such as intelligent transportation systems or electric power systems. The
author also argues that statistical and Machine Learning based modeling approaches to fore-
casting based on historical data are more adequate for the dynamic management of smart
systems than mathematical approaches aimed at describing physical processes, which could
also be considered when trying to forecast a related variable.

4



2.1. TRAFFIC FORECASTING

For our forecasting analyses we pick two relevant domains from the Smart City context which
are traffic flow forecasting and forecasting the demand for Emergency Medical Services (EMS),
for which we collect data from the NYC Open Data platform. For both of these data sets we will
consider the following forecasting methods which are compared in Table 2.1. The comparison
is structured by model capabilities such as handling nonstationarities, nonlinearities as well as
multiple seasonal patterns.

Table 2.1: Comparison of prediction models considered in this paper

Model Model type Further regressors Multiple seasonal patterns Nonlinearities Nonstationarity

SARIMA parametric X

ETS/Bagged ETS parametric X X

BATS/TBATS parametric X X X

LGBM non-parametric X X X X

FFNN non-parametric X X X X

LSTM non-parametric X X X X

GRU non-parametric X X X X

Notes: This table contains a comparison of the prediction models considered in this paper and compares
their respective features. Note that differencing or seasonal differencing might be required in order for the
SARIMA model to be able to handle nonstationarity. The SARIMA model could be extended to include further
regressors (SARIMAX model) or a spatial dimension (STARIMA model) but those two models are outside of
the research space of this paper. The BATS and TBATS models can account for multiple seasonalities by
estimating several seasonal parameters explicitly, whereas the neural networks account for them implicitly by
learning the relationship through a complex network architecture. For explanations of the model acronyms,
please refer to the List of Acronyms.

2.1 Traffic Forecasting

Understanding and forecasting future traffic conditions, for example as measured by traffic
flows, travel times or traffic speeds, is a critical need of the transportation community and
the quality of traffic information determines the success of Intelligent Transportation Systems.
Stochastic characteristics of traffic flows make the forecasting task a challenging one but widely
deployed traffic sensors ensure sufficient data availability and coverage.
Ma, Tao, Wang, Yu, and Wang (2015) argue that accurate traffic forecasts can be used for
improving traffic safety, reducing congestion as well as rescheduling and preplanning routes for
travelers. They also state that traffic forecasting methods have shifted away from traditional
statistical models towards computational intelligence approaches such as neural networks be-
cause the latter are more capable of processing outliers, missing or noisy data and because they

5



2.1. TRAFFIC FORECASTING

require little or no assumptions about the input variables1.

Nagy and Simon (2018) provide a comprehensive overview of commonly employed forecasting
methods for traffic flow predictions in a Smart City context. They state that the traffic data
model can range from simple scalar models based on data from a fixed position sensor to either
time-space or region matrix models which identify both spatial and temporal correlations.
Nagy and Simon (2018) categorize the traffic prediction models by the capabilities to handle
nonstationarity, nonlinearities as well as the inclusion of a spatial dimension2.
When considering the traditional statistical ARIMA model variants, we rule out the multi-
variate STARIMA model mentioned by Nagy and Simon (2018), since we limit our scope to
univariate time series forecasting. The SARIMA model can be augmented to a SARIMAX
model which can incorporate further regressors but we will limit our analysis to lagged values
of the collected time series data in order to make the models better comparable since the ETS
model does not allow for the inclusion of external regressors. Thus, we will use an automated
SARIMA model as a first benchmark model but we will also manually refine an SARIMA model
to be used as a candidate model from the traditional statistical modeling field. When consid-
ering the spectrum of neural network models, we will use the most suitable recurrent neural
network architectures for time series forecasting, the LSTM and the GRU neural networks as
candidate models from the Machine Learning field and take the non-recurrent Feedforward neu-
ral network (FFNN) as a benchmark model. The automated ETS model will also be considered
as a benchmark model. To our knowledge, there have not been any extensive studies on traffic
forecasting using ensemble models, so we will deploy the hybrid BaggedETS model as well
as a Light gradient boosting machine (LGBM) model to investigate this gap in current research.

Related work. Vlahogianni, Karlaftis, and Golias (2014) summarize the studies on traffic
forecasting which are not limited to a Smart City context for the period from 2003 to 2013 and
emphasize the importance of choosing a suitable forecast horizon that matches the needs of
traffic management systems. They also state that a higher data resolution is correlated with a
higher amount of noise in the time series on traffic data which makes the development of traffic
forecasting models more difficult. According to Fu, Zhang, and Li (2016), existing models such
as ARIMA models cannot accurately describe the stochastic and non-linear nature of traffic
flows. The authors therefore employ two deep-learning based models, the LSTM and the GRU,
in order to forecast short-term traffic flows in the Bay Area of California in the U.S using
sensor data. They find that the GRU outperforms both the ARIMA model and the LSTM
neural network model.

1See Vlahogianni, Golias, and Karlaftis (2004, p. 542) for details on the assumptions on input variables and
further characteristics of neural network, ARIMA and Smoothing models.

2See Nagy and Simon (2018, p. 157) for the full comparative list of traffic prediction models.
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Zhao, Chen, Wu, Chen, and Liu (2017) employ an LSTM to forecast the volume of short-term
traffic in Peking, i.e. they consider aggregated forecasting periods of 15 to 60 minutes, and
compare the forecasting results to those of a regular RNN and of an Autoregressive Integrated
Moving Average model (ARIMA) model. They find that the LSTM consistently outperforms
the ARIMA model and that the regular RNN forecast error increases dramatically compared
to the LSTM model as the forecasting period increases.

2.2 EMS forecasting

One key responsibility of governments of a specific local region or a city is to provide Emer-
gency Medical Services (EMS) to the citizens in that specific area. EMS can be described
as a system at the intersection of public safety, health care and public health which provides
pre-hospital treatment of medical emergency incidents leading to serious injuries and transport
to institutions with the capabilities to provide professional medical care. Aringhieri, Bruni,
Khodaparasti, and van Essen (2017) state that research of EMS planning is centered around
four main topics: demand forecasting, response times and workload, performance measurement
as well as the determination of station locations, which requires the allocation of ambulances
to stations based on changes in demand and travel times.
According to Aringhieri et al. (2017), forecasting demand for EMS is important in order to en-
sure that enough resources are available to meet emergency demand requests. These resources
include ambulance cars, paramedics and medical doctors.
The data availability for EMS demand forecasting can generally considered to be good as EMS
systems tend to be obliged to record data on the emergency calls and the dispatched ambulance
cars. Commonly, recorded data include a spatial as well as a temporal dimension.

Related work. Several studies found in the EMS demand forecasting related literature opt
to forecast emergency call volumes. For instance, Baker and Fitzpatrick (1986) employ an
Exponential Smoothing Model to forecast EMS calls. Channouf, L’Ecuyer, Ingolfsson, and
Avramidis (2007) also forecast daily and hourly EMS call volumes and employ a doubly seasonal
ARIMA model. On the other hand, Setzler, Saydam, and Park (2009) produce forecasts for
hourly and 3 hourly time intervals for specific areas of 4 by 4 square mile regions and employ a
FFNN model. While ambulance fleet management can be facilitated by EMS demand forecasts,
Setzler et al. (2009) argue that real time repositioning plans rely more on actual demand
patterns than on demand forecasts.
In this paper, we will focus on forecasting hourly ambulance dispatch volumes as a proxy for
EMS demand.
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To the best of our knowledge, neither one of the most recent forecasting models such as the
TBATS model from the statistical field or the LGBM boosting model as well as the LSTM
and GRU recurrent neural networks form the Machine Learning field have been applied to this
forecasting task. We therefore aim to close this gap in research and compare the quality of
point forecasts and PI measures for the same spectrum of models that has been employed for
the purposes of traffic flow forecasting. Note that forecasting volumes of emergency department
visits is a closely related research topic but it is rather in the planning sphere of specific hospitals
than in that of a smart city governance system.
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Section 3

Forecasting Methods

3.1 Forecasting Terminology and Evaluation Metrics

Quantitative forecasting methods can be applied if numerical information about the past is
available and if it is reasonable to assume that past patterns will continue into the future (R. J.
Hyndman & Athanasopoulos, 2018). This paper is concerned with quantitative prediction
problems related to time series data from a Smart City context. The model to be used in
forecasting depends on the accuracy of the competing candidate models and on the availability
of the data. Generally, our data of interest has to be split up into a training set, a validation
set, which is used for fine tuning the hyperparameters of the forecasting model, and finally a
test set, which is held out in order to be exclusively used for forecasting model evaluation. In
supervised learning, Ng (2019) states that the goal is to learn an unknown function f : X → Y
such that f(x) is a good predictor for the corresponding value of y. X and Y denote the feature
space, i.e. the set of input values and the output space, respectively. This unknown function
is also often referred to as hypothesis. An explanatory model for the training set can be set
up as follows:

y = f(X) + ε, (3.1)

where y ∈ Rn is a vector of observed values of a quantitative prediction target variable such
that y = (y(i); i = 1, . . . , n). The superscript simply serves as an index into the training
set. The design matrix X = (x1x2 . . .xp) contains the set of p predictor vectors, which are
called feature vectors in the field of Data Science, where xTj∈{1,...,p} = (x

(i)
j ; i = 1, . . . , n) and

X ∈ Rn×p. ε ∈ Rn represents a vector of white noise error terms.
According to Ng (2019), the training set contains a list of n training examples, {(x(i), y(i)); i =

1, . . . , n}.
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Since the future prediction target is unknown, we can think of it as a random variable Y
which could take on one in a range of possible future values. According to R. J. Hyndman and
Athanasopoulos (2018), a point forecast is commonly understood as the "middle" of the range
of possible future values as measured by the conditional mean. Moreover, it is also common
practice to give a prediction interval to illustrate the range of future values that this random
variable could take on with a specific probability. Chatfield (2001) defines a prediction interval
as the interval between the upper and the lower limit of an interval estimate for an unknown
future value, where the future value can be considered as a random variable at the point in
time when the forecast is made.
Mathematically, we will denote the forecast distribution, which is the set of values that the
random variable Y can take on and its corresponding probabilities of occurrence, as the forecast
probability mass function of obtaining a discrete forecast of ŷt, which we denote by

pY (ŷt) = P(Y = ŷt | I), (3.2)

where I denotes all past information available to forecast yt. Chatfield (2001) states that it
is also possible to find the complete probability distribution of a future value, which is called
density forecasting, but this topic is not pursued further throughout this paper.
The h-step ahead forecast at time T is denoted by the conditional expectation

ŷT+h = E[yT+h | yT , yT−1, ..., y1], (3.3)

where h is the forecast horizon and T is the forecast origin.
In order to describe a forecasting model holistically, the estimation procedure for the model,
the chosen loss function for model evaluation and the model selection procedure have to be
explained.
To evaluate the usefulness of a forecast, a loss function has to be specified to measure how
concerned we are about the fact that a forecast is off at a particular point in time (Hamilton,
1994). A very common choice is theMean squared error (MSE) which is denoted as follows:

MSE(ŷT+h|T ) = E[(yT+h − ŷT+h|T )2]. (3.4)

The MSE is based on the forecast error which is defined as
eT+h = yT+h − ŷT+h|T , i.e. the difference between the observed value and its forecast. Ac-
cording to R. J. Hyndman and Athanasopoulos (2018), the difference between forecast errors
and residuals of a regression model is that the former are computed on the test set instead of
the training set. In this example, the test set is {yT+1, yT+2, ..., yT+h} and the training set is
{y1, ..., yT}.
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We refer to composite functions based on the forecast error as errors and those functions
which are used as loss functions to measure forecasting model accuracy can be categorized into
scale-dependent errors, percentage errors and scaled errors.
R. J. Hyndman and Athanasopoulos (2018) state that the first category includes errors that
are on the same scale as the data, which means that those errors cannot be used for compar-
isons across time series with different units. The second category of percentage errors has the
advantage of being unit-free, which means that forecasting performance across different data
sets can be compared.

One of the most common scaled-dependent errors is theRoot mean squared error (RMSE),
which is defined as

RMSE(ŷT+h|T ) = E[
√

(yT+h − ŷT+h|T )2]. (3.5)

Another popular scale-dependent error is the Mean absolute error (MAE), which is com-
puted as follows:

MAE(ŷT+h|T ) = E[
∣∣yT+h − ŷT+h|T ∣∣ ]. (3.6)

R. J. Hyndman and Koehler (2006) argue that the MSE and the RMSE measures are more
sensitive to outliers than the MAE, which leads several researchers to prefer the latter as a
a loss function to evaluate the accuracy of a forecasting method. The most frequently used
percentage based error is the Mean absoute percentage error (MAPE), which is defined
as

MAPE(ŷT+h|T ) = E[

∣∣∣∣100
yT+h − ŷT+h|T

yT+h

∣∣∣∣ ]. (3.7)

R. J. Hyndman and Koehler (2006) compare accuracy measures for univariate time series and
propose to use the Mean absoute scaled error (MASE) as a standard measure for a com-
parison of the forecast accuracy across multiple time series because they find that it performs
well even when the data are close to zero or negative. The MASE belongs to the third category
of scaled errors, all of which have the property that they indicate whether the forecast to be
evaluated provides a better forecast than the average naive forecast based on the training data,
which is the case if the value of the scaled error is less than 1. The MASE is defined as

MASE(ŷT+h|T ) =
E[
∣∣yT+h − ŷT+h|T ∣∣ ]

1
T−1

∑T
t=2|yt+h − yt+h−1|

, (3.8)

where the numerator of the MASE is the MAE and the denominator is equivalent to a naive
forecast. This shows how the MASE compares the MAE of the forecast to be evaluated to the
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MAE of a naive forecast.
However, the denominator of the MASE, which contains the baseline forecasting model to which
the MAE is compared, can be adapted to any model which is suitable for the forecasting task. If
the data exhibits seasonality, which Jebb, Tay, Wang, and Huang (2015) define as any regular
pattern of fluctuation in the level of the series associated with calendar effects, a seasonal naive
model can be used as a baseline model. According to R. J. Hyndman and Athanasopoulos
(2018), the seasonal naive model is given by

ŷT+h|T = yT+h−m(k+1), (3.9)

where m is the seasonal period, which is also referred to as the seasonal frequency. k is the
integer part of (h− 1)/m, i.e. the number of complete seasonal periods prior to time T + h.

Cross validation is a common resampling method, i.e. a method of repeatedly drawing
samples from a training set and then refitting a statistical learning method in order to obtain
further information about the fitted model. According to James, Witten, Hastie, and Tibshirani
(2013), cross-validation can be used for both model assessment and model selection. The former
is achieved by estimating the test error of the statistical learning method for performance
evaluation and the latter can be accomplished by tuning hyperparameters through a grid search
cross-validation in such a way that a chosen error measure is minimized on the validation set.
A k-fold cross validation involves the random partitioning of the entire data set into k folds
of approximately equal size, where the first fold is used as a validation set and the model of
interest is then fitted on the other k− 1 folds. An error metric such as the MSE is then chosen
as CV scoring function and then computed for the data in the current validation set. The
process is subsequently repeated k times, where every fold or subset is used as a validation set
once and the other k − 1 subsets are used to fit the model. According to James et al. (2013),
the k-fold cross validation estimate or CV score, which is the average of the k estimated
validation errors, is given by

CV(k) =
1

k

k∑
i=1

MSEi. (3.10)

When time series data are considered, using a traditional k-fold Cross Validation (CV) is
problematic because of temporal dependencies in the time series {yt}nt=1. As Bergmeir and
Benítez (2012) point out, when considering autoregression models applied to time series data,
the assumption of cross-validation that the data are independently and identically distributed
is violated in case autocorrelation is present in the data. Bergmeir, Hyndman, and Koo (2018)
argue that a traditional k-fold CV is invalidated by removing k randomly chosen numbers from
the series {yt} because of correlation between the errors in the training and test sets, which
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would introduce a bias in the traditional CV procedure.

Generally, the time series is split into a training set and a test set and then the training
set is further split into two subsets, a training subset and a validation set. The validation
set is sometimes also referred to as the development set, since it is used to develop the best
model, which can then subsequently be used on the test set for final evaluation. A graphical
comparison between the regular k-fold cross validation method that is commonly deployed for
cross-sectional data and the Time Series Split cross validation method both carried out on the
training set is shown in Figure 3.1. The temporal order of the time series can be preserved by
using the latter CV method since the training set is split into a training subset and a validation
set at each iteration and the successive training subsets are supersets of the preceding training
subsets.
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Figure 3.1: Comparison of K fold cross validation and Time Series Split cross validation

Notes: This figure compares the regular K = 5 fold cross validation shown in the left panel against the time
series split cross validation, which is shown in the right panel. The time series split procedure involves the
split of the training set into two subsets at each iteration, the training set and the validation set. However, the
split is done under the condition that the validation set (shown in red) is always ahead of the training subset
(shown in blue) in order to preserve the temporal order of the series. Note that the data cannot be randomly
shuffled either, which is a difference to cross-sectional data. The Time Series Split cross validation method can
be implemented in Python by means of the TimeSeriesSplit function of the sklearn library.

A further area of interest that requires evaluation metrics is the assessment of a Prediction
interval (PI). Khosravi, Nahavandi, Creighton, and Atiya (2011) evaluate the four main meth-
ods found in the neural network literature to construct prediction intervals and present the
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commonly used assessment measures to evaluate the quality of those prediction intervals.

A key aspect of prediction intervals is their coverage probability. The Prediction Interval
Coverage Probability (PICP) measure constructs a probability that indicates how many of
the target values yi in the test set are covered by the constructed prediction intervals with i-th
upper and lower bounds Ui and Li. The PICP is given by

PICP =
1

ntest

ntest∑
i=1

ci, (3.11)

where ntest is the number of samples in the test set and the coverage of the i-th prediction
interval is given by

ci =

1, yi ∈ [Li, Ui]

0, yi /∈ [Li, Ui]
. (3.12)

Khosravi et al. (2011) state that the PICP should be close to or larger than the desired nominal
confidence level of the prediction intervals to obtain reliable PIs and that an increase in the
width of the PIs can increase the PICP but they also point out that choosing too wide PIs is
not useful in practice since the variation of the targets cannot be seen anymore in that case.
The width of prediction intervals is commonly assessed using the Mean Prediction Interval
Width (MPIW), which quantifies the average width of the prediction intervals as follows:

MPIW =
1

ntest

ntest∑
i=1

(Ui − Li). (3.13)

Khosravi et al. (2011) also argue that the MPIW can be normalized by the range of the target
values in order to be able to compare PIs across different data sets. The final assessment
measure for PIs is the coverage-width based criterion (CWC), which evaluates a PI based
on the trade off between informativeness through narrow prediction intervals and correctness
achieved through a high coverage probability. Khosravi et al. (2011) define the CWC as

CWC = NMPIW (1 + γ(PICP ) ∗ e−ξ(PICP−(1−α)), (3.14)

where NMPIW is the MPIW normalized by the range of the target variable and γ(PICP )

is defined as

γ(PICP ) =

1, P ICP < (1− α)

0, P ICP ≥ (1− α)
, (3.15)

where α is the desired significance level. The term γ(PICP ) eliminates the exponential term
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in Equation (3.14) when the PICP is greater than or equal to the nominal confidence level
1−α. The purpose of the exponential term is to penalize the violation of coverage probabilities,
where ξ magnifies divergences between the PICP and the nominal confidence level 1 − α. ξ

and (1− α) are hyperparameters which are used to control the jump of the CWC. Note that a
lower CWC value indicates a better PI quality as measured by both coverage probability and
width of the prediction interval.

3.2 Traditional Statistical Models

This section provides a theoretical background for the traditional statistical models considered
in this paper including the model equations and the necessary assumptions, the model selection
procedure and the parameter estimation. We elaborate on the SARIMA model, the ETS model
as well as its extensions, the BATS and the TBATS model.

3.2.1 SARIMA Model

In the domain of the statistical analysis of time series one of the most traditional classes of
models is the Autoregressive Integrated Moving Average model. This model class was already
proposed by Box, Jenkins, Reinsel, and Ljung (2015) in the first edition of their book in 1970.
The authors derived the likelihood function and were thus able to estimate the parameters of
the model through maximum likelihood. In addition, their work also contained the full end-to-
end modeling procedure, which included specification, estimation, diagnostics and forecasting.
Generally, ARIMA models are based on the idea that autocorrelation can be modeled through
lagged linear relations which leads to the two main components, the autoregressive part and
the moving average part.

An autoregressive (AR) model is one in which the current value of a time series is regressed
on the previous values from that same time series. The direct use of previous values to describe
future values is one of the most basic but powerful tools in time series analysis. The time gap
between two values is called the lag and the p-th lag of a variable is therefore the realization
of that variable p time steps ago. Using the notion of lags, we can write the general AR(p)
model, where p indicates the order of the model, as follows:

yt = ζ0 + ζ1yt−1 + ζ2yt−2 + ...+ ζpyt−p + εt, (3.16)

where εt ∼ N(0, σ2) and ζ0 is the level of the process or as it is more commonly referred to, the
intercept. By introducing the backshift operator B as the operation defined by Byt = yt−1
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we can express the p-th lag of the series {yt} as Bpyt = yt−p. Using this operator we can also
define the autoregressive polynomial as ζ(B) = 1−ζ1B−ζ2B2−· · ·−ζpBp. Equation (3.16)
can thus be written more concisely as:

ζ(B)yt = ζ0 + εt. (3.17)

An important aspect of AR processes is the concept of stability. This can best be shown by
looking at a simple AR(1) process, which can be written as

yt = ζ0 + ζ1yt−1 + εt

⇐⇒ yt(1− ζ1B) = ζ0 + εt

⇐⇒ yt = (1− ζ1B)−1(ζ0 + εt)

=
∞∑
j=0

(ζ1B)j(ζ0 + εt) =
∞∑
j=0

ζj1(ζ0 + εt−j).

(3.18)

Note that the representation as an infinite geometric series can be reached by applying the
definition of a geometric series to Equation (3.18) and, according to Box et al. (2015), provided
that the stability condition for ζ1 is met. Again, using the properties of an infinite geometric
series, we know that the convergence criterion is that the modulus of the common ratio must
be less than 1. The common ratio of the AR(1) process is ζ1 and when the convergence
criterion is met we say that the process is stable. The formulation in Equation (3.18) is only
valid when |ζ1| < 1 and the AR process is stable. If |ζ1| > 1 we say that the process is exploding.

An alternative way to define the stability condition of an AR process is by inspection of the
characteristic roots of the autoregressive polynomial. The root of 1 − ζ1B = 0 is B = ζ−11 ,
which is then equivalent to the root lying outside the unit circle, since |ζ1| < 1 implies that∣∣ζ−11

∣∣ > 1.
According to Box et al. (2015), a succinct way to characterize the stability conditions for any
AR(p) process is to state that the characteristic roots of the autoregressive polynomial must
lie outside the unit circle.

A moving average (MA) model uses a linear combination of lags of the white noise error
process rather than the previous observed values to form the series yt. The general MA model
of order q is denoted by

yt = ψ0 + εt + ψ1εt−1 + ψ2εt−2 + ...+ ψqεt−q

= ψ0 + ψ(B)εt
, (3.19)

where ψ0 is the intercept and ψ(B) = 1 + ψ1B + ψ2B
2 + ... + ψqB

q is the moving aver-
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age polynomial, which is defined in a similar manner as the autoregressive polynomial and
εt ∼ N(0, σ2). Each value of yt can thus be viewed as a weighted average of past errors.
It is possible to write any AR(p) model as a MA(∞) model. The reverse is also true if the
MA(q) process is said to be invertible. The conditions that must be satisfied to ensure invert-
ibility are similar to the stability conditions for an AR(p) process. According to Box et al.
(2015), the invertibility condition for a MA(q) process is that the characteristic roots of the
moving-average polynomial must lie outside the unit circle.

Despite the fact that both AR and MA processes can be transformed into the other under
certain invertilibilty conditions, in practice and to achieve parsimony, it is often beneficial to
combine the two models into a mixed model. This resulting model is called theAutoregressive
Moving Average Model (ARMA). Using the autoregressive polynomial and the moving
average polynomial and following the notation of Shumway and Stoffer (2017), the ARMA(p,q)
model of autoregressive order p and moving average order q can be concisely written as

ζ(B)yt = c+ ψ(B)εt, (3.20)

where c = (1 − ζ1 − ζ2 − · · · − ζp)µ, µ is the non-zero mean of the series and εt ∼ N(0, σ2).
Note that the model given in Equation (3.20) is only valid under the assumption that the
series {yt} is stationary or at least weakly stationary. According to Enders (2014), a time
series is considered weakly stationary if its mean and all autocovariances are finite and
independent of the time interval in which they are observed. Any finite MA process is thus
stationary. However, that is not the case for AR processes. The stationarity conditions for
an AR process are closely related to stability. In fact a sufficient condition for stationarity is
that the process is stable. Therefore, Enders (2014) states that if all the characteristic roots of
the autoregressive polynomial are outside the unit circle, then the process is both stable and
stationary. Equation (3.20) will thus be stationary given that ζ(B) = 0 has all its roots outside
the unit circle.
If the time series {yt} is not stationary, a transformation is required to make it stationary before
an ARMA(p,q) model can be applied. A common transformation is to take the differences
between consecutive observations. This procedure is known as differencing and it is based on
the utilization of the backward difference operator, which is defined as ∆yt = yt − yt−1.
The d-th difference is then given by ∆dyt = (1 − B)dyt where d is the order of differencing.
Enders (2014) states that differencing has the effect of stabilizing the mean and in addition, the
d-th difference of a process with d unit roots is stationary. The generalization of ARMA(p,q)
processes to nonstationary time series by including the procedure of differencing leads to the
autoregressive integrated moving average (ARIMA) model. An general ARIMA model
with autoregressive order p, an order of differencing of d and a moving average order of q is
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denoted as ARIMA(p,d,q) and can be written as

ζ(B)∆dyt = c+ ψ(B)εt, (3.21)

where ζ(B) is the autoregressive polynomial, ∆d is the d-th difference and ψ(B) is the moving
average polynomial. Equation (3.21) assumes that the d-th difference of yt can be modeled by
a stationary ARMA process of order (p, q).

Moreover, the ARIMA model can be modified further in order to take not only nonstationarity
but also seasonality into account. If dependence on past trends tends to be most pronounced
in a cyclic manner at some seasonal lag s, we can set up a multiplicative seasonal inte-
grated moving average (SARIMA) model in the following way, adhering to the notation
of Shumway and Stoffer (2017):

ZP (Bs)ζ(B)∆D
s ∆dyt = c+ ΨQ(Bs)ψ(B)εt. (3.22)

This general SARIMA model is denoted as ARIMA(p, d, q) × (P,D,Q)s. The regular autore-
gressive polynomial is ζ(B) and the moving average polynomial is ψ(B). In this model, we
now also have seasonal autoregressive and moving average components denoted by ZP (Bs) and
ΨQ(Bs), respectively. The seasonal AR order is P and the seasonal MA order is Q. Finally,
∆D
s = (1 − Bs)D denotes the D-th seasonal difference and ∆d = (1 − B)d is the regular d-th

difference.

The estimation of ARIMA models, which can be represented by an ARMA(p,q) model after
an appropriate number of differencing operations has been carried out, is commonly done with
maximum likelihood. According to Shumway and Stoffer (2017), we assume that we have
n observations y1, . . . , yn from an invertible ARMA(p,q) process with initially known order
parameters p and q. The goal is then to estimate the parameters contained in the model
parameter vector

θT = (µ, ζ1, . . . , ζp, ψ1, . . . , ψq), (3.23)

where θ ∈ Rp+q+1. µ is the non-zero mean of the series, ζp is the p-th AR parameter and ψq is
the q-th MA parameter of the time series.
Shumway and Stoffer (2017) argue that the approach to write the likelihood in terms of the
one-step ahead prediction errors et+1 = yt+1 − ŷt+1|t instead of as an explicit function of the
model parameters is preferable. The likelihood function can be written as
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L(θ, σ2
ε ) =

n∏
t=1

f(yt+1|yt, . . . , y1), (3.24)

where the conditional distribution of yt+1 given yt, . . . , y1 is assumed to be Gaussian with mean
yt+1|t and variance Pt+1|t. ρ denotes the autocorrelation function and σ2

ε is the variance of the
error term. Using the ARMA autocovariance, which is given by γ(0) = σ2

ε

∑∞
j=0 ρ

2
j , we can

write the variance of the conditional distribution of the series as

Pt+1|t = γ(0)
t∏

j=1

(1− ζ2jj) = σ2
ε ∗ [

∞∑
j=0

ρ2j ][
t∏

j=1

(1− ζ2jj)]︸ ︷︷ ︸
rt

, (3.25)

where ζjj is the partial autocorrelation coefficient at lag j. Note that we can now express the
terms of the variance of the Gaussian conditional distribution of yt which are not dependent
on εt as r1, . . . , rn. The latter terms are computed recursively using rt+1 = (1− ζ2tt)rt with the
initial condition r1 =

∑∞
j=0 ρ

2
j .

The likelihood of the data is then given by

L(θ, σ2
ε ) = (2πσ2

ε )
−n/2[r1θr2θ · · · rnθ]−1/2exp[−S(θ)

2σ2
ε

], (3.26)

and can be maximized with respect to θ and σ2
ε to obtain the maximum likelihood estimates

of the ARMA model parameters. By maximizing the likelihood function, the goal of making
our data of interest the most probable under our pre-specified distributional assumption, which
is the Gaussian probability density in this particular case, can be accomplished. Note that
the sum of the squared one-step ahead prediction errors, which is a function of the model
parameters, is given by

S(θ) =
n∑
t=1

(yt+1 − ŷt+1|t(θ))2

rt(θ)
. (3.27)

This maximum likelihood estimation is then commonly implemented numerically by means of
the Newton-Rapson or the Scoring algorithm.

The estimation of the parameters contained in θ is only part of the model selection process.
The parameters which control the order of the autoregressive processes, the moving-average
processes and the order of both the first and the seasonal differences are so called hyperparam-
eters. These are chosen outside the estimation procedure based on either graphical heuristics,
in-sample measures or out of sample measures. When Box et al. (2015) first introduced an end
to end modeling approach, the sample autocorrelation function (ACF) and the sample
partial autocorrelation function (PACF) were the principle tools. The ACF plots the auto-
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correlation of the series by lag and the PACF plots the resulting autocorrelation at a specific lag
after removing the effects of autocorrelations at shorter lags. Other more modern approaches
aim to automate the selection of the hyperparameters. The auto.arima() function in R first
selects the order of differencing based on a statistical test for the presence of a unit root such as
the Augmented Dickey Fuller test (ADF) and thereafter selects the order of the remaining
hyperparameters {p, q, P,Q} based on a in-sample measure such as the AIC (R. J. Hyndman &
Athanasopoulos, 2018) and is based on the Hyndman-Khandakar algorithm (R. J. Hyndman &
Khandakar, 2008). The algorithm can be varied by specifying options for the auto.arima func-
tion such as the stepwise and the approximation options. Instead of traversing the model space
in a stepwise manner and instead of approximating the information criteria, the algorithm will
consider all possible model parameter combinations and refrain from approximations. However,
the auto.arima function still leaves the search for outliers, transformations, as well as a visual
inspection of the model residuals and a formal test for autocorrelation among the residuals to
the end user of the algorithm (Petropoulos, Hyndman, & Bergmeir, 2018). The AIC criterion
is based on the likelihood of the data, i.e. it is based on the same Gaussian likelihood that is
stated in Equation (3.26), and it is given by

AIC = −2 log(L) + 2(p+ q + k + 1), (3.28)

where (p + q + k + 1) is the number of parameters in the model including the variance of the
residuals. Note that the order of regular differencing d cannot be determined by the AIC since
the data on which the likelihood function is computed is changed by the differencing procedure
and the AIC values of models of different orders of differencing are not comparable anymore.

Forecasting future values of the series {yt} using a SARIMA model is done by means of com-
puting the expectation conditional on the information available up to the forecast origin T . A
one-step ahead forecast can thus be be written as:

E[yT+1 | yT , yT−1, . . . , y1] = ŷT+1|T . (3.29)

As an illustrative example, let us consider the ARIMA(2, 1, 1)× (0, 0, 1)12 model, which we can
expressed as
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ζ(B)∆yt = Ψ(BS)ψ(B)εt

⇐⇒ (1− ζ1B − ζ2B2)(yt−1 − yt) = (1 + Ψ1B
24)(1 + ψ1B)εt

⇐⇒ yt = (1 + ζ1)yt−1 − (ζ1 − ζ2)yt−2 − ζ3yt−3 + εt + ψ1εt−1

+ Ψ1εt−12 + ψ1Ψ1εt−13.

(3.30)
The conditional expectation of Equation (3.30), which constitutes a one-step ahead forecast
using the aforementioned SARIMA model, is then given by

ŷT+1|T = (1 + ζ̂1)yT − (ζ̂1 − ζ̂2)yT−1 − ζ̂3yT−2 + ψ̂1εT + Ψ̂1εT−11 + ψ̂1Ψ̂1εT−12. (3.31)

Equation (3.31) can be considered the forecast equation from which, according to R. J. Hyn-
dman and Athanasopoulos (2018), future point forecasts can be obtained using the estimated
model parameters from the fitted model, forecasts for future observations, zero for future errors
and the respective residual terms for past errors. If multi-step ahead forecasts are required, the
same procedure can be used. For example, the conditional expectation of yT+2 is computed by
replacing yT+1 by ŷT+1|T . Forecasts of length h can be obtained in a recursive manner using
the previous forecasts instead of the unobserved true values as shown in the example. For any
stationary SARIMA model, the conditional forecast of yT+h converges to the unconditional
mean as h→∞ (Enders, 2014).

Even though point forecasts produced by the SARIMA model can be considered unbiased if the
conditional expectation of the error terms is zero, they tend to be inaccurate. Therefore, the
properties of uncertainty surrounding the point forecast and the forecast errors are important.
According to Enders (2014), the variance of the forecast errors is an increasing function of h
and the forecast error variance converges to the unconditional variance of the {yt} sequence.
R. J. Hyndman and Athanasopoulos (2018) argue that prediction intervals of ARIMA models
are based on the assumptions that the estimated model’s residuals εt are uncorrelated and
normally distributed and that the prediction intervals may not be correct if either one of these
two assumptions does not hold. They also state that ARIMA PIs will increase as the forecast
horizon increases and that these prediction intervals are too narrow since only the variation in
the errors has been accounted for but not the variation in the model parameter estimates and
the model order. A 95% multi-step prediction interval is given by

ŷT+h|T ± 1.96
√
σ̂2
h, (3.32)

21



3.2. TRADITIONAL STATISTICAL MODELS

where σ̂2
h is the estimated forecast variance for an h-step ahead forecast. Note that the exact

shape of ŷT+h|T and σ̂2
h depends on the specification of the SARIMA model and the forecast

horizon h. According to R. J. Hyndman and Athanasopoulos (2018), in the simplest case, when
we consider an ARIMA(0,0,q) model, the estimated forecast variance σ̂2

h = σ̂2
ε [1 +

∑h−1
i=1 ψ̂

2
i ],

where σ̂2
ε is the variance of the estimated model’s residuals.1

3.2.2 Exponential Smoothing Model

Exponential Smoothing Models (ETS) have first been proposed in the 1950s (Brown,
1959). However, a comprehensive modeling framework including stochastic models, predic-
tion intervals and procedures for model selection have not been developed until 2002. R. J.
Hyndman, Koehler, Snyder, and Grose (2002) provide an automatic forecasting framework for
selecting the best model out of the taxonomy of 30 state space models which minimizes the AIC
information criterion for a given time series. R. J. Hyndman, Koehler, Ord, and Snyder (2008)
argue that one benefit of state space models is that they are easy to use in a fully automated
way.
State space models underlie exponential smoothing models and for every smoothing method
there are two models, one with additive errors and one with multiplicative errors. Therefore,
the common notation for ETS methods is a triplet (E, T, S), the components of which rep-
resent error type, trend type and seasonality type, respectively. In total, there are 30 ETS
models when considering the two possible error types for every single one of the 15 exponential
smoothing methods shown in Table 3.1, which are classified by trend and seasonality. The
30 ETS model combinations arise from the following modeling choices: The error term can
be modeled as additive or multiplicative {A,M}. The set of trend modeling choices is given
by {N,A,Ad,M,Md} and seasonality can be set to none or it can be modeled as additive or
multiplicative, which gives the set {N,A,M}.
The trend component of an ETS model is composed of a level term lt and a growth term bt

which can include a dampening parameter φ such that 0 ≤ φ ≤ 1. The dampening parameter
φ can be used to dampen the trend as the length of the forecast horizon increases. Thus,
combining the trend and growth patterns yields five different forecast trend types Th over h
time periods:

Th = l (3.33)

Th = l + bh (3.34)
1See Brockwell and Davis (2016) for prediction intervals of more complicated models.
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Th = l + (φ+ φ2 + . . .+ φh)b (3.35)

Th = lbh (3.36)

Th = lb(φ+φ
2+...+φh). (3.37)

Table 3.1 is based on the trend type equations given by Equations (3.33) to (3.37), which denote
the trend types "None", "Additive", "Additive damped", "Multiplicative" and "Multiplicative
damped".

The main idea behind exponential smoothing methods is to provide an extrapolation procedure
that uses a weighted average of past observations to forecast future values of a time series in
which the weights are decreased exponentially as the observations become older in order to give
more weight to more recent observations (Armstrong, 2001). The challenge with ETS models
is to select the right method to approximate the data generating process accurately by means
of specifying the level, trend and seasonality components of the time series.
If the data don’t exhibit a trend or a seasonal pattern, simple exponential smoothing is a an
appropriate choice. If a linear trend is present, then Holt’s model for a linear or damped trend
is appropriate. However, if there are also seasonality effects present in the data, then the Holt-
Winters’ method is the right choice. The model consists of the following three smoothing
equations which model the respective components of the series:

lt = α
yt
st−m

+ (1− α)(lt−1 + bt−1) (3.38)

bt = β∗(lt − lt−1) + (1− β∗)bt−1 (3.39)

st = γyt/(lt−1 + bt−1) + (1− γ)st−m, (3.40)

where st denotes the seasonal term. Finally, the forecast equation for the Holt-Winters’ method
with multiplicative seasonality is

ŷT+h|T = (lT + bTh) ∗ sT−m+h+m
, (3.41)

where h+m is the number of remaining times in the forecast period up to and including time h,
the forecast horizon. m is the number of periods in each season.
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Table 3.1: Classification of Exponential Smoothing Methods by trend and seasonality type

Trend Component Seasonal Component

None (N) Additive (A) Multiplicative (M)

None (N) (N,N) (N,A) (N,M)

Additive (A) (A,N) (A,A) (A,M)

Additive damped (Ad) (Ad,N) (Ad,A) (Ad,M)

Multiplicative (M) (M,N) (M,A) (M,M)

Multiplicative damped (Md) (Md,N) (Md,A) (Md,M)

Notes: This table contains the classification taxonomy of Exponential Smoothing methods by trend and
seasonality type used by R. J. Hyndman et al. (2008). Note that the (N,N) model is equivalent to the
Simple Exponential Smoothing model. Holt’s method for linear trends is represented by the (A,N) model and
the (Ad, N) model represents Holt’s method for damped trends. Finally, the Holt-Winters’ method for additive
seasonality is given by the (A,A) model and the Holt-Winters’ method for multiplicative seasonality is given
by the (A,M) model.

R. J. Hyndman et al. (2008) also argues that if the same parameter values are used for one of
the methods from the classification and only the error type is varied from additive to multi-
plicative, the same point forecasts are produced but the prediction intervals will differ. Note
that an exponential smoothing method is an algorithm that produces a point forecast only,
whereas the underlying stochastic state space model will produce the same point forecast but
can also be used to compute prediction intervals.

The non-linear innovations state space model equations proposed by R. J. Hyndman et al.
(2008) on which all 30 Exponential smoothing methods are based are as follows:

yt = ω(xt−1) + r(xt−1)εt, (3.42)

xt = f(xt−1) + g(xt−1)εt, (3.43)

where {εt} is a white noise series of innovations. R. J. Hyndman et al. (2008) argues that we
can assume this series to be distributed as
{εt} ∼ N (µt = ω(xt−1), σ

2) for convenient inferences if the structure of the data generating
process does not conflict with this assumption, which would be the case if the series contained
only non-negative values. f(·) and g(·) are vector-valued functions and ω(·) and r(·) are scalar
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functions with time-varying arguments.
yt denotes an observation at time t and xt denotes a state vector which is made up of unobserved
components that describe the level, trend and seasonality of the time series.
The state vector is

xTt = (lt, bt, st−1, . . . , st−m+1), (3.44)

where lt is the level of the series, bt is the slope of the series at time t and st is the seasonality
component of the series at time t with m denoting the number of seasons per year.
R. J. Hyndman et al. (2008) state that Equation (3.42) describes the relationship between
the unobserved states xt−1 and the observation yt and is called the observation equation.
Equation (3.43) models the evolution of the states, i.e. the unobserved components of the
series, over time and is therefore called the state equation. The white noise innovation series
is identical in the two equations, which is why the two equations can be considered a state
space innovation model.
Note that the error component of the state space innovation model is parametrized by r(xt−1)
in Equation (3.42). In case of additive errors r(xt−1) = 1, which means that yt = µt + εt and
in case of multiplicative errors r(xt−1) = µt, i.e. yt = µt(1 + εt).

As a simple non-linear example to illustrate the state space model equations we consider an
ETS(M,N,N) model, i.e. a local level model with multiplicative errors and neither a trend
nor a seasonality component. In this case, the components of the observation equation are
ω(xt−1) = r(xt−1) = lt−1 and the components of the state equation are f(xt−1) = lt−1 and
g(xt−1) = αlt−1. Thus, we can derive the following two state space model equations:

yt = µt(1 + εt) = lt−1(1 + εt) (3.45)

lt = lt−1(1 + αεt), (3.46)

which can be found in Appendix A.3. We can also derive the recursive formula for a point
forecast given in Appendix A.1 by eliminating the error term εt and we obtain

lt = αyt + (1− α)lt−1. (3.47)

One-step-ahead point forecasts from ETS models are computed using the conditional expecta-
tion as follows:

E[yT+1|yT , yT−1, . . . , y1,x0] = E[yT+1|xT ] = ŷT+1|T = ω(xT ). (3.48)
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In order to obtain multi-step ahead forecasts in a recursive way, a prediction is computed by
Equation (3.48), the output of which is then used as an input to predict the subsequent time
step and the innovations are updated by

εT+1 = (yT+1 − ŷT+1|T )/r(xT ). (3.49)

Moreover, the state equation, Equation (3.43), is updated using the new innovation from
Equation (3.49).
All formulae for the calculation of point forecasts through exponential smoothing methods are
given in Appendix A.1.

Since point forecasts are simply predictions of future values expressed as a single number
which give no indication of the associated uncertainty, we need to compute prediction intervals.
R. J. Hyndman et al. (2008) argue that prediction intervals for linear state space models with
homoskedastic errors that are assumed to be Gaussian can be computed from the forecast
means, µT+h|T , and the forecast variances νT+h|T in the following way:

µT+h|T ± zα/2
√
νT+h|T , (3.50)

where zq is the q-th percentile of the Standard Normal distribution. However, note that the
exact algebraic expressions for the forecast variances change if linear state space models with
heteroskedastic errors are considered. Thus, the prediction intervals and the forecast distribu-
tions will change as well. If nonlinear seasonal state space models are considered, the exact
values for the forecast means and variances are hard to compute if h ≥ m, i.e. if the forecast
horizon is greater than the number of periods in a season. Thus, approximate forecast means
and forecast variances have to be used. R. J. Hyndman et al. (2008) argue that these approxi-
mations produce reasonably accurate results.
On the other hand, if the assumption of Gaussian distributed innovations is inadequate, a sec-
ond approach for the computation of prediction intervals has to be used. This second approach
is to simulate the forecast distribution and and prediction intervals by means of simulating
future sample paths from the model, i.e. from Equation (3.42) and Equation (3.43) conditional
on the final state xT . This is done by recursively generating the set of observations {y(i)t } for
t = T + 1, . . . , T + h starting with xT . Each value for εt is taken from a random number gen-
erator which draws randomly generated values from an appropriate prespecified distribution,
which does not have to be the Gaussian distribution. We repeat this procedure for i = 1, . . . ,M ,
where M is a large integer value that denotes the number of simulated sample paths. R. J.
Hyndman et al. (2008) state that 5000 is a common choice for M and they also argue that the
prediction distribution of yT+h|T can then be estimated from the vector of simulated values at
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forecast horizon h, which is

yTT+h|T = {y(1)T+h, . . . , y
(M)
T+h}, (3.51)

where yT+h|T ∈ NM×1. Finally, prediction intervals for these nonlinear state space models
are then obtained from the quantiles of the of the simulated sample paths. The 100(1 − α)%

prediction interval for an h-step ahead forecast is then given by the α/2 and the 1 − α/2

quantiles of the vector of simulated values yT+h|T . R. J. Hyndman et al. (2008) argue that
this non-analytical method is the only way of obtaining prediction intervals for those nonlinear
subclasses of ETS models because no distributional assumptions are required when resampling
the innovations εt. They also state that an advantage of simulated prediction intervals is that
the uncertainty associated with estimating the model parameters can be taken into account
since the sample paths are generated from the same model but with randomly varying param-
eters α, β, γ, φ and x0.

The state space model equations that are used for the calculation of prediction intervals are
given in Appendix A.2 and Appendix A.3.

R. J. Hyndman et al. (2008) argue that certain combinations of error, trend and seasonality
can lead to numerical difficulties and he therefore states that the multiplicative error mod-
els can be numerically unstable when the time series contains data with zeros or negative values.

The estimation of state space innovation models requires the estimation of the unknown initial
states vector x0 and the estimation of the unknown model parameters α, β, γ and φ, which
refer to the three smoothing parameters and the dampening parameter, respectively, after the
type of ETS model to be deployed has been selected.
The initial states vector, x0 ∈ Rk×1, is defined as

xT0 = (l0, b0, s−1, . . . , s−m+1) (3.52)

and can be specified using ad-hoc values or heuristic schemes.2

These initial states are then refined by estimating them in conjunction with the model param-
eters.
The ETS model selection can be done by means of the forecast accuracy error measures in-
troduced in Section 3.1, which are computed on the test set, but a penalized method such as
the AIC, which is computed on the training set, is the better choice for selecting between the
additive and the multiplicative error models since the AIC is based on the likelihood instead of

2For details on the latter see R. J. Hyndman et al. (2008, p. 23)

27



3.2. TRADITIONAL STATISTICAL MODELS

the one-step ahead forecasts. R. J. Hyndman et al. (2008) claim that the error measures cannot
be used to select between additive and multiplicative error models of exponential smoothing
methods since the two error types produce the same point forecasts. The AIC is given by

AIC = L∗(θ̂, x̂0) + 2q, (3.53)

where q is the number of parameters in θ plus the number of free states in x0.
The parameter vector of the likelihood is given by

θT = (α, β, γ, φ) (3.54)

and we restrict the parameter space as follows:

0 ≤ α ≤ 1, 0 ≤ β ≤ α, 0 ≤ γ ≤ 1− α, and 0 ≤ φ ≤ 1. (3.55)

α controls the weights used on the current and past observations.
The likelihood also depends on the joint density of the series vector yT = (y1, . . . , yn), which is

p(y|θ,x0, σ
2) =

n∏
t=1

p(εt)/
∣∣r(xt−1)∣∣ , (3.56)

where σ2 is the variance of the innovations. Thus we have a weighted product of the densities
of the individual innovations, p(εt).
If we use the assumption of Gaussian innovations, we can write the Gaussian likelihood function
as

L(θ,x0, σ
2|y) = (2πσ2)−n/2

∣∣∣∣∣
n∏
t=1

r(xt−1)

∣∣∣∣∣
−1

exp (−1

2

n∑
t=1

ε2t/σ
2). (3.57)

Note that by eliminating σ2 from the Gaussian likelihood function, taking the log and mul-
tiplying by −2 we can proceed to derive the following likelihood function of the state space
innovations model, which we want to minimize with respect to the main model parameter vector
θ and the initial states vector x0 in order to obtain the maximum likelihood estimates :

L∗(θ,x0) = n log (
n∑
t=1

ε2t ) + 2
n∑
t=1

log
∣∣r(xt−1)∣∣. (3.58)

Note that this likelihood function can accommodate heteroskedastic innovations and in case of
homoskedastic innovations we simply have r(xt−1) = 1. R. J. Hyndman et al. (2008) also state
that a poor choice of initial or seed values can lead to sub-optimal estimates and to higher
computational loads.
Furthermore, stationarity of the data is not a required assumption for the usage of ETS models.
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R. J. Hyndman et al. (2008) state that stationarity is in fact a rare property in exponential
smoothing state space models.

3.2.3 BATS and TBATS Models

The state space models which underlie the ETS models described in Section 3.2.2 can also be
extended further in order to enable ETS models to handle more complex seasonal patterns.
Livera, Hyndman, and Snyder (2011) propose an Exponential smoothing state space
model with trigonometric seasonality, Box-Cox transformation, ARMA errors,
Trend and Seasonal components (TBATS), which can handle multiple seasonal periods,
high-frequency seasonality and non-integer seasonal periods through a trigonometric formula-
tion.

The authors extend the Holt-Winters model with additive seasonality and multiplicative errors
in the form of an ETS(M,A,A) model with two seasonal components and incorporate a Box-Cox
transformation, ARMA errors as well as up to T seasonal patterns. Livera et al. (2011) propose
the following model:

yt =


yωt −1
ω
, ω 6= 0

log(yt), ω = 0
(3.59)

yωt = lt−1 + φbt−1 +
T∑
i=1

s
(i)
t−1 + dt (3.60)

lt = lt−1 + φbt−1 + αdt (3.61)

bt = (1− φ)b+ φbt−1 + βdt, (3.62)

where Equations (3.59) to (3.62) denote the Box-Cox transformation for observation yt with
parameter ω, the measurement equation, the trend level and the trend growth. The TBATS
model also includes a trigonometric formulation of the seasonal component s(i)t which is given
by the following three equations:

s
(i)
t =

ki∑
j=1

s
(i)
j,t (3.63)

s
(i)
j,t = s

(i)
j,t−1cosλ

i
j + s

∗(i)
j,t−1sinλ

(i)
j + γ

(i)
1 dt, (3.64)
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s
∗(i)
j,t−1 = −sj,t−1sinλ(i)j + s

∗(i)
j,t−1cosλ

i
j + γ

(i)
2 dt, (3.65)

where Equation (3.64) describes the stochastic level of the i-th seasonal component, denoted
by s(i)j,t and Equation (3.65) describes the stochastic growth s

∗(i)
j,t−1 in the level of the seasonal

component that can be used to describe the change in the i-th seasonal component over time.
The TBATS model employs a Fourier form representation of seasonality here, which allows to
model any cyclic function based on seasonal components as a linear combination of trigonomet-
ric terms (West & Harrison, 2006). γ(i)1 , γ

(i)
2 are seasonal smoothing parameters and ki is the

number of harmonics used to model the i-th seasonal component. Also note that λ(i)j = 2πj/mi,
where mi is the i-th seasonal period such that mi ∈ {m1, . . . ,mT}.
Finally, the TBATS model also includes an ARMA(p,q) process {dt} to model the autocorre-
lations found in the white noise error term process {εt}:

dt =

p∑
i=1

ζidt−i +

q∑
i=1

ξiεt−i + εt. (3.66)

∑p
i=1 ζi is the autoregressive component and

∑q
i=1 ξi is the moving average component of the

ARMA process of order (p, q). According to Livera et al. (2011), the ARMA error terms are
introduced in order to explicitly model the autocorrelation in the error process εt, which is
assumed to be serially uncorrelated in the regular ETS models.

The TBATS model is parametrized as follows:

TBATS( ω︸︷︷︸
BC parameter

, φ︸︷︷︸
dampening

, p, q︸︷︷︸
ARMA parameters

, {m1, k1}, {m2, k2}, . . . , {mT , kT}︸ ︷︷ ︸
seasonal period & # of harmonics

), (3.67)

where ω is the Box-Cox transformation parameter, which is chosen to carry out the trans-
formation given in Equation (3.59), φ is the dampening parameter, which is also used in the
regular ETS models. (p, q) denote the order of the ARMA error process. mi is the i-th seasonal
period and ki is the number of harmonics used for the to describe the i-th seasonal component.
ki = mi/2 for even values of mi and ki = (mi − 1)/2 for odd values of mi.

The estimation of the TBATS model is done via maximum likelihood. Specifically, the following
negative log-likelihood function is minimized to obtain the maximum likelihood estimates:

L∗(ϑ̂, x̂0) = n log (
n∑
t=1

ε2t )− 2(ω − 1)
n∑
t=1

log yt. (3.68)

Automated model selection in the TBATS model is carried out by minimizing the AIC
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AIC = L∗(ϑ̂, x̂0) + 2K, (3.69)

where ϑ̂ is an estimate of the vector containing the Box-Cox transformation parameter, the
dampening parameter as well as the ARMA process coefficients and x̂0 is an estimate of the
initial states vector. K is the total number of parameters in ϑ plus the number of free states
in x0.
Furthermore, the number of harmonics is not selected by evaluating every possible combination
but rather through an approach which involves the approximation of the seasonally de-trended
data with a regression and then gradually adding harmonics and testing for their significance
until a model fitted to the data with a minimal AIC emerges.
Moreover, Livera et al. (2011) state that a two step-procedure is employed to determine the order
(p, q) of the ARMA process according to which a suitable model with no ARMA component is
selected first and subsequently the Hyndman-Khandakar algorithm is applied to the residuals of
said model in order to determine p and q. The selected first model is then fit again augmented
by the ARMA errors components but the latter are only retained if the new augmented model
leads to a lower AIC than the model without the ARMA component.
According to Livera et al. (2011), a further advantage of the TBATS model is that it can also be
used to decompose a complex seasonal series into the trend, seasonal and irregular components.
A further model variation, which can also be considered as an extension of the ETS model to
accomodate more complex seasonal patterns, is the Exponential smoothing state space
model with Box-Cox transformation, ARMA errors, Trend and Seasonal compo-
nents (BATS). The BATS model can also handle up to T seasonal patterns but it models the
seasonal patterns in a different way. Equations (3.63) to (3.65) are replaced by the following
formulation for each individual seasonal component:

s
(i)
t = s

(i)
t−mi

+ γidt, (3.70)

where γi, i = 1, . . . , T are seasonal smoothing parameters. Livera et al. (2011) state that the
BATS model comes with the limitations that it cannot handle non-integer seasonal periods
and that the number of seed states can grow very large in case of seasonal patterns with high
seasonal periods.

3.3 Ensemble Methods

This section describes the statistical learning method of ensembling. The most recent advances
with respect to a time series context are also described, when applicable. Hastie, Tibshirani, and
Friedman (2009) describe ensemble learning as the two step process of developing a collection
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of weaker base models, called "base learners", from the training data and then subsequently
combining them to form a composite prediction model. Murphy (2012) formulates this weighted
combination of base models as follows:

f(y|X) =
∑
m∈M

wmfm(y|X), (3.71)

where wm are the ensemble weights and fm are the base models.
Generally, there are three basic techniques that can be described by the overarching term of
ensemble methods, which are bootstrap aggregating (bagging), boosting, and stacking. In this
paper, we concentrate on the first two techniques and highlight advances in the domain of times
series forecasting.

3.3.1 Bagging for Time Series

Bootstrap aggregation (Bagging) is a general-purpose technique for reducing the variance of a
statistical learning method, which can also increase that method’s prediction accuracy (James
et al., 2013).
In order to obtain an overall prediction from a bagging ensemble model, which we refer to as
the bagging estimate, we first have to draw B bootstrap data sets with replacement from the
training data: {(x(i)

b , y
(i)
b ); i = 1, . . . , n}. Then, we predict f̂b(X) based on the b-th bootstrap

data set for b = 1, . . . , B. Finally, according to Hastie et al. (2009), the bagging estimate or
the prediction from the ensemble is obtained as follows:

f̂ bag(X) =
1

B

B∑
b=1

f̂b(X). (3.72)

The well-established bagging method was first introduced by Breiman (1996) but it was not
successfully applied in a time series forecasting context until 2016.
According to Petropoulos et al. (2018) the complication with time series consists in accounting
for non-stationarity and autocorrelation in the bootstrapping procedure in order to produce
bootstrapped samples that resemble the original data.
Bergmeir, Hyndman, and Benıtez (2016) propose a bootstrapping procedure for time series
as illustrated in Figure 3.2 that includes a Box-Cox transformation in order to stabilize the
variance and in order to ensure that the components of the series are additive. The Box-Cox
transformation, which was first introduced by Box and Cox (1964), is defined as follows:

wt =

log(yt), ω = 0

(yωt − 1)/ω, ω 6= 0
. (3.73)
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The optimal ω ∈ [0, 1] is chosen by dividing the series into subseries of length equal to the
seasonality and minimizing the coefficient of variation σ/µ(1−ω) across those subseries, where σ
stands for the standard deviation and µ for the sample mean of the subseries.
Subsequently, a decomposition either in form of the loess method to extract trend and remainder
in case of a non-seasonal time series or in form of a STL decomposition in order to break a
seasonal series down into the trend, seasonal and remainder components. The remainder of the
decomposed series is then assumed to be stationary but there may be autocorrelation.
The authors then apply a bootstrapping method that allows for autocorrelation, the Moving
block bootstrap (MBB) in a slightly modified version of the original method suggested by
Künsch (1989), to the extracted remainder of the series. De Oliveira and Cyrino Oliveira
(2018) provide further details on the MBB method, which they also adopt. They state that the
proposed MBB approach consists of drawing (n/l) + 2 overlapping blocks from the remainder
of the series and then discarding a random number between 0 and l − 1 from the beginning
of the bootstrapped series and a further number of values to obtain the same length as the
original remainder series, which is bootstrapped. n is the length of the original series and l

is the block size. In this modified version, any value from the original series can possibly be
placed anywhere in the bootstrapped series. In the next step, the series is reconstructed from
its structural components, i.e. trend, seasonality, and the bootstrapped remainder. Finally,
the Box-Cox transformation is inverted. The whole process is then repeated in order to obtain
multiple bootstrapped series.
Bergmeir et al. (2016) state that their ensemble bagging model is then created by applying
the ets() R function to each of the bootstrapped series, which autoselects the ETS model that
minimizes the AIC. The point forecasts from all these models are then combined using the
median. Note that this bagging procedure can also be applied to models other than ETS and
the point forecasts from the base models can also be combined using a different statistical
measure such as the arithmetic mean.
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Figure 3.2: Bootstrapping procedure for a time series

Notes: This figure is taken from Petropoulos et al. (2018) and shows a flowchart of the bootstrapping procedure
for a time series developed by Bergmeir et al. (2016). This procedure involves a Box-Cox transformation to
stabilize the variance, which is followed by a decomposition of the time series into the remainder and the trend
component as well as a seasonal component if the latter is present in the series. A moving block bootstrapping
procedure, which allows for autocorrelation, is then applied to the remainder of the series. The remainder is
assumed to be stationary. Finally, the other components are combined with the bootstrapped remainder and
the Box-Cox transformation is inverted to reconstruct the time series. This process is then repeated to create
multiple such reconstructed series which are called the bootstraps.

Bergmeir et al. (2016) find that the ensemble of bagged exponential smoothing models out-
performs the regular exponential smoothing model consistently for monthly data on the M3
forecasting competition data set, which is a common medium of comparison of newly intro-
duced forecasting methods with existing state of the art models.

However, the most common base model across all ensemble methods is a decision tree. More-
over, it is also possible to refine the bagging prediction technique and reduce the variance even
further under certain circumstances and therefore we first introduce the concept of a decision
tree in order to explain the concept of a Random Forest.

In general, the purpose of decision tree based methods, which are typically used for regression
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or classification problems, is to segment the feature space, which can also be named the predictor
space, into a number of simpler regions. The name stems from the fact that the set of splitting
rules can be described with a tree (James et al., 2013). For the purpose of this paper, we will
focus on regression trees.
Figure 3.3 illustrates the tree resulting from the partition of a two-dimensional feature space
and also depicts the prediction surface resulting from that tree.

Figure 3.3: Decision tree and resulting prediction surface

Notes: This figure taken from James et al. (2013) is composed of two panels. The left panel shows the decision
tree resulting from the partition of a two dimensional predictor space, i.e. the set of possible values for predictors
x1 and x2, into 5 Regions R1, . . . , R5, where t1, . . . , t4 denote the cutting points for binary splitting. Note that
t1 is referred to as a parent node and t2, t3 and t4 are referred to as child nodes or simply childs. The final
five regions of the predictor space are also referred to as terminal nodes. The right panel shows the prediction
surface associated with this tree as values for the two predictors x1 and x2 are varied.

The regions Rj, j = 1, ..., 5 are called terminal nodes or leaves, the points ti, i = 1, ..., 4

where the predictor space, i.e. the set of possible values for predictors x1,x2, ...,xp, is split are
referred to as internal nodes and the connecting segments are called branches.
More formally, incorporating the notation from John and Townshend (2019), we intend to
partition the feature space X into J disjoint regions as follows:

X = ∪Jj=0Rj

s.t. Rj ∩Ri = ∅ for j 6= i,
(3.74)

where J ∈ Z+.
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James et al. (2013) argue that the goal of a regression tree is to split the feature space X into
J distinct and non-overlapping regions R1, R2, ..., RJ in such a way that the Residual sum of
squares (RSS) is minimized as follows:

min
R1, . . . , RJ

RSS =
J∑
j=1

∑
i∈Rj

(yi − ŷRj
)2, (3.75)

where ŷRj
is the mean response for the training observations in the j-th region. More precisely,

the final prediction for region Rj is the mean of all yi falling into the specific region, which can
be expressed as

ŷRj
=

∑
i∈Rj

yi

|Rj|
= γj. (3.76)

Another key ingredient of decision trees is the concept of "recursive binary splitting", which
refers to a top-down approach to successively splitting the predictor space. Mathematically,
the predictor xj and the cutting point t are chosen such that the split of the predictor space
into the regions {X |xj < t} and {X |xj ≥ t} leads to the maximum reduction in the RSS.

A Random Forest provides a way of improving bagged decision trees by decorrelating the
trees through a tweak. Predictions from bagged trees will be highly correlated if there are a very
strong predictor and several moderately strong predictors in the dataset. In order to resolve
this problem, the Random Forest method can improve the reduction in variance by modifying
the tree growing process in the following way: Whenever a tree is grown on a bootstrap dataset,
only m ≤ p of the input variables are considered at random for a split to be made. The reduced
design matrix is denoted X̃. Typically, √p is the number chosen for m (Hastie et al., 2009).
Formally, the random forest predictor for B trees grown in this modified way is

f̂ rf (X̃) =
1

B

B∑
b=1

f̂b(X̃), (3.77)

where the function f̂b(X̃) = T (X̃; Θb) is the general formal parametric representation of the
b-th decision tree, which in this case forms a base model to obtain a random forest predictor.3

The parameters Θb∈{1,...,B} = {R∗j , ŷRj
; j = 1, . . . , J} are found by minimizing the empirical risk

function and they characterize each decision tree. R∗j ; j = 1, . . . , J denote the final regions of
the predictor space that minimize the RSS. ŷRj

; j = 1, . . . , J represent the respective predic-
tions per region.

3For further details see Hastie et al. (2009, p. 356).
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Nevertheless, the literature on time series random forests that can be applied to regression tasks
is very sparse at this point in time. However, Deng, Runger, Tuv, and Vladimir (2013) propose
a time series forest that can be used for classification tasks. High quality splits are obtained by
considering the entrance gain, a measure combining the entropy gain and a distance measure.
The authors also state that the computational complexity is linear in the length of the time
series and that a temporal importance curve consisting of entropy gains at different time indices
can be used to capture important interval features such as the median for a specific interval of
the underlying time series.
Due to a lack of availability of refined Random Forest regression methods for time series, we
will stick to the regular bagging technique for the purpose of this paper.

3.3.2 Boosting for Time Series

Another ensemble method based on regression trees is gradient tree-boosting, the goal of
which is to sequentially grow trees using information from previously grown trees. In contrast
to the simultaneous procedure of bagging, no bootstrapping of the training data is required.
Instead, trees are grown using the current residuals rather than y as a target variable. After
every iteration, the last fitted tree is added to the current boosted tree ensemble model in order
to update the residuals.
The boosted tree model is

fM(X) =
M∑
m=1

fm(X), (3.78)

where fm(X) = T (X; Θm) denotes the tree structure of the m-th base learner. According to
Hastie et al. (2009), the algorithm starts by initializing the optimal constant model,

f0(x) = arg min
γ

n∑
i=1

L(yi, γ), (3.79)

which represents a tree with a single terminal node, region R with the associated prediction
ŷR = γ. Then, the generalized residuals rim, which represent the target values to fit the
regression trees to, are computed for the training data i = 1, ..., n by using the negative gradient
evaluated at fm−1

rim = −[
∂L(yi, f(xi))

∂f(xi)
]|f=fm−1

. (3.80)

At each iteration m, we fit one regression tree to the targets rim which yields the terminal
regions Rjm for j = 1, ..., Jm. Jm represents the size of each single base model tree included in
the boosting ensemble. In total, we fitM regression trees over the course ofM iterations. Jm
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andM are the main parameters to be tuned in the gradient tree-boosting algorithm.

After computing the optimal constant per region, γjm for j = 1, ..., Jm, which is equivalent to
the mean of all yi falling into that specific region, the solution is updated in a forward additive
stage-wise boosting procedure. We augment the generic gradient tree-boosting procedure as
described by Hastie et al. (2009) by a shrinkage parameter η such that 0 ≤ η ≤ 1, which is
equivalent to the learning rate used in the gradient descent algorithm for neural networks given
in Equation (3.115). The gradient boosting algorithm then updates the initial prediction f0(x)

and every successive fm(x) is based on the current parameter vector fm−1, which is a sum of
the previously incorporated updates. Adapting the notation used by Friedman (2002) to our
paper leads us to the following update equation per boosting iteration m:

fm(X) = fm−1(X) + η ∗ T (X; Θm). (3.81)

Finally, the predicted output of the gradient-boosted tree model is obtained afterM iterations
as f̂ boost(X) = fM(X).

According to Hastie et al. (2009), boosting is among the most powerful statistical learning
techniques introduced in the recent two decades. When it comes to a time series regression
context, Barrow and Crone (2016) state that seven variants of the Adaboost algorithm have
been extended to regression tasks with time series data. In its original form, the Adaboost
algorithm produces a weighted composite prediction combining the binary predictions of a
sequence of iteratively trained classifiers, which are applied to sequentially updated weighted
versions of the original data sample. The weights are also computed by the boosting algorithm
and a higher weight is given to previously miss-classified observations of the sample which
forces the successive classifier to focus on the observations that were missed by the previous
classifier.

According to Barrow and Crone (2016), the most common base models to boost using Ad-
aboost algorithm variants in the context of time series data are multi-layer perceptrons, which
are explained in more detail in Section 3.4.1 and regression trees. Barrow and Crone (2016)
evaluate the forecasting performance on the NN3 competition dataset consisting of 111 time
series and find that regression trees as base models are outperformed by multi-layer perceptrons
across all data conditions for all boosting variants. However, they also find that even the best
boosting variant using multi-layer perceptrons as a base learner performs worse at time series
prediction than a bagging ensemble.

Another highly successful boosting variant is Extreme gradient boosting (XGB), which
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describes a scalable Machine Learning system for decision tree boosting that has first been
developed by Chen and Guestrin (2016). This machine learning method is widely used by
data scientists and Chen and Guestrin (2016) argue that its successful application mainly
stems from its scalability due to parallel and distributed computation capabilities as well as
due to algorithmic approximations to facilitate handling sparse data and approximating tree
learning. An approximate algorithm to find a good tree split can be necessary if carrying out
the exact greedy algorithm, which tries to find the optimal split by iterating over all possi-
ble splits over all the features, would be computationally impossible due to memory restrictions.

Chen and Guestrin (2016) modify the objective function by introducing a regularization term
Ω(fm) in order to prevent overfitting :

L(L(·),Ω(·)) =
∑
i

L(yi, ŷi) +
∑
m

Ω(fm), (3.82)

where L(·) is a differentiable convex loss function based on the prediction ŷi of the target yi
over all data points. fm is the m-th regression tree which forms a base model for the tree
boosting ensemble model that corresponds to a specific tree structure and specific leaf weights.
We set up the regularization function for an individual tree in such a way that it allows for the
inclusion of a `1 as well as a `2 regularization term as follows:

Ω(fm) = γT + α ‖w‖1︸ ︷︷ ︸
`1 penalty

+
1

2
λ ‖w‖22︸ ︷︷ ︸
`2 penalty

= γT + α
∑
i

| wi | +
1

2
λ
∑
i

w2
i ,

(3.83)

where w denotes the sum over the continuous leaf weights wi and T is the number of leaves in a
tree. Note that the objective function is identical to that of the regular gradient tree-boosting
method when the `1 regularization parameter α ∈ [0,∞[ as well as the `2 regularization pa-
rameter λ ∈ [0,∞[ are set to 0.

Moreover, the XGB method leverages two more techniques to prevent overfitting, shrinkage
and column subsampling. Chen and Guestrin (2016) state that the function of shrinkage is
to scale newly added weights with a factor of η after each step of tree boosting in order to
allow future trees to improve the model further. Column subsampling refers to the fraction of
observations to be randomly considered for fitting each tree, which is the technique that is also
used in Random Forests.

The most recent gradient tree boosting model algorithm, Light gradient boosting machine
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(LGBM), which has been proposed by Ke et al. (2017), extends the scalability to high feature
dimensions and large data sets even further than the XGB algorithm does. The authors argue
that their LGBM algorithm can speed up the training process by a factor of up to 20 compared
to common gradient tree boosting algorithms while maintaining the accuracy of comparable
algorithms. LGBM also supports parallel processing.
Ke et al. (2017) state that they tackle the problem of extensive computational requirements
when estimating the information gains on all possible split points for every single feature by in-
troducing two new techniques: gradient based one side sampling and exclusive feature bundling.
The first technique serves the purpose of estimating an accurate information gain with a much
smaller data size since a part of the data instances with small gradients is excluded from this
computation. The second technique can be used to reduce the number of features by bundling
mutually exclusive features without compromising on the ability to detect accurate splitting
points of the predictor space.
LGBM accomodates the same hyperparameters to prevent overfitting as XGB does and we will
therefore implement the LGBM boosting algorithm due to its computational speed advantages
compared to the XGB algorithm.

3.4 Neural Network Models

Artificial neural networks (ANNs) refer to mathematical models which are based on the biolog-
ical structure of the brain and which allow for complex non-linear relationships between a label
and features. Neural networks can have various different network architectures which may be
advantageous for different specific applications.4

This section introduces the structure of an artificial neuron as a building block of neural net-
works. Next, different network architectures are presented and it is explained how these are
used as functional approximators. First, feedforward neural networks (FFNNs) are explained,
then recurrent neural networks (RNNs) and in particular two RNN architecture variants, the
Long Short Term Memory (LSTM) and the Gated Recurrent Unit (GRU) neural networks are
presented. Lastly, we explain how these neural networks can be employed in the domain of
time series forecasting, how prediction intervals can be constructed and how their accuracy can
be evaluated.

3.4.1 Functioning Principles and Building Blocks

ANNs are a class of algorithms within machine learning that is based on the mathematical
disciplines but it is also uniquely inspired by neuroscience (Haykin, 1999). The first references

4See (Bengio et al., 2009) for a holistic overview of the different architectures for deep learning models.
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of neural networks in the literature go back to the 1940s, when cognitive computing based
on brain-like structures were first conceptualized (McCulloch & Pitts, 1943). The underlying
motivation was that the human brain is able to process and solve immensely complex problems
that are beyond the reach of any computer. This is even more remarkable due to the fact that
a human brain is a relatively small but highly efficient processor.

Although many of the brain’s inner workings are not yet known to scientists, we do know a
fair amount of its structure. The brain consists of approximately 10 billion neurons, which
are cells unique to the brain. The minimal structure of biological neurons which is adopted
by artificial neurons used in computing are dendrites, which are transmission channels for
incoming information, the cell body, and axons, which transmit output signals. Furthermore,
each neuron is connected with around 10,000 other neurons trough contact points between
different neurons, which are called synapses, that send signals back and forth. These synapses
have the ability to regulate the strength of the signal coming trough it based on previous
experience. The neural cell processes the sum of weighted inputs from other connected cells
and if this measure reaches a certain threshold, the cell is activated (Haykin, 1999). Synapses
therefore have weights associated to them which are referred to as synaptic weights.

ANNs are an attempt at modeling the information processing capabilities of nervous systems,
the building blocks of which are called neural cells or neurons (Rojas, 1996). Weights are also
used in artificial neurons and are associated with the connections between a node and the input
and output channels. A node represents the cell body in an artificial neuron.
The building block of an artificial neural network is called a perceptron which is mathematical
model of a biological neuron with the aforementioned four components. A graphical illustration
is presented in Figure 3.4. Note that perceptrons can either have one or multiple outputs.

According to Vlahogianni et al. (2004), artificial neural networks are especially suitable for
time series forecasting since they are non-parametric, i.e. they do not require any stationarity
assumptions of the time series used as an input. Moreover, due to their extensive mapping
capabilities, ANNs are more flexible than more traditional statistical models such as ARIMA
models (Yan, 2012). However, the enormous flexibility and lack of assumptions that neural
networks provide come at a cost. Due to the fact that neural networks approximate their
target functions through a supervised learning algorithm instead of the estimation of function
parameters, they have been labeled a "black box" algorithm and they provide little insight into
the relative influence of the features in the prediction process (Sussillo & Barak, 2013).
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Figure 3.4: Structure of a perceptron or single artificial neuron

Notes: This figure taken from Amini and Soleimany (2020a) shows the structure of a single output perceptron.
The inputs x1, x2, . . . , xm are multiplied with their associated weights w1, w2, . . . , wm and are then summed up
to form a linear combination. This combination of inputs is then passed forward through a nonlinear activation
function g(·), which is represented by the yellow symbol to produce the output ŷ. The perceptron also contains
a bias term w0 which is shown in green.

The perceptron can be formulated by the following single equation

ŷ = g(w0 +
m∑
i=1

xiwi) (3.84)

or we can make the notation even more compact by using linear algebra and applying the dot
product, which leads us to

ŷ = g(w0 + xTw), (3.85)

where xT = (x1, . . . , xm) and wT = (w1, . . . , wm). Note that x,w ∈ Rm.
The activation function g(· ) can be modeled in various different ways depending on the applica-
tion of the neural network. More specifically, g : R→ R is a differentiable non-linear mapping
that is applied elementwise to the vector-valued activation, which is the linear combination of
weights wi and inputs xi. Note that w0 denotes the bias parameter. This term has the purpose
of shifting the activation function irrespective of the inputs. Amini and Soleimany (2020a)
state that the main purpose of an activation function is to introduce non-linearities into the
neural network which allows for the approximation of arbitrarily complex functions.

Common activation functions are shown in Figure 3.5.
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Figure 3.5: Graphs of Common Activation Functions and their first derivatives

Notes: Panel (a) shows the sigmoid activation function, panel (b) depicts the rectified linear unit (RELU)
activation function, panel (c) shows the hyperbolic tangent activation function and panel (d) shows the leaky
RELU activation function with a slope δ = 0.02 for x < 0. The respective equations are given in Equations (3.86)
to (3.93).

These include the sigmoid function,

sigmoid(x) = (1 + exp(−x))−1, (3.86)

which only outputs values in the codomain of [0, 1]. The first derivative with respect to the
argument x is given by
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∂(sigmoid(x))/∂x =
exp(−x)

(1 + exp(−x))2
. (3.87)

A further popular activation function is the Rectified linear unit (RELU), which is defined
as

relu(x) = max
x

(x, 0)

0, x < 0

x, x ≥ 0
. (3.88)

The RELU function is linear for positive values and outputs zero for negative values which
can help to avoid the vanishing gradient problem explained in Section 3.4.4 which can occur
when using the sigmoid or the hyperbolic tangent function and it also means that neurons get
sparsely activated. The first derivative of the RELU activation function is given by

∂(relu(x))/∂x =

0, x < 0

1, x ≥ 0
. (3.89)

A further relevant activation function which is used for the more sophisticated neural network
architectures of the LSTM and the GRU is the hyperbolic tangent function, which is is
defined as

tanh(x) =
ex − e−x

ex + e−x
. (3.90)

Moreover, the first derivative of the tanh function is

∂(tanh(x))/∂x = 1− tanh(x)2. (3.91)

Lastly, the leaky RELU activation function modifies the regular RELU function in such a way
that it allows for small negative values when the input is less than zero. According to Brownlee
(2018), the leaky RELU function can be used to overcome the "dying RELU" problem , which
means that if a neuron using a RELU activation function gets stuck in a situation of always
outputting a value of 0, that node never activates. In that case the gradient is equal to 0 as
well and the weights for that neuron are not updated. Since the leaky RELU function has a
non-zero slope for negative inputs, it can avoid this problem. The leaky RELU function can be
written as follows:

leaky relu(x) = max
x

(δx, x) =

δx, x < 0

x, x ≥ 0
, (3.92)

where δ is the slope parameter for negative arguments. The first derivative with respect to the
argument x is
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∂(leaky relu(x))/∂x =

δ, x < 0

1, x ≥ 0
. (3.93)

3.4.2 Feed Forward Neural Network (FFNN)

Feed-forward neural networks (FFNN) are comprised of three main elements. Neurons,
layers, wherein the neurons are located, and the connections between neurons. Neurons will
interchangeably be referred to as nodes and the connections between neurons will be referred
to as weights. The network architecture is then built up by sequentially chained layers where
the weights connect each layer to the next one.

When considering feedforward neural networks, the architecture can be parametrized by k, the
number of hidden layers, and by nk, the number of neurons in a given layer k.
The first layer in the network is called the input layer and here the neurons contain the
features of the data, X = {x1,x2, ...,xm}, each of which contain n observations. We define the
output of the j-th neuron in a given layer L by z(L)j . The output of a neuron in the input layer
is simply the feature-vector associated with that neuron, z(1)j = xj.
All of the following layers except for the very last one are called hidden layers. In these layers,
the output of each neuron is computed in two steps. First, a linear combination of weights and
inputs, i.e. the activation is calculated. The inputs are simply the last layer’s outputs z(L−1)

and the weights are a set of parameters w(L)
i,j ∈W (L) denoting the weight between neuron i in

layer L and neuron j in layer L+ 1. W (L) is called the weight matrix associated with layer L.
Second, the non-linear activation function g(·) is applied to produce the output of the hidden
neuron zi.
Finally, the last layer of the network is called the output layer and its output is computed
in an identical fashion to that of the hidden layers. The purpose of the activation function
in this case is no longer the introduction of non-linearities but rather the scaling of the final
output of the model to its desired range. The last layer of the network represents the combined
output of the model, f̂(X;W ) = ŷ = z(k+1). This is a non-linear mapping of the input
X ∈ Rn×m to the output ŷ ∈ Rn×h. h is the dimension of the output. f̂W (·) is also referred
to as the network function and is parametrized by the set of weights combining each layer,
W = {W (1),W (2), ...,W (k+1)}. It is by adjusting these weights that the network can adapt
the features given in the input layer to the target in the output layer.
Figure 3.6 shows a single hidden layer FFNN with two outputs.

45



3.4. NEURAL NETWORK MODELS

Figure 3.6: Multilayer feed-forward network with one hidden layer

Notes: This figure is taken from Amini and Soleimany (2020a) and shows a dense single layered FFNN with a
single input layer and a single hidden layer which feeds into a single output layer. There are two weight matrices,
W (1) and W (2) - one for connections between input and hidden layer and one for connections between hidden
and output layer. Note that the red colored nodes represent hidden nodes and each hidden node represents a
single output perceptron which performs the transformation from Equation (3.84) and passes the output on to
the next layer. In the illustrated network there are m inputs, d1 hidden nodes and 2 outputs. Bias terms are
omitted in this illustrative example.

The two transformations underlying the FFNN illustrated in Figure 3.6 can be represented
by two equations. The transformation between the inputs and a single hidden node, i.e. the
activation, ai for i = 1, . . . , d1 in layer 1 is

ai = w
(1)
0,i +

m∑
j=1

xjw
(1)
j,i (3.94)

and the transformation between the input layer and the hidden layer produces the ouput of the
hidden neuron

zi = g(ai) = g(w
(1)
0,i +

m∑
j=1

xjw
(1)
j,i ). (3.95)

Between the hidden layer and the output layer another transformation of the following form
takes place:

ŷi = g(w
(2)
0,i +

d1∑
j=1

g(aj)w
(2)
j,i ). (3.96)

The bias parameters w(1)
0,i , w

(2)
0,i and weight parameters w(1)

j,i , w
(2)
j,i are learned from the data, but
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the weights are initially set to random values and are then updated from the observed data.
According to R. J. Hyndman and Athanasopoulos (2018), the number of hidden layers and
the number of neurons contained in the hidden layers is usually determined in advance by
cross-validation.

Deep learning refers to neural network architectures with more than one hidden layer. For ex-
ample, a graphical representation of a deep FFNN with k hidden layers can be seen in Figure 3.7.

Figure 3.7: Deep feed-forward network with k hidden layers

Notes: This figure taken from Amini and Soleimany (2020a) shows a deep FFNN with k hidden layers and nk
hidden neurons, whereas the number of inputs is still m and the number of outputs is still 2 just as in Figure 3.6.
Note that the symbols in between the inputs and the hidden neurons as well as in between the hidden neurons
and the output represent fully connected dense layers.

When a feed-forward neural network takes an input feature vector x in order to produce the
output ŷ, information flows forward through the feed-forward network. The initial information
provided by the input then propagates through the hidden units of each layer and finally
produces the output. This process described by Goodfellow, Bengio, and Courville (2016)
is called forward propagation. The training of the feed-forward network starts with the
initialization of all weights to small randomily chosen values and the initialization of the bias
terms to zero or small positive values. Then, the forward propagation is carried out until the
mininal scalar value of the cost function J(θ) is found, where the cost function with respect to
the training set can be written as given by Goodfellow et al. (2016) as follows:

J(θ) = E(x,y)∼p̂dataL(f(x; θ), y), (3.97)
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where p̂data is the empirical distribution and f(x; θ) is the predicted output from the use of x
as an input vector. y is the true value of the output. By comparing the predicted output with
the true value of the output and by taking the conditional expectation, a value of the total cost
incurred by the neural network can be computed using the pre-specified per training example
loss function for the network.
Information in feed-forward neural networks only flows in one direction and there are no cycles
or loops in contrast to recurrent neural networks which are explained in Section 3.4.3.
The network is then trained by minimizing the set of weights, W , that minimizes the loss
function using either the regular stochastic gradient descent with a fixed learning rate or another
learning algorithm which involves an adaptive learning rate. The learning rate refers to scalar
number with which the weights are updated in the training process of a neural network. Finally,
the gradients of the loss function with respect to every weight in the network are calculated
through backpropagation from the output to the input of the network. Details on the learning
algorithm and on the backpropagation algorithm are given in Section 3.4.6.

3.4.3 Recurrent Neural Network (RNN)

Recurrent neural networks (RNNs) come with the distinct characteristic feature of a recurrent
cell which allows for information to persist over time by passing it on internally within the
network from one time step to the next one in contrast to regular ANNs. This is done through
a single component of the cell state called the hidden state ht.
Hewamalage, Bergmeir, and Bandara (2019) state that RNNs are the most common architecture
for sequence prediction problems since the feedback loops of the recurrent cells can be used
to address temporal dependencies and the temporal order of sequences. The architecture of a
RNN cell as well as the set of recurrent computations is shown in Figure 3.8.
The forward propagation differs from that of the FFNN in that the forward pass from input to
output is done at every time step and a loss is computed. The backpropagation is also different
from that carried out in the case of a FFNN because the loss has to be backpropagated at every
time step as well as across all time steps to the beginning of the sequence. Thus, the gradients
of each time step specific loss are computed with respect to the respective weights and then the
weight parameters are updated in order to the train the RNN by minimizing the pre-specified
loss function.
Goodfellow et al. (2016) argue that this neural network architecture with recurrent connections
between hidden nodes is very powerful but also very memory cost and runtime intensive since
forward propagation is inherently sequential and since states computed during the forward pass
have to be stored until their reusage during the backward pass.
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Figure 3.8: RNN computational graph

Notes: This figure, which is taken from Amini and Soleimany (2020b), shows the structure of a RNN neural
network cell and the set of recurrent computations as a computational graph, where xt denotes the input
vector, ht denotes the current hidden state. This figure illustrates how RNNs can be thought of as a sequence
of multiple copies of the same neural network through time, where each RNN cell passes on information to
its successing cell. Note that the same weight matrices W xh,W hh,W hy are used at every time step, where
the weight matrices are used to parametrize input to hidden, hidden to hidden as well as hidden to output
connections (Goodfellow et al., 2016). Outputs ŷ0, . . . , ŷt can be obtained and loss functions can be computed
for every time step. Finally, the total cost for the RNN is obtained by summing up the losses at every time
step. Black arrows denote a forward pass. The red arrows illustrate the backward passes of the backpropagation
algorithm both to every time step and then from time step t to the beginning of the sequence.

The RNN cell updates its hidden state ht by taking the sum of the input vector xt and the
previous hidden state vector ht−1 multiplied by their respective weight matrices and applying
a hyperbolic tanget function to this sum:

ht = tanh(W T
hhht−1 +W T

xhxt). (3.98)

The output vector is obtained as a transformed version of the internal state of the RNN cell by
multiplying it with a separate weight matrix:

ŷt = W T
hhht. (3.99)

Note that the tanh(·) function ensures that the outputs of the values propagated through the
network stay in the codomain of [−1, 1], which is important in order to avoid that some values
become very large while other values become very small over time in the course of the recurrent
computations.
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Pascanu, Gulcehre, Cho, and Bengio (2013) consider deep RNNs and argue that building
a deep recurrent neural network by stacking multiple recurrent hidden states on top of each
other can enable the hidden state at each level to operate at different time scales. Moreover,
they find that the deep RNN outperformes the basic RNN in the context of language modeling.
Hermans and Schrauwen (2013) also argue that the benefit of deep RNN architectures using
stacked hidden-to-hidden transitions is the introduced capability to process a times series at
different time scales. They also state that the purpose of deep RNNs is to introduce memory
instead of hierarchical processing capabilities of hidden layers, which is the main benefit of
building deep feed-forward neural networks.

3.4.4 Long Short Term Memory Neural Network (LSTM)

When it comes to time series forecasting, a specific network architecture lends itself well to
that purpose, which is that of a Long Short Term Memory neural network (LSTM).
The LSTM was first introduced by Hochreiter and Schmidhuber (1997).
According to Brownlee (2017), the LSTM architecture was developed in order to overcome the
specific shortcoming of the existing Recurrent Neural Network (RNN) that long time lags were
not accessible to this existing architecture and that it was hard to train and scale effectively.
RNNs were facing either a "vanishing gradient" or an "exploding gradient" problem, which
means that the weight updating procedure either led to very small weight changes that had no
effects or to very large changes. Thus, the weight matrices were unstable in either one of the
two cases.
A regular LSTM cell possesses two state components in contrast to the regular RNN cell, which
are the hidden state ht that represents the short-term memory component and the internal
cell state Ct that provides the function of a long-term memory component (Hewamalage et al.,
2019). The LSTM cell also features three gates which control the flow of information through
time.

The LSTM cell architecture is shown in Figure 3.9. States in a LSTM cell are updated in the
fashion proposed by Hewamalage et al. (2019):

it = σ(W i ∗ ht−1 + V i ∗ xt + bi) (3.100)

ot = σ(W o ∗ ht−1 + V o ∗ xt + bo) (3.101)

f t = σ(W f ∗ ht−1 + V f ∗ xt + bf ) (3.102)
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C̃t = tanh(W c ∗ ht−1 + V c ∗ xt + bc) (3.103)

Ct = it � C̃t + f t �Ct−1 (3.104)

ht = ot ∗ tanh(Ct) (3.105)

zt = ht. (3.106)

In Equations (3.100) to (3.106), it, ot and f t ∈ Rd are the input gate, output gate and forget
gate vectors. The candidate cell state C̃t, the cell state Ct and the hidden state ht are also
vectors in Rd. Note that the candidate cell state contains the important information that is
supposed to be passed on to the future. xt ∈ Rm is the input of the cell and zt ∈ Rd is the
output of the cell at time step t. bi, bo, bf and bh ∈ Rd are bias vectors for the input gate, the
output gate, the forget gate and the hidden state, respectively. W i,W o,W f and W h ∈ Rd×d

are weight matrices of the input gate, output gate, the forget gate and the hidden state vector,
respectively. V i,V o,V f and V c ∈ Rd×d denote the weight matrices of the current input.
� refers to element-wise multiplication which is defined as (Aij � Bij) := (A)ij(B)ij. This
multiplication is also called the Hadamar product and it is defined for matrices of the same
dimensions. The tanh(·) activation function in Equation (3.103) of the candidate cell state
outputs values in the codomain of [−1, 1] in order to control the range of the output values
of the network just as in the case of the RNN. The hyperbolic tangent function is defined in
Equation (3.90).

The forget gate and the input gate in Equation (3.104) determine jointly which information
from past time steps to retain and which parts of the current period’s information to propagate
to the future time steps. The first step in the functioning principles of an LSTM cell is to forget
irrelevant parts of information from the previous cell state Ct−1 by looking at the previous
hidden state ht−1 and the current input xt, which is done by means of the forget gate through
a sigmoid layer. The candidate cell state C̃t contains a vector of candidate values created by
applying the tanh(·) function to the the previous hidden state and the current input. Next,
the input gate selects the amount of relevant new information from the candidate cell state C̃t

to be added to the cell state Ct by means of a sigmoid layer. Then, these selected candidate
values are added to the prior information contained in the previous cell state Ct−1 through
pointwise addition. Finally, the output gate controls what information is sent to the network
in the next time step by generating zt as the product of the elementwise multiplication of the
output gate and the modified cell state Ct, after the later has been passed through the tanh(·)
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function. The modified cell state Ct and the current hidden state ht, which is equivalent to
the output, are passed over to the next time step. σ(·) denotes the sigmoid activation function
used by all three gates, which is given in Equation (3.86). The sigmoid function outputs values
in the codomain of [0, 1].
Note that a value of 0 in the forget gate means that all information from the previous cell state
is discarded by pointwise multiplication, whereas a value of 1 means that the information from
the previous cell state is fully retained and a value in between means that a certain part of
the information is retained in the internal state parameter Ct, which is built up along the time
steps of the time series.

Thus, LSTMs are suitable for time series forecasting for three reasons: First, they can process
input and output sequences time step by time step, which allows for variable input and output
lengths. Second, they incorporate a long-term memory state (the cell state Ct), which can
be used to factor in long-term temporal dependencies of input sequences. Third, they can
overcome the vanishing and exploding gradient problems characteristic of RNNs by means of
their computational block or cell architecture which allows for backpropagation through time
with uninterrupted gradient flow (Brownlee, 2017).
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Figure 3.9: LSTM neural network cell architecture

Notes: This figure is taken from Hewamalage et al. (2019) and shows the structure of a regular LSTM cell,
where the internal cell state Ct represents the long-term memory component and the hidden state ht denotes
the short-term memory component. The three LSTM gates, i.e. the forget gate, the input gate and the output
gate, are denoted by f t, it and ot. These gates control the flow of information through the network across time,
ensure the stability of the computational block and overcome the vanishing and exploding gradient problems. �
denotes element-wise multiplication. ⊕ denotes elementwise addition. Note that every gate consists of a hidden
layer with a sigmoid activation function to transform the propagated input to values in the interval [0, 1] and
elementwise-multiplication in order to gate, i.e. control the flow of information. xt, zt denote the input and
output of the LSTM cell respectively. tanh(·) denotes the hyperbolic tangent function.

3.4.5 Gated Recurrent Unit Neural Network (GRU)

Another neural network architecture that seems to lend itself well for the purpose of time
series forecasting is that of a Gated Recurrent Unit neural network (GRU), which was
first proposed by Cho et al. (2014). Just like a RNN cell, the GRU cell possesses only one
component to the cell state, which is the hidden state ht. The cell state can be understood as
the memory of the network.

Liu, Wu, and Wang (2018) argue that the Gated Recurrent Unit neural network can learn
both short-term and long-term dependencies from the training data and Chung, Gulcehre,
Cho, and Bengio (2014) state that a GRU network can also overcome the vanishing gradient
problem faced when the network is trained through the Backpropagation through time (BPTT)
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algorithm just like the LSTM can.
However, the GRU cell, which is illustrated in Figure 3.10, differs from the LSTM cell shown
in Figure 3.9 by the fact that it only uses an update gate and a reset gate, where the GRU
update gate has the same function as the forget and the input gate of the LSTM cell combined.
Thus, Hewamalage et al. (2019) argue that the GRU network is less complex than the LSTM
and faster in computations. This is because there are fewer hyperparameters to train.

Figure 3.10: GRU neural network cell architecture

Notes: This figure taken from Hewamalage et al. (2019) shows the structure of a GRU neural network cell,
where ut denotes the update gate and rt denotes the reset gate. The update gate controls how much information
to retain by deciding whether to update the current hidden state ht with information from the candidate hidden
state h̃t. Note that the candidate hidden state may contain information from the hidden state of the previous
time step, ht−1, and the current input xt or from the current input only depending on the value of the reset
gate. zt represents the output of the cell at time step t. � refers to element-wise multiplication, which is also
known as the Hadamard product. ⊕ denotes element-wise addition just as in the case of the LSTM.

The states in a GRU neural network cell are updated as follows adhering to the notation
suggested by Hewamalage et al. (2019):

ut = σ(W u ∗ ht−1 + V u ∗ xt + bu) (3.107)

rt = σ(W r ∗ ht−1 + V r ∗ xt + br) (3.108)
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h̃t = tanh(W h ∗ rt ∗ ht−1 + V h ∗ xt + bh) (3.109)

ht = ut � h̃t + (1− ut)� ht−1 (3.110)

zt = ht. (3.111)

In Equations (3.107) to (3.111), ut, rt ∈ Rd are the update gate and reset gate vectors. The
candidate hidden state h̃t and the hidden state ht are also vectors in Rd. xt ∈ Rm is the
input of the cell and zt ∈ Rd is the output of the cell at time step t. bu, br and bh ∈ Rd are
bias vectors for the update gate, the reset gate and the hidden state, respectively. W u,W r

and W h ∈ Rd×d are weight matrices of the update gate, reset gate and the hidden state
vector, respectively. V u,V r and V h ∈ Rd×d denote the weight matrices of the current in-
put. σ(·) denotes the sigmoid activation function used by the two gates just as in the case
of the LSTM. � refers to element-wise multiplication as mentioned in the context of the LSTM.

The update gate in the GRU cell controls how much information from the previous hidden
state ht−1 to carry over to the current hidden hidden state ht, which helps the GRU network
to retain long-term information. The reset gate determines how to combine the new input with
the previous cell state by deciding whether the previous hidden state is ignored or not, which
is the case if the value of the reset gate is close to 0 (Cho et al., 2014). In the case that the
previous hidden state is ignored, the GRU cell resets with the current input only, which is how
the GRU cell can drop information considered irrelevant for the future.

3.4.6 Learning Algorithm

Besides the bias terms, the weights W are also learnable parameters inside a neural network,
that define the network’s forecasting function. Both are estimated or "learned" using an algo-
rithm which minimizes a cost function over a set of training data. A loss function is commonly
chosen beforehand based on domain knowledge of the characteristics of the data and on the
desired type of prediction, e.g. a classification of the data into three classes to predict a trend
or the prediction of one or multiple future values. Any arbitrary function that is smooth and
continuous can be used (Bishop, 2006). It is not a requirement that the loss function is the
same as the evaluation metric, as long as the former is a proxy close enough to the latter.
Common choices for regression problems, i.e. problems which have a continuous or approxi-
mately continuous output, are the MSE and the MAE. The MSE will generate the conditional
mean of the forecast, whereas MAE will generate the conditional median of the forecast (Good-
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fellow et al., 2016). Throughout this thesis the loss function is the MSE, unless otherwise
specified.
Given a specific loss function L(ŷi, yi), the loss can be computed based on a labeled data-set of
inputs and target outputs. If we consider a training set of n observations, the i-th observation
is given by the pair (xi, yi). In a time series setting, xi is a window of lagged variables and
yi is the true single data point immediately following. For a multi-output target, yi would be
replaced by yi ∈ Rh. The network function can then be used to generate a forecast of the i-th
observation which is given by f̂(xi;W ) = ŷi. The total cost across the entire training data set
can then be computed as the sum of the losses for each observation:

J(W ) =
1

N

n∑
i=1

L(f̂(xi;W ), yi)), (3.112)

where the loss is viewed as a function of the weights W , keeping the observations (xi, yi) in
the training data fixed.
The problem of learning the optimal approximation function f̂(·) can then be stated as a
minimization problem with the goal to find the set of weights W ∗ that minimizes the loss of
the data:

W ∗ = arg min
W

J(W ). (3.113)

There is no analytical solution to this optimization problem and iterative techniques have to
be used to find the optimal set {W (1),W (2), ...,W (D−1)}. The numeric procedure used for this
purpose is referred to as the learning algorithm.

According to Goodfellow et al. (2016), the gradient descent algorithm is centered around
the property that the function J(W ), which is minimized according to Equation (3.113), can
be decreased by moving into the direction of the negative gradient. A multi-variable function’s
gradient is defined as the vector of all partial derivatives with respect to each of that function’s
arguments. For the loss defined in Equation (3.112) the gradient can be formulated as

∇J(W ) =
∂J(W )

∂wi
,∀ i ∈ {1, 2, ..., |W |}. (3.114)

The gradient describes what variables’ changes the loss function is most sensitive to around
the point ofW . The direction in the parameter space that results in the steepest ascent of the
loss function is therefore given by the gradient. Analogously, the negative gradient describes
in what direction the function will decrease by the most. This information can thus be used to
take small steps in the direction of the loss function’s minimum.

56



3.4. NEURAL NETWORK MODELS

According to Amini and Soleimany (2020a), the gradient descent algorithm involves the fol-
lowing steps: First, the weights are randomly initialized at W0. Then, the gradient given in
Equation (3.114) is computed and the weights of the τ -th iteration are updated as follows:

W τ = W τ−1 − η ∇J(W τ−1), (3.115)

where η > 0 is the learning rate which is a scalar number that determines the size of the step
which is taken in the direction of the negative gradient at each iteration. According to Amini
and Soleimany (2020a), setting the learning rate can have a huge impact on the performance
of the neural network. They argue that the gradient descent algorithm can get stuck in one of
the local minima if the learning rate is set too small. However, if η is set too high, then the
case can occur that the algorithm diverges and therefore never reaches a minimum.
Next, a small step is undertaken in the direction of the negative gradient and then the entire
process is repeated until convergence to a local minimum. At the local minimum there is no
longer a direction in which the function can decrease, so we have ∇J(W ) = 0. This is also a
necessary condition for an extremum.

Figure 3.11 illustrates the path of convergence to a local minimum of the gradient descent
algorithm when considering the case of a exemplary cost function J(w0, w1) based on a set of
weights W = {w0, w1} which contains two scalar weights only.
Note that the learning rate η can also be set adaptively instead of setting it equal to a fixed
scalar value. There are several gradient descent algorithms and stochastic gradient descent is
just one of them.
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Figure 3.11: Loss optimization using the gradient descent algorithm

Notes: This figure taken from Amini and Soleimany (2020a) shows a three dimensional plot of the the parameter
space, where weight w1 is depicted on the x-axis (northeastern direction), weight w0 is shown on the y-axis
(northwestern direction) and the cost function J(w0, w1) is shown on the z-axis (northern direction). This
parameter space represents the set of possible cost function values depending on the value of W , which is
optimized according to Equation (3.113). It can also be seen in this figure how the gradient descent algorithm
converges to a local minimum, which happens to be a global minimum in this illustration. First, the weights
are initialized at a random value of (w0, w1), then the gradient is computed with respect to the weights to find
the direction of the steepest ascent. After that, a step of a size equal to the learning rate η is undertaken in the
opposite direction, the weights are updated and this process is repeated until a local minimum is reached.

As shown by Choromanska, Henaff, Mathieu, Arous, and LeCun (2015), the cost function of
neural networks is highly non-convex by nature, which is caused by the hidden layers in the
architecture. This can potentially lead to a case in which the gradient descent procedure is not
able to find a global minimum but a local minimum or even a saddle point instead. In practice,
however, Choromanska et al. (2015) state that as the size of the network increases most local
minima are equivalent and yield similar performance on a test set and the probability of finding
a "bad" local minimum quickly decreases.

Goodfellow et al. (2016) state that the gradient descent method, which follows the gradient
across the entire training set downhill, can become computationally too extensive when the size
of the training set grows large since the time to take a single gradient step becomes prohibitively
long. For this reason, they also argue that an extension of the gradient descent method, the
stochastic gradient descent, can be employed to accelerate the process through taking the
average gradient of a minibatch of m independently and identically distributed random sam-
ples from the data-generating distribution. The proposition of the stochastic gradient descent
extension is therefore to obtain an unbiased estimate of the gradient which allows to follow the
gradient of randomly selected minibatches of the training set downhill.
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Ruder (2017) provides a comprehensive overview of common gradient descent optimization
algorithms. Further optimization algorithms that build on regular gradient descent include
the Adagrad and the Adadelta algorithms. According to Ruder (2017), Adagrad adapts the
learning rate to the parameters and performs larger updates for infrequent and smaller updates
for frequent parameters at every time step, whereas regular gradient descent uses the same
learning rate for all parameters. While Adagrad eliminates the need to manually tune the
learning rate, the problem of a shrinking learning rate that eventually becomes infinitesimally
small might occur which prevents the algorithm from obtaining any further knowledge. This
problem arises due to the storage of all past gradients. Adadelta addresses this problem by
restricting the window of accumulated past gradients, which results in a recursively defined
decaying average of past squared gradients, and it also does not require to set up a default
learning rate.
Another popular learning algorithm, which also uses an adaptive learning rate and which also
stores a decaying average of the past squared gradients, is the Adaptive moments algorithm
(ADAM) proposed by Kingma and Ba (2014). The authors argue that the ADAM algorithm,
which is based on adaptive estimates of the first and second moment of the gradients, is
computationally efficient and suitable for large scale data sets as well as data exhibiting sparse
gradients.

Moreover, a computationally efficient method to evaluate the partial derivatives of the cost
function J(W ) with respect to the weights of the network has to be employed in order to
subsequently make adjustments to the weights, which is commonly achieved by the backprop-
agation algorithm (Bishop, 2006) that draws upon the chain rule. He also states that the
backpropagation procedure can be divided into four steps: First, an input vector x ∈ Rn

is propagated forward through the network such that the activation of hidden neuron zj is
transformed by the activation function g(·) as follows

zj = g(aj) = g(w0,i +
n∑
j=1

xiwj,i). (3.116)

In this way, activations can be computed for all hidden neurons and output neurons.
Applying the chain rule to compute the partial derivative with respect to the weights results in

∂J(W )

∂wj,i
=

∂J(W )

∂aj︸ ︷︷ ︸
backpropagation error δj

∗ ∂aj
∂wj,i︸ ︷︷ ︸

hidden node output zi

. (3.117)

At this point, we introduce the backpropagation error, which Bishop (2006) defines as
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δj =
∂J(W )

∂aj
. (3.118)

The link between the partial derivative of the cost function and the backpropagation error is
then given by

∂J(W )

∂wj,i
= δjzi, (3.119)

which sets the derivative with respect to weight wj,i equal to the product of the backpropagation
error δj at the output end of the weight and the value for zi for the node at the input end of
the weight.
In the second step, the backpropagation errors for all output units are evaluated, which are
obtained through

δk = ŷk − yk, (3.120)

i.e. the difference between the computed output value for the k-th output neuron and the true
value for the k-th output neuron. yk ∈ R.
According to Bishop (2006), the third step then consists of the backpropagation of the δk-terms
from nodes higher up in the network according to the following backpropagation formula

δj = g′(zj)
∑
k

wk,jδk (3.121)

in order to obtain the backpropagation error δj for each hidden unit in the network.
Finally, the fourth step consists of the evaluation of the derivatives by means of Equa-
tion (3.119), which links the backpropagation errors and the partial derivatives with respect to
the weights. These partial derivatives then form the components of the gradient, which is used
to update the weights according to Equation (3.115).

3.4.7 Forecasting with Neural Networks

Generally, neural networks have the ability to learn a mapping from inputs to outputs in a
broad range of situations, and therefore, with proper data preprocessing, can also be used for
time series forecasting. The field of time series forecasting comes with its own set of unique
problems, all of which have to be addressed before modeling. Although there is extra informa-
tion to be extracted from past observations, these also introduce more complexity and one has
to be cautious of the time dependencies between the variables.

Forecasts constructed by neural networks can either be set up as one-step ahead or multi-step
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ahead forecasts.
For a one-step ahead forecast the fitted model learned from the series f̂(·) returns the following
scalar output:

ŷT+1 = f̂(yT , yT−1, . . . , yT−p+1), (3.122)

where each of the p neurons in the input layer represents a lagged value of the target in the
output layer.

According to Yan (2012), multi-step ahead forecasts can either be obtained through the Direct
modelling approach or through the Recursive modelling approach, where the direct modelling
approach draws on multiple prediction models one of which is employed for each single period
of the h-steps ahead. The recursive approach, on the other hand, consists of a sequence of
recursive one step ahead predictions using the prior prediction as an input to the subsequent
steps until the forecast horizon h is reached.
Yan (2012) also argues that the direct approach is computationally more extensive due to the
fact that multiple models have to be trained, but it also avoids prediction error accumulation,
a disadvantage of the recursive modelling approach.
BenTaieb, Bontempi, Atiya, and Sorjamaa (2012) review a third multi-step ahead forecast
approach, the direct recursive (DiRec) approach, which combines the architectures of the two
previously mentioned approaches. These three methods, the Direct, Recursive and the DiRec
approach, model the data as a multi-input single-output function.
However, this single output mapping of the data neglects the stochastic dependencies between
future values and therefore the multi-input multi-output (MIMO) approach has been
developed. Hewamalage et al. (2019) state that the MIMO approach produces the forecasts
for the whole output window at once rather than producing forecasts for each time step in
isolation.
Implementing the MIMO multi-step ahead forecasting approach also results in some changes to
the structure of the network. The input layer is the same as for the one-step ahead forecast, but
the output layer now consist of h neurons instead of 1. Each neuron represents one time step of
the h steps in the multi-step ahead forecast. The neural network thus outputs a vector ŷ ∈ Rh

corresponding to the whole forecasting horizon of h steps ahead. Thus, the following multi-
output vector containing the forecasts is returned by the MIMO approach in one computational
step :

ŷT = (ŷT+h, . . . , ŷT+1) = f̂(yT , yT−1, ..., yT−p+1), (3.123)

where f̂(·) is the fitted multi-output model learned form the time series {yt}Tt=1 when p lags
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of the series are taken as an input for the MIMO approach. Note that f(·) is a vector-valued
function that carries out the mapping f : Rp 7→ Rh.

BenTaieb et al. (2012) conduct an extensive comparison of the five common approaches to
multi-step ahead forecasting and find that the MIMO approach exhibits superior performance
compared to the three aforementioned multi-input single-output approaches. They also review
a second multi-input multi-output approach, the direct multi-output (DIRMO) approach,
which is an attempt to incorporate the tradeoff between preserving stochastic dependencies
between forecasted values and preserving the flexibility of the modelling approach. BenTaieb
et al. (2012) state that the DIRMO approach involves separating the forecast horizon h into
blocks and then forecasting these blocks in MIMO fashion, however, they find that the MIMO
strategy exhibits the best performance, i.e. the lowest forecast error, while the DIRMO comes
in as a close second best approach. For the purpose of this paper, we therefore employ the
MIMO approach for all more than multi-step ahead forecasts produced by neural networks.
In doing so, we follow the approach taken by Hewamalage et al. (2019), who also obtain their
multistep-ahead forecasts for RNN architecture neural networks through a MIMO approach.

The stochastic dependencies can be preserved by using the rolling window approach. The
most common way to feed time series data into a neural network is to break the whole time
series into consecutive input windows and then get the neural network to predict the single
point or window immediately following the input window (2019). The input window referred
to simply consists of the p lagged values of the target value to be forecasted at time T , yT+1.
Figure 3.12 shows how the rolling window approach can be applied to a sample time series.
Bandara et al. (2019) state that the rolling window approach transforms a time series {yt}Tt=1

in to pairs of < input, output > batches, which can then be used for training a LSTM or a GRU
recurrent neural network. For a time series of length T , the series is converted into (T − p− h)

patches of size (p + h), where p is the size of the training input window and h is the size of
the training output window. The application of the MIMO multi-step forecasting approach
requires the application of the rolling window technique for these recurrent neural network
architectures. Every recurrent cell then accepts a window of inputs, i.e. an array of lagged
values, and produces a window of outputs succeeding the last input time step. Subsequently,
the windows are shifted forward by one step and the process is repeated until the last patch of
the training set.
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Figure 3.12: Rolling window approach application example

Notes: This figure is taken from Bandara et al. (2019) and shows how the rolling window approach can be
applied to an exemplary time series. The input window is given by {x1, x2, . . . , xn} and the output window is
given by {y1, y2, . . . , ym}, where p = n and h = m are the training input window size and the training output
window size, respectively. The initial input window (shown in blue) and the initial output window (shown in
red) are then shifted forward one time step at a time until the last < input, output > batch is reached. The
series is then split up into training set and test set as usual.

Pan and Politis (2016) argue that statistical inference is incomplete without a measure of
inherent accuracy. They point out that in case of point estimators, which use observed data
to estimate a model parameter, accuracy can either be measured by a standard error or by
confidence intervals, whereas in case of point forecasts, accuracy is typically described by the
error variance or by a prediction interval.
Khosravi, Nahavandi, Creighton, and Atiya (2010) argue that a fast and reliable way to obtain
prediction intervals for neural networks is to set up a separate neural network with two outputs
in order to estimate the upper and lower bounds of the prediction intervals by training the
network to minimize a prediction interval based cost function. The authors also propose a
sophisticated method to obtain PIs, which they call the lower upper bound estimation (LUBE)
method. The LUBE method takes the CWC measure, which incorporates both coverage prob-
ablity and mean width of the PI, as a loss function for the neural network used to approximate
the PI bounds and draws on the simulated annealing method to minimize the CWC. Simulated
annealing is deployed since the CWC measure is nonlinear and non-differentiable and thus,
stochastic gradient descent cannot be used. However, the risk of the latter method to get
trapped in local minima is also avoided in this way.
In this paper, we use a pinball loss function to train a separate neural network in order to
estimate the upper and lower bounds of the prediction intervals as Smyl (2020) suggests.

63



3.4. NEURAL NETWORK MODELS

A graphical illustration is shown in Figure 3.13. The pinball loss function, which is the loss
function of a quantile regression, is defined by Romano, Patterson, and Candes (2019) as

ρα(y, ŷ) =

α(y − ŷ) if y − ŷ ≥ 0

(1− α)(ŷ − y) if y − ŷ < 0
, (3.124)

where α is a fixed constant ∈ [0, 1], which specifies the desired significance level, and which the
authors refers to as the miscoverage rate. According to Romano et al. (2019), the aim of quantile
regression is to estimate a pre-specified quantile of response variable vector y conditional on
feature vector x. Thus, the α-th conditional quantile function is

qα(x) = inf{y ∈ R : F (y|X = x) ≥ α}, (3.125)

where F (y|X = x) is the conditional distribution function of y given X = x. The conditional
quantile is then estimated by solving the following optimization problem:

θ̂ = min
θ

1

n

n∑
i=1

ρµ(yi, f(xi,θ)), (3.126)

where f(xi,θ) = q̂α(x) is the quantile regression function. We use neural networks with a
pinball loss function to estimate qα(x), which can be used to compute the upper and lower
prediction interval bounds for a pre-specified significance level α.

Figure 3.13: PI construction method for neural networks

Notes: This figure is taken from Khosravi et al. (2010) and shows how a symbolic separate neural network
model with a PI-based loss function can be employed to estimate the upper and lower bounds of the associated
prediction interval. The number of neurons and layers is chosen arbitrarily for exemplary purposes. Note that
it is also possible to estimate the upper and lower PI bounds through two separate neural networks with single
outputs instead of one single network with two outputs. For a 95% PI, the desired quantile levels would be
αlow = 0.025 and αhigh = 0.975. In this paper, we use a pinball loss function as given in Equation (3.124) and
two single output neural networks to estimate each PI bound separately.
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Section 4

Data

In this section we describe our source of data, which is the NYC Open Data platform main-
tained by the Mayor’s Office of Data Analytics (MODA) and the Department of Information
Technology and Telecommunications (DoITT), and the dimensionality and structure of the
data we use for the specific Smart City domains we want to investigate.
NYC Open Data1 contains machine-readable data sets collected by the city government and
supplied by various New York based agencies, including the Metropolitan Transportation Au-
thority (MTA) and the Department of City Planning (DCT), that are made available for public
use. We found this platform which has been created as an implementation of a Smart City
initiative of the city of New York with the aim to improve the services provided by the city
government and the city’s various agencies to be particularly useful for our paper.

New York City is the most densely populated city in the entire U.S. with more than 8 million
inhabitants living in close proximity. In addition, it is a major hub for multiple industries such
as finance, technology and media. The city is thus characterized by a hectic environment which
requires sophisticated infrastructure solutions.
This makes New York City a prime candidate for smart city initiatives. In 2015 it vowed to be
one of the most technology and data driven cities in the world 2.

4.1 Traffic Flow Data

New York City tracks the data of every single ride taken in a for-hire transportation vehicle
operating within city limits. These records account for more than 185,000 drivers and 130,000
vehicles. The main categories are NYC yellow cabs, NYC green cabs and ride-sharing apps

1See http://www.nyc.gov/html/data/about.html.
2See https://www1.nyc.gov/assets/forward/documents/NYC-Smart-Equitable-City-Final.pdf for the full

smart city report of the NYC Mayor’s office of Technology and Innovation.
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4.1. TRAFFIC FLOW DATA

such as Uber, Lyft and Juno. We only examine the data for yellow cabs, since they exclu-
sively operate in Manhattan, the most congested area in all of the city. The data is recorded
automatically by sensors in each vehicle and is mandated by law unlike in many other major
cities. This results in a both unique and massive data set. The data is updated monthly and
each row represents a yellow cab ride. Data is available from January 2009 until December 2019.

Preprocessing. The raw data set we use for traffic forecasting consists of the "Yellow Taxi
Trip Records" and we use a full year of data starting in July 2018 until June 2019. The raw
data consists of 93,337,651 rows and 18 columns. The features contained in the trip records
include pick-up and drop-off dates, pick-up and drop-off locations, trip distances, itemized
fares, rate types, payment types and driver reported passenger counts. In order to be able
to use the data in a temporal setting that can be used for forecasting, we group the rides in
intervals based on when the trip was started. The variable tpep_pickup_datetime is a time
stamp in units of hours, minutes and seconds and by varying the size intervals we can vary
the frequency. Our preprocessing consists of resampling the series to an hourly frequency and
then counting components of the variable tpep_pickup_datetime, i.e. the number of pickups
by NYC yellow cabs per hour. Thus, we end up with a time series consisting of the number of
rides started within every hour within the chosen time frame from July 01, 2018 to June 28,
2019. We remove the last full day (June 30, 2019) from the series because we perceive it as an
outlier due to trip reporting overlaps between June an July of 2019. We choose the full day of
June 22, 2019 (Saturday) as our test set for a 24 hours ahead forecast. We then use June 23 -
June 28, 2019 as a hold out set to do various robustness checks. After preprocessing, we end
up with 8,712 rows. Thus, we use the count of started yellow cab rides per hour as a proxy
for the total amount of rides per hour in New York City. The variable we will be using as the
target variable is discrete in its nature since it is a simple count. This hourly time series has a
frequency of 24, the sample size of the training set is set to 8,544, the sample size of the test
set is 168. For the main forecasting analyses we use 24 hours of the data from the hold out set
and for the robustness checks we use different subsets of the hold out set.

The time plot of the entire time series collected for the traffic flow data and that of the last
month of data which includes the test set are shown in Figure 4.1.
Table B.2 shows the summary statistics for the training set and the test set of the traffic flow
time series. It can be seen from this table that there are no missing observations and that the
original series is strictly positive.
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Figure 4.1: Time plots of the hourly traffic flow series

Notes: The top panel shows a time plot of the entire traffic flow time series which contains the number
of yellow cab pickups per hour in New York City from July 01, 2018 00:00 to June 28, 2019 23:00. The
data set "Yellow Taxi Trip Records" provided by the NYC Taxi & Limousine Commission was obtained from
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page. The bottom panel shows the last month of the
traffic flow data including the split between train and test set as well as the entire test set.
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4.2 Emergency Medical Services (EMS) Data

The second data set is also obtained from NYC Open Data and contains EMS incident dispatch
data generated by the EMS computer aided dispatch system. This data set is provided by the
Fire Department of New York City (FDNY) and encompasses emergency incident related data
from January 2008 to February 2020. Note that specific locations of the emergency incidents
are not reported due to personal identification data protection reasons in accordance with the
Health Insurance Portability and Accountability Act. The raw data set comprises 216,556,163
rows and 31 columns. The columns include data on features such as a unique EMS incident
identifier, the date and time the incident was created in the dispatch system as well the bor-
ough of the incident location. The target variable of interest for this analysis is the number
of ambulances dispatched to provide EMS in response to emergency incidents per hour for a
specific area of New York City in order to facilitate EMS resource planning.

Preprocessing. We extract the column First_Assignment_Datetime which contains time
stamps for the first assignment of an EMS vehicle to each specific incident. Next, we subset
the data and include only the Bronx borough of New York City in order to provide the EMS
demand forecasts for a specific geographical region of the city. We resample the dispatch data
for the Bronx borough to an hourly frequency to create a count of ambulance dispatches per
hour which are related to emergency incidents as a proxy for EMS demand. We also choose a
time frame from January 01, 2019 to December 31, 2019. We end up with a time series which
includes 8,760 rows. The sample size of the test set is 24.
We remove the last nine full days of the collected series (December 23, 2019 - December 31,
2019) in order to avoid holiday based distortions. We choose the full day of December 16, 2019
(Monday) as our test set for a 24 hours ahead forecast. We then use December 17 - December
22, 2019 as a hold out set to do various robustness checks. After preprocessing, we end up with
8,544 rows. The variable we will be using as the target variable is discrete in its nature since it
is a simple count. This hourly time series has a frequency of 24, the sample size of the training
set is set to 8,376, the sample size of the test set is 168. For the main forecasting analyses we
use 24 hours of the data from the hold out set and for the robustness checks we use different
subsets of the hold out set.

The time plot of the entire preprocessed series and that of the last month of data from the
EMS series, which includes the test set are shown in Figure 4.2 and the summary statistics are
shown in Table B.3.
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Figure 4.2: Time plots of the hourly EMS series

Notes: The top panel shows a time plot of the entire EMS time series which contains the number of dispatched
EMS vehicles per hour for the New York City borough "Bronx" from January 01, 2019 00:00 to December 22,
2019 23:00. The data set "EMS Incident Dispatch Data" provided by the Fire Separtment of New York City
was obtained from https://data.cityofnewyork.us/Public-Safety/EMS-Incident-Dispatch-Data/76xm-jjuj. The
bottom panel shows the last month of the EMS data including the full test set.
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Section 5

Analyses and Results

In this section, the forecasting analyses for the traditional, ensemble and neural network models
are presented for both data sets. The choices for model parameters or hyperparameters are
explained and the estimation results are reported. Next, the forecasting performance of all
models is evaluated with respect to the point forecasts and the prediction intervals by means
of the common test error metrics and the common PI metrics.
Subsequently, robustness checks with respect to the data size, the forecast horizon as well as
variations of the test set are presented.

5.1 Traffic Forecasting Results from Traditional and En-

semble Models

In order to check whether the series and the seasonally differenced series are stationary or not,
an Augmented Dickey Fuller test (ADF) for a unit root is carried out for both series. The
results are shown in Table 5.1.
The null hypothesis of the ADF test in the random walk model type is H0 : γ = 0, which
means that the null of the ADF test is that there is a unit root in the process {yt}, i.e. the
series is non-stationary. The model yt = a1yt−1 + εt can be transformed into the equivalent
representation ∆yt = γyt−1 + εt, where γ = a1 − 1. In the other two model specifications, the
null hypothesis changes as follows: For the drift model, the null is H0 : γ = a0 = 0 and for the
drift and trend model the null is H0 : γ = a0 = a2 = 0. According to Enders (2014), there are
three different regression equations that can be used to estimate γ in order to carry out the
Dickey Fuller test for the presence of a unit root in a time series: the pure random walk model,
the model with a drift term as represented by an intercept term, and finally the model with a
drift and a linear time trend. Those models can then also be expanded by p lagged changes in
order to ensure that the ADF auxilliary regression residuals behave like a white noise process,
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which is necessary for γ̂ and SE(γ̂) to be well estimated.The three following ADF regression
equations are equivalent to the three ADF test types "random walk", "drift" and "drift and
trend":

∆yt = γyt−1 +

p∑
i=2

βi∆yt−i+1 + εt, (5.1)

∆yt = a0 + γyt−1 +

p∑
i=2

βi∆yt−i+1 + εt, (5.2)

∆yt = a0 + γyt−1 + a2t+

p∑
i=2

βi∆yt−i+1 + εt. (5.3)

Table 5.1: ADF test results for the time series on traffic volume

Original series Seasonally differenced series

ADFτ test stat p-value lagged changes (p) ADFτ test stat p-value lagged changes (p)

Test results

-1.291 0.2177 24 -14.7 < 0.01∗∗∗ 24

-1.077 0.2939 48 -13.1 < 0.01∗∗∗ 48

-0.937 0.3441 72 -12.6 < 0.01∗∗∗ 72

-0.604 0.4631 96 -12.8 < 0.01∗∗∗ 96

1% level 5% level 10% level

Critical values -2.58 -1.95 -1.62

Notes: This table contains the test statistics and p-values obtained by carrying out the "random walk" type of
the ADF test for a unit root as given in Equation (5.1) for the original as well as for the seasonally differenced
series. The number of lagged changes p included in the ADF equations is varied from 24 to 96 in order to
account for the autocorrelation at the first four seasonal lags. The level of significance is given by ∗: p-value <
0.10; ∗∗: p-value < 0.05; ∗∗∗: p-value < 0.01.

Since the collected time series on the traffic flow data does not seem to exhibit a clear trend,
we opt for the "random walk" type of the ADF test. The test statistic for the first type of the
ADF test is

ADFτ =
γ̂

SE(γ̂)
. (5.4)

We can see from Table 5.1 that the seasonally differenced series is more suitable for further
analysis since the null hypothesis of a unit root can be rejected at the 1% level when au-
tocorrelation at all first four seasonal lags is accounted for, which is not the case for the
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original series. According to the conducted ADF tests, the original series can be considered
non-stationary since we cannot reject the null hypothesis of a unit root, whereas the one time
seasonally differenced series can be considered stationary since we can reject the null hypothesis.

In order to derive the candidate SARIMA model, we use the model selected by the auto.arima()
R function, which uses the Hyndman-Khandakar algorithm. As described in Section 3.2.1 the
algorithm includes unit root testing and minimization of the AIC to select a model. We start our
manual modeling procedure by plotting the ACF and PACF of the residuals of the automatically
chosen model in order to check whether they resemble a white noise process. Figure 5.1 shows
a comparison of the ACF and PACF of the automatically fitted SARIMA (5, 0, 5)(2, 1, 0)24

model’s residuals and those of the finally chosen manual SARIMA (5, 0, 5)(4, 1, 1)24 model’s
residuals. After several iterations of residual analysis, we end up with an SARIMA model
that has two more seasonal AR terms and one more seasonal MA term. As can be seen in
Figure 5.1, the amount of autocorrelation at the lags 48, 72 and 96 is visibly reduced. At
lag 24 autocorrelation is only reduced slightly. Increasing the number seasonal parameters is
computational infeasible due to instability.
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Figure 5.1: ACF/PACF plots comparison of SARIMA model residuals (traffic)

Notes: This figure shows the autocorrelation and the partial autocorrelation for up the 100 lags of the auto-
matically chosen SARIMA (5, 0, 5)(2, 1, 0)24 model’s residuals, the manually refined SARIMA (5, 0, 5)(4, 1, 1)24

model’s residuals and the corresponding confidence bounds at the 95 % level.

Table 5.2 shows the SARIMA model residual diagnostic test results with respect to autocorre-
lation, normality and conditional heteroskedasticity for both the automatically chosen and the
manually refined SARIMA models. We employ a Ljung-Box test for autocorrelation. The test
hypotheses of the Ljung-Box test are H0 : No autocorrelation and H1 : autocorrelation among
the model residuals. According to R. J. Hyndman and Athanasopoulos (2018), the test statistic
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of the Ljung-Box test is given by

Q∗ = T (T + 2)
h∑
k=1

(T − k)−1ρ̂ε(k), (5.5)

where ρ̂ε(k) is the sample autocorrelation in the residuals at lag k and T is the number of ob-
servations of the series to be tested. The maximum lag considered when carrying out the test is
given by h. We test whether the first h autocorrelations of the model residuals are significantly
different from a white noise process, which Enders (2014) defines as a process {εt} with a mean
of 0, a constant variance of σ2 and with the key property that the elements of the process are
serially uncorrelated. The distribution of the test statistic Q∗ is a χ2-distribution with (h−K)

degrees of freedom, where K is the number of model parameters.
We also employ a Jarque Bera test for normality with the null hypothesis H0: normally dis-
tributed residuals and the alternative hypothesis H1: non-normally distributed residuals. Note
that normally distributed data are expected to have a skewness of 0 and a kurtosis of 3. The
Jarque Bera test statistic in the form stated by Cromwell, Labys, and Terraza (1994) is given
by

JB =
T

6
S +

T

24
(K − 3)2, (5.6)

where S is the sample skewness, K is the sample kurtosis and T is the number of observations
in the series. The JB test statistic is χ2(2) distributed.
Finally, we use an Engle Lagrange Multiplier test for conditional heteroskedasticity of the model
residuals, which is often referred to as "Autoregressive conditonal heteroskedasticity (ARCH)
effects". The null hypothesis is H0: Squared residuals are a white noise sequence, which means
that the model residuals are homoskedastic. The alternative hypothesis is H1: Squared residuals
are not a white noise sequence, i.e. the residuals are heteroskedastic and the model residuals
can be described by an ARCH(p) model of the form stated by Enders (2014):

ε̂2t = a0 + a1ε̂
2
t−1 + a2ε̂

2
t−2 + . . .+ apε̂

2
t−q + νt, (5.7)

where νt is a white noise series. The LM test statistic is TR2, which is approximately χ2(q)

distributed, where T stands for the length of the series of model residuals and R2 is the coef-
ficient of determination from the regression of the squared model residuals on their p lagged
values.
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Table 5.2: SARIMA model residual diagnostic tests (traffic)

Autocorrelation

SARIMA(5, 0, 5)× (2, 1, 0)24 SARIMA(5, 0, 5)× (4, 1, 1)24

Max lag LB test stat(Q∗) P-value LB test stat(Q∗) P-value

1 0.0235 0.8781 0.0001 0.9902

2 0.1814 0.9133 0.0009 0.9995

3 0.6215 0.8915 0.9141 0.8220

24 492.63 < 0.0000∗∗∗ 404.81 0.0000∗∗∗

48 1295.20 < 0.0000∗∗∗ 873.60 0.0000∗∗∗

72 2465.30 < 0.0000∗∗∗ 1154.60 0.0000∗∗∗

Normality

SARIMA(5, 0, 5)× (2, 1, 0)24 SARIMA(5, 0, 5)× (4, 1, 1)24

JB test stat P-value JB test stat P-value

72,271 < 0.0000∗∗∗ 175,876 < 0.0000∗∗∗

Skewness Kurtosis −3 Skewness Kurtosis −3

-0.6060 14.1924 -0.7494 22.1704

Conditional Heteroskedasticity

SARIMA(5, 0, 5)× (2, 1, 0)24 SARIMA(5, 0, 5)× (4, 1, 1)24

Max lag LM test stat P-value LM test stat P-value

4 7,080 < 0.0000∗∗∗ 6717 < 0.0000∗∗∗

12 2,329 < 0.0000∗∗∗ 1978 < 0.0000∗∗∗

24 953 < 0.0000∗∗∗ 443 < 0.0000∗∗∗

Notes: This table shows the test statistics and p-values for the Ljung-Box (LB) test for autocorrelation among
the residuals, the Jarque-Bera (JB) test for normality and the Engle Lagrange Multiplier test for conditional
heteroskedasticity of the squared model residuals for both the automatically chosen and the manually chosen
SARIMA model. The automatically chosen model is an SARIMA (5, 0, 5)(2, 1, 0)24 model and the manually
refined model is an SARIMA (5, 0, 5)(4, 1, 1)24 model. The level of significance is given by ∗: p-value < 0.10;
∗∗: p-value < 0.05; ∗∗∗: p-value < 0.01.
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Based on the test results for the automatically chosen SARIMA model’s residuals shown in
Table 5.2, we conclude that we have no serial correlation up to the third regular lag of the
residuals but we conclude that serial correlation is present when we vary the maximum lag
considered for the test such that the first three seasonal lags are included, which correspond
to lags 24, 48 and 72. We also conclude that the residuals are non-normally distributed with
a substantial amount of excess kurtosis. From the Engle LM test for conditional heteroskedas-
ticity we conclude that model residuals are heteroskedastic. The conclusions from the residual
diagnostic tests are identical for the manually chosen SARIMA model but the excess kurtosis
is higher while the skewness is close to that of the automatically chosen residuals. The con-
sequences of these test results are that the assumptions underlying the prediction intervals of
the SARIMA models are no longer accurate since the normality assumption is violated. Thus,
we calculate the prediction intervals for the SARIMA models using the simulation method of
bootstrapping the model residuals to account for the fact that the SARIMA residuals are not
normally distributed. We also find evidence for ARCH effects which are not explored further
in the course of this paper. Moreover, Best and Wolf (2014) state that the maximum likelihood
estimators for the SARIMA coefficients, which are obtained by maximizing a miss-specified
Gaussian density function, lose their asymptotic efficiency property but they can still remain
consistent and asymptotically normal. They also argue that standard errors for such quasi
maximum likelihood estimators are generally too small but asymptotically correct SE estimates
can be obtained by using Huber-White standard errors.

The estimated model parameters of the manual SARIMA model are shown in Table 5.3.
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Table 5.3: SARIMA (5, 0, 5)× (4, 1, 1)24 model estimation results

Dep. Variable yT No. of Observations 8544

AICc 139,386.30 Log Likelihood -69,677.10

AIC 139,386.20 BIC 139,396.40

Estimated Coefficient SE z score P> |z|

ζ̂1 0.2900 0.1343 2.1586 0.0309∗∗

ζ̂2 -0.2239 0.1203 -1.8610 0.0627∗

ζ̂3 0.3032 0.1196 2.5348 0.0113∗∗

ζ̂4 0.3465 0.1275 2.7164 0.0066∗∗∗

ζ̂5 -0.3346 0.0558 -5.9921 < 0.0000∗∗∗

ψ̂1 0.9530 0.1346 7.0823 < 0.0000∗∗∗

ψ̂2 1.0481 0.0701 14.9584 < 0.0000∗∗∗

ψ̂3 0.6283 0.1347 4.6630 < 0.0000∗∗∗

ψ̂4 0.0083 0.0455 0.1815 0.8560

ψ̂5 0.0056 0.0215 0.2603 0.7946

Ẑ1 0.1941 0.0136 14.3230 0.000∗∗∗

Ẑ2 -0.2215 0.0119 -18.6429 0.000∗∗∗

Ẑ3 -0.1551 0.0113 -13.6894 0.000∗∗∗

Ẑ4 -0.2561 0.0125 -20.4868 0.000∗∗∗

Ψ̂1 -0.8637 0.0104 -83.2515 0.000∗∗∗

Notes: The SARIMA model is of the form (p, d, q) × (P,D,Q)m and the table shows the estimated regular
and seasonal AR and MA coefficients as well as the corresponding p-values when the model is fitted to the
training data. The upper and lower bounds for a 95% confidence interval of the estimated coefficients are also
given. The Akaike information criterion with small sample correction (AICc) is the AIC value which has been
corrected to prevent over-fitting of the regular AIC measure in the case of small samples sizes. The z score is
calculated by dividing the estimated coefficient by the standard error (SE). The level of significance is given by
∗: p-value < 0.10; ∗∗: p-value < 0.05; ∗∗∗: p-value < 0.01.

A graphical illustration of the 24 step ahead forecasts of both the automatically chosen and the
manually refined SARIMA model is shown in Figure 5.2.
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Figure 5.2: Comparison manual vs. automatic SARIMA model (traffic)

Notes: This figure shows the 24 step ahead predictions as well as the bootstrapped 95% prediction intervals of
the automatically chosen SARIMA (5, 0, 5)× (2, 1, 0)24 model plotted against those from the manually refined
SARIMA (5, 0, 5) × (4, 1, 1)24 model, both of which are compared against the test set. 100 simulated sample
paths are used for bootstrapping the residuals of each model.

Figure 5.2 illustrates that the test set is better approximated by forcasted values of the manual
SARIMA model from 12 steps ahead to 24 steps ahead. Also the prediction intervals are
narrower compared to the automatic SARIMA model.
Even though the SARIMA model can handle seasonality, there might be multiple patterns of
seasonality present in the data. Thus, we will also consider a TBATS model which can be
employed to decompose the series into its components including multiple seasonal patterns, if
present.

The estimated TBATS model which minimizes the AIC value for the traffic flow data is a
TBATS(1, {5,1}, -, <24,8>,<168,5>) model. The seasonal.periods parameter was set to
(24, 168) in order to model the seasonal period of hourly traffic flows per day and per week
respectively. The daily and weakly seasonal periods are evident choices based on a visual
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inspection of the time plot of the data.. The use.arma.errors option was enabled as well and
the tbats() function selected a model with an ARMA(5, 1) error component, which is included
in the modeling of the level of the trend through the α smoothing parameter, which is also the
coefficient in the trend level. Since β is not estimated, the ARMA(5, 1) errors are not included
in the trend growth equation, however. The value of the Box-Cox transformation parameter
ω = 1 means that a linear model is chosen and the observations are not Box-Cox transformed.
The seasonal period m1 = 24 (daily seasonality) can be described by k1 = 8 harmonics. Next,
the second seasonal period m2 = 168 = 24 ∗ 7 (weekly seasonality) can be modeled by k2 = 5

harmonics. Figure B.2 shows a trigonometric decomposition of the traffic flow series.

The BATS model is also fitted with a specification of two seasonal periods to model a daily
and a weekly seasonal pattern. Table 5.4 contains the smoothing, transformation parameters
and the ARMA error coefficients for both models. In contrast to the estimated TBATS model,
the BATS model uses a Box-Cox transformation and a dampened trend. Figure 5.3 illustrates
the obtained 24 step ahead point forecasts obtained for both models and the respective PIs.
We can see that the BATS forecasts approximate the test set better than those of the TBATS
across the entire forecast horizon of 24 steps ahead.
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Figure 5.3: Comparison BATS vs. TBATS (traffic)

Notes: This figure shows the 24 step ahead predictions as well as the bootstrapped 95% prediction in-
tervals of the BATS(0.035, {4,1}, 0.934, 24,168) model plotted against those from the TBATS(1, {5,1}, -,
<24,8>,<168,5>) model, both of which are compared against the test set. 100 simulated sample paths are used
for bootstrapping the residuals of each model.
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Table 5.4: BATS and TBATS model estimation results (traffic)

TBATS model

Transformation and smoothing parameters

ω̂ φ̂ α̂ β̂ γ̂
(1)
1 γ̂

(1)
2 γ̂

(2)
1 γ̂

(2)
2

1.0000 NA 0.0375 NA 7.03 ∗ 10−6 0.0002 -0.0004 7.20 ∗ 10−5

AR coefficients MA coefficients

ζ̂1 ζ̂2 ζ̂3 ζ̂4 ζ̂5 ψ̂1

1.1428 -0.3574 -0.0205 -0.0473 -0.0817 0.0686

AIC

194,232.10

BATS model

Transformation and smoothing parameters

ω̂ φ̂ α̂ β̂ γ̂1 γ̂2

0.0350 0.9337 0.0530 2.51 ∗ 10−5 0.0609 -0.0092

AR coefficients MA coefficients

ζ̂1 ζ̂2 ζ̂3 ζ̂4 ψ̂1

0.4006 0.5482 -0.3006 -0.1215 0.7005

AIC

186,036.10

Notes: This table shows the estimated smoothing, dampening and transformation parameters as well as the
ARMA error process coefficients. ω is the Box-Cox transformation parameter. φ is a trend dampening pa-
rameter. The smoothing parameter α is the ARMA error term coefficient in the level of the trend and β, the
second smoothing parameter, is the ARMA error coefficient in the trend growth equation. γ(i)1 , γ(i)2 ; i = 1, 2 are
seasonal smoothing parameters used for the trigonometric formulation of the two seasonal components in the
TBATS model and γ1 and γ2 are the seasonal smoothing parameters used in the BATS model. ζ1, . . . , ζ5 are
AR coefficients and ψ1 is an MA coefficient used to parametrize the respective ARMA errors process selected
by both models to account for autocorrelation in the residuals.

To illustrate the ability of the BATS model to handle multiple seasonal patterns, we show a
comparison of autocorrelation plots of the model’s residuals against those from the manual

81



5.1. TRAFFIC FORECASTING RESULTS FROM TRADITIONAL AND ENSEMBLE
MODELS

SARIMA model, which are shown in Figure 5.4.
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Figure 5.4: Residual analysis BATS vs. SARIMA

Notes: This figure shows ACF for the residuals of both the BATS and the manual SARIMA model for up to
200 lags so the autocorrelation at the weekly level can be compared. The weekly seasonal period is 168.

When a time horizon of 200 lags is considered, it becomes apparent that the autocorrelation
in the respective model residuals is clearly reduced over the entire history of lags illustrated in
Figure 5.4. Especially the weekly seasonality at lag 168 is captured by the BATS model but
not by the SARIMA model.

82



5.1. TRAFFIC FORECASTING RESULTS FROM TRADITIONAL AND ENSEMBLE
MODELS

The next model we employ to forecast the traffic flows is a hybrid model combining the machine
learning method of bagging with an exponential smoothing model. In particular, we deploy
the model "Bagged.BLD.MBB.ETS", which is the bagged ETS model proposed by Bergmeir
et al. (2016) that we explain in more detail in Section 3.3.1. First, the traffic flow time se-
ries is Box-Cox transformed, then the series is decomposed into the trend, the seasonal and
the remainder components and finally, the remainder is bootstrapped using the moving block
bootstrap method and then combined with the trend and the seasonal components to form the
bootstrapped series. Figure 5.5 shows the training data plotted against 10 bootstrapped series
created in this way to illustrate the bootstrapping technique for time series.
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Figure 5.5: Plot of the bootstrapped training data from the traffic flows series

Notes: This figure shows the training data (black) from the traffic flow time series, which are plotted against
10 bootrapped series created through the moving block bootstrap procedure that draws on a Box-Cox transfor-
mation and a Loess-based decomposition which we implement by using the R function bld.mbb.bootstrap(). In
the final ensemble model, 100 such bootstrapped series are generated and the ETS function is applied to each
of these 100 bootstrapped series.

However, the full baggedETS model consists of an ensemble of 100 ETS models that are fitted
to 100 bootstrapped series created in the showcased way. The point forecasts of all 100 ETS
models are then combined through the median as suggested by Bergmeir et al. (2016) in order
to produce the final point forecasts of the baggedETS model. Prediction intervals are calculated
in the following way: First, 100 bootstrapped series are created from the training data using
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the MBB technique. Then, an ETS model is fit to each of the series and subsequently refit
to the training data. The refitted models are then used to create a simulated distribution of
the point forecasts, from which the 0.025 and 0.975 quantiles are taken in order to obtain 95%
prediction intervals. The point forecasts and these simulated PIs for the BaggedETS model are
shown in Figure 5.6.
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Figure 5.6: Point forecasts and simulated prediction intervals for the BaggedETS model

Notes: This figure shows the point forecasts from the BaggedETS ensemble model which are obtained by taking
the median of 100 base learners. The simulated prediction intervals are shown separately in order to avoid scale
distortions arising from disproportionately wide prediction intervals. The base learners are ETS models fitted
to the bootstrapped training data. 95% prediction intervals are also shown which are obtained by generating
100 simulations from ETS models of the bootstrapped series, which have been refitted to the training data.

Lastly, we use a LGBM boosting ensemble model to boost regression trees. For the boosting
ensemble model we employ a grid search cross validation to find the optimal combination of
hyperparameters and the hyperparameter space considered is shown in Table 5.5. The final
LGBM model setup is reported in Table 5.6.
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Table 5.5: Hyperparameter space for the grid search CV - LGBM model (traffic)

Hyperparameter Values or options included in the gridsearch CV

Colsample by tree { 0.8, 1.0 }

Min child weight { 3, 5 }

Learning rate { 0.1, 0.01, 0.001 }

Max depth { 5, 8 }

Reg_lambda { 0.0, 0.7 }

Reg_alpha { 0.0, 0.7 }

Grid search CV details

Number of folds 3

Number of model candidates 96

Total number of model fits 288

Notes: This table contains the hyperparameter values included in the gridsearch CV for the LGBM
model. colsample_by_tree sets the subsample ratio of input data columns used when constructing a tree.
min_child_weight is the minimum sum of the instance weight needed in a child. The learning_rate describes
the boosting learning rate. max_depth describes the maximum tree depth for base learners, which is the number
of vertical levels with at least one split. reg_lambda stands for the `2 regularization term on the weights and
reg_alpha represents a `1 regularization term on the weights. We use a "Tesla P100" graphical processing unit
via Google Colab Pro to carry out this computationally intensive cross validation. Moreover, setting n_jobs
to −1 ensures that the maximum number of resources is used for parallel computational threads and parallel
processing.

To conclude our analyses using traditional and ensemble models, we plot all 24 step ahead
point forecasts obtained and the computed prediction intervals for the two traditional statistical
models as well as those those obtained for the ensemble models against the test set. The plot
grid is shown in Figure 5.7.
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Table 5.6: Model setup for the LGBM ensemble (traffic)

Model Setup component Component details

Prediction target 24 hours ahead traffic flows : yT+1, . . . , yT+24

Input variables History of 60 lags : {yT , yT−1, . . . , yT−59}

Output variables Predictions of 24 steps ahead: {ŷT+1, ŷt+2, . . . , ŷT+24}

Optimal training hyperparameters

LGBM regressor ensemble model with 500 boosted trees

Objective function "Root mean squared error"

Subsample 1.0

N_estimators 500

Num_leaves 30

Min_child_samples 20

Colsample_by_tree 0.8

Min_child_weight 3

Learning_rate 0.1

Max_depth 8

Reg_lambda 0.7

Reg_alpha 0.0

Notes: This table contains all information about the model setup used for the LGBM ensemble model. The
training hyperparameters are the ones obtained from the gridsearch cross validation plus the addtional hyper-
parameters that were fixed in advance. The fixed hyperparameters were set as follows: We choose the RMSE
as an objective function and use a LGBMRegressor to boost regression trees. Subsample is the subsample
ratio of the training example. N_estimators stands for the number of boosted trees to fit. Num_leaves is
the maximum amount of tree leaves for each base model regression tree. Min_child_samples is the mini-
mum amount of data needed in a child node. The other gridsearched hyperparameters are explained in Ta-
ble 5.5. The explanations of the hyperparameters are taken from the Python API of the lightgbm library (see
https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMRegressor.html for further details).
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Figure 5.7: Comparison of point forecasts - Statistical and ensemble models (traffic)

Notes: This figure shows a grid plot of the 24 step ahead forecasts obtained from the traditional and the
ensemble models. The top row shows the forecasts of the BATS(0.035, {4, 1}, 0.934, 24, 168) model in the left
panel as well as those of the SARIMA (5, 0, 5) × (4, 1, 1)24 model in the right panel. The bottom left panel
depicts the forecasts from the LGBM boosting ensemble model and the bottom right panel shows the forecasts
from the BaggedETS model. All point forecasts are plotted against the test set and with their corresponding
prediction intervals except for the BaggedETS model Prediction intervals for the baggedETS model are left
out in this gridplot in order to make the point forecasts more comparable but they are shown in Figure 5.6.
LGBM prediction intervals are obtained through quantile regression techniques and the prediction intervals for
the BATS and the SARIMA model are obtained through bootstrapping.
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5.2 Traffic Forecasting Results from Neural Network Mod-

els

In this section, we describe the process of setting up and training our extended recurrent neural
network models, the GRU and the LSTM. First, the grid search and the motivation behind
the choices of certain values for the hyperparameters are explained. Moreover, we also con-
sider a deep learning approach by stacking two hidden recurrent LSTM layers or GRU layers,
respectively. Lastly, the best model for each architecture is chosen and compared against the
traditional models.

Hyperparameter tuning for both the LSTM and the GRU neural networks is carried out using a
grid search cross validation. Goodfellow et al. (2016) states that the common practice of a grid
search CV consists of the following steps: First, a small set of values for each hyperparameter in
question is selected. Second, a neural network model is trained for every possible combination
of hyperparameters in the Cartesian product of these hyperparameter value sets in order to
find the model with the lowest error measure on the validation set. In this way, the optimal
combination of hyperparameter values can be found. However, Bengio (2012) states that there
is no hard guarantee that minimizing the training error and evaluating the trained model on
a validation set, which is used as a proxy for out of sample generalization, will lead to a low
test error when the trained algorithm is fitted to new previously unseen examples from the
data set. The main goal with respect to finding a good Machine Learning model is rather to
find an optimal combination of hyperparameters such that the tendency of underfitting and
overfitting is balanced and a good trade-off between bias and variance of the point estimates
is achieved. The bias refers to the difference between the expectation of the point estimate
over the data and the true value and the variance is a measure for the variation in the point
estimate with alternative samplings from the training data. Goodfellow et al. (2016) state that
underfitting refers to a situation in which both the training error and the test error are high
and they characterize overfitting as a situation in which the training error is low but the test
error is high as the algorithm fits the training data too well in order to generalize well when fit
to out of sample data. The values of the hyperparameters used in the gridsearch CV are shown
in Table 5.7.
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Table 5.7: Hyperparameter search space - neural networks (traffic)

Hyperparameter Values or options included in the gridsearch CV

Batch size { 100, 250, 500 }

Number of epochs { 250, 500, 750 }

Number of neurons { 500, 1000, 1500 }

Dropout { 0.0, 0.2, 0.4 }

Learning rate { 0.001, 0.01}

Optimizer {’Adagrad’, ’Adam’, ’Adadelta’ }

Grid search CV details

Number of folds 3

Number of model candidates 486

Total number of model fits 1,458

Notes: This table contains the hyperparameter values included in the gridsearch CV for the LSTM and the
GRU model. The batch size controls how often the weights of the neural network are updated. The number
of epochs indicates how many times the entire training set of values is passed through all layers of the neural
network. The activation function specifies the activation function used for the hidden layers (LSTM or GRU
layer). The number of neurons sets the number of neurons used per hidden layer. dropout is the fraction of the
neurons to drop for the linear transformation of the inputs, which can be used for regularization. The learning
rate denotes the step size with which a step towards a local minimum in the opposite direction of the steepest
gradient is undertaken. Optimizer refers to the implemented learning algorithm which is used to find the
optimal network weights that minimize the chosen loss function. The descriptions of the hyperparameters were
taken from the Tensorflow Python API (see https://www.tensorflow.org/api_docs/python/tf/keras/Model).
The number of model candidates is given by the number of possible combinations among the hyperparameters,
which is (3C1)5 ∗ (2C1) = 35 ∗ 2 = 486.

The model setups used for both neural network architectures, which incorporate the results
from the gridsearch CV are shown in Table 5.8. Following the heuristic approach stated by
Hewamalage et al. (2019), who suggest to set the size of the input window to a value slightly
bigger than the seasonal period, we opt for setting the size of the input window to 60, which is
2.5 times the seasonal period of 24.
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Table 5.8: Model setup for the GRU and the LSTM neural networks (traffic)

Model Setup component Component details

Prediction target 24 hours ahead traffic flows : yT+1, . . . , yT+24

Input variables History of 60 lags : {yT , yT−1, . . . , yT−59}

Output variables Predictions of 24 steps ahead: {ŷT+1, ŷt+2, . . . , ŷT+24}

Optimal training hyperparameters

GRU LSTM

Activation function ’Leaky Relu’ ’Leaky Relu’

Learning rate 0.001 0.01

Number of neurons 1500 1500

Batch size 100 250

Number of epochs 500 750

Optimizer ’Adam’ ’Adagrad’

Dropout 0.0 0.0

Notes: This table contains all information about the model setup used for both the GRU and the LSTM neural
networks. The training hyperparameters are the ones obtained from the respective grid search cross validation
procedures which are carried out for each RNN architecture type separately.

Moreover, we also consider deep neural network architectures by adding a second recurrent
hidden layer for each of the two network models. We stack two identical hidden layers using
the hyperparameters shown in Table B.1.
Figure 5.8 shows the regular LSTM and the regular GRU neural network 24-step ahead forecasts
plotted against the test set as well as those of the chosen Deep Long Short Term Memory neural
network (DLSTM) and Deep Gated Recurrent Unit neural network (DGRU) models, both of
which have two stacked hidden layers. We can see that the point forecasts produced by the
LSTM and the GRU neural networks are fairly close in terms of their accuracy, while the regular
GRU is lightly more accurate than the LSTM and the DLSTM is slightly more accurate than
the DGRU model. Adding a second hidden layer leads to visibly more accurate predictions
between 5 and 15 steps ahead.
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Figure 5.8: Comparison of point forecasts - Neural network models (traffic)

Notes: In the top row, this figure shows the 24 step ahead forecasts obtained from the regular GRU neural
network and the regular LSTM neural network, each of which use only one hidden layer. In the bottom row, the
forecasts of a deep LSTM neural network with 2 stacked hidden layers and those of a deep GRU neural network
with 2 stacked hidden layers are shown. All forecasts shown in this figure are obtained using the MIMO approach
and are plotted against the test set. Prediction intervals obtained through minimizing a quantile regression loss
are also shown for all the network models.

Table 5.9 shows the test errors of the point forecasts obtained for all the forecasting models
considered, i.e. the traditional models, the ensemble models and the neural network models.
The Bagged ETS model can outperform the regular automatically chosen ETS traditional
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model but not the other three benchmark models. The LGBM boosting ensemble model
performs considerably better than all the benchmark models, whereas the BATS and TBATS
models surprisingly produce divergent point forecasts. However, both ETS extension variants
outperform all the benchmarks. Finally, both deep recurrent neural network models outperform
all traditional and ensemble forecasting models as well as all the benchmarks. Among the the
two considered deep learning models, the DLSTM with 2 stacked hidden LSTM layers emerges
as the best forecasting model for the hourly traffic flow data overall with the DGRU model
performing only marginally worse.

Table 5.10 shows a comparison of the three common evaluation metrics for prediction intervals
computed for all the forecasting models. For the Machine Learning models, quantile regression
techniques are used and for the traditional statistical models prediction intervals are computed
using bootstrapping techniques to resample the model residuals. No distributional assumptions
are required for the latter simulation technique but the model residuals are assumed to be
uncorrelated. Due to computational constraints we set the number of simulated sample paths
to 100 per model for which bootstrapped prediction intervals are required.
Taking into account the trade-off between coverage probability and mean width as measured
by the CWC, the DGRU, LGBM and the BATS models produce similarly good prediction
intervals. The PI measures of the BaggedETS model are considerably worse than those of both
benchmarks and other candidate models. The DLSTM produces the best CWC score, which
means that its PIs have the best trade-off between PICP and MPIW.
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Table 5.9: Comparison of point forecast test error evaluation metrics (traffic)

Candidate Models

Metric DLSTM DGRU LGBM BaggedETS SARIMA BATS TBATS

RMSE 528.05 565.67 808.05 3056.02 1702.52 851.98 2125.12

MAE 439.65 461.54 611.96 2808.84 1310.50 729.58 1954.20

MAPE 5.3336 7.0332 9.3939 38.2627 22.4235 7.2395 27.2012

Benchmark Models

Metric SNaive ETS SARIMA FFNN

RMSE 3072.02 4425.75 2807.86 2492.64

MAE 2348.29 3970.27 2127.95 1913.31

MAPE 38.8332 56.7718 35.5932 34.5256

Notes: This table shows a comparison of forecast error evaluation metrics for the point forecasts obtained for all
the candidate and the benchmark models. The Machine Learning candidate models considered are the DLSTM
and the DGRU neural networks as well as an LGBM ensemble model. The traditional statistical candidate
models presented in this table are the manually refined SARIMA model, the BATS model and the TBATS
model. Furthermore, as a hybrid model we consider the BaggedETS model.
As a first benchmark model we consider a seasonal naive forecasting model, which is obtained by setting each
forecast equal to the last observed value from the same season, i.e. the value of the same hour of the day 24 hours
before. We also consider an automated ETS(A,Ad,A) benchmark model obtained through the application of
the ets() R function to the training set as well as an automated benchmark SARIMA(5, 0, 5)(2, 1, 0)24 model
obtained through the application of the auto.arima() R function to the training set. As a further benchmark, we
also consider a non-recurrent FFNN model with 3 Dense layers containing 128, 64 and 24 neurons, respectively.
The other fixed hyperparameters are as follows: learning rate = 0.01, epochs = 100, batch size=100, loss=
MSE. The common forecast horizon is h = 24 time steps ahead for all models compared. The forecast error
metrics are calculated on the test set.
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Table 5.10: Comparison of prediction interval evaluation metrics (traffic)

Candidate Models

Metric DLSTM DGRU LGBM BaggedETS SARIMA BATS TBATS

PICP 1.0 1.0 1.0 0.8750 0.9167 1.0 1.0

MPIW 3733.15 5133.53 5128.74 32769.51 7432.07 5370.03 7981.65

CWC 0.3322 0.4568 0.4564 126.9055 4.1569 0.4778 0.7102

Benchmark Models

Metric SNaive ETS SARIMA FFNN

PICP 0.9167 0.9167 0.9167 0.9583

MPIW 10345.00 15457.04 9717.26 7449.29

CWC 5.7862 8.6455 5.4351 0.6629

Notes: This table shows a comparison of prediction interval evaluation metrics for the point forecasts obtained
for all the benchmark and the candidate models. The 95% prediction intervals for the DLSTM and the DGRU
neural networks are obtained by fitting two respective neural networks with a quantile regression loss function
to get the lower and upper bounds for the respective PI. Prediction intervals for the LGBM boosting model
are also obtained by fitting two LGBM models with a quantile regression loss function. The PIs for all other
candidate and benchmark models are computed by resampling the model residuals through bootstrapping. From
100 simulated sample paths we take the 0.025 and the 0.975 quantiles to obtain the lower and upper bounds
of a 95% prediction interval. The PICP measure provides the coverage probability that indicates how many
target values of the test set are contained in the interval spanned by the two PI bounds. The MPIW measure
contains the average width of the PIs and the CWC quantifies the tradeoff between narrow PIs and a high
coverage probability. For the CWC calculations, we use hyperparameter values of (1 − α) = 0.95 and ξ = 50.
The NMPIW is calculated by dividing the MPIW by the range of the target variable, i.e. the range of the test
set.

5.3 Robustness Checks For The Traffic Forecasting Results

This section contains our robustness checks with respect to variations in the forecast horizon
(h), the day of the week used as a test set as well as the amount of training data used to train
the models. We only consider the best models obtained from every field, which are the BATS
model, the LGBM ensemble model and the DLSTM neural network model. We also consider
a Snaive benchmark model for comparison. The line plots showing the variation of the RMSE
test error for every robustness check are shown in Figure 5.9.
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The top left panel of Figure 5.9 shows a robustness check with respect to the length of the fore-
cast horizon. According to the RMSE test errors, all candidate models outperform the seasonal
naive benchmark model across all forecast horizons. The test error of the LGBM model stays
roughly constant and the test errors for the BATS and the DLSTM model fluctuate within
a range of 250. Interestingly, the BATS model’s RMSE decreases as the forecast horizon in-
creases, whereas the RMSE of the DLSTM increases. The surprising finding that the BATS
model forecasts improve as the forecast horizon is increased might be due to the fact that the
BATS model performs especially well on the days of the week following the Saturday used as
the main test set. Both Machine Learning models require different preprocessing and setting
up different models, which have to be retrained per forecast horizon. The number of input
lags stays the same for all the models but changes in the desired output dimensions require
retraining the Machine Learning models. The DLSTM creates forecasts for a target window
equal to the number of steps ahead simultaneously and the boosting ensemble forecasts consist
of multi-target regression, i.e. fitting one LGBM regression model for every step ahead. The
BATS model forecasts are obtained recursively from the same initial model and do not re-
quire retraining. Note that further fine tuning of the hyperparameters of the Machine Learning
models for the additional three forecast horizons has not been carried out for this robustness
analysis.
The top right panel of Figure 5.9 shows a robustness check with respect to the day of the
week represented by the 24 hours used as a test set to explore sensitivity of the models with
respect to specific days of the week. The benchmark Snaive model only provides accurate point
forecasts which are on the same level as those of the candidate models on Thursday. On all
other days of the week, all candidate models perform considerably better. A key insight from
this plot is that no one forecasting model is able to outperform all other models on every given
day. However, the DLSTM model has the lowest average RMSE value across the entire week
of 585, closely followed by the average RMSE values of the LGBM and the BATS, which are
608 and 627, respectively. It seems like all forecasting models perform better on the weekdays
and the test error raises for the weekend days. We hypothesize that the trip counts for the
weekends contain more unpredictable fluctuations which might be correlated with major events
in the city.
Lastly, we conduct a robustness check on the amount of training data used to train the models,
the results of which are shown in the bottom panel of Figure 5.9. By design, the Snaive bench-
mark model produces indentical RMSE values due to the fact that only the last seasonal period
is used to compute the predictions. More interestingly, The DLSTM model gets more accurate
as the amount of training data is increased, whereas the BATS model’s accuracy decreases
when using more training data. The LGBM model’s accuracy remains roughly constant. All
the models require retraining for the different training sizes considered.
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Figure 5.9: Robustness checks w.r.t. forecast horizon, day of the week and train size

Notes: This grid plot shows the robustness checks for the traffic data. The top left panel shows the RMSE
values as the forecast horizon is varied from h=24 hours ahead to h=96 hours ahead. The top right panel shows
the RMSE values as the day of the week used as a 24 hour test set is varied. The different days of the week
are taken from the held out test data. The bottom panel shows the RMSE values as the training data used to
train the models is varied from 1 month to 1 year.
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5.4 EMS Forecasting Results from Traditional and Ensem-

ble Models

Prior to setting up a SARIMA model we check whether the data are nonstationary. We perform
a "random walk" type of the ADF test just as with the traffic data, the results of which are
shown in Table 5.11.

Table 5.11: ADF test results for the time series on EMS dispatches

Original series Seasonally differenced series

ADFτ test stat p-value lagged changes (p) ADFτ test stat p-value lagged changes (p)

Test results

-0.851 0.3749 24 -26.6 < 0.01∗∗∗ 24

-0.658 0.4437 48 -22.2 < 0.01∗∗∗ 48

-0.502 0.4996 72 -17.6 < 0.01∗∗∗ 72

-0.442 0.5168 96 -16.3 < 0.01∗∗∗ 96

1% level 5% level 10% level

Critical values -2.58 -1.95 -1.62

Notes: This table contains the test statistics and p-values obtained by carrying out the "random walk" type of
the ADF test for a unit root as given in Equation (5.1) for the original as well as for the seasonally differenced
series. The number of lagged changes p included in the ADF equations is varied from 24 to 96 in order to
account for the autocorrelation at the first four seasonal lags. The level of significance is given by ∗: p-value <
0.10; ∗∗: p-value < 0.05; ∗∗∗: p-value < 0.01.

The results show that the seasonally differenced series can be considered stationary since we
can reject the null hypothesis of a unit root at the 1% significance level in contrast to the
original series.

We then apply the same procedure to obtain a manual SARIMA model as in Section 5.1.
The ACF and PACF plots from the automatically chosen and the manual model are shown in
Figure 5.10.
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Figure 5.10: ACF/PACF plot comparison of SARIMA model residuals (EMS)

Notes: This figure shows the autocorrelation and the partial autocorrelation for up the 100 lags of the auto-
matically chosen SARIMA (4, 0, 0)(2, 1, 0)24 model’s residuals, the manually refined SARIMA (4, 0, 0)(2, 1, 1)24

model’s residuals and the corresponding confidence bounds at the 95 % level.

It is clearly visible how the autocorrelation at the seasonal lags is drastically reduced through
the manual modeling procedure. The chosen manual SARIMA model contains one additional
seasonal AR lag and one extra seasonal MA lag.
Diagnostic tests on both SARIMA model residuals with respect to autocorrelation, normality
and conditional heteroskedasticity are shown in Table 5.12.
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Table 5.12: SARIMA model residual diagnostic tests (EMS)

Autocorrelation

SARIMA(4, 0, 0)× (2, 1, 0)24 SARIMA(4, 0, 0)× (2, 1, 1)24

Max lag LB test stat(Q∗) P-value LB test stat(Q∗) P-value

1 0.0018 0.9657 1.35 ∗ 10−5 0.9971

2 0.0194 0.9657 2.66 ∗ 10−5 0.9513

3 0.1962 0.9782 0.0399 0.9979

24 251.19 < 0.0000∗∗∗ 123.89 < 0.0000∗∗∗

48 544.14 < 0.0000∗∗∗ 199.33 < 0.0000∗∗∗

72 1234.80 < 0.0000∗∗∗ 295.42 < 0.0000∗∗∗

Normality

SARIMA(4, 0, 0)× (2, 1, 0)24 SARIMA(4, 0, 0)× (2, 1, 1)24

JB test stat P-value JB test stat P-value

24.017 < 0.0000∗∗∗ 23.778 < 0.0000∗∗∗

Skewness Kurtosis −3 Skewness Kurtosis −3

0.0875 0.1945 0.0978 0.1720

Conditional Heteroskedasticity

SARIMA(4, 0, 0)× (2, 1, 0)24 SARIMA(4, 0, 0)× (2, 1, 1)24

Max lag LM test stat P-value LM test stat P-value

4 2,479 < 0.0000∗∗∗ 2,425 < 0.0000∗∗∗

12 821 < 0.0000∗∗∗ 802 < 0.0000∗∗∗

24 405 < 0.0000∗∗∗ 396 < 0.0000∗∗∗

Notes: This table shows the test statistics and p-values for the Ljung-Box (LB) test for autocorrelation among
the residuals, the Jarque-Bera (JB) test for normality and the Engle Lagrange Multiplier test for conditional
heteroskedasticity of the squared model residuals for both the automatically chosen and the manually chosen
SARIMA model. The automatically chosen model is an SARIMA (4, 0, 0)(2, 1, 0)24 model and the manually
refined model is an SARIMA (4, 0, 0)(2, 1, 1)24 model. The level of significance is given by ∗: p-value < 0.10;
∗∗: p-value < 0.05; ∗∗∗: p-value < 0.01.
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For the manual SARIMA model residuals the Ljung-Box test for autocorrelation leads to the
conclusion that autocorrelation is present at the first three seasonal lags, i.e. lags 24,48 and 72,
whereas for the first three regular lags no evidence for autocorrelation can be found. Moreover,
we cannot reject the null hypothesis of normality even though the amount of excess kurtosis
is low. Lastly, we find evidence for ARCH effects, which are not further investigated in this
paper. For the automatic SARIMA model residuals we reach the same conclusions. Thus, we
also draw upon the bootstrapping technique to simulate prediction intervals for both SARIMA
models.

Table 5.13 shows the estimation results of the manually found SARIMA model for the EMS
data.

Table 5.13: SARIMA (4, 0, 0)× (2, 1, 1)24 model estimation results

Dep. Variable yT No. of Observations 8376

AICc 55,721.41 Log Likelihood -27,852.70

AIC 55,721.40 BIC 55,726.51

Estimated Coefficient SE z score P> |z|

ζ̂1 0.2270 0.0108 20.9961 < 0.0000∗∗∗

ζ̂2 0.1976 0.0110 -17.9073 < 0.0000∗∗∗

ζ̂3 0.1072 0.0112 9.6116 < 0.0000∗∗∗

ζ̂4 0.0317 0.0100 3.1749 0.0015∗∗

Ẑ1 0.0324 0.0113 2.8652 0.042∗∗

Ẑ2 -0.0291 0.0112 -2.6042 0.092∗∗

Ψ̂1 -0.9824 0.0032 -302.2907 < 0.0000∗∗∗

Notes: The SARIMA model is of the form (p, d, q) × (P,D,Q)m and the table shows the estimated regular
and seasonal AR and MA coefficients as well as the corresponding p-values when the model is fitted to the
training data. The upper and lower bounds for a 95% confidence interval of the estimated coefficients are also
given. The Akaike information criterion with small sample correction (AICc) is the AIC value which has been
corrected to prevent overfitting of the regular AIC measure in the case of small samples sizes. The z score is
calculated by dividing the estimated coefficient by the standard error (SE). The level of significance is given by
∗: p-value < 0.10; ∗∗: p-value < 0.05; ∗∗∗: p-value < 0.01.

Point forecasts and bootstrapped prediction intervals based on 100 simulated sample paths are

100



5.4. EMS FORECASTING RESULTS FROM TRADITIONAL AND ENSEMBLE MODELS

shown in Figure 5.11.
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Figure 5.11: Comparison manual vs. automatic SARIMA model (EMS)

Notes: This figure shows the 24 step ahead predictions as well as the 95% prediction intervals of the auto-
matically chosen SARIMA (4, 0, 0)× (2, 1, 0)24 model plotted against those from the manually refined SARIMA
(4, 0, 0)× (2, 1, 1)24 model, both of which are compared against the test set.

Next, we fit both a BATS and a TBATS model to the EMS training data modeling daily and
weekly seasonal periods explicitly. Neither model selects a Box-Cox transformation but only
the BATS model involves a damped trend while only the TBATS model includes ARMA(4,4)
errors. Table 5.14 presents the estimation results for both the BATS and the TBATS.
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Table 5.14: BATS and TBATS model estimation results (EMS)

TBATS model

Transformation and smoothing parameters

ω̂ φ̂ α̂ β̂ γ̂
(1)
1 γ̂

(1)
2 γ̂

(2)
1 γ̂

(2)
2

1.0000 NA 0.0211 NA 1.89 ∗ 10−5 9.49 ∗ 10−5 -0.0002 2.62 ∗ 10−5

AR coefficients MA coefficients

ζ̂1 ζ̂2 ζ̂3 ζ̂4 ψ̂1 ψ̂2 ψ̂3 ψ̂4

0.1717 1.3504 -0.2955 -0.4914 -0.0289 -1.2363 0.1774 0.3987

AIC

107,167.5

BATS model

Transformation and smoothing parameters

ω̂ φ̂ α̂ β̂ γ̂1 γ̂2

1 0.833 0.1508342 -0.0246 0.0004 -0.0281

AR coefficients MA coefficients

NA NA

AIC

106,718.3

Notes: This table shows the estimated smoothing, dampening and transformation parameters as well as the
ARMA error process coefficients. ω is the Box-Cox transformation parameter. φ is a trend dampening pa-
rameter. The smoothing parameter α is the ARMA error term coefficient in the level of the trend and β, the
second smoothing parameter, is the ARMA error coefficient in the trend growth equation. γ(i)1 , γ(i)2 ; i = 1, 2 are
seasonal smoothing parameters used for the trigonometric formulation of the two seasonal components in the
TBATS model and γ1 and γ2 are the seasonal smoothing parameters used in the BATS model. ζ1, . . . , ζ4 are
AR coefficients and ψ1, . . . , ψ4 are MA coefficients.

Point forecasts and bootstrapped prediction intervals are shown in Figure 5.12. The two models
exhibit point forecast accuracy and PI quality which are closely matched for the EMS data.
This contrasts with our findings on the traffic data set, where the BATS model was clearly
superior.
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Figure 5.12: Comparison BATS vs TBATS model (EMS)

Notes: This figure shows the 24 step ahead predictions as well as the 95% predic-
tion intervals of the BATS(1, {0, 0}, 0.833, 24, 168) model plotted against those from the
TBATS(1, {4, 4}, NA,< 24, 6 >,< 168, 6 >) model, both of which are compared against the test set.

For the baggedETS ensemble model we employ the same ensemble size of 100 regular ETS base
learners which are combined through the median as with the traffic data. Prediction intervals
are also obtained in the same fashion as in Figure 5.6. We compare the baggedETS model
with the benchmark ETS model, which also serves as a base learner for the ensemble model as
shown in Figure 5.13.
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Figure 5.13: Point forecasts and simulated prediction intervals - BaggedETS vs ETS model

Notes: This figure shows the point forecasts and simulated prediction intervals from the BaggedETS ensemble
model which are obtained by taking the median of 100 base learners and the ETS benchmark model.

We observe that Bagging does not lead to any improvements with respect to the forecasting
performance nor the PI quality.

Table 5.15 shows the hyperparameter space used for the gridsearch cross validation employed
to develop the LGBM boosting ensemble model for the EMS data. Table 5.16 shows the chosen
combination of hyperparameters used for the EMS data to build an LGBM ensemble model.
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Table 5.15: Hyperparameter space for the grid search CV - LGBM model (EMS)

Hyperparameter Values or options included in the gridsearch CV

Colsample by tree { 0.8, 1.0 }

Learning rate { 0.1, 0.01 }

Max depth { 8, 15 }

N_estimators { 100, 250 }

Num_leaves { 100, 200 }

Reg_lambda { 0.0, 0.7 }

Reg_alpha { 0.0, 0.7 }

Grid search CV details

Number of folds 3

Number of model candidates 128

Total number of model fits 384

Notes: This table contains the hyperparameter values included in the gridsearch CV for the LGBM model.
colsample_by_tree sets the subsample ratio of input data columns used when constructing a tree. The learn-
ing_rate describes the boosting learning rate. max_depth describes the maximum tree depth for base learners,
which is the number of vertical levels with at least one split. reg_lambda stands for the `2 regularization term on
the weights and reg_alpha represents a `1 regularization term on the weights. We use a "Tesla P100" graphical
processing unit via Google Colab Pro to carry out this computationally intensive cross validation. Moreover,
setting n_jobs to −1 ensures that the maximum number of resources is used for parallel computational threads
and parallel processing.
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Table 5.16: Model setup for the LGBM ensemble (EMS)

Model Setup component Component details

Prediction target 24 hours ahead dispatches : yT+1, . . . , yT+24

Input variables History of 60 lags : {yT , yT−1, . . . , yT−59}

Output variables Predictions of 24 steps ahead: {ŷT+1, ŷt+2, . . . , ŷT+24}

Optimal training hyperparameters

LGBM regressor ensemble model with 250 boosted trees

Objective function "Root mean squared error"

Subsample 1.0

N_estimators 250

Num_leaves 100

Min_child_samples 20

Colsample_by_tree 0.8

Learning_rate 0.01

Max_depth 15

Reg_lambda 0.0

Reg_alpha 0.0

Notes: This table contains all information about the model setup used for the LGBM ensemble model. The
training hyperparameters are the ones obtained from the gridsearch cross validation plus the addtional hyper-
parameters that were fixed in advance. The fixed hyperparameters were set as follows: We choose the RMSE
as an objective function and use a LGBMRegressor to boost regression trees. Subsample is the subsample
ratio of the training example. N_estimators stands for the number of boosted trees to fit. Num_leaves is
the maximum amount of tree leaves for each base model regression tree. Min_child_samples is the mini-
mum amount of data needed in a child node. The other gridsearched hyperparameters are explained in Ta-
ble 5.15. The explanations of the hyperparameters are taken from the Python API of the lightgbm library (see
https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMRegressor.html for further details).

Finally, we provide a visual comparison of all the point forecasts of all the chosen candidate
models from the traditional statistical and the ensemble methods field, which is shown in
Figure 5.14. We can see that the TBATS model generalizes better when fitted to the out of
sample test data than the ensemble models do.
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Figure 5.14: Comparison of point forecasts - Statistical and ensemble models (EMS)

Notes: This figure shows a grid plot of the recursive 24 step ahead forecasts obtained from the traditional and
ensemble models. The top row shows the forecasts of the TBATS(1, {4, 4}, NA,< 24, 6 >,< 168, 6 >) model
in the left panel as well as those of the SARIMA (4, 0, 0) × (2, 1, 1)24 model in the right panel. The bottom
left panel depicts the LGBM boosting ensemble model forecasts and the bottom right panel shows the forecasts
from the BaggedETS model. All point forecasts are plotted against the first 24 observations of the test set and
with their corresponding prediction intervals.
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5.5. EMS FORECASTING RESULTS FROM NEURAL NETWORK MODELS

5.5 EMS Forecasting Results from Neural Network Models

Since no optimal set of hyperparameters can be reused to train neural networks that generalize
well across two completely different data sets, we set up a new search space to find the optimal
hyperparameter combination for each of the recurrent neural network architectures for the EMS
demand data. Due to the observation that the neural network models initially seemed to be
underfitting, we increase the width of the network by increasing the number of neurons in the
hidden layer and the number of training instances, i.e. the number of epochs. We choose a
smaller grid compared to that used for the traffic flow data due to computational considerations
as wider network models require more computation time. Initial experiments showed that two
different grids for the two recurrent neural network types would be optimal. The search space
of hyperparameters for the GRU network is presented in Table 5.17 and that for the LSTM
network is shown in Table 5.18.

Table 5.17: Hyperparameter search space - GRU network (EMS)

Hyperparameter Values or options included in the gridsearch CV

Batch size { 150, 250 }

Number of epochs { 750, 1000 }

Number of neurons { 1500, 2000 }

Learning rate { 0.01, 0.001, 0.0001}

Optimizer {’Adam’, ’Adadelta’ }

Grid search CV details

Number of folds 3

Number of model candidates 48

Total number of model fits 144

Notes: This table contains the hyperparameter values included in the gridsearch CV for the GRU model. See
Table 5.7) for explanations of the hyperparameters.
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Table 5.18: Hyperparameter search space - LSTM network (EMS)

Hyperparameter Values or options included in the gridsearch CV

Batch size { 100, 200, 400 }

Number of epochs { 500, 1000, 1500 }

Number of neurons { 1000, 1500, 2000 }

Learning rate { 0.01, 0.001, 0.0005}

Grid search CV details

Number of folds 3

Number of model candidates 81

Total number of model fits 243

Notes: This table contains the hyperparameter values included in the gridsearch CV for the LSTM model. The
batch size controls how often the weights of the neural network are updated. The number of epochs indicates how
many times the entire training set of values is passed through all layers of the neural network. The activation
function specifies the activation function used for the LSTM hidden layers. The number of neurons sets the
number of neurons used per layer. dropout is the fraction of the neurons to drop for the linear transformation
of the inputs, which can be used for regularization. The learning rate denotes the step size with which a step
towards a local minimum in the opposite direction of the steepest gradient is undertaken. Optimizer refers
to the implemented learning algorithm which is used to find the optimal network weights that minimize the
chosen loss function. The descriptions of the hyperparameters were taken from the Tensorflow Python API (see
https://www.tensorflow.org/api_docs/python/tf/keras/Model).

Table 5.19 contains the all gridsearched and fixed hyperparameters chosen to fit the LSTM and
GRU models.
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5.5. EMS FORECASTING RESULTS FROM NEURAL NETWORK MODELS

Table 5.19: Model setup for the GRU and the LSTM neural networks (EMS)

Model Setup component Component details

Prediction target 24 hours ahead dispatches : yT+1, . . . , yT+24

Input variables History of 60 lags : {yT , yT−1, . . . , yT−59}

Output variables Predictions of 24 steps ahead: {ŷT+1, ŷt+2, . . . , ŷT+24}

Optimal training hyperparameters

GRU LSTM

Activation function ’Leaky Relu’ ’Leaky Relu’

Learning rate 0.01 0.01

Number of neurons 2000 1000

Batch size 150 400

Number of epochs 750 500

Optimizer ’Adadelta’ ’Adam’

Dropout 0.0 0.0

Notes: This table contains all information about the model setup used for both the GRU and the LSTM neural
networks. The training hyperparameters are the ones obtained from the respective grid search cross validation
procedures which are carried out for each RNN architecture type separately.

Figure 5.15 finally shows a visual comparison of the point forecasts and prediction intervals for
the regular and deep neural network models. No striking difference in out of sample forecasting
performance can be seen across different RNN types nor as the depth of the neural networks is
increased.
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Figure 5.15: Comparison of point forecasts - neural networks (EMS)

Notes: In the top row, this figure shows the 24 step ahead forecasts obtained from the regular GRU neural
network and the regular LSTM neural network, each of which use only one hidden layer. In the bottom row, the
forecasts of a deep LSTM neural network with 2 stacked hidden layers and those of a deep GRU neural network
with 2 stacked hidden layers are shown. All forecasts shown in this figure are obtained using the MIMO approach
and are plotted against the test set. Prediction intervals obtained through minimizing a quantile regression loss
are also shown for all the network models.

A numerical comparison of the test error metrics obtained for all candidate models and the
benchmark models is given in Table 5.20.
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Table 5.20: Comparison of point forecast test error evaluation metrics (EMS)

Candidate Models

Metric LSTM DGRU LGBM BaggedETS SARIMA BATS TBATS

RMSE 4.9303 4.9751 6.4795 6.9032 5.8663 5.1989 5.1236

MAE 3.8121 4.1830 5.4597 5.7378 4.8481 3.7984 4.2745

MAPE 9.9624 11.2779 14.8491 13.5430 12.5739 9.9314 12.5473

Benchmark Models

Metric SNaive ETS SARIMA FFNN

RMSE 11.0189 6.1851 8.1699 7.5094

MAE 9.4166 5.1224 7.2306 6.2397

MAPE 24.1956 12.7362 20.1092 19.4061

Notes: This table shows a comparison of forecast error evaluation metrics for the point forecasts obtained for all
the candidate and the benchmark models. The Machine Learning candidate models considered are the DLSTM
and the DGRU neural networks as well as an LGBM ensemble model. The traditional statistical candidate
models presented in this table are the manually refined SARIMA model, the BATS model and the TBATS
model. Furthermore, as a hybrid model we consider the BaggedETS model.
As a first benchmark model we consider a seasonal naive forecasting model, which is obtained by setting each
forecast equal to the last observed value from the same season, i.e. the value of the same hour of the day 24 hours
before. We also consider an automated ETS(A,Ad,A) benchmark model obtained through the application of
the ets() R function to the training set as well as an automated benchmark SARIMA(5, 0, 5)(2, 1, 0)24 model
obtained through the application of the auto.arima() R function to the training set. As a further benchmark, we
also consider a non-recurrent FFNN model with 3 Dense layers containing 128, 64 and 24 neurons, respectively.
The other fixed hyperparameters are as follows: learning rate = 0.01, epochs = 100, batch size=100, loss=
MSE. The common forecast horizon is h = 24 time steps ahead for all models compared. The forecast error
metrics are calculated on the test set.

Surprisingly, the BaggedETS ensemble model produces higher test error metrics than the bench-
mark ETS model. In addition, the LGBM ensemble model also falls short of the expectations
set by its forecasting performance on the traffic data. The traditional models which cannot
handle multiple seasonal patterns, namely the ETS model and the manual SARIMA model,
perform better than both ensemble models. The lowest RMSE values are obtained by the
recurrent neural networks, whereas the lowest MAE and MAPE values are obtained for the
BATS model.
A Numerical comparison of the prediction interval metrics is presented in Table 5.21.
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Table 5.21: Comparison of prediction interval evaluation metrics (EMS)

Candidate Models

Metric LSTM DGRU LGBM BaggedETS SARIMA BATS TBATS

PICP 1.0 1.0 1.0 0.9583 1.0 0.9583 1.0

MPIW 31.3929 30.7371 26.6975 31.5055 28.5951 25.2107 26.5626

CWC 0.7301 0.7148 0.6209 0.7327 0.6650 0.5863 0.6177

Benchmark Models

Metric SNaive ETS SARIMA FFNN

PICP 0.9583 1.0 0.9583 1.0

MPIW 38.8648 41.5735 34.3559 33.4885

CWC 0.9038 0.9668 0.7990 0.7788

Notes: This table shows a comparison of prediction interval evaluation metrics for the point forecasts obtained
for all the benchmark and the candidate models. The 95% prediction intervals for the DLSTM and the DGRU
neural networks were obtained by fitting two respective neural networks with a quantile regression loss function
to get the lower and upper bounds for the respective PI. Prediction intervals for the LGBM boosting model
were also obtained by fitting two LGBM models with a quantile regression loss function. The 95 % PIs for
the ETS and the bagged ETS model were obtained through bootstrapping. The PICP measure provides the
coverage probability that indicates how many target values of the test set are contained in the interval spanned
by the two PI bounds. The MPIW measure contains the average width of the PIs and the CWC quantifies the
tradeoff between narrow PIs and a high coverage probability. For the CWC calculations, we use hyperparameter
values of (1 − α) = 0.95 and ξ = 50. The NMPIW is calculated by dividing the MPIW by the range of the
target variable, i.e. the range of the test set.

In contrast to the PI quality obtained for the traffic data, the quality of the PIs for the
BaggedETS model is much closer to that of the other candidate models for the EMS data.
Overall, all candidate models and benchmark models produce a coverage probability which is
higher than the nominal confidence level of 95%. For the BATS model we obtain the narrowest
PIs which also provide the best trade-off between coverage and width.

5.6 Robustness Checks For The EMS Forecasting Results

This section contains our robustness checks with respect to variations in the forecast horizon
(h), the day of the week used as a test set as well as the amount of training data used to train
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the models. We only consider the best models obtained from every field, which are the TBATS
model, the LGBM ensemble model and the DLSTM neural network model. We also consider
a Snaive benchmark model for comparison. The line plots showing the variation of the RMSE
test error for every robustness check are shown in Figure 5.16.
The top left panel of Figure 5.16 shows a robustness check with respect to the length of the
forecast horizon. According to the RMSE test errors, all candidate models outperform the
seasonal naive benchmark model across all forecast horizons. As expected we observe that the
RMSE of the DLSTM and the BATS is lowest for the smallest forecast horizon. However, the
test error of the LGBM has a slight downward trend.

The top right panel of Figure 5.16 shows a robustness check with respect to the day of the week
represented by the 24 hours used as a test set to explore sensitivity of the models with respect
to specific days of the week. All point forecasts produced by the candidate models outperform
the Snaive benchmark model on every day of the week. A key insight from this plot is that no
one forecasting model is able to outperform all other models on every given day of the week
just as in case of the traffic data. We also observe that the TBATS and the DLSTM both
consistently produce accurate point forecasts, whereas the LGBM model’s RMSE fluctuates
more.

Lastly, we conduct a robustness check on the amount of training data used to train the models,
the results of which are shown in the bottom panel of Figure 5.16.
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Figure 5.16: Robustness checks w.r.t. forecast horizon, day of the week and train size (EMS)

Notes: This grid plot shows the robustness checks for the EMS data. The top left panel shows the RMSE
values as the forecast horizon is varied from h=24 hours ahead to h=96 hours ahead. The top right panel shows
the RMSE values as the day of the week used as a 24 hour test set is varied. The different days of the week
are taken from the held out test data. The bottom panel shows the RMSE values as the training data used to
train the models is varied from 1 month to 1 year.

Interestingly, we find that the TBATS model’s RMSE values are consistently low irrespective
of the amount of training data used. On the hand, the test errors obtained for both Machine
Learning models, the DLSTM and the LGBM, seem to exhibit a clear downward trend. It
is therefore reasonable to assume that even better forecasts could be obtained if the size of
training data were increased even further.
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Section 6

Discussion

Research space. In this paper, we limit our analyses to univariate time series forecasting
incorporating only a time dimension. We also consider high-frequency data as both of our data
sets are resampled to an hourly frequency which results in time series with 8,712 observations
in case of the traffic flow data and 8,760 in case of the EMS demand data. It is also important
to point out that we are focusing our analyses on two very specific individual time series (local
modeling) from a smart city context within the traffic forecasting and EMS demand forecasting
domains. Considering a set of multiple time series as the one used in the M forecasting compe-
titions, on the other hand, would result in a different forecasting task (global modeling), which
might require to come up with a forecasting model that can learn time series properties across
multiple time series. According to Makridakis et al. (2020), the M4 forecasting competition
includes 100,000 time series from a variety of disjoint domains such as Demographics or Finance
for example and was revised in comparison to previous forecasting competitions in the sense
that high-frequency data comprising hourly, daily and weekly frequencies were also included
in addition to the common low-frequency data that include monthly, quarterly and yearly
frequencies. A further novelty that was incorporated into the M4 competition for the first time
is the requirement of providing prediction intervals to get an idea of the uncertainty associated
with the obtained point forecasts. This paper addresses this development by providing predic-
tion intervals for all forecasting models considered in this paper from both the statistical and
the Machine Learning field.

Limitations. As this paper places a high emphasis on the theoretical underpinnings and the
mathematical way of parameter estimation for the respective models, practical implications are
only considered to a very limited extend and a comparison to industry forecasting methodology
standards is not provided. This paper carries out a comparison of a pre-selected spectrum of
forecasting models and several further models are not part of the scope of this paper. For
instance, Makridakis, Spiliotis, and Assimakopoulos (2018) mention Bayesian Neural Networks
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and K nearest neighbors regression, which are not part of the models considered in this paper.
Furthermore, Hewamalage et al. (2019) investigate the modeling of seasonality especially in
the context of neural networks and find mixed evidence as to whether deseasonalization leads
to significantly different forecasting results. They also argue that neural networks are able to
model seasonality if multiple series have similar seasonal patterns. Since we only consider an
individual time series at a time, we do not investigate a deseasonalization of the data further
for the purpose of this paper. Moreover, we do not investigate the computational efficiency
of the training process of Machine Learning models and in particular neural networks. For
example, Livni, Shalev-Shwartz, and Shamir (2014) investigate sample complexity and train-
ing time by neural network architecture. Lastly, for the training of all Machine Learning
models considered in this paper we use a NVIDIA Tesla P100 GPU1 to which we obtain
access via the cloud computing services offered via a Google Colab Pro subscription, which
comes with the restriction of a maximum access limit of 24 hours per cloud based runtime
session. While this GPU is powerful enough to run a sophisticated grid search to find the best
hyperparameters for our boosting ensemble and neural network prediction models, the time
limit per runtime session puts a limit on our possibilities to train the Machine Learning models.

Further research. Bergstra and Bengio (2012) show empirically that hyperparameter op-
timization for Machine Learning models and neural networks specifically can be carried out
more efficiently than with a grid search through a random search of hyperparameters as di-
mensionality of the hyperparameter space increases. They argue that a random search can
be more efficient due to the fact that not all hyperparameters are equally important to tune.
It follows from that line of reasoning that the grid search procedure might allocate too many
model fit trials to dimensions that are not important. Future work could therefore leverage
these findings in order to improve the neural network forecasting results even further.
Another way of expanding the analyses found in this paper is to employ forecasting models
that include a spatial dimension. Safikhani, Kamga, Mudigonda, Faghih, and Moghimi (2020)
also predict demand for Yellow Cabs in New York City but they incorporate spatial variation
by ZIP code as well as temporal variation measured in 15 minute intervals. They employ a
spatio-temporal STARMA model as well as a double hierarchical group Least absolute shrink-
age and selection operator (LASSO) model that allows for the penalization of parameters the
further away they are temporally and spatially.
A further direction future research could take is the usage of the boosting procedure proposed
by Taieb and Hyndman (2014), which addresses the forecast horizon related bias and estima-
tion variance trade-off faced when choosing between recursive one-step ahead forecasts and

1See https://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf for technical de-
tails about the Tesla P100 GPU used by Google.
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direct multi-step ahead forecasts. The authors propose a boosting autoregression procedure for
the residuals of the recursive linear forecasts from an AR model that is applied at every time
horizon to carry out small nonlinear adjustments. Robustness checks on prediction intervals in-
corporating a similar scheme of sensitivity analyses as well as different quantiles would be useful.

Unexpected findings. To our surprise, the forecasting performance of the TBATS model for
the traffic data with its trigonometric modeling procedure of multiple seasonal patterns diverges
considerably form that of the BATS model. This finding is contradictory to the experiments
of Livera et al. (2011), who find that the TBATS model performs superior for high-frequency
data in 5 minute intervals. However, the forecasting performances of the BATS and TBATS
models are more closely matched for the EMS data.
Furthermore, we obtain contradictory findings for the BaggedETS ensemble model. For the
traffic data, the point forecasts of the baseline ETS model can be improved, whereas the
obtained prediction intervals exhibit an exploding interval width. We assume that this finding
is due to the fact that the MBB procedure cannot account for the weekly seasonal patterns
present in hourly data. This can lead to exploding simulated sample paths, which results in
unusually high upper quantiles of the simulated distribution. For the EMS data, the we find
that the prediction intervals are of reasonable quality but the method of bagging does not
increase the accuracy of the point forecasts. We hypothesize that this finding stems from the
fact that the base learners are not weak enough so that a variance reduction can be achieved.
In fact, the benchmark ETS model does reasonably well.
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Section 7

Conclusion

Using high frequency data from the New York City Open Data Smart City platform, we de-
ploy the most recent ensemble methods and appropriate neural network model architectures to
time series forecasting and compare these Machine Learning models to more traditional sta-
tistical models, which is the main focus of this paper. Consistent with the demands posed by
the most recent M4 and M5 forecasting competitions, we also provide prediction intervals for
all the models drawing on bootstrapping and quantile regression techniques. We also include
statistical models which can account for multiple seasonal patterns explicitly and this feature
seems to be crucial when it comes to forecasting performance. Our results show that point
forecasts obtained from models which can account for data that exhibit multiple seasonal pat-
terns perform better. For the traffic data, the most accurate point forecasts and uncertainty
measures are obtained by recurrent neural network models. For the EMS data, both recurrent
neural networks and ETS extensions which can model complex seasonal patterns perform best
with respect to point forecasts. BATS and TBATS models produce the best trade-off between
coverage probability and mean interval width.
We also find that quantile regression techniques produce accurate and narrow prediction in-
tervals for the Machine Learning models in the context of the case study we examined in this
paper. Furthermore, the technique of bootstrapping the residuals for traditional statistical
models is an effective way to deal with non-normal residuals. However, if the assumption of no
autocorrelation among the residuals is clearly violated, as seen in the traffic data, the quality of
the prediction intervals is not optimal. On the other hand, as the remaining autocorrelation in
the model residuals is reduced, as observed for the EMS data, the quality of the bootstrapped
prediction intervals improves.
According to our robustness checks, the day of the week can influence the ranking of the test
error of the best forecasting models considered in this paper. Moreover, the amount of training
data seems to play an important role in the forecasting performance. We find that the test
errors for the LSTM network model decline for both data sets as more training data are used.
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This finding makes LSTM neural networks particularly useful for predicting high-frequency
data beyond the two data sets explored in this paper.
A limitation of neural networks and especially of deep learning architectures is that they re-
quire extensive computational resources and considerable technical expertise with respect to
tuning the models. Exponential Smoothing state space models which can account for complex
seasonal patterns, such as the BATS and the TBATS model, constitute a viable alternative
with respect to the trade-off between forecasting performance and demands of computation
and modeling. Our findings regarding the forecasting performance of ensemble methods are
mixed since the LGBM model is suitable for predicting traffic flows but it does not outperform
the ETS benchmark model for the EMS data. Furthermore, the BaggedETS model encounters
problems of exploding prediction interval widths and a strong reliance on an appropriate base
learner.
Smart cities like New York City dispose of a large amount of high-frequency data which are
particularly useful for the application of data intensive cutting edge Machine Learning models
such as the boosting variants and recurrent neural networks. To our knowledge, there appears
to be a gap between the prospects of such models and their adoption by smart city planners.
The spectrum of possible application domains goes beyond the two use cases considered in this
paper.
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Appendix A

Formulae and State Space Equations for
ETS Models

A.1 Recursive point forecast formulae

Figure A.1: Formulae for calculating point forecasts with ETS models

Notes: This figure contains the recursive formulae used to calculate point forecasts from ETS methods as given
by R. J. Hyndman et al. (2008, p. 18). Each cell contains the forecast equation and the terms describing the
components of the series that are used to apply the respective exponential smoothing method. β∗ is defined as
β
α . h

+
m is the number of remaining times in the forecast period up to and including time h, the forecast horizon.

Therefore, h+m can take on values 1, 2, . . . ,m, where m is the number of periods in each season.
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A.2 State space model equations for additive errors

Figure A.2: State Space Model Equations for ETS models with additive errors

Notes: This figure contains the state space model equations corresponding to the 15 methods from the clas-
sification of ETS models shown in Table 3.1 with additive error components as given by R. J. Hyndman et al.
(2008, p. 21). lt is the level term, bt is the growth term and st denotes the seasonal term of the series at time
t. The point forecast formulae can be rewritten in the forms of Equation (3.42) and Equation (3.43) by using
the term components of the respective model as inputs for the state vector given in Equation (3.44).
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A.3 State space model equations for multiplicative errors

Figure A.3: State Space Model Equations for ETS models with multiplicative errors

Notes: This figure contains the state space model equations corresponding to the 15 methods from the clas-
sification of ETS models shown in Table 3.1 with multiplicative error components as given by R. J. Hyndman
et al. (2008, p. 22). lt is the level term, bt is the growth term and st denotes the seasonal term of the series
at time t. The point forecast formulae can be rewritten in the forms of Equation (3.42) and Equation (3.43)
by using the term components of the respective model as inputs for the state vector given in Equation (3.44).
εt = µtεt is used for transformation from the point forecast formulae to the multiplicative state space model
equations.
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Appendix B

Supplementary results

B.1 Decompositions by the BATS and TBATS models

124



B.1. DECOMPOSITIONS BY THE BATS AND TBATS MODELS
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Figure B.1: Seasonal decomposition of the traffic flow time series through BATS

Notes: This figure shows the decomposition of the observed traffic flow time series shown in the panel "observed"
into the trend component of the series shown in the "level" panel, as well as the three seasonal patterns. Panel
"season1" shows the weekly seasonality component and the panel "season2" shows the 24 hourly or daily
seasonality.
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Figure B.2: Trigonometric decomposition of the EMS demand time series through TBATS

Notes: This figure shows the decomposition of the observed traffic flow time series shown in the panel "observed"
into the trend component of the series shown in the "level" panel, as well as the three seasonal patterns. Panel
"season1" shows the weekly seasonality component and the panel "season2" shows the 24 hourly or daily
seasonality.
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B.2 Gridsearch results for Deep neural networks

Table B.1: Model setup for the DGRU and the DLSTM neural networks (traffic data)

Model Setup component Component details

Prediction target 24 hours ahead traffic flows : yT+1, . . . , yT+24

Input variables History of 60 lags : {yT , yT−1, . . . , yT−59}

Output variables Predictions of 24 steps ahead: {ŷT+1, ŷt+2, . . . , ŷT+24}

Optimal training hyperparameters

DGRU DLSTM

Activation function ’Leaky Relu’ ’Leaky Relu’

Learning rate 0.001 0.001

Number of neurons 1000 1500

Batch size 100 100

Number of epochs 250 250

Optimizer ’Adadelta’ ’Adagrad’

Dropout 0.0 0.0

Notes: This table contains all information about the model setup used for both the DGRU and the DLSTM
neural networks. The training hyperparameters are the ones obtained from the respective grid search cross
validation procedures which are carried out for each RNN architecture type separately. Both stacked hidden
layers for each of the neural network types are identical.
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B.3 Summary statistics for the data sets

Table B.2: Summary statistics for the hourly traffic flow data

Metric Training Set Test Set

nobs 8544.00 168.00

NAs 0.00 0.00

Minimum 661.00 818.00

Maximum 23288.00 16532.00

1. Quartile 6432.00 5922.25

3. Quartile 14485.50 12810.50

Mean 10690.03 9683.88

Median 12433.50 11464.50

Sum 91335636.00 1626892.00

SE Mean 55.75 343.97

LCL Mean 10580.74 9004.80

UCL Mean 10799.32 10362.96

Variance 26557448.36 19876607.40

Stdev 5153.39 4458.32

Skewness -0.53 -0.68

Kurtosis -0.94 -0.86

Notes: This table contains the summary statistics for traffic flow time series split up by training set and test
set as shown in Figure 4.1 as obtained by the basicStats function in R. The default confidence interval for the
computation of the lower confidence level (LCL) and the upper confidence level (UCL) of the mean is 95%.
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Table B.3: Summary statistics for the hourly EMS data

Metric Training Set Test Set

nobs 8376.00 168.00

NAs 0.00 0.00

Minimum 6.00 13.00

Maximum 83.00 64.00

1. Quartile 29.00 32.00

3. Quartile 51.00 51.00

Mean 40.45 41.18

Median 42.00 43.00

Sum 338824.00 6918.00

SE Mean 0.15 0.97

LCL Mean 40.16 39.27

UCL Mean 40.74 43.08

Variance 179.29 156.65

Stdev 13.39 12.52

Skewness -0.17 -0.40

Kurtosis -0.84 -0.84

Notes: This table contains the summary statistics for the EMS time series split up by training set and test
set as shown in Figure 4.2 as obtained by the basicStats function in R. The default confidence interval for the
computation of the lower confidence level (LCL) and the upper confidence level (UCL) of the mean is 95%.
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