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Fuzzy Self-Tuning Differential Evolution for Optimal Product 

Line Design 

ABSTRACT 

Designing a successful product line is a critical decision for a firm to stay competitive. By 

offering a line of products, the manufacturer can maximize profits or market share through 

satisfying more consumers than a single product would. The optimal Product Line Design 

(PLD) problem is classified as NP-hard. This paper proposes a Fuzzy Self-Tuning 

Differential Evolution (FSTDE) for PLD, which exploits Fuzzy Logic to automatically 

calculate the parameters independently for each solution during the optimization, thus 

resulting to a settings-free version of DE. The proposed method is compared to the most 

successful mutation strategies of the algorithm as well as previous approaches to the PLD 

problem, like Genetic Algorithm and Simulated Annealing, using both actual and artificial 

data of consumer preferences. The comparison results demonstrate that FSTDE is an 

attractive alternative approach to the PLD problem. 

Keywords: OR in Marketing, Product line design, Differential Evolution, Self-tuning, 

Fuzzy logic 

1 Introduction 

Introduction of new products or redesigning existing ones, is one of the key decision areas 

that a product development team has to deal with, in order to maintain the sustainability 

and profitability of a firm. However, such processes can be uncertain and expensive (Kotler 

& Armstrong, 2012). As a result, the potential success of a new product needs to be 

estimated, before its production process begins. Such estimations are achieved by 

addressing the optimal product design problem, which is usually formulated in the context 

of Conjoint Analysis and has been studied by researchers for more than 40 years. A product 

line is a set of several related products with similar structures but different configurations 

or product attributes. The purpose of the product line development is to satisfy a variety of 

consumers. Its objective usually is the maximization of the total firm’s profit or products’ 

market share. Kohli and Krishnamurti (1989) proved that the product line design problem 
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(PLD) belongs to the class of NP-hard combinatorial optimization problems, thus no 

algorithm can verify in tractable time that it identifies the global optimum of the problem 

(Papadimitriou & Steiglitz, 1982). Hence, different optimization mechanisms have been 

proposed in an attempt to provide (near) optimal solutions to the PLD problem (for a review 

see Tsafarakis & Matsatsinis, 2010). 

In this paper, we propose a Fuzzy Self-Tuning Differential Evolution (FSTDE) as an 

alternative approach to the optimal PLD problem. Because this is the first reported 

application of the Differential Evolution (DE) optimization method (Storn & Price, 1997) 

to the problem, we first explore the best values for the algorithm's tuning parameters 

through statistical analysis. Although DE is one of the most powerful stochastic 

optimization algorithms, its performance strongly depends on the proper settings of its 

parameters, hence we subsequently develop the Fuzzy Self-Tuning Differential Evolution 

(FSTDE) algorithm, which calculates the settings of parameters independently for each 

solution during the optimization process, using an automatic FL-based methodology. 

FSTDE as well as the most commonly used mutation strategies of DE are applied to the 

PLD problem and their performance is compared to those of previous approaches, like 

Genetic Algorithm (GA) and Simulated Annealing (SA), using both actual and artificial 

consumer-related data preferences using the datasets from Belloni et al. (2008).  

The rest of the paper is organized into 6 sections as follows: Section 2 provides a brief 

description of the optimal PLD problem, while in Section 3 the algorithmic structure of the 

original DE is described. In Section 4, we describe the problem formulation, we explore 

how sensitive is original DE to the problem depending on its initial parameters and the 

FSTDE is presented. In Section 5 we evaluate the effectiveness of the FSTDE and other 

DE approaches through a comparison of their performance with that of GA and SA. 

Finally, Section 6 provides an overview of the main conclusions of the study and future 

research areas are suggested. 

2 The optimal product line design problem 

The optimal (single) product design problem was originally introduced by Zufryden 

(1977), and a few years later, the optimal PLD problem was addressed by Green and 

Krieger (1985). In PLD, firms aim at introducing a number of products, while optimizing 
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a specific objective, such as profit or market share. Each product is usually represented as 

a set of attributes (characteristics), each one taking specific levels. A camera for example, 

consists of the attributes picture resolution, video resolution, and water resistance, which 

take the levels 10 MP, 14 MP or 20 MP, HD, Full HD or 4K Ultra HD, Yes or No, 

respectively. As a result, a consumer may select a product according to its attributes that 

satisfy his/her needs, hence firms need to be aware of consumer preferences. Conjoint 

analysis (Luce & Tukey, 1964), is a widely known method for customer preference 

measurement, which generates the perceived utility value of each consumer for each level 

of a product’s attributes. These values, the so called “parthworths”, are used along with 

choice models to find a product line that optimizes a specific objective. 

Since the PLD problem is NP-hard, different optimization approaches have been 

proposed to provide near optimal solutions in tractable time, the most important being 

Dynamic Programming (Kohli & Sukumar, 1990), Beam Search (Nair, Thakur, & Wen, 

1995), Lagrangian Relaxation with Branch and Bound (Belloni et al., 2008; Camm, 

Cochran, Curry, & Kannan, 2006) and Simulated Annealing (Belloni et al., 2008; 

Tsafarakis, 2016). Nature-inspired and evolutionary-based optimization algorithms have 

also been introduced to the problem. For example, Alexouda and Paparrizos (2001) dealt 

with the PLD problem by implementing a GA, which was initialized in two different ways. 

In the first way the GA was initialized using a random population, while in the second way, 

the solution of the Beam Search method was included in the initial population of the GA. 

They tested their approaches in varying degrees of problem sizes using artificial data and 

the results supported the substantially better performance of their first approach. It was the 

first attempt to show that GAs have significant potential to solve PLD problems, followed 

by others that confirmed the finding (Balakrishnan, Gupta, & Jacob, 2004; Belloni et al., 

2008; Steiner & Hruschka, 2003).  

Ant Colony Optimization (ACO) is another evolutionary method which has been also 

applied to the PLD problem by Albritton and McMullen (2007). When compared to 

complete enumeration of all possible solutions, ACO was found to generate near-optimal 

results for this problem. Finally, Particle Swarm Optimization (PSO) was also introduced 

to the particular problem by Tsafarakis et al., (2011). The authors proposed a population-

based algorithm and employed a Monte Carlo simulation to compare its performance to 
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that of GAs. The results revealed that PSO constitutes an attractive alternative because its 

performance is comparable to that of GAs concerning the best solution found, while it 

outperforms GAs regarding the diversity of the final set of provided solutions. Saridakis et 

al. (2015) verified the performance of PSO on designing optimal car lines. 

The present study extends previous research in three important ways. First, we apply 

the original DE algorithm for the first time in the PLD literature and the broader area of 

marketing research. Second, a novel Fuzzy Self-Tuning Differential Evolution (FSTDE) 

algorithm is introduced, which calculates the settings of parameters independently for each 

solution during iterations, using an automatic FL-based methodology. Third, from the 

foregoing analysis, it is verified that except for continuous optimization problems, DE 

variants like the FSTDE perform with great success on combinatorial problems as well. 

3 Differential Evolution 

The original DE algorithm was introduced by Storn and Price (1997) as a new heuristic 

approach for optimizing continuous space functions. It belongs to the class of Evolutionary 

Algorithms (EAs) like GAs. Evolution is the process of improving the survival capabilities 

through mechanisms such as natural selection, survival of the fittest, reproduction, 

mutation, competition and symbiosis (Engelbrecht, 2007). Even though DE is a continuous 

parameter optimizer, numerous attempts to modify and use DE for optimizing binary and 

combinatorial problems are reported in the literature. Baioletti, Milani, and Santucci, 

(2018) for example, introduced a novel differential evolution algorithm for learning the 

structure of a Bayesian Network, while Ali, Essam, and Kasmarik (2018) introduced a 

novel differential evolution algorithm, which incorporates several effective components to 

increase search effectiveness by providing a good balance between exploration and 

exploitation processes, when performing on 0–1 Knapsack Problems. Santucci, Baioletti, 

Di Bari, and Milani (2019) introduced a Memetic Algebraic Differential Evolution 

algorithm for the Binary search space, while Ali et al. (2019) proposed a novel mapping 

method for DE which maps continuous variables to discrete ones and directs them towards 

optimality. 

In DE, like most EAs, a population of individuals is generated (most of the times 

randomly to achieve a high diversity), where each individual represents a potential solution 
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to the problem, with an objective function evaluating the solution’s performance. During 

the iterative procedure, a set of operators known as mutation and crossover is applied. 

DE has been extensively applied in optimization problems, because as a stochastic direct 

search method, it handles complex objective functions and it is easy to program, since it 

requires very few control parameters (population size, scale factor, and crossover 

probability). According to Lampinen and Storn (2004) it displays good convergence 

capabilities and has a high probability of finding optimal solutions. 

3.1 Mutation 

During each iteration of DE, a mutant vector 𝑣𝑣𝑖𝑖𝑡𝑡 is created. The five most commonly used 

mutation strategies are listed below (Das et al., 2016): 

 DE/rand/1: 𝑣𝑣𝑖𝑖𝑡𝑡 = 𝑥𝑥𝑅𝑅1𝑖𝑖
𝑡𝑡 + 𝐹𝐹 �𝑥𝑥𝑅𝑅2𝑖𝑖

𝑡𝑡 − 𝑥𝑥𝑅𝑅3𝑖𝑖
𝑡𝑡 � (1) 

 DE/best/1: 𝑣𝑣𝑖𝑖𝑡𝑡 = 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡 + 𝐹𝐹 �𝑥𝑥𝑅𝑅1𝑖𝑖
𝑡𝑡 − 𝑥𝑥𝑅𝑅2𝑖𝑖

𝑡𝑡 � (2) 

 DE/current-to-best/1: 𝑣𝑣𝑖𝑖𝑡𝑡 = 𝑥𝑥𝑖𝑖𝑡𝑡 + 𝐹𝐹(𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡 − 𝑥𝑥𝑖𝑖𝑡𝑡) + 𝐹𝐹 �𝑥𝑥𝑅𝑅1𝑖𝑖
𝑡𝑡 − 𝑥𝑥𝑅𝑅2𝑖𝑖

𝑡𝑡 � (3) 

 DE/best/2: 𝑣𝑣𝑖𝑖𝑡𝑡 = 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡 + 𝐹𝐹 �𝑥𝑥𝑅𝑅1𝑖𝑖
𝑡𝑡 − 𝑥𝑥𝑅𝑅2𝑖𝑖

𝑡𝑡 � + 𝐹𝐹 �𝑥𝑥𝑅𝑅3𝑖𝑖
𝑡𝑡 − 𝑥𝑥𝑅𝑅4𝑖𝑖

𝑡𝑡 � (4) 

 DE/rand/2: 𝑣𝑣𝑖𝑖𝑡𝑡 = 𝑥𝑥𝑅𝑅1𝑖𝑖
𝑡𝑡 + 𝐹𝐹 �𝑥𝑥𝑅𝑅2𝑖𝑖

𝑡𝑡 − 𝑥𝑥𝑅𝑅3𝑖𝑖
𝑡𝑡 � + 𝐹𝐹 �𝑥𝑥𝑅𝑅4𝑖𝑖

𝑡𝑡 − 𝑥𝑥𝑅𝑅5𝑖𝑖
𝑡𝑡 � (5) 

The vectors 𝑥𝑥𝑅𝑅1 to 𝑥𝑥𝑅𝑅5 are randomly chosen solution vectors from the current population, 

which differ from the current solution vector 𝑥𝑥𝑖𝑖 and are randomly generated for each 

solution vector. 𝐹𝐹 is a positive mutation control parameter for scaling the difference vectors 

and 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the best solution vector found so far. 

Strategies using the best solution found so far as DE/best/1, DE/best/2 and “DE/current-

to-best/1,” usually display fast convergence speed. As a result, while they perform well 

when addressing unimodal objectives, they are more likely to get stuck at a local optima 

points when performing on multimodal objectives. On the contrary, the DE/rand/1 strategy 

usually exhibits slow convergence speed and better exploration capability. Consequently, 

it may perform better when performing on multimodal problems compared to the strategies 

relying on the best solution found so far. The two-difference-vectors-based DE/best/2, 
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DE/rand/2 and DE/current-to-best/1 strategies may result in better perturbation than one-

difference-vector-based strategies (Qin, Huang, & Suganthan, 2009). 

One of the many attempts that have been made to improve DE’s performance is the 

dither method, in which 𝐹𝐹 varies during iterations. According to Price et al. (2005), in this 

method 𝐹𝐹 is randomized according as: 

 𝐹𝐹 = 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗ �𝐹𝐹ℎ𝑖𝑖𝑖𝑖ℎ − 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙� (6) 

where 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙 and 𝐹𝐹ℎ𝑖𝑖𝑖𝑖ℎ are the highest and lowest values of 𝐹𝐹 respectively, and 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is a 

uniform random number in the range of [0, 1]. The 𝐹𝐹 can be either randomized in each 

generation of the algorithm or for each target vector of the population in a specific 

generation. 

3.2 Crossover 

Through crossover, the donor vector mixes its components with the target vector 𝑥𝑥𝑖𝑖𝑡𝑡 to form 

the offspring vector 𝑢𝑢𝑖𝑖𝑡𝑡 = �𝑢𝑢𝑖𝑖,1𝑡𝑡 ,𝑢𝑢𝑖𝑖,2𝑡𝑡 , … ,𝑢𝑢𝑖𝑖,𝑑𝑑𝑡𝑡 � according to a predefined probability. 

According to Das et al. (2016), binomial crossover can be described as: 

 𝑢𝑢𝑖𝑖,𝑗𝑗𝑡𝑡 = �
𝑣𝑣𝑖𝑖,𝑗𝑗𝑡𝑡 , 𝑖𝑖𝑖𝑖 𝑗𝑗 = 𝑘𝑘 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖,𝑗𝑗 ≤ 𝐶𝐶𝐶𝐶
𝑥𝑥𝑖𝑖,𝑗𝑗𝑡𝑡 , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (7) 

where 𝑘𝑘 is randomly chosen in {1,2, … ,𝑑𝑑}, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖,𝑗𝑗 is a random number in the range [0,1] 

and 𝑗𝑗 = 𝑘𝑘 guarantees that at least one component from 𝑣𝑣𝑖𝑖𝑡𝑡 is chosen by 𝑢𝑢𝑖𝑖𝑡𝑡, to ensure that 

the new solution does not duplicate the original one. Finally, 𝐶𝐶𝐶𝐶 is the predefined crossover 

probability. 

3.3 Selection operation 

Selection determines whether the target (parent) or the trial (offspring) vector survives to 

the next generation. The selection operation for maximization problems is described as: 

 𝑥𝑥𝑖𝑖𝑡𝑡+1 = �
𝑣𝑣𝑖𝑖𝑡𝑡, 𝑓𝑓(𝑣𝑣𝑖𝑖𝑡𝑡) ≥ 𝑓𝑓(𝑥𝑥𝑖𝑖𝑡𝑡)
𝑥𝑥𝑖𝑖𝑡𝑡 , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (8) 

where 𝑓𝑓(𝑣𝑣𝑖𝑖𝑡𝑡) and 𝑓𝑓(𝑥𝑥𝑖𝑖𝑡𝑡) are the function values of 𝑣𝑣𝑖𝑖𝑡𝑡 and 𝑥𝑥𝑖𝑖𝑡𝑡, respectively. 
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3.4 Working steps of DE 

According to Zhou et al. (2016) the working steps of DE are the follows: 

Step 1: Initialization. Initialization of parameters and solution vectors. Evaluation of each 

solution vector. 

Step 2: Mutation. Mutant vectors are generated using one of the mutation operations (1-5). 

Step 3: Crossover. Candidate vectors are generated using the crossover operation (7). 

Step 4: Selection for next iteration. Determine vectors for the next iteration’s population 

using formula (8). 

Step 5: If stopping criteria are met, return the individual with the best fitness found. If not, 

continue to the next iteration (Step 2). 

4 Applying FSTDE and other DE variants to the PLD problem 

This section describes the formulations of the PLD problem on which FSTDE and other 

DE variants are evaluated. All the algorithms have been programmed with the use of the 

MATLAB platform. The simulations have been carried out on an i5 3.3 GHz desktop 

computer, with 8 GB of RAM and a 64-bit operating system. Furthermore, the Pearson's 

correlation coefficient (𝑟𝑟) is used to investigate the bivariate correlation level between the 

parameters and the average values obtained from the results of DE algorithm after 10 runs. 

4.1 Problem formulation 

Following Belloni et al. (2008), the first problem concerns an actual PLD problem faced 

by Timbuk2, a manufacturer of school bags. A conjoint study that focused on price and 

nine binary product features was conducted by a group of academic researchers in 

cooperation with the company (additional details can be found in Toubia et al., 2003). 

After the market survey, the preferences of 324 consumers on the ten characteristics of 

each bag are known. The first feature is the price that can take seven different levels ($70, 

$75, $80, $85, $90, $95 and $100). The remaining nine features are yes / no values (exists 

/ does not exist). In addition, the company provides the cost of each feature. 

According to Belloni et al. (2008), the number of possible products that can be designed 

by combining these features is 3,584, of which 4.9×1015 different product lines consisting 

of five products can be created. The profit for each of these 3,584 products is equal to its 
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sale price, minus the cost of its features and a fixed production cost of $35. Table 1 presents 

the marginal cost of each feature, as well as its average part-worth among the 324 

consumers. 

Table 1: Incremental marginal cost and average part-worth of each feature 
Feature Average part-worth Incremental marginal cost ($) 
$5 Price increase -7.6 -5.00 
Large size 17.9 3.50 
Red color (not black) -36.0 0.00 
School logo 9.0 2.00 
Handle 37.7 3.50 
Gadget holder 5.2 3.00 
Cell phone holder 5.5 3.00 
Mesh pocket 9.7 2.00 
Velcro flap 18.2 3.50 
Reinforcing boot 24.4 4.50 

Using the first choice rule (maximum utility) the preferred product among the firm’s 

five bags and three competitive ones is identified for each consumer.  

By summing up the earnings from the sales of each bag, we calculate the earnings of 

the product line, which constitutes the objective function of the problem. Through running 

a Lagrangian relaxation with branch and bound for one week computational time, Belloni 

et al. (2008) found the global optimum solution, which is a product line of five bags with 

$12226 predicted earnings. 

4.2 Application of the original DE to the Product Line Design Problem 

To design a product line of five bags that maximizes the predicted earnings, we apply the 

original DE algorithm to the data set obtained by Belloni et al. (2008). One of the most 

critical issues when developing a DE algorithm is the solution representation. DE operates 

in continuous spaces, while our application consists of a discrete domain of solutions, since 

all attributes take a limited number of discrete levels. Hence, a rule must be employed that 

coverts the real vector produced by the algorithm to the discrete domain required by the 

problem. There are two ways of presenting a solution, a binary representation and an 

integer one. In the binary representation, each vector’s element represents the level of an 

attribute. The element that corresponds to the selected level for each attribute takes a value 
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of 1, while the rest of the levels take the value zero. In the integer representation, each 

element corresponds to an attribute and its value represents the attribute’s level. However, 

even though integer representation requires smaller vector lengths and less computational 

time, binary representation have shown better performance in similar problems (Tsafarakis 

et al., 2011). 

Using the binary representation scheme, the length of each vector (total number of 

attribute levels) is 25. Furthermore, a rule which ensures that within each attribute only a 

single element takes the value of 1 must be applied. For instance, as shown in Table 2, a 

large red bag, priced at $85, with handle and Cell phone holder, would be represented as 

[0001000 01 01 10 01 10 01 10 10 10]: 

Table 2: Representation of a random bag configuration 

Price ($) Large 
size 

Red 
color 

School 
logo Handle Gadget 

holder 

Cell 
phone 
holder 

Mesh 
pocket 

Velcro 
flap 

Reinfor
cing 
boot 

70
 

75
 

80
 

85
 

90
 

95
 

10
0 

N
o 

Y
es

 

N
o 

Y
es

 

N
o 

Y
es

 

N
o 

Y
es

 

N
o 

Y
es

 

N
o 

Y
es

 

N
o 

Y
es

 

N
o 

Y
es

 

N
o 

Y
es

 

0 0 0 1 0 0 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 

Since DE operates in continuous spaces, a representation with four-decimal points of a 

potential vector for a single product could be: y = [0.1269 0.5468 0.9571 -0.5007 0.8491 

0.3922 0.2769 -0.3419 0.3958 0.6463 0.6550 0.9831 0.5059 0.7241 0.8142 0.2510 0.5852 

0.7537 1.3449 0.4693 0.3112 0.6540 0.2289 0.9961 0.0046]. To convert a continuous 

vector to the required binary representation, the modified Smallest Position Value (SPV) 

rule was used, which has shown the best performance in the optimal product line design 

problem, even though it is the most time consuming (Tsafarakis et al., 2011). According to 

the SPV rule, the element with the smallest value on each attribute takes a value of 1, while 

the rest take a value of 0. The SPV rule performs great and it is widely used because it 

allows an algorithm to search in the continuous space, without setting any boundaries, or 

using any rounding off procedures (e.g. dropping the sign and fractional part of a real 

number, or truncate it to the nearest integer), which may lead to suboptimal solutions. SPV 

has already been successfully applied to DE in Tasgetiren et al. (2009). By applying the 

rule in the case of vector y we have: y = [0.1269 0.5468 0.9571 -0.5007 0.8491 0.3922 

0.2769 | -0.3419 0.3958 | 0.6463 0.6550 | 0.9831 0.5059 | 0.7241 0.8142 | 0.2510 0.5852 | 
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0.7537 1.3449 | 0.4693 0.3112 | 0.6540 0.2289 | 0.9961 0.0046], which is converted to y = 

[0001000 10 10 01 10 10 10 01 01 01]. 

4.3 Adjustment of Differential Evolution parameters 

To adjust the DE parameters, we tested different values for population size, 𝐹𝐹 and 𝐶𝐶𝐶𝐶, using 

DE/rand/1, which is the most commonly used strategy (Zhou et al., 2016). Initially, we 

tested the performance of the algorithm by changing the population size from 30 to 100 

with a step size of 10. Each population size was tested for 10 runs. The algorithm runs until 

100,000 function evaluations are reached. The results are presented in Figure 1. 

 

Figure 1. Results of DE with different values of population size 

Regarding the bivariate correlation level between the population size values and the 

mean of the DE’s results after 10 runs, no correlation was observed (𝑟𝑟 = −.10,𝑝𝑝 = .81). 

As a result, there is no relation between the values of population size and DE’s results, 

hence we decided to use a population size of 50, because it was found that the algorithm 

needed less function evaluations (about 60,000 in total) to converge than the rest sizes. 

Moreover, we tested the performance of DE by changing the mutation control parameter 

𝐹𝐹 from 0.1 to 0.9 with a step size of 0.1. Each value was tested for 10 runs. The results are 

demonstrated in Figure 2. 
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Figure 2. Results of DE with different values of 𝐹𝐹 

Regarding the bivariate correlation level between the 𝐹𝐹 values and the mean of the 

results given by DE after 10 runs, no correlation was observed (𝑟𝑟 = −.01,𝑝𝑝 = .98). As a 

result, there is no relation between the values of 𝐹𝐹 and DE’s results. For that reason, we 

decided to use the dither version (6), with an 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙of 0.1 and an 𝐹𝐹ℎ𝑖𝑖𝑖𝑖ℎ of 0.9. 

Finally, we tested the performance of DE by changing the probability 𝐶𝐶𝐶𝐶 from 0.01 to 

0.99 with a step size of 0.01. Each value was tested for 10 runs. The results are 

demonstrated in Figure 3.  

 

Figure 3. Results of DE with different values of 𝐶𝐶𝐶𝐶 
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Regarding the bivariate correlation level between the 𝐶𝐶𝐶𝐶 values and the mean of the 

results given by DE after 10 runs, negative strong correlation was observed (𝑟𝑟 = −.76), 

which means that DE performs better with small values of 𝐶𝐶𝐶𝐶. Consequently, we chose the 

𝐶𝐶𝐶𝐶 = 0.05, since it achieved the highest performance of both best and mean values. 

4.4 Fuzzy Self-Tuning DE 

Even though in Subsection 4.3 we explored the best values for the algorithm's parameters, 

the performance of the original DE is not only highly dependent on its parameter settings, 

but also on the dataset. As a result, DE may not be as effective using the same parameters 

when performing on different datasets. To overcome this, an automatic parameter tuning 

method can be used, such as the self-adaptive DE (Al-Anzi & Allahverdi, 2007; Fan, Yan, 

& Zhang, 2018; Salman, Engelbrecht, & Omran, 2007; Zhao et al., 2016). In this subsection 

the fully-automated version of DE, called Fuzzy Self-Tuning DE (FSTDE) is described, 

where the values of DE settings are dynamically controlled by means of FL. According to 

literature, FL is already applied to various metaheuristics that suffer from the parameters 

tuning, which is considerably dependent on the problem (Noorbin & Alfi, 2018; Olivas, 

Valdez, Castillo, & Melin, 2018). 

To determine the population size, FSTDE exploits the heuristic 𝑁𝑁 = �10 +

2�𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∙  total number of attribute levels� which sets the value of 

population size according to the number of dimensions of the search space, as suggested 

by Nobile et al. (2018). 

To dynamically determine the values of DE’s parameters in an automatic way, 

independently for each solution, we make use of a Fuzzy Rule-Based System (FRBS) 

consisting of nine fuzzy rules, reported in Table 3. These rules are based on the distance of 

each solution from the best solution found so far, and a function measuring the fitness 

improvement of each solution with respect to the previous iteration. 

Since we dynamically determine the values of DE’s parameters, we decided to use a 

combination of DE/rand/1 and DE/current-to-best/1 mutation strategies defined as: 

 FSTDE: 𝑣𝑣𝑖𝑖𝑡𝑡 = 𝑥𝑥𝑅𝑅1𝑖𝑖
𝑡𝑡 + 𝐹𝐹1 �𝑥𝑥𝑅𝑅2𝑖𝑖

𝑡𝑡 − 𝑥𝑥𝑅𝑅3𝑖𝑖
𝑡𝑡 � + 𝐹𝐹2 �𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡 − 𝑥𝑥𝑅𝑅4𝑖𝑖

𝑡𝑡 � (9) 
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The purpose of this combination is to take advantage of the better exploration capability of 

DE/rand/1, along with the fast convergence speed of DE/current-to-best/1, as mentioned in 

Subsection 3.1, depending on the distance of each solution from the best solution found so 

far, and the solution’s improvement with respect to the previous iteration. 

As Nobile et al. (2018) use in their research, the distance between two solutions is 

calculated as: 

 𝛿𝛿�𝐱𝐱𝑖𝑖𝑡𝑡,𝐱𝐱𝑗𝑗𝑡𝑡� = �𝐱𝐱𝑖𝑖𝑡𝑡 − 𝐱𝐱𝑗𝑗𝑡𝑡� = �∑ �𝑥𝑥𝑖𝑖,𝑘𝑘𝑡𝑡 − 𝑥𝑥𝑗𝑗,𝑘𝑘
𝑡𝑡 �

2𝑀𝑀
𝑘𝑘=1  (10) 

where 𝑥𝑥𝑖𝑖,𝑘𝑘𝑡𝑡  and 𝑥𝑥𝑗𝑗,𝑘𝑘
𝑡𝑡  denote the k-th component of the position vectors 𝐱𝐱𝑖𝑖𝑡𝑡 and 𝐱𝐱𝑗𝑗𝑡𝑡, 

respectively. 

The normalized fitness incremental factor 𝜑𝜑: ℝ𝛭𝛭 × ℝ𝛭𝛭 → [−1,1], considers the 

positions of solution 𝑖𝑖 at the current and previous iterations: 

 𝜑𝜑(𝐱𝐱𝑖𝑖𝑡𝑡,𝐱𝐱𝑖𝑖𝑡𝑡−1) = −𝛿𝛿�𝐱𝐱𝑖𝑖
𝑡𝑡,𝐱𝐱𝑖𝑖

𝑡𝑡−1�
𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚

∙ min�𝑓𝑓�𝐱𝐱𝑖𝑖
𝑡𝑡�,𝑓𝑓𝛥𝛥�−min�𝑓𝑓�𝐱𝐱𝑖𝑖

𝑡𝑡−1�,𝑓𝑓𝛥𝛥�
|𝑓𝑓𝛥𝛥|  (11) 

where 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚 is the length of the diagonal of the hyper-rectangle corresponding to the search 

space, while 𝑓𝑓𝛥𝛥 represents the worst fitness value found so far (for more details see: Nobile 

et al., 2018). The main purpose of 𝛿𝛿 is to characterize the proximity to the global best, 

while the purpose of 𝜑𝜑 is to characterize the improvement of a solution with respect to the 

fitness value it assumed in the previous iteration. During each iteration, each solution 

compute independently their own values for 𝛿𝛿 and 𝜑𝜑, which are used to calculate the output 

variables according to the rules reported in Table 3. 

According to Nobile et al. (2018), the variable of 𝛿𝛿 corresponds to the interval [0, 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚]. 

The term set of this variable is composed by three linguistic values, Same, Near and Far. 

The membership function of Same is: a) 1, if 0 ≤ 𝛿𝛿 < 𝛿𝛿1, b) (𝛿𝛿2−𝛿𝛿)
(𝛿𝛿2−𝛿𝛿1), if 𝛿𝛿1 ≤ 𝛿𝛿 < 𝛿𝛿2, and 

c) 0, if 𝛿𝛿2 ≤ 𝛿𝛿 < 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚. The membership function of Near is: a) 0, if 0 ≤ 𝛿𝛿 < 𝛿𝛿1, b) (𝛿𝛿−𝛿𝛿1)
(𝛿𝛿2−𝛿𝛿1), 

if 𝛿𝛿1 ≤ 𝛿𝛿 < 𝛿𝛿2, c) (𝛿𝛿3−𝛿𝛿)
(𝛿𝛿3−𝛿𝛿2), if 𝛿𝛿2 ≤ 𝛿𝛿 < 𝛿𝛿3, and d) 0, if 𝛿𝛿3 ≤ 𝛿𝛿 < 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚. The membership 

function of Far is: a) 0, if 0 ≤ 𝛿𝛿 < 𝛿𝛿2, b) (𝛿𝛿−𝛿𝛿2)
(𝛿𝛿3−𝛿𝛿2), if 𝛿𝛿2 ≤ 𝛿𝛿 < 𝛿𝛿3, and c) 1, if 𝛿𝛿3 ≤ 𝛿𝛿 <

𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚. The values of 𝛿𝛿1, 𝛿𝛿2 and 𝛿𝛿3 are set according to the size of the search space as: 𝛿𝛿1 =

0.2 ∙ 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚, 𝛿𝛿2 = 0.4 ∙ 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚 and 𝛿𝛿3 = 0.6 ∙ 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚. As Nobile et al. (2018) mention in their 
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research, the general-purpose multipliers are created to avoid any overfitting to the 

benchmark function and implement a general and fuzzy concept of distance from the best 

solution found so far. 

The variable of 𝜑𝜑 corresponds to the interval [−1,1]. The term set of this variable is 

composed by three linguistic values, Better, Same and Worse. The membership function 

of Better is: a) 1, if 𝜑𝜑 = −1, b) −𝜑𝜑, if −1 < 𝜑𝜑 < 0, and c) 0, if 0 ≤ 𝜑𝜑 ≤ 1. The 

membership function of Same is: 1 − |𝜑𝜑|, and the membership function of Worse is: a) 0, 

if −1 ≤ 𝜑𝜑 < 0, b) 𝜑𝜑, if 0 ≤ 𝜑𝜑 < 1, and c) 1, if 𝜑𝜑 = 1. However, since DE accepts a new 

solution only if it improves the previous one, the Worse scenario is not technically applied 

in this research. 

Given a set of a specific number of R rules having the same output variable in their 

consequent (e.g., rules 1, 2, 3 in Table 3 for 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙,1 and 𝐹𝐹ℎ𝑖𝑖𝑖𝑖ℎ,1), the final numerical value of 

this output variable is calculated using the Sugeno method (Sugeno, 1985) as: 

 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = ∑ 𝜌𝜌𝑟𝑟𝑧𝑧𝑟𝑟𝑅𝑅
𝑟𝑟=1
∑ 𝜌𝜌𝑟𝑟𝑅𝑅
𝑟𝑟=1

 (12) 

where 𝜌𝜌𝑟𝑟 denotes the membership degree of the input variable of the r-th rule, and 𝑧𝑧𝑟𝑟 

represents the output crisp value for the r-th rule, as given in Table 4. 

Table 3: Fuzzy rules used by FSTDE 
Rule no. Rule definition  
1 if (𝛿𝛿 is Far) then (𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙,1 and 𝐹𝐹ℎ𝑖𝑖𝑖𝑖ℎ,1 are Low)  
2 if (𝜑𝜑 is Same or 𝛿𝛿 is Same or 𝛿𝛿 is Near) then (𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙,1 and 𝐹𝐹ℎ𝑖𝑖𝑖𝑖ℎ,1 are Medium)  
3 if (𝜑𝜑 is Better) then (𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙,1 and 𝐹𝐹ℎ𝑖𝑖𝑖𝑖ℎ,1 are High)  

4 if (𝜑𝜑 is Better or 𝛿𝛿 is Near) then (𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙,2 and 𝐹𝐹ℎ𝑖𝑖𝑖𝑖ℎ,2 are Low)  
5 if (𝜑𝜑 is Same or 𝛿𝛿 is Same) then (𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙,2 and 𝐹𝐹ℎ𝑖𝑖𝑖𝑖ℎ,2 are Medium)  
6 if (𝛿𝛿 is Far) then (𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙,2 and 𝐹𝐹ℎ𝑖𝑖𝑖𝑖ℎ,2 are High)  

7 if (𝜑𝜑 is Same or 𝜑𝜑 is Better) then (𝐶𝐶𝐶𝐶 is Low)  
8 if (𝛿𝛿 is Same or 𝛿𝛿 is Near) then (𝐶𝐶𝐶𝐶 is Medium)  
9 if (𝛿𝛿 is Far) then (𝐶𝐶𝐶𝐶 is High)  
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Table 4: Output variables and their defuzzification 
Output 
Variable 

Low Medium High 

𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙 0.1 0.4 0.7 
𝐹𝐹ℎ𝑖𝑖𝑖𝑖ℎ 0.4 0.7 0.9 
𝐶𝐶𝐶𝐶 0.01 0.1 0.5 

 

Rules 1, 2 and 3 control the strength of the difference of the two random vectors. If the 

solution is far from the best solution found so far (i.e. 𝛿𝛿 is Far), 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙,1 and 𝐹𝐹ℎ𝑖𝑖𝑖𝑖ℎ,1 are set 

to Low, because it is reasonable for it to “ignore” the information shared by two random 

solutions. On the contrary, when a better solution is found, it should rather “follow the 

advice” of the two random solutions to better explore the space nearby. An intermediate 

value is assigned to 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙,1 and 𝐹𝐹ℎ𝑖𝑖𝑖𝑖ℎ,1 if no relevant changes occur either in the fitness 

value or in the distance from the best solution (i.e., 𝜑𝜑 and 𝛿𝛿 are Same or 𝛿𝛿 is Near). 

Rules 4, 5 and 6 control the strength of the attraction of a solution towards the best 

solution found so far. If either a better solution is found (i.e., 𝜑𝜑 is Better), or the best 

solution is being approached (i.e., δ is Near), then it is reasonable for it to “ignore” the 

information shared by the best solution found so far. Under these conditions, 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙,2 and 

𝐹𝐹ℎ𝑖𝑖𝑖𝑖ℎ,2 are set to Low. On the contrary, when a better solution is not found or the solution 

is not close to the best solution found so far, it should rather “follow the advice” of the best 

solution found so far. Hence, we set 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙,2 and 𝐹𝐹ℎ𝑖𝑖𝑖𝑖ℎ,2 are set to High values. An 

intermediate value is assigned to 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙,2 and 𝐹𝐹ℎ𝑖𝑖𝑖𝑖ℎ,2 if no relevant changes occur either in 

the fitness value or in the distance from the best solution (i.e., 𝜑𝜑 and 𝛿𝛿 are Same). 

Finally, rules 7, 8 and 9 control the 𝐶𝐶𝐶𝐶 value. If a solution is far from the best solution 

found so far, then 𝐶𝐶𝐶𝐶 is set to High in order to accept more values from the mutant vector. 

On the contrary, if the solution has any improvement or is the same, then 𝐶𝐶𝐶𝐶 is set to Low. 

An intermediate value is assigned to 𝐶𝐶𝐶𝐶 when the solution is near to the best solution found 

so far, or 𝛿𝛿 is Same in order help the algorithm escape local optima. 
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4.4.1 Determination of parameters by FSTDE 

To demonstrate what happens when the proposed FSTDE determines the parameter 

values for the problem discussed in Subsection 4.3, we run the proposed FSTDE while 

tracking the calculated parameter settings independently for each solution during the 

optimization process. As a result, a set of values is created for each parameter (except the 

parameter of population size which was only calculated once in the beginning). 

First, population size was set to 32, according to the heuristic described in Subsection 

4.4. 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙,1 had an average value of 0.395, a standard deviation of 0.026 and a median value 

of 0.400 in the range of 0.100 to 0.443, while 𝐹𝐹ℎ𝑖𝑖𝑖𝑖ℎ,1 had an average value of 0.695, a 

standard deviation of 0.025 and a median value of 0.700 in the range of 0.550 to 0.729. 

Moreover, 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙,2 had an average value of 0.405, a standard deviation of 0.026 and a median 

value of 0.400 in the range of 0.100 to 0.550, while 𝐹𝐹ℎ𝑖𝑖𝑖𝑖ℎ,2 had an average value of 0.703, 

a standard deviation of 0.017 and a median value of 0.700 in the range 0.657 to 0.800. 

Finally, 𝐶𝐶𝐶𝐶 had an average value of 0.064, a standard deviation of 0.044 and a median value 

of 0.055 in the range of 0.012 to 0.497. 

As it was noticed, even though the value of population size differed to the value obtained 

in Subsection 4.3, the median value of 𝐶𝐶𝐶𝐶 was really close to the value obtained in 

Subsection 4.3. Moreover, the FRBS tuning method managed to find more accurate values 

that were not checked during the tuning process in Subsection 4.3 (e.g. 𝐶𝐶𝐶𝐶 = 0.055). As a 

result, the algorithm can successfully calculate its parameters according to the needs of 

each candidate solution. 

Τo investigate any possible performance improvement or reduction using the FRBS 

tuning method, the proposed FSTDE was compared to all the mutation strategies 

mentioned in Subsection 3.1 that use the parameter settings mentioned in Subsection 4.3. 

The comparison results are demonstrated in Section 5. 

5 Comparison 

In this section, we compare the performance of FSTDE to that of the other DE approaches, 

as well as to that of GA and SA, which where the best performing methods in the study of 

Belloni et al. (2008). Particularly, FSTDE and all the mutation strategies mentioned in 
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Subsection 3.1 and 4.4, will be compared to the performance of GA and SA as they were 

configured by Belloni et al. (2008). At first, we use the real conjoint data set. Then, we test 

whether the model we have developed is affected by errors in consumer preference 

measurements, and whether the model can be generalized by changing the size of the 

problem. In our simulations, each algorithm runs until 70,000 function evaluations are 

reached, performing 50 replications for each case. Moreover, the Mann-Whitney test is 

used to compare differences between two optimization methods. Statistical analysis was 

performed using SPSS Version 21 statistic software package. 

5.1 Real conjoint data set 

Table 5 shows the results of the comparison of DE’s (including FSTDE) performance using 

different mutation strategies, with that of GA and SA on the real conjoint data, while Figure 

4 shows the convergence characteristic curves of them. Each DE strategy runs for about 20 

seconds on average, while GA and SA need about 2 and 3.5 seconds on average, 

respectively. That verifies the findings of Tsafarakis et al. (2011) that the SPV mapping 

requires more computational time. 

Table 5: Comparison of methods performing on the real conjoint data set 
Statistics FSTDE DE/rand/1 DE/rand/2 DE/best/1 DE/best/2 DE/current-

to-best/1 
SA GA 

Best 12226 12226 12226 12226 12226 12226 11781.5 12226 
Worst 12055.5 12055.5 12040.5 12032.5 12052.5 11961.5 10867 11895.5 
Mean 12202.1 12201.38 12166.47 12148.13 12179.95 12099.57 11140.82 12083.62 
Median 12223.5 12223.5 12208.75 12175 12218.5 12084 11140 12055.5 
Sd. 3.99E+01 4.75e+01 6.84e+01 6.98e+01 6.39e+01 8.40e+01 1.91e+02 1.12e+02 
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Figure 4. Convergence characteristic curves of the algorithms under comparison 

The results obtained above indicate that superiority of all the DE mutation strategies 

over SA when performing on the real conjoint dataset. They also indicate that all the DE 

mutation strategies are really competitive to GA. According to Table 5, FSTDE is the most 

successful mutation strategy of DE. 

Objective function values of FSTDE (Mdn = 12223.5) were higher than those of SA 

(Mdn = 11140). A Mann-Whitney test indicated this difference was statistically significant, 

U(NFSTDE = 50, NSA = 50) = 0, z = -8.69, p < .001. Moreover, objective function values of 

FSTDE (Mdn = 12223.5) were higher than those of GA (Mdn = 12055.5). A Mann-Whitney 

test indicated this difference was statistically significant, U(NFSTDE = 50, NGA = 50) = 636, 

z = -4.29, p < .001. 

Moreover, Figure 4 demonstrates that FSTDE converges faster than all the other 

algorithms. 
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5.2 Robustness testing 

The accuracy of the results does not only depend on the efficiency and effectiveness of the 

optimization method used to solve the problem, but also on other external factors. 

According to Belloni et al. (2008), one of the most important factors is the accuracy in the 

estimation of consumer preferences, that is the partworths of each feature, as estimated by 

conjoint analysis. To test the robustness of the methods in the presence of a measurement 

error during the conjoint analysis process, we repeated our analysis after perturbing the 

original partworth estimates, just like Belloni et al. (2008) did. These perturbations were 

accomplished by adding a (simulated) error to the partworths: 

 𝑢𝑢𝑖𝑖,𝑗𝑗′ = 𝑢𝑢𝑖𝑖,𝑗𝑗 + 𝜀𝜀𝑖𝑖,𝑗𝑗 (13) 

where 𝑢𝑢𝑖𝑖,𝑗𝑗 is the original partworth for respondent 𝑖𝑖 on product feature 𝑗𝑗, 𝜀𝜀𝑖𝑖,𝑗𝑗 is a zero-

mean, independent normal error term which works differently across customers or attribute 

levels, and 𝑢𝑢𝑖𝑖,𝑗𝑗′  is the perturbed part-worth. 

We run each algorithm 50 times, obtaining 50 sets of perturbed partworths for each 

respondent. The perturbation terms are treated as measurement error. Under this 

interpretation, the original partworths that we analyzed in Table 1, is the only set of “true” 

partworths. However, we assume that the researcher can only observe the partworths that 

are subject to measurement error. The results are reported in Table 6. 

Table 6: Comparison of methods performing under Measurement Error 
Statistics FSTDE DE/rand/1 DE/rand/2 DE/best/1 DE/best/2 DE/current-

to-best/1 
SA GA 

Best 12189 12189 12073 12058 12077 12074 11311.5 12045 
Worst 11651.5 11209.5 10920.5 10819.5 11185.5 11185.5 9813 11105 
Mean 12094.22 11737.43 11662.33 11680.32 11734.49 11681.62 10711.38 11630.34 
Median 12187.5 11754.25 11735.5 11722.25 11743 11673.75 10690.25 11676.5 
Sd. 1.84e+02 1.75e+02 2.53e+02 2.49e+02 1.86e+02 2.11e+02 3.12e+02 2.17e+02 
CP* (%) 38 37.6 36.8 36.4 37.6 36.8 23.2 30.8 
CF* (%) 86.31 85.04 84.44 84.68 84.96 84.84 75.8 83.28 
* CP and CF correspond to the common products and common features within the optimal line 
respectively. 
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From the results obtained from Table 6, we note that all the different mutation strategies 

of DE (especially the FSTDE strategy) are least affected by the measurement error on 

consumer preferences. On the contrary, SA is the most affected method. 

Objective function values of FSTDE (Mdn = 12187.5) were higher than those of SA 

(Mdn = 10690.25). A Mann-Whitney test indicated this difference was statistically 

significant, U(NFSTDE = 50, NSA = 50) = 0, z = -8.64, p < .001. Moreover, objective function 

values of FSTDE (Mdn = 12187.5) were higher than those of GA (Mdn = 11676.5). A 

Mann-Whitney test indicated this difference was statistically significant, U(NFSTDE = 50, 

NGA = 50) = 171, z = -7.65, p < .001. 

5.3 Results using simulated data 

In this subsection, we also compare the performance of FSTDE and other DE variants to 

that of GA and SA, using simulated data. In each simulated problem, we design a product 

line consisting of 3 or 4 products, each composed of 3, 5, or 7 attributes that can take on 2, 

3, 5, or 8 different levels. We assume that there are either 50 or 100 customers for each 

case. We select 12 different problem sizes as presented in Table 7 and 10 different 

replications for each size are generated, resulting in a total of 120 simulated data sets. 

 

Table 7: Different problem sizes 

Customers  Attributes  Levels  Products 

50  3  5  4  
100  3  5  4  
50  5  3  4  

100  5  3  4  
50  7  2  4  

100  7  2  4  
50  3  8  3  

100  3  8  3  
50  5  5  3  

100  5  5  3  
50  7  3  3  

100  7  3  3  
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The summary results are shown in Table 8, where each algorithm’s average 

performance is shown as a percentage of the best solution found among all tested 

algorithms. 

Table 8: Comparison of methods performing on simulated data 

Statistics FSTDE DE/rand/1 DE/rand/2 DE/best/1 DE/best/2 DE/current-
to-best/1 

SA GA 

Average 
performance 99.85 99.68 99.87 97.17 97.04 97.28 90.90 99.09 

From the comparison results, we notice that the DE/rand implementations exhibit the 

best performance. 

To further test FSTDE and other DE variants in larger problem sizes, we increase 

specific dimensions of the above sets, as shown in Table 9.  

Table 9. Problem with increased dimension sizes. 
Customers Attributes Levels Products 

50 3 5 5 
100 3 5 5 
50 8 3 4 

100 8 3 4 
50 9 2 4 

100 9 2 4 
50 3 9 3 

100 3 9 3 
50 5 5 6 

100 5 5 6 
50 9 3 3 

100 9 3 3 
 
The comparison results of the methods are presented in Table 10. 

Table 10: Comparison of methods performing on the problems presented in Table 9 

Statistics FSTDE DE/rand/1 DE/rand/2 DE/best/1 DE/best/2 DE/current-
to-best/1 

SA GA 

Average 
performance 

99.31 99.26 98.92 97.97 98.05 98.06 86.57 97.87 

The results above indicate that all DE variants (especially the FSTDE strategy) are 

superior to both GA and SA as the problem sizes increased.  
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6 Conclusions 

In this paper, a Fuzzy Self-Tuning Differential Evolution (FSTDE) along with various 

different mutation strategies of DE are applied on the PLD problem. The main idea of 

FSTDE is to overcome specific difficulties of DE when performing on different datasets 

using the same parameter settings. Because this is the first reported application of the DE 

algorithm to the problem, we explored the best values for the algorithm's tuning parameters 

through statistical analysis. Particularly, we showed that the values of mutation control 

parameter and population size parameter does not affect the results significantly, while DE 

works better with small values of the crossover probability. DE appeared to perform great 

with a population size of about 2 times the number of design variables, while GA requires 

a population size of 10 times the number of design variables when applied to the PLD 

problem. 

The comparison results reveal that most of the times DE variants have superior 

performance to both SA and GA. Particularly, FSTDE appears to have a higher 

performance when performing on PLD, exhibiting a higher probability of finding a global 

optimum in less function evaluations. The results were verified using statistical analyses. 

FSTDE was found to be the most successful mutation strategy among all, when performing 

on PLD, followed by DE/rand/1 which verifies the statement of Qin et al. (2009) that the 

DE/rand/1 strategy is usually distinguished by better exploration capability. The 

convergence behavior of all DE’s mutation strategies is also exceptional, since most of the 

times they reach the best overall solution in the early iterations. FSTDE was found to have 

high convergence capabilities compared to the rest, because of its ability to “follow the 

advice” of the best solution found so far when a better solution is not found, or the solution 

is not close to the best solution found so far. Moreover, while increasing the dimension 

sizes of the problem we noticed that DE’s performance is superior over that of SA and GA 

in terms of accuracy and efficiency. Overall, DE constitutes a robust algorithm that has the 

potential to be generalized in large scale real world PLD problems of well-known firms, 

and therefore it is an attractive alternative solution process to the PLD problem. 

An interesting area for future research is solving the PLD problem optimizing more than 

one objective at the same time. This requires the application of multiobjective optimization 

algorithms, instead of the single-objective algorithms that have been employed so far to 
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the problem. A multiobjective approach, along with a Pareto optimal analysis, will enable 

the firm to optimize two or more objectives (e.g., profit maximization and market share 

maximization) at the same time, while setting a number of constraints (e.g., cost of 

production not more than a specific value). 
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