

Fuzzy Self-Tuning Differential Evolution for Optimal Product Line
Design

Tsafarakis, Stelios; Zervoudakis, Konstantinos; Andronikidis, Andreas; Altsitsiadis, Efthymios

Document Version
Accepted author manuscript

Published in:
European Journal of Operational Research

DOI:
10.1016/j.ejor.2020.05.018

Publication date:
2020

License
CC BY-NC-ND

Citation for published version (APA):
Tsafarakis, S., Zervoudakis, K., Andronikidis, A., & Altsitsiadis, E. (2020). Fuzzy Self-Tuning Differential
Evolution for Optimal Product Line Design. European Journal of Operational Research, 287(3), 1161-1169.
https://doi.org/10.1016/j.ejor.2020.05.018

Link to publication in CBS Research Portal

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us (research.lib@cbs.dk) providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 04. Jul. 2025

https://doi.org/10.1016/j.ejor.2020.05.018
https://doi.org/10.1016/j.ejor.2020.05.018
https://research.cbs.dk/en/publications/9f557e36-ad9f-462b-a989-3cc8d85b8366

1

Fuzzy Self-Tuning Differential Evolution for Optimal Product

Line Design

ABSTRACT

Designing a successful product line is a critical decision for a firm to stay competitive. By

offering a line of products, the manufacturer can maximize profits or market share through

satisfying more consumers than a single product would. The optimal Product Line Design

(PLD) problem is classified as NP-hard. This paper proposes a Fuzzy Self-Tuning

Differential Evolution (FSTDE) for PLD, which exploits Fuzzy Logic to automatically

calculate the parameters independently for each solution during the optimization, thus

resulting to a settings-free version of DE. The proposed method is compared to the most

successful mutation strategies of the algorithm as well as previous approaches to the PLD

problem, like Genetic Algorithm and Simulated Annealing, using both actual and artificial

data of consumer preferences. The comparison results demonstrate that FSTDE is an

attractive alternative approach to the PLD problem.

Keywords: OR in Marketing, Product line design, Differential Evolution, Self-tuning,

Fuzzy logic

1 Introduction

Introduction of new products or redesigning existing ones, is one of the key decision areas

that a product development team has to deal with, in order to maintain the sustainability

and profitability of a firm. However, such processes can be uncertain and expensive (Kotler

& Armstrong, 2012). As a result, the potential success of a new product needs to be

estimated, before its production process begins. Such estimations are achieved by

addressing the optimal product design problem, which is usually formulated in the context

of Conjoint Analysis and has been studied by researchers for more than 40 years. A product

line is a set of several related products with similar structures but different configurations

or product attributes. The purpose of the product line development is to satisfy a variety of

consumers. Its objective usually is the maximization of the total firm’s profit or products’

market share. Kohli and Krishnamurti (1989) proved that the product line design problem

2

(PLD) belongs to the class of NP-hard combinatorial optimization problems, thus no

algorithm can verify in tractable time that it identifies the global optimum of the problem

(Papadimitriou & Steiglitz, 1982). Hence, different optimization mechanisms have been

proposed in an attempt to provide (near) optimal solutions to the PLD problem (for a review

see Tsafarakis & Matsatsinis, 2010).

In this paper, we propose a Fuzzy Self-Tuning Differential Evolution (FSTDE) as an

alternative approach to the optimal PLD problem. Because this is the first reported

application of the Differential Evolution (DE) optimization method (Storn & Price, 1997)

to the problem, we first explore the best values for the algorithm's tuning parameters

through statistical analysis. Although DE is one of the most powerful stochastic

optimization algorithms, its performance strongly depends on the proper settings of its

parameters, hence we subsequently develop the Fuzzy Self-Tuning Differential Evolution

(FSTDE) algorithm, which calculates the settings of parameters independently for each

solution during the optimization process, using an automatic FL-based methodology.

FSTDE as well as the most commonly used mutation strategies of DE are applied to the

PLD problem and their performance is compared to those of previous approaches, like

Genetic Algorithm (GA) and Simulated Annealing (SA), using both actual and artificial

consumer-related data preferences using the datasets from Belloni et al. (2008).

The rest of the paper is organized into 6 sections as follows: Section 2 provides a brief

description of the optimal PLD problem, while in Section 3 the algorithmic structure of the

original DE is described. In Section 4, we describe the problem formulation, we explore

how sensitive is original DE to the problem depending on its initial parameters and the

FSTDE is presented. In Section 5 we evaluate the effectiveness of the FSTDE and other

DE approaches through a comparison of their performance with that of GA and SA.

Finally, Section 6 provides an overview of the main conclusions of the study and future

research areas are suggested.

2 The optimal product line design problem

The optimal (single) product design problem was originally introduced by Zufryden

(1977), and a few years later, the optimal PLD problem was addressed by Green and

Krieger (1985). In PLD, firms aim at introducing a number of products, while optimizing

3

a specific objective, such as profit or market share. Each product is usually represented as

a set of attributes (characteristics), each one taking specific levels. A camera for example,

consists of the attributes picture resolution, video resolution, and water resistance, which

take the levels 10 MP, 14 MP or 20 MP, HD, Full HD or 4K Ultra HD, Yes or No,

respectively. As a result, a consumer may select a product according to its attributes that

satisfy his/her needs, hence firms need to be aware of consumer preferences. Conjoint

analysis (Luce & Tukey, 1964), is a widely known method for customer preference

measurement, which generates the perceived utility value of each consumer for each level

of a product’s attributes. These values, the so called “parthworths”, are used along with

choice models to find a product line that optimizes a specific objective.

Since the PLD problem is NP-hard, different optimization approaches have been

proposed to provide near optimal solutions in tractable time, the most important being

Dynamic Programming (Kohli & Sukumar, 1990), Beam Search (Nair, Thakur, & Wen,

1995), Lagrangian Relaxation with Branch and Bound (Belloni et al., 2008; Camm,

Cochran, Curry, & Kannan, 2006) and Simulated Annealing (Belloni et al., 2008;

Tsafarakis, 2016). Nature-inspired and evolutionary-based optimization algorithms have

also been introduced to the problem. For example, Alexouda and Paparrizos (2001) dealt

with the PLD problem by implementing a GA, which was initialized in two different ways.

In the first way the GA was initialized using a random population, while in the second way,

the solution of the Beam Search method was included in the initial population of the GA.

They tested their approaches in varying degrees of problem sizes using artificial data and

the results supported the substantially better performance of their first approach. It was the

first attempt to show that GAs have significant potential to solve PLD problems, followed

by others that confirmed the finding (Balakrishnan, Gupta, & Jacob, 2004; Belloni et al.,

2008; Steiner & Hruschka, 2003).

Ant Colony Optimization (ACO) is another evolutionary method which has been also

applied to the PLD problem by Albritton and McMullen (2007). When compared to

complete enumeration of all possible solutions, ACO was found to generate near-optimal

results for this problem. Finally, Particle Swarm Optimization (PSO) was also introduced

to the particular problem by Tsafarakis et al., (2011). The authors proposed a population-

based algorithm and employed a Monte Carlo simulation to compare its performance to

4

that of GAs. The results revealed that PSO constitutes an attractive alternative because its

performance is comparable to that of GAs concerning the best solution found, while it

outperforms GAs regarding the diversity of the final set of provided solutions. Saridakis et

al. (2015) verified the performance of PSO on designing optimal car lines.

The present study extends previous research in three important ways. First, we apply

the original DE algorithm for the first time in the PLD literature and the broader area of

marketing research. Second, a novel Fuzzy Self-Tuning Differential Evolution (FSTDE)

algorithm is introduced, which calculates the settings of parameters independently for each

solution during iterations, using an automatic FL-based methodology. Third, from the

foregoing analysis, it is verified that except for continuous optimization problems, DE

variants like the FSTDE perform with great success on combinatorial problems as well.

3 Differential Evolution

The original DE algorithm was introduced by Storn and Price (1997) as a new heuristic

approach for optimizing continuous space functions. It belongs to the class of Evolutionary

Algorithms (EAs) like GAs. Evolution is the process of improving the survival capabilities

through mechanisms such as natural selection, survival of the fittest, reproduction,

mutation, competition and symbiosis (Engelbrecht, 2007). Even though DE is a continuous

parameter optimizer, numerous attempts to modify and use DE for optimizing binary and

combinatorial problems are reported in the literature. Baioletti, Milani, and Santucci,

(2018) for example, introduced a novel differential evolution algorithm for learning the

structure of a Bayesian Network, while Ali, Essam, and Kasmarik (2018) introduced a

novel differential evolution algorithm, which incorporates several effective components to

increase search effectiveness by providing a good balance between exploration and

exploitation processes, when performing on 0–1 Knapsack Problems. Santucci, Baioletti,

Di Bari, and Milani (2019) introduced a Memetic Algebraic Differential Evolution

algorithm for the Binary search space, while Ali et al. (2019) proposed a novel mapping

method for DE which maps continuous variables to discrete ones and directs them towards

optimality.

In DE, like most EAs, a population of individuals is generated (most of the times

randomly to achieve a high diversity), where each individual represents a potential solution

5

to the problem, with an objective function evaluating the solution’s performance. During

the iterative procedure, a set of operators known as mutation and crossover is applied.

DE has been extensively applied in optimization problems, because as a stochastic direct

search method, it handles complex objective functions and it is easy to program, since it

requires very few control parameters (population size, scale factor, and crossover

probability). According to Lampinen and Storn (2004) it displays good convergence

capabilities and has a high probability of finding optimal solutions.

3.1 Mutation

During each iteration of DE, a mutant vector 𝑣𝑣𝑖𝑖𝑡𝑡 is created. The five most commonly used

mutation strategies are listed below (Das et al., 2016):

 DE/rand/1: 𝑣𝑣𝑖𝑖𝑡𝑡 = 𝑥𝑥𝑅𝑅1𝑖𝑖
𝑡𝑡 + 𝐹𝐹 �𝑥𝑥𝑅𝑅2𝑖𝑖

𝑡𝑡 − 𝑥𝑥𝑅𝑅3𝑖𝑖
𝑡𝑡 � (1)

 DE/best/1: 𝑣𝑣𝑖𝑖𝑡𝑡 = 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡 + 𝐹𝐹 �𝑥𝑥𝑅𝑅1𝑖𝑖
𝑡𝑡 − 𝑥𝑥𝑅𝑅2𝑖𝑖

𝑡𝑡 � (2)

 DE/current-to-best/1: 𝑣𝑣𝑖𝑖𝑡𝑡 = 𝑥𝑥𝑖𝑖𝑡𝑡 + 𝐹𝐹(𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡 − 𝑥𝑥𝑖𝑖𝑡𝑡) + 𝐹𝐹 �𝑥𝑥𝑅𝑅1𝑖𝑖
𝑡𝑡 − 𝑥𝑥𝑅𝑅2𝑖𝑖

𝑡𝑡 � (3)

 DE/best/2: 𝑣𝑣𝑖𝑖𝑡𝑡 = 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡 + 𝐹𝐹 �𝑥𝑥𝑅𝑅1𝑖𝑖
𝑡𝑡 − 𝑥𝑥𝑅𝑅2𝑖𝑖

𝑡𝑡 � + 𝐹𝐹 �𝑥𝑥𝑅𝑅3𝑖𝑖
𝑡𝑡 − 𝑥𝑥𝑅𝑅4𝑖𝑖

𝑡𝑡 � (4)

 DE/rand/2: 𝑣𝑣𝑖𝑖𝑡𝑡 = 𝑥𝑥𝑅𝑅1𝑖𝑖
𝑡𝑡 + 𝐹𝐹 �𝑥𝑥𝑅𝑅2𝑖𝑖

𝑡𝑡 − 𝑥𝑥𝑅𝑅3𝑖𝑖
𝑡𝑡 � + 𝐹𝐹 �𝑥𝑥𝑅𝑅4𝑖𝑖

𝑡𝑡 − 𝑥𝑥𝑅𝑅5𝑖𝑖
𝑡𝑡 � (5)

The vectors 𝑥𝑥𝑅𝑅1 to 𝑥𝑥𝑅𝑅5 are randomly chosen solution vectors from the current population,

which differ from the current solution vector 𝑥𝑥𝑖𝑖 and are randomly generated for each

solution vector. 𝐹𝐹 is a positive mutation control parameter for scaling the difference vectors

and 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the best solution vector found so far.

Strategies using the best solution found so far as DE/best/1, DE/best/2 and “DE/current-

to-best/1,” usually display fast convergence speed. As a result, while they perform well

when addressing unimodal objectives, they are more likely to get stuck at a local optima

points when performing on multimodal objectives. On the contrary, the DE/rand/1 strategy

usually exhibits slow convergence speed and better exploration capability. Consequently,

it may perform better when performing on multimodal problems compared to the strategies

relying on the best solution found so far. The two-difference-vectors-based DE/best/2,

6

DE/rand/2 and DE/current-to-best/1 strategies may result in better perturbation than one-

difference-vector-based strategies (Qin, Huang, & Suganthan, 2009).

One of the many attempts that have been made to improve DE’s performance is the

dither method, in which 𝐹𝐹 varies during iterations. According to Price et al. (2005), in this

method 𝐹𝐹 is randomized according as:

 𝐹𝐹 = 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗ �𝐹𝐹ℎ𝑖𝑖𝑖𝑖ℎ − 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙� (6)

where 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙 and 𝐹𝐹ℎ𝑖𝑖𝑖𝑖ℎ are the highest and lowest values of 𝐹𝐹 respectively, and 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is a

uniform random number in the range of [0, 1]. The 𝐹𝐹 can be either randomized in each

generation of the algorithm or for each target vector of the population in a specific

generation.

3.2 Crossover

Through crossover, the donor vector mixes its components with the target vector 𝑥𝑥𝑖𝑖𝑡𝑡 to form

the offspring vector 𝑢𝑢𝑖𝑖𝑡𝑡 = �𝑢𝑢𝑖𝑖,1𝑡𝑡 ,𝑢𝑢𝑖𝑖,2𝑡𝑡 , … ,𝑢𝑢𝑖𝑖,𝑑𝑑𝑡𝑡 � according to a predefined probability.

According to Das et al. (2016), binomial crossover can be described as:

 𝑢𝑢𝑖𝑖,𝑗𝑗𝑡𝑡 = �
𝑣𝑣𝑖𝑖,𝑗𝑗𝑡𝑡 , 𝑖𝑖𝑖𝑖 𝑗𝑗 = 𝑘𝑘 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖,𝑗𝑗 ≤ 𝐶𝐶𝐶𝐶
𝑥𝑥𝑖𝑖,𝑗𝑗𝑡𝑡 , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (7)

where 𝑘𝑘 is randomly chosen in {1,2, … ,𝑑𝑑}, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖,𝑗𝑗 is a random number in the range [0,1]

and 𝑗𝑗 = 𝑘𝑘 guarantees that at least one component from 𝑣𝑣𝑖𝑖𝑡𝑡 is chosen by 𝑢𝑢𝑖𝑖𝑡𝑡, to ensure that

the new solution does not duplicate the original one. Finally, 𝐶𝐶𝐶𝐶 is the predefined crossover

probability.

3.3 Selection operation

Selection determines whether the target (parent) or the trial (offspring) vector survives to

the next generation. The selection operation for maximization problems is described as:

 𝑥𝑥𝑖𝑖𝑡𝑡+1 = �
𝑣𝑣𝑖𝑖𝑡𝑡, 𝑓𝑓(𝑣𝑣𝑖𝑖𝑡𝑡) ≥ 𝑓𝑓(𝑥𝑥𝑖𝑖𝑡𝑡)
𝑥𝑥𝑖𝑖𝑡𝑡 , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (8)

where 𝑓𝑓(𝑣𝑣𝑖𝑖𝑡𝑡) and 𝑓𝑓(𝑥𝑥𝑖𝑖𝑡𝑡) are the function values of 𝑣𝑣𝑖𝑖𝑡𝑡 and 𝑥𝑥𝑖𝑖𝑡𝑡, respectively.

7

3.4 Working steps of DE

According to Zhou et al. (2016) the working steps of DE are the follows:

Step 1: Initialization. Initialization of parameters and solution vectors. Evaluation of each

solution vector.

Step 2: Mutation. Mutant vectors are generated using one of the mutation operations (1-5).

Step 3: Crossover. Candidate vectors are generated using the crossover operation (7).

Step 4: Selection for next iteration. Determine vectors for the next iteration’s population

using formula (8).

Step 5: If stopping criteria are met, return the individual with the best fitness found. If not,

continue to the next iteration (Step 2).

4 Applying FSTDE and other DE variants to the PLD problem

This section describes the formulations of the PLD problem on which FSTDE and other

DE variants are evaluated. All the algorithms have been programmed with the use of the

MATLAB platform. The simulations have been carried out on an i5 3.3 GHz desktop

computer, with 8 GB of RAM and a 64-bit operating system. Furthermore, the Pearson's

correlation coefficient (𝑟𝑟) is used to investigate the bivariate correlation level between the

parameters and the average values obtained from the results of DE algorithm after 10 runs.

4.1 Problem formulation

Following Belloni et al. (2008), the first problem concerns an actual PLD problem faced

by Timbuk2, a manufacturer of school bags. A conjoint study that focused on price and

nine binary product features was conducted by a group of academic researchers in

cooperation with the company (additional details can be found in Toubia et al., 2003).

After the market survey, the preferences of 324 consumers on the ten characteristics of

each bag are known. The first feature is the price that can take seven different levels ($70,

$75, $80, $85, $90, $95 and $100). The remaining nine features are yes / no values (exists

/ does not exist). In addition, the company provides the cost of each feature.

According to Belloni et al. (2008), the number of possible products that can be designed

by combining these features is 3,584, of which 4.9×1015 different product lines consisting

of five products can be created. The profit for each of these 3,584 products is equal to its

8

sale price, minus the cost of its features and a fixed production cost of $35. Table 1 presents

the marginal cost of each feature, as well as its average part-worth among the 324

consumers.

Table 1: Incremental marginal cost and average part-worth of each feature
Feature Average part-worth Incremental marginal cost ($)
$5 Price increase -7.6 -5.00
Large size 17.9 3.50
Red color (not black) -36.0 0.00
School logo 9.0 2.00
Handle 37.7 3.50
Gadget holder 5.2 3.00
Cell phone holder 5.5 3.00
Mesh pocket 9.7 2.00
Velcro flap 18.2 3.50
Reinforcing boot 24.4 4.50

Using the first choice rule (maximum utility) the preferred product among the firm’s

five bags and three competitive ones is identified for each consumer.

By summing up the earnings from the sales of each bag, we calculate the earnings of

the product line, which constitutes the objective function of the problem. Through running

a Lagrangian relaxation with branch and bound for one week computational time, Belloni

et al. (2008) found the global optimum solution, which is a product line of five bags with

$12226 predicted earnings.

4.2 Application of the original DE to the Product Line Design Problem

To design a product line of five bags that maximizes the predicted earnings, we apply the

original DE algorithm to the data set obtained by Belloni et al. (2008). One of the most

critical issues when developing a DE algorithm is the solution representation. DE operates

in continuous spaces, while our application consists of a discrete domain of solutions, since

all attributes take a limited number of discrete levels. Hence, a rule must be employed that

coverts the real vector produced by the algorithm to the discrete domain required by the

problem. There are two ways of presenting a solution, a binary representation and an

integer one. In the binary representation, each vector’s element represents the level of an

attribute. The element that corresponds to the selected level for each attribute takes a value

9

of 1, while the rest of the levels take the value zero. In the integer representation, each

element corresponds to an attribute and its value represents the attribute’s level. However,

even though integer representation requires smaller vector lengths and less computational

time, binary representation have shown better performance in similar problems (Tsafarakis

et al., 2011).

Using the binary representation scheme, the length of each vector (total number of

attribute levels) is 25. Furthermore, a rule which ensures that within each attribute only a

single element takes the value of 1 must be applied. For instance, as shown in Table 2, a

large red bag, priced at $85, with handle and Cell phone holder, would be represented as

[0001000 01 01 10 01 10 01 10 10 10]:

Table 2: Representation of a random bag configuration

Price ($) Large
size

Red
color

School
logo Handle Gadget

holder

Cell
phone
holder

Mesh
pocket

Velcro
flap

Reinfor
cing
boot

70

75

80

85

90

95

10
0

N
o

Y
es

N
o

Y
es

N
o

Y
es

N
o

Y
es

N
o

Y
es

N
o

Y
es

N
o

Y
es

N
o

Y
es

N
o

Y
es

0 0 0 1 0 0 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0

Since DE operates in continuous spaces, a representation with four-decimal points of a

potential vector for a single product could be: y = [0.1269 0.5468 0.9571 -0.5007 0.8491

0.3922 0.2769 -0.3419 0.3958 0.6463 0.6550 0.9831 0.5059 0.7241 0.8142 0.2510 0.5852

0.7537 1.3449 0.4693 0.3112 0.6540 0.2289 0.9961 0.0046]. To convert a continuous

vector to the required binary representation, the modified Smallest Position Value (SPV)

rule was used, which has shown the best performance in the optimal product line design

problem, even though it is the most time consuming (Tsafarakis et al., 2011). According to

the SPV rule, the element with the smallest value on each attribute takes a value of 1, while

the rest take a value of 0. The SPV rule performs great and it is widely used because it

allows an algorithm to search in the continuous space, without setting any boundaries, or

using any rounding off procedures (e.g. dropping the sign and fractional part of a real

number, or truncate it to the nearest integer), which may lead to suboptimal solutions. SPV

has already been successfully applied to DE in Tasgetiren et al. (2009). By applying the

rule in the case of vector y we have: y = [0.1269 0.5468 0.9571 -0.5007 0.8491 0.3922

0.2769 | -0.3419 0.3958 | 0.6463 0.6550 | 0.9831 0.5059 | 0.7241 0.8142 | 0.2510 0.5852 |

10

0.7537 1.3449 | 0.4693 0.3112 | 0.6540 0.2289 | 0.9961 0.0046], which is converted to y =

[0001000 10 10 01 10 10 10 01 01 01].

4.3 Adjustment of Differential Evolution parameters

To adjust the DE parameters, we tested different values for population size, 𝐹𝐹 and 𝐶𝐶𝐶𝐶, using

DE/rand/1, which is the most commonly used strategy (Zhou et al., 2016). Initially, we

tested the performance of the algorithm by changing the population size from 30 to 100

with a step size of 10. Each population size was tested for 10 runs. The algorithm runs until

100,000 function evaluations are reached. The results are presented in Figure 1.

Figure 1. Results of DE with different values of population size

Regarding the bivariate correlation level between the population size values and the

mean of the DE’s results after 10 runs, no correlation was observed (𝑟𝑟 = −.10,𝑝𝑝 = .81).

As a result, there is no relation between the values of population size and DE’s results,

hence we decided to use a population size of 50, because it was found that the algorithm

needed less function evaluations (about 60,000 in total) to converge than the rest sizes.

Moreover, we tested the performance of DE by changing the mutation control parameter

𝐹𝐹 from 0.1 to 0.9 with a step size of 0.1. Each value was tested for 10 runs. The results are

demonstrated in Figure 2.

12080
12100
12120
12140
12160
12180
12200
12220
12240

30 40 50 60 70 80 90 100

Ea
rn

in
gs

Population Size
Best Mean

11

Figure 2. Results of DE with different values of 𝐹𝐹

Regarding the bivariate correlation level between the 𝐹𝐹 values and the mean of the

results given by DE after 10 runs, no correlation was observed (𝑟𝑟 = −.01,𝑝𝑝 = .98). As a

result, there is no relation between the values of 𝐹𝐹 and DE’s results. For that reason, we

decided to use the dither version (6), with an 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙of 0.1 and an 𝐹𝐹ℎ𝑖𝑖𝑖𝑖ℎ of 0.9.

Finally, we tested the performance of DE by changing the probability 𝐶𝐶𝐶𝐶 from 0.01 to

0.99 with a step size of 0.01. Each value was tested for 10 runs. The results are

demonstrated in Figure 3.

Figure 3. Results of DE with different values of 𝐶𝐶𝐶𝐶

12080
12100
12120
12140
12160
12180
12200
12220
12240

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ea
rn

in
gs

F
Best Mean

11100

11300

11500

11700

11900

12100

12300

0,
01

0,
05

0,
09

0,
13

0,
17

0,
21

0,
25

0,
29

0,
33

0,
37

0,
41

0,
45

0,
49

0,
53

0,
57

0,
61

0,
65

0,
69

0,
73

0,
77

0,
81

0,
85

0,
89

0,
93

0,
97

Ea
rn

in
gs

Cr
Best Mean

12

Regarding the bivariate correlation level between the 𝐶𝐶𝐶𝐶 values and the mean of the

results given by DE after 10 runs, negative strong correlation was observed (𝑟𝑟 = −.76),

which means that DE performs better with small values of 𝐶𝐶𝐶𝐶. Consequently, we chose the

𝐶𝐶𝐶𝐶 = 0.05, since it achieved the highest performance of both best and mean values.

4.4 Fuzzy Self-Tuning DE

Even though in Subsection 4.3 we explored the best values for the algorithm's parameters,

the performance of the original DE is not only highly dependent on its parameter settings,

but also on the dataset. As a result, DE may not be as effective using the same parameters

when performing on different datasets. To overcome this, an automatic parameter tuning

method can be used, such as the self-adaptive DE (Al-Anzi & Allahverdi, 2007; Fan, Yan,

& Zhang, 2018; Salman, Engelbrecht, & Omran, 2007; Zhao et al., 2016). In this subsection

the fully-automated version of DE, called Fuzzy Self-Tuning DE (FSTDE) is described,

where the values of DE settings are dynamically controlled by means of FL. According to

literature, FL is already applied to various metaheuristics that suffer from the parameters

tuning, which is considerably dependent on the problem (Noorbin & Alfi, 2018; Olivas,

Valdez, Castillo, & Melin, 2018).

To determine the population size, FSTDE exploits the heuristic 𝑁𝑁 = �10 +

2�𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∙ total number of attribute levels� which sets the value of

population size according to the number of dimensions of the search space, as suggested

by Nobile et al. (2018).

To dynamically determine the values of DE’s parameters in an automatic way,

independently for each solution, we make use of a Fuzzy Rule-Based System (FRBS)

consisting of nine fuzzy rules, reported in Table 3. These rules are based on the distance of

each solution from the best solution found so far, and a function measuring the fitness

improvement of each solution with respect to the previous iteration.

Since we dynamically determine the values of DE’s parameters, we decided to use a

combination of DE/rand/1 and DE/current-to-best/1 mutation strategies defined as:

 FSTDE: 𝑣𝑣𝑖𝑖𝑡𝑡 = 𝑥𝑥𝑅𝑅1𝑖𝑖
𝑡𝑡 + 𝐹𝐹1 �𝑥𝑥𝑅𝑅2𝑖𝑖

𝑡𝑡 − 𝑥𝑥𝑅𝑅3𝑖𝑖
𝑡𝑡 � + 𝐹𝐹2 �𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡 − 𝑥𝑥𝑅𝑅4𝑖𝑖

𝑡𝑡 � (9)

13

The purpose of this combination is to take advantage of the better exploration capability of

DE/rand/1, along with the fast convergence speed of DE/current-to-best/1, as mentioned in

Subsection 3.1, depending on the distance of each solution from the best solution found so

far, and the solution’s improvement with respect to the previous iteration.

As Nobile et al. (2018) use in their research, the distance between two solutions is

calculated as:

 𝛿𝛿�𝐱𝐱𝑖𝑖𝑡𝑡,𝐱𝐱𝑗𝑗𝑡𝑡� = �𝐱𝐱𝑖𝑖𝑡𝑡 − 𝐱𝐱𝑗𝑗𝑡𝑡� = �∑ �𝑥𝑥𝑖𝑖,𝑘𝑘𝑡𝑡 − 𝑥𝑥𝑗𝑗,𝑘𝑘
𝑡𝑡 �

2𝑀𝑀
𝑘𝑘=1 (10)

where 𝑥𝑥𝑖𝑖,𝑘𝑘𝑡𝑡 and 𝑥𝑥𝑗𝑗,𝑘𝑘
𝑡𝑡 denote the k-th component of the position vectors 𝐱𝐱𝑖𝑖𝑡𝑡 and 𝐱𝐱𝑗𝑗𝑡𝑡,

respectively.

The normalized fitness incremental factor 𝜑𝜑: ℝ𝛭𝛭 × ℝ𝛭𝛭 → [−1,1], considers the

positions of solution 𝑖𝑖 at the current and previous iterations:

 𝜑𝜑(𝐱𝐱𝑖𝑖𝑡𝑡,𝐱𝐱𝑖𝑖𝑡𝑡−1) = −𝛿𝛿�𝐱𝐱𝑖𝑖
𝑡𝑡,𝐱𝐱𝑖𝑖

𝑡𝑡−1�
𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚

∙ min�𝑓𝑓�𝐱𝐱𝑖𝑖
𝑡𝑡�,𝑓𝑓𝛥𝛥�−min�𝑓𝑓�𝐱𝐱𝑖𝑖

𝑡𝑡−1�,𝑓𝑓𝛥𝛥�
|𝑓𝑓𝛥𝛥| (11)

where 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚 is the length of the diagonal of the hyper-rectangle corresponding to the search

space, while 𝑓𝑓𝛥𝛥 represents the worst fitness value found so far (for more details see: Nobile

et al., 2018). The main purpose of 𝛿𝛿 is to characterize the proximity to the global best,

while the purpose of 𝜑𝜑 is to characterize the improvement of a solution with respect to the

fitness value it assumed in the previous iteration. During each iteration, each solution

compute independently their own values for 𝛿𝛿 and 𝜑𝜑, which are used to calculate the output

variables according to the rules reported in Table 3.

According to Nobile et al. (2018), the variable of 𝛿𝛿 corresponds to the interval [0, 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚].

The term set of this variable is composed by three linguistic values, Same, Near and Far.

The membership function of Same is: a) 1, if 0 ≤ 𝛿𝛿 < 𝛿𝛿1, b) (𝛿𝛿2−𝛿𝛿)
(𝛿𝛿2−𝛿𝛿1), if 𝛿𝛿1 ≤ 𝛿𝛿 < 𝛿𝛿2, and

c) 0, if 𝛿𝛿2 ≤ 𝛿𝛿 < 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚. The membership function of Near is: a) 0, if 0 ≤ 𝛿𝛿 < 𝛿𝛿1, b) (𝛿𝛿−𝛿𝛿1)
(𝛿𝛿2−𝛿𝛿1),

if 𝛿𝛿1 ≤ 𝛿𝛿 < 𝛿𝛿2, c) (𝛿𝛿3−𝛿𝛿)
(𝛿𝛿3−𝛿𝛿2), if 𝛿𝛿2 ≤ 𝛿𝛿 < 𝛿𝛿3, and d) 0, if 𝛿𝛿3 ≤ 𝛿𝛿 < 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚. The membership

function of Far is: a) 0, if 0 ≤ 𝛿𝛿 < 𝛿𝛿2, b) (𝛿𝛿−𝛿𝛿2)
(𝛿𝛿3−𝛿𝛿2), if 𝛿𝛿2 ≤ 𝛿𝛿 < 𝛿𝛿3, and c) 1, if 𝛿𝛿3 ≤ 𝛿𝛿 <

𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚. The values of 𝛿𝛿1, 𝛿𝛿2 and 𝛿𝛿3 are set according to the size of the search space as: 𝛿𝛿1 =

0.2 ∙ 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚, 𝛿𝛿2 = 0.4 ∙ 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚 and 𝛿𝛿3 = 0.6 ∙ 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚. As Nobile et al. (2018) mention in their

14

research, the general-purpose multipliers are created to avoid any overfitting to the

benchmark function and implement a general and fuzzy concept of distance from the best

solution found so far.

The variable of 𝜑𝜑 corresponds to the interval [−1,1]. The term set of this variable is

composed by three linguistic values, Better, Same and Worse. The membership function

of Better is: a) 1, if 𝜑𝜑 = −1, b) −𝜑𝜑, if −1 < 𝜑𝜑 < 0, and c) 0, if 0 ≤ 𝜑𝜑 ≤ 1. The

membership function of Same is: 1 − |𝜑𝜑|, and the membership function of Worse is: a) 0,

if −1 ≤ 𝜑𝜑 < 0, b) 𝜑𝜑, if 0 ≤ 𝜑𝜑 < 1, and c) 1, if 𝜑𝜑 = 1. However, since DE accepts a new

solution only if it improves the previous one, the Worse scenario is not technically applied

in this research.

Given a set of a specific number of R rules having the same output variable in their

consequent (e.g., rules 1, 2, 3 in Table 3 for 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙,1 and 𝐹𝐹ℎ𝑖𝑖𝑖𝑖ℎ,1), the final numerical value of

this output variable is calculated using the Sugeno method (Sugeno, 1985) as:

 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = ∑ 𝜌𝜌𝑟𝑟𝑧𝑧𝑟𝑟𝑅𝑅
𝑟𝑟=1
∑ 𝜌𝜌𝑟𝑟𝑅𝑅
𝑟𝑟=1

 (12)

where 𝜌𝜌𝑟𝑟 denotes the membership degree of the input variable of the r-th rule, and 𝑧𝑧𝑟𝑟

represents the output crisp value for the r-th rule, as given in Table 4.

Table 3: Fuzzy rules used by FSTDE
Rule no. Rule definition
1 if (𝛿𝛿 is Far) then (𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙,1 and 𝐹𝐹ℎ𝑖𝑖𝑖𝑖ℎ,1 are Low)
2 if (𝜑𝜑 is Same or 𝛿𝛿 is Same or 𝛿𝛿 is Near) then (𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙,1 and 𝐹𝐹ℎ𝑖𝑖𝑖𝑖ℎ,1 are Medium)
3 if (𝜑𝜑 is Better) then (𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙,1 and 𝐹𝐹ℎ𝑖𝑖𝑖𝑖ℎ,1 are High)

4 if (𝜑𝜑 is Better or 𝛿𝛿 is Near) then (𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙,2 and 𝐹𝐹ℎ𝑖𝑖𝑖𝑖ℎ,2 are Low)
5 if (𝜑𝜑 is Same or 𝛿𝛿 is Same) then (𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙,2 and 𝐹𝐹ℎ𝑖𝑖𝑖𝑖ℎ,2 are Medium)
6 if (𝛿𝛿 is Far) then (𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙,2 and 𝐹𝐹ℎ𝑖𝑖𝑖𝑖ℎ,2 are High)

7 if (𝜑𝜑 is Same or 𝜑𝜑 is Better) then (𝐶𝐶𝐶𝐶 is Low)
8 if (𝛿𝛿 is Same or 𝛿𝛿 is Near) then (𝐶𝐶𝐶𝐶 is Medium)
9 if (𝛿𝛿 is Far) then (𝐶𝐶𝐶𝐶 is High)

15

Table 4: Output variables and their defuzzification
Output
Variable

Low Medium High

𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙 0.1 0.4 0.7
𝐹𝐹ℎ𝑖𝑖𝑖𝑖ℎ 0.4 0.7 0.9
𝐶𝐶𝐶𝐶 0.01 0.1 0.5

Rules 1, 2 and 3 control the strength of the difference of the two random vectors. If the

solution is far from the best solution found so far (i.e. 𝛿𝛿 is Far), 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙,1 and 𝐹𝐹ℎ𝑖𝑖𝑖𝑖ℎ,1 are set

to Low, because it is reasonable for it to “ignore” the information shared by two random

solutions. On the contrary, when a better solution is found, it should rather “follow the

advice” of the two random solutions to better explore the space nearby. An intermediate

value is assigned to 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙,1 and 𝐹𝐹ℎ𝑖𝑖𝑖𝑖ℎ,1 if no relevant changes occur either in the fitness

value or in the distance from the best solution (i.e., 𝜑𝜑 and 𝛿𝛿 are Same or 𝛿𝛿 is Near).

Rules 4, 5 and 6 control the strength of the attraction of a solution towards the best

solution found so far. If either a better solution is found (i.e., 𝜑𝜑 is Better), or the best

solution is being approached (i.e., δ is Near), then it is reasonable for it to “ignore” the

information shared by the best solution found so far. Under these conditions, 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙,2 and

𝐹𝐹ℎ𝑖𝑖𝑖𝑖ℎ,2 are set to Low. On the contrary, when a better solution is not found or the solution

is not close to the best solution found so far, it should rather “follow the advice” of the best

solution found so far. Hence, we set 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙,2 and 𝐹𝐹ℎ𝑖𝑖𝑖𝑖ℎ,2 are set to High values. An

intermediate value is assigned to 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙,2 and 𝐹𝐹ℎ𝑖𝑖𝑖𝑖ℎ,2 if no relevant changes occur either in

the fitness value or in the distance from the best solution (i.e., 𝜑𝜑 and 𝛿𝛿 are Same).

Finally, rules 7, 8 and 9 control the 𝐶𝐶𝐶𝐶 value. If a solution is far from the best solution

found so far, then 𝐶𝐶𝐶𝐶 is set to High in order to accept more values from the mutant vector.

On the contrary, if the solution has any improvement or is the same, then 𝐶𝐶𝐶𝐶 is set to Low.

An intermediate value is assigned to 𝐶𝐶𝐶𝐶 when the solution is near to the best solution found

so far, or 𝛿𝛿 is Same in order help the algorithm escape local optima.

16

4.4.1 Determination of parameters by FSTDE

To demonstrate what happens when the proposed FSTDE determines the parameter

values for the problem discussed in Subsection 4.3, we run the proposed FSTDE while

tracking the calculated parameter settings independently for each solution during the

optimization process. As a result, a set of values is created for each parameter (except the

parameter of population size which was only calculated once in the beginning).

First, population size was set to 32, according to the heuristic described in Subsection

4.4. 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙,1 had an average value of 0.395, a standard deviation of 0.026 and a median value

of 0.400 in the range of 0.100 to 0.443, while 𝐹𝐹ℎ𝑖𝑖𝑖𝑖ℎ,1 had an average value of 0.695, a

standard deviation of 0.025 and a median value of 0.700 in the range of 0.550 to 0.729.

Moreover, 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙,2 had an average value of 0.405, a standard deviation of 0.026 and a median

value of 0.400 in the range of 0.100 to 0.550, while 𝐹𝐹ℎ𝑖𝑖𝑖𝑖ℎ,2 had an average value of 0.703,

a standard deviation of 0.017 and a median value of 0.700 in the range 0.657 to 0.800.

Finally, 𝐶𝐶𝐶𝐶 had an average value of 0.064, a standard deviation of 0.044 and a median value

of 0.055 in the range of 0.012 to 0.497.

As it was noticed, even though the value of population size differed to the value obtained

in Subsection 4.3, the median value of 𝐶𝐶𝐶𝐶 was really close to the value obtained in

Subsection 4.3. Moreover, the FRBS tuning method managed to find more accurate values

that were not checked during the tuning process in Subsection 4.3 (e.g. 𝐶𝐶𝐶𝐶 = 0.055). As a

result, the algorithm can successfully calculate its parameters according to the needs of

each candidate solution.

Τo investigate any possible performance improvement or reduction using the FRBS

tuning method, the proposed FSTDE was compared to all the mutation strategies

mentioned in Subsection 3.1 that use the parameter settings mentioned in Subsection 4.3.

The comparison results are demonstrated in Section 5.

5 Comparison

In this section, we compare the performance of FSTDE to that of the other DE approaches,

as well as to that of GA and SA, which where the best performing methods in the study of

Belloni et al. (2008). Particularly, FSTDE and all the mutation strategies mentioned in

17

Subsection 3.1 and 4.4, will be compared to the performance of GA and SA as they were

configured by Belloni et al. (2008). At first, we use the real conjoint data set. Then, we test

whether the model we have developed is affected by errors in consumer preference

measurements, and whether the model can be generalized by changing the size of the

problem. In our simulations, each algorithm runs until 70,000 function evaluations are

reached, performing 50 replications for each case. Moreover, the Mann-Whitney test is

used to compare differences between two optimization methods. Statistical analysis was

performed using SPSS Version 21 statistic software package.

5.1 Real conjoint data set

Table 5 shows the results of the comparison of DE’s (including FSTDE) performance using

different mutation strategies, with that of GA and SA on the real conjoint data, while Figure

4 shows the convergence characteristic curves of them. Each DE strategy runs for about 20

seconds on average, while GA and SA need about 2 and 3.5 seconds on average,

respectively. That verifies the findings of Tsafarakis et al. (2011) that the SPV mapping

requires more computational time.

Table 5: Comparison of methods performing on the real conjoint data set
Statistics FSTDE DE/rand/1 DE/rand/2 DE/best/1 DE/best/2 DE/current-

to-best/1
SA GA

Best 12226 12226 12226 12226 12226 12226 11781.5 12226
Worst 12055.5 12055.5 12040.5 12032.5 12052.5 11961.5 10867 11895.5
Mean 12202.1 12201.38 12166.47 12148.13 12179.95 12099.57 11140.82 12083.62
Median 12223.5 12223.5 12208.75 12175 12218.5 12084 11140 12055.5
Sd. 3.99E+01 4.75e+01 6.84e+01 6.98e+01 6.39e+01 8.40e+01 1.91e+02 1.12e+02

18

Figure 4. Convergence characteristic curves of the algorithms under comparison

The results obtained above indicate that superiority of all the DE mutation strategies

over SA when performing on the real conjoint dataset. They also indicate that all the DE

mutation strategies are really competitive to GA. According to Table 5, FSTDE is the most

successful mutation strategy of DE.

Objective function values of FSTDE (Mdn = 12223.5) were higher than those of SA

(Mdn = 11140). A Mann-Whitney test indicated this difference was statistically significant,

U(NFSTDE = 50, NSA = 50) = 0, z = -8.69, p < .001. Moreover, objective function values of

FSTDE (Mdn = 12223.5) were higher than those of GA (Mdn = 12055.5). A Mann-Whitney

test indicated this difference was statistically significant, U(NFSTDE = 50, NGA = 50) = 636,

z = -4.29, p < .001.

Moreover, Figure 4 demonstrates that FSTDE converges faster than all the other

algorithms.

19

5.2 Robustness testing

The accuracy of the results does not only depend on the efficiency and effectiveness of the

optimization method used to solve the problem, but also on other external factors.

According to Belloni et al. (2008), one of the most important factors is the accuracy in the

estimation of consumer preferences, that is the partworths of each feature, as estimated by

conjoint analysis. To test the robustness of the methods in the presence of a measurement

error during the conjoint analysis process, we repeated our analysis after perturbing the

original partworth estimates, just like Belloni et al. (2008) did. These perturbations were

accomplished by adding a (simulated) error to the partworths:

 𝑢𝑢𝑖𝑖,𝑗𝑗′ = 𝑢𝑢𝑖𝑖,𝑗𝑗 + 𝜀𝜀𝑖𝑖,𝑗𝑗 (13)

where 𝑢𝑢𝑖𝑖,𝑗𝑗 is the original partworth for respondent 𝑖𝑖 on product feature 𝑗𝑗, 𝜀𝜀𝑖𝑖,𝑗𝑗 is a zero-

mean, independent normal error term which works differently across customers or attribute

levels, and 𝑢𝑢𝑖𝑖,𝑗𝑗′ is the perturbed part-worth.

We run each algorithm 50 times, obtaining 50 sets of perturbed partworths for each

respondent. The perturbation terms are treated as measurement error. Under this

interpretation, the original partworths that we analyzed in Table 1, is the only set of “true”

partworths. However, we assume that the researcher can only observe the partworths that

are subject to measurement error. The results are reported in Table 6.

Table 6: Comparison of methods performing under Measurement Error
Statistics FSTDE DE/rand/1 DE/rand/2 DE/best/1 DE/best/2 DE/current-

to-best/1
SA GA

Best 12189 12189 12073 12058 12077 12074 11311.5 12045
Worst 11651.5 11209.5 10920.5 10819.5 11185.5 11185.5 9813 11105
Mean 12094.22 11737.43 11662.33 11680.32 11734.49 11681.62 10711.38 11630.34
Median 12187.5 11754.25 11735.5 11722.25 11743 11673.75 10690.25 11676.5
Sd. 1.84e+02 1.75e+02 2.53e+02 2.49e+02 1.86e+02 2.11e+02 3.12e+02 2.17e+02
CP* (%) 38 37.6 36.8 36.4 37.6 36.8 23.2 30.8
CF* (%) 86.31 85.04 84.44 84.68 84.96 84.84 75.8 83.28
* CP and CF correspond to the common products and common features within the optimal line
respectively.

20

From the results obtained from Table 6, we note that all the different mutation strategies

of DE (especially the FSTDE strategy) are least affected by the measurement error on

consumer preferences. On the contrary, SA is the most affected method.

Objective function values of FSTDE (Mdn = 12187.5) were higher than those of SA

(Mdn = 10690.25). A Mann-Whitney test indicated this difference was statistically

significant, U(NFSTDE = 50, NSA = 50) = 0, z = -8.64, p < .001. Moreover, objective function

values of FSTDE (Mdn = 12187.5) were higher than those of GA (Mdn = 11676.5). A

Mann-Whitney test indicated this difference was statistically significant, U(NFSTDE = 50,

NGA = 50) = 171, z = -7.65, p < .001.

5.3 Results using simulated data

In this subsection, we also compare the performance of FSTDE and other DE variants to

that of GA and SA, using simulated data. In each simulated problem, we design a product

line consisting of 3 or 4 products, each composed of 3, 5, or 7 attributes that can take on 2,

3, 5, or 8 different levels. We assume that there are either 50 or 100 customers for each

case. We select 12 different problem sizes as presented in Table 7 and 10 different

replications for each size are generated, resulting in a total of 120 simulated data sets.

Table 7: Different problem sizes

Customers Attributes Levels Products

50 3 5 4
100 3 5 4
50 5 3 4

100 5 3 4
50 7 2 4

100 7 2 4
50 3 8 3

100 3 8 3
50 5 5 3

100 5 5 3
50 7 3 3

100 7 3 3

21

The summary results are shown in Table 8, where each algorithm’s average

performance is shown as a percentage of the best solution found among all tested

algorithms.

Table 8: Comparison of methods performing on simulated data

Statistics FSTDE DE/rand/1 DE/rand/2 DE/best/1 DE/best/2 DE/current-
to-best/1

SA GA

Average
performance 99.85 99.68 99.87 97.17 97.04 97.28 90.90 99.09

From the comparison results, we notice that the DE/rand implementations exhibit the

best performance.

To further test FSTDE and other DE variants in larger problem sizes, we increase

specific dimensions of the above sets, as shown in Table 9.

Table 9. Problem with increased dimension sizes.
Customers Attributes Levels Products

50 3 5 5
100 3 5 5
50 8 3 4

100 8 3 4
50 9 2 4

100 9 2 4
50 3 9 3

100 3 9 3
50 5 5 6

100 5 5 6
50 9 3 3

100 9 3 3

The comparison results of the methods are presented in Table 10.

Table 10: Comparison of methods performing on the problems presented in Table 9

Statistics FSTDE DE/rand/1 DE/rand/2 DE/best/1 DE/best/2 DE/current-
to-best/1

SA GA

Average
performance

99.31 99.26 98.92 97.97 98.05 98.06 86.57 97.87

The results above indicate that all DE variants (especially the FSTDE strategy) are

superior to both GA and SA as the problem sizes increased.

22

6 Conclusions

In this paper, a Fuzzy Self-Tuning Differential Evolution (FSTDE) along with various

different mutation strategies of DE are applied on the PLD problem. The main idea of

FSTDE is to overcome specific difficulties of DE when performing on different datasets

using the same parameter settings. Because this is the first reported application of the DE

algorithm to the problem, we explored the best values for the algorithm's tuning parameters

through statistical analysis. Particularly, we showed that the values of mutation control

parameter and population size parameter does not affect the results significantly, while DE

works better with small values of the crossover probability. DE appeared to perform great

with a population size of about 2 times the number of design variables, while GA requires

a population size of 10 times the number of design variables when applied to the PLD

problem.

The comparison results reveal that most of the times DE variants have superior

performance to both SA and GA. Particularly, FSTDE appears to have a higher

performance when performing on PLD, exhibiting a higher probability of finding a global

optimum in less function evaluations. The results were verified using statistical analyses.

FSTDE was found to be the most successful mutation strategy among all, when performing

on PLD, followed by DE/rand/1 which verifies the statement of Qin et al. (2009) that the

DE/rand/1 strategy is usually distinguished by better exploration capability. The

convergence behavior of all DE’s mutation strategies is also exceptional, since most of the

times they reach the best overall solution in the early iterations. FSTDE was found to have

high convergence capabilities compared to the rest, because of its ability to “follow the

advice” of the best solution found so far when a better solution is not found, or the solution

is not close to the best solution found so far. Moreover, while increasing the dimension

sizes of the problem we noticed that DE’s performance is superior over that of SA and GA

in terms of accuracy and efficiency. Overall, DE constitutes a robust algorithm that has the

potential to be generalized in large scale real world PLD problems of well-known firms,

and therefore it is an attractive alternative solution process to the PLD problem.

An interesting area for future research is solving the PLD problem optimizing more than

one objective at the same time. This requires the application of multiobjective optimization

algorithms, instead of the single-objective algorithms that have been employed so far to

23

the problem. A multiobjective approach, along with a Pareto optimal analysis, will enable

the firm to optimize two or more objectives (e.g., profit maximization and market share

maximization) at the same time, while setting a number of constraints (e.g., cost of

production not more than a specific value).

Acknowledgments

We wish to thank Prof. John Hauser, Olivier Toubia, and Matthew Selove for the

provision of the datasets. We are also grateful for the support of the editor, Prof. José

Fernando Oliveira, and the many comments of the anonymous reviewers, who helped much

in improving this article.

References

Al-Anzi F.S, & Allahverdi, A., (2007). A self-adaptive differential evolution heuristic for

two-stage assembly scheduling problem to minimize maximum lateness with setup

times. European Journal of Operational Research, 182(1), 80–94.

Albritton, M. D., & McMullen, P. R. (2007). Optimal product design using a colony of

virtual ants. European Journal of Operational Research, 176(1), 498–520.

https://doi.org/10.1016/J.EJOR.2005.06.042

Alexouda, G., & Paparrizos, K. (2001). A genetic algorithm approach to the product line

design problem using the seller’s return criterion: An extensive comparative

computational study. European Journal of Operational Research, 134(1), 165–178.

https://doi.org/10.1016/S0377-2217(00)00246-0

Ali, I. M., Essam, D., & Kasmarik, K. (2018). An Efficient Differential Evolution

Algorithm for Solving 0-1 Knapsack Problems. 2018 IEEE Congress on Evolutionary

Computation, CEC 2018 - Proceedings. https://doi.org/10.1109/CEC.2018.8477916

Ali, I. M., Essam, D., & Kasmarik, K. (2019). A novel differential evolution mapping

technique for generic combinatorial optimization problems. Applied Soft Computing

Journal, 80, 297–309. https://doi.org/10.1016/j.asoc.2019.04.017

24

Baioletti, M., Milani, A., & Santucci, V. (2018). Learning bayesian networks with

algebraic differential evolution. Lecture Notes in Computer Science (Including

Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 11102 LNCS, 436–448. https://doi.org/10.1007/978-3-319-99259-

4_35

Balakrishnan, P. V., Gupta, R., & Jacob, V. S. (2004). Development of Hybrid Genetic

Algorithms for Product Line Designs. IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics, 34(1), 468−483.

https://doi.org/10.1109/TSMCB.2003.817051

Belloni, A., Freund, R., Selove, M., & Simester, D. I. (2008). Optimizing Product Line

Designs: Efficient Methods and Comparisons. Management Science, 54(9),

1544−1552. https://doi.org/10.1287/mnsc.1080.0864

Camm, J. D., Cochran, J. J., Curry, D. J., & Kannan, S. (2006). Conjoint Optimization: An

Exact Branch-and-Bound Algorithm for the Share-of-Choice Problem. Management

Science, 52(3), 435−447. https://doi.org/10.1287/mnsc.1050.0461

Das, S., Mullick, S. S., & Suganthan, P. N. (2016). Recent advances in differential

evolution – An updated survey. Swarm and Evolutionary Computation, 27, 1–30.

https://doi.org/10.1016/J.SWEVO.2016.01.004

Engelbrecht, A. P. (2007). Computational Intelligence: An Introduction. Wiley.

Fan, Q., Yan, X., & Zhang, Y. (2018). Auto-selection mechanism of differential evolution

algorithm variants and its application. European Journal of Operational Research,

270(2), 636−653. https://doi.org/10.1016/j.ejor.2017.10.013

Green, P. E., & Krieger, A. M. (1985). Models and Heuristics for Product Line Selection.

Marketing Science, 4(1), 1–19. https://doi.org/10.1287/mksc.4.1.1

Kohli, R., & Krishnamurti, R. (1989). Optimal product design using conjoint analysis:

Computational complexity and algorithms. European Journal of Operational

Research, 40, 186−195. https://doi.org/10.1016/0377-2217(89)90329-9

Kohli, R., & Sukumar, R. (1990). Heuristics for Product-Line Design Using Conjoint

Analysis. Management Science, 36(12), 1464−1478. https://doi.org/10.2307/2661545

Kotler, P., & Armstrong, G. (2012). Principles of Marketing (12th ed.). New Jersey:

Pearson/Prentice Hall.

25

Lampinen, J., & Storn, R. (2004). Differential Evolution. In G. C. Onwubolu & B. V. Babu

(Eds.), New Optimization Techniques in Engineering (pp. 123–166).

https://doi.org/10.1007/978-3-540-39930-8_6

Luce, R. D., & Tukey, J. W. (1964). Simultaneous conjoint measurement: A new type of

fundamental measurement. Journal of Mathematical Psychology, 1(1), 1–27.

https://doi.org/10.1016/0022-2496(64)90015-X

Nair, S. K., Thakur, L. S., & Wen, K.-W. (1995). Near Optimal Solutions for Product Line

Design and Selection: Beam Search Heuristics. Management Science, 41(5), 767–

785. https://doi.org/10.1287/mnsc.41.5.767

Nobile, M. S., Cazzaniga, P., Besozzi, D., Colombo, R., Mauri, G., & Pasi, G. (2018).

Fuzzy Self-Tuning PSO: A settings-free algorithm for global optimization. Swarm

and Evolutionary Computation, 39, 70–85.

https://doi.org/10.1016/j.swevo.2017.09.001

Noorbin, S. F. H., & Alfi, A. (2018). Adaptive parameter control of search group algorithm

using fuzzy logic applied to networked control systems. Soft Computing, 22(23),

7939–7960. https://doi.org/10.1007/s00500-017-2742-0

Olivas, F., Valdez, F., Castillo, O., & Melin, P. (2018). Dynamic Parameter Adaptation

for Meta-Heuristic Optimization Algorithms Through Type-2 Fuzzy Logic.

https://doi.org/10.1007/978-3-319-70851-5

Papadimitriou, C. H., & Steiglitz, K. (1982). Combinatorial optimization : algorithms and

complexity. Upper Saddle River, NJ: Prentice Hall.

Price, K. V., Storn, R., & Lampinen, J. A. (2005). Differential evolution : a practical

approach to global optimization. Retrieved from

https://dl.acm.org/citation.cfm?id=1121631

Qin, A. K., Huang, V. L., & Suganthan, P. N. (2009). Differential evolution algorithm with

strategy adaptation for global numerical optimization. IEEE Transactions on

Evolutionary Computation, 13(2), 398–417.

https://doi.org/10.1109/TEVC.2008.927706

Santucci, V., Baioletti, M., Di Bari, G., & Milani, A. (2019). A binary algebraic differential

evolution for the multidimensional two-way number partitioning problem. Lecture

Notes in Computer Science (Including Subseries Lecture Notes in Artificial

26

Intelligence and Lecture Notes in Bioinformatics), 11452 LNCS, 17–32.

https://doi.org/10.1007/978-3-030-16711-0_2

Salman, A., Engelbrecht, A.P., Omran M.G.H. (2007). Empirical analysis of self-adaptive

differential evolution. European Journal of Operational Research, 40, 186−195.

https://doi.org/10.1016/j.ejor.2006.10.020

Saridakis, C., Tsafarakis, S., Delias, P., Baltas, G., & Matsatsinis, N. (2015). Optimizing

differentiation and commonality levels among models in car line-ups: An empirical

application of a nature-inspired heuristic mechanism. Expert Systems with

Applications, 42(5), 2323–2335. https://doi.org/10.1016/j.eswa.2014.11.008

Steiner, W., & Hruschka, H. (2003). Genetic Algorithms for Product Design: How Well

do They Really Work? International Journal of Market Research, 45(2), 1–13.

https://doi.org/10.1177/147078530304500202

Storn, R., & Price, K. (1997). Differential Evolution - A Simple and Efficient Heuristic for

Global Optimization over Continuous Spaces. Journal of Global Optimization, (11),

341–359. https://doi.org/10.1023/A:1008202821328

Sugeno, M. (1985). Industrial applications of fuzzy control. North-Holland.

Tasgetiren, M. F., Chen, A., Gencyilmaz, G., & Gattoufi, S. (2009). Smallest Position

Value Approach. In Differential Evolution: A Handbook for Global Permutation-

Based Combinatorial Optimization (pp. 121–138). https://doi.org/10.1007/978-3-

540-92151-6_5

Toubia, O., Simester, D. I., Hauser, J. R., & Dahan, E. (2003). Fast Polyhedral Adaptive

Conjoint Estimation. Marketing Science, 22(3), 273–303.

https://doi.org/10.1287/mksc.22.3.273.17743

Tsafarakis, S. (2016). Redesigning product lines in a period of economic crisis: a hybrid

simulated annealing algorithm with crossover. Annals of Operations Research,

247(2): 617–633. https://doi.org/10.1007/s10479-015-2032-0

Tsafarakis, S., Marinakis, Y., & Matsatsinis, N. (2011). Particle swarm optimization for

optimal product line design. International Journal of Research in Marketing, 28(1),

13–22. https://doi.org/10.1016/j.ijresmar.2010.05.002

Tsafarakis, S., & Matsatsinis, N. (2010). Designing Optimal Products: Algorithms and

Systems. https://doi.org/10.1007/978-3-642-15606-9_19

27

Zhao, Z., Yang, J., Hu, Z., & Che, H. (2016). A differential evolution algorithm with self-

adaptive strategy and control parameters based on symmetric Latin hypercube design

for unconstrained optimization problems. European Journal of Operational Research,

250(1), 30−45.

Zhou, Y., Yi, W., Gao, L., & Li, X. (2016). Analysis of mutation vectors selection

mechanism in differential evolution. Applied Intelligence, 44(4), 904–912.

https://doi.org/10.1007/s10489-015-0738-y

Zufryden, F. (1977). A conjoint measurement-based approach for optimal new product

design and market segmentation. In A. D. Shocker (Ed.), Analytical approaches to

product and marketing planning. Cambridge, MA: Marketing Science Institute.

	ABSTRACT
	1 Introduction
	2 The optimal product line design problem
	3 Differential Evolution
	3.1 Mutation
	3.2 Crossover
	3.3 Selection operation
	3.4 Working steps of DE

	4 Applying FSTDE and other DE variants to the PLD problem
	4.1 Problem formulation
	4.2 Application of the original DE to the Product Line Design Problem
	4.3 Adjustment of Differential Evolution parameters
	4.4 Fuzzy Self-Tuning DE
	4.4.1 Determination of parameters by FSTDE

	5 Comparison
	5.1 Real conjoint data set
	5.2 Robustness testing
	5.3 Results using simulated data

	6 Conclusions
	References

