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a b s t r a c t

In this paper, we prove the necessity of a terminal condition for a solution of the Bellman Equation to
be the value function in dynamic optimization problems with unbounded payoffs. We also state the
weakest sufficient condition, which can be applied in a large class of problems, including economic
growth, resource extraction, or human behaviour during an epidemic. We illustrate the results by
examples, including simple linear–quadratic problems and problems of resource extraction, with
multiple solutions to the Bellman Equation or the maximizer of the right hand side of the Bellman
Equation with the actual value function being the worst control instead of being optimal.

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The theory of discrete time dynamic optimization problems
ith the infinite horizon, started by Bellman (1957), Blackwell
1965), Stokey, Lucas, and Prescott (1989) and Strauch (1966), is
ar from complete, especially for unbounded payoffs.

In this paper, we formulate a dynamic optimization problem
n a very general form without a priori topological assumptions
bout the payoff, the state dynamics, and the sets of available
ontrol parameters. We consider the global feedback solution as
ell as a restriction of the problem with a fixed set of possible

nitial conditions. We formulate the weakest possible terminal
ondition concerning the limit behaviour of the value function
along every admissible trajectory for each of those two problems.
This terminal condition constitutes a part of a sufficient condi-
ion for optimality and we prove that this terminal condition
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is necessary under quite weak assumptions about the dynamic
optimization problem considered. The main focus of the paper is
on the necessity of appropriate terminal conditions for a standard
feedback optimal control problem and its restrictions. To the best
of our knowledge, the necessity of such terminal conditions has
never been proven before. By sufficiency, these terminal condi-
tions can be used to choose the value function among multiple
solutions of the Bellman equation, which implies finding an op-
timal control whenever it exists, while by the necessity, it can
be used to exclude spurious candidates for the value function
or prove suboptimality of a control. As a side effect, we obtain
uniqueness, as well as, under an additional assumption, existence,
and uniqueness of a solution of the Bellman equation with the
terminal condition.

One of the starting points of this paper is a side effect of
the game analysed in Singh and Wiszniewszka-Matyszkiel (2018),
in which it has been noticed that not checking the terminal
condition can lead to the derivation of false value functions and
false optima even in a constrained linear–quadratic problem,
regarded as well examined. What is more impressive, the false
value function in that case is more plausible than the actual one
and the model has a clear economic interpretation.

Applications Problems with unbounded payoffs, including pay-

offs that can have singularities and be equal to −∞ at the states
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hich are not viable, are extensively used in ecological and eco-
omic applications, so there is a need to have appropriate tools
o solve such problems correctly.

One of classes of such applications is Fish Wars models —
odels of extraction of common or interrelated renewable re-
ources by at least two independent agents with logarithmic
urrent payoffs and depletion possible, started by Levhari and
irman (1980): a short and far from complete selection of the
apers in which Fish Wars has been further studied is Breton
nd Keoula (2012, 2014), Cave (1987), Fischer and Mirman (1992,
996), Kwon (2006),Doyen, Cissé, Sanz, Blanchard, and Pereau
2018), Górniewicz and Wiszniewska-Matyszkiel (2018), Nowak
2006, 2008), Dutta and Sundaram (1993), Mazalov and Rettieva
2009, 2010a, 2010b), Okuguchi (1981), Rettieva (2012, 2014),
reton, Dahmouni, and Zaccour (2019), Wiszniewska-Matyszkiel
2005).

Other important applications are economic growth models.
his is the field which, throughout the last three decades, has
een developed to a large extent together with the theory of
he unbounded infinite horizon dynamic optimization problems:
.g., Stokey et al. (1989) illustrate their unbounded payoffs section
y an economic growth model with the logarithmic payoff, in
e Van and Morhaim (2002), the economic growth model is the
ain motivation, Kamihigashi and Roy (2007) study such a model
ith the production function which is nonconvex and only up-
er semicontinuous while the current payoff unbounded, Becker,
osi, Le Van, and Seegmuller (2015) study the Ramsey equi-
ibrium model with heterogeneous agents in which they prove
he existence of the equilibrium and non-existence of rational
ubbles.

heory When the theory of deterministic problems is concerned,
ost of the current theoretical papers concentrate on the exis-

ence and uniqueness of the solution of the Bellman Equation
n some classes of continuous functions and the procedure of
alculating the value function by iterations using strong topologi-
al assumptions guaranteeing existence and uniqueness: (Hosoya
Yao, 2013; Le Van & Morhaim, 2002; Matkowski & Nowak,

011; Martins-da Rocha & Vailakis, 2010), (Rincón-Zapatero &
odríguez-Palmero, 2003, 2009). Existence without uniqueness,
gain with strong assumptions, encompassing nonpositivity be-
ides assumptions of topological character, is examined in Keerthi
nd Gilbert (1985) and Guo, Hernández-del Valle, and Hernández-
erma (2010, 2011). Besides, the rule of choice from multiple
olutions of the Bellman equation is proposed in Guo et al. (2010,
011). The problem what kind of inaccuracies in calculation or
omputation of the value function have no influence on the
ptimal solution along the corresponding trajectory given a cer-
ain subset of initial conditions, is considered in Wiszniewska-
atyszkiel and Singh (2020) also with a generalization to dy-
amic games.
In fact, no topological assumptions are needed for the ne-

essity of the Bellman equation, called ‘‘principle of optimality’’
Stokey et al., 1989 and Kamihigashi, 2008). Besides, sufficient
onditions for the value function can be formulated without
hem (Stokey et al., 1989, Wiszniewska-Matyszkiel, 2011, Kami-
igashi, 2014a, 2014b). The same applies to an optimal control
which has been proved by Stokey et al., 1989 and generalized
y Wiszniewska-Matyszkiel, 2011). Nevertheless, to the best of
ur knowledge, the necessity of a terminal condition for the value
unction has never been considered in this context. The applica-
ility of the results of this paper can be compared to the results
f the previous works by the fact that the sufficient condition for
he value function of Stokey et al. (1989) (Theorem 4.3) does not
old in the Fish Wars problems even if the model is constrained to
ake the current payoff always finite. Another type of sufficient

ondition results is in Kamihigashi (2014a) (further discussed in

2

Kamihigashi, 2014b), who proves the existence and uniqueness
of the value function in an interval of functions [v−, v+] with
v− ≤ v+ for which instead of the Bellman equation two analo-
gous inequalities with opposite signs hold and which fulfil some
terminal conditions. We prove that those conditions are implied
by Terminal condition 1 of this paper. Moreover, Kamihigashi
(2014a) proves that the value function can be obtained from
v− as a limit of iterations. Necessity of the terminal conditions
has not been considered in this context, either. A more detailed
description of results of Kamihigashi (2014a) is in Section 6.

A parallel approach to that considered in this paper and the
aforementioned papers is the approach based on a discrete time
quasi-equivalent of the infinite horizon Pontryagin maximum
principle or Euler equation — extensively studied in Aseev, Kras-
tanov, and Veliov (2017), Blot and Hayek (2014) or Brunovský
and Holecyová (2018). That approach is applicable with open loop
controls, i.e. controls that are functions of time only. It is worth
mentioning that, although equivalent in usual dynamic optimiza-
tion problems, in dynamic games, it usually leads to different
solutions than the approach based on the Bellman Equation (see
e.g. a discussion in Wiszniewska-Matyszkiel, 2014). In the context
of open loop controls, a kind of terminal condition different from
the one considered in this paper is the transversality condition
whose necessity under some convexity/concavity and differentia-
bility assumptions is examined in e.g. Kamihigashi (2002), related
to the open loop approach. Transversality, however, is a kind of
a terminal condition that is fulfilled along the optimal trajectory
only. It requires not only continuity, but also differentiability of
the current payoff function.

Plan The paper is constructed as follows: The problem is formu-
lated in Section 2, in Section 3 the weakest sufficient condition
is cited from the literature and slightly weakened, and examples
in Section 4 illustrate that each part of the terminal condition
is essential. Section 5 is devoted to necessary conditions with
Section 5.1 illustrating by an example that the assumption is
essential. Section 6 contains solutions, by the methods derived
in this paper, of problems from the literature that either have
not got complete proofs or which can be proven using our result
more easily or without additional restrictions of the problems,
and comparison of the results of this paper to related earlier
papers. Section 7 discusses problems in which discontinuities are
inherent, so, for which most of the methods from the literature,
i.e. all the methods based on strong topological assumptions on
the components of the model, fail. For clarity of exposition, all the
not-immediate proofs are in the Appendix.

2. The problem

We consider a discrete time infinite horizon dynamic maxi-
mization problem with the time set being the set of nonnegative
integers N, the set of states X, the set of control parameters U, the
function describing the dynamics of the state variable f : X × U ×

N → X (in some applications called the regeneration function)
and the current payoff function g : X × U × N → R ∪ {−∞},
with the discount factor δ ∈ (0, 1]. We use the term payoff
for the objective function to make it clear that we consider the
maximization. Additionally, there are state-dependent constraints
on controls given by a multivalued correspondence called the
available control correspondence D : X × N ⊸ U. More generally,
we also consider f with a bigger co-domain: a set X̄ ⊇ X, f :

X×U×N → X̃ with f (x, u, t) ∈ X for all u ∈ D(x, t). In the latter
case, we do not have to specify X̃, since it does not influence the
results.

The dynamic optimization problem (P).
Given initial t̄ and x̄, we maximize over the set of functions

U : X × N → U with U(x, t) ∈ D(x, t), called feedback controls,
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ith the set of feedback controls denoted by U , the payoff function
: X × N × U → R defined by

(x̄, t̄,U) =

∞∑
t=t̄

g(X(t),U(X(t), t), t)δt−t̄ , (1)

where the trajectory of the state variable X : N → X is defined
by

X(t + 1) = f (X(t),U(X(t), t), t)
with the initial condition X(t̄) = x̄.

(2)

General assumption We assume that J is always well defined.
We are especially interested in controls which are optimal

whatever the initial condition (x̄, t̄) is. So, the optimal control is
U such that J(x, t,U) = supU∈U J(x, t,U) for all (x, t) ∈ X × N.

The trajectory X given by (2) is called corresponding to U . If we
want to emphasize its dependence on the control, we write XU ,
while if we want to emphasize also its dependence on the initial
condition, we write XU

x̄,t̄ .
We denote the set of all trajectories by X .
Dependence of g on time is related to any dependence on

time not reflected by discounting, e.g. seasonality. Besides, di-
rect dependence of both f and g on time appears quite often
while looking for Nash equilibria in dynamic games, i.e. control
problems with many controllers (called players), in which at the
first stage of calculations, for each player, a dynamic optimization
problem is solved given controls (called strategies) of the other
players, which may be dependent directly on time. This may
happen at equilibrium even if there is no direct dependence on
time in the formulation of the game (see e.g. duopolistic market
games in which interlaced advertising is obtained (Wiszniewska-
Matyszkiel, 2008); which reflects the behaviour of firms at some
real markets).

We are going to examine various issues related to the value
function V̄ : X × N → R̄ defined by

V̄ (x, t) := sup
U∈U

J(x, t,U). (3)

Usually, in papers on dynamic optimization with feedback con-
trols, the Bellman Equation

V (x, t) = sup
u∈D(x,t)

g(x, u, t) + δ V (f (x, u, t), t + 1), (4)

and the condition (we call it the Bellman Inclusion for easier
reference)

U(x, t) ∈ Argmax
u∈D(x,t)

g(x, u, t) + δV (f (x, u, t), t + 1) (5)

are examined.
In this paper, we especially focus on terminal conditions.
We start from a weak terminal condition from Wiszniewska-

Matyszkiel (2011).

Terminal condition 1. (i) For every trajectory X, lim supt→∞

V (X(t), t) δt ≤ 0 and

(ii) for every trajectory X, if lim supt→∞ V (X(t), t) δt < 0, then
J(x, t,U) = −∞ for every U such that X = XU

x,t .

In physical problems with viability, Terminal condition 1 states
that the upper limit of the discounted value function is at most
zero for every state trajectory and it can be only negative for
trajectories which are not viable (by which we understand payoff
−∞).

Notational simplification If the functions f and g and the corre-
spondence D are not dependent on time, then the value function
3

is obviously independent of time. In such a case we are especially
interested in U that are stationary. Then, by a slight abuse of
notation, we skip the t argument in all these functions.

Most of the literature concern this stationary case. On the
other hand, each dynamic optimization problem (P) may be rep-
resented in this way by extending the state space by including
the time variable as an additional coordinate of the state space
(as in the proof of Theorem 2 in the Appendix).

Since the initial condition is fixed in many applications, we
shall also consider the restricted problem, assuming that the
initial condition for the state is in some X0 ⊆ X, possibly a
singleton.

Then, instead of considering the whole state space, it is enough
to consider the reachable set (to be more specific — the set of
reachable state-time pairs):

REACH(X0, t0) = {(x, t) ∈ X × {t0, t0 + 1, . . . } :

x = XU
x̄,t0 (t) for some U ∈ U, x̄ ∈ X0}.

(6)

This results in the restricted problem (P)REACH(X0,t0) in which
we restrict ourselves to looking for the optimal control defined
only on the set REACH(X0, t0).

We denote the value function for this problems by
V REACH(X0,t0).

Remark 1. Obviously, V̄ |REACH(X0,t0)= V REACH(X0,t0), if Ū is an
optimal control for (P), then Ū |REACH(X0,t0) is an optimal control for
(P)REACH(X0,t0). Nevertheless, the existence of an optimal control
for (P)REACH(X0,t0) does not imply it can be extended to an optimal
control for (P).

3. The weakest sufficient conditions and their consequences

We start by citing a theorem stating a very weak sufficient
condition for the optimal solution and the value function being
a version of Theorem 1 of Wiszniewska-Matyszkiel (2011), de-
signed especially for the infinite horizon dynamic optimization
problems with unbounded payoffs like those considered in the
Fish Wars stream of papers. Subsequently, we shall prove that,
under quite general assumptions, it is the weakest possible suf-
ficient condition and, moreover, we can derive some uniqueness
conclusions from it.

Theorem 1. Assume that a function V : X×N → R̄ fulfils Terminal
condition 1 and for every x ∈ X and every t ∈ N, it fulfils the Bellman
equation (4).

(a) Then V is the value function of the dynamic optimization prob-
lem.

(b) Moreover, if for every x ∈ X and every t ∈ N, a control function
U fulfils the Bellman Inclusion (5), then Ū is an optimal control.

Corollary 1. There exists at most one solution of the Bellman
Equation in the class of functions fulfilling Terminal condition 1.

Proof. The value function exists and it is unique by its definition,
the rest is immediate by Theorem 1. □

As a consequence of Theorem 1, we can state the implication
for the restricted problem (P)REACH(X0,t0).

First, we rewrite the terminal condition to a weaker ver-
sion. Its interpretation remains almost the same, with ‘‘every
trajectory’’ restricted to trajectories and payoffs with the initial
condition restricted to REACH(X , t ).
0 0
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erminal condition 2. (i) for every t̄ ≥ t0 and every trajectory
with the initial condition X(t̄) ∈ REACH(X0, t0),

lim supt→∞ V (X(t), t) δt ≤ 0 and

(ii) For every t̄ ≥ t0 and every trajectory X with the initial condition
(X(t̄), t̄) ∈ REACH(X0, t0), if lim supt→∞ V (X(t), t) δt < 0, then for
every (x, t) ∈ REACH(X0, t0),
J(x, t,U) = −∞ for every U such that X = XU

x,t .

Theorem 2. Fix any X0 ⊆ X and t0 ∈ N.
Assume that a function V : REACH(X0, t0) × N → R fulfils

Terminal condition 2 and for every (x, t) ∈ REACH(X0, t0), it fulfils
the Bellman equation (4).

(a) Then V = V REACH(X0,t0).
(b) Moreover, if for every (x, t) ∈ REACH(X0, t0), a control

function U fulfils the Bellman Inclusion (5), then Ū is an
optimal control of (P)REACH(X0,t0).

4. Examples showing the importance of assumptions

Here, we present examples showing that neglecting checking
the terminal condition may lead to finding a false optimal control
and/or a false value function even in very simple problems with
obvious applications.

We start from two linear–quadratic dynamic optimization
problems: with or without constraints.

Example 1. Consider X = U = R+, f (x, u) = (1 + ξ )x − u,
(x, u) = (A−

Bu
2 )u, for some A, B, ξ > 0, D(x) = [0, (1+ ξ )x] and

=
1

1+ξ
.

This problem can be interpreted as a renewable resource ex-
raction problem e.g. a fishery extraction problem. Then each time
nstant corresponds to one year, starting just after the closed
eason related to spawning and before hatching of the new gen-
ration of fish, x denotes the biomass or an approximate number
f fish measured at the beginning of this period, ξ is the natural

net growth rate of fish biomass, while the constraint u ≤ (1+ξ )x
eans that the maximal catch is equal to all fish including the
urrent year’s offspring. The current payoff represents selling at
he market price given by a linear demand and quadratic cost. The
iscount factor is equal to 1

1+ξ
, which may be regarded as a kind

of golden rule (in a trivial form, since the growth rate is constant).
This model is a generalization of the optimal control version of a
dynamic game considered in Singh and Wiszniewska-Matyszkiel
(2019), Singh and Wiszniewszka-Matyszkiel (2018) modelling ex-
ploitation of a common divided fishery and a ‘‘pathological’’ limit
case of a dynamic optimization problem considered in Singh and
Wiszniewska-Matyszkiel (2020) with δ < 1

1+ξ
.

roposition 1. (a) The value function equals

V̄1(x) :=

{
ĝ · x +

ĥ
2 · x2 if x ∈ (0, x̃),

k̃ otherwise,
for x̃ =

û
ξ
, û =

A
B , ĥ = −B ξ (1 + ξ), ĝ = A(1 + ξ ),

nd k̃ =
A2(1+ξ)

2Bξ , while the unique optimal control is Ū1(x) :=

ξx, for x ∈ (0, x̃),
û otherwise.

b) The Bellman Equation has also a quadratic solution V false
=

ˆ · x +
ĥ
2 · x2. The solution of the Bellman Inclusion (5) with V false is

U false
= ξx and it results in a constant trajectory.

(c) V false fulfils Terminal condition 1(i), but it does not fulfil Terminal
condition 1(ii) (see Fig. 1).
4

Fig. 1. Two solutions of the Bellman Equation (left) and the corresponding
solutions of the Bellman Inclusion (right) for n = 4, A = 1000, B = 1, ξ = 0.02
for Example 1. The red solid line denotes the actual value function or optimal
control, the blue dotted line their spurious counterparts.

Fig. 2. Multiple solutions of the Bellman Equation (left) and the corresponding
solutions of the Bellman Inclusion for n = 4, A = 1000, B = 1, ξ = 0.02
or Example 2. The red solid line denotes the actual value function or optimal
ontrol.

It is worth emphasizing that the standard procedure for solv-
ng LQ dynamic optimization problem is by assuming a quadratic
orm of the value function and, consequently, a linear optimal
ontrol. So, if checking the terminal condition is skipped, the
nique quadratic solution of the Bellman Equation may be, in
uch a case, treated as the value function while the unique so-
ution of the Bellman Inclusion, which is linear and leads to a
onstant trajectory, as an optimal control. So, this example is very
mportant to illustrate the danger of such an error even in such a
imple problem.
Next, we consider a modification of Example 1 in which we

kip the constraints on the state variable and control, to show that
his nonuniqueness can happen in quite standard unconstrained
inear–quadratic problems.

xample 2. Consider X = U = R, f (x, u) = (1 + ξ )x − u,
(x, u) = (A −

Bu
2 )u, for some A, B, ξ > 0, D(x) = U and δ =

1
1+ξ

.

roposition 2. (a) The value function is V̄2(x) = k̃, while the unique
ptimal control is Ū2(x) = û for k̃ and û from Proposition 1.

b) The Bellman Equation has a continuum of at most quadratic
olutions, which yields a continuum of affine solutions of the Bellman
nclusion.

c) Each of those solutions of the Bellman Equation besides the actual
alue function violates Terminal condition 1(i) or (ii), and, if X0 ̸=

0}, Terminal condition 2(i) or (ii) (see Fig. 2).

Example 3. Consider exploitation of a non-renewable resource
without discounting and with strictly increasing strictly concave
payoff: X = U = [0, 1] and g(x, u) = ln(u + 1), f (x, u) = x − u,
(x) = [0, x] and δ = 1.

roposition 3. (a) The function V̄3(x) = x fulfils the Bellman
Equation and the control U ≡ 0 is the only solution of the Bellman
Inclusion (5) with V̄3, but 0 is not the optimal control, but the worst
control.

(b) Terminal conditions 1(i) and 2(i) are not fulfilled, while 1(ii) and
Terminal conditions 2(ii) are fulfilled.
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. Necessity of the terminal condition

Examples 1–3 show that if at least one part of Terminal condi-
ion 1 is not fulfilled by a solution V of the Bellman equation (4),
hen it may happen that V is not the value function and/or the
olution of the Bellman Inclusion (5) with V is not the optimal
ontrol. Similarly, if at least one part of Terminal condition 2 is
ot fulfilled by a solution V of the Bellman equation (4), then
t may happen that V is not the value function even for the
estricted problem and/or the solution of the Bellman Inclusion
5) with V is not the optimal control for the restricted problem.

So, an obvious implication is a question about the necessity of
he terminal conditions.

The ‘‘principle of optimality’’ i.e., the necessity of the Bellman
quation (4) and Bellman Inclusion (5) in a dynamic optimization
roblem for unbounded payoffs, has been proven by Stokey et al.
1989) when the current payoffs are finite and the payoff is well
efined — Theorems 4.2 and 4.4, respectively. The problem has
een further discussed by Kamihigashi (2008), proving the Bell-
an Equation is necessary whenever its rhs is well defined, i.e. in

he case when current payoffs can attain −∞, the second term
annot be +∞ (Kamihigashi, 2008 Theorem 2). Our extension in
his direction, concerning that the Bellman Inclusion is necessary
or the case out of the scope of the Stokey et al. (1989) results is
imple, but we state it, together with proof, for easy reference.
On the contrary, to the best of our knowledge, the necessity

f Terminal conditions 1 and 2 has not been analysed before.

heorem 3. (a) Assume that the right hand side of the Bellman
quation (4) is well defined for some (x, t). Then the value function
V̄ fulfils the Bellman equation (4) for this (x, t), while every optimal
control fulfils the Bellman Inclusion (5) for this (x, t).

(b) The value function fulfils Terminal condition 1(ii).

(c) Assume that

∀(x̄, t0) ∈ X × N, ϵ > 0 ∃T ∀t > T , U ∈ U, x ∈ X
with (x, t) ∈ REACH({x̄}, t0), J(x, t,U)δt−t0 ≤ ϵ.

(7)

Then the value function fulfils Terminal condition 1(i).

Condition (7) means that given an initial condition, there is
a convergent to zero common upper bound on ‘‘tails’’ of series
defining payoffs for every admissible trajectory with this ini-
tial condition. If the current payoffs along such trajectories are
bounded from above by a constant, then it is enough to have
δ < 1, if the current payoffs along such trajectories are bounded
from above by an at most exponential function of time, this
requires that δ is sufficiently small. For δ = 1 sufficiently fast
convergence of a common upper bound of current payoffs along
such trajectories to zero is required. Condition (7) is a weaker
version of ‘‘tail insensitivity’’ assumption of Le Van and Morhaim
(2002) and we are going to further weaken it in Theorem 4.

Corollary 2. (a) If the payoff is always greater than −∞, then the
value function fulfils lim supt→∞ V (X(t))δt ≥ 0.

(b) If the payoff is always greater than −∞ and Condition (7) holds,

then lim supt→∞ V (X(t))δt = 0.

So, if we return to the physical interpretation with viability,
Corollary 2(b) is translated to: ‘‘if Condition (7) holds in a problem
in which all the trajectories are viable, then the upper limit of
the discounted value function along every admissible trajectory
is zero’’.

Corollary 3. If Condition (7) is fulfilled, then the Bellman equation
with Terminal condition 1 has a unique solution.
5

Theorem 4. (a) Assume that the right hand side of the Bellman
Equation for V = V REACH(X0,t0) is well defined on REACH(X0, t0).

Then V REACH fulfils the Bellman equation (4), while every opti-
mal control of (P)REACH fulfils the Bellman Inclusion (5) on the set
REACH(X0, t0), respectively.

(b) V REACH(X0,t0) fulfils condition Terminal condition 2(ii).

(c) Assume that

∀x̄ ∈ X0, ϵ > 0 ∃T ∀t > T , U ∈ U, x ∈ X
with (x, t) ∈ REACH(x̄, t0), J(x, t,U)δt−t0 ≤ ϵ.

(8)

Then V REACH(X0,t0) fulfils Terminal conditions 2(i).

Proof. Rewrite the proof of Theorem 3 for the problem redefined
as in the proof of Theorem 2. □

In some of earlier works, the following condition is considered
as a part of the necessary condition for an optimal control Ū .

If Ū is the optimal control and V̄ the value function

then for each (x̄, t̄), lim
t→∞

δ̄tV (X Ū
x̄,t̄ (t), t) = 0.

(9)

In our model, in which the payoff does not have to be finite,
this does not have to hold. The class of problems in which it
cannot hold encompasses e.g. all nontrivial problems related to
viability, whenever there is an initial condition for which there
is no viable trajectory originating from it (e.g. the depletion
state 0 in Fish Wars). On the other hand, for all (x, t) for which
there exists a viable trajectory originating from (x, t) and the
plus infinity payoff cannot be reached, then, obviously, Eq. (9) is
fulfilled even in our larger class of problems, which is immediate
as a consequence of Terminal condition 1(ii) and the fact that the
payoff is well defined.

5.1. Showing importance of the assumption with an example

While Terminal conditions 1(ii) and 2(ii) are necessary without
any additional assumptions, we have proven Terminal condi-
tions 1(i) and 2(i) are necessary under Assumptions (7) and (8),
respectively. In this section, we illustrate by an example in which
Assumptions (7) and (8) are not fulfilled that the value function
does not have to fulfil Terminal conditions 1(i) and 2(i). In this
case, the solution of the Bellman Inclusion with the actual value
function is not the optimal control.

Proposition 4. Consider the dynamic optimization problem from
Example 3.

(a) The function V̄3 from Proposition 3 is the value function.

(b) Assumption (7) and Assumption (8) for X0 ̸= {0} do not hold.

Corollary 4. Not checking Terminal conditions 1(i), although a
solution of the Bellman equation (4) V is indeed the value function,
may result in the Bellman Inclusion (5) with V returning the worst
control instead of the optimal control. This is possible only when
Assumption (7) does not hold.

Proof. Immediate by Propositions 3, 4 and Theorem 3. □

6. Analysis of the usefulness of results by examples from the
literature and comparison to other non-topological results

We start the analysis from a simplified version of the Fish
Wars example from Levhari and Mirman (1980). A similar analy-
sis can be repeated as a proof in most of the papers further devel-
oping their model, described in the introduction, and it completes
their proofs without a need to impose additional constraints on
the model.
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xample 4. Consider a fishery with one species of fish, with
he state denoting the biomass X = [0, 1], the set of control
arameters (fishing) U = [0, 1], D(x) = [0, x], the dynamics

given by f (x, u) = (x − u)α for some α ∈ (0, 1) and the payoff
g(x, u) = ln u with ln 0 understood as −∞, δ < 1.

Proposition 5. (a) The value function is V̄4(x) = A ln x + B, while
the unique optimal control is Ū4(x) = ax, with A =

1
1−δα

> 0 and
=

1
1+δαA .

(b) The terminal condition of Stokey et al. (1989)

lim sup
t→∞

δt V̄4(X(t)) = 0 for every admissible X (10)

s well as finiteness of lifetime utility assumption

(x̄, t̄,U) ∈ R for every admissible control U (11)

sed in e.g. Kamihigashi (2005) does not hold in this model and they
o not hold if we modify the state set to (0, 1] and D(x) to (0, x)

to guarantee finite current payoffs.

We present the proof here to show how the problem is usually
solved by the undetermined coefficients method and how easily
the proof can be completed by checking the Terminal condition 1.

Proof. (a) Substituting V̄4 and Ū4 to the Bellman Equation and
Bellman Inclusion yields unique constants A, B, and a (we skip
the exact value of B as less interesting and influencing neither
the optimal control nor the terminal condition).

Since A ln x is always nonpositive, Terminal condition 1(i) is
trivially fulfilled.

Assume that for some X(t), lim supt→∞ δt (A ln(X(t)) + B) < 0.
So, lim supt→∞ δt ln(X(t)) < 0. Since U(x) ≤ x, J(X(t̄), t̄,U) =∑

∞

t=t̄ ln(U(X(t)))δt−t̄
≤ δ−t̄ ∑∞

t=t̄ ln(X(t))δ
t

= −∞. So, Terminal
condition 1(ii) is also fulfilled. So, by Theorem 1, V̄ is the value
function while Ū the optimal control, while by Theorem 3, there
is no other optimal control.

(b) In the original example, every trajectory with X(t) = 0 for
some t violates (10), while every control resulting in such X
violates (11).

In the modified problem, define X̄(t) = exp
(
−δ−t

)
. ln X̄(t)δt

= −1, so, lim supt→∞ δt (A ln(X̄(t)) + B) = −A < 0. X̄ is a
trajectory: it corresponds to any control with U(X̄(t), t) = X̄(t)−
(X̄(t + 1))

1
α ∈ (0, X̄(t)) with the initial condition x̄ =

1
e . So, X̄

violates (10). Since U(X̄(t), t) < X̄(t), δt ln(U(X̄(t), t)) → −∞,
and U violates (11). □

The next example is the ‘‘pathological’’ case from
Rincón-Zapatero and Rodríguez-Palmero (2003) Example 5. We
show that Theorem 1 can be used to find the value function
among multiple solutions of the Bellman Equation, and/or
Theorem 3 can be used to reject a solution which is not the value
function.

Example 5. Let X = U = R+, D(x) = [0, 2x], g(x, u) = −2x + u,
f (x, u) = u and δ ∈ ( 12 , 1).

Proposition 6. The Bellman Equation has two linear solutions:
V̄5(x) ≡ 0, which is the value function, and V̄6(x) = −2x, which
does not fulfil the necessary Terminal condition 1(ii). The optimal
control is Ū5(x) = 2x.

Proof. We find the two solutions of the Bellman Equation by the
undetermined coefficient method within the class of functions of
the form Ax + B.

V̄5 obviously fulfils Terminal condition 1, so, by Theorem 1, it
is the value function.
6

To reject V̄6, we note that the trajectory X(t) = x02t is an
admissible trajectory corresponding to U(x) = 2x. Since δ > 1

2 ,
im supt→∞ −2X(t)δt = −∞ < 0 whenever x0 ̸= 0, while
(x0, 0,U) = 0. So, Terminal condition 1(ii) does not hold. □

omparison with Kamihigashi’s results. Next, we present the
elated results of Kamihigashi (2014a): Theorem 2.1, rewritten to
he notation of this paper. It is stated for the case when all the
unctions and correspondences are independent of time.

heorem 5. Let B denote the Bellman operator on the set V
of all functions v : X → [−∞, +∞) defined by (Bv)(x) =

upu∈D(x) g(x, u) + δv(f (x, u)). Assume there exist two functions
−, v+ : X → [−∞, +∞), v− ≤ v+ (in this context, ≤ is the
artial ordering given by inequality for all x ∈ X) with Bv− ≥ v−

nd Bv+ ≤ v+ which fulfil the following terminal conditions

lim inf
t→∞

δtv−(X(t)) ≥ 0 for every U with finite J(x,U); (12)

lim sup
t→∞

δtv+(X(t)) ≤ 0 for every trajectory X . (13)

hen the Bellman operator has a unique fixed point in the interval
v−, v+], which is the value function v̄ and for all x ∈ X, Btv−(x) ↗

¯(x).

At the first sight, Conditions (12)–(13) seem weaker than
erminal condition 1. We shall prove, that they are not.

roposition 7. Conditions (12)–(13) with v− ≤ v+ imply that both
− and v+ fulfil Terminal condition 1.

roof. Take any control U which yields payoff greater than −∞

nd X = XU
x . Then, by v− ≤ v+ and Eq. (12)–(13),

0 ≤ lim inft→∞ δtv−(X(t)) ≤ lim inft→∞ δtv+(X(t)) ≤

im supt→∞ δtv+(X(t)) ≤ 0 and
0 ≤ lim inft→∞ δtv−(X(t)) ≤ lim supt→∞ δtv−(X(t)) ≤

im supt→∞ δtv+(X(t)) ≤ 0. So, both δtv−(X(t)) and δtv+(X(t))
onverge to zero.
By v− ≤ v+ and Eq. (13), for a control U yielding payoff −∞,

im supt→∞ δtv−(XU
x (t)) ≤ 0.

So, both functions are assumed to fulfil
erminal condition 1(i). We rewrite Terminal condition 1(ii) in
n equivalent form ‘‘If J(x,U) > −∞, then lim supt→∞ δt v̄(XU

x (t))
0’’, which is fulfilled by both functions, since, as we have

roven, they converge to zero for trajectories corresponding to
uch controls. □

So, the terminal condition which was a part of the sufficient
ondition from Theorem 1 and, under some additional assump-
ion, a necessary condition for the solution of the Bellman equa-
ion to be the value function, is indirectly assumed for a function
− which is used to calculate the value function by iterations. An
nteresting question is whether Terminal condition 1 is necessary
lso for the function which can be used for calculating the value
unction by iterations. It is worth adding that Theorem 5 has been
roven in a more general context of controls for which the infinite
eries defining J does not have to be well defined. In such a case,
im sup or lim inf criterion was considered in the definition of the
ayoff J . Checking the necessity of an analogue of the Terminal
ondition 1 in such a generalized approach may be an interesting
ontinuation of this paper.
Although the results of this paper have the mentioned above

idden common part with Kamihigashi (2014a), the approach of
oth papers differs substantially. The main focus of this paper
s on the necessity of the terminal condition and a sufficient
ondition that is easy to use, as we can see in Examples 1–5.
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his approach works immediately whenever multiple solutions
f the Bellman equations can be calculated. By the necessity,
ot only is it going to work when the actual value function is
ithin the set of calculated solutions, but also when it is not —
o immediately reject the spurious value functions, as it has been
one in Proposition 2 in which the only solution of the Bellman
quation in the class of quadratic functions, natural in the linear–
uadratic context of Example 1, is rejected. Such rejection has
een the starting point to look for the actual value function,
hich in this case is less regular. The main effort of the procedure
ased on Theorem 2.1 of Kamihigashi (2014a) is related to finding
wo constraint functions v− and v+ to guarantee existence and
uniqueness, and afterwards, calculating the value function as the
pointwise limit of Btv−. Finding the constraint functions is imme-
diate when the current payoff function is bounded, otherwise, it
may be complicated.

7. Discontinuous problems

Let us emphasize again that the continuity or even semi-
continuity of the current payoff and the available control corre-
spondence with respect to the state-control pair is not required
for the necessity and sufficiency results considered in this paper.
Most of papers on the infinite horizon assume continuity of f , g
and D. Exemptions are Kamihigashi and Roy (2007), in which only
upper semi-continuity of f is required, and the order-theoretic
results described in the introduction.

Discontinuity of the components appears obviously in many
applications: ecological or epidemiological problems with regu-
lations, e.g. environmental levies or fines for exceeding epidemi-
ological social distancing constraints — prevalent during current
COVID-19 epidemics; economic problems with quality or energy
efficiency classes; profit optimization with the cost of switching
on an additional production line; manipulating customers’ opin-
ions on the internet by a firm or fuel consumption in a car with
switching gears.

Another class of dynamic optimization problems in which
discontinuity may appear naturally, even in initially continuous
problems, are dynamic or multistage games. To calculate a feed-
back Nash equilibrium one has to solve a dynamic optimization
problem with feedback controls (feedback strategies in the game-
theoretic language) of the other players treated as parameters.
Given discontinuous strategies of the other players, the current
payoff, the function determining the next stage state, and the
available control correspondence of this parametrized optimiza-
tion become discontinuous. It turns out that this concerns not
only linear problems, in which bang–bang solutions are natural
but even constrained linear–quadratic problems with concave
payoffs with obvious economic interpretation, like Singh and
Wiszniewska-Matyszkiel (2019), studying an extension of the
problem from Example 1 to a dynamic game, in which instead of
one owner of the fishery, there are two co-owners, each of them
fishing in his/her own Exclusive Economic Zone with fish dis-
persing equally over the whole fishery during the closed season.
In Singh and Wiszniewska-Matyszkiel (2019), it has been proven
that all the symmetric feedback Nash equilibria are discontinu-
ous with respect to the state variable and the resulting players’
current payoff functions given strategies of the others in some of
those equilibria are not even upper-semicontinuous in the state
variable.

For Theorems 1–4, the resulting discontinuities of both types,
including lack of upper-semicontinuity, do not cause any prob-
lems.
7

8. Conclusions and further research

In this paper, we have presented a study of infinite horizon
deterministic optimal control problems with unbounded pay-
offs concentrated on the sufficient and necessary condition, with
the focus on appropriate terminal conditions and their neces-
sity. Without continuity and compactness assumptions, these
necessity and sufficiency results can be used in a large class
of problems, they make the selection from multiple solutions
from the Bellman equation easy and they are a natural tool to
conclude about the value function and optimal controls after
reasoning based on the undetermined coefficient method to solve
the Bellman Equation. We have illustrated the essentiality of
the terminal conditions by examples of problems with obvious
applications in which we have obtained either multiple solutions
of the Bellman equation or the fact that the unique maximizer
of its right hand side with the actual value function is the worst
control. We have shown the applicability of the results by solving
some incompletely solved problems from the literature. As a
side effect, we have proven the uniqueness of the solution of
the Bellman equation with Terminal condition 1 as well as the
existence and uniqueness under an additional assumption.

Since the sufficient condition has been proven to be necessary
under very weak assumptions, it seems that further generaliza-
tions in the class of deterministic problems of the very general
form studied in this paper cannot be proven. However, those
results can be generalized to stochastic problems, considered by
e.g. Cruz-Suárez, Ilhuicatzi-Roldán, and Montes-de Oca (2014),
Feinberg, Jaśkiewicz, and Nowak (2020), Jaśkiewicz and Nowak
(2011), Jaśkiewicz and Nowak (2011), Matkowski and Nowak
(2011). Another interesting extension of theoretical results con-
tained in this paper may be by considering generalized discount-
ing, like in e.g. Jaśkiewicz, Matkowski, and Nowak (2014), or
more generally, recursive utility like in e.g. Le Van and Vailakis
(2005) and Rincón-Zapatero and Rodríguez-Palmero (2007) or an
attempt to analyse a Bellman-type approach to quasi-hyperbolic
discounting as considered in Balbus, Reffett, and Woźny (2015,
2018).

Appendix. Proofs of results

In this Appendix, we prove the non-immediate results.

Proof of Theorem 2. In order not to write the elaborate proof
like the proof of Theorem 1 from scratch, we first re-state the
problem to make it not directly dependent on time. To do this,
we extend the state space.

The new state space is first X̃ = N × X (we denote the
first coordinate by x̃0, while the normal state variable by x̃∼0),
he new current payoff g̃(x̃, u) = g(x̃∼0, u, x̃0), the new function

f̃ (x̃, u) =

[
x̃0 + 1

f (x̃∼0, u, x̃0)

]
, D̃(x̃) = D(x̃∼0, x̃0).

Next, we rewrite Theorem 1 for the new problem in the time-
ndependent way with the state set REACH(X0, t0) instead of X̃.
his can be done since REACH(X0, t0) is an invariant set of the
ew dynamics resulting from any choice of U , so it may be treated
s a modified state space in a modified dynamic optimization
roblem.
To complete the proof, we return to the original formula-

ion. □

Next, we prove Proposition 1. Although the proof can be just
y checking the sufficient condition of Theorem 1 — we present
he proof of Proposition 1 in a way in which the solutions are
erived by the Ansatz method.
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roof of Proposition 1. First, let us assume that the value
unction is of the form V (x) = k+gx+

h
2x

2. We look for a solution
of the Bellman equation (4) in this class of functions.

Afterwards, we find u maximizing the right hand side of the
Bellman Equation over the set of available decisions.

We check the first order condition for the internal u from the
Bellman Inclusion (5) and get the value of u as follows

u =
(hx − A) (1 + ξ) + g

(h − B(1 + ξ ))
. (A.1)

inally, we substitute the optimal u to the Bellman equation (4),
hich allows us to calculate the constants for which this equa-
ion is fulfilled. In this way, we obtain three sets of values of
nknowns as follows:

k = 0, g = ĝ, h = ĥ; (A.2a)
k = k̃, g, h = 0; (A.2b)

= 0, arbitrary g ̸= 0, k(g) =
(A − δg)2

2B(1 − δ)
. (A.2c)

ince h ≤ 0 for all such sets of constants, u defined by Eq. (A.1),
f u ∈ [0, (1 + ξ )x], is the global maximizer and it is unique. We
onsider the following cases.

ase 1. The values of unknowns k, g and h are as in (A.2a), which
ields V false.
The candidate for an optimal control, in this case, is equal to

x, which, obviously, is less than (1 + ξ )x and the maximized
unction is strictly concave. So, it defines the unique maximizer
or case 1 and f (x, ξx) ≡ x.

This ends the proof of (b).

case 2. The values of unknowns k and h are as in (A.2b). Then,
we have V̄2(x) = k̃ and the Bellman equation (4) has the form
V̄2(x) = supu∈[0,(1+ξ )x] g(x, u) + δk̃.

Therefore, a candidate for an optimal strategy of each player
is independent of x and equal to Ū2 ≡ û.

Note that for x close to 0, û > (1+ ξ )x, so, û is not admissible
and k̃ ̸= g(x, (1+ ξ )x)+δk̃. So, by Theorem 3, V̄2(x) cannot be the
value function.

case 3. Consider a combination of case 1 and case 2.
The only continuous combination of V̄ false and V̄2 with V̄ (0) =

0 is V̄1.
First, note that this V̄1 is differentiable and concave. The cor-

responding candidate for the optimal profile is Ū1(x).
After derivation of the candidates for the value function and

the optimal control, we have to prove that the Bellman Equation
and Bellman Inclusion are really fulfilled by the piecewise defined
functions.

The set of u for which f (x, u) ≤ x̃, is denoted by SI(x), while
the set of the remaining u by SII(x). SI(x) is always nonempty.

If for some x, SII(x) = ∅, which may hold only for x ≤ x̃,
then for this x, the Bellman equation (4) reduces to V̄ false(x) =

supu∈[0,(1+ξ )x] g(x, u) + δV̄ false(f (x, u)) and the supremum in this
case is attained at the zero derivative point ξx, so Eq. (5) is
fulfilled (which we have already checked during calculation of
coefficients in case 1).

So, consider SII(x) ̸= ∅. In this case, both SI(x) and SII(x) are
non-empty. This situation can be decomposed into two cases.

(I) For x ≤ x̃, the Bellman equation (4) can be rewritten as V̄ false(x)
= supu∈[0,(1+ξ )x] g(x, u) + δV̄1(f (x, u)) = max{supu∈SI(x) g(x, u) +

δV̄ false(f (x, u)), supu∈SII(x) g(x, u) + δV̄2(f (x, u))}. Since supu∈SI(x)

g(x, u) + δV̄ false(f (x, u)) is attained at the zero derivative point
ξx ∈ S (x), ξx maximizes strictly concave g(x, u)+δV̄ (f (x, u)). So,
I 1 h

8

the Bellman equation (4) is fulfilled and Ū1(x) fulfils the Bellman
Inclusion (5) for this x.

(II) If x > x̃, then the Bellman equation (4) can be rewritten as
V̄2(x) = supu∈[0,(1+ξ )x] g(x, u) + δV̄1(f (x, u)) = max { supu∈SI(x) g(x,

u) + δV̄ false(f (x, u)), supu∈SII(x) g(x, u) + δV̄2(f (x, u))}. First, let us
consider optimization over SII(x). In this case, û ∈ SII(x).

Since û is a zero derivative point of strictly concave g(x, u) +

δV̄1(f (x, u)), û is the maximum. Again, the supremum is attained
at Ū1(x), and Eq. (5) is fulfilled.

Therefore, in case 3, the Bellman equation (4) as well as the
Bellman Inclusion (5) is fulfilled. Terminal condition 1 is obvious,
since V̄1 is bounded, limt→∞ δtV1(X(t)) = 0 for every X . So,
the function V̄1 is the value function, while Ū1(x) is the optimal
control.

The optimal control is unique, since Eq. (5) is necessary for a
control to be optimal by Theorem 3, which ends the proof of (a).

(c) V false does not fulfil Terminal condition 1(ii), since
limt→+∞ V false(XU (t))δt = −∞ for XU being the trajectory cor-
responding to the profile U ≡ 0 with a nonzero initial condition.

Terminal condition 1(i) is fulfilled, since V false is bounded from
above. □

Proof of Proposition 2. (b) Similarly to the proof of Proposi-
tion 1, we solve the Bellman Equation assuming a quadratic value
function and we obtain solutions given by Eq. (A.1)–(A.2c). Be-
sides the three cases which appeared in the proof of Proposition 1,
we consider additionally the case when the values of unknowns
are as in (A.2c). In this case, the maximized function at the right
hand side of the Bellman Equation is strictly concave in the
control parameter and there are no constraints, so, the supremum
is attained at the zero derivative point, constant. Another solution
is V false with U false.

(a) The function V̄2 is a solution of the Bellman equation (4), while
the control Ū2 is a solution of the Bellman Inclusion (5) and V̄2
ulfils Terminal condition 1, so, the sufficient condition is fulfilled.

c) For V false, it has been checked in the proof of Proposition 1. For
= 0, g ̸= 0, limt→+∞(gX0

x̄,t̄ (t) + k(g))δt = gx̄, which is nonzero
or x̄ ̸= 0. Since the initial condition x̄ is arbitrary, both Terminal
onditions 1(i) and (ii) are violated.
In the restricted case with X0 ̸= {0}, depending on g and

igns of initial conditions in X0, Terminal condition 2(i) or (ii) is
iolated. □

roof of Proposition 3. (a) Argmaxu∈[0,x] ln(u+ 1)+ x− u = {0}.
o, 0 fulfils the Bellman Inclusion (5) with V̄3.
maxu∈[0,x] ln(u + 1) + x − u = ln 1 + x = x. So, V̄3 fulfils the

ellman equation (4).
0 results in payoff 0, while payoffs are nonnegative. So, 0 is

he worst control.

b) Terminal conditions 1(i) and 2(i) are violated by the tra-
ectory corresponding to the zero control, since V̄ (X(t)) = x̄.
erminal conditions 1(ii) and 2(ii) are trivially fulfilled, since V̄
s nonnegative. □

roof of Theorem 3. (a) The proof of (a) follows similar lines to
he proofs of Theorems 4.2 and 4.4 of Stokey et al. (1989).

Consider a pair (x, t) for which the right hand side of the
ellman Equation is well defined. If g(x, u, t) is finite for all u,
hen it is exactly the result of Stokey et al. (1989).

The only difference is the case when g(x, u, t) is equal to −∞.
If this does not hold for all u, then the supremum is not −∞

nd the result is also immediate. The opposite situation may

appen only in the case when the value function at the resulting
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tate at the next stage is less than +∞ since otherwise, the right
and side of the Bellman Equation is not well defined. If this
olds for all currently admissible controls, then the value function
t (x, t) is −∞ and every control parameter fulfils the Bellman
nclusion, otherwise, it does not influence the right hand side of
he Bellman Equation. So, the Bellman Equation and the Bellman
nclusion are fulfilled also at such (x, t).

b) Assume that there exist U ∈ U and (x̄, t0) ∈ X × N such that
or X = XU

x̄,t0
, lim supt→∞ V̄ (X(t), t)δt < 0 and J(x̄, t0,U) > −∞.

So, ∃ tk → ∞ such that V̄ (X(tk), tk)δtk−t0 → η ∈ [−∞, 0).
V̄ (X(tk), tk) ≥ J(X(tk), tk,U) implies δtk−t0 V̄ (X(tk), tk) ≥

δtk−t0 J(X(tk), tk,U). Since J(x̄, t0,U) is well defined and greater
than −∞, δtk−t0 J(X(tk), tk,U) is either convergent to 0 or to +∞.
So, the left hand side converges to η < 0, while the right hand
side converges to a non-negative limit — zero or +∞, which is a
contradiction.

(c) Assume that there exist U ∈ U and (x̄, t0) ∈ X × N such that
for X = XU

x̄,t0
, lim supt→∞ V̄ (X(t), t)δt > 0.

So, there exists a sequence tk → ∞ such that limk→∞ V̄ (X(tk),
tk)δtk−t0 = η > 0. Consequently, V̄ (X(tk), tk)δtk−t0 ̸= −∞ for large
k—V̄ (X(tk), tk) is finite or +∞.

Consider limk→∞ V̄ (X(tk), tk)δtk−t0 finite. By this and Eq. (3),
∀ϵ1 > 0 ∃k̄ ∈ N∀k > k̄, ∃Uϵ1,k such that J

(
X(tk), tk,Uϵ1,k

)
≥

V̄ (X(tk), tk)−ϵ1. So, ∀ϵ2 > 0, ∃k̄ ∈ N∀k > k̄, J
(
X(tk), tk,Uϵ1,k

)
δtk−t0

≥ η − ϵ2, which contradicts Assumption (7).
Next, assume that limk→∞ V̄ (X(tk), tk)δtk−t0 = +∞. Then,

by Eq. (3), ∀M > 0∃k̄ ∈ N∀k > k̄∃UM
∈ U such that

J
(
X(tk), tk,UM

)
δtk−t0 ≥ M . Thus, Assumption (7) cannot be

fulfilled. □

Proof of Proposition 4. (a) V̄3 is the value function as the limit
of the value functions at the initial time for the finite horizon
truncations of the problem, i.e. the problems restricted to finite
horizon T , in which the payoff is

JT (x̄, t̄,U) =

T∑
t=t̄

g(X(t),U(X(t), t), t)δt−t̄ . (A.3)

The optimum of the truncated problem can be calculated from
the finite horizon Bellman equation and Bellman inclusion, but in
this specific case it is easier to use the Jensen inequality by strict
concavity of the current payoff function. We get UT (x, t) =

x
T+1−t

or t ≤ T , zero otherwise, which implies that the value function
or the truncated problem is V T (x, t) = (T +1− t) ln

( x
T+1−t + 1

)
.

So, for all t , limT→∞ V T (x, t) = V̄3(x). Next, we prove that V̄3 = V̄ .
By the definition, V̄ (x, t) ≥ J(x, t,UT ) = V T (x, t) for every

(x, t). So, if we take the limit with respect to T , we get V̄ ≥ V̄3.
To prove the converse inequality, take any (x, t) and a control

Uϵ such that V̄ (x, t) ≤ J(x, t,Uϵ) + ϵ. Since the series in (1) is
absolutely convergent, for every ϵ1 > 0, there exists T̄ such that
for T > T̄ , J(x, t,Uϵ) ≤ JT (x, t,Uϵ) + ϵ1 ≤ V T (x, t) + ϵ1.

So, V̄ (x, t) ≤ V T (x, t)+ ϵ + ϵ1. Taking the limit ends the proof
of (a).

(b) Consider a sequence of the controls Ut which are 0 besides
time t , at which they are equal to x. J(x, t,Ut ) = ln(x + 1). So,
Assumptions (7) and (8) for X0 ̸= {0} are not fulfilled. □
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