

The Contingent Role of Interproject Connectedness in Cultivating
Open Source Software Projects

Sutanto, Juliana; Jiang, Qiqi ; Tan, Chuan-Hoo

Document Version
Accepted author manuscript

Published in:
The Journal of Strategic Information Systems

DOI:
10.1016/j.jsis.2020.101598

Publication date:
2021

License
CC BY-NC-ND

Citation for published version (APA):
Sutanto, J., Jiang, Q., & Tan, C.-H. (2021). The Contingent Role of Interproject Connectedness in Cultivating
Open Source Software Projects. The Journal of Strategic Information Systems, 30(1), Article 101598.
https://doi.org/10.1016/j.jsis.2020.101598

Link to publication in CBS Research Portal

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us (research.lib@cbs.dk) providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 04. Jul. 2025

https://doi.org/10.1016/j.jsis.2020.101598
https://doi.org/10.1016/j.jsis.2020.101598
https://research.cbs.dk/en/publications/5b804487-7430-46ac-9b5e-ee976676d2a9

1

The Contingent Role of Interproject Connectedness in Cultivating Open
Source Software Projects

Abstract: A better understanding of the key to successful open-source software (OSS)

development continues to motivate research. Aligned with work that builds on the notion that an

OSS development is tightly interrelated with its social environment (i.e., the OSS community),

this study examines the relationship between interproject structure and OSS project success. OSS

project success is reflected in two forms: popularity and knowledge creation. Extending the

extant OSS literature, we theorize a contingent role of interproject connectedness. In particular,

we posit three points: (1) an OSS project with more structural holes achieves higher popularity;

(2) an OSS project with fewer structural holes yields higher knowledge creation; and (3) these

two relationships are enhanced by an increase in project maturity. Using a dataset longitudinally

collected from SourceForge.net, we found that OSS projects with widespread connectedness are

more popular. This is especially so for those OSS projects in the mid-mature stage. We also

found that OSS projects with a cohesive network achieve higher knowledge creation, irrespective

of their maturity. Findings from our study can contribute to OSS literature by identifying OSS

projects that are more likely to be successful.

Keywords: open source software, interproject connectedness, maturity, popularity, knowledge

creation

1

1 Introduction

A recent report estimates that the economic value of open-source software (OSS) development

could exceed US$32 billion by the year 20231. OSS development forges, web-based

collaborative software platforms for both developing and sharing OSS such as Sourceforge and

Github, are an integral part of software innovation. Major technological titans, such as Amazon,

Facebook, Apple, Alibaba, and Microsoft2, have also tapped into OSS development forges for

their software innovation. Unique to OSS development forges is that OSS projects are formed by

globally distributed people; this enables the projects to gain access to an unlimited pool of IT

talents. Unfortunately, few OSS projects achieve success (Chengalur-Smith and Sidorova 2003;

Lin et al. 2017). OSS project success can be reflected in terms of popularity and knowledge

creation (Crowston et al. 2007; Subramaniam et al. 2009). The question is then what kinds of

OSS projects are more likely to be successful?

To gain an understanding of the key to successful OSS development, it is important to

recognize that contribution to OSS projects is voluntary (von Hippel and von Krogh 2003) and

contributors can freely participate in any and even multiple OSS projects3 (Grewal et al. 2006;

Tan et al. 2007). When developers contribute to multiple OSS projects, they connect these

projects. OSS projects that are connected with common developers benefit from having these

developers who facilitate the sharing of knowledge and expertise. Specifically, the shared people

promote the diffusion of knowledge by having more people know about an OSS project (which

1 https://www.marketresearchengine.com/open-source-services-market [Last access 10th Sep 2019]
2 https://news.microsoft.com/2018/06/04/microsoft-to-acquire-github-for-7-5-billion/ [Last access 10th Sep 2019]
3 Isolated developers (i.e., developers with a single project) exist in the OSS context (Gao and Madey 2007), and developers do
tend to interact only with prominent developers (Shen and Monge 2011). Hence, not all projects are interlinked or intensively
interlinked. In this research, we focus on projects that are connected through common contributors.

2

could influence popularity). The shared people also facilitate the reuse of source codes from

other OSS projects (which could influence knowledge creation).

To the best of our knowledge, the connectedness of an OSS project with other projects (i.e.,

the network structural characteristic of an OSS project) has been less studied despite its

importance4. We found three studies looking at the connectedness among OSS projects (i.e.,

Grewal et al. 2006; Singh 2010; Singh et al. 2011). Although these three studies applied different

social network measures, the fundamental argument in these studies is the importance of

embracing a structural social capital perspective (Grewal et al. 2006; Singh 2010; Singh et al.

2011). In social network analysis, the vertexes are OSS projects and the vertexes are connected

because of shared contributors (i.e., administrators or developers). The structural social capital

perspective suggests that information access hinges upon the overall pattern of social network

connections (Seibert et al. 2001); an OSS project’s connectedness to others gives the project

access to certain types of information. However, despite the three studies mentioned above, how

connectedness can translate to project success in terms of increasing the popularity of the OSS

project and creating knowledge remains unclear. A primary reason for this lack of clarity is the

different possible trajectories of popularity and knowledge creation.

A popular OSS project (i.e., one that is successful in the marketplace) can reach out to more

users by meeting users’ various requirements for features and functionalities. To gain popularity,

an OSS project needs to enrich its spectrum of generated ideas and have more heterogeneous

contributors who, as a whole, promote debate and discourse (Harrison and Klein 2007; Ren et al.

2016; van Knippenberg et al. 2004). In contrast to gaining popularity, knowledge creation

4 Prior studies have identified several contributing factors for OSS project success, which include project-specific characteristics
such as the types of OSS license, the leader-follower relationship, the availability of company sponsorship, the project activity,
and the popularity of the programming language in which an OSS is developed (Jiang et al. 2019).

3

depends more upon the homogeneity of resources. An OSS project with homogeneous

contributors can benefit from consistent beliefs about its development and innovation priorities

(Ren et al. 2016; van Knippenberg et al. 2004). From the software development perspective,

strong team cohesion is conducive to both the on-time delivery and the technological quality of

software projects (Lindsjørn et al. 2016). In short, heterogeneous resources increase popularity

and homogeneous resources promote knowledge creation.

Two contesting theories, namely structural holes theory and network closure theory (Burt

1992; Coleman 1988), explain the rise of heterogeneous and homogeneous resources

respectively. A structural hole refers to an “empty space” which exists when a vertex or an object

provides the only connection between two or more vertexes or objects in the social network. The

proponents of structural holes theory believe the vertex at such a position has access to a greater

variety of information, which brings about heterogeneity in resources (Burt 1992). On the other

hand, network closure theory argues that a closed network can cultivate coherent beliefs and

collective actions, which foster resource homogeneity (Gargiulo and Benassi 2000).

Applying these two theoretical contentions onto the OSS context, we posit an overarching

proposition that the social network structure (and therefore OSS project connectedness) plays a

contingent role in facilitating OSS project success. Considering the two forms of OSS project

success (popularity and knowledge creation), we propose:

1. OSS projects with more structural holes can enjoy greater popularity; however,

2. OSS projects with fewer structural holes can achieve better knowledge creation.

We further develop the proposition by recognizing that while the network structure

prioritizes the position of the OSS project for accessing resources like contributors (Zaheer and

Soda 2009), how far these network-related benefits can be harnessed to contribute to OSS project

4

success hinges upon the extent to which that OSS project can assimilate such resources (Daniel

et al. 2013; Setia et al. 2012). Previous studies contend that an OSS project’s maturity5 (i.e.,

whether it is in a pre-beta, beta, or post-beta phase) could indicate the project’s ability to harness

abundant resources (Garriga et al. 2011). That means that the maturity of the OSS project could

potentially moderate the relationship between OSS project connectedness (as manifested by

structural holes) and OSS project performance (as manifested by popularity and knowledge

creation).

By empirically analyzing a large longitudinal dataset from Sourceforge.net, our study makes

several contributions to OSS literature, of which two are presented here. First, our findings

reveal that OSS interproject connectedness has a significant impact on OSS project success in

terms of popularity and knowledge creation. This research adds to the few OSS studies that take

a social network perspective to OSS development (Grewal et al. 2006; Singh 2010; Singh et al.

2011) by extending the understanding that one OSS project can gain popularity through gaining

more structural holes while another OSS project situated in a cohesive network is more likely to

have better knowledge creation. Second, we provide evidence that OSS project maturity helps

attract more resources but the relationship is not straightforward. Only the OSS projects which

progress from a very nascent stage to developmental stage and are saturated with abundant

structural holes can benefit from project maturity for greater popularity. This nuanced finding

regarding maturity fills in an important gap in the extant literature that has disproportionately

esteemed the positive role of maturity in promoting OSS project success (Daniel et al. 2013;

Setia et al. 2012).

5 OSS project age is an adjacent measure of maturity. Assuming that organizations accumulate innovation capabilities at the same
rate, older organizations should outperform the younger ones (Schoonhoven 2015). However, this assumption has been
challenged by several studies because an organization’s age may not be a reliable proxy for maturity in terms of innovation
capabilities (Coad et al. 2016). We therefore believe that innovation maturity is a more appropriate measurement of OSS project
maturity.

5

2 Related OSS Literature

OSS research attracts considerable attention due to its intriguing and counterintuitive model of

innovation, in which large numbers of IT talents voluntarily contribute to the creation,

maintenance, and support of a public good (Lerner and Tirole 2002). Most of the early studies

investigated the individual’s motivation to participate in or contribute to the OSS project. These

works discussed various participatory motives, such as enjoyment, self-efficacy, need for

competence, community reputation, learning opportunities, and social identity (Feller et al. 2008;

Shah 2006). Extending these works, von Hippel and von Krogh (2003) proposed a model of

innovation to explain individual motives in participating in the OSS innovation activities. These

authors found that although innovators do not gain proprietary benefit from the OSS per se, the

free revealing (of source codes) promotes innovation diffusion and eventually the diffusion of

such innovation-related information benefits the innovators.

Another stream of OSS research focuses on the success factors of OSS projects (Daniel et al.

2013; Garriga et al. 2011; Stewart et al. 2006; Subramaniam et al. 2009). These works mainly

examined the intrinsic characteristics of the OSS project. Several software-specific

characteristics have been identified as contributing to OSS project success, such as the

restrictiveness of an OSS license6 (Subramaniam et al. 2009), software type (Daniel et al. 2013),

OSS project team size (Garriga et al. 2011), and organizational sponsorship7 (Stewart et al.

2006).

OSS development involves the orchestrated and collective action of contributors who are

related through their interactions, thereby forming a network of relationships and ties (Hahn et al.

6 A type of license that allows or prevents the source code, blueprint or design in OSS project to be used, modified and/or shared
under defined terms and conditions.
7 An OSS project may receive financial or non-financial support from companies, foundations, non-profit organizations, etc.

6

2008). Prior literature classified these contributors into two groups: the development group and

the management group (Subramaniam et al. 2009). While the development group consists of

individuals who mainly contribute to the software coding, the management group (also known as

product administrators or leaders) consists of individuals who create the OSS project and make

the decisions on version releases . The innovation-related resources (i.e., source codes, bug fixes,

project administration structure, etc.) are shared across connected projects due to common

contributors.

Although OSS projects are connected in nature, we found only three studies that had

investigated the network structural characteristic of an OSS project (i.e., its connectedness with

other projects) and discussed its impact on OSS project success: Grewal et al. (2006); Singh

(2010); and Singh (2011). And even these studies were not complete. Grewal et al. (2006)

assessed whether the centrality of an OSS project based on the affiliations of its developers in

other projects could predict the OSS project's success. However, this study did not consider that

the centrality of an OSS project depends on how the other OSS projects are connected. Singh

(2010) investigated the impact of macro-level network attributes such as the clustering

coefficient (i.e., the degree of clustering in a network) on the success of the OSS projects

residing in such networks. However, that study did not consider project-level network attributes

such as the connectedness of the projects, hence limiting the implications of the study for the

management of an OSS project. Singh et al. (2011) employed the collaboration network of the

OSS project developers to reflect the internal and external cohesion of an OSS project and

unveiled an inverted U-shape relationship between external cohesion and OSS project

performance [measured as the number of concurrent versioning system (CVS) commits, a proxy

for the closure of modification requests]. However, solely measuring the OSS project success by

7

the number of CVS commits is controversial because a large number of CVS commits may also

imply poor software quality (Bird et al. 2009).

To fill these gaps, in our study we do the following: (1) analyze an OSS project’s

connectedness instead of the connectedness of the whole network; and (2) measure the OSS

project success via two forms, i.e. popularity and knowledge creation. Our findings can inform

OSS projects on how to strategically position themselves to achieve success.

Also, there is room for improvement of the theoretical foundations of the aforementioned

three exceptional works (Grewal et al. 2006; Singh 2010; Singh 2011). Specifically, structural

social capital only accounts for how the network structure affects the variance of information

access but not the innovation outcome (Burt 1992). We attempt to further theorize the role of

interproject connectedness in OSS project success. We argue that the configuration of the

network structure not only affects information access but also, as a consequence, polarizes the

nature of the accessible resources, i.e., heterogeneity vs. homogeneity (Nerkar and Paruchuri

2005; Ahuja 2000).

Besides resource accessibility, how effectively such resources can be harnessed should also

significantly influence an OSS project’s success (Daniel et al. 2013; Setia et al. 2012). Previous

literature employed OSS project maturity as a proxy indicator of the capability of harnessing the

resources. More specifically, mature projects with better project governance can effectively raise

the productivity of the OSS development teams (Setia et al. 2012). Compared to projects at a

nascent stage, mature projects have established team cognition and shared understanding, which

reduce misunderstanding and disagreement in the course of OSS development (He et al. 2007).

The advanced code management in a mature project is also helpful to internalize the knowledge

and information collected from the other projects (Daniel et al. 2013; Setia et al. 2012).

8

Essentially, the maturity of the OSS project facilitates better use of various resources including

contributors, their knowledge, experiences, and ideas. Thus, OSS project maturity should

moderate the relationship between the interproject connectedness and project success. We will

explain our hypotheses in detail in the next section.

3 Hypotheses Development
Within the OSS community, an OSS project’s connectedness to other projects via common

contributors defines its ego network. Visually, an OSS project’s ego network positions it as the

central vertex (ego) and the neighboring vertexes are the other OSS projects with ties to the ego

(Everett and Borgatti 2005). Thus, whether and to what extent an OSS project has access to

resources depends on its position in the network. To this end, social network analysis reveals the

relationship between the structural position of a network vertex [which in the context of this

study is the OSS project] and its access to resources. Several studies (Ahuja 2000; Austin 2003;

Balkundi et al. 2007; Beckman and Haunschild 2002; Harrison and Klein 2007) discuss

structural hole theory. In the OSS context, we ask whether the presence of more structural holes

in an interproject network is beneficial to OSS project success.

Applying structural hole theory in the OSS context, we can infer that the OSS projects

which are connected to other projects via contributors with non-redundant (non-overlapping)

external network ties have access to a greater variety of resources (Austin 2003; Beckman and

Haunschild 2002; Harrison and Klein 2007). This conjecture agrees with the thesis that

socioeconomic opportunities increase with the number of structural holes in an ego network due

to increased access to diversified information (Eagle et al. 2010). Conversely, in the absence of

structural holes, vertexes in an ego network are less likely to generate new ideas (Balkundi et al.

2007). When contributors draw from different pools of resources, they are more likely to have

9

diverse viewpoints and opinions and could, therefore, deliver more creative products than those

who draw from the same pool of resources (Harrison and Klein 2007; Jackson et al. 1995).

On the other hand, Podolny and Baron (1997) argued that “a cohesive network [a network

with few structural holes] conveys a clear normative order within which the individual [OSS

project] can optimize performance, whereas a diverse . . . network [network with many structural

holes] exposes the individual [OSS project] to conflicting preferences and allegiances within

which it is much harder to optimize” (p. 676). In a network with many structural holes,

organizations must reconcile opposing views, which could reduce innovation performance (Van

Knippenberg and Schippers 2007). In other words, an organization (i.e., an OSS project in our

case) with many structural holes faces potential problems (Ahuja 2000) – such as coordination

difficulty (Balkundi et al. 2007) and decreased production – even though conflict may contribute

to more complete and careful analysis of the task at hand.

Conversely, the connected vertexes with few structural holes may benefit from the shared

resources and beliefs about project priorities and how the work should be carried about. Tan et

al. (2007) studied OSS developers’ ego networks and found that OSS developers at brokerage

positions may not benefit more than the rest of the community because they incur the cost of

sharing and relating knowledge across heterogeneous projects. This empirical evidence supports

arguments in favor of a cohesive network structure (i.e., few structural holes).

To reconcile these views, Ahuja (2000) evaluated competing hypotheses on the

consequences of the number of structural holes on an organization’s innovation performance.

Ahuja observed that for an inter-organizational network that is focused on collaboration,

cohesive networks (i.e., those with few structural holes) are likely to be beneficial because they

foster the development of the fine-grained information and crucial resource exchange. However,

10

organizations that rely on diverse resources are likely to benefit from many structural holes. The

two seemingly contradictory viewpoints could be reconciled by considering multiple dimensions

of OSS project success. OSS project success cannot be evaluated using a single criterion but

must be considered in light of multiple dimensions representing various stakeholders. There are

also problems with some currently used measures of project success. For instance, the number of

downloads is a widely-adopted index of popularity, but this index may be biased towards

particular types of projects8 (Crowston et al. 2006). Likewise, the number of CVS commits is

used as a proxy of developers’ vitality may also indicate poor software quality (Crowston et al.

2006).

Subramaniam et al. (2009) employed a multidimensional construct (user interest, developer

interest and program activitiy) to represent OSS project success. They found the same

antecedents to have different effects on different aspects of OSS project success. Peng et al.

(2013) used software downloads and code released to measure OSS project success. In this

study, we consider OSS project success based on two indicators: popularity and knowledge

creation. The former reflects the interest in the OSS project by the users at large, which

SourceForge.net bases on the number of OSS downloads and the number of OSS project site and

page visits (Setia et al. 2012). The latter reflects the development intensity, which

SourceForge.net bases on the number of CVS commits, the frequency of the released files

(project output), and the project administrators’ activity levels (Crowston et al. 2006). Next, we

will examine these two performance indicators and deduce how the configuration of interproject

connectedness and OSS project maturity affect them.

8 In most cases, OSS projects that are designed as end-user applications are downloaded more often than those that
serve as fundamental systems, such as game engines or frameworks.

11

3.1 The Controversy Surrounding Network Structure

The OSS projects’ ego networks are comprised of the common contributors’ links and ties,

which facilitate information and resource exchange. Since in our study ‘common contributors’

refers to common administrators and common developers, we consider OSS projects’ ego

networks based on common administrators and common developers. This approach echoes

previous studies that categorized OSS project participants according to their various roles

(Aberdour 2007; Crowston and Howison 2006; Jiang et al. 2019; Setia et al. 2012). As OSS

project leaders, administrators play an essential role in setting up projects, communicating with

the OSS community, and recruiting and managing developers (Heckman et al. 2007). Unlike

developers, who contribute specialized technical knowledge, administrators are often generalists

who must be familiar with the projects’ overall development and have the ability to integrate

specialized knowledge. They govern and motivate developers to achieve a common goal:

innovation development (Chen and Dietrich 2009). Administrators with preexisting developer

contacts (e.g., from managing other projects) are more likely to attract developers to a focal

project (Hahn et al. 2008), which could suggest the importance of the administrators’ connection

to other projects. As the primary contributors of innovation, developers who participate in

multiple projects provide two knowledge benefits to a focal project: resource sharing and

knowledge spillover (Ahuja 2000; Grewal et al. 2006). Resource sharing allows the developers

to integrate knowledge within projects, whereas knowledge spillover provides the project

participants with information about failed and successful approaches, breakthroughs, and

opportunities (Ahuja 2000).

The number of structural holes in an OSS project’s ego network is based on the focal

project’s connections with other projects due to common contributors. An OSS project’s ego

12

network with many structural holes has greater access to diversified information, which is an

essential resource in information retrieval activities (Nerkar and Paruchuri 2005). Administrators

perform several vital functions, including communicating information about their projects to the

OSS community (Heckman et al. 2007). Increasing the number of structural holes in an OSS

project’s ego network can enhance project visibility (Shipilov 2009). The administrators will be

able to understand the broader interests of the other projects’ contributors and make strategic

decisions to popularize particular OSS projects. For instance, the administrators could

reprioritize tasks in the pipeline because certain features are popular in the other projects.

Likewise, developers who participate in multiple projects have close contact with the diversified

demands of various OSS projects’ users. Consequently, these developers could consider and

gratify these various demands when developing the focal OSS, which then attracts broader

interest in the project. Accordingly, we present the following hypothesis:

Hypothesis 1: An OSS project with a greater number of structural holes in its ego networks has

higher popularity.

An OSS project’s ego network with many structural holes may face communication and

coordination challenges. Examining the patenting frequency in the chemical industry, Ahuja

(2000) observed that the networks with many structural holes exhibited decreased innovation

output in terms of the number of patents filed. Also, in a study of workgroups in a global

organization, Cummings and Cross (2003) observed that workgroups with many structural holes

exhibited diminished performance efficiency, poor scheduling, and poor budget adherence.

Although increasing an OSS project’s popularity is a matter of generating a spectrum of ideas

based on shared knowledge and learning from other projects’ failures and successes, OSS project

development involves more than possessing such knowledge. Administrators’ and developers’

13

experiences working on other projects must be coordinated and integrated during software

development (Tullio and Staples 2013). From the social categorization perspective in network

closure theory, a cohesive network with connected OSS projects (i.e., fewer structural holes) has

shared mental models related to how administrators and developers should work together; this, in

turn, could facilitate innovation output (Ren et al. 2016; Van Knippenberg et al. 2004). Besides,

organizations with few structural holes benefit from access to shared resources and knowledge

spillovers, enabling the contributors to efficiently leverage their shared intellectual property to

develop the OSS. For these reasons, we hypothesize as follows:

Hypothesis 2: An OSS project with a lesser number of structural holes in its ego networks has

higher knowledge creation.

3.2 OSS Project’s Maturity

How much the resources from the connected projects could contribute to an OSS project success

hinges on the internalization capability of the focal project (Zahra and George 2002). It is

recognized that new product teams face the dilemma of limited resources or capital, which

restricts their capability to synergize the internal dynamics with external resources (Patel et al.

2015; Schoonhoven 2015). Teams at an early phase need to bear the costs of learning new rules

and creating new roles (in the workgroup) as well as establishing social relationships among

internal and external stakeholders (Gulati and Higgins 2003; Li et al. 2008). This restricts the

growth of innovation, which results in the high likelihood of mortality of projects in their early

phases of development. Consequently, participants in immature OSS projects, even those with

advantageous resource access, might still not be able to appropriately utilize such resources to

boost their innovation output. Conversely, established teams comprised of members with long-

14

standing relationships could outperform “fresh” teams (Harrison et al. 1998, 2002) because the

former could more easily absorb external information into their innovation output.

Operationally, the OSS developmental stages consist of three levels of maturity: pre-mature

phase (pre-beta), mature phase (beta), and post-mature phase (post-beta) (Daniel et al. 2013;

Setia et al.2012). An OSS project’s development stage (and hence its maturity) determines

whether its participants can effectively incorporate the resources accessed from the community

into innovation activities (Daniel et al. 2013; Setia et al.2012). The established governance

mechanisms, well-written codes, and stable collaboration structure of a mature OSS project is

likely to be attractive to contributors and the better defined stages make the particiants’

contributions more effective for yielding innovation output (Setia et al. 2012).

In OSS projects with many structural holes, the maturity of the project affects participants’

ability to internalize the diversified resources into innovation outputs. Diversified resources

could include knowledge of various user demands, inspirational ideas, and novel technologies

from other OSS projects (Nerkar and Paruchuri 2005; Shipilov 2009). According to Jones

(2006), mature organizations emphasize knowledge exploitation. Knowledge exploitation entails

the effective application of resources by emphasizing the “refinement, routinization, production

and elaboration of existing experience” (Holmqvist 2003, page 99). Relating this to our context,

OSS projects residing in a less cohesive network, i.e. with more structural holes, can achieve

higher popularity because more diverse user requirement or ideas can be accessed and

incoporated. The mature projects are more experienced in both management and development,

thereby more effectively and efficiently completing tasks to meet various demands. OSS projects

residing in a more cohesive network, i.e. with fewer structural holes, can advance knowledge

creation because of the shared mental models among contributors. Thus, the mature OSS projects

15

in cohesive a network ought to have more experiences in collaboration of development than

those less mature ones, thereby faciliating knowledge creation. In summary, we hypothesize:

Hypothesis 3: The positive relationship between the number of structural holes and popularity

will be stronger with the increase of maturity of OSS projects.

Hypothesis 4: The positive impact of a cohesive network on knowledge creation will be stronger

for more mature OSS projects.

4 Research Methodology

4.1 Background and Ego Network

We conducted a longitudinal investigation using the dataset available on SourceForge.net. We

collected the data twice in 18 months to separate the antecedents from their outcomes and to

allow for a more extended observation period in order to determine the effect of brokerage

positions on popularity and knowledge creation. The 18-month time frame is referred to as the

OSS project’s observation period in previous OSS literature (Crowston et al. 2008; Daniel et al.

2018; Ghosh 2006). Furthermore, we excluded OSS projects with the status “inactive” or

“planning” because such projects would not have been released to the public or the participants

would have had little opportunity to contribute to such projects.

With the dataset obtained, we constructed each OSS project’s ego network to discover each

project’s position in the overarching network. Each OSS project was recorded as a vertex;

projects were linked to one another through contributors across the various project categories9.

Such a network is defined as an affiliation network in prior literature (Wasserman and Faust

1994). In our research setting, OSS projects are linked with one another if they have a common

9 18 main project categories were found on SourceForge at the time of data collection: development, games, Internet, scientific,
system, education, desktop, communications, security, editors, multimedia, formats and protocols, database, office, printing,
religion, and mobile apps.

16

contributor (such as an administrator or a developer). Hence, we constructed two affiliation

networks – one based on common administrators and one based on common developers.

4.2 Dependent Variables

Previous studies attempted to evaluate OSS project performance using multiple dimensions (e.g.,

number of downloads, number of CVS commits, and size of developer team) (Crowston et al.

2006; Healy and Schussman 2003; Subramaniam et al. 2009). SourceForge.net employ

composite indexes to rank each project10. We employed two composite indexes, namely traffic

intensity and development intensity, to indicate the OSS project’s popularity and knowledge

creation respectively. Traffic intensity included downloading intensity (the extent of adoption

among end-users), logo-hitting intensity (the number of visits to the project page), and page-view

intensity (the number of visits within the project page). Development intensity was composed of

CVS commits (the extent of contribution from contributors to the focal OSS project), the history

of recently released files (the extent of the overall contributors’ recent vitality), and

administrators’ login information (the extent of administrators’ activities). The detailed equations

for traffic intensity (TRF) and development intensity (DEV), following Sourceforge.net’s

equations, are presented below. The descriptions of the components of the equations are given in

Table 1.

!"#!" =
(ln((7*!!" + 1) ln(./*!" + 1)0 + ln((71!!" + 1) ln(./1!" + 1)0 + ln((72!!" + 1) ln(./2!" + 1)0)

3
0

*45!" =
(ln((76!!" + 1) ln(./6!" + 1)0 + *71#"!" 1009 + *7*:1!" 1009)

3
0

Table 1. Definitions of intensity components
Components
name

Description

10 A Sourceforge blog reported the parameters used to rank the hosted OSS projects [https://sourceforge.net/blog/sourceforge-
stats-demystified]. The formula is in Sourceforge documentation:
https://web.archive.org/web/20070213152144/http://sourceforge.net/docman/display_doc.php?docid=14040&group_id=1#rankin
gs. [last access: 2020 March]

17

TRFit Traffic intensity of project i at time t. This variable was defined by SourceForge, which
included downloading, logo hitting, and site-hitting traffic.

P7DTit The total downloading counts of project i in the last 7 days since time t
HIDTt The most downloaded counts at time t
P7LTit The total logo hit counts of project i in the last 7 days since time t
HILTt The most logo hit counts at time t
P7STit The total site hit counts of project i in the last 7 days since time t
HISTt The most site hit counts at time t
DEVit Development intensity of project i at time j. This variable was defined by SourceForge, which

included CVS commits, history of most recent file released, and history of administrator logins.
P7CTit The total CVS commit counts of project i in the last 7 days since time t
HICTt The most CVS-committed counts at time t
DALFRit The absolute value of the difference between 100 and the days (maximally 100) of the latest

file released since time t
DADMLit The absolute value of the difference between 100 and the days (maximally 100) of last project

administrator login since time t

Using the above equations, we computed each OSS project’s traffic intensity and

development intensity at t1 and t2. Then, we computed the traffic ratio (i.e. the traffic intensity at

t2 over the traffic intensity at t1) for lag specification. Similarly we computed the development

ratio. We used the traffic ratio and the development ratio as our dependent variable to investigate

the incremental or decremental change. To avoid missing values resulting from denominators of

zero (the intensity at t1 may be zero), we added 1 to all values at t1. Below are the equations:

!"#$$%&_"#!%(!"# = *+,!"# (*+,!"$ + 1)1

23435(6738!_"#!%(!"# = 9:;!"# (9:;!"$ + 1)1

4.3 Predictors and Control Variables

We adopted Burt’s constraint index (Burt 1992) The value is a reverse indicator of the number of

structural holes. In other words, for any focal OSS project, a high constraint index denotes few

structural holes. The equation for Burt’s constraint index is presented below,

<! ==>?!% +=?!&?&%
&

@
#

, % ≠ C ≠ D
%

18

where Ci is Burt’s constraint index of vertex i (OSS project i) and Pij is the proportion of OSS

project i’s resources spent on its contact, j.

Suppose vertex i has four direct linkages and the strength of its linkage to vertex j and the

other vertexes are 2, 1, 1, and 1, respectively, then the value of Pij is 2/5. In our case, the

strength of the linkage between two projects is measured by the number of common contributors

(administrators or developers). We computed Burt’s constraint indexes for each OSS project at

T1, denoted by admin_cit1 (administrator-affiliated network) and developer_cit1 (developer-

affiliated network), respectively. We then created two variables, admin_shit1 and developer_shit1,

which are computed as 1-admin_cit1 and 1-developer_cit1, to represent the number of structural

holes in the administrator-affiliated network and developer-affiliated network respectively

(Tortoriello 2015).

We determined OSS projects’ maturity by referring to their developmental phases (i.e., Pre-

alpha, Alpha, Beta, Production, and Mature in Sourceforge). Referring to previous studies

(Daniel et al. 2013; Setia et al. 2012), we categorized the developmental stages into three phases,

namely Pre-beta (including Pre-alpha and Alpha), Beta, and Post-beta (Production and Mature).

The maturity of an OSS project i at T1 was denoted by a categorical variable, Dev_stageit1.

Besides the key predictors, we considered several covariates to control for variance across

the affiliation networks and the OSS projects’ characteristics. We grouped the control variables

into seven main categories: evenness of work distribution, IT-enabled administration, knowledge

control, programming language popularity, team-based characteristics, project license, and

project category.

Evenness of work distribution: In previous literature, researchers have argued that the

uniformity of work distribution among the contributors would have an impact on project success

19

(Woolley et al. 2010). To measure the extent of work distribution, we employed the idea of the

Gini coefficient and constructed the generalized inequality indicator for our work (Kuk 2006;

Thon 1982), denoted as InEquali. Instead of measuring the work distribution solely by

considering the contributor’s commitment to the OSS project, we acknowledged contributions

more comprehensively. In other words, the contributions, such as a bug report, feature

improvement suggestions, and debugging solutions, are all included. The equation is as follow:

E8:DF#5! =
∑ H(27 − 8 + 1)K'L(
%)$

8#KM

where n is the number of contributors to the OSS project i, ym is the count of developer m

contributions, and KM is the average number of contributions expected per contributor.

Notably, the value of ym, m=1 to n, should be indexed in non-descending order (i.e.,

ym<=ym+1). The value of this indicator ranges from 0 to 1: all contributors contributing equally

make this indicator approach 0, while only a few contributors contributing to the focal OSS

project makes it approach 1. We employed the aforementioned formula to calculate a variable

representing the evenness of work distribution in each OSS project i at T1, which is denoted by

InEqualit1.

IT-enabled administration: SourceForge.net provided several IT artifacts for various

purposes, including communication and assistance. In prior literature, researchers have argued

that the adoption of IT communication tools can not only increase the efficiency of project

teamwork but can also promote quality assurance (Jurison 1999). Accordingly, we checked

whether the sampled OSS projects used the available IT tools. In doing so, we included binary

variables: use_mailit1 to denote whether e-mail notification was enabled in the OSS project i at

T1, use_pmit1 to denote whether personal messaging was enabled for the OSS project i at T1, and

use_forumit1 to denote whether forum was enabled in the OSS project.

20

Knowledge control: In addition to the IT tools to support the contributors, several IT

artifacts are available to the public from SourceForge.net, from which the end-users can obtain

their desired knowledge about the focal OSS project. For instance, (a) users can receive updates

on their OSS projects when the project news function (use_newsi) is enabled; (b) the software

screenshots (use_screenshotsi) can provide the users with the first impressions of the software,

which could be extremely important for software that relies on graphics (e.g., games or

multimedia software); and (c) the project wiki (use_wikii) provides tutorials or advanced

knowledge for end-users and those who may be interested in engaging in further development.

All three IT artifacts (use_newsit1, use_screenshotsit1, and use_wikiit1) constitute the knowledge

controls for the project i at T1.

Programming-Language Popularity: Extant literature demonstrates that programming

languages and project types are important considerations in an OSS project (Zhu and Zhou

2012). For example, more developers may have some knowledge in popular programming

languages such as Java or PHP than in less popular languages. The data set used in this research

comprised 79 programming languages. The categorical variable Langi was used to denote the

programming language for OSS project i. Also, we referred to the TIOBE index to control for

each language’s popularity in OSS project i at T1, (Lang_Popit1) because more people are

attracted to OSS projects that are written in more popular programming languages. The TIOBE

index is widely recognized for measuring the popularity of programming languages (Paulson

2007); the higher values refer to higher popularity.

Team-Based Characteristics: Each OSS project is developed and maintained by a group of

participants. Therefore, team-based characteristics may also influence the OSS project’s

performance (Singh et al. 2011). For instance, the tenure of an OSS project team served as an

21

important representation of the extent of collaborative experiences and relationships (Hahn et al.

2008; Tan et al. 2007); the network size determined the extent to which miscellaneous

information (other than work/project-related information) could flow into the team knowledge

base, which could, in turn, affect the innovation output (Hahn et al. 2008; Tan et al. 2007). To

this end, we employed two variables, Team_Tenureit1 and Net_Sizeit1, to indicate the team tenure

and network size, respectively, of OSS project i at T1. The former was measured as the mean

value of team member tenure (by years), and the latter was measured as the number of

participants affiliated with a particular OSS project.

OSS License: Various OSS licenses limit copyright: licenses range from permissive licenses

(e.g., MIT or BSD) to protective licenses (e.g., GPL) (Wen et al. 2013). Restrictions on the use

and distribution of the software may affect the diffusion of innovation (e.g., code distribution)

(Wen et al. 2013). Therefore, we created a categorical control variable, Licensei, indicating the

type of license used in a particular OSS project i.

Project Category: Our sample included 18 categories of OSS projects. Previous researchers

claimed that the nature of OSS projects also affected the innovation output’s evolution. For

instance, the projects creating applications attracted more end-users than the projects creating an

OSS framework (Dong et al. 2019). Therefore, we created a categorical control variable,

Categoryi, indicating the category of OSS project i.

5 Data Analysis

5.1 Main Results

The unit of analysis is the OSS-project. Considering that the dependent variable is a fractional

value (i.e., the value between 0 and 1), the generalized linear model (GLM) with a canonical

logit link in a binomial family was employed (Wooldridge 2010). We constructed two regression

22

models to depict two types of intensity-change ratio: traffic intensity-change ratio and

development intensity-change ratio. The descriptive data analysis and the description of each

variable are given in Table 2. The correlation table is displayed in Table 3, in which all the

coefficients are less than 0.6. We used a variance inflation factor (VIF) to test for

multicollinearity. According to the rule of thumb, a VIF value that exceeds five is considered

evidence of multicollinearity, and a VIF value that exceeds ten is regarded as serious evidence of

multicollinearity. No multicollinearity concerns were found in our models.

Table 2. Descriptive Statistics
 Projects with common administrators

(13305 observations)
Projects with common developers

(12898 observations)
Continuous Variables Mean. S.D. Min. Max. Mean. S.D. Min. Max.
Traffic intensity-change ratio of OSS
project i at t2 (traffic_ratioit2)

0.093 0.077 0 0.473 0.094 0.079 0 0.473

Development intensity-change ratio
of OSS project i at t2
(development_ratioit2)

0.329 0.118 0 0.737 0.332 0.116 0 0.737

Number of structural holes in
common administrator network of
project i at t1 (admin_shit1)

0.280 0.272 0 0.937 -- -- -- --

Number of structural holes in
common developer network of
project i at t1 (developer_shit1)

-- -- -- -- 0.285 0.276 0 0.975

Generalized inequality indicator of
work distribution between all
contributors at t1 (InEqulit1)

0.437 0.143 0 0.954 0.442 0.145 0 0.956

Popularity of programming language
(Lang_Popit1)

0.117 0.068 0.0001 0.205 0.117 0.067 0.0001 0.205

Team tenure (Team_Tenureit1), in
years

5.871 2.330 0.003 9.6 5.961 2.330 0.003 9.6

Team network size (Net_Sizeit1) 3.152 7.336 1 430 3.289 7.678 1 430
Categorical Variables
Developmental Stages (Dev_stageit1)
Dev_stageit1=0 (Pre-beta phase) 7,915 7,542
Dev_stage it1=1 (Beta phase) 2,088 2,061
Dev_stage it1=2 (Post-beta phase) 3,302 3,295
Whether project i enables email function (use_maili)
use_maili=0 (Disabled email

function)
2,026 1,935

use_maili=1 (Enabled email function) 11,279 10,963
Whether project i enables internal messages function (use_pmi)
use_pmi=0 (Disabled internal

message function)
2,546 2,479

use_pmi=1 (Enabled internal

message function)
10,759 10,419

Whether project i enables forum function (use_forumi)
use_forumi=0 (Disabled forum

function)
2,766 2,692

23

use_forumi=1 (Enabled forum

function)
10,539 10,206

Whether project i uses newsletters (use_newsi)
use_newsi=0 (Disabled newsletters

function)

926 901

use_newsi=1 (Enabled newsletters

function)

12,379 11,997

Whether project i uses screenshots (use_screenshotsi)
use_screenshotsi=0 (Disabled

screenshots function)

911 859

use_screenshotsi=1 (Enabled

screenshots function)

12,394 12,039

Whether project i uses project wiki (use_wikii)
use_wikii=0 (Disabled project wiki) 12,162 11,775
use_wikii=1 (Enabled project wiki) 1,143 1,123
Programming languages (Langi): 79 programming languages were considered (Java, PHP, Python, C#, C++, C,

Visual Basic, ASP.NET, Perl, Assembly, Lisp, XSL (XSLT/XPath/XSL-FO), Visual Basic .NET, JavaScript, Unix Shell,

Fortran, S/R, ActionScript, AppleScript, BASIC, Pascal, Tcl, AspectJ, Prolog, Objective C, Ruby, Object Pascal,

Euphoria, Standard ML, Oberon, Smalltalk, PL/SQL, MATLAB, OCaml (Objective Caml), Free Pascal, ASP, Logo,

Delphi/Kylix, APL, IDL, JSP, D, Erlang, Lazarus, XBase/Clipper, VBScript, Visual FoxPro, Emacs-Lisp, MUMPS,

Flex, Scheme, Ada, Groovy, COBOL, Lua, Forth, Mathematica, Eiffel, REALbasic, XBasic, haXe, Haskell, Curl, AWK,

Kaya, Visual Basic for Applications (VBA), Modula, Clean, LPC, Rexx, Common Lisp, LabVIEW, VHDL/Verilog,

PROGRESS, Pike, Cold Fusion, Boo, Oz, other).

OSS licenses (Licensei): 56 OSS licenses were considered (apache, gpl, lgpl, apache2, python, bsd, website, artistic,

zlib, publicdomain, mit, public, ibmcpl, nethack, educom, afl, apsl, eclipselicense, wxwindows, mpl, cddl, psfl,

sleepycat, ibm, osl, mpl11, qpl, zope, adaptive, none, sissl, php-license, fair, gplv3, w3c, boostlicense, cpal, rpl15, ncsa,

historical, php, attribut, agpl, iosl, sunpublic, real, opengroup, osi, ms-rl, datagrid, eiffel, jabber, eiffel2, rscpl, rpl,

other).

OSS project categories (Categoryi): 18 categories were considered (development, games, Internet, scientific, system,

education, desktop, communications, security, editors, multimedia, formats and protocols, database, office, printing,

religion, mobile apps, other).

24

Table 3. Correlation Matrices and VIFs
Projects with common administrators
 admin_shit1 InEqulit1 Lang_Popit1 use_maili use_pmi use_forumi use_newsi use_screenshotsi use_wikii Team_Tenureit1 Net_Sizeit1 VIFs
admin_shit1 1 1.04
InEqulit1 0.146 1 1.48
Lang_Popit1 0.008 0.001 1 1.00
use_maili -0.023 0.030 0.023 1 1.44
use_pmi -0.074 -0.062 -0.003 0.505 1 1.81
use_forumi -0.105 -0.089 0.0002 0.434 0.552 1 1.61
use_newsi -0.066 -0.021 -0.001 0.316 0.396 0.378 1 1.27
use_screenshotsi -0.036 -0.043 -0.008 0.243 0.369 0.216 0.216 1 1.20
use_wikii -0.004 0.015 -0.026 0.049 0.057 0.066 0.022 0.022 1 1.06
Team_Tenureit1 0.134 0.0387 0.030 -0.093 -0.122 -0.142 -0.135 -0.012 -0.179 1 1.08
Net_Sizeit1 0.144 0.233 0.014 0.012 -0.107 -0.153 -0.042 -0.087 0.037 -0.013 1 1.10
Projects with common developers
 developer_s

hit1
InEqulit1 Lang_Popit1 use_maili use_pmi use_forumi use_newsi use_screenshotsi use_wikii Team_Tenureit1 Net_Sizeit1

developer_shit1 1 1.07
InEqulit1 0.196 1 1.48
Lang_Popit1 0.005 -0.001 1 1.00
use_maili -0.021 0.033 0.028 1 1.42
use_pmi -0.076 -0.059 -0.001 0.495 1 1.80
use_forumi -0.076 -0.0940 -0.0002 0.431 0.547 1 1.61
use_newsi -0.065 -0.022 -0.005 0.299 0.403 0.378 1 1.27
use_screenshotsi -0.035 -0.034 -0.012 0.236 0.360 0.274 0.211 1 1.19
use_wikii 0.002 0.018 -0.024 0.050 0.055 0.045 0.066 0.017 1 1.06
Team_Tenureit1 0.158 0.045 0.028 -0.092 -0.122 -0.145 -0.14 -0.01 -0.182 1 1.09
Net_Sizeit1 0.194 0.256 0.012 0.017 -0.113 -0.151 -0.045 -0.078 0.046 -0.006 1 1.13

25

The findings depicting the change in traffic intensity consist of seven models and are

summarized in Table 411. Model 1 is the base model with traffic_ratioit2 as the dependent

variable, in which only the control variables are included. In Model 2, the number of structural

holes computed from the affiliated network with common administrators was entered to test

Hypothesis 1a. The significantly positive coefficient of admin_shit1 supports Hypothesis 1a. In

Model 3, the number of structural holes (developer_shit1) in the network constructed with

common developers was positively significant. Hence, Hypothesis 1b is also supported.

To test the moderating effect in Hypothesis 3, the project maturity, Dev_stageit1, and the

interaction terms – admin_shit1XDev_stageit1 and developer _shit1XDev_stageit1 – are entered

into Model 4 through Model 7. We first tested the moderating effect between project maturity

and the number of structural holes computed from the affiliated network with common

administrators in Models 4 and 5. In Model 4, we set the OSS projects at a pre-beta phase as the

investigation base. The positive relationship between the number of structural holes and the

traffic intensity is strengthened in beta projects but not in post-beta projects, partially supporting

our hypothesis. In Model 5, we changed the investigation base from the pre-beta phase to the

beta phase to check the moderating effect of pre-beta and post-beta projects. The estimated

coefficient is negatively significant in both phases, again partially supporting our hypothesis.

Similarly, we conducted the same empirical testing for the affiliated network with common

developers in Model 6 and Model 7 and obtained similar results. Therefore, we could conclude

that Hypothesis 3 is partially supported.

11 We did not include the admin_shit1 and developer_shit1 in the same model because of multicollinearity. These two
independent variables are highly correlated.

26

Table 4. Results with Change in Traffic Intensity as the Dependent Variable
DV Traffic intensity-change ratio (traffic_ratioit2)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
admin_shit1 -- 0.114***

(0.031)
-- 0.077*

(0.039)
0.287***
(0.063)

-- --

developer_shit1 -- -- 0.149***
(0.035)

-- -- 0.077+
(0.041)

0.282***
(0.063)

Dev_stageit1< Beta -- -- -- -- -0.26***
(0.032)

-- -0.261***
(0.032)

Dev_stageit1= Beta -- -- -- 0.26***
(0.032)

-- 0.261***
(0.032)

--

Dev_stageit1> Beta -- -- -- 0.496***
(0.027)

0.236***
(0.032)

0.468***
(0.027)

0.207***
(0.033)

admin_shit1XDev_stageit1<
Beta

-- -- -- -- -0.21**
(0.072)

-- --

admin_shit1XDev_stageit1=
Beta

-- -- -- 0.21**
(0.072)

-- -- --

admin_shit1XDev_stageit1>
Beta

-- -- -- 0.013
(0.061)

-0.198**
(0.076)

-- --

developer_shit1XDev_stageit1<
Beta

-- -- -- -- -- -- -0.205**
(0.072)

developer_shit1XDev_stageit1=
Beta

-- -- -- -- -- 0.205**
(0.072)

--

developer_shit1XDev_stageit1>
Beta

-- -- -- -- -- 0.071
(0.062)

-0.134+
(0.076)

InEqulit1 0.932***
(0.082)

0.796***
(0.09)

0.868***
(0.089)

0.644***
(0.076)

0.644***
(0.076)

0.707***
(0.077)

0.707***
(0.077)

use_mailit1 0.158***
(0.026)

0.152***
(0.027)

0.149***
(0.027)

0.143***
(0.026)

0.143***
(0.026)

0.144***
(0.027)

0.144***
(0.027)

use_pmit1 -0.269***
(0.024)

-0.281***
(0.025)

-0.263***
(0.025)

-0.244***
(0.024)

-0.244***
(0.024)

-0.229***
(0.024)

-0.229***
(0.024)

use_forumit1 -0.186***
(0.023)

-0.178***
(0.026)

-0.176***
(0.024)

-0.167***
(0.024)

-0.167***
(0.024)

-0.164***
(0.023)

-0.164***
(0.023)

use_newsit1 0.119***
(0.031)

0.127***
(0.034)

0.107**
(0.034)

0.148***
(0.033)

0.148***
(0.033)

0.124***
(0.033)

0.124***
(0.033)

use_screenshotsit1 -0.134***
(0.029)

-0.118***
(0.032)

-0.116***
(0.031)

-0.132***
(0.031)

-0.132***
(0.031)

-0.124***
(0.031)

-0.124***
(0.031)

use_wikiit1 0.146***
(0.026)

0.134***
(0.029)

0.138***
(0.028)

0.194***
(0.028)

0.194***
(0.028)

0.196***
(0.027)

0.196***
(0.027)

Lang_Popit1
-206.83**
(65.338)

-199.277*
(85.514)

-
206.954**
(76.792)

-170.758*
(73.066)

-170.758*
(73.066)

-
182.183**
(67.321)

-
182.183**
(67.321)

Team_Tenureit1 0.021***
(0.003)

0.02***
(0.004)

0.021***
(0.004)

-0.012**
(0.004)

-0.012**
(0.004)

-0.011*
(0.004)

-0.011*
(0.004)

Net_Sizeit1 0.015***
(0.004)

0.015***
(0.005)

0.015***
(0.004)

0.011**
(0.004)

0.011**
(0.004)

0.011**
(0.004)

0.011**
(0.004)

constant -3.319***
(0.191)

-3.28***
(0.193)

-3.383***
(0.199)

-3.125***
(0.187)

-2.864***
(0.189)

-3.211***
(0.193)

-2.95***
(0.195)

Langi, Licensei, Categoryi: Included but not reported
Log-pseudo likelihood -3337.346 -3018.902 -2949.184 -2998.722 -2998.722 -2930.249 -2930.249
+p-value < 0.1; *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001; values are displayed in terms of coefficient (standard error)

27

In Table 5, the dependent variable was replaced with development_ratioit2, which is the

development intensity-change ratio, to test Hypotheses 2a, 2b, and 4. The estimated coefficients

are shown in Model 8 to Model 14. Model 8 is the base model, which only includes the control

variables. The number of structural holes from the administrator-affiliated network was entered

in Model 9. Model 9 shows that the admin_shit1 has a significant negative effect on the change in

development intensity. Therefore, Hypothesis 2a is supported. In Model 10, the estimated

coefficient of developer_shit1 is found to be significantly negative as well, which supports

Hypothesis 2b.

The project maturity, Dev_stageit1, and the interaction terms, admin_shit1XDev_stageit1 and

developer_shit1XDev_stageit1, are entered from Model 11 to Model 14. Interestingly, the

estimated coefficients of the interaction terms are not significant in either the administrator- or

developer-affiliated networks. Therefore, we conclude that Hypothesis 4 is not supported.

28

Table 5. Results with Change in Development Intensity as the Dependent Variable
DV Development intensity change ratio (development_ratioit2)

Model 8 Model 9 Model 10 Model 11 Model 12 Model 13 Model 14
admin_shit1 -- -0.175***

(0.018)
-- -0.170***

(0.025)
-0.182***
(0.038)

-- --

developer_shit1 -- -- -0.125***
(0.018)

-- -- -0.142***
(0.025)

-0.100**
(0.037)

Dev_stageit1< Beta -- -- -- -- -0.176***
(0.017)

-- -0.166***
(0.017)

Dev_stageit1= Beta -- -- -- 0.176***
(0.017)

-- 0.166***
(0.017)

--

Dev_stageit1> Beta -- -- --
0.176***
(0.015)

0.0003
(0.017)

0.168***
(0.015)

0.002
(0.017)

admin_shit1XDev_stageit1<
Beta

-- -- -- -- 0.011
(0.045)

-- --

admin_shit1XDev_stageit1=
Beta

-- -- -- -0.011
(0.045)

-- -- --

admin_shit1XDev_stageit1>
Beta

-- -- -- -0.001
(0.038)

0.01
(0.047)

-- --

developer_shit1XDev_stageit
1< Beta

-- -- -- -- -- -- -0.041
(0.044)

developer_shit1XDev_stageit
1= Beta

-- -- -- -- -- 0.041
(0.044)

--

developer_shit1XDev_stageit
1> Beta

-- -- -- -- -- 0.029
(0.038)

-0.013
(0.046)

InEqulit1 -0.128***
(0.031)

-0.117***
(0.032)

-0.098**
(0.032)

-0.15***
(0.032)

-0.15***
(0.032)

-0.136***
(0.033)

-0.136***
(0.033)

use_mailit1 -0.036*
(0.015)

-0.036*
(0.016)

-0.038*
(0.015)

-0.037*
(0.016)

-0.037*
(0.016)

-0.038*
(0.015)

-0.038*
(0.015)

use_pmit1 -0.023
(0.015)

-0.028+
(0.016)

-0.019
(0.016)

-0.017
(0.016)

-0.017
(0.016)

-0.01
(0.016)

-0.01
(0.016)

use_forumit1 0.003
(0.014)

-0.00002
(0.015)

0.002
(0.015)

0.003
(0.015)

0.003
(0.015)

0.005
(0.015)

0.005
(0.015)

use_newsit1 0.01
(0.02)

0.009
(0.021)

0.016
(0.022)

0.021
(0.021)

0.021
(0.021)

0.027
(0.021)

0.027
(0.021)

use_screenshotsit1 0.006
(0.02)

0.002
(0.021)

0.006
(0.021)

-0.005
(0.021)

-0.005
(0.021)

0.002
(0.021)

0.002
(0.021)

use_wikiit1 -0.05**
(0.018)

-0.055**
(0.019)

-0.042*
(0.019)

-0.031
(0.019)

-0.031
(0.019)

-0.018
(0.019)

-0.018
(0.019)

Lang_Popit1 -
382.364**
*
(24.136)

-
385.485**
*
(25.36)

-
390.679**
*
(24.621)

-
362.686**
*
(28.841)

-
362.686**
*
(28.841)

-
370.934**
*
(27.374)

-
370.934**
*
(27.375)

Team_Tenureit1 0.012***
(0.002)

0.012***
(0.002)

0.013***
(0.002)

-0.001
(0.002)

-0.001
(0.002)

0.0002
(0.002)

0.0002
(0.002)

Net_Sizeit1 -0.005***
(0.001)

-0.004***
(0.001)

-0.004***
(0.001)

-0.006***
(0.001)

-0.006***
(0.001)

-0.006***
(0.001)

-0.006***
(0.001)

constant -0.284+
(0.171)

-0.223
(0.168)

-0.238
(0.169)

-0.18
(0.171)

-0.004
(0.172)

-0.187
(0.173)

-0.021
(0.174)

Langi, Licensei, Categoryi: Included but not reported
Log-pseudo likelihood -6255.396 -5741.350 -5574.505 -5733.573 -5733.573 -5566.659 -5566.659
+p-value < 0.1; *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001; values are displayed in terms of coefficient (standard error)

29

Overall, the results indicate that OSS projects with a greater number of structural holes

enjoy higher popularity for both administrator-affiliated networks (coefficient [admin_shit1] =

0.114, p-value < 0.001) and developer-affiliated networks (coefficient [developer_shit1] = 0.149,

p-value < 0.001). However, OSS projects with a greater number of structural holes also suffer

from less knowledge creation for both administrator-affiliated networks (coefficient

[admin_shit1] = −0.175, p-value < 0.001) and developer-affiliated networks (coefficient

[developer_shit1] = −0.170, p-value < 0.001). This finding suggests the OSS project that is tightly

connected with the other projects enjoys more intensive software development.

The OSS project’s maturity is found to strengthen the positive relationship between the

number of structural holes and traffic intensity in administrator- and developer-affiliated

networks. However, such a positive moderating effect can only be observed between pre-beta

and beta phases. There is no significant difference in the moderating effect between pre-beta and

post-beta phases. This interesting finding is not counterintuitive. In the software release life

cycle, the beta version is used to gather feedback on bugs or possible new features (MacCormack

2001). Therefore, more information ought to intensely flow into the OSS projects during the beta

phase through their connected projects. Finally, project maturity was not found to strengthen the

negative relationship between the number of structural holes and development intensity.

To further validate our empirical findings, we plotted the estimations of our primary

predictors in Figure 1 below. Figures 1(a) and 1(b) show the results estimated in Table 4. The

gradient of the red line, representing the OSS projects at beta phase, is steeper than those of the

other two lines. The blue line (pre-beta phase) is almost parallel to the green line (post-beta

phase), implying the positive moderation effect between the beta phase and the two other phases.

30

In addition, all three lines are almost parallel to each other in Figures 1(c) and 1(d), implying the

insignificant moderation effect.

(a) (b)

(c)

(d)

Figure 1. The Interaction Plots

31

5.2 Post Hoc Investigations

We further conducted the post-hoc investigations by considering the case that a developer may

be involved in multiple projects across different project categories. We adopted the Blau’s

heterogeneity index (1977) – which has been employed in previous studies (Knight et al. 1999) –

to represent the categorical heterogeneity, which is mathematically expressed below.

Blau	Index = 1 −./!"
#

!$%

where p is the proportion of connected projects in category k, and s is the number of project

categories (s is 18 in our context).

A higher value of the Blau index implies a greater extent of resource heterogeneity. For

example, suppose that one OSS project (in the Multimedia category) is connected with five other

projects, P1–P5, from five different project categories (Communication, Database, Desktop,

Development, and Editors); in this case, the Blau index12 is equal to 0.8. In our study, two Blau

indexes were computed for OSS project i at T1 — one from the administrator-affiliated network

(admin_blauit1) and the developer-affiliated network (developer_blauit1). The maximum values

of admin_blauit1 and developer_blauit1 are 0.898 and 0.906 respectively. Next, the extent of

structural holes was regressed on the Blau indexes in each network with GLM. The coefficients

of both admin_blauit1 (coefficient = 0.390 and standard error = 0.070, p-value = 0.001) and

developer_blauit1 (coefficient = 0.142 and standard error = 0.082, p-value = 0.082) were found to

be significantly positive, thereby indicating that the OSS project with higher categorical

heterogeneity in its connected projects indeed possessed more structural holes in both the

administrator- and developer-affiliated networks. Compared with developers, the administrators

12 This value is calculated as 1- [(1/5)2 + (1/5)2 + (1/5)2 + (1/5)2 + (1/5)2].

32

can more easily switch across different types of projects as soon as they have sharpened their

project management or administration skills. In other words, the administrators can engage in

more types of projects than the developers because of the flexibility of their knowledge. Thus,

admin_blauit1 has a stronger significance level than developer_blauit1.

Two methods were used to test the robustness of our analysis results. First, we replaced the

GLM with beta regression to test the robustness of our results. The beta regression can be used to

estimate the proportional values between 0 and 1 but excluding the 0 and 1 (Wooldridge 2010).

By referring to the descriptive statistics in Table 2, the minimum value of the two dependent

variables is 0. To maintain the consistency of the sample size, we referred to the transformation

proposition by Smithson and Verkuilen (2006) and made the following transformation.

0123345_12047′&'" = (0123345_12047&'" ∗ (; − 1) + 0.5) ;A

BCDCE7/FCG0_12047′&'" = (BCDCE7/FCG0_12047&'" ∗ (; − 1) + 0.5) ;A

where N is the total number of observations in the sample

The results of the robustness tests are given in Tables 6 and 7. The estimated coefficients for

traffic_ratio’it2 are presented from Models 1 to 7 in Table 6. The findings agree with those in

Table 4. The results for development_ratio’it2, as the dependent variable are presented in Table 7

from Models 8 to 14. There is a minor exception in the estimated coefficients of the interaction

terms presented in Model 13, where the project maturity alleviated the negative relationship

between the extent of structural holes and development intensity. Such an exceptional difference

may result from the bias introduced by the transformation of the dependent variables. By

referring to the log-likelihood, the estimation from GLM (Tables 4 and 5) outperformed those

from beta regressions. To further evaluate the results, we calculated the residuals of Model 13 in

33

Table 5 and Model 13 in Table 7 and visualized them in Figure 2 below. The scatter plot (Figure

2a) indicates substantial overlap, although the residuals from the GLM estimation have a smaller

projection area, the substantial overlap between red dots and blue dots (Figure 2a) indicates

better goodness-of-fit. The box plot (Figure 2b) confirms the scatter plots.

(a)

(b)

Figure 2. Residual Plots

-.5
0

.5
R

es
id

ua
ls

residual Beta residual GLM

34

Table 6. Results of Robustness Test (Change in Traffic Intensity as the Dependent Variable, Beta Model)
DV Transformed Traffic intensity change ratio (traffic_ratio’it2)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
admin_shit1 -- 0.079**

(0.029)
-- 0.036

(0.039)
0.212**
(0.071)

-- --

developer_shit1 -- -- 0.083**
(0.03)

-- -- 0.010
(0.040)

0.206**
(0.07)

Dev_stageit1< Beta -- -- -- -- -0.225***
(0.033)

-- -0.216***
(0.034)

Dev_stageit1= Beta -- -- -- 0.225***
(0.033)

-- 0.216***
(0.034)

--

Dev_stageit1> Beta -- -- -- 0.391***
(0.028)

0.166***
(0.036)

0.385***
(0.029)

0.169***
(0.037)

admin_shit1XDev_stageit1<
Beta

-- -- -- -- -0.176*
(0.08)

-- --

admin_shit1XDev_stageit1=
Beta

-- -- -- 0.176*
(0.08)

-- -- --

admin_shit1XDev_stageit1>
Beta

-- -- -- 0.087
(0.064)

-0.088
(0.087)

-- --

developer_shit1XDev_stageit1<
Beta

-- -- -- -- -- -- -0.196*
(0.08)

developer_shit1XDev_stageit1=
Beta

-- -- -- -- -- 0.196*
(0.08)

--

developer_shit1XDev_stageit1>
Beta

-- -- -- -- -- 0.126*
(0.064)

-0.069
(0.086)

InEqulit1 0.647***
(0.063)

0.484***
(0.066)

0.544***
(0.067)

0.415***
(0.064)

0.415***
(0.064)

0.458***
(0.065)

0.458***
(0.065)

use_mailit1 0.205***
(0.025)

0.192***
(0.027)

0.195***
(0.027)

0.192***
(0.026)

0.192***
(0.026)

0.199***
(0.027)

0.199***
(0.027)

use_pmit1 -0.224***
(0.025)

-0.236***
(0.026)

-0.213***
(0.027)

-0.202***
(0.026)

-0.202***
(0.026)

-0.18***
(0.026)

-0.18***
(0.026)

use_forumit1 -0.134***
(0.023)

-0.106***
(0.025)

-0.128***
(0.025)

-0.107***
(0.025)

-0.107***
(0.025)

-0.128***
(0.025)

-0.128***
(0.025)

use_newsit1 0.269***
(0.032)

0.275***
(0.034)

0.238***
(0.035)

0.303***
(0.034)

0.303***
(0.034)

0.263***
(0.034)

0.263***
(0.034)

use_screenshotsit1 -0.165***
(0.031)

-0.149***
(0.032)

-0.154***
(0.033)

-0.166***
(0.032)

-0.166***
(0.032)

-0.167***
(0.032)

-0.167***
(0.032)

use_wikiit1 0.115***
(0.027)

0.084**
(0.028)

0.125***
(0.028)

0.138***
(0.028)

0.138***
(0.028)

0.181***
(0.028)

0.181***
(0.028)

Lang_Popit1 -234.216
(215.382)

-254.612
(215.209)

-255.455
(215.215)

-208.857
(212.087)

-208.857
(212.087)

-242.765
(208.715)

-242.765
(208.715)

Team_Tenureit1 0.032***
(0.003)

0.03***
(0.004)

0.035***
(0.004)

0.005
(0.004)

0.005
(0.004)

0.01**
(0.004)

0.01**
(0.004)

Net_Sizeit1 0.024***
(0.001)

0.025***
(0.001)

0.024***
(0.001)

0.021***
(0.001)

0.021***
(0.001)

0.02***
(0.001)

0.02***
(0.001)

constant -3.362***
(0.213)

-3.327***
(0.214)

-3.324***
(0.22)

-3.239***
(0.212)

-3.014***
(0.215)

-3.165***
(0.217)

-2.949***
(0.219)

Langi, Licensei, Categoryi: Included but not reported
Log-pseudo likelihood 21318.134 19896.251 19164.078 20105.381 20105.381 19372.085 19372.085
+p-value < 0.1; *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001; values are displayed in terms of coefficient (standard error)

35

Table 7. Results of Robustness Test (Change in Development Intensity as the Dependent Variable, Beta Model)
DV Transformed Development intensity change ratio (development_ratio’it2)

Model 8 Model 9 Model 10 Model 11 Model 12 Model 13 Model 14
admin_shit1 -- -0.256***

(0.022)
-- -0.285***

(0.029)
-0.223***
(0.052)

-- --

developer_shit1 -- -- -0.179***
(0.022)

-- -- -0.233***
(0.029)

-0.129*
(0.052)

Dev_stageit1< Beta -- -- -- -- -0.201***
(0.024)

-- -0.195***
(0.024)

Dev_stageit1= Beta -- -- -- 0.201***
(0.024)

-- 0.195***
(0.024)

--

Dev_stageit1> Beta -- -- --
0.213***
(0.021)

0.012
(0.026) 0.199***

(0.021)

0.004
(0.027)

admin_shit1XDev_stageit1<
Beta

-- -- -- -- -0.062
(0.059)

-- --

admin_shit1XDev_stageit1=
Beta

-- -- -- 0.062
(0.059)

-- -- --

admin_shit1XDev_stageit1>
Beta

-- -- -- 0.088+
(0.049)

0.027
(0.066)

-- --

developer_shit1XDev_stageit1<
Beta

-- -- -- -- -- -- -0.104+
(0.059)

developer_shit1XDev_stageit1=
Beta

-- -- -- -- -- 0.104+
(0.059)

--

developer_shit1XDev_stageit1>
Beta

-- -- -- -- -- 0.131**
(0.048)

0.026
(0.064)

InEqulit1 -0.154***
(0.04)

-0.141***
(0.042)

-0.111**
(0.042)

-0.183***
(0.042)

-0.183***
(0.042)

-0.159***
(0.042)

-0.159***
(0.042)

use_mailit1 -0.033+
(0.018)

-0.032+
(0.019)

-0.046*
(0.019)

-0.033+
(0.019)

-0.033+
(0.019)

-0.046*
(0.019)

-0.046*
(0.019)

use_pmit1 -0.037*
(0.019)

-0.046*
(0.02)

-0.026
(0.02)

-0.033+
(0.019)

-0.033+
(0.019)

-0.014
(0.019)

-0.014
(0.019)

use_forumit1 0.021
(0.017)

0.021
(0.018)

0.024
(0.018)

0.027
(0.018)

0.027
(0.018)

0.03+
(0.018)

0.03+
(0.018)

use_newsit1 0.054*
(0.024)

0.057*
(0.025)

0.061*
(0.025)

0.074**
(0.025)

0.074**
(0.025)

0.078**
(0.025)

0.078**
(0.025)

use_screenshotsit1 0.013
(0.024)

0.007
(0.025)

0.013
(0.025)

0.001
(0.025)

0.001
(0.025)

0.011
(0.025)

0.011
(0.025)

use_wikiit1 -0.066***
(0.02)

-0.08***
(0.021)

-0.066**
(0.021)

-0.05*
(0.021)

-0.05*
(0.021)

-0.035+
(0.021)

-0.035+
(0.021)

Lang_Popit1 -196.529
(248.034)

-215.185
(247.516)

-217.211
(246.111)

-177.077
(246.182)

-177.077
(246.182)

-190.493
(244.696)

-190.493
(244.696)

Team_Tenureit1 0.02***
(0.003)

0.021***
(0.003)

0.022***
(0.003)

0.005+
(0.003)

0.005+
(0.003)

0.005+
(0.003)

0.005+
(0.003)

Net_Sizeit1 -0.006***
(0.001)

-0.005***
(0.001)

-0.004***
(0.001)

-0.008***
(0.001)

-0.008***
(0.001)

-0.008***
(0.001)

-0.008***
(0.001)

constant -0.458**
(0.152)

-0.371*
(0.151)

-0.426**
(0.153)

-0.316*
(0.15)

-0.115
(0.151)

-0.361*
(0.152)

-0.166
(0.154)

Langi, Licensei, Categoryi: Included but not reported
Log-pseudo likelihood 7848.265 7303.360 7108.576 7449.9903 7449.9903 7257.874 7257.7546
+p-value < 0.1; *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001; values are displayed in terms of coefficient (standard error)

36

In addition, we computed the extent of structural holes by each project category to further

confirm the contingent role of interproject connectedness in influencing the change in popularity

and knowledge creation. For each OSS project, the projects from other project categories that it

is connected to are excluded. Eventually, 36 distinct affiliation networks were constructed based

on the two roles of the contributors, namely administrator (admin_intra_shit1) and developer

(developer_intra_shit1). Table 8 shows the overall results for the change in traffic intensity as the

dependent variable. In Table 9, the dependent variable is the change to the development

intensity. The base models are not presented as the results are generally consistent with the

previous findings. Interestingly, we found that the negative relationship between the degree of

structural holes and development intensity was strengthened when comparing projects at the

post-beta phase with those at the pre-beta phase (Model 9 in Table 9). The most mature OSS

projects might be reluctant to make use of the externally sourced information due to their inertia

and sunk costs in ongoing developments or operations (Zahra and Hayton 2008).

37

Table 8. Results of Robustness Test (Extent of structural holes computed from same project category)
DV Traffic intensity change ratio (traffic_ratioit2)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
admin_intra_shit1 0.25***

(0.051)
-- 0.052

(0.043)
0.269***
(0.067)

-- --

developer_intra_shit1 -- 0.235***
(0.058)

-- -- 0.061
(0.045)

0.29***
(0.067)

Dev_stageit1< Beta -- -- -- -0.275***
(0.034)

-- -0.265***
(0.034)

Dev_stageit1= Beta -- -- 0.275***
(0.034)

-- 0.265***
(0.034)

--

Dev_stageit1> Beta -- -- 0.479***
(0.029)

0.204***
(0.035)

0.46***
(0.029)

0.195***
(0.035)

admin_shit1XDev_stageit1<
Beta

-- -- -- -0.217**
(0.078)

-- --

admin_shit1XDev_stageit1=
Beta

-- -- 0.217**
(0.078)

-- -- --

admin_shit1XDev_stageit1>
Beta

-- -- 0.067
(0.065)

-0.15+
(0.081)

-- --

developer_shit1XDev_stageit1<
Beta

-- -- -- -- -- -0.229**
(0.078)

developer_shit1XDev_stageit1=
Beta

-- -- -- -- 0.229**
(0.078)

--

developer_shit1XDev_stageit1>
Beta

-- -- -- -- 0.085
(0.068)

-0.144+
(0.08)

InEqulit1 0.821***
(0.093)

0.92***
(0.093)

0.678***
(0.079)

0.678***
(0.079)

0.755***
(0.081)

0.755***
(0.081)

use_mailit1 0.155***
(0.03)

0.14***
(0.03)

0.14***
(0.029)

0.14***
(0.029)

0.131***
(0.029)

0.131***
(0.029)

use_pmit1 -0.285***
(0.028)

-0.258***
(0.027)

-0.246***
(0.027)

-0.246***
(0.027)

-0.227***
(0.026)

-0.227***
(0.026)

use_forumit1 -0.168***
(0.028)

-0.171***
(0.026)

-0.156***
(0.026)

-0.156***
(0.026)

-0.161***
(0.026)

-0.161***
(0.026)

use_newsit1 0.108**
(0.037)

0.091*
(0.037)

0.135***
(0.036)

0.135***
(0.036)

0.117***
(0.035)

0.117***
(0.035)

use_screenshotsit1 -0.103**
(0.034)

-0.112***
(0.034)

-0.116***
(0.033)

-0.116***
(0.033)

-0.116***
(0.033)

-0.116***
(0.033)

use_wikiit1 0.157***
(0.031)

0.139***
(0.031)

0.215***
(0.03)

0.215***
(0.03)

0.193***
(0.03)

0.193***
(0.03)

Lang_Popit1 -158.107+
(81.124)

-205.529**
(77.221)

-135.315*
(67.399)

-135.315*
(67.398)

-181.888**
(66.949)

-181.888**
(66.949)

Team_Tenureit1 0.025***
(0.004)

0.025***
(0.004)

-0.01*
(0.004)

-0.01*
(0.004)

-0.01*
(0.005)

-0.01*
(0.005)

Net_Sizeit1 0.013**
(0.004)

0.013**
(0.004)

0.01**
(0.004)

0.01**
(0.004)

0.01**
(0.004)

0.01**
(0.004)

constant -3.288***
(0.226)

-3.265***
(0.227)

-3.16***
(0.224)

-2.885***
(0.226)

-3.12***
(0.225)

-2.855***
(0.227)

Langi, Licensei, Categoryi: Included but not reported
Log-pseudo likelihood -2507.366 -2497.641 -2490.906 -2490.906 -2481.859 -2481.859
+p-value < 0.1; *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001; values are displayed in terms of coefficient (standard error)

38

Table 9. Results of Robustness Test (Extent of structural holes computed from same project category)

DV Development intensity change ratio (development_ratioit2)
Model 7 Model 8 Model 9 Model 10 Model 11 Model 12

admin_intra_shit1 -0.154***
(0.033)

-- -0.098*
(0.046)

-0.193*
(0.077)

-- --

developer_intra_shit1 -- -0.139***
(0.032)

-- -- -0.141**
(0.047)

-0.123+
(0.069)

Dev_stageit1< Beta -- -- -- -0.184***
(0.015)

-- -0.182***
(0.015)

Dev_stageit1= Beta -- -- 0.184***
(0.015)

-- 0.182***
(0.015)

--

Dev_stageit1> Beta -- -- 0.186***
(0.013)

0.002
(0.015)

0.171***
(0.013)

-0.012
(0.015)

admin_shit1XDev_stageit1<
Beta

-- -- -- 0.095
(0.089)

-- --

admin_shit1XDev_stageit1=
Beta

-- -- -0.095
(0.089)

-- -- --

admin_shit1XDev_stageit1>
Beta

-- -- -0.143*
(0.068)

-0.049
(0.09)

-- --

developer_shit1XDev_stageit1<
Beta

-- -- -- -- -- -0.018
(0.082)

developer_shit1XDev_stageit1=
Beta

-- -- -- -- 0.018
(0.082)

--

developer_shit1XDev_stageit1>
Beta

-- -- -- -- -0.004
(0.066)

-0.021
(0.081)

InEqulit1 -0.137***
(0.035)

-0.091**
(0.035)

-0.168***
(0.035)

-0.168***
(0.035)

-0.129***
(0.035)

-0.129***
(0.035)

use_mailit1 -0.045**
(0.017)

-0.055***
(0.017)

-0.047**
(0.017)

-0.047**
(0.017)

-0.056***
(0.017)

-0.056***
(0.017)

use_pmit1 -0.025
(0.017)

-0.019
(0.017)

-0.012
(0.017)

-0.012
(0.017)

-0.01
(0.017)

-0.01
(0.017)

use_forumit1 0.006
(0.016)

0.01
(0.016)

0.008
(0.016)

0.008
(0.016)

0.012
(0.016)

0.012
(0.016)

use_newsit1 0.041+
(0.024)

0.034
(0.023)

0.053*
(0.023)

0.053*
(0.023)

0.047*
(0.023)

0.047*
(0.023)

use_screenshotsit1 -0.002
(0.022)

0.012
(0.022)

-0.01
(0.022)

-0.01
(0.022)

0.007
(0.022)

0.007
(0.022)

use_wikiit1 -0.056**
(0.021)

-0.053*
(0.021)

-0.034
(0.021)

-0.034
(0.021)

-0.03
(0.021)

-0.03
(0.021)

Lang_Popit1 -
378.693***
(26.261)

-
379.869***
(26.382)

-
356.879***
(29.402)

-
356.879***
(29.402)

-
362.038***
(29.016)

-
362.038***
(29.016)

Team_Tenureit1 0.01***
(0.002)

0.013***
(0.003)

-0.003
(0.003)

-0.003
(0.003)

-0.001
(0.003)

-0.001
(0.003)

Net_Sizeit1 -0.004***
(0.001)

-0.004***
(0.001)

-0.006***
(0.001)

-0.006***
(0.001)

-0.006***
(0.001)

-0.006***
(0.001)

constant -0.322*
(0.159)

-0.362*
(0.159)

-0.285+
(0.164)

-0.101
(0.165)

-0.317+
(0.164)

-0.135
(0.165)

Langi, Licensei, Categoryi: Included but not reported
Log-pseudo likelihood -4747.1604 -4683.228 -4740.445 -4740.445 -4676.736 -4676.736
+p-value < 0.1; *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001; values are displayed in terms of coefficient (standard error)

39

To rule out other potential alternative explanations and strengthen the findings, we

conducted several ad hoc tests. First, we conducted two correlation analyses to rule out the

possibility of interdependency between the two dependent variables. This concern arises because

the extent of structural holes in both administrator- and developer-affiliated networks have an

opposite impact on the changes in traffic intensity and development intensity respectively. We

referred to our measurements of traffic intensity (TRFit) and development intensity (DVPit) in

section 4.2 to calculate their values at T1, namely TRFit1 and DVPit1, and calculated their

correlation. Their correlation value is 0.053, which indicates that there is no correlation between

traffic intensity and development intensity. To further confirm this, we calculated the correlation

between the two dependent variables, namely traffic_ratioit2 and development_ratioit2, used in

the preceding analyses. The low correlation value (0.039) between these two variables confirms

our conclusion.

Second, we calculated the extent of structural holes in the administrator-affiliated network

(admin_shit2) and the developer-affiliated network (developer_shit2) at T2 (Dec 2010), and

statistically compared them with those at T1, namely admin_shit1 and developer_shit1. This

approach can rule out the alternative explanation that changes in the dependent variables were

influenced by the phases of the network (i.e., network growth or attenuation). The results from

the paired sample t-test13 indicate that there is no difference in the extent of structural holes

between T1 and T2. There may be two possible explanations for this. On the one hand, some

unconnected OSS projects may be bridged by newly affiliated contributors, which reduces the

extent of structural holes and increases the network closure. On the other hand, the network of a

13 We employed the paired sample t-test to statistically test the difference between two timestamps. In the administrator-affiliated
network, the difference in mean values between two timestamps is -0.184 and the 95% confidence interval is from -0.191 to -
0.176. Thus, the null hypothesis is not rejected. In a similar vein, the difference in mean values of the developer-affiliated
network between the two timestamps is -0.126, which is also located within the 95% confidence interval (i.e., from -0.131 to -
0.121). Thus, the null hypothesis is not rejected either.

40

focal OSS project can be expanded by connecting to new projects that otherwise will not be

connected, which increases the extent of the structural holes. As both circumstances may

concurrently exist, the network of a focal OSS project does not fluctuate drastically over time.

6 Discussions

6.1 Theoretical and Practical Implications

Compared to previous studies that briefly explained the relationship between network structure

and OSS project success (Grewal et al. 2006; Singh 2010; Singh et al. 2011), we

comprehensively assessed how network structures contributed to OSS project success by taking

into consideration the OSS innovation mechanisms. We complement the OSS innovation model

with two contributions that add to a more holistic perspective. First, previous studies place an

overwhelming emphasis on the role of motivation or incentives in constructing the innovation

model of OSS (von Hippel and von Krogh 2003). While acknowledging the importance of

accounting for individual participation in OSS innovation, we urge the researchers to take into

account interproject connectedness in the theorization of the OSS innovation model. Second,

rather than following the extant OSS studies that assessed the success of an OSS project from a

single dimension – such as the number of downloads or the number of CVS commits

(Subramaniam et al. 2009; Singh et al. 2011) – we used a more holistic investigation of OSS

project performance. To the best of our knowledge, this research is the first work that considers

both the network structure and the composite assessments of OSS performance. We found that

an OSS project could strategically aim to have many structural holes in its ego-network

[constructed through its shared contributors with other projects] to gain popularity or it could aim

to be situated in the cohesive network to advance its knowledge creation. In view of the network

structure, our findings are significant for strategizing the composition of OSS contributors to

41

align with the divergent definitions of OSS success – i.e., to reach out to more people or to

improve the software.

Besides contributing to knowledge on OSS innovation mechanisms, our findings reveal how

the OSS project’s maturity plays a role in facilitating OSS project popularity. Only the OSS

projects that have progressed from a very nascent stage to a developmental stage and are

saturated with abundant structural holes appear to benefit from the maturity of the project for

greater popularity. This complements the finding on the positive linear relationship between

project maturity (i.e., pre-beta, beta, and post-beta) and OSS project success in previous literature

(Daniel et al. 2013; Setia et al. 2012). Projects with fewer structural holes had better knowledge

creation and this was not affected by project maturity. One potential explanation for this finding

is that, in a cohesive network structure, the circulated resources tend to be homogeneous, which

means they are relatively easy to harness regardless of the maturity of the OSS project. Another

potential explanation is the less mature projects might offer more learning opportunities and

more spaces for original creations which attract talented contributors who can effectively co-

create even when there is less stable governance and an immuture collaboration structure. Both

of these possible explanations warrant a closer look to better understand our finding of the non-

significant moderation role of project maturity on knowledge creation.

Besides contributing to theory, an immediate practical implication of this research is that

OSS project administrators should consider not only recruiting and sharing essential resources

(such as sharing developers with their other projects), but also managing other projects. By being

linked to other projects, an OSS project could gain greater diversity of information flow that, in

turn, increases its popularity. On the other hand, by encouraging a cohesive network structure, an

OSS project could harness the homogenous resources that, in turn, increase knowledge creation.

42

It is a trade-off that OSS project administrators should carefully assess in the process of OSS

project development.

Our findings also have important implications for IT companies. Previous studies have

found that several IT companies sponsored OSS projects in order to maintain a steady stream of

innovation or achieve novel creations (Watson et al. 2008; Chen et al. 2012; Daniel et al. 2018).

For example, IBM initiated the foundation for supporting Linux projects while Oracle invested in

MySQL to expand its service lines. In this regard, our findings provide constructive suggestions

for the sponsor companies to leverage the OSS project team composition to accomplish their

desired outputs. In particular, organizations wanting to achieve innovation creation by engaging

the OSS community should sponsor OSS projects whose contributors (i.e., administrators or

developers) work in overlapping projects. In contrast, those organizations wanting to leverage

OSS projects to promote their products or services should sponsor those OSS projects whose

teams are composed of people who work in heterogeneous OSS projects.

OSS development forges – such as SourceForge.net or Github – could also benefit from our

findings. We found the contributors’ collaborative ties resulted in a trade-off between popularity

and knowledge creation. In this regard, those projects with significant knowledge creation

achievement might suffer from low popularity. To resolve such a dilemma, the OSS forge

operators should adjust their recommendation mechanism in consideration of the collaborative

ties among OSS project teams; this could effectively prevent those OSS projects with high

innovation potential from being lost among many mediocre ones.

Our findings also shed light on the practice of open innovation in general. Unlike

organizations in the IT industry that have frequent and close collaboratiions with the OSS

community to co-create concrete products or services, the organizations in conventional

43

industries mainly leverage open innovation for idea generation (King and Lakhani 2013):

achieving an innovative output is not the main purpose of innovation campaigns in organizations

in conventional industries. Thus, recruiting external innovators from different backgrounds or

from diversified online communities that are engaged in multiple and intersectional open

innovation projects is recommended. Such broad participant engagement will also provide

greater public exposure for the campaign.

6.2 Limitations and Suggestions for Future Research

Like any other study, this one has several limitations. First, it focuses on the network metric of

Burt’s constraint index, which reflects the structural holes of an OSS project. Hence, our findings

should not be directly integrated with the findings from other OSS studies that also adopt the

network perspective but use different network metrics such as direct and indirect ties (Hahn et al.

2008; Tan et al. 2007). An immediate extension of this study would be to triangulate the findings

by adopting different network metrics, such as centrality and tie strength.

Second, our measurement of popularity and knowledge creation are based on the marginal

differences between the two time periods of data collection, which enable us to temporally

separate network instantiations and performance outcome. Although this method is the best

approach to address commonly raised concerns (e.g., endogeneity), the interval time gap between

the two time periods of data collection could also raise concerns that relate to the continuous

evolvement of the projects. Other than the researchers’ judgment regarding the time gap, a

primary reason for the interval time gap is that adequate time is required for people to know (i.e.,

gain interest) about a project. Different time gaps could be considered to test the robustness of

our findings. Also, future studies could vary the weight of each the components used to measure

popularity and knowledge creation.

44

Third, we chose to anchor our empirical investigation on SourceForge.net to align with the

stream of OSS research, in which many studies use the same data source. In recent years, other

OSS communities such as Github have emerged. Future research could consider extending our

study to test the robustness of our findings in these other emerging OSS communities (Medappa

and Srivastava 2019).

The opportunities for future research stemming from our study are many. We hope our study

serves as a beginning and encourages more evolved research ideas and inquiries into this topic.

7 Concluding Remarks

Nowadays, open source software projects are more connected than before. The emergence of

OSS development forges allows these projects to share valuable resources. Our findings reveal

the contingent role of interproject connectedness (i.e., of an OSS projects’ ego network structure)

on the OSS project success. A project with more structural holes in its ego network is more likely

to gain popularity, however, a cohesive network structure (i.e., with fewer structural holes) is

associated with better knowledge creation. We also observed that the positive relationship

between structural holes and project popularity could be further enhanced by the maturity of the

OSS project. However, the negative relationship between the extent of structural holes and

knowledge creation was not affected by the maturity of the OSS projects. We hope our findings

will inspire subsequent research that considers an OSS project as a vertex in a network of OSS

projects and its connectedness as a determinant of its success.

8 Acknowledgement
This study is supported by the National Natural Science Foundation of China (71702133,

71704078, 71801217, and 71532015) and Singapore Ministry of Education Academic Research

Fund Tier 1, R-253-000-121-133.

45

9 References
Aberdour, M. 2007. Achieving quality in open-source software. IEEE Software 24, 58-64.

https://doi.org/10.1109/MS.2007.2
Ahuja, G. 2000. Collaboration networks, structural holes, and innovation: A longitudinal study. Administrative

Science Quarterly 45, 425-455. https://doi.org/10.2307%2F2667105
Austin, J. R. 2003. Transactive memory in organizational groups: the effects of content, consensus,

specialization, and accuracy on group performance. Journal of Applied Psychology 88, 866-878.
http://dx.doi.org/10.1037/0021-9010.88.5.866

Autio, E., Sapienza, H. J., and Almeida, J. G. 2000. Effects of age at entry, knowledge intensity, and
imitability on international growth. Academy of Management Journal 43, 909-924.
https://doi.org/10.5465/1556419

Balkundi, P., Kilduff, M., Barsness, Z. I., and Michael, J. H. 2007. Demographic antecedents and performance
consequences of structural holes in work teams. Journal of Organizational Behavior 28, 241-260.
https://doi.org/10.1002/job.428

Beckman, C. M., and Haunschild, P. R. 2002. Network learning: The effects of partners' heterogeneity of
experience on corporate acquisitions. Administrative Science Quarterly 47, 92-124.
https://doi.org/10.2307/3094892

Bird, C., Bachmann, A., Aune, E., Duffy, J., Bernstein, A., Filkov, V., & Devanbu, P. 2009. Fair and
balanced?: bias in bug-fix datasets. In Proceedings of the the 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The foundations of software engineering
(pp. 121-130). ACM. https://doi.org/10.1145/1595696.1595716

Blau, P. M. 1977. Inequality and heterogeneity: A primitive theory of social structure. New York: Free Press.
Burt, R. S. 1992. Structural holes: The social structure of competition. Cambridge, MA: Harvard Business

School Press.
Chen, X., and Dietrich, G. 2009. Knowledge Location, Differentiation, Credibility and Coordination in Open

Source Software Development Teams, In, 15th Americas Conference on Information Systems (AMCIS
2009), August 6th-9th, San Francisco, California, US, 2009.

Chen, L., Marsden, J. R., and Zhang, Z. 2012. Theory and analysis of company-sponsored value co-creation.
Journal of Management Information Systems 29, 141-172. https://doi.org/10.2753/MIS0742-1222290206

Chengalur-Smith, S., and Sidorova, A. 2003. Survival of open-source projects: A population ecology
perspective. In, 24th International Conference on Information Systems (ICIS 2003), December 14th-17th,
Seattle, Washington, US, 2003.

Coad, A., Segarra, A., and Teruel, M. 2016. Innovation and firm growth: Does firm age play a role?. Research
Policy 45, 387-400. https://doi.org/10.1016/j.respol.2015.10.015

Coleman, J. S. 1988. Free riders and zealots: The role of social networks. Sociological Theory, 6, 52-57.
http://doi.org/10.2307/201913

Crowston, K., and Howison, J. 2006. Hierarchy and centralization in free and open source software team
communications. Knowledge, Technology & Policy 18, 65-85. https://doi.org/10.1007/s12130-006-1004-
8

Crowston, K., Howison, J., and Annabi, H. 2006. Information systems success in free and open source
software development: Theory and measures. Software Process: Improvement and Practice 11, 123-148.
https://doi.org/10.1002/spip.259

Crowston, K., Li, Q., Wei, K., Eseryel, U. Y., and Howison, J. 2007. Self-organization of teams for free/libre
open source software development. Information and Software Technology, 49, 564-575.
https://doi.org/10.1016/j.infsof.2007.02.004

Crowston, K., Wei, K., Howison, J., and Wiggins, A. 2008. Free/Libre open-source software development:
What we know and what we do not know. ACM Computing Surveys 44, Article 7.
https://doi.org/10.1145/2089125.2089127

Cummings, J. N., and Cross, R. 2003. Structural properties of work groups and their consequences for
performance. Social Networks 25, 197-210. https://doi.org/10.1016/S0378-8733(02)00049-7

46

Daniel, S., Agarwal, R., and Stewart, K. J. 2013. The effects of diversity in global, distributed collectives: A

study of open source project success. Information Systems Research 24, 312-333.
https://doi.org/10.1287/isre.1120.0435

Daniel, S., Midha, V., Bhattacherhjee, A., and Singh, S. P. 2018. Sourcing knowledge in open source software
projects: The impacts of internal and external social capital on project success. The Journal of Strategic
Information Systems, 27, 237-256. https://doi.org/10.1016/j.jsis.2018.04.002

Dong, J. Q., Wu, W., and Zhang, Y. S. 2019. The faster the better? Innovation speed and user interest in open
source software. Information & Management, 56, 669-680. https://doi.org/10.1016/j.im.2018.11.002

Eagle, N., Macy, M., and Claxton, R. 2010. Network diversity and economic development, Science 328, 1029-
1031. https://doi.org/10.1126/science.1186605

Everett, M., and Borgatti, S. P. 2005. Ego network betweenness. Social Networks 27, 31-38.
https://doi.org/10.1016/j.socnet.2004.11.007

Feller, J., Finnegan, P., Fitzgerald, B., and Hayes, J. 2008. From peer production to productization: A study of
socially enabled business exchanges in open source service networks. Information Systems Research, 19,
475-493. https://dx.doi.org/10.1287/isre.1080.0207

Gao, Y., and Madey, G., 2007. Network analysis of the SourceForge. net community, In, J. Feller, B.
Fitzgerald, W. Scacchi, A. Sillitti. (eds.), Open Source Development, Adoption and Innovation, US,
Springer US: pp. 187-200. https://doi.org/10.1007/978-0-387-72486-7_15

Garriga, H., Spaeth, S., & Von Krogh, G. 2011. Open Source Software Development: Communities’ Impact on
Public Good. In International Conference on Social Computing, Behavioral-Cultural Modeling, and
Prediction (pp. 69-77). Springer, Berlin, Heidelberg.

Ghosh, R. 2006. Collaborative ownership and the digital economy. Cambridge, MA: The MIT Press.
Grewal, R., Lilien, G. L. and Mallapragada, G. 2006. Location, Location, Location: How Network

Embeddedness Affects Project Success in Open Source Systems. Management Science 52, 1043-1056.
https://doi.org/10.1287/mnsc.1060.0550

Gargiulo, M., and Benassi, M. 2000. Trapped in your own net? Network cohesion, structural holes, and the
adaptation of social capital. Organization Science, 11, 183-196.
https://doi.org/10.1287/orsc.11.2.183.12514

Gulati, R., and Higgins, M. C. 2003. Which ties matter when? The contingent effects of interorganizational
partnerships on IPO success. Strategic Management Journal 24, 127-144.
https://www.jstor.org/stable/20060517

Hahn, J., Moon, J. Y., and Zhang, C. 2008. Emergence of new project teams from open source software
developer networks: Impact of prior collaboration ties. Information Systems Research 19, 369-391.
https://doi.org/10.1287/isre.1080.0192

Harrison, D. A., and Klein, K. J. 2007. What's the difference? Diversity constructs as separation, variety, or
disparity in organizations. Academy of Management Review 32, 1199-1228.
https://doi.org/10.5465/amr.2007.26586096

Harrison, D. A., Price, K. H., and Bell, M. P. 1998. Beyond relational demography: Time and the effects of
surface-and deep-level diversity on work group cohesion. Academy of Management Journal 41, 96-107.
https://doi.org/10.5465/256901

Harrison, D. A., Price, K. H., Gavin, J. H., and Florey, A. T. 2002. Time, teams, and task performance:
Changing effects of surface-and deep-level diversity on group functioning. Academy of Management
Journal 45, 1029-1045. https://doi.org/10.5465/3069328

He, J., Butler, B. S., and King, W. R. 2007. Team cognition: Development and evolution in software project
teams. Journal of Management Information Systems, 24, 261-292. https://doi.org/10.2753/MIS0742-
1222240210

Healy, K., and Schussman, A. 2003. The ecology of open-source software development. Technical report,
University of Arizona, USA.
https://pdfs.semanticscholar.org/2c89/092af57b5c4508dd65863df5602c90d7bbb6.pdf

Heckman, R., Crowston, K., Eseryel, U. Y., Howison, J., Allen, E., and Li, Q., Emergent decision-making
practices in free/libre open source software (FLOSS) development teams, In, , J. Feller, B. Fitzgerald, W.
Scacchi, A. Sillitti. (eds.), Open Source Development, Adoption and Innovation, US, Springer US: 2007,
pp. 71-84. https://doi.org/10.1007/978-0-387-72486-7_6

47

Holmqvist, M. 2003. A dynamic model of intra-and interorganizational learning. Organization Studies 24. 95-

123. https://doi.org/10.1177/0170840603024001684
Jackson, S. E., May, K. E., and Whitney, K. 1995. Understanding the dynamics of diversity in decision-

making team, In, Guzzo, R.A., Salas, E., and Associates, Team Effectiveness and Decision Making in
Organizations, San Francisco: Jossey-Bass: 1995, 204-261.

Jiang, Q., Tan, C. H., Sia, C. L., & Wei, K. K. 2019. Followership in an Open-Source Software Project and its
Significance in Code Reuse. Mis Quarterly, 43, 1303-1319. http://doi.org/10.25300/MISQ/2019/14043.

Jones, O. 2006. Developing absorptive capacity in mature organizations: The change agent’s role.
Management Learning 37. 355-376. https://doi.org/10.1177/1350507606067172

Jurison, J. 1999. Software project management: the manager's view. Communications of the AIS 2, article 2.
https://doi.org/10.17705/1CAIS.00217

King, A., and Lakhani, K. R. 2013. Using open innovation to identify the best ideas. MIT Sloan Management
Review 55, 41-48.

Knight, D., Pearce, C. L., Smith, K. G., Olian, J. D., Sims, H. P., Smith, K. A., and Flood, P. 1999. Top
management team diversity, group process, and strategic consensus. Strategic Management Journal 20,
445-465. https://doi.org/10.1002/(SICI)1097-0266(199905)20:5<445::AID-SMJ27>3.0.CO;2-V

Kuk, G. 2006. Strategic interaction and knowledge sharing in the KDE developer mailing list. Management
Science 52, 1031-1042. https://doi.org/10.1287/mnsc.1060.0551

Lerner, J., and Tirole, J. 2002. Some simple economics of open source. The Journal of Industrial Economics,
50, 197-234. https://doi.org/10.1111/1467-6451.00174

Li, X., Hess, T. J., and Valacich, J. S. 2008. Why do we trust new technology? A study of initial trust
formation with organizational information systems. The Journal of Strategic Information Systems 17. 39-
71. https://doi.org/10.1016/j.jsis.2008.01.001

Lin, B., Robles, G., and Serebrenik, A. 2017. Developer turnover in global, industrial open source projects:
Insights from applying survival analysis. In 2017 IEEE 12th International Conference on Global
Software Engineering (ICGSE) (pp. 66-75). IEEE.

Lindsjørn, Y., Sjøberg, D. I., Dingsøyr, T., Bergersen, G. R., and Dybå, T. 2016. Teamwork quality and
project success in software development: A survey of agile development teams. Journal of Systems and
Software, 122, 274-286. https://doi.org/10.1016/j.jss.2016.09.028

MacCormack, A. 2001. How internet companies build software. MIT Sloan Management Review 42. 75-84.
Medappa, P. K., and Srivastava, S. C. 2019. Does Superposition Influence the Success of FLOSS Projects? An

Examination of Open-Source Software Development by Organizations and Individuals. Information
Systems Research, 30, 764-786. https://doi.org/10.1287/isre.2018.0829

Nerkar, A., and Paruchuri, S. 2005. Evolution of R&D Capabilities: The Role of Knowledge Networks within
a Firm, Management Science 5, 771-785. https://doi.org/10.1287/mnsc.1040.0354

Patel, P. C., Kohtamäki, M., Parida, V., and Wincent, J. 2015. Entrepreneurial orientation-as-experimentation
and firm performance: The enabling role of absorptive capacity. Strategic Management Journal 36, 1739-
1749. https://doi.org/10.1002/smj.2310

Paulson, L. D. 2007. Developers shift to dynamic programming languages. Computer 40, 12-15.
https://doi.org/10.1109/MC.2007.53

Peng, G., Wan, Y., and Woodlock, P. 2013. Network ties and the success of open source software
development. The Journal of Strategic Information Systems 22, 269-281.
https://doi.org/10.1016/j.jsis.2013.05.001

Podolny, J. M., and Baron, J. N. 1997. Resources and relationships: Social networks and mobility in the
workplace. American Sociological Review 62, 673-693. http://dx.doi.org/10.2307/2657354

Ren, Y., Chen, J., & Riedl, J. 2016. The impact and evolution of group diversity in online open collaboration.
Management Science 62, 1668-1686. https://doi.org/10.1287/mnsc.2015.2178

Schoonhoven, C. B. Liability of newness, In, Cooper, C., Wiley Encyclopedia of Management, Wiley: 2015,
https://doi.org/10.1002/9781118785317.weom030067

Seibert, S. E., Kraimer, M. L., and Liden, R. C. 2001. A social capital theory of career success. Academy of
management journal 44, 219-237. https://doi.org/10.5465/3069452

48

Setia, P., Rajagopalan, B., Sambamurthy, V., and Calantone, R. 2012. How peripheral developers contribute to

open-source software development. Information Systems Research 23, 144-163.
https://doi.org/10.1287/isre.1100.0311

Shah, S. K. 2006. Motivation, governance, and the viability of hybrid forms in open source software
development. Management science, 52, 1000-1014. http://dx.doi.org/10.1287/mnsc.1060.0553

Shipilov, A.V. 2009. Firm Scope Experience, Historic Multimarket Contact with Partners, Centrality, and the
Relationship Between Structural Holes and Performance. Organization Science 20, 85-106.
https://doi.org/10.1287/orsc.1080.0365

Singh, P. V. 2010. The small-world effect: The influence of macro-level properties of developer collaboration
networks on open-source project success. ACM Transactions on Software Engineering and Methodology,
20, Article 6. http://doi.org/10.1145/1824760.1824763

Singh, P. V., Tan, Y., and Mookerjee, V. 2011. Network effects: the influence of structural capital on open
source project success. Management Information Systems Quarterly 35, 813-830.
http://doi.org/10.2307/41409962

Shen, C., and Monge, P. 2011. Who connects with whom? A social network analysis of an online open source
software community. First Monday 16, 6,
https://www.firstmonday.dk/ojs/index.php/fm/article/view/3551/2991

Smithson, M., and Verkuilen, J. 2006. A better lemon squeezer? Maximum-likelihood regression with beta-
distributed dependent variables. Psychological Methods 11. 54-71. http://dx.doi.org/10.1037/1082-
989X.11.1.54

Stewart, K. J., Ammeter, A. P., and Maruping, L. M. 2006. Impacts of license choice and organizational
sponsorship on user interest and development activity in open source software projects. Information
Systems Research, 17, 126-144. https://doi.org/10.1287/isre.1060.0082

Subramaniam, C., Sen, R., and Nelson, M. L. 2009. Determinants of open source software project success: A
longitudinal study. Decision Support Systems 46, 576-585. https://doi.org/10.1016/j.dss.2008.10.005

Tan, Y., Mookerjee, V., and Singh, P.V. 2007. Social Capital, Structural Holes and Team Composition:
Collaborative Networks of the Open Source Software Community, In, 2007 International Conference on
Information Systems (ICIS 2007), December 9th–12th, Montreal, Quebec, Canada: 2007.

Thon, D. 1982. An axiomatization of the Gini coefficient. Mathematical Social Sciences 2, 131-143.
https://doi.org/10.1016/0165-4896(82)90062-2

Tortoriello, M. 2015. The social underpinnings of absorptive capacity: The moderating effects of structural
holes on innovation generation based on external knowledge. Strategic Management Journal 36, 586-597.
https://doi.org/10.1002/smj.2228

Tullio, D. D., and Staples, D. S. 2013. The Governance and Control of Open Source Software Projects. Journal
of Management Information Systems 30, 49-80. https://doi.org/10.2753/MIS0742-1222300303

Van Knippenberg, D., De Dreu, C. K. W., and Homan, A. C. 2004. Work group diversity and group
performance: An integrative model and research agenda. Journal of Applied Psychology 89, 1008-1022.
http://doi.org/10.1037/0021-9010.89.6.1008

Van Knippenberg, D., and Schippers, M. C. 2007. Work group diversity. Annual Review of Psychology. 58,
515-541. https://doi.org/10.1146/annurev.psych.58.110405.085546

von Hippel, E., and von Krogh, G. 2003. Open source software and the “private-collective” innovation model:
Issues for organization science. Organization Science 14, 209-223.
https://doi.org/10.1287/orsc.14.2.209.14992

Wasserman, S., and Faust, K. 1994. Social network analysis: Methods and applications (Vol. 8), Cambridge,
UK: Cambridge University Press. https://doi.org/10.1017/CBO9780511815478

Watson, R. T., Boudreau, M. C., York, P. T., Greiner, M. E., and Wynn Jr, D. 2008. The business of open
source. Communications of the ACM 51, 41-46. https://doi.org/10.1145/1330311.1330321

Wen, W., Forman, C., and Graham, S. J. 2013. Research note—The impact of intellectual property rights
enforcement on open source software project success. Information Systems Research 24. 1131-1146.
https://doi.org/10.1287/isre.2013.0479

Wooldridge, J. M. Econometric analysis of cross section and panel data, Cambridge, US: MIT Press, 2010.

49

Woolley, A. W., Chabris, C. F., Pentland, A., Hashmi, N., and Malone, T. W. 2010. Evidence for a Collective

Intelligence Factor in the Performance of Human Groups. Science 330, 686-688.
https://doi.org/10.1126/science.1193147

Xiao, Z., and Tsui, A. S. 2007. When brokers may not work: The cultural contingency of social capital in
Chinese high-tech firms. Administrative Science Quarterly 52, 1-31. https://doi.org/10.2189/asqu.52.1.1

Zaheer, A., and Soda, G. 2009. Network evolution: The origins of structural holes. Administrative Science
Quarterly, 54, 1-31. http://doi.org/10.2189/asqu.2009.54.1.1

Zahra, S. A., and George, G. 2002. Absorptive capacity: A review, reconceptualization, and extension.
Academy of Management Review 27. 185-203. https://doi.org/10.2307/4134351

Zahra, S. A., and Hayton, J. C. 2008. The effect of international venturing on firm performance: The
moderating influence of absorptive capacity. Journal of Business Venturing 23. 195-220.
https://doi.org/10.1016/j.jbusvent.2007.01.001

Zhu, K. X., and Zhou, Z. Z. 2012. Research note—Lock-in strategy in software competition: Open-source
software vs. proprietary software. Information Systems Research 23, 536-545.
https://doi.org/10.1287/isre.1110.0358

