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Abstract

This paper studies standard predictive regressions in economic systems governed by persistent vector
autoregressive dynamics for the state variables. In particular, all – or a subset – of the variables
may be fractionally integrated, which induces a spurious regression problem. We propose a new
inference and testing procedure – the Local speCtruM (LCM) approach – for joint significance of the
regressors, that is robust against the variables having different integration orders and remains valid
regardless of whether predictors are significant and, if they are, whether they induce cointegration.
Specifically, the LCM procedure is based on fractional filtering and band spectrum regression using a
suitably selected set of frequency ordinates. Contrary to existing procedures, we establish a uniform
Gaussian limit theory and a standard χ2-distributed test statistic. Using the LCM inference and
testing techniques, we explore predictive regressions for the realized return variation. Standard least
squares inference indicates that popular financial and macroeconomic variables convey valuable
information about future return volatility. In contrast, we find no significant evidence using our
robust LCM procedure. If anything, our tests support a reverse chain of causality, with rising
financial volatility predating adverse innovations to key macroeconomic variables. Simulations are
employed to illustrate the relevance of the theoretical arguments for finite-sample inference.
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1 Introduction and Literature Review

An important function of econometric analysis is the provision of forecasts for economic and financial

variables. A commonly adopted approach is predictive regressions, in which the variable of interest

is regressed on a set of lagged predictors, generating coefficient estimates that constitute the basis

for out-of-sample forecasts. However, this procedure has been subject to controversy due to the

inherent nature of economic data. Many relevant series and associated predictors are highly persistent,

inducing an array of inferential problems. In particular, economic time series often display slowly

decaying autocorrelations and even outright non-stationarities. In such scenarios, a number of pitfalls

arise. Most prominently, in the spurious regression case, where one persistent unit root, or I(1),

process is projected onto another independent I(1) process, standard significance tests display large size

distortions; see, e.g., Granger & Newbold (1974) and Phillips (1986). Another canonical example is the

prediction of a noisy, and possibly persistent, dependent variable using a highly persistent regressor.

This setting is motivated by, among others, predictability of stock returns or return volatility and

associated empirical issues such as unstable predictive relations, e.g., Peseran & Timmermann (1995)

and Welch & Goyal (2008), and predictive biases, e.g., Stambaugh (1999).

This paper considers inference and testing for predictive regressions, in which all the variables may

be highly persistent. Formally, they may display different degrees of fractional integration, that is,

be I(d) processes, where d may take different non-integer values across series. This nests standard

short memory and integrated vector autoregressions (VARs), if all variables have d = 0 or d = 1,

respectively, but also accommodates many intermediate cases, thus comprising a very flexible setting.

The variables are (asymptotically) stationary if 0 ≤ d < 1/2, and non-stationary if d ≥ 1/2.

Our analysis builds on prior contributions studying different aspects of the above scenarios. For

spurious regressions, the theory in Phillips (1986) is extended by Tsay & Chung (2000), demonstrating

how many basic insights carry over to regressions with independent, fractionally integrated variables.

Ng & Perron (1997) show that spurious inference problems also appear in systems with unit root and

near unit root variables. In addition, Ferson, Sarkissian & Simin (2003), Valkanov (2003), Torous,

Valkanov & Yan (2005) and Deng (2014) document that similar issues arise when predicting a noisy

stationary variable with a persistent regressor in a local-to-unity (unit root) setting and, in particular,

for long-horizon return regressions. In the latter case, the inference may also be distorted by a bias

caused by correlation between innovations to the (stationary) returns and the persistent predictor.

Stambaugh (1999) shows that this bias can be corrected for a stationary predictor, but Phillips & Lee

(2013) demonstrate that this, more generally, is infeasible, when the regressor displays local-to-unity,

unit root or explosive persistence. In summary, standard inference techniques encounter serious size

problems, when one or more variables of the system are strongly persistent.

Several alternative procedures have been developed to alleviate spurious inference problems and

predictive biases. For example, standard and (fractional) cointegration frameworks facilitate inference

on general linear relations, whose error is purged of (some of) the persistence of the original processes;

see, e.g., Johansen & Nielsen (2012) for parametric inference, and Robinson & Marinucci (2003) and
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Christensen & Nielsen (2006) for the semiparametric case. Moreover, robust inference procedures

have been proposed for the case where the persistent regressor follow local-to-unity dynamics; e.g.,

using Bonferroni corrections as in Cavanagh, Elliott & Stock (1995) and Campbell & Yogo (2006),

a conditional likelihood approach in Jansson & Moreira (2006), and nearly optimal tests in Elliott,

Müller & Watson (2015). Phillips & Lee (2013) and Phillips (2014) discuss issues associated with these

approaches, e.g., the lack of power of the Bonferroni procedure, if the regressor is stationary rather

than local-to-unity, and the lack of extendability to multivariate regressions. As an alternative, they

develop the IVX methodology, which applies generally to persistent autoregressive processes (station-

ary, local-to-unity, unity and explosive) as well as to multivariate testing problems; with extensions

and applications pursued by, among others, Kostakis, Magdalinos & Stamatogiannis (2015). Finally,

Sizova (2013) considers predictive return regressions using stationary fractionally integrated variables,

including historical volatility, but from a different asymptotic perspective.

Although inference in systems with persistent variables has received considerable attention, no

results apply to our flexible predictive regression framework, where each variable may display fractional

integration of different orders, covering stationary and non-stationary values. In the cointegration

literature, the underlying assumption of (fractional) cointegration is violated under the null hypothesis

of no predictability. In the stationary-persistent variable prediction literature, including the IVX

methodology, the regressand is only weakly dependent, not fractionally integrated. Finally, the setting

with diverse values of d puts us squarely outside the local-to-unity framework.

Consequently, in this paper, we seek to fill a critical gap in the literature by developing inference

and testing procedures for prediction of an I(d) variable within a system of fractionally integrated

variables of potentially different orders. Importantly, our methodology is robust to stationary and

non-stationary variables. Moreover, if the regressors are significant, we simultaneously accommodate

predictive relations that may or may not be cointegrated. Such uniformity across persistent predictive

regimes is highly desirable, allowing us to retain statical power, while letting the user, a priori, remain

agnostic about the stationarity of the system as well as whether it exhibits predictability.

Specifically, we propose a two-step inference procedure – the Local speCtruM (LCM) approach.

The first step uses a (semi-)parametric fractional filter to purge the variables of their long memory,

while retaining the coherence among the variables in the filtered series. The second step relies on

band-spectrum regressions, using carefully selected frequency ordinates to account for any slippage

from the mean (or initial value, if d ≥ 1), first-stage filtering errors, and other potential sources

of bias. We show that the LCM inference is asymptotically Gaussian and the associated test for

joint significance of the regressors is χ2-distributed, and thus readily implementable. These results

apply in spite of the original variables consisting of a, possibly highly diverse, mixture of stationary

and non-stationary variables and regardless of whether the (potentially) significant predictors induce

cointegration. Importantly, our estimator achieves a semi-parametric convergence rate in the absence

of cointegration and properties analogous to “super consistency” in its presence. Furthermore, in

settings where predictive biases occur in the fractionally integrated VAR system, we show that the
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LCM procedure, at most, incurs a second-order impact, regardless of the persistence in the system.

This is in contrast to Phillips & Lee (2013), who find the corresponding bias to be of first order and

uncorrectable in the local-to-unity case. Along the same lines, we show that LCM can accommodate

regressors that have been pre-estimated as fractional “cointegrating residuals”. Finally, we provide a

feasible inference procedure that includes a new trimmed exact local Whittle (TELW) estimator of

the fractional cointegration strength.

To illustrate the workings of the LCM approach, we briefly discuss two polar cases. In the first

scenario, we have a balanced system with the integration order of the regressand, d > 0, matching the

integration order among the regressors. In this scenario, inference is generally non-standard, including

the case of unit roots generating non-standard convergence rates or spurious regression relations.

Without exploiting a priori knowledge of whether the system is balanced or not, the LCM approach

affords a simple procedure to obtain standard inference, independent of the persistence in the system,

albeit at some cost in efficiency. The second case involves unknown degrees of integration across

variables and possibly an unbalanced system. The LCM approach enables us to convert the system

to an approximately balanced and stationary setting, and to directly test for predictability of the

regressand through (weak) dependence on the regressors.

The methodological contributions closest to ours include Shao (2009), Maynard, Smallwood &

Wohar (2013), Christensen & Varneskov (2017), and Müller & Watson (2018). In Shao (2009), the

test for independence of two fractionally integrated processes is bivariate, and it neither accommo-

date non-zero means (or initial values) of the series nor non-stationary long memory (d ≥ 1/2). The

two-stage approach in Maynard et al. (2013) has similar drawbacks. In addition, their asymptotic dis-

tribution theory differs under the null (no predictability) and alternative hypothesis, and it depends

on the first-stage filtering.1 Müller & Watson (2017, 2018) study the different problem of drawing

inference and generating predictions about the very long run. For that purpose, they estimate a bi-

variate spectral density using low-frequency trigonometric averages of observations, thus extracting

information about the “long-run” coherence between two series from a fixed number of frequencies in

the vicinity of the origin. The asymptotic properties of this low-frequency methodology depends on the

persistence of the system, with a potentially very slow convergence rate, e.g., when d is close to 1/2,

and it generates confidence intervals that are, mainly, computed by numerical means. In contrast,

the LCM procedure captures information about the coherence from a wider range of the spectrum

and directly accommodates multivariate systems, allowing for more general statements about pre-

dictability, the rate of convergence is invariant to d, and the procedure enjoys properties analogous to

“super consistency,” if the predictive relation is cointegrating. Moreover, the LCM approach achieves

closed-form Gaussian inference regardless of the, possibly different, integration orders of the variables

and whether they exhibit cointegration, when significant. That is, contrary to existing methodologies,

the LCM inference and tests remain uniformly valid across a range of empirically relevant predic-

1Generally, the first-stage filtering error impacts both the rate of convergence and the asymptotic distribution theory.
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tion scenarios.2 Christensen & Varneskov (2017) propose a band-spectrum regression estimator in a

stationary fractional cointegration setting, resembling the one used in the second-step LCM analysis.

However, their results pertain only to the 0 < d < 1/2 case. In fact, a direct application of their

medium-band least squares estimator generally generates inconsistent estimates of predictive power.

Hence, both steps of our LCM approach are crucial for reliable inference and testing. Finally, none

of these methodologies accommodate endogenous regressors or regressors that have been obtained as

residuals from a pre-estimated fractional co-integrating relation, in contrast to the LCM procedure.

We apply the LCM approach to study predictive regressions for realized volatility. Going back

to Schwert (1989), it has been debated whether financial and macroeconomic variables aid in the

prediction of aggregate stock market volatility. Recently, interest in the topic has surged with the

adoption of stochastic volatility in macro-finance models for the purpose of explaining consumption

innovations and cross-sectional asset pricing, e.g., Bansal, Kiku, Shaliastovich & Yaron (2014) and

Campbell, Giglio, Polk & Turley (2018). Hence, recent studies explore alternative ways of improving

realized volatility forecasts using various state variables, e.g., Christiansen, Schmeling & Schrimpf

(2012), Paye (2012), Conrad & Loch (2014), Mittnik, Robinzonov & Spindler (2015), Dew-Becker,

Giglio, Le & Rodriguez (2017), and Nonejad (2017). Even though some of these studies apply sophis-

ticated econometric techniques, many still rely on standard regressions to discern whether financial

and macroeconomic variables boost the predictability of return volatility. Moreover, none of the meth-

ods explicitly account for the persistence in the state variables or the long memory in the realized

market variance. The latter feature is a stylized fact of the financial econometrics literature.3 In fact,

Paye (2012, p. 533) and Nonejad (2017, p. 135) recognize that the state variables are very persistent,

having first-order autocorrelations of the magnitude that generate size distortions according to Ferson

et al. (2003, 2009), so alternative inference procedures may well be warranted.

For specificity, we focus on three state variables – the default spread, three-month U.S. treasury

bills, and price-earnings ratio – whose prowess for volatility forecasting is highlighted by, among others,

Campbell et al. (2018). We first document that all these variables may be characterized as fractionally

integrated processes; realized variance as a persistent stationary process, the state variables as non-

stationary ones. Second, we confirm, in line with the extant literature, that all three state variables,

seemingly, are significant predictors of realized variance based on least squares and HAC inference.

Third, we demonstrate through realistically calibrated simulations that standard least squares inference

procedures suffer from large size distortions, when the variables in the VAR system are persistent in the

sense of fractional integration. This complements the comprehensive simulation study in Ferson et al.

(2003), showing that size distortions can be very severe, up to 70% for joint significance tests, in our

general setting. Our LCM test for joint significance, on the other hand, has excellent size and power

2Despite achieving a memory-dependent and potentially very slow rate-of-convergence as well as providing less general
inference within fractionally (co)integrated systems, it is important to note that the Müller & Watson (2017, 2018)
procedure also applies to local-level and local-to-unity models, thus adding generality along that dimension.

3See, for example, Baillie, Bollerslev & Mikkelsen (1996), Comte & Renault (1998), Andersen, Bollerslev, Diebold &
Ebens (2001), Andersen, Bollerslev, Diebold & Labys (2001, 2003), Christensen & Nielsen (2006), Andersen, Bollerslev
& Diebold (2007), Corsi (2009), Bollerslev, Osterrieder, Sizova & Tauchen (2013) and Varneskov & Perron (2018).
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in finite samples. Fourth, when testing the predictive ability of the state variables using the robust

LCM procedure, we fail to find significant predictive power. Finally, we test for a reverse predictive

relation, i.e., whether the realized stock market variance is informative about future realizations of

the state variables. Indeed, for the given sample, elevated volatility serves as a strong predictor for a

widening the default spread and a drop in the price-earnings ratio. This suggest that standard least

squares techniques may generate spurious findings regarding realized variance predictions, while the

LCM inference procedure may help uncover new predictive relations.

The paper proceeds as follows. Section 2 provides the setup, defines our notion of regression

balance, and reviews problems associated with standard predictive regressions. The local spectrum

(LCM) approach is introduced in Section 3. Section 4 discusses robustness to the endogeneity bias and

feasibility of including fractionally cointegrating residuals among the regressors. Section 5 describes

the data and establishes baseline OLS evidence. Section 6 contains a simulation study documenting

the finite sample performance of the LCM procedure. Section 7 explores realized variance prediction

using LCM and considers reverse predictive relations. Finally, Section 8 concludes, while proofs and

additional details on the data and simulation results are relegated to a Supplementary Appendix.

2 Predictive Regressions with Persistent Variables

This section introduces a regression framework in which all variables may exhibit long memory of

different orders. The setting is used to study predictive regressions within persistent economic systems.

We further discuss the possibility of drawing spurious inference and issues with incompatibility of the

regression models under the null and alternative hypotheses. These considerations motivate our notion

of balancedness and, subsequently, the design of the LCM testing procedure in Section 3.

2.1 Predictive Regression Assumptions

We observe a (k + 1)× 1 vector zt = (yt,x
′
t−1)′, which is assumed to obey,

D(L) (zt − µ) = vt 1{t≥1} (1)

where µ is a (k + 1)× 1 vector of nonrandom unknown finite numbers, either the means or initial

values of the variables, vt = (et,u
′
t−1)′ is a weakly dependent vector process, and D(L) = diag[(1 −

L)d1 , . . . , (1− L)dk+1 ], with (1− L)d being a generic fractional filter,

(1− L)d =
∞∑
i=0

Γ(i− d)

Γ(i+ 1)Γ(−d)
Li, (2)

and Γ( · ) is the gamma function. In this setting, we define and study the predictive relation between

the variables yt and xt−1 through their weakly dependent components. Specifically, we assume,

et = B′ut−1 + η
(b)
t , t = 1, . . . , n, (3)
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where η
(b)
t = (1 − L)b ηt for some constant b ≥ 0 and ηt ∼ I(0). Importantly, however, while the

predictive relation between yt and xt−1 is characterized by equation (3), this is tantamount to a

balanced model for the persistent, observable variables,

yt = a + B′Q(L)xt−1 + υt, t = 1, . . . , n, (4)

where Q(L) = Dx(L)(1 − L)−d1 , with Dx(L) being the k × k lower-right submatrix of D(L), a =

µy −B′Q(L)µx for µ = (µy,µ
′
x)′ and υt = (1− L)−d1 η

(b)
t = (1− L)b−d1 ηt.

The observation equation (1) in conjunction with the functional forms (3)-(4) encompass most

multivariate fractionally integrated systems in the literature. Moreover, its design offers two particular

advantages, as detailed in Section 2.2. First, it ensures a well-defined and balanced relation between

the observable series yt and xt−1, despite the variables being allowed to exhibit different degrees of

fractional integration. Second, it accommodates inference scenarios with stationary and nonstationary

variables that may (b > 0) or may not (b = 0) cointegrate. It is important to note, however, that

the balanced relations (3)-(4) are not directly observable as the persistence matrix, D(L), is generally

unknown ex-ante. We will show how to overcome this challenge below.

Before detailing the implications of the predictive setting, we impose some formal structure on the

components of the model. To this end, we let “∼” signify that the ratio of the left- and right-hand-side

tends to one in the limit, element-wise. Then, following the fractional cointegration analyses in, e.g.,

Robinson & Marinucci (2003), Christensen & Nielsen (2006) and Christensen & Varneskov (2017),

we impose the regularity conditions in terms of qt = (u′t−1, ηt)
′ rather than vt , when deriving the

asymptotic properties for the proposed local spectrum procedure.

Assumption D1. The vector process qt, t = 1, . . . , is covariance stationary with spectral density

matrix satisfying fqq(λ) ∼ Gqq as λ → 0+, where the upper left k × k submatrix, Guu, has full rank,

and the (k + 1)th element of the diagonal, Gηη, is strictly greater than zero. Moreover, there exists a

$ ∈ (0, 2] such that |fqq(λ)−Gqq| = O(λ$) as λ → 0+. Finally, let Gqq(i, k + 1) be the (i, k + 1)th

element of Gqq, which has Gqq(i, k + 1) = Gqq(k + 1, i) = 0 for all i = 1, . . . , k.

Assumption D2. qt is a linear process, qt =
∑∞

j=0Ajεt−j, with square summable coefficients∑∞
j=0 ‖Aj‖2 < ∞, the innovations satisfy, almost surely, E[εt|Ft−1] = 0 and E[εtε

′
t|Ft−1] = Ik+1,

and the matrices E[εt⊗ εtε′t|Ft−1] and E[εtε
′
t⊗ εtε′t|Ft−1] are nonstochastic, finite, and do not depend

on t, with Ft = σ(εs, s ≤ t). There exists a random variable ζ such that E[ζ2] <∞ and, for all c and

some C, P[‖qt‖ > c] ≤ CP[|ζ| > c]. Finally, the periodogram of εt is denoted by J(λ).

Assumption D3. For A(λ, i), the i-th row of A(λ) =
∑∞

j=0Aje
ijλ, its partial derivative satisfies

‖∂A(λ, i)/∂λ‖ = O(λ−1‖A(λ, i)‖) as λ→ 0+, for i = 1, . . . , k + 1.

The regularity conditions in Assumptions D1-D3 are standard in the literatures analyzing semi-

parametric fractional co-integration as well as the estimation of multivariate fractional models, e.g.,

Shimotsu (2007) and Nielsen (2015). Specifically, D1 and D3 impose a mild rate of convergence for
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the spectral density matrix fqq(λ) in the vicinity of the origin, which depends on the smoothness

parameter $ ∈ (0, 2]. Moreover, D1 requires full rank of ut−1 and it being locally exogenous to ηt as

λ→ 0+, but not global exogeneity. Finally, D2 specifies linearity, martingale and moment conditions

for qt, allowing for general multivariate dependence, but rules out time-variation in the conditional

covariance between the innovations as well as their third and fourth conditional moments.

Importantly, these conditions allow zt to obey vector ARFIMA processes (for $ = 2), thereby

nesting VAR dynamics as a special case with d1 = · · · = dk+1 = b = 0, which is commonly used to

describe predictive economies in macro finance; see, e.g., Campbell & Vuolteenaho (2004), Bansal et al.

(2014), and Campbell et al. (2018). Similarly, an integrated VAR system is recovered by imposing

unit root dynamics, d1 = · · · = dk+1 = 1 and b = 0. Generally, however, the properties of the variables

depend critically on their integration orders. First, if 0 ≤ di < 1/2, the ith variable is (asymptotically)

stationary with long memory, whenever di > 0. Long memory processes feature hyperbolically decaying

autocovariances, contrary to the geometric decay for short memory processes (with di = 0). Second,

the variable is non-stationary if di ≥ 1/2, but has a well-defined mean for di < 1. Hence, the flexibility

of (1) is particularly useful for characterizing the dynamic properties of multivariate systems, whose

components are very persistent, yet display different degrees of persistence, which is often the case for

applications with multiple financial and macroeconomic variables.

The main departure from the standard fractional (co-)integration settings is the flexible predictive

setup encompassed by equations (1) and (3), allowing all variables to exhibit different integration

orders and accommodating cases where cointegration is not ex-ante imposed on the system. In addition

to these features, the fact that the dependent variable may also display strong persistence sets our

framework apart from prior studies, which develop robust inference for predictive regressions with

local-to-unity regressors. The relevance of these fairly subtle features are discussed in detail next.

2.2 Regression Balance and Inference Considerations

The relation in (4) has several distinct features. First, to be well-defined, despite the observable

regressors possibly having different fractional integration orders, the predictive model must be balanced

under both,

H0 : B = 0, and HA : B 6= 0. (5)

Hence, irrespective of the forecasting prowess of the regressors, the implied dynamics of the prediction

model is required to be consistent with the observed dynamics of the dependent variable, yt ∼ I(d1).

To this end, the fractional filter Q(L) adjusts the persistence of xt−1 to ensure regression balance

under both H0 and HA. If the system is balanced, then Q(L) = Ik, a k-dimensional identity matrix,

and the adjustment is trivial. Second, if the regressors contain forecasting power, the model may

exhibit cointegration. We entertain three distinct scenarios:

(i) B = 0 and b = 0: xt−1 contains no predictive power for yt.

(ii) B 6= 0 and b = 0: xt−1 partially spans the persistent component(s) of yt.
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(iii) B 6= 0 and b > 0: xt−1 cointegrate with yt, spanning its persistent component(s).

We may illustrate the three scenarios through a simple univariate regression setting with integrated

series, yt and xt−1 , where yt contains two separate components, yt = y1,t + y2,t , and both y1,t and y2,t

are integrated of order one. In case (i), we obtain a standard spurious regression (4), while the first-

differenced representation in equation (3) contains a stationary innovation term, so b = 0. For case (ii),

let y1,t = B′xt−1 + u1,t and y2,t = y2,t−1 + u2,t , where u1,t and u2,t are independent i.i.d. innovations.

Now, the regressor partially spans the persistent yt variable, but the error term in equation (4) will

be integrated, and the first-differenced system in (3) features a stationary error, b = 0. Finally, case

(iii) arises from case (ii) with y2,t = 0 for all t ≥ 0. Here, regression (4) is a standard cointegrating

relation, the persistent component of yt is fully spanned by the regressor, and equation (3) involves

(over-)differencing of a stationary error term, b = 1.

The three competing hypotheses above demonstrate that rigorous testing for predictive ability in

persistent systems require estimation and inference procedures, which remain valid across distinct

settings, because it generally is unknown, ex ante, whether the predictors are significant and, if they

are, whether the system features cointegration. Given the persistence of the variables in system (1) as

well as the possibility of cointegration, it is well-known that standard OLS procedures applied to yt

and xt−1 produces spurious inference, unless d1 = · · · = dk+1 = 0 and b = 0, e.g., Granger & Newbold

(1974), Phillips (1986) and Tsay & Chung (2000). Moreover, standard (fractional) cointegration

settings, e.g., Robinson & Marinucci (2003), Christensen & Nielsen (2006), and Johansen & Nielsen

(2012) impose balanced memory d1 = · · · = dk+1 = d and 0 < b ≤ d for validity of their respective

inference procedures, thereby assuming the regressors have predictive power under the null hypothesis.

Thus, examining and testing for balanced predictability in systems involving persistent variables with,

possibly, distinct degrees of memory require the development of new inference techniques.

Third, we note that regression balance may be achieved through a different channel than the

stipulated persistence adjustment, Q(L). Specifically, if a cointegrating relation exists among the

regressors, possibly in conjunction with variables external to the economic system, a “cointegrating

residual” may be included in lieu of the original regressors. This involves additional complications,

however, as it requires a priori identification of the cointegrating relation, since we assume the set

of regressors included in the predictive analysis to have full rank, cf. Assumption D1. Moreover,

these “residuals” may require pre-estimation of the cointegrating vectors. Consequently, for ease of

exposition, we defer formal treatment of this scenario to Section 4.2, while stressing that our LCM

inference techniques retain robustness to this case. Finally, to further illustrate the notion of regression

balance and associated inference challenges for persistent economic systems, we provide a number of

additional examples.4 Importantly, these scenarios are all encompassed by our predictive setting and

may be studied using the inference procedures developed below.

4In a companion paper, we provide detailed accounts of spurious inference results as well as biases and degeneracies for
unbalanced OLS regressions; see Andersen & Varneskov (2019b). Specifically, we adapt results from Tsay & Chung (2000)
and Robinson & Marinucci (2003) to describe OLS and apply simulations to illustrate the arguments.
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Example 1 (Balanced System, Standard Integration). Suppose yt ∼ I(1) and xt−1 ∼ I(1). As dis-

cussed above, our framework then embeds: (i) unit root regressions for b = 0; (ii) standard cointegrating

regressions for b = 1. In these settings, OLS generally produces spurious inference, e.g., Granger &

Newbold (1974) and Phillips (1986) . However, if the true cointegration structure, and thus predictabil-

ity, is known ex-ante, inference procedures are available, e.g., Phillips (1991) and Johansen (1996).

Example 2 (Balanced System, Fractional Integration). Suppose yt ∼ I(d) and xt−1 ∼ I(d), 0 ≤ d < 2,

then our framework contains: (i) long-memory regressions for b = 0; (ii) fractional cointegrating

regressions for 0 ≤ b ≤ d. In these settings, OLS similarly produces spurious inference, e.g., Tsay

& Chung (2000). However, if the true (fractional) cointegration structure, and thus predictability, is

known ex-ante, inference procedures are available, e.g., Robinson & Marinucci (2003), Christensen &

Nielsen (2006), Robinson & Hualde (2003) and Johansen & Nielsen (2012).

Example 3 (Unbalanced System, Standard Integration). Suppose yt ∼ I(0) and xt−1 ∼ I(1), then

the predictive system is unbalanced, which have the following implications:

• There exists no “standard linear prediction model” for which yt ∼ I(0) under both H0 and HA;

it is incompatible with regression balance.

• The OLS coefficient estimate, B̂, decomposes as B̂ ' 2
n B + error(b), i.e., it is degenerate with

an error that depends on whether there is cointegration between yt and ∆xt−1.

As in the balanced case, problems with spurious inference is well-known from the literature on stationary-

persistent predictive relations, e.g., Ferson et al. (2003), Deng (2014) and Phillips (2015). However,

our framework and associated definition of regression balance stipulate that a well-defined predictive

relation may exists between: (i) yt and ∆xt−1; (ii) yt and a cointegrating residual involving xt−1 and

some other external I(1) variables, which may have to be pre-estimated.

Example 4 (Unbalanced System, Fractional Integration). Suppose yt ∼ I(dy) and xt−1 ∼ I(dx),

0 ≤ b ≤ dy < dx, then the system is unbalanced, which have the following implications:

• There exists no “standard linear prediction model” for which yt ∼ I(dy) under both H0 and HA;

it is incompatible with regression balance.

• Moreover, the OLS coefficient estimate, B̂, decomposes as B̂ ' B × Sn(dy, dx) + error(dy, dx, b)

where Sn(dy, dx) is a, possibly, degenerate function of the sample size, depending on (dy, dx),

which captures the bias of the point estimate, and the error depends on (dy, dx, b).

As in the balanced case, Tsay & Chung (2000) show that such systems is subject to spurious inference.

However, our framework and associated notion of regression balance stipulate that a well-defined pre-

dictive relation may exists between: (i) yt and Q(L)xt−1; (ii) yt and a fractional cointegrating residual

involving xt−1 and some other external I(dx) variables, which may have to be pre-estimated.
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Our notion of predictability, specified through balanced regression in the form of equations (3) and

(4), stipulates that either B = 0 or B 6= 0. That is, we focus on distinct persistence scenarios for

which the memory of each variable can be consistently estimated. Consequently, we rule out local

asymptotic alternatives of the form B = b/nγ for some γ > 0 large enough for the memory of yt to

become unidentifiable, even asymptotically. This requirement is formalized by Assumption F in the

next section. Furthermore, we briefly discuss this scenario in the context of the empirical application

below. A separate treatment for this case is provided in Andersen & Varneskov (2019a), where we

analyze the possibility of asset returns having a “hidden” fractionally integrated component.

3 The Local Spectrum Approach

This section introduces the local spectrum (LCM) inference and testing procedure and establishes its

asymptotic properties. First, we motivate our approach using a spectral density decomposition of the

vector zt, before describing its two-step implementation in Sections 3.2 and 3.3. Section 3.4 develops

the asymptotic theory. Section 3.5 provides a new estimator for the fractional cointegration strength.

Note that Section 4 discusses theoretical extensions such as robustness to the regressor endogeneity

bias and regressors that are generated as cointegration residuals. The material in this section, however,

suffices for readers only interested in the core LCM procedure and asymptotic theory.

3.1 Motivating Observations and Implications for Inference

The intuition behind the local spectrum inference and testing procedure is readily conveyed by the

relation between the observable dynamics (1) and the latent predictive models (3) and (4). Specifically,

whereas we associate predictability with interaction in a balanced relation, the observable system (1)

may contain different integration orders, which, together with Assumption D1-D3, implies that the

spectral densities of the regressors and dependent variable behave according to,

fxx(λ) ∼ Λ−1
xx Guu Λ

−1
xx , fyy(λ) ∼ Λ−1

yy B′GuuBΛ
−1
yy + Λ−1

y−ηGηηΛ
−1
y−η, (6)

respectively, where Λyy and Λxx are the first element and lower-right k × k submatrix of Λ, defined

as,

Λ = diag
[
(1− eiλ)d1 , . . . , (1− eiλ)dk+1

]
,

and Λy−η = (1 − eiλ)d1−b, with Λ and Λy−η denoting the corresponding complex conjugates, and

i =
√
−1. Importantly, these spectral densities, and thus the implied properties of the second moments,

have different divergence rates in the vicinity of the origin, depending on the fractional integration

orders. However, the corresponding spectral densities of the unobservable weakly dependent compo-

nents ut−1 and et, fuu(λ) ∼ Guu and fee(λ) ∼ B′GuuB + Λ−1
−ηGηηΛ

−1
−η, with Λ−η = (1 − eiλ)−b, are

asymptotically bounded and convey similar information about B, i.e., about the presence of balanced

predictability in equation (4). This suggests that inference based on ut−1 and et may circumvent
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concerns regarding regression balance, degeneracy of point estimates, and spurious inference.

Hence, we propose a two-step procedure in which the variables initially are stripped of their per-

sistence via fractional filtering, that is, we form an estimate of vt = (et,u
′
t−1)′. Second, we introduce

a consistent frequency domain estimator of B, explicitly accounting for the first-stage estimation and

filtering errors. This local spectrum (LCM) procedure is, thus, designed to achieve balancedness in

an agnostic way by purging all variables of their fractional integration, before carrying out robust fre-

quency domain estimation and testing for predictive ability, that is void of spurious inference concerns

because, effectively, the fractionally filtered economic system is only weakly dependent.

Remark 1. We rely on an exact spectral density representation around the origin in equation (6), that

is, the entries of Λ are of the form (1− eiλ)d rather than the usual approximation λd. Not only does

this accommodate richer dynamics of zt, c.f. Shimotsu (2007) and Robinson (2008), it also allows

the LCM inference and testing procedure to apply over a wider range of d, covering both stationary

and non-stationary values. In particular, as discussed by Shimotsu & Phillips (2005), λd provides a

suitable approximation when d < 1/2, but it deteriorates as d moves into the non-stationary range,

eventually generating inconsistent estimators of the integration order.

Remark 2. Frequency domain methods are often used for estimation involving fractionally integrated

series. However, it follows from equation (6) that, if an entry has di 6= d1, then the coefficient for this

explanatory variable cannot be consistently estimated using standard local band-spectrum estimators

applied to yt and xt−1, as such estimates are degenerate, asymptotically. Of course, Examples 1-4

illustrate that similar problems plague least squares inference procedures in this context.

3.2 Step 1: Fractional Filtering

To accommodate a wide range of alternative procedures, we do not adopt a specific estimator of the

fractional integration orders, but rather assume to have an estimator, d̂i for i = 1, . . . , k+ 1, available,

which satisfies mild consistency requirements. This is formalized through the following assumption.

Assumption F. Let md � n% be a sequence of integers where 0 < % ≤ 1. For all i = 1, . . . , k + 1

elements of zt, we assume to have an estimator with the property,

d̂i − di = Op
(
1/
√
md

)
, and we then let, D̂(L) = diag

[
(1− L)d̂1 , . . . , (1− L)d̂k+1

]
.

Assumptions F is very mild, essentially only requiring the existence of an estimator which, under

Assumptions D1-D3, is consistent. Of course, we need such consistency to hold for a wide range of di.

To simplify the subsequent analysis, we impose another mild restriction,

0 ≤ di < 2, for i = 1, . . . , k + 1, and we then define, d = min
i=1,...,k+1

di. (7)

This restriction is innocuous, in the sense that it is satisfied by most economic series, including all the

macroeconomic and financial variables considered in our empirical analysis. In addition, the upper
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bound, di < 2, shortens the proofs considerably by allowing us to invoke periodogram bounds from

Shimotsu (2010), and 0 ≤ di enables us to provide a unified set of trimming and bandwidth conditions

for the medium-band least squares estimator in the second estimation step in Section 3.3.

In addition to condition (7), the cointegration strength parameter, b, needs to be restricted under

the alternative hypothesis, HA. Specifically, we impose the condition,

0 ≤ b ≤ min(d, 1). (8)

If the observable system (1) is balanced, the intuition behind restriction (8) is straightforward; our

framework accommodates I(1)−I(0) cointegration, fractional cointegration and settings without coin-

tegration, as detailed in Examples 1 and 2. If the variables have different integration orders, the con-

dition is more subtle, yet remains intuitive. In particular, the cointegrating relation must be balanced

and its residuals, at least, weakly dependent. To see this, suppose yt ∼ I(0.4) and xt−1 ∼ I(0.8).

Then the upper bound b = 0.4, in conjunction with the regression balance requirement (4), implies

a balanced cointegrating relation with I(0) residuals. Conversely, if yt ∼ I(0.8) and the predictors

xt−1 ∼ I(0.4), then the restriction b = 0.4 generates I(0.4) residuals, meaning xt−1 cannot account

for a higher degree of fractional integration in yt than is implied by its own persistence.5

Given these restrictions and estimates for the system-wide integration orders D̂(L), the innovations,

vt, are estimated by,

v̂t ≡ (êt, û
′
t−1)′ = D̂(L)zt , (9)

that is, without accounting for the mean, or initial value, in zt. Rather than treating “de-meaning”

of the series on a case-by-case basis, depending on di, we account for the residual impact of the mean

component, D̂(L)µ, in a unified manner during the second stage estimation.

We conclude the section with two examples of memory parameter estimators, one semiparametric

and one parametric procedure, which are compatible with our framework.

Example 5 (Exact local Whittle). The semiparametric exact local Whittle (ELW) by Shimotsu &

Phillips (2005) and, in particular, the mean and trend-robust version in Shimotsu (2010) are accom-

modated by Assumption F, where the rate of convergence is restricted through the condition % < 4/5,

when the spectral density is sufficiently smooth ($ = 2 in Assumption D1). The same holds for the

trimmed ELW (TELW) estimator, which we introduce in Section 3.5 to estimate b.

Example 6 (ARFIMA filter). A parametric alternative to ELW estimation is fitting (possibly, long)

ARFIMA(p, d, q) models, using, e.g., information criteria to determine p and q, and obtain estimates

of d, relying on asymptotic results from Hualde & Robinson (2011) and Nielsen (2015). This procedure

also requires $ = 2, and it achieves the optimal rate of convergence % = 1.6

5The upper bound may be changed to min(ds, 1), where ds = {min2=,...,k+1(d1 ∧ di)|B(i− 1) 6= 0}, that is, the restriction
in (8) applies only to the significant regressors. However, to ease exposition and avoid exceedingly complicated cross-
restrictions on bandwidth and trimming parameters in Section 3.3, we refrain from making this distinction.

6Assumptions D1-D3 mirror the corresponding assumptions in Shimotsu & Phillips (2005, Assumptions 1’-3’), but we
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3.3 Step 2: Medium Band Least Squares

After having computed v̂t, we estimate the parameter vector B in equations (3)-(4) in a second step

using a new frequency-domain least squares estimator. To this end, we let,

wh(λj) =
1√
2πn

n∑
t=1

ht e
itλj , Ihk(λj) = wh(λj)wk(λj), (10)

be the discrete Fourier transform and cross-periodogram, respectively, where ht and kt are generic

(and compatible) vector time series, and λj = 2πj/n indexes the Fourier frequencies. Moreover, we

let the real and imaginary decomposition of Ihk(λj) be denoted Ihk(λj) = <(Ihk(λj)) + i=(Ihk(λj)).

Finally, define the trimmed discretely averaged co-periodogram (TDAC) as,

F̂hk(`,m) =
2π

n

m∑
j=`

<(Ihk(λj)), 1 ≤ ` ≤ m ≤ n, (11)

where ` = `(n) and m = m(n) are trimming and bandwidth functions, respectively. Then, we can

write the TDAC of ût−1 as F̂ûû(`,m) and, similarly, of ût−1 and êt as F̂ûê(`,m), and use these to

define the medium band least squares (MBLS) estimator,

B̂(`,m) = F̂ûû(`,m)−1 F̂ûê(`,m), (12)

for which `,m→∞ and `/m+m/n→ 0, as n→∞.7 The MBLS estimator has some distinct advan-

tages. First, we avoid being fully parametric about the dynamics of zt, needing only the structure of

the spectrum as λ→ 0+. Second, by utilizing trimming and a bandwidth m/n→ 0, we asymptotically

annihilate first-stage estimation errors from the filtering procedure. Specifically, the trimming compo-

nent eliminates any slippage from the means, or initial values, D̂(L)µ, occurring at lower frequencies

and, in conjunction with the bandwidth, the estimation errors in Assumptions F. Combining these

features ensures robust testing for the predictive power of the regressors in equations (3)-(4).

Remark 3. Importantly, despite Assumptions D1-D3 only parameterizing the low-frequency part of

the spectrum (as λ→ 0+), we emphasize that the (latent) test for predictability in equation (3) is not

confined to persistent (or lower frequency) components in the filtered series et and ut−1; even white

noise processes have constant spectral densities in the vicinity of the origin.

Christensen & Varneskov (2017) introduces the generic structure of the MBLS estimator (12) to

analyze fractional co-integration among stationary long-memory processes in the presence of structural

breaks and other low-frequency contaminants. Despite these similarities, their estimator differs from

need to impose slightly stronger differentiability assumptions in D3 to satisfy the (still very) mild regularity conditions
of Nielsen (2015, Assumption C). We refer to the latter for details.

7We have suppressed dependence on the (lagged) time t indicator in F̂ûû(`,m) and F̂ûê(`,m) to ease exposition. We will,
however, explicate the dependence on time when necessary, e.g., when establishing Lemmas A.1-A.3.
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the one in equation (12) in important ways. Not only is the setting and objective different, but we

perform estimation using fractionally filtered variables and impose new conditions on the trimming

and bandwidth functions ` and m. Moreover, by using filtering in combination with the exact rep-

resentation (6), we accommodate non-stationary variables, whereas Christensen & Varneskov (2017)

require stationarity for all variables and cointegration between yt and xt−1. This renders their ap-

proach ill-suited for predictive testing, as the latter condition is violated under the null hypothesis of

no predictive ability, and the former condition rules out many series (with di ≥ 1/2). Furthermore,

direct applicability of their estimator is subject to the issues outlined in Remark 2, namely, if the

variables of the system have different (and unknown) integration orders, the estimator is inconsistent

for B. Even for the stationary case, with di = d ∈ (0, 1/2), i = 1, . . . , k+ 1, the differences behind the

procedures will, as detailed below, have a first-order impact on the distribution theory.8

3.4 Asymptotic Theory and Inference

The development of the asymptotic theory for our two-step estimator requires additional assumptions.

Assumption T. Let the bandwidth m � nκ and ` � nν with 0 < ν < κ < % ≤ 1. Moreover, recall

that the parameter $ ∈ (0, 2] measures the smoothness of the spectral density in Assumption D1. The

following cross-restrictions are assumed to apply for `, m, md and n,

m1+2$

n2$
+

`1+$+b

n$m1/2+b
+

n1/2+b

m
1/2
d mb `

+
n1−2d+b

m1/2−2d+b `2
+

nb

m1/2+b
→ 0, as n → ∞.

The trimming conditions in Assumption T are mild. The first term is standard for semiparametric

estimation in the frequency domain, e.g., Robinson (1995) and Lobato (1999). In our setting, this

condition is needed, as we impose only local exogeneity in the spectrum (as λ → 0+) between the

regressors, ut−1 , in equation (3), and the regression residuals, ηt , rather than global exogeneity. The

local exogeneity assumption is mild and relates to the Stambaugh (1999) bias, which we discuss further

in Section 4.1. We stress, however, that our second stage MBLS estimator does not suffer from an

asymptotic bias, regardless of the persistence of the VAR system (1). Note also that $ = 2 holds for

the empirically relevant vector ARFIMA process, implying that κ < 4/5 must be satisfied.

The last four conditions in Assumption T are new to our MBLS estimator, imposing mild upper

and lower bounds on the trimming and bandwidth rates. Specifically, conditions two and four imply,

ν < ($ + κ(1/2 + b))/(1 +$ + b) and (1− κ/2− (2d− b) (1− κ))/2 < ν, (13)

8Drawing an analogy with the differences between the LW and ELW estimators, the Christensen & Varneskov (2017)
procedure is reminiscent of the former and ours of the latter. This explains why, as described in the following section,
our proofs bear resemblance to those in, e.g., Shimotsu & Phillips (2005) and Shimotsu (2010). Nonetheless, the relation
to the MBLS estimator in Christensen & Varneskov (2017) does suggest some inherent robustness to outliers, structural
breaks, Markov switching means, certain deterministic trends, etc., which are known to contaminate co-periodograms at
frequency ordinates close to the origin, e.g., Perron & Qu (2010). While we do not formally analyze those effects here,
they are currently being examined and will be the subject of future work.
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respectively, to restrict the loss of information from trimming frequencies and eliminate the low-

frequency bias from mean-slippage after the first-stage fractional filtering. For the empirically relevant

vector ARFIMA process (with $ = 2), and if we select κ arbitrarily close to its upper bound 4/5, we

have (3/5 − (2d − b)/5)/2 < ν < 4/5. Since the lower bound is strictly decreasing in 2d − b ≥ 0, the

highest lower bound is attained for d = 0 and equals 3/10. The condition 0 < ν < κ < % ≤ 1 as well as

the trimming restriction, (1− %)/2 + b(1− κ) < ν, are needed to eliminate additional errors stemming

from the estimation of the integration orders, di, i = 1, . . . , k + 1, in the first stage. If we adopt a

parametric estimator of di, % = 1, and set κ ' 4/5, the restriction is determined by the cointegration

strength parameter as b/5 < ν, leaving the highest bound for b = min(d, 1). If the estimator is semi-

parametric, and we select κ < % as well as % arbitrarily close to 4/5, the highest lower bound for the

trimming becomes 1/10 + min(d, 1)/5 ≤ 3/10 < ν. Finally, condition five imposes a mild lower bound

for the bandwidth rate, b/(1/2 + b) ≤ min(d, 1)/(1/2 + min(d, 1)) < κ.

We are now ready to state the distribution theory for the two-step MBLS estimator.

Theorem 1. Let Assumptions F, T, and D1-D3 hold. Moreover, suppose that 0 ≤ di < 2 for i =

1, . . . , k + 1, 0 ≤ b ≤ min(d, 1) under HA, and max(0, (1− 3κ/2)/(1 + κ/2)) < $ ≤ 2, then,

√
mλ−bm

(
B̂(`,m)−B

)
D−→ N

(
0, G−1

uu

Gηη
2 (1 + 2b)

)
.

Theorem 1 demonstrates that the MBLS estimator is correctly centered, so it is not subject to the

persistent regressor biases described by Stambaugh (1999) and Phillips & Lee (2013).9 Moreover, its

convergence rate depends on whether B 6= 0 and, if this is the case, whether there is cointegration.

Specifically, the rate is
√
m when cointegration is absent (b = 0), in line with well-known results for

semiparametric estimators in the frequency domain, e.g., Brillinger (1981, Chapters 7-8), Robinson

(1995), and Shimotsu & Phillips (2005). In contrast, the rate is
√
mλ−bm �

√
m(n/m)b, when (a subset

of) the predictors are significant and b > 0. Hence, cointegration “helps” improve the rate of conver-

gence of the MBLS estimator, in analogy with super consistency properties, and lowers its asymptotic

variance, as conveyed by the scale 1/(2(1 + 2b)). The Gaussian distribution theory is remarkable;

holding uniformly for prediction scenarios with and without cointegration, across (asymptotically)

stationary and non-stationary variables in the observable persistent system (1), as well as for both

weak (b < 1/2) and strong (b ≥ 1/2) cointegration settings. In fractional cointegration contexts, as-

suming predictability under H0, this uniformity neither applies to the semiparametric NBLS estimator

(` = 1 in equation (3.3)) nor for maximum likelihood inference in the parametric fractionally coin-

tegrated VAR model, see Johansen & Nielsen (2012), where the inference is Gaussian for stationary

cases and exhibiting different forms of non-Gaussianity in non-stationary cases.

Interestingly, the asymptotic distribution for our second-stage MBLS estimator differs from the

corresponding in Christensen & Varneskov (2017, Theorem 3) by being independent of the integration

9The condition max(0, (1− 3κ/2)/(1 + κ/2)) < $ ≤ 2 ensures that the rate restrictions on the trimming and bandwidth
functions in Assumption T are mutually consistent for all values of 0 ≤ d < 2.
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orders of the variables, {di}k+1
i=1 , by applying for stationary as well as non-stationary variables, and by

being valid in the absence of cointegration (b = 0). Moreover, the asymptotic variance only depends

on the noise-to-signal ratio, GηηG
−1
uu , and the cointegration strength parameter, b. Finally, we stress

that the asymptotic distribution is independent of mean slippage, first-stage fractional filtering errors

and the trimming parameter, `, as long as Assumption T is satisfied.

As a last obstacle for feasible inference and testing, we must provide consistent estimators of the

long-run covariance matrix Guu and variance Gηη as well as the cointegration strength, b. Again, the

main challenge is that we observe v̂t , not vt . Similarly, the residuals ηt are latent and we estimate

them as,

η̂
(b)
t = êt − B̂(`,m)′ ût−1 , η̂t ≡ (1− L)−b̂ η̂

(b)
t , (14)

where b̂ denotes a consistent estimator of b. Hence, not only are the residuals η
(b)
t latent, but we

also need to undo their (over-)differencing using b to recover ηt, which may then be employed to

estimate Gηη. For ease of exposition, we handle these obstacles sequentially and assume having a valid

cointegration strength estimator, b̂, available before introducing one in the following section.

Assumption B. Let mb � nε be a sequence of integers where 0 < ε ≤ 1, then b̂− b = Op
(
1/
√
mb

)
.

Now, using these filtered and estimated series, we define a generic class of estimators,

Ĝhh(`G,mG) =
1

mG − `G + 1

mG∑
j=`G

< (Ihh(λj)) , (15)

for some arbitrary vector ht, while mG = mG(n) and `G = `G(n) are other bandwidth and trimming

functions. This class of long-run covariance estimators is akin to those used by Christensen & Var-

neskov (2017). This is natural; both procedures rely on local spectrum theory (λ→ 0+) and trimming

of frequency ordinates. However, equation (15) differs importantly by using fractionally filtered series

as input and an exact spectrum representation (6), not an approximation valid only in the stationary

case, di < 1/2, i = 1, . . . , k + 1. These points mirror the distinction among the MBLS estimators

discussed earlier. Now, from equation (15), the asymptotic variance of B̂(`,m) is estimated as,

ÂVAR = Ĝûû(`G,mG)−1 Ĝη̂η̂(`G,mG)λ2b̂
m

2(1 + 2b̂)m
(16)

Hence, writing general linear hypotheses on the parameters B as H0 : RB = r for some h×k selection

matrix R and h× 1 vector r, we only need to impose conditions on the bandwidth mG and trimming

function `G to be ready to introduce, and study the properties of, the LCM test.

Assumption T-G. Let mG � nκG and `G � nνG with 0 < νG < κG ≤ % ≤ 1 and define the

sequence of intergers mn = md ∧ mb ∧ m, then the following cross-restrictions are imposed on the

trimming and bandwidth parameters: n/(mG `
2
G) + n2/(mG `

2
Gmn) → 0 as n→∞.
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Theorem 2. Let the conditions of Theorem 1 and Assumptions B and T-G hold. Then,

LCM(`,m) ≡
(
RB̂(`,m) − r

)′ (
RÂVARR′

)−1 (
RB̂(`,m)− r

)
D−→ χ2

h.

Theorem 2 provides a significance test for a vector of candidate predictors, valid under general

forms of (long memory) persistence and short memory dynamics, parameterizing only the spectrum

of the processes near the origin (λ → 0+). Interestingly, under appropriate and mild rate conditions

on the functions `, m, `G and mG, the limiting χ2-distribution of LCM(`,m) is independent of the

tuning parameters, rendering the procedure easy to implement in practice.

Remark 4. Utilizing results from Phillips & Shimotsu (2004) and Shimotsu (2010), and furthermore

letting yt ∈ I(dy) and xt−1 ∈ I(dx), our proofs of Theorem 1 illustrate that,

B̂(`,m) =

2π

n

m∑
j=`

Dn(eiλj ; dx)2<(Ixx(λj))

−1

×

2π

n

m∑
j=`

Dn(eiλj ; dx)Dn(eiλj ; dy)<(Ixy(λj))

 + E(`,m,md, n), (17)

with Dn(eiλj ; dy) and Dn(eiλj ; dx) being defined in Appendix A.6 and E(`,m,md, n) denoting an ap-

proximation error that is asymptotically negligible under trimming, locally as m/n→ 0. This illustrates

that our LCM procedure is related to the frequency domain GLS estimators in Robinson & Hidalgo

(1997) and Nielsen (2005) who, in parametric and semi-parametric frameworks, weight periodograms

in the numerator and denominator by (the same) functions of the form λ2dυ
j , dυ being the integration

order of the residuals in the original regression (4). Hence, our LCM estimator, as conveyed by equa-

tion (17), differs importantly from their respective estimators by utilizing exact differencing, resulting

in differential weights of the form Dn(eiλj ; d), in conjunction with trimming.

Remark 5. LCM estimation and inference in the latent regression (3) is not only useful for deter-

mining significance of the vector xt−1 in general economic systems, but may also readily be used for

prediction of yt. To see this, let πi = Γ(i−d1)/(Γ(i+1)Γ(−d1), then, utilizing equation (1), we obtain,

Et(yt+1) = µy +

∞∑
i=0

πi+1 ( yt−i − µy ) + Et(et+1) .

Hence, once the mean (or initial value) µy and integration order d1 are determined, e.g., using the

estimators in Examples 5 and 6, we only need a forecast from the latent regression, Et(et+1), to generate

a forecast for the dependent variable. This circumvents the need to develop a direct estimation strategy

for the original regression (4), once the two steps of the LCM procedure have been applied.
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3.5 Trimmed ELW Estimation of the Fractional Cointegration Strength

A critical ingredient for feasible inference and testing is consistent estimation of the cointegration

strength parameter, b. This is challenging, however, as η̂
(b)
t is estimated from a set of variables that

may be stationary or non-stationary, have non-trivial means or initial values, and the estimator must

be valid for an (over-)differenced series where, potentially, 0 ≤ b ≤ 1. To accommodate these features,

we introduce the trimmed ELW (TELW) estimator.

Specifically, we define the objective function,

Q
(
Gηη, ϕ, η̂

(b)
t

)
=

1

mb − `b + 1

mb∑
j=`b

[
ln
(
Gηη λ

−2ϕ
j

)
+ G−1

ηη I
(ϕ+b)
η̂η̂ (λj)

]
, (18)

where I
(ϕ+b)
η̂η̂ (λj) = w

(ϕ+b)
η̂ (λj)w

(ϕ+b)
η̂ (λj) is the periodogram of ∆ϕ η̂

(b)
t , and `b = `b(n), mb = mb(n)

are TELW specific trimming and bandwidth sequences, respectively. Hence, ϕ represents a differencing

argument, for which we denote its “true” value by ϕ0 = −b. Importantly, in addition to being based

on trimming, equation (18) differs from the objective function in Shimotsu & Phillips (2005) because

the series is not directly observable, but rather estimated, and it may be impacted by non-trivial mean

components of the observed variables. Similarly, it differs from the setting in Shimotsu (2010) by being

based on an estimated series and utilizing trimming to eliminate mean effects.

Next, by concentrating Q
(
Gηη, ϕ, η̂

(b)
t

)
with respect to Gηη, it follows that,

ϕ̂ = argmin
ϕ∈ [∆1,∆2]

R
(
ϕ, η̂

(b)
t

)
, where we let ϕ̂ = −b̂ , (19)

and for which the objective function is given by,

R
(
ϕ, η̂

(b)
t

)
= lnG

(
ϕ, η̂

(b)
t

)
− 2ϕ

mb − `b + 1

mb∑
j=`b

ln(λj), Ĝ
(
ϕ, η̂

(b)
t

)
=

1

mb − `b + 1

mb∑
j=`b

I
(ϕ+b)
η̂η̂ (λj).

Moreover, as pointed out by Shimotsu & Phillips (2005) and Shimotsu (2010), we must restrict the

bounds on the admissible values of ϕ. Specifically, we impose −3/2 < ∆1 < 0 < ∆2 < 2 to not only

span the range of ϕ0 = −b ∈ [−1, 0], but also for the TELW estimator to remain applicable for the

observable variables in equation (1), which, equivalently, may be analyzed as special cases of equation

(19), where the variables are void of first-stage estimation errors and have 0 ≤ di < 2, i = 1, . . . , k+ 1.

As for the LCM inference and testing procedure, we need to impose restrictions on `b and mb.

Assumption T-B. Let mb � nκb and `b � nνb with 0 < νb < κb ≤ 1 and define the constant

0 < ∆ < 1/2, then the following bandwidth and trimming restrictions holds, as n→∞,

(a) n2b

`1+2b
b m

+
m2b
b

`
2(1+∆)
b m

+
(
n
mb

)1−2(d−b)
`−2
b

(
mb
`b

+ mb

`
2(d−b) + 2∆
b

)
→ 0.

(b) in addition to (a),
m1+2$
b
n2$ +

n2b√mb
`1+2b
b m

+
(
n
mb

)1−2(d−b) √mb
`2b
→ 0.
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The intuition behind the trimming and bandwidth restrictions are similar to MBLS; namely, re-

flecting a need for trimming to eliminate first-stage estimation and filtering errors. However, the

requirements may be slightly stronger, depending on b. To illustrate this, consider the second con-

dition in Assumption T-B(b), which attains its highest lower bound on the trimming rate, when

d = b = 1, 2−κ/2− (κ−κb)/2 < 3 νb. As a result, if we set κb = κ = 7/10, this implies 0.55 < νb . The

potentially stronger trimming conditions are not surprising given the work by Perron & Qu (2010), Qu

(2011) and McCloskey & Perron (2013) on estimating the fractional integration order in the presence

of structural breaks and other low-frequency contaminants, where corresponding trimming rates for

the log-periodogram and LW estimators are equivalently strong, when the true memory parameter is

close to zero. In our case, the mean-slippage behaves as low-frequency contamination, generating the

need for stronger trimming, when b is close to one, as we have to reverse an (over-)differenced spectral

density in the vicinity of the origin. However, in contrast to their estimation procedures for stationary

variables, the TELW estimator has its own unique trimming conditions to account for the problem at

hand as well as to apply for over-differenced, stationary and non-stationary variables.

Theorem 3. Let the conditions of Theorem 1 hold, and additionally,

(a) Assumption T-B(a) holds, then b̂
P−→ b.

(b) Assumption T-B(b) holds, then
√
mb (̂b− b) D−→ N(0, 1/4).

Theorem 3 demonstrates that TELW inference on b enjoy the asymptotic efficiency of the ELW

estimator, despite being applied to an estimated variable. The same comments apply to the mem-

ory parameters for the observable system (1). Hence, the TELW estimator not only extends results

from Nielsen & Frederiksen (2011) and Christensen & Varneskov (2017) on residual memory parame-

ter estimation for weak cointegration and stationary settings, but also provides mean-correction when

estimating the fractional integration orders for observable variables, thus providing an attractive alter-

native to Shimotsu (2010). Importantly, Theorem 3 allows us to draw feasible inference on, and carry

out testing for, predictive ability of the regressors using Theorems 1 and 2, uniformly for scenarios

with stationary and non-stationary variables, which may or may not exhibit cointegration under HA.

Remark 6. Theorem 3 may readily be used to test for cointegration under HA by examining the

one-sided hypotheses J0 : b = 0 against JA : b > 0. Moreover, the (feasible) limit theory based

on Theorems 1-3 may be applied to jointly test for predictability and cointegration, thus providing a

powerful framework for examining the three competing hypotheses in Section 2.2.

4 Theoretical Extensions and their Asymptotic Theory

Assumption D1 requires zero coherence between ut−1 and ηt in the vicinity of the origin. Importantly,

this does allow them to correlate at medium- and short-run frequencies, i.e., as λ → c > 0. In

this section, we first relax this condition and show that LCM is robust to even stronger forms of

19



endogeneity, with the aid of trimming. Next, we provide similar results for scenarios where regressors

have been estimated as cointegration residuals prior to the LCM analysis. In order to ease exposition

in the next two subsections, we focus on the case b = 0, i.e., the no fractional cointegration setting,

where we, as a result, refrain from estimating b for the feasible inference and testing procedures.

However, the corresponding results for the cointegration case, b > 0, can readily be accommodated,

with minor changes to the requisite trimming and bandwidth conditions. Finally, Section 4.3 reviews

the properties of the LCM procedure and draws parallels to related methodologies.

4.1 Endogenous Regressors

The local exogeneity condition in Assumption D1 accommodates a setting reminiscent of Stambaugh

(1999), as long as the correlation between the innovation to ut−1 and ηt is not too persistent, that is,

as long as ut−1 and ηt have a co-spectrum with fuη(λ) ∼ 0, as λ→ 0+. In this section, we allow for a

stronger degree of endogeneity which is, arguably, more aligned with the spirit of Stambaugh (1999),

as well as the imperfect predictor definition in Pastor & Stambaugh (2009).

Suppose we observe xct−1 = xt−1 + ct−1 where, as before, xt−1 = µx +Dx(L)−1ut−1, with Dx(L)

being the lower right k × k submatrix of D(L), and µx contains the last k elements of µ. Moreover,

we let ct−1 be a k × 1 mean-zero error process with ηt co-spectum fcη(λ) ∼ Gcη , as λ → 0+, where

Gcη can be non-trivial, and the components ut−1 and ct−1 are independent:

Assumption C. Suppose ct−1 = ct−11{t≥1} is a mean-zero k × 1 vector process satisfying the same

conditions as ut−1 in Assumptions D1-D3, but with ηt co-spectrum fcη(λ) ∼ Gcη as λ → 0+, so that

the constant vector Gcη may have non-zero entries. Moreover, let ut ⊥⊥ cs for all t, s ≥ 1.

In this setting, the predictor, or signal, of interest, xt−1, is contaminated with errors, giving rise to

endogenous regressor problems, generating a bias similar to the one analyzed by Stambaugh (1999). To

cleanly identify the impact of endogeneity, suppose that D(L) is known, µ = 0, and exact differencing

is carried out, such that we observe et and, for the vector of predictors, uct−1 = ut−1 + c̃t−1 with

c̃t = Dx(L)ct, clearly highlighting that the added challenges to estimation arise through xct−1. Then,

by recalling that η
(b)
t = (1− L)bηt = ηt in the absence of cointegration, we have the decomposition,

F̂ c
ue(`,m) = F̂uu(`,m)B + F̂uη(1,m) + (F̂uη(`,m)− F̂uη(1,m)) + F̂c̃e(`,m). (20)

Now, utilizing local exogeneity between ut−1 and ηt, we know, from Lemma A.2 and A.3 of the

Appendix, that
√
mλ−1

m F̂uη(1,m) satisfies the central limit theory in Theorem 1, i.e., an Op(1) limit

purged of any asymptotic bias, and
√
mλ−1

m (F̂uη(`,m)−F̂uη(1,m)) = op(1). However, the endogeneity-

generated bias term
√
mλ−1

m F̂c̃e(`,m) is unknown and may distort inference. Of course, this setting

is simplified as the mean, or initial values, generally are non-zero, and the integration orders are

unknown and must be estimated in the fractional-filtering stage. Nonetheless, equation (20) reveals

an additional source of complexity for inference on predictive relations in long-memory systems.
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We now demonstrate that trimming of frequency ordinates is useful, not only for the asymptotic

elimination of errors due mean-slippage and fractional-filtering, but also in terms of boosting robustness

towards biases arising from endogenous regressors. To this end, we define the fractionally-filtered and

contaminated regressors, û ct−1 = ût−1 + ĉt−1 with ĉt = D̂x(L)ct. Specifically, we next establish

asymptotic bounds for F̂ c
ûû(`,m)− F̂ûû(`,m) and F̂ c

ûê(`,m)− F̂ûê(`,m), that is, the additional source

of errors for the estimator (12), stemming from having an endogenous component embedded in the

regressors of interest. Moreover, to carry out testing using the LCM approach in Theorem 2, without

having estimated b, we define B̂c(`,m) = F̂ c
ûû(`,m)−1F̂ c

ûê(`,m) and η̂ ct = êt − B̂c(`,m)′û ct−1, and

obtain equivalent bounds for the differences Ĝcη̂η̂(`G,mG) − Ĝη̂η̂(`G,mG) as well as Ĝc
ûû(`G,mG) −

Ĝûû(`G,mG), which control the additional errors entering through the variance estimator (16).

Theorem 4. Suppose the conditions of Theorems 1-2 as well as Assumption C hold with b = b̂ = 0.

Moreover, suppose n1/2/m→ 0, n1/2/mG → 0 and d > 0, then, for some arbitrarily small ε > 0,

(a) λ−1
m

(
F̂ c
ûû(`,m)− F̂ûû(`,m)

)
= Op((m/n)d/`1+ε),

(b)
√
mλ−1

m

(
F̂ c
ûê(`,m)− F̂ûê(`,m)

)
= Op((m/n)dm1/2/`1+ε),

(c) Ĝc
ûû(`G,mG)− Ĝûû(`G,mG) ≤ Op((mG/n)d/`1+ε

G ),

(d) Ĝc
η̂η̂(`G,mG)− Ĝη̂η̂(`G,mG) ≤ Op((mG/n)d/`1+ε

G ) + Op((m/n)d/`1+ε).

Theorem 4 provides several interesting insights. First, from (a) and (b), we observe that trimming

is instrumental for the elimination of the endogenous regressor bias. In fact, if ` = O(1), we need to

impose κ < d/(1/2 + d) to avoid that the bias has a first-order (or larger) asymptotic impact on the

inference. This likely will hurt the efficiency of the LCM inference severely, in particular for small d.

Second, if we, on the other hand, let ` → ∞, as n → ∞, and impose κ/2 − d(1 − κ) < ν in addition

to the conditions in Assumption T, we can readily utilize trimming to eliminate the endogeneity bias,

asymptotically, for all values of κ, thereby retaining the asymptotic efficiency of the LCM procedure

reported in Theorem 1 and 2, obtained without endogenous components in the regressors. Since this

bound is strictly decreasing in d, the worst case applies for d arbitrarily close to 0, which, in conjunction

with selecting κ arbitrarily close to its upper bound 4/5 for efficiency, implies 2/5 < ν. Hence, quite

intuitively, we require stronger trimming to retain the same asymptotic efficiency in the presence of

endogenous regressors, if the minimal persistence of the system is small. Third, we impose d > 0

to separate the signal in the predictive regressors from its noise, asymptotically, in analogy to the

approach in Pastor & Stambaugh (2009). Importantly, this restriction may be relaxed to only require

min2,...,k+1 di > 0, that is, we do not need yt to be fractionally integrated for this identification, and

thereby Theorem 4, to hold. Fourth, it is important to emphasize, once again, that the LCM procedure

can accommodate regressors, which are I(0). However, these cannot be contaminated by measurement

errors of the general form ct−1, since, in this case, the signal of interest cannot be separated from the

noise. Fifth, the conditions n1/2/m→ 0 and n1/2/mG → 0 on the bandwidths are imposed to simplify

exposition and avoid stronger cross-restrictions on the tuning parameters. These may be relaxed.
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Corollary 1. Suppose that the conditions of Theorem 4 hold and κ/2− d(1−κ) < ν. The asymptotic

limit results in Theorem 1 and 2 then still apply with xct−1 in lieu of xt−1.

Corollary 1 demonstrates that, by utilizing trimming, we can ensure that the endogenous regressor

bias does not affect the first-order asymptotic theory for the LCM approach. Instead, it will be of

second or smaller order, depending on d. This provides a sharp contrast to the corresponding results

of Stambaugh (1999), who shows that the bias is of second order if the regressors follow stationary

autoregressions, and Phillips & Lee (2013), who document that an uncorrectable bias enters the

asymptotic distribution if the regressors are local-to-unity. The LCM approach successfully eliminates

such concerns, uniformly across the empirically relevant long-memory regimes.

In order for these observations to be applicable in practice, the first step fractional-filtering proce-

dure must also be robust to the presence of noise in the series. This is, indeed, the case.

Remark 7. Despite the latent regressor signal being perturbed by noise, xct = xt + ct, it follows from,

e.g., Deo & Hurvich (2001), Arteche (2004) and Frederiksen, Nielsen & Nielsen (2012), that standard

semi-parametric estimators of di, i = 2, . . . , k + 1, remain valid, albeit suffering from a higher-order

bias. Similarly, parametric methods may still be utilized by carefully choosing the lag structure of the

short-memory component of the filter, utilizing equivalent representations of an ARMA(p, q) process

with measurement noise and ARMA(p,max(p, q)) models, see, e.g., Granger & Morris (1976).

4.2 Cointegration-Based Regressors

As noted in Section 2.2, one way to achieve balance in regression systems is to utilize economically

motivated cointegrating relations, a priori, to reduce the persistence of the set of explanatory variables,

which is assumed to be of full rank. However, as such relations lack identification under H0, we cannot

study predictive testing using, e.g., fractionally cointegrated VAR model (Johansen & Nielsen 2012).

Hence, we add an additional step to the LCM procedure where the cointegration vector is estimated,

and the residuals formed, prior to the fractional filtering. To this end, let xt ⊆ xt, xt ∈ Rk with k ≤ k
be a subvector of xt with elements xt = (x1,t, . . . , xk,t)

′, which are defined from a linear fractional

cointegration relation between external auxiliary variables as,

xi,t = κi,t − ϑi ′χi,t , i = 1, . . . , k, (21)

where χi,t ∈ Ri with i ≥ 1, and we let (κi,t,χ′i,t)′ ∈ I(δi+1) such that di+1 < δi+1. That is, each

element of the subvector is defined as a cointegrating relation. As ϑi requires estimation in most

applications, we impose the following structure on the cointegrating relations:

Assumption FC-M. For each i = 1, . . . k, we have di+1 < δi+1 and one of following conditions:

(a) 0 ≤ di+1 < δi+1 < 1/2 and di+1 + δi+1 < 1/2.

(b) 0 ≤ di+1 < 1/2 < δi+1 < 2.
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Rather than exhaust all combinations of (di+1, δi+1), Assumption FC-F restricts attention to coin-

tegrating relations that rid (κi,t,χ′i,t) of substantial persistence such that the cointegration residuals

are (asymptoticaly) stationary long memory processes. However, xt = (x1,t, . . . , xk,t)
′ may still re-

quire fractional filtering in the LCM procedure. Note that the weak cointegration case in Assumption

FC-F(a) is studied by Christensen & Nielsen (2006) and Christensen & Varneskov (2017), whereas the

stronger cointegration case in (b) is analyzed by Robinson & Marinucci (2001, 2003).

Similarly to the fractional filtering step in Section 3.2, we do not adopt a specific estimator of

the cointegration vector, ϑi, but rather assume to have an estimator ϑ̂i, i = 1, . . . k, available, which

satisfies the following consistency requirement:

Assumption FC-R. Let mi,ϑ = mi,ϑ(n) be a sequence with nδi+1−di+1/mi,ϑ → ci ≥ 0 as n → ∞,

then we assume to have an estimator with ϑ̂i − ϑi = Op(1/mi,ϑ), for all i = 1, . . . , k.

The rate of convergence restriction in Assumption FC-R is very mild, requiring that it reflects the

cointegration gap. As for the Assumptions D1-D3 for LCM inference, and consistent with cointe-

gration frameworks in Robinson & Marinucci (2003), Christensen & Nielsen (2006) and Christensen

& Varneskov (2017), we further impose and state assumptions for Ξi,t = (xi,t,χ
′
i,t)
′, with conditions

holding for all i = 1, . . . , k, and specify an additional cointegration identification restriction:

Assumption FC1. The vector process Ξi,t, t = 1, . . . , is covariance stationary with mean, or initial

value, µΞi and spectral density matrix fΞiΞi(λ) ∼ Λ−1
Ξi
GΞiΞiΛ̄

−1
Ξi

as λ → 0+, where GΞiΞi is a real

symmetric matrix of dimension (i+1)×(i+1), whose first element on the diagonal is strictly positive

and lower right i × i submatrix has full rank, and the (i + 1) × (i + 1) diagonal scaling matrix is

given by ΛΞi = diag[(1− eiλ)di+1 , (1− eiλ)δi+1 , . . . , (1− eiλ)δi+1 ] Moreover,

(a) There exists a ϑi 6= 0 such that xi,t = κi,t − ϑ′iχi,t.

(b) There exists a $i ∈ (0, 2] such that∣∣∣fΞiΞi(λ)−Λ−1
Ξi
GΞiΞiΛ̄

−1
Ξi

∣∣∣ = O(λ$iΥΞiΥ
′
Ξi), λ→ 0+,

where ΥΞi = (λ−di+1 , λ−δi+1 . . . , λ−δi+1)′ is a (i + 1)× 1 vector.

(c) Let GΞiΞi(1, h) be the (1, h)th element of the (i + 1)× (i + 1) spectrum matrix GΞiΞi, which is

assumed to have GΞiΞi(1, h) = GΞiΞi(h, 1) = 0 for all h = 2, . . . , i + 1.

Assumption FC2. The vector sequence DΞi(L)Ξi,t = υi,t1{t≥1} where the (i + 1)× (i + 1) diagonal

filtering matrix is given by DΞi(L) = diag[(1− L)di+1 , (1− L)δi+1 , . . . , (1− L)δi+1 ] and υi,t is a linear

process υi,t = AΞi(L)εi,t, whose components satisfy:

(a) AΞi(L) =
∑∞

j=0AΞi,jL
j, det(AΞi(1)) 6= 0,

∑∞
j=0(

∑∞
h=j ‖AΞi,h‖2)1/2 <∞.

(b) The innovations, εi,t, are independent and identically distributed vectors with finite moments as

well as with E[εi,t] = 0 and E[εi,tε
′
i,t] = ΣΞi where rank(ΣΞi) = i + 1.
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Assumption FC3. For AΞi(λ, h), the h-th row of AΞi(λ) =
∑∞

j=0AΞi,je
ijλ, its partical derivative

satisfies ‖∂AΞi(λ, h)/∂λ‖ = O(λ−1‖AΞi(λ, h)‖) as λ→ 0+, for i = 1, . . . , i + 1.

The assumptions closely resembles Assumption D1-D3. The two main differences are the important

cointegration identification condition in Assumption FC1(a) and the stronger assumptions on the

linear process in Assumption FC2(b). The latter is maintained for comparability with the results

in Robinson & Marinucci (2003). In particular, under the stated conditions, the NBLS estimator

applied to (κi,t,χ′i,t)′ will satisfy the requirement for Assumption FC-R, see, among others, Christensen

& Nielsen (2006), Nielsen & Frederiksen (2011) and Christensen & Varneskov (2017) for the weak

fractional cointegration case in Assumption FC-M(a) as well as Robinson & Marinucci (2003, Theorems

3-5) for the stronger cointegration case in Assumption FC-M(b). Under slightly different assumptions,

including no constant or initial value, similar results are established for (semi-)parametric GLS band-

spectrum estimators in Robinson & Hualde (2003, 2010), for an ELW likelihood estimator in Shimotsu

(2012) and for the fractionally cointegrated VAR model in Johansen & Nielsen (2012).

Now, in this setting, we may estimate xi,t as,

xϑi,t = κi,t − ϑ̂i ′χi,t = xi,t + x̌i,t , x̌i,t ≡ (ϑi − ϑ̂i) ′χi,t, (22)

and let x̌t = (x̌1,t, . . . , x̌k,t)
′ and x̌t = (x̌′t, 0, . . . , 0)′. Hence, the treatment of pre-estimation er-

rors for regressors based on cointegration residuals resembles the endogenous error case in Section

4.1, having a similar additive error decomposition. However, complexities arise due to differences

between the asymptotic orders of χi,t ∈ I(δi+1) and ϑ̂i − ϑi = Op(1/mi,ϑ). As in Section 4.1, let

us define the series ûϑt−1 = ût−1 + ǔt−1 with ǔt = D̂x(L)x̌t, then we seek to establish asymptotic

bounds for F̂ ϑ
ûû(`,m) − F̂ûû(`,m) and F̂ ϑ

ûê(`,m) − F̂ûê(`,m) as well as Ĝϑ
ûû(`G,mG) − Ĝûû(`G,mG)

and Ĝϑ
η̂η̂(`G,mG)− Ĝη̂η̂(`G,mG) with η̂ ϑt = êt − B̂ϑ(`,m)′ûϑt−1 and B̂ϑ(`,m) = F̂ ϑ

ûû(`,m)−1F̂ ϑ
ûê(`,m).

Assumption FC-F. Assumption F holds for (yt, (x
ϑ
t )′)′, and let b = mini=1,...,k δi+1 − di+1 > 0.

Theorem 5. Suppose the conditions of Theorems 1 and 2, with b = b̂ = 0, as well as the cointegration

Assumptions FC-M, FC-R, FC-F and FC1-FC3 hold, then, for some arbitrarily small ε > 0,

(a) λ−1
m

(
F̂ ϑ
û̂̂u(`,m)− F̂ûû(`,m)

)
≤ Op(1/`

1+b) +Op(1/(m
1−ε`1+ε)),

(b)
√
mλ−1

m

(
F̂ ϑ
ûê(`,m)− F̂ûê(`,m)

)
≤ Op(m

1/2/`1+b) +Op(1/(m
1/2−ε`1+ε)),

(c) Ĝϑ
ûû(`G,mG)− Ĝûû(`G,mG) ≤ Op(1/`

1+b
G ) +Op(1/(m

1−ε
G `1+ε

G )),

(d) Ĝϑ
η̂η̂(`G,mG)−Ĝη̂η̂(`G,mG) ≤ Op(1/`

1+b)+Op(1/(m
1−ε`1+ε))+Op(1/`

1+b
G )+Op(1/(m

1−ε
G `1+ε

G )).

Corollary 2. Suppose that the conditions of Theorem 5 hold and κ/(2(1 + b)) < ν. The asymptotic

limit results in Theorem 1 and 2 then still apply with xϑt = xt−1 + x̌t−1 in lieu of xt−1.
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Theorem 5 and Corollary 2 demonstrate that, by the aid of trimming, the LCM procedure can

accommodate regressors that have been pre-estimated and formed as a cointegration residuals. Specif-

ically, by imposing κ/(2(1 + b)) < ν, trimming eliminates the estimation error biases, asymptotically,

regardless of the cointegration strength, as conveyed by b. Moreover, it alleviates higher-order biases.

Of course, these results rest on having an estimator of the fractional integration orders, which satis-

fies Assumption FC-F. However, the latter has already been shown for the LW estimator, which is

applicable to the cointegration residuals due to Assumption FC-M, by Velasco (2003) and Nielsen &

Frederiksen (2011) under conditions similar to those in Assumptions FC1-FC3. Moreover, equivalent

results have been provided for the tapered and exact LW by Shimotsu (2012) and a maximum likehood

estimator by Johansen & Nielsen (2012) in slightly different settings.

Finally, it is important to note that the LCM procedure applies to fractionally integrated series with

and without endogenous measurement errors and regressors from pre-estimated cointegrating relations

as long as the mild trimming conditions in Assumptions T, T-G and Corollaries 1-2 are satisfied, thus

providing a very flexible tool for analyzing predictability in persistent economics systems.

4.3 Discussion of Related Literature

The main benefits of using the LCM procedure, beyond avoiding concerns about spurious inference

and regression balance, as detailed previously, may be summarized as follows:

(i) it accommodates general multivariate systems;

(ii) it allows for flexible persistence, captured by different fractional integration orders;

(iii) the inference procedure is uniformly Gaussian across persistence regimes as well as across alter-

native hypotheses with and without cointegration;

(iv) it allows the variables to have non-trivial means or initial values;

(v) it avoids imposing predictability a priori for validity of the inference;

(vi) it accommodates endogenous regressors as well as regressors that have been obtained as residuals

from a pre-estimated fractional co-integrating relation.

In the light of these observations, we compare the LCM approach to alternative procedures in the

literature. Specifically, we complement the discussion in the introduction with two remarks:

Remark 8. As described in the introduction and Section 2.2, the null hypothesis that xt−1 contains

no predictive information for yt rules out cointegration and, hence, no information is lost by fractional

filtering. Moreover, if there is cointegration between the variables under the alternative hypothesis, this

improves the rate of convergence for the LCM procedure and lower its asymptotic variance, similarly

to other frequency domain least squares procedures in cointegration settings; e.g., Robinson & Hualde

(2003, 2010), Robinson & Marinucci (2003), Christensen & Nielsen (2006) and Christensen & Var-

neskov (2017) as well as Johansen & Nielsen (2012) for a parametric approach. Notably, in contrast to
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those procedures, LCM achieves this feature without imposing predictability a priori for identification

and validity of inference. Furthermore, as these alternatives, typically, require the variables of eco-

nomic systems to have identical integration orders, they are not amenable for predictability testing in

our general setting, failing to achieve (almost all of) the features (i)-(iv), depending on the procedure.

Remark 9. Magdalinos & Phillips (2009), Kostakis et al. (2015) and Phillips & Lee (2013, 2016)

develop the IVX methodology, which is an inference procedure for regressions, where the variables

may be stationary, local-to-unity, unit roots, or mildly explosive. This setting presents a non-nested

alternative to ours where, however, the dependent variable is restricted from exhibiting long-range

dependence. Whereas the IVX inference is not Gaussian uniformly in the persistence regimes, the

corresponding Wald significance test is robust to the specific form of persistence, which may also

differ across regressors. In this sense, our LCM methodology may be viewed as an analogue for the

general class of multivariate fractionally integrated processes, possessing similarly desirable properties

for testing in predictive regressions.

5 Empirical Illustration: Forecasting Equity Market Volatility

The prediction of future realized equity market volatility using financial and macroeconomic indicators

in VAR systems has gained renewed attention, as illustrated by the recent studies of, e.g., Christiansen

et al. (2012), Paye (2012), Bansal et al. (2014), Dew-Becker et al. (2017) and Campbell et al. (2018).

This section replicates the qualitative evidence generated by these papers through an empirical illus-

tration in which we rely on standard least squares techniques. However, we note that the series display

pronounced persistence, pointing towards potential inferential problems. In Section 7, we revisit the

evidence through our robust LCM procedure.

5.1 Data Description

We employ two separate data sets of monthly observations for realized volatility of the aggregate U.S.

stock market, proxied by the S&P 500 index. The first spans the period from February 1960 through

March 2015 and exploits realized variance measures constructed from daily data. This time span

mimics those covered by prior studies in the literature.10 Since high-frequency data are available for

the last part of the sample period, we undertake an additional analysis, covering January 1990 through

March 2015, using a more accurate measure of the realized (log-)return variance.

We first introduce the two realized variance measures. To this end, let rt,i denote the daily log-return

10However, existing work often relies on lower frequency series. Among our references, only Christiansen et al. (2012),
Paye (2012) and Dew-Becker et al. (2017) use monthly data; Bansal et al. (2014) use yearly data and Campbell et al.
(2018) use quarterly. We adopt monthly sampling to increase the power of the statistical significance tests and facilitate
the study of causality and directional predictability. The latter is discussed in Section 7.2.
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on the S&P 500 for trading days i = 1, . . . , nt in months t = 1, . . . , n, and then,

Ṽt =

nt∑
i=1

r2
t,i , (23)

comprises our low-frequency (LF) realized variance measure.11 Such return variance measures over

a fixed (here, monthly) horizon, computed from intermediately sampled data, have been widely used

in financial econometrics since the work of, e.g., Andersen & Bollerslev (1998), Barndorff-Nielsen &

Shephard (2002), and Andersen, Bollerslev, Diebold & Labys (2003).

Next, for the period where an intra-daily price record is available, we construct an alternative return

variation measure. Specifically, we use high-frequency (HF) return data for the CME Group E-mini

S&P 500 futures to construct accurate trading day measures, and then add the squared close-to-open

returns to obtain an overall variation measure. Since microstructure frictions induce unwarranted

serial correlation in high-frequency returns, we rely on the flat-top realized kernel of Varneskov (2016,

2017) during the trading day. This approach is robust to general forms of microstructure noise and

possesses desirable asymptotic properties and good finite sample performance. Since our construction

otherwise follows standard procedures, we relegate the details to Section B of the appendix.

The macroeconomic and financial indicators consists of monthly series for the default spread (DS),

three-month U.S. Treasury bills (TB), and price-earnings ratio (PE). They have all been found to be

successful predictors of equity-index return volatility in recent studies. We follow the literature in

defining DS as the difference between the logarithmic percentage yield on Moody’s BAA and AAA

bonds, the Treasury bill rates are log-transformed, and the PE is constructed as the logarithm of the

ratio of the S&P 500 index to the ten-year trailing moving average of aggregate earnings on the S&P

500 index constituents.12 The source of the different series is also provided in Appendix B.

Table 1 presents full-sample summary statistics for the four series, as well as square-root and log-

transformations of the LF realized variance.13 Beyond the usual unconditional measures, we report

a set of statistics that speak to the time series properties of the variables. Specifically, we provide

estimates for the degree of fractional integration, using both the local Whittle (LW) estimator, cf.

Künsch (1987), and the ELW estimator from Shimotsu (2010), which is robust against non-trivial

means and remains valid for stationary as well as non-stationary variables. Furthermore, we report

the MZ unit root test statistic of Ng & Perron (2001), which is correctly sized and has good power

properties against local alternatives, and we include the KPSS test statistic of Kwiatkowski, Phillips,

Schmidt & Shin (1992) for an I(0) process against the alternative of an I(1).14

11The label LF indicates that no intra-daily, i.e., “high-frequency” financial data, are used in its construction.
12Our choice of variables matches the set employed in the final version of Campbell et al. (2018).
13The corresponding statistics for the subsample are qualitatively similar and omitted for brevity.
14Our baseline implementation of the KPSS test uses the Bartlett kernel and a bandwidth b8(n/10)1/4c, as studied by

Hobijn, Franses & Ooms (2004). In addition to the results in Table 1, we have experimented with larger bandwidths,
which, as shown by, e.g., Lee & Schmidt (1996) and Marmol (1998), make the KPSS test more robust against a fractional
alternatives as well as considered the Epanechnikov (1969) and the Gasser, Müller & Mammitzsch (1985) optimal fourth-
order kernel, also studied by Dew-Becker (2017). The results are qualitatively similar and left out for brevity.
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Table 1 documents that the realized variance (RV) distribution is positively skewed and has fat

tails. These features are mitigated by the concave square-root or logarithmic transformations. Similar

comments apply to the DS, whereas TB and PE are closer to Gaussian. The most noteworthy results,

however, concern the conditional properties of the series. Specifically, at standard levels of significance,

we reject that the realized variance is either I(0) or I(1). Instead, the series is best characterized as

fractionally integrated with d in the 0.25-0.6 range, depending on the transformation. This is consistent

with the comprehensive literature referenced in Section 1. Furthermore, the larger estimates for the

fractional integration order, obtained as we apply more concave transformations to realized variance,

are consistent with the findings of, e.g., Haldrup & Nielsen (2007), who show that outliers, as reflected

in the skewness, may bias various estimators of d downwards.

We also reject the null hypothesis of the state variables being I(0) processes and, from the MZ

test, we similarly reject the DS and TB series being I(1). The LW and ELW estimates corroborate

these findings, suggesting that the DS is fractionally integrated with d ' 0.8, while TB is slightly more

persistent with d ' 0.9. Finally, we cannot reject that PE is a unit root process.

For visualization, we complement the estimates of d and the unit root test by plotting the autocor-

relation functions (ACFs) in Figure 1. The slowly decaying ACFs are consistent with all four series

being long-range dependent, with PE being most persistent, followed by TB, DS and RV, corroborating

our estimates of the (relative) size of the respective fractional integration orders.

5.2 Standard Predictive Regressions

The evidence in Table 1 and Figure 1 is consistent with the realized variance series being fractionally

integrated with 0.25 < d < 0.6, while the macroeconomic and financial state variables all have d ≥ 0.8.

This suggests that a linear regression forecasting model for realized variance, even if H0 is rejected,

violate the basic conditions for regression balance, c.f. the discussion in Section 2.2. Consequently, as

documented by Tsay & Chung (2000), standard least squares procedures are likely to provide spurious

inference.15 Nonetheless, at this stage, we ignore such issues, as we seek to establish a benchmark for

the predictive power obtained through commonly adopted OLS procedures.

An informal assessment may be drawn from Figure 2, which plots the state variables against the

future realized variance over the last fifteen years of the sample, characterized by a particularly high

degree of coherence among the series. We observe, in particular, that the realized variance and DS

both are elevated in the fall of 2008, while PE drops sharply during the same time span. However, we

also note that the spikes in the state variables often lag those in the market variance by a few months,

raising questions regarding the direction of predictive causality. We return to this issue in Section

7.2, using the LCM approach. In any case, the fact that the predictor variables all display abnormal

variation during the turbulent market conditions surrounding the financial crisis suggest they may

carry (important) information about the future realized variance.

15See also our companion paper Andersen & Varneskov (2019b) for a detailed analysis of the issue.
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Motivated by the extant literature and evidence in Figure 2, we run predictive regressions for the

realized variance assuming a first-order VAR system, where xt−1 consists of the lagged realized variance

and the macroeconomic and financial state variables. The coefficient estimates, HAC standard errors

and adjusted R2 are reported in Table 2 along with LW estimates of the residual memory and a HAC-

based Wald test for the joint significance of the three state variables. The results for both samples

are similar: (1) DS seemingly predicts realized variance and its strength increases with the addition

of PE and TB; (2) all state variables are individually significant (except TB in the subsample with

high-frequency data) and the R2 increases slightly with their inclusion; and (3) the Wald tests show

joint significance at a 5% level (P-Wald above 0.95). Hence, the full sample results corroborate prior

findings by Christiansen et al. (2012), Paye (2012), Bansal et al. (2014), Dew-Becker et al. (2017)

and Campbell et al. (2018). Moreover, the subsample results, utilizing a high-frequency measure of

volatility, demonstrate that they are robust to the choice of realized variance proxy.

Of course, this OLS analysis does not account for the degree of persistence in the realized variance

and the regressors nor the indication of an unbalanced regression. Consequently, the inference may

well be distorted. We next explore whether spurious inference is relevant for the present setting via

simulations, based on reasonable parameter values and time series properties for the system conveyed

by Table 1, and contrast them to the size and power properties of the LCM procedure.

6 Simulation Evidence: Size, Power and Spurious Inference

The section examines the properties of the OLS and LCM procedures in a setup that captures the

persistence of the realized variance and the predictor variables, as summarized in the previous section.

We first provide bias, RMSE, size and power results for LCM in a bivariate setup and then proceed to

study the properties of the LCM and OLS procedures in a more general predictive setting. Motivated

by our empirical application, we focus on the size and power properties of tests for predictability

without cointegration (b = 0) under HA, deferring the case with cointegration to the companion

paper, Andersen & Varneskov (2019b). Importantly, albeit not surprisingly, the power of the LCM

test further improves in the cointegration case, compared to the results below, because B̂(`,m) then

enjoys a faster rate of convergence and lower asymptotic variance, as demonstrated by Theorem 1.

Finally, we explore the robustness properties of LCM to the first-stage filtering.

6.1 Finite Sample Performance of the LCM Test

The properties of the LCM approach are analyzed in a bivariate setting, resembling the one in Hong

(1996) and Shao (2009), but generalized to allow for non-stationary long memory. This entails simu-

lating fractional ARMA(1, 0) processes for yt and xt−1, t = 1, . . . , n, as,

(1− L)dy(1− φyL)yt = ρut−1 +
√

1− ρ2vt, (1− L)dx(1− φxL)xt−1 = ut−1, (24)
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respectively, where ut and vt are i.i.d. standard Gaussian random variables.16 This setup encompasses

several distinct inference scenarios, depending on the parameter vector, (φy, φx, ρ, dy, dx). First, we fix

φy = φx = 0.2 and let ρ = 0 or ρ = 0.2, when examining the size and power properties, respectively.

Second, we vary the integration orders dy and dx to generate alternative persistence regimes. In

particular, DGP 1 is configured with (dy, dx) = (0.30, 0.45); DGP 2 with (dy, dx) = (0.30, 0.80);

DGP 3 with (dy, dx) = (0.55, 0.45); and DGP 4 with (dy, dx) = (0.55, 0.80). These values are in line

with the estimated memory parameters for the realized variance and DS series in Table 1, and they

capture four of the inference cases examined theoretically for the OLS estimator by Tsay & Chung

(2000).17 Finally, we consider two different sample sizes n = {300, 650}, mirroring the size of the

subsample (n = 302) and full sample (n = 662) in our empirical analysis, respectively.

Implementing the LCM test in Theorem 2 requires the choice of an estimator for the first-step

fractional filtering, and tuning parameters for the MBLS estimation in the second step. We estimate

the memory parameters using a parametric fractional ARMA(1, 0) model, noting that we may apply

results from Hualde & Robinson (2011) and Nielsen (2015) to verify that Assumption F holds with

% = 1.18 Moreover, we consider different tuning parameters for MBLS to analyze their finite sample

impact on the LCM test. Specifically, we let ν = {0.21, 0.25, 0.30}, κ = {0.70, 0.75, 0.799}, νG = 0.25

and κG = 0.9. The bandwidth rate κ is picked close to its upper bound to boost the efficiency of

the inference, while satisfying the condition n1/2/m → 0 of Theorem 4, whereas the selection of the

trimming rate ν is guided by empirically realistic lower bounds. In particular, using the estimate

d ' 3/10 from Table 1 (the memory of RV), the lower bound restriction in Assumption T implies that,

if κ is close to 4/5, then (3/5 − 2d/5)/2 < 1/4. Similarly, since the lowest integration order of the

state variables is mini=2,...,k+1 di ' 4/5, the restriction imposed by a potential endogenous component

in the regressors is similarly strictly less than 1/4. Hence, the values ν = {0.21, 0.25, 0.30} capture

realistic lower bounds for the trimming, given the evidence from our empirical application.19 Finally,

Assumption T-G is satisfied by selecting νG = 0.25 and κG = 0.9. All tests are implemented with a

nominal size of 5%, and the simulations are performed using 1,000 replications.

Tables 3 and 4 summarize the simulation results. In particular, Table 3 demonstrates that the

LCM coefficient estimates are accurate, having small biases and RMSEs across DGPs, and that its

performance improves with sample size. Table 4 documents that the LCM test has excellent finite

16Note that this setting corresponds to having a latent regression relation (3) with B = ρ.
17As also detailed in Andersen & Varneskov (2019b), the least squares t-statistic, tβ , and R2 have the following properties

under the null hypothesis of no predictability: DGP 1 has tβ = Op(n
dy+dx−1/2) and R2 = Op(n

2(dy+dx−1)); DGP 2 has
tβ = Op(n

dy ) and R2 = Op(n
2dy−1); DGP 3 has tβ = Op(n

dx) and R2 = Op(n
2dx−1); and DGP 4 has tβ = Op(n

1/2)
and R2 = Op(1). Hence, the t-statistics diverge in all cases, and the R2 is either slowly converging to zero or Op(1).

18For the empirical implementation, we rely on fractional ARMA(p, 0) models with p = {0, 1, 1, 4} for the realized variance,
DS, PE and TB, respectively. These models fit the data well, as indicated by the residuals in Figure 3 and Section 7, and
adding more lags barely increases the explanatory power. Again, Shao (2009), Hualde & Robinson (2011) and Nielsen
(2015) provide results which may be used to verify that the estimates of d are consistent at rate n−1/2. Finally, when
implementing the fractional filter in the first step, we use 10 observations for initialization.

19We have also implemented the LCM test with the worst case lower bound on the trimming rate implied by endogenous
regressors, 2/5 < ν, both in the empirical analysis and simulation study. In spite of this very conservative choice, the
persistent state variables imply that the numerical results remain similar to those reported below.
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sample properties. For the smaller (sub-)sample size n = 300, the test is only slightly oversized, with

rejection rates in the range 6-10% compared to the 5% nominal level, and the power is good, especially

when selecting the wider bandwidth, κ = 0.799. For the larger sample size n = 650, the LCM test

demonstrates both great size and power. Moreover, we note that the LCM test performs well across

all DGPs, rendering it robust to a variety of different, and empirically relevant, persistence scenarios.

Finally, while the test is robust to the choice of the trimming rate ν, yielding similar results across

the board, the power is uniformly higher for the largest bandwidth (κ = 0.799), and this is achieved

without sacrificing the size properties. Consequently, we use κ = 0.799 throughout.

6.2 Inference on Predictive Ability: LCM versus OLS

This section explores the performance of LCM and least squares tests by examining their size properties

in settings designed to predict a persistent variable using persistent regressors. Specifically, we adopt

a scenario similar to equation (24) with ρ = 0 and allow for additional exogenous processes of the

same form as xt−1. We consider regressions with up to three state variables, setting dx = {0.8, 0.9, 1},
corresponding to the estimated fractional integration orders of DS, TB, and PE in Table 1, and we

let dy = 0.3 (DGP M1) or dy = 0.55 (DGP M2) to capture the relevant range of persistence in

the RV measures. The autoregressive parameter is fixed at 0.2 for all processes, and a larger sample

size n = 1000 is included to help gauge the limiting properties of the testing procedures. Whereas

the LCM test is implemented as described in the previous section, OLS inference is performed using

Newey & West (1987) standard errors and Wald tests. In all least squares regressions, we include a

constant, the lagged realized variance, and one to three exogenous regressors. We report test power

for lagged RV, test size for the individual state variable, the average adjusted R2, and the size of a

Wald test for joint significance of the exogenous regressors.

The results, displayed in Table 5, contain several interesting findings. First, for DGP M1, all OLS-

based significance tests for individual coefficients of the persistent regressors are oversized, irrespective

of the number of regressors included. In fact, the size distortions only grow as sample size increases,

corroborating the theoretical results of Tsay & Chung (2000) (cf., footnote 15, DGP 2). Hence, the

size distortions are substantial, raising serious concerns regarding the applicability of OLS inference.

For example, for regressions involving only one exogenous predictor with dx = 0.8 (mimicking DS), the

rejection rate rises from 27.7% for n = 300 to 33.5% for n = 1000, far exceeding the nominal 5% level.

Second, sequentially adding exogenous processes, with dx = 1 (PE) and dx = 0.9 (TB) fails to improve

the testing properties of DS, whose individual significance tests continue to be badly distorted. Third,

adding predictors enhances the adjusted R2. This is, again, readily explained by the results in Tsay

& Chung (2000). Fourth, the OLS-based Wald test for joint significance of the predictors is severely

distorted, and the size properties only worsen as more persistent predictors are introduced and sample

size increases. The nominal rejection rates range from 27.7% to 59.8%, underscoring the propensity

for misleading empirical inference. Fifth, the size properties of the LCM test are excellent. Although

the test is slightly oversized for n = 300, the size is accurate for n = 650, and essentially perfect for

31



n = 1000, regardless of the number of predictors included.

The results for DGP M2 are similar to those described above, with all qualitative conclusions

carrying over despite minor numerical differences. Notably, the size distortions are even greater for

the individual and joint significance tests in this setting, consistent with the different divergence rates

of the t-statistics provided in Tsay & Chung (2000); see DGP 2 and 4 in footnote 15.

Overall, the simulations demonstrate severe problems with OLS-based inference and testing, irre-

spective of the predictive ability of the persistent regressors. In contrast, our LCM procedure displays

good size and power properties, suggesting it will deliver reliable inference in settings with general

and diverse degrees of persistence among the variables in the system. Hence, the LCM test provides a

rigorous basis for determining whether our macroeconomic and financial state variables add auxiliary

predictive power beyond past volatility in forecasting future realized variance.

6.3 Robustness to Parametric First-step Filtering

To further explore the robustness properties of the LCM procedure, we replace the first-step fractional

ARMA(1, 0) estimator with the semiparametric ELW from Shimotsu (2010). In particular, we imple-

ment the latter with a bandwidth bn%c with % = {0.71, 0.75}, the second-stage MBLS estimator with

tuning parameters ν = {0.21, 0.25, 0.30} and κ = {0.65, 0.70, 0.749}, ensuring that the condition κ < %

is always satisfied, and use the remaining configurations described in Section 6.1. The results, pre-

sented in Tables C.1-C.2 of the Supplementary Appendix, are very similar to those in Tables 3-4; the

LCM procedure demonstrates excellent bias, RMSE, size and power properties. The main differences

between implementations are that the fractional ARMA estimator generates lower RMSE for n = 650,

slightly worse size for n = 300 and better power overall than the corresponding ELW results.

The comparison between the fractional ARMA and ELW implementations, however, rests on the

former having correctly identified the AR(1) structure of yt and xt−1. Hence, as an additional robust-

ness check, we simulate the latter as in equation (24), but with AR(2) dynamics where φl,y = φl,x = 0.2

for lags l = 1, 2. Moreover, we “incorrectly” fit a fractional ARMA(1, 0) model or, alternatively, the

ELW estimator in the first step and gauge the impact of filtering misspecification. The results for the

two estimators are provided in Tables C.3-C.4, respectively, C.5-C.6 of the Supplementary Appendix.

Importantly, there are no significant differences between these and the corresponding for AR(1) dy-

namics, demonstrating robustness of the second-stage MBLS estimator, despite the first-stage memory

parameter estimates being slightly upward biased. Hence, the LCM inference is robust to the choice

of fractional filtering procedure. Moreover, the results show that it is favorable to select κ close to

its upper bound, κ < 4/5 for parametric filtering and κ < min(%, 4/5) for semiparametric, since the

noise arising from having estimated the ex-ante unknown integration orders is (much) smaller than the

efficiency gains from using a wider range of the spectrum. Correspondingly, there is a bias-variance

tradeoff in selecting the trimming rate ν: if selected too low, the first-step filtering bias from mean

slippage (or endogenous regressors) may impact the coefficient estimate; if selected too high, this

may hurt efficiency of the inference. In general, we recommend using the persistence-dependent lower
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bound on the trimming rate in Assumption T as a rule-of-thumb guide when implementing the LCM

procedure, similarly to the discussion of our empirical application in Section 6.1.

7 LCM Analysis of Predictive Power for Future RV

Section 6 documents that least squares predictive inference and testing procedures may be unreliable

when the variables of the system are persistent. We now revisit the findings in Table 2 concerning the

significant forecast power of macroeconomic and financial indicators for future realized variance, using

the robust LCM approach. As described in the previous section, first-stage fractional filtering is based

on estimates from (long) fractional ARMA(p, 0) processes, as in Shao (2009). To gauge the suitability

of the fractional ARMA models, we depict the ACFs of the model-implied residual series in Figure

3. Relative to Figure 1, the effectiveness of our parametric approach to “whiten” the variables of the

system is evident.20 Likewise, the MBLS estimation in stage 2 is implemented as described above,

with the trimming rates ν = {0.21, 0.25, 0.30} and bandwidth parameter κ = 0.799. The results for

the full sample and the subsample, exploiting the high-frequency data, are reported in Table 6.

7.1 Empirical LCM Results

From Panel A of Table 6, we see that the coefficient estimates of the state variables from the LCM

procedure and the corresponding ones for OLS in Table 2 are of similar magnitude and sign. Second,

and importantly, the LCM test for joint significance of the persistent state variables are now all

insignificant, as the P-Wald statistics are far below conventional significance levels. This contrasts

sharply with the OLS results, which indicate that the state variables are jointly significant at the 95%

level and, sometimes, at the 99% level. Third, the LCM results are robust to the selection of tuning

parameters and the choice of RV measure, as seen by the subsample results in Panel B. Again, this

is contrary to the OLS results for joint significance, which are stronger in the subsample (significant

at the 99% level). Finally, in Panel C, we apply the variance-stabilizing log-transformation on the RV

series and repeat the exercise in Panel A. The qualitative implications are robust to transformation,

that is, we find no significant evidence that the persistent state variables carry predictive power.

The stark difference between the LCM and OLS results is readily explained by theoretical and

simulation results. The theory in Tsay & Chung (2000) and finite sample evidence in Section 6,

combined with the empirical results in Table 1, documenting a strong degree of persistence for the

realized variance as well as the financial and macroeconomic series, imply that the OLS-based tests

will fail to control size. In fact, these procedures will, incorrectly, reject the null hypothesis of no

predictability with probability approaching one, as the sample size grows. Our LCM procedure, on

the other hand, is valid irrespective of the persistence displayed by the variables of the VAR system.

We conclude that there is no significant statistical evidence that any of the state variables contain

relevant information for forecasting the future realized variance. Finally, since our LCM significance

20The estimated persistence is similar to that conveyed by the results in Table 1.

33



tests for B are consistent with H0, there is no need to investigate how the persistent predictor variables

may be transformed to comply with regression balance.21

7.2 LCM Testing of Reverse Causality

The LCM test finds no significant evidence of predictive information for realized volatility in the

three persistent state variables. This does not imply that they are unrelated. Specifically, as noted

in Section 5.2, Figure 2 reveals that some major peaks in the DS and PE series trail the realized

variance, not the other way around. Hence, this section explores the reverse predictive relation, that

is, whether lagged realized variance carry information about the subsequent realization of the state

variables. This hypothesis stipulates that uncertainty in the pricing of equities may reflect future

shifts in more slowly moving economic variables. For illustration, Figure 4 plots the lagged realized

variance against the three state variables, both before and after the first-stage fractional filtering step

of the LCM procedure, for the last 15 years of the sample. Two important points stand out. First, the

fractional filtering is successful in stripping the persistence from the variables, as intended. Second,

the large spikes in the DS and PE ratio during the recent financial crisis occur contemporaneously with

outliers in the lagged realized variance series, suggesting that the latter carries important information

about the future realizations of the state variables. The results from testing this hypothesis, using the

LCM procedure, are presented in Panels A and B of Table 7 for the full sample and subsample with

high-frequency return data, respectively.

The message from Table 7 is clear; the evidence is consistent with the realized variance predicting

future changes in all three state variables. The results apply for both samples, demonstrating robust-

ness with respect to alternative RV measures. The predictive relations are strongly significant for

all Wald tests (the P-Wald measures exceed 0.95). The estimates imply that an increase in realized

variance forecasts an elevation in DS and a decline for TB and PE, consistent with the visual evidence

in Figure 4. Obviously, the recent financial crisis is an extraordinary, yet important, economic event

which may have an outsized impact on the inference, as also suggested by visual inspection from Figure

4. For robustness, we implement the LCM test for the sample truncated in December 2007 (n = 574).

Panel C of Table 7 reveals that positive shocks to realized variance remain significant predictors of

future increases in DS and declines in PE.

The LCM methodology is explicitly designed to accommodate persistent variation in VAR sys-

tems, so it is well positioned to uncover low-frequency ties between the realized variance and a set

of macroeconomic state variables. Although we find that the latter do not forecast the former, we

cannot reject forecast power in the reverse direction. Importantly, we have uncovered evidence of a

balanced predictive relation. Specifically, given the differences in integration orders from Table 1, RV

should be transformed via Q(L), when describing its impact on the state variables. We discuss other

21These findings are consistent with, and possibly provides an explanation for, the recent results in Berger, Dew-Becker
& Giglio (2019), who no longer find the default spread to carry significant information about realized volatility over the
following six months in a subsample from 1983-2014, after including different financial variables such as the VIX.
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interpretations of predictability in Andersen & Varneskov (2019a, 2019b). These findings provide a

challenge for Campbell et al. (2018) and Bansal et al. (2014), who assert, based on least squares in-

ference, that such macroeconomic indicators do predict the market variance. Moreover, this point is

crucial for their conclusion that shocks to the market variance are integral to understanding the role

of macroeconomic fluctuations in driving the cross-sectional pricing across distinct asset classes. Our

results suggest it may be useful to reassess this evidence. We defer an in-depth investigation of the

implications for the prediction of macroeconomic and realized variance to future research.

8 Conclusion

This paper studies the properties of standard predictive regressions in persistent VAR economies and

considers robust inference and testing in such systems. In particular, we analyze a setting, where

all variables may be fractionally integrated of different orders and show that this induces issues with

balancedness of the regression relation as well as a spurious regression problem for least squares

estimation methods. As a remedy, we propose a new inference and testing procedure – the local

spectrum approach – for joint significance of the predictors, that is robust to the variables having

different integration orders. The LCM procedure is based on (semi-)parametric fractional-filtering and

band spectrum regressions (MBLS), using a carefully selected set of frequency ordinates. We establish

the asymptotic properties of the coefficient estimates and the associated significance test, relying on

an exact spectrum representation. The procedure allows us to include variables in the system that are

asymptotically stationary (0 ≤ d < 1/2), non-stationary (d ≥ 1/2), having endogenous measurement

errors and being formed from a pre-estimated cointegrating relation. Moreover, if the regressors are

significant, we accommodate predictive relations that may (b > 0) or may not (b = 0) be cointegrated.

The theoretical analysis is supplemented with an empirically relevant simulation study, documenting

that least squares inference methods suffer from large size distortions when the variables are persistent.

In contrast, our LCM approach displays excellent finite sample size and power.

We use the LCM procedure to study the implications of assuming short memory VAR dynamics

for the economy in predictive regressions for the realized variance of the S&P 500 equity index. Focus-

ing on three financial and macroeconomic state variables, whose forecasting ability have been widely

appraised in the macro-finance literature, we confirm that least squares methods generate evidence

supportive of highly significant forecast power. However, we find no such evidence using the LCM

approach. We argue that this suggests that the standard least squares evidence is spurious, driven by

the (ignored) strong persistence of the VAR economy. In fact, our robust LCM approach suggests that

causality may run in the reverse direction, i.e., innovations to the realized variance may foreshadow

future changes in the state variables. Overall, our findings carry implications for several areas in em-

pirical macroeconomics and finance, including the choice of econometric tools for model specification,

inference, and forecasting.
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Full Sample Summary Statistics

Panel A: Mean S.D. Max Min Skew EKur

RV 0.0021 0.0047 0.0814 0.0001 11.088 159.06

Sqrt-RV 0.0396 0.0239 0.2853 0.0104 3.9174 27.513

Log-RV -6.6972 0.9305 -2.5086 -9.1403 0.5268 1.0794

DS 13.462 5.6609 51.241 6.5329 2.4891 9.6242

TB 4.6805 2.9352 15.100 0.0100 0.5813 0.7491

PE 2.8975 0.4154 3.7887 1.8929 -0.3301 –0.4229

Panel B: LW ELW AR-φ AR-R2 KPSS MZ

RV 0.2897 0.2882 0.4288 0.1839 0.6298∗ -23.664∗∗

Sqrt-RV 0.4458 0.4447 0.6468 0.4184 0.9976∗∗ -19.022∗∗

Log-RV 0.5223 0.5409 0.7034 0.4947 1.2525∗∗ -16.269∗∗

DS 0.8216 0.8655 0.9699 0.9373 1.1527∗∗ -15.400∗∗

TB 0.8993 0.8714 0.9926 0.9814 1.5911∗∗ -8.2203∗

PE 1.0610 1.1149 0.9969 0.9923 1.5836∗∗ -4.9610

Table 1: Descriptive statistics. The summary statistics are provided for all variables using the full sample of
monthly observations (n = 662). The variables are market realized variances (in levels, square-root, and logs), the
default spread (DS), 3m T-bills (TB), and the price-earnings ratio (PE). Panel A shows unconditional summary
statistics, whereas Panel B provides conditional statistics. Here, standard deviation, skewness, and excess kurtosis
(relative to 3) are denoted “S.D.”, “Skew”, and “EKur”, respectively. The LW and ELW semiparametric estimators
of integration order d are implemented using a bandwidth m = n0.7, with ELW being robust against a constant, as
in Shimotsu (2010). AR-φ and AR-R2 are the estimated first-order autocorrelation coefficient and R2. The MZ unit
root test is based on GLS detrended data with the number of lags selected by the MAIC on OLS detrended data,
as recommended by Perron & Qu (2007), see Ng & Perron (2001, Table 1) for tabulated critical values. The KPSS
test for the processes being I(0), that is, for obeying short memory dynamics, is implemented using the Bartlett
kernel function and a bandwidth b8(n/10)1/4c, see, e.g., Hobijn et al. (2004) for details. It has 0.463 and 0.739 as
5% and 1% critical values. Finally, (∗) and (∗∗) denote rejection at a 5% and 1% significance level, respectively.
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ACF: Sqrt-RV ACF: DS

ACF: TB ACF: PE

Figure 1: Autocorrelation functions. The sample autocorrelation functions are computed for the first 350 lags

for each variable in the full sample, which spans the period from February 1960 through March 2015 (n = 662),

where realized variance is estimated using daily log-returns. The variables are the square-root (sqrt) transformation

of realized variance (RV), the default spread (DS), 3m T-bills (TB), and the price-earnings ratio (PE).
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Sqrt-RVt Sqrt-RVt vs DSt−1

Sqrt-RVt vs TBt−1 Sqrt-RVt vs PEt−1

Figure 2: Plotted series. The upper left panel depicts the full sample of square-root transformed realized

variance. The three remaining panels show the state variables (blue) along with the square-root RV estimates based

on daily data (black) using the sample period January 2000 through March 2015 (n = 183). The left-hand scale is

for the state variables, the right-hand scale for the square-root RV estimates.
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Predictive RV Regressions

Panel A Panel B

Constant 0.0012
(0.0004)

−0.0005
(0.0005)

−0.0012
(0.0005)

−0.0049
(0.0019)

0.0011
(0.0002)

0.0005
(0.0004)

−0.0035
(0.0013)

−0.0041
(0.0014)

RVt−1 0.4288
(0.2005)

0.3919
(0.1852)

0.3918
(0.1849)

0.3838
(0.1842)

0.5939
(0.0679)

0.5653
(0.0730)

0.5628
(0.0712)

0.5558
(0.0726)

DSt−1 - 0.0099
(0.0047)

0.0099
(0.0047)

0.0148
(0.0059)

- 0.0046
(0.0037)

0.0062
(0.0036)

0.0082
(0.0043)

TBt−1 - - - 0.0179
(0.0083)

- - - 0.0091
(0.0079)

PEt−1 - - 0.0385
(0.0220)

0.1185
(0.0425)

- - 0.1186
(0.0400)

0.1203
(0.0383)

Adj. R2 0.1826 0.1945 0.1944 0.1979 0.3504 0.3527 0.3539 0.3527

d̂u 0.1876
(0.0516)

0.1315
(0.0516)

0.1299
(0.0516)

0.1032
(0.0516)

0.0826
(0.0680)

0.0510
(0.0680)

0.0283
(0.0680)

0.0147
(0.0680)

Wald - 4.4044 6.0757 8.7854 - 1.5673 11.282 12.573

P-Wald - 0.9642 0.9521 0.9677 - 0.7894 0.9965 0.9943

Table 2: OLS estimates and tests. We report least squares coefficient estimates and corresponding Newey
& West (1987) standard errors or the variables along with the adjusted R2, a local Whittle (LW) estimate of the
residual memory parameter, and a Wald test and its associated P-value for whether the state variables are jointly
significant. Specifically, Panel A reports results from the full sample where realized variance is estimated using daily
log-returns, and Panel B using a subsample from February 1990 through March 2015 (n = 302) where high-frequency
data is utilized. The LW estimator is implemented using a bandwidth m = bn0.7c. Note that the coefficients in
front of the state variables have been scaled with 100.
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Bias and RMSE of the Local Spectrum Estimator

DGP 1: Bias DGP 2: Bias

n = 300 n = 650 n = 300 n = 650

Implementation: ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2

(ν, κ) = (0.21, 0.799) 0.0029 -0.0073 0.0020 -0.0004 0.0031 -0.0047 0.0020 0.0012

(ν, κ) = (0.25, 0.799) 0.0025 -0.0073 0.0024 0.0001 0.0027 -0.0050 0.0023 0.0016

(ν, κ) = (0.30, 0.799) 0.0027 -0.0071 0.0024 0.0002 0.0029 -0.0049 0.0024 0.0017

(ν, κ) = (0.25, 0.70) 0.0028 -0.0050 0.0028 0.0012 0.0029 -0.0015 0.0027 0.0035

(ν, κ) = (0.25, 0.75) 0.0023 -0.0067 0.0024 0.0005 0.0024 -0.0037 0.0024 0.0024

DGP 3: Bias DGP 4: Bias

n = 300 n = 650 n = 300 n = 650

Implementation: ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2

(ν, κ) = (0.21, 0.799) 0.0028 -0.0087 0.0020 -0.0010 0.0029 -0.0058 0.0020 0.0006

(ν, κ) = (0.25, 0.799) 0.0027 -0.0086 0.0024 -0.0004 0.0029 -0.0059 0.0024 0.0011

(ν, κ) = (0.30, 0.799) 0.0031 -0.0084 0.0024 -0.0004 0.0034 -0.0058 0.0024 0.0010

(ν, κ) = (0.25, 0.70) 0.0030 -0.0067 0.0028 0.0002 0.0030 -0.0029 0.0028 0.0024

(ν, κ) = (0.25, 0.75) 0.0025 -0.0081 0.0025 -0.0003 0.0026 -0.0048 0.0025 0.0016

DGP 1: RMSE DGP 2: RMSE

n = 300 n = 650 n = 300 n = 650

Implementation: ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2

(ν, κ) = (0.21, 0.799) 0.0829 0.0887 0.0553 0.0572 0.0836 0.0891 0.0556 0.0565

(ν, κ) = (0.25, 0.799) 0.0829 0.0873 0.0552 0.0569 0.0834 0.0880 0.0555 0.0563

(ν, κ) = (0.30, 0.799) 0.0821 0.0862 0.0556 0.0572 0.0826 0.0867 0.0559 0.0565

(ν, κ) = (0.25, 0.70) 0.1129 0.1184 0.0788 0.0817 0.1142 0.1194 0.0795 0.0817

(ν, κ) = (0.25, 0.75) 0.0961 0.1009 0.0649 0.0674 0.0969 0.1017 0.0652 0.0669

DGP 3: RMSE DGP 4: RMSE

n = 300 n = 650 n = 300 n = 650

Implementation: ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2

(ν, κ) = (0.21, 0.799) 0.0866 0.0951 0.0556 0.0576 0.0873 0.0946 0.0559 0.0568

(ν, κ) = (0.25, 0.799) 0.0856 0.0914 0.0553 0.0572 0.0865 0.0917 0.0556 0.0566

(ν, κ) = (0.30, 0.799) 0.0843 0.0901 0.0562 0.0576 0.0851 0.0899 0.0565 0.0569

(ν, κ) = (0.25, 0.70) 0.1167 0.1248 0.0790 0.0822 0.1186 0.1258 0.0797 0.0822

(ν, κ) = (0.25, 0.75) 0.0995 0.1060 0.0650 0.0677 0.1007 0.1064 0.0653 0.0672

Table 3: Bias and RMSE of the LCM estimator. This table displays the bias and RMSE of the local spectrum
estimator, B̂(`,m), for ρ = {0, 0.2} as a function of the trimming and bandwidth parameters, ` = nν and m = nκ,
respectively. As described in Section 6, the tuning parameters are fixed according to the asymptotic theory and the
DGPs are simulated as in Hong (1996) and Shao (2009). Two fractional ARMA(1, 0) processes are simulated with
φy = φx = 0.2 and varying fractional integration orders dy and dx. DGP 1 is configured with memory parameters
(dy, dx) = (0.30, 0.45); DGP 2 with (dy, dx) = (0.30, 0.80); DGP 3 with (dy, dx) = (0.55, 0.45); and DGP 4 with
(dy, dx) = (0.55, 0.80). The fractional filtering in the first step of the local spectrum procedure is based on ARFIMA
parameter estimates of the memory parameter, where one AR lag has been included; see Hualde & Robinson (2011)
and Nielsen (2015). Two sample sizes are considered, n = {300, 650}, corresponding well with the respective sizes
of the subsample and full sample, see Tables 1 and 2. The simulations are carried out with 1,000 replications.
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Size and Power of the Local Spectrum Test

DGP 1 DGP 2

n = 300 n = 650 n = 300 n = 650

Implementation: ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2

(ν, κ) = (0.21, 0.799) 9.20 73.00 5.80 96.10 9.70 74.30 5.90 96.40

(ν, κ) = (0.25, 0.799) 9.50 73.30 6.40 96.10 9.90 74.80 6.50 96.60

(ν, κ) = (0.30, 0.799) 8.60 73.80 5.90 96.00 9.00 74.60 5.70 96.40

(ν, κ) = (0.25, 0.70) 9.90 51.90 6.30 76.30 10.30 54.30 6.60 77.50

(ν, κ) = (0.25, 0.75) 9.50 62.20 5.60 89.20 9.60 65.20 5.60 89.40

DGP 3 DGP 4

n = 300 n = 650 n = 300 n = 650

Implementation: ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2

(ν, κ) = (0.21, 0.799) 9.50 72.10 5.60 96.00 9.80 74.00 5.60 96.20

(ν, κ) = (0.25, 0.799) 9.50 72.60 6.00 96.00 9.90 74.70 6.00 96.40

(ν, κ) = (0.30, 0.799) 9.00 72.70 5.50 95.90 9.10 74.20 5.60 96.30

(ν, κ) = (0.25, 0.70) 10.00 51.20 6.00 75.60 10.50 52.90 6.30 77.00

(ν, κ) = (0.25, 0.75) 9.60 60.60 5.40 88.40 9.80 64.10 5.30 89.00

Table 4: Size and power of the LCM test. This table displays the size (ρ = 0) and power (ρ 6= 0) of the
proposed local spectrum test from Theorem 2, LCM(`,m), as a function of the MBLS trimming and bandwidth
parameters, defined by ` = nν and m = nκ, respectively. As described in Section 6, the tuning parameters are fixed
according to the asymptotic theory and the DGPs are simulated as in Hong (1996) and Shao (2009). Specifically,
two (possibly, correlated) fractional ARMA(1, 0) processes are simulated with φy = φx = 0.2 and varying fractional
integration orders dy and dx. DGP 1 is configured with memory parameters (dy, dx) = (0.30, 0.45); DGP 2 with
(dy, dx) = (0.30, 0.80); DGP 3 with (dy, dx) = (0.55, 0.45); and DGP 4 with (dy, dx) = (0.55, 0.80). The fractional
filtering in the first step of the local spectrum procedure is based on ARFIMA parameter estimates of the memory
parameter, where one AR lag has been included; see Hualde & Robinson (2011) and Nielsen (2015). All tests are
implemented with νG = 0.25 and κG = 0.9. Two sample sizes are considered, n = {300, 650}, corresponding well
with the respective sizes of the subsample and full sample, see Tables 1 and 2. All tests are implemented with a
nominal size of 5%. The simulations are carried out with 1,000 replications.
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ACF: RV residuals ACF: DS residuals

ACF: TB residuals ACF: PE residuals

Figure 3: Autocorrelation functions. The sample autocorrelation functions are computed for the first 350 lags

for the residual series of each variable after applying the ARFIMA filter to estimate the fractional integration order

in the full sample, which spans the period from February 1960 through March 2015 (n = 662). The variables are

the realized variance (RV), the default spread (DS), 3m T-bills (TB), and the price-earnings ratio (PE). Note that

the fractional filter uses ten observations for initialization.
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Local Spectrum Estimates and Tests: RV Predictions

H1, ν = H2, ν = H3, ν =

Panel A 0.21 0.25 0.30 0.21 0.25 0.30 0.21 0.25 0.30

DSt−1 0.0120 0.0115 0.0101 0.0134 0.0136 0.0105 0.0143 0.0148 0.0116

TBt−1 - - - - - - 0.0123 0.0174 0.0141

PEt−1 - - - 0.1008 0.1721 0.0321 0.0944 0.1628 0.0312

Wald 0.9252 0.8462 0.6534 1.1287 1.3660 0.6791 1.2019 1.5026 0.7795

P-Wald 0.6639 0.6424 0.5811 0.4313 0.4949 0.2879 0.2475 0.3183 0.1456

H1, ν = H2, ν = H3, ν =

Panel B 0.21 0.25 0.30 0.21 0.25 0.30 0.21 0.25 0.30

DSt−1 0.0009 -0.0009 -0.0025 0.0030 0.0005 0.0013 -0.0003 -0.0015 0.0007

TBt−1 - - - - - - -0.1294 -0.0998 -0.0286

PEt−1 - - - 0.2178 0.1116 0.3694 0.2062 0.1245 0.3627

Wald 0.0041 0.0043 0.0304 0.3638 0.0989 1.0906 0.8880 0.4661 1.0609

P-Wald 0.0510 0.0520 0.1384 0.1663 0.0483 0.4203 0.1717 0.0737 0.2137

H1, ν = H2, ν = H3, ν =

Panel C 0.21 0.25 0.30 0.21 0.25 0.30 0.21 0.25 0.30

DSt−1 0.9223 0.6541 0.4596 0.1014 0.0814 -0.5309 0.4623 0.5918 -0.0731

TBt−1 - - - - - - 5.1313 7.3741 6.0333

PEt−1 - - - -62.68 -48.07 -76.14 -65.34 -52.03 -76.53

Wald 0.2370 0.1193 0.0589 3.0359 1.7895 4.2383 3.5262 2.8032 4.6146

P-Wald 0.3736 0.2702 0.1918 0.7808 0.5913 0.8799 0.6826 0.5770 0.7977

Table 6:Local spectrum estimates and tests. We report coefficient estimates from the local spectrum procedure
to predictability testing as well as corresponding Wald test statistics and P-values for significance of the regressors.
Specifically, Panel A reports results from the full sample where the realized variance is estimated using daily log-
returns; Panel B using a subsample from February 1990 through March 2015 (n = 302) where high-frequency data
is utilized; and Panel C considers a log-transformation of the series in Panel A. The LCM procedure is implemented
using bandwidths determined by κ = 0.799 and κG = 0.9 as well as the trimming parameters ν = {0.21, 0.25, 0.30}
and νG = 0.25. The series are fractionally filtered using ARFIMA estimates of the fractional integration orders,
which are consistent at rate n−1/2. The selection of the ARMA polynomials and properties of the ARFIMA filters
are discussed in the Sections 6-7 and Figure 3. The fractional filter uses ten observations for initialization. The
three test statistics H1, H2, and H3 uses the DS, the DS and PE, or all three variables as predictors and test their
joint predictive power. All parameter estimates are scaled with 100.
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RVt−1 vs DSt Filtered: RVt−1 vs DSt

RVt−1 vs TBt Filtered: RVt−1 vs TBt

RVt−1 vs PEt Filtered: RVt−1 vs PEt

Figure 4: Plotted series. The left panels depicts the realized variance (RV) based on daily data (black) against

the state variables (blue) along for the sample period January 2000 through February 2015 (n = 182). The right

panels show the corresponding series after fractional filtering. In each plot, the left-hand scale is for the state

variables (divided by 100, as for the parameter estimates), the right-hand scale for the RV estimates.
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Local Spectrum Estimates and Tests: Reverse Causality

DSt, ν = TBt, ν = PEt, ν =

Panel A 0.21 0.25 0.30 0.21 0.25 0.30 0.21 0.25 0.30

RVt−1 2.4285 2.4190 2.4093 -0.1672 -0.1539 -0.1676 -0.0616 -0.0590 -0.0711

Wald 120.27 119.48 118.67 7.5211 6.3851 7.5553 27.384 25.210 36.091

P-Wald 1.0000 1.0000 1.0000 0.9939 0.9885 0.9940 1.0000 1.0000 1.0000

DSt, ν = TBt, ν = PEt, ν =

Panel B 0.21 0.25 0.30 0.21 0.25 0.30 0.21 0.25 0.30

RVt−1 3.0160 2.9736 2.9391 -0.1685 -0.1537 -0.1377 -0.0558 -0.0707 -0.0606

Wald 66.043 64.513 63.268 26.892 22.564 18.259 13.578 21.451 15.904

P-Wald 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 1.0000 0.9999

DSt, ν = TBt, ν = PEt, ν =

Panel C 0.21 0.25 0.30 0.21 0.25 0.30 0.21 0.25 0.30

RVt−1 0.5019 0.4657 0.4735 -0.1415 -0.0859 -0.1021 -0.0445 -0.0384 -0.0749

Wald 7.9791 6.8780 7.1069 2.4612 0.9098 1.2827 7.5614 5.6453 20.767

P-Wald 0.9953 0.9913 0.9923 0.8833 0.6598 0.7426 0.9940 0.9825 1.0000

Table 7: Local spectrum estimates and tests. We report coefficient estimates from the local spectrum
procedure to predictability testing as well as corresponding Wald test statistics and P-values. Specifically, Panel
A reports results from the full sample where realized variance is estimated using daily log-returns, Panel B using
a subsample from February 1990 through February 2015 (n = 301) where high-frequency data is utilized, and
Panel C shows results from a subsample analysis based on RV data constructed using daily log-returns that ends
in December 2007 (n = 574). The LCM procedure is implemented using bandwidths determined by κ = 0.799 and
κG = 0.9 as well as the trimming parameters ν = {0.21, 0.25, 0.30} and νG = 0.25. The series are fractionally filtered
using ARFIMA estimates of the fractional integration orders, which are consistent at rate n−1/2. The selection of
the ARMA polynomials and properties of the ARFIMA filters are discussed in the Section 6-7 and Figure 3. The
fractional filter uses ten observations for initialization. All parameter estimates are scaled with 100.
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A Proofs

This section contains the proofs of the main asymptotic results in the paper as well as some technical

results in Section A.6. Before proceeding, however, let us introduce some notation. For a generic

vector V , let V (i) index the ith element, and, similarly, for a matrix M , let M(i, q) denote its (i, q)th

element. Moreover, denote by K ∈ (0,∞) a generic constant, which may take different values from

line to line or from (in)equality to (in)equality. Finally, we remark that sometimes the (stochastic)

orders refer to scalars, sometimes to vectors and matrices. We refrain from making distinctions.

A.1 Proof of Theorem 1

First, write v̂t = D̂(L)D(L)−1D(L)zt1{t≥1}, and define the terms Â(L) ≡ D̂(L)D(L)−1 as well as

at ≡ D(L)zt1{t≥1}, noticing that by definition at = vt +D(L)µ1{t≥1}, with µ corresponding to the

means, or initial values, of zt. Moreover, let µ̃t ≡D(L)µ1{t≥1} and denote by µ̃
(e)
t the first element of

the vector and by µ̃
(u)
t the remaining k × 1 vector. Next, decompose the trimmed discretely averaged

periodogram of the fractionally filtered sequence v̂t,

F̂v̂v̂(`,m)− F̂vv(1,m) =
(
F̂vv(`,m)− F̂vv(1,m)

)
+
(
F̂aa(`,m)− F̂vv(`,m)

)
+
(
F̂v̂v̂(`,m)− F̂aa(`,m)

)
≡ E1 + E2 + E3. (A.1)

This decomposition is crucial for showing that the first-stage filtering errors and mean-slippage only

have an asymptotically negligible impact on the second stage MBLS estimate when trimming of fre-
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quencies in the vicinity of the origin. Specifically, since we can write by addition and subtraction,

B̂(`,m)−B = F̂ûû(`,m)−1F̂ (b)
uη (1,m)− C1 + C2 + C(b)

3 (A.2)

where the three error terms, C1, C2, and C(b)
3 , are defined as

C1 ≡ F̂ûû(`,m)−1F̂
(u)
ûµ̃ (`,m)B, C2 ≡ F̂ûû(`,m)−1F̂

(e)
ûµ̃ (`,m),

C(b)
3 ≡ F̂ûû(`,m)−1

(
F̂

(b)
ûη (`,m)− F̂ (b)

uη (`,m) + E(b)
4

)
, E(b)

4 ≡ F̂
(b)
uη (`,m)− F̂ (b)

uη (1,m),

with the superscripts indicating µ̃
(u)
t and µ̃

(e)
t , respectively, the decomposition in (A.1) allows us to

establish asymptotic bounds on C1, C2, and C(b)
3 . The proof is now concluded by three auxiliary

lemmas: Lemma A.1 establishes generic bounds for E1, E2, E3 and E(b)
4 . Lemma A.2 uses these

bounds to show
√
mλ−bm (C1 + C2 + C(b)

3 ) = op(1) and λ−1
m F̂ûû(`,m)

P−→ Guu. Finally, Lemma A.3

establishes central limit theory for
√
mλ−1−b

m F̂
(b)
uη (1,m), i.e., the discretely averaged co-periodogram

between ut−1 and η
(b)
t . Hence, by using these lemmas in conjunction with the continuous mapping

theorem and Slutsky’s theorem, this provides the limit theory for
√
mλ−bm (B̂(`,m)−B).

Finally, we need to provide conditions on $ ∈ (0, 2] such that the second rate restriction in

Assumption T is mutually consistent with all values 0 ≤ di < 2, i = 1, . . . , k + 1, and, addi-

tionally, with 0 ≤ b ≤ min(1, d) if the series cointegrate, b > 0. The second restriction implies

ν < ($ + κ(b+ 1/2))/($ + 1 + b) ≤ ($ + κ/2)/($ + 1). Moreover, the worst bound on the trimming

rate ν in the fourth restriction is obtained for d = b = 0: ν > (1 − κ/2)/2. These assumptions are,

thus, mutually consistent when max(0, (1−3/2κ)/(1+κ/2)) < $ is imposed, as stated in the theorem.

Hence, a solution is always guaranteed to exist since max(0, (1− 3/2κ)/(1 + κ/2)) < 2.

Lemma A.1 (Asymptotic Bounds). Suppose the conditions for Theorem 1 hold. Then, for some

arbitrarily small ε > 0, the following asymptotic bounds hold:

(a) λ−1
m E1 = Op

(
m−1`

)
.

(b)
√
mλ−1−b

m E2 ≤ Op((m/n)2d−bnm−1/2`−2) +Op((m/n)d−1/2−bmε`−(1+ε)).

(c) Let f̄(`,m, n) ≡ m
n ∨

mε

n1/2`1+ε
∨ 1
`2

for some arbitrarily small ε > 0, then

√
mλ−1−b

m E3 ≤ Op
(

ln(n)2

md

( n
m

)1/2+b
f̄(`,m, n)

)
+Op

(
ln(n)

√
m

√
md

( n
m

)1/2+b
√
f̄(`,m, n)

)
.

(d)
√
mλ−1−b

m E(b)
4 ≤ Op

(
`1+$/(m1/2n$)(`/m)b

)
.

Proof. For (a). First, by Assumptions D1-D3, we may apply the same arguments as in Christensen

2



& Varneskov (2017, Equations (B.3)-(B.7)) to show that when `, n→∞, `/n→ 0,

−E1 =
2π

n

`−1∑
j=1

< (Ivv(λj)) ,
2π

n

`−1∑
j=1

< (Iuu(λj)) ∼ Guuλ`, as λ` → 0+, (A.3)

uniformly in probability. Now, by invoking the properties of the matrix Gqq in Assumption D1 and

since the parameter vector B in (3) is constant, this readily establishes (a).

For (b). First, make the decomposition,

E2 = F̂µ̃µ̃(`,m) + F̂vµ̃(`,m) + F̂µ̃v(`,m), (A.4)

utilizing that ãt = vt + µ̃t. Now, for the first term in (A.4), use the bound for the periodogram of a

fractionally differenced constant from Shimotsu (2010, Lemma B.2), see also Lemma A.6(a) below, to

deduce the following stochastic order for the (i, i)th diagonal element, i = 1, . . . , k + 1,

F̂µ̃µ̃(`,m, i, i) =
2π

n

m∑
j=`

< (Iµ̃µ̃(λj , i, i)) =
2π

n

m∑
j=`

Op

(
n1−2di

j2−2di

)
≤
(m
n

)2di
m∑
j=`

Op
(
j−2
)
, (A.5)

where, for the partial sum term, S(`) =
∑m

j=`Op
(
j−2
)
, we may invoke Varneskov (2017, Lemma C.4)

to show |S(`)| ≤ Op(`
−2), since the power series j−q readily has q > 1. Combining these results

with the Cauchy-Schwarz inequality, this readily establishes F̂µ̃µ̃(`,m) ≤ Op((m/n)2d`−2). For the

second term in the decomposition (A.4), use the Cauchy-Schwarz inequality and Assumption D1 in

conjunction with the same arguments as for (A.5) to show

F̂vµ̃(`,m, i, i) =
2π

n

m∑
j=`

< (Ivµ̃(λj , i, i)) =
2π

n

m∑
j=`

Op(1)×Op

(
n1/2−di

j1−di

)

=
2π√
n

m∑
j=`

Op

(
jdi+ε

ndi
1

j1+ε

)
≤ Op

(
1√
n

(m
n

)di mε

`1+ε

)
, (A.6)

uniformly, for some arbitrarily small ε > 0. Hence, by applying the Cauchy-Schwarz inequality, it

follows that F̂vµ̃(`,m) + F̂µ̃v(`,m) ≤ Op(n−1/2(m/n)dmε`−(1+ε)), establishing (b).

For (c). First, write v̂t = Â(L)at, whose ith element is given by v̂t(i) = (1−L)θ̂iat(i) with power

defined as θ̂i = d̂i − di, and where θ̂i = Op(m
−1/2
d ) by Assumption F. Now, using a Taylor expansion

of the fractional filter (1− L)θ̂i around θ̂i = 0 and the mean-value theorem, we have

(1− L)θ̂i = 1 + θ̂i ln(1− L) +
θ̂2
i

2
ln(1− L)2(1− L)θ̄i (A.7)

for some θ̄i ∈ [θ̂i, 0] and with θ̄i = Op(m
−1/2
d ). Hence, by defining a

(1)
t−1(i) ≡ ln(1 − L)at(i) and the

3



second order term a
(2)
t−2(i, θ̄i) ≡ ln(1− L)2(1− L)θ̄iat(i), we can make the decomposition,

v̂t(i) = at(i) + θ̂ia
(1)
t−1(i) +

θ̂2
i

2
a

(2)
t−2(i, θ̄i) ≡ at(i) + ā

(1)
t−1(i) + ā

(2)
t−2(i), (A.8)

implying that we may further decompose the (i, i)th element of E3 as

E3(i, i) = F̂v̂v̂(`,m, i, i)− F̂aa(`,m, i, i) (A.9)

= F̂
(1,1)
āā (`,m, i, i) + F̂

(2,2)
āā (`,m, i, i) + 2F̂

(1,2)
āā (`,m, i, i) + 2F̂

(1)
aā (`,m, i, i) + 2F̂

(2)
aā (`,m, i, i)

for i = 1, . . . , k+ 1, with the first and second term in the decomposition being the trimmed discretely

average periodograms of ā
(1)
t−1(i) and ā

(2)
t−2(i), respectively, the third term is their co-periodogram, and

the fourth and fifth terms are their respective co-periodograms with at(i).

Now, for the first term of E3(i, i), we have

F̂
(1,1)
āā (`,m, i, i) =

2πθ̂2
i

n

m∑
j=`

<
(
I(1,1)
aa (λj , i, i)

)
= Op

(
m

n

ln(n)2

md

)
+

ln(n)2

n1/2md

m∑
j=`

Op

(
jε

j1+ε

)
+

ln(n)2

md

m∑
j=`

Op

(
1

j2

)

≤ Op
(
m

n

ln(n)2

md

)
+Op

(
ln(n)2

n1/2md

mε

`1+ε

)
+Op

(
ln(n)2

md

1

`2

)
, (A.10)

for some arbitrarily small ε > 0, using Assumption F and Lemma A.7(a) in conjunction with Varneskov

(2017, Lemma C.4), as in (A.5) and (A.6). For the second term of E3(i, i),

F̂
(2,2)
āā (`,m, i, i) =

πθ4
i

2n

m∑
j=`

<
(
I(2,2)
aa (λj , i, i)

)

= Op

(
m

n

ln(n)4

m2
d

)
+

ln(n)5

nm2
d

m∑
j=`

Op

(
j1/2+ε

j1+ε

)
+

ln(n)4

n1/2m2
d

m∑
j=`

Op

(
jε

j1+ε

)

+
ln(n)5

n1/2m2
d

m∑
j=`

Op

(
1

j3/2

)
+

ln(n)6

nm2
d

m∑
j=`

Op

(
jε

j1+ε

)
+

ln(n)4

m2
d

m∑
j=`

Op

(
1

j2

)

≤ Op
(
m

n

ln(n)4

m2
d

)
+Op

(
ln(n)5

nm2
d

m1/2+ε

`1+ε

)
+Op

(
ln(n)4

n1/2m2
d

mε

`1+ε

)
+Op

(
ln(n)4

m2
d

1

`2

)
(A.11)

using similar arguments, ln(n)6/n� ln(n)4/n1/2, and ln(n)/`3/2 � mε/`1+ε. Now, since Assumptions

F and T readily imply ln(n)p � md for some finite p ∈ N, m� n, then (A.10) and (A.11) provide the

bound F̂
(2,2)
āā = op

(
F̂

(1,1)
āā (`,m, i, i)

)
. Next, define

f̄(`,m, n) ≡ m

n
∨ mε

n1/2`1+ε
∨ 1

`2
,

4



then we may write F̂
(1,1)
āā (`,m, i, i) ≤ Op(ln(n)2/mdf̄(`,m, n)). Hence, by (a), (b), (A.10) and (A.11)

in conjunction with the Cauchy-Schwarz inequality and the continuous mapping theorem, we get the

following bounds for the cross-product terms of E3(i, i),

F̂
(1,2)
āā (`,m, i, i) ≤

√
F̂

(1,1)
āā (`,m, i, i)

√
F̂

(2,2)
āā (`,m, i, i) = op

(
F̂

(1,1)
āā (`,m, i, i)

)
,

F̂
(1)
aā (`,m, i, i) ≤

√
F̂aa(`,m, i, i)

√
F̂

(1,1)
āā (`,m, i, i) ≤ Op

(
ln(n)

m
1/2
d

m1/2

n1/2

√
f̄(`,m, n)

)
,

F̂
(2)
aā (`,m, i, i) ≤

√
F̂aa(`,m, i, i)

√
F̂

(2,2)
āā (`,m, i, i) = op

(
F̂

(1)
aā (`,m, i, i)

)
.

As the stochastic bounds for E3(i, i) are independent of i = 1, . . . , k + 1, we use the same arguments,

the Cauchy-Schwarz inequality and the continuous mapping theorem to establish (c).

For (d). First, similarly to (a), write

−
√
mλ−1−b

m E(b)
4 =

2π
√
m

λ1+b
m n

`−1∑
j=1

<
(
I(t,1,b)
uη (λj)

)
≡
√
mλ−1−b

m F̂ (t,1,b)
uη (1, `− 1), (A.12)

where we explicate that I
(b)
uη (λj) ≡ I(t,1,b)

uη (λj) denote the co-periodogram between ut−1 and η
(b)
t , and,

similarly, that F̂
(t,1,b)
uη (1, `− 1) is the TDAC corresponding to I

(t,1,b)
uη (λj). Next, define

F̃ (t,1,b)
uη (1, `− 1) ≡ 2π

n

`−1∑
j=1

<
(
Ĩ(t,1,b)
uη (λj)

)
, Ĩ(t,1,b)

uη (λj) ≡ wu(λj)λ
b
je

(π/2)biw̄η(λj), (A.13)

and write w̃
(b)
η (λj) ≡ e(π/2)biw̄η(λj), then, by Lemma A.11, for some arbitrarily small ε > 0,

√
mλ−1−b

m

∥∥∥F̂ (t,1,b)
uη (1, `− 1)− F̃ (t,1,b)

uη (1, `− 1)
∥∥∥ ≤ Op(`ε/2 ln(n)

n

(
`

n

)b
× n√

m

( n
m

)b)

+Op

(
`3/2+b

n2+b
× n√

m

( n
m

)b)
+Op

(
n−(1+b)

(
1 +m1/21{b∈[1/2,1]}

) n√
m

( n
m

)b)

= Op

(
`ε/2 ln(n)√

m

(
`

m

)b)
+Op

((
`

m

)1/2+b( `
n

))
+Op

(
1

m1/2+b

(
1 +m1/21{b∈[1/2,1]}

))
,

which is op(1). Hence, we may work with F̃
(t,1,b)
uη (1, `− 1) throughout.1

Now, to establish an asymptotic error bound for
√
mλ−1−b

m F̃
(t,1,b)
uη (1, `− 1), we rely on the Cramér-

Wold Theorem, cf. Davidson (2002, Theorem 25.5). Specifically, note that (λ`/λm)b = (`/m)b as well

as the definition I
(t,1)
uη (λj) = wu(λj)w̄η(λj), then, for an arbitrary k × 1 vector ψ, we may write,

√
mλ−1−b

m ψ′F̃ (t,1,b)
uη (1, `− 1)

1Note that for b = 0, F̂
(t,1,b)
uη (1, `− 1) = F̃

(t,1,b)
uη (1, `− 1), i.e. the approximation is exact.
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=

k∑
i=1

ψi2π
√
m

nλm

(
`

m

)b
λ−b`

`−1∑
j=1

<
((
I(t,1)
uη (λj , i)−A(λj , i)J(λj)Ā(λj , k + 1)

)
e(π/2)bi

)
λbj

+

k∑
i=1

ψi2π
√
m

nλm

(
`

m

)b
λ−b`

`−1∑
j=1

<
((
A(λj , i)J(λj)Ā(λj , k + 1)

)
e(π/2)bi

)
λbj ≡ E(b)

41 + E(b)
42 .

For the first term, E(b)
41 , we may use summation by parts and Lobato (1999, C.2) to show

E(b)
41 ≤ Op

(
k∑
i=1

ψi

√
m

nλm

(
`

m

)b [
`1/3 ln(`)2/3 + ln(`) +

`1/2

n1/4

])

= Op

((
`

m

)b(`1/3 ln(`)2/3

m1/2
+

ln(`)

m1/2
+

`1/2

m1/2n1/4

))
,

thereby giving E(b)
41

P−→ 0 since `/m → 0 as n → ∞. Next, for E(b)
42 , we may use the conditions in

Assumptions D1-D3 to invoke the following asymptotic bounds,

E(b)
42 ≤ sup

i=1,...,k

K
√
m

λ1+b
m n

`−1∑
j=1

|fqq(λj , i, k + 1)|λbj = O

(
λ$+b
` `

√
m

λ1+b
m n

)
= O

(
`1+$

m1/2n$

(
`

m

)b)
, (A.14)

utilizing that Gqq(i, k + 1) = 0 for all i = 1, . . . , k, thereby concluding the proof.

Lemma A.2 (Central Limit Theory Errors). Under the conditions for Theorem 1, then

(a) λ−1
m F̂ûû(`,m)

P−→ Guu.

(b)
√
mλ−bm

(
C1 +C2 +C

(b)
3

)
= op(1).

Proof. Before proceeding to the proof, note that `/m→ 0 and `1+$/(n$
√
m)(`/m)b → 0 in Assump-

tion T implies λ−1
m E1 = op (1) and

√
mλ−1−b

m E(b)
4 ≤ op(1). Moreover, we can write

√
mλ−1−b

m E2 ≤
E21 + E22, corresponding to the two asymptotic bounds in Lemma A.1(b). The last two conditions

in Assumption T, then, implies E21 = op(1) and E2
22 = op(1) such that by the continuous mapping

theorem and the Cauchy-Schwarz inequality it follows that
√
mλ−1−b

m E2 ≤ op(1). Similarly, apply a

decomposition to write
√
mλ−1−b

m E3 ≤ E31 + E32, where

E31 = Op

(
ln(n)2

md

( n
m

)b
∨ ln(n)2mε

mdm1/2`1+ε

( n
m

)b
∨ ln(n)2n1/2

mdm1/2`2

( n
m

)b)
= op(1),

trivially by Assumption T, and, similarly,

E32 = Op

(
ln(n)m1/2

m
1/2
d

( n
m

)b
∨ ln(n)n1/2

m
1/2
d

√
mε

n1/2`1+ε

( n
m

)b
∨ ln(n)n1/2

m
1/2
d `

( n
m

)b)
= op(1),

6



by κ < %, nb/m1/2+b → 0, and (n/md)
1/2/` → 0 in Assumption T. Hence, all the derived bounds

in Lemma A.1 are op(1). Now, proceeding to the proof. For (a), the result follows by Lemmas

A.1(a)-(c) in conjunction with the convergence result in Christensen & Varneskov (2017, (B.4)), see

also Robinson & Marinucci (2003) and Lobato (1997). For (b), (λ−1
m F̂ûû(`,m))−1 = Op(1) follows

by (a), Guu being full rank by Assumption D1 and the continuous mapping theorem. Moreover,

since
√
mλ−1−b

m F̂
(u)
ûµ̃ (`,m) = op(1) by Lemmas A.1(b)-(c), we readily have that

√
mλ−bm C1 = op(1) by

Slutsky’s theorem. The corresponding result for C2 follows similarly. Finally, for C3, we have

C(b)
3 = F̂ûû(`,m)−1

(
F̂

(b)
ûη (`,m)− F̂ (b)

uη (`,m)
)

+ F̂ûû(`,m)−1E(b)
4 ≡ C(b)

31 + C(b)
32 . (A.15)

Hence, since (λ−1
m F̂ûû(`,m))−1 = Op(1), as for C1, it readily follows that

√
mλ−bm C32 = op(1) by

applying results for E(b)
4 and Slutsky’s theorem. For the last term, C(b)

31 , use the second-order Taylor

expansion in (A.8), i = 2, . . . , k + 1, to expand the difference as,

F̂
(b)
ûη (`,m, i)− F̂ (b)

uη (`,m, i) = F̂
(1,b)
āη (`,m, i) + F̂

(2,b)
āη (`,m, i),

where F̂
(1,b)
āη (`,m, i) and F̂

(2,b)
āη (`,m, i) are the TDAC between ā

(1)
t−1(i), respectively, ā

(2)
t−2(i) and η

(b)
t .

Hence, from the proof of Lemma A.1(c) and Lemma A.8, F̂
(1,b)
āη (`,m, i) ≤ Op(F̂

(1)
aā (`,m, i, i)) as well

as F̂
(2,b)
āη (`,m, i) ≤ Op(F̂ (2)

aā (`,m, i, i)) follow by the Cauchy-Schwarz inequality. Hence,

√
mλ−1−b

m

(
F̂ûη(`,m)− F̂uη(`,m)

)
= op(1)

follows by Lemmas A.1(b)-(c) and, consequently,
√
mλ−bm C(b)

3 = op(1) by Slutsky’s theorem.

Lemma A.3 (Central Limit Theory). Under the conditions for Theorem 1, then

√
mλ−1−b

m F̂ (b)
uη (1,m)

D−→ N

(
0,Guu

Gηη
2(1 + 2b)

)
.

Proof. Before proceeding, let, again, I
(b)
uη (λj) ≡ I(t,1,b)

uη (λj) and F̂
(b)
uη (1,m) ≡ F̂ (t,1,b)

uη (1,m) denote the

periodogram and TDAC for ut−1 and η
(b)
t , respectively. Moreover, let F̃

(t,1,b)
uη (1,m) by the TDAC

approximation in (A.13). Then, it follows by Lemma A.11, for some arbitrarily small ε > 0, that

√
mλ−1−b

m

∥∥∥F̂ (t,1,b)
uη (1,m)− F̃ (t,1,b)

uη (1,m)
∥∥∥ ≤ Op(mε/2 ln(n)

n

(m
n

)b
× n√

m

( n
m

)b)

+Op

(
m3/2+b

n2+b
× n√

m

( n
m

)b)
+Op

(
n−(1+b)

(
1 +m1/21{b∈[1/2,1]}

) n√
m

( n
m

)b)
,

which is op(1). Hence, we may work with F̃
(t,1,b)
uη (1,m) henceforth. Again, this approximation is exact

for b = 0. Now, to establish the stated central limit theorem, we will apply the Cramér-Wold Theorem,
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cf. Davidson (2002, Theorem 25.5), for some arbitrary k× 1 vector ψ. First, use Assumptions D1-D3

to decompose
√
mλ−1−b

m ψ′F̃
(t,1,b)
uη (1,m) as in the proof of Nielsen & Frederiksen (2011, Theorem 2.1),

√
mλ−1

m ψ
′F̃ (t,1,b)
uη (1,m) =

k∑
i=1

ψi
√
mλ−1−b

m

2π

n

m∑
j=1

<
(
I(t,1)
uη (λj)e

(π/2)bi
)
λbj =

4∑
i=1

Ui, (A.16)

where the four terms on the right-hand-side are defined as

U1 ≡
k∑
i=1

ψi
√
mλ−1−b

m

2π

n

m∑
j=1

<
((
I(t,1)
uη (λj , i)−A(λj , i)J(λj)Ā(λj , k + 1)

)
e(π/2)bi

)
λbj ,

U2 ≡
k∑
i=1

ψi
√
mλ−1−b

m

1

n

m∑
j=1

<
((
A(λj , i)Ā(λj , k + 1)

)
e(π/2)bi

)
λbj ,

U3 ≡
k∑
i=1

ψi
√
mλ−1−b

m

1

n

m∑
j=1

<

((
A(λj , i)

(
1

n

n∑
t=1

εtε
′
t − IK+1

)
Ā(λj , k + 1)

)
e(π/2)bi

)
λbj ,

U4 ≡
k∑
i=1

ψi
√
mλ−1−b

m

1

n

m∑
j=1

<

A(λj , i)

 1

n

n∑
t=1

n∑
s=1,s 6=t

εtε
′
se

i(t−s)λj

 Ā(λj , k + 1)

 e(π/2)bi

λbj .

We will now show that U1, U2 and U3 are asymptotically negligible, before establishing central limit

theory for U4. For U1, we use summation by parts and Lobato (1999, C.2) to show

U1 ≤ Op

(
k∑
i=1

ψi

√
m

λmn

[
m1/3 ln(m)2/3 + ln(m) +

m1/2

n1/4

])
= Op

(
ln(m)2/3

m1/6
+

ln(m)

m1/2
+

1

n1/4

)
,

and, hence, U1
P−→ 0. Next, for U2, we may use Assumptions D1-D3 to invoke the bounds

U2 ≤ sup
i=1,...,k

K
√
m

λmn

m∑
j=1

|fqq(λj , i, k + 1)| = O

(
λ$+b
m m

√
m

λ1+b
m n

)
= O

(
m1+2$

n2$

)
,

utilizing that Gqq(i, k+ 1) = 0 for all i = 1, . . . , k. This shows that U2 → 0 by Assumption T. For the

third term, U3, we have εtε
′
t − Ik+1 being a martingale sequence with respect to the filtration Ft−1,

implying that the convergence result n−1
∑n

t=1 εtε
′
t − Ik+1 = op(1) readily follows by Assumption D2.

Hence, by Lebesque’s dominated convergence theorem, we have U3 ≤ op(U2)
P−→ 0.

Next, the final term in the decomposition (A.16) may be rewritten on the same form as the corre-

sponding term in the proof of Nielsen & Frederiksen (2011, Theorem 2.1, p. 109),

U4 =
n∑
t=1

ε′t

n∑
s=1,s 6=t

k∑
i=1

ψi

√
m

λ1+b
m n2

m∑
j=1

λbj<
(
A(λj , i)

′ei(t−s)λjĀ(λj , k + 1)′e(π/2)bi
)
εs
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=
n∑
t=1

ε′t

t−1∑
s=1

Cn
t−sεs, Cn

t ≡
1

2πn
√
m

m∑
j=1

λbjχj

where the sequence coefficients, χj , is defined by

χj ≡
k∑
i=1

λ−bm ψi<
((
A(λj , i)

′Ā(λj , k + 1)′e−i(t−s)λj +A(λj , k + 1)′Ā(λj , i)
′ei(t−s)λj

)
e(π/2)bi

)
.

Now, since the components in the sum, Mt ≡ ε′t
∑t−1

s=1C
n
t−sεs, are martingale difference sequences

with respect to the filtration Ft−1, we may establish the final central limit theory by showing

n∑
t=1

E[M2
t |Ft−1]−

k∑
i=1

k∑
p=1

ψiψp
GηηGuu(i, p)

2(1 + 2b)

P−→ 0,

n∑
t=1

E[M4
t ]→ 0, (A.17)

see, e.g., Hall & Heyde (1980, Chapter 3.2). From (A.17), there is no difference between the remaining

arguments and those for Nielsen & Frederiksen (2011, Theorem 2.1), see their pp. 109-111 where we,

in their notation, set da = db = 0 and dp = −b as well as invoke the local exogeneity assumption

between ut−1 and ηt in Assumption D1. Hence, we apply their arguments in conjunction with the

continuous mapping theorem and Slutsky’s theorem to establish the final result.

A.2 Proof of Theorem 2

To establish the distribution result in Theorem 2, under the additional Assumptions B as well as

the trimming and bandwidth conditions in T-G, it suffices to show consistency of the asymptotic

covariance estimators Ĝûû(`G,mG) and Ĝη̂η̂(`G,mG) for Guu and Gηη, respectively, since, in this case,

the result follows by applying Theorem 1, the continuous mapping theorem and Slutsky’s theorem.

As consistency of the two is provided by the following lemma, this concludes the proof.

Lemma A.4. Under the conditions of Theorem 2,

(a) Ĝûû(`G,mG)
P−→ Guu,

(b) Ĝη̂η̂(`G,mG)
P−→ Gηη.

Proof. For (a). Similarly to the proof of Theorem 1, make a decomposition

Ĝv̂v̂(`G,mG) = Ĝvv(`G,mG) +
(
Ĝaa(`G,mG)− Ĝvv(`G,mG)

)
+
(
Ĝv̂v̂(`G,mG)− Ĝaa(`G,mG)

)
≡ G1 + G2 + G3,

noticing, again, that ût is comprised of (lagged) elements of the vector v̂t. Now, since the convergence

result Ĝuu(`G,mG)
P−→ Guu follows by arguments similar to those for Christensen & Varneskov (2017,
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Lemma 6), it suffices to show that G2 = op(1) and G3 = op(1). To this end, and similarly to (A.4), let

us first decompose the (i, i)th element of the matrix G2 for i = 1, . . . , k + 1 as

G2(i, i) =
1

mG − `G + 1

mG∑
j=`G

(< (Iµ̃µ̃(λj , i, i)) + 2< (Ivµ̃(λj , i, i)))

=
mG

mG − `G + 1

1

mG

mG∑
j=`G

Op

(
n1−2di

j2−2di

)
+

mG

mG − `G + 1

1

mG

mG∑
j=`G

Op

(
n1/2−di

j1−di

)

≤ Op
(

n

mG`2G

(mG

n

)2di
)

+Op

(
n1/2

mG

(mG

n

)di mε
G

`1+ε
G

)

for some arbitrarily small ε > 0, using the same arguments as for (A.5) and (A.6). Hence, by using these

bounds for all i = 1, . . . , k + 1 diagonal elements in conjunction with the Cauchy-Schwarz inequality

and Assumption T-G, we readily have G2 = op(1). Next, expand G3 similarly to (A.9),

G3(i, i) =
1

mG − `G + 1

mG∑
j=`G

(
<
(
I

(1,1)
āā (λj , i, i)

)
+ <

(
I

(2,2)
āā (λj , i, i)

)
+ 2<

(
I

(1,2)
āā (λj , i, i)

)

+ 2<
(
I

(1)
aā (λj , i, i)

)
+ 2<

(
I

(2)
aā (λj , i, i)

))
≡

5∑
p=1

G3p(i, i).

Now, for the first term, G31(i, i), we may use the same arguments as for (A.10) to show

G31(i, i) ≤ Op
(

ln(n)2

md

)
+Op

(
n1/2 ln(n)2

mGmd

mε
G

`1+ε
G

)
+Op

(
n ln(n)2

mGmd`2

)
, (A.18)

for some arbitrarily small ε > 0. Hence, by defining

f̄G(`G,mG, n) = 1 ∨
n1/2mε

G

mG`
1+ε
G

∨ n

mG`2G
, with f̄G(`G,mG, n)→ 1,

as n→∞ by Assumptions T and T-G, we may write G31(i, i) ≤ Op
(

ln(n)2m−1
d f̄G(`G,mG, n)

)
. Next,

for the second term, G32(i, i), and by the same arguments as for (A.11), we have

G32(i, i) ≤ Op
(

ln(n)4

m2
d

)
+Op

(
ln(n)5

mGm2
d

m
1/2+ε
G

`1+ε
G

)
+Op

(
n1/2 ln(n)4

mGm2
d

mε
G

`1+ε
G

)
+Op

(
n ln(n)4

mGm2
d`

2
G

)
, (A.19)

using also that ln(n)6 � ln(n)4n1/2 and ln(n)/`
3/2
G � mε

G/`
1+ε
G . Since Assumptions F and T readily

imply ln(n)p � md for some finite p ∈ N, then we may combine the bounds in (A.18) and (A.19)

with Assumption T-G to show G32(i, i) = op
(
G31(i, i)

)
. Hence, by the results for G1, (A.18), (A.19)

in conjunction with the Cauchy-Schwarz inequality and the continuous mapping theorem, we get the
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following bounds for the cross-product terms of G3(i, i),

G33(i, i)/2 ≤
√

G31(i, i)
√
G32(i, i) = op

(
G31(i, i)

)
G34(i, i)/2 ≤

√
G1(i, i)

√
G31(i, i) = Op

(
ln(n)

m
1/2
d

√
f̄G(`G,mG, n)

)
, G35(i, i)/2 ≤ op

(
G34(i, i)

)
.

Since the bounds for G3(i, i) are independent of i = 1, . . . , k + 1, we may use the Cauchy-Schwarz

inequality and the continuous mapping theorem to show G3 = op(1), concluding the proof of (a).

For (b). First, use Lemma A.9(b) to write wη̂(λj) = wη(λj) + wς(λj), where

wς(λj) = Op

(
(j/n)d−bn1/2/j

)
+Op

(
ḡn(m,mb,md)λ

−b
j

)
, (A.20)

with ḡn(m,mb,md) ≡ ln(n)√
mb
∨ ln(n)√

md
∨ λbm√

m
. Hence, make the decomposition,

Ĝη̂η̂(`G,mG)− Ĝηη(`G,mG) = Ĝςς(`G,mG) + 2Ĝης(`G,mG).

Since it follows that Ĝηη(`G,mG)
P−→ Gηη using the same arguments as in (a), see also Christensen

& Varneskov (2017, Lemma 6), this implies that if we can show Ĝςς(`G,mG)
P−→ 0, then, by the

Cauchy-Schwarz inequality and the continuous mapping theorem,

|Ĝης(`G,mG)| ≤
√
Ĝηη(`G,mG)Ĝςς(`G,mG)

P−→ 0.

To this end, and using the asymptotic bounds in (A.20), write

Ĝςς(`G,mG) ≤ K

mG

mG∑
j=`G

Op

(
(j/n)2(d−b)n/j2

)
+

K

mG

mG∑
j=`G

Op

(
ḡn(m,mb,md)

2λ−2b
j

)
+

K

mG

mG∑
j=`G

Op

(
ḡn(m,mb,md)

2(λ−2b
m (j/n)dn1/2/j

)
≡ S1 + S2 + S3.

First, for S1, it follows that

S1 ≤
n

mG

(mG

n

)2(d−b) mG∑
j=`G

Op

((
j

mG

)2(d−b) 1

j2

)
≤ Op

((mG

n

)2(d−b)−1 1

`2G

)

which is op(1) by n/(mG`
2
G)→ 0 and d− b ≥ 0 in the event of (fractional) cointegration. Next,

S2 ≤ K
n2b

mG
ḡn(m,mb,md)

2
mG∑
j=`G

Op

(
j−2b

)
≤ Op

(
n2 ln(n)2

mG`2Gmn

)

where, again, mn = md ∧mb ∧m. Hence, S2 ≤ op(1) since n2/(mG`
2
Gmn)→ 0 as well as mG, `G and
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mn all exhibiting polynomial growth in n by Assumption T-G. Finally, as |S3| ≤
√
S1S2

P−→ 0 by the

Cauchy-Schwarz inequality and the continuous mapping theorem, this concludes the proof.

A.3 Proof of Theorem 4

First, for (a), write F̂ c
ûû(`,m) − F̂ûû(`,m) = F̂ĉĉ(`,m) + F̂ûĉ(`,m) + F̂ĉû(`,m). Hence, it suffices

to establish bounds for the diagonal elements of the non-trivial k × k matrices, F̂ĉĉ(`,m, i, i) and

F̂ûĉ(`,m, i, i), since the bounds for the off-diagonal terms of the error matrices will, then, follow by

the Cauchy-Schwarz inequality. Hence, by Lemma A.12(b),

F̂ĉĉ(`,m, i, i) =
2π

n

m∑
j=`

Op(λ
2di
j ) ≤ 2πm1+2di

n1+2di

m∑
j=`

Op

((
j

m

)2di 1

j1+ε

)

≤ Op
((m

n

)1+2di 1

`1+ε

)
, (A.21)

for some arbitrarily small ε > 0, using Varneskov (2017, Lemma C.4) for the last inequality. Similarly

for the cross-product term, the bounds in Lemma A.12(b) allows us to write

F̂ûĉ(`,m, i, i) =
2π

n

m∑
j=`

Op(λ
di
j ) +

2π

n

m∑
j=`

Op

(
λ2di
j n1/2

j

)
+

2π

n

m∑
j=`

Op

(
λdij ln(n)n1/2

m
1/2
d j

)

≤ Op
(
m1+di

n1+di

1

`1+ε

)
+Op

(
m2di+ε

n1/2+2di

1

`1+ε

)
+Op

(
ln(n)mdi+ε

m
1/2
d n1/2+di

1

`1+ε

)
, (A.22)

using the same arguments as above. However, since we can write the scaled bound (A.22) as

λ−1
m F̂ûĉ(`,m, i, i) ≤ Op

((m
n

)di 1

`1+ε

(
1 +

(m
n

)di n1/2

m
+

ln(n)n1/2

m
1/2
d m1−ε

))
,

the final result follows since n1/2/m→ 0 and F̂ĉĉ(`,m, i, i) ≤ op(F̂ûĉ(`,m, i, i)).
For (b), we have F̂ c

ûê(`,m)− F̂ûê(`,m) = F̂ĉê(`,m). Hence, it suffices to establish a bound for the

k × 1 cross-product vector F̂ĉê(`,m). Now, by Assumption C, since ĉt−1 and êt have a non-trivial

spectrum in the vicinity of the origin and satisfy the remaining conditions of Assumption D1-D3, we

readily have F̂ĉê(`,m) = Op(F̂ûĉ(`,m, i, i)). Hence, the result follows by (a).

For (c), write Ĝc
ûû(`G,mG)− Ĝûû(`G,mG) = Ĝĉĉ(`G,mG) + Ĝĉû(`G,mG) + Ĝûĉ(`G,mG), similarly

to the decomposition in (a). Hence, it suffices to establish bounds for the k× k matrices Ĝĉĉ(`G,mG)

and Ĝûĉ(`G,mG). First, using the same argument as in (a), we invoke Lemma A.12(b) to show

Ĝĉĉ(`G,mG, i, i) =
1

mG − `G + 1

mG∑
j=`G

Op(λ
2di
j )
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≤
Km2di

G

n2di

mG∑
j=`G

Op

((
j

mG

)2di 1

j1+ε

)
≤ Op

((mG

n

)2di 1

`1+ε
G

)
, (A.23)

using mG/(mG − `G + 1) ≤ K and Varneskov (2017, Lemma C.4). Similarly, Lemma A.12(b) may be

used to bound the cross-product term as follows

Ĝûĉ(`G,mG, i, i) ≤
K

mG

mG∑
j=`G

Op(λ
di
j ) +

K

mG

mG∑
j=`G

Op

(
λ2di
j n1/2

j

)
+

K

mG

mG∑
j=`G

Op

(
λdij ln(n)n1/2

m
1/2
d j

)

≤ Op

((mG

n

)di 1

`1+ε
G

)
+Op

((mG

n

)2di n1/2

m1−ε
G `1+ε

G

)
+Op

((mG

n

)di n1/2 ln(n)

mGm
1/2
d

1

`1+ε
G

)
. (A.24)

Hence, by n1/2/mG → 0 and the same arguments as in (a), Ĝûĉ(`G,mG, i, i) ≤ Op((mG/n)di/`1+ε
G ) as

well as Ĝĉĉ(`G,mG, i, i) ≤ op(Ĝûĉ(`G,mG, i, i)), providing the result.

For (d), make the decomposition η̂ct = êt − B̂c(`,m)′ûct−1 = η̂t − τ̂ (1)
t−1 − τ̂

(2)
t−1, where η̂t is defined as

in (14) with b = b̂ = 0, and we let τ̂
(1)
t−1 = (B̂c(`,m)− B̂(`,m))′ûct−1 and τ̂

(2)
t−1 = B̂(`,m)′ĉt−1. Hence,

Ĝc
η̂η̂(`G,mG)− Ĝη̂η̂(`G,mG) = Ĝ

(1,1)
τ̂ τ̂ (`G,mG) + Ĝ

(2,2)
τ̂ τ̂ (`G,mG)

− 2Ĝ
(1)
η̂τ̂ (`G,mG)− 2Ĝ

(2)
η̂τ̂ (`G,mG) + 2Ĝ

(1,2)
τ̂ τ̂ (`G,mG),

where the first two terms are the (trimmed) long-run variance estimates for τ̂
(1)
t−1 and τ̂

(2)
t−1, respectively,

and the last three terms are covariances between τ̂
(1)
t−1, τ̂

(2)
t−1 and η̂t. First, for Ĝ

(1,1)
τ̂ τ̂ (`G,mG), write

Ĝ
(1,1)
τ̂ τ̂ (`G,mG) = (B̂c(`,m)− B̂(`,m))′

(
Ĝûû(`G,mG) + Ĝĉĉ(`G,mG) + Ĝĉû(`G,mG)

+ Ĝûĉ(`G,mG)
)

(B̂c(`,m)− B̂(`,m)). (A.25)

Then, by (a) and (b), B̂c(`,m)−B̂(`,m) ≤ Op((m/n)d/`1+ε). Moreover, Ĝûû(`G,mG)
P−→ Guu follows

by Lemma A.4(a). Hence, we may use (A.23), (A.24) and n1/2/mG → 0 to show

Ĝ
(1,1)
τ̂ τ̂ (`G,mG) ≤ Op

((m
n

)2d 1

`2(1+ε)

)
×

(
1 +

(mG

n

)d 1

`1+ε
G

)
. (A.26)

Next, for the second term Ĝ
(2,2)
τ̂ τ̂ (`G,mG), we have B̂(`,m)

P−→ B by Theorem 1, which, together with

(A.23), delivers the bound Ĝ
(2,2)
τ̂ τ̂ (`G,mG) ≤ Op((mG/n)2d/`1+ε

G ).

For the covariance term Ĝ
(2)
η̂τ̂ (`G,mG), use the decomposition, η̂t = ς̂t + ε̂t−1 where ς̂t = êt−B′ût−1

and ε̂t−1 =
(
B − B̂(`,m)

)′
ût−1. Here, we may invoke Theorem 1 to show B − B̂(`,m) = Op(m

−1/2),

such that by (A.24) and the same arguments used for (b),

Ĝ
(2)
η̂τ̂ (`G,mG) ≤ Op

((mG

n

)d 1

`1+ε
G

)
×
(

1 +m−1/2
)
. (A.27)
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Next, for Ĝ
(1)
η̂τ̂ (`G,mG), we write τ̂

(1)
t−1 = τ̂

(1,1)
t−1 + τ̂

(1,2)
t−1 with τ̂

(1,1)
t−1 = (B̂c(`,m) − B̂(`,m))′ût−1 and,

similarly, τ̂
(1,2)
t−1 = (B̂c(`,m)− B̂(`,m))′ĉt−1, and use these with decomposition of η̂t to expand

Ĝ
(1)
η̂τ̂ (`G,mG) = Ĝ

(1,1)
ς̂ τ̂ (`G,mG) + Ĝ

(1,2)
ς̂ τ̂ (`G,mG) + Ĝ

(1,1)
ε̂τ̂ (`G,mG) + Ĝ

(1,2)
ε̂τ̂ (`G,mG), (A.28)

explicating the covariance terms between ς̂t, ε̂t−1, τ̂
(1,1)
t−1 and τ̂

(1,2)
t−1 . By the same arguments as above,

Ĝ
(1,1)
ς̂ τ̂ (`G,mG) = Op

(
Ĝς̂ ς̂(`G,mG)

)
×Op

(
B̂c(`,m)− B̂(`,m)

)
,

Ĝ
(1,2)
ς̂ τ̂ (`G,mG) = Op

(
Ĝûĉ(`G,mG)

)
×Op

(
B̂c(`,m)− B̂(`,m)

)
,

Ĝ
(1,1)
η̂τ̂ (`G,mG) = Op

(
Ĝûû(`G,mG)

)
×Op

(
B̂c(`,m)− B̂(`,m)

)
×Op

(
B − B̂(`,m)

)
,

Ĝ
(1,2)
η̂τ̂ (`G,mG) = Op

(
Ĝûĉ(`G,mG)

)
×Op

(
B̂c(`,m)− B̂(`,m)

)
×Op

(
B − B̂(`,m)

)
.

Hence, by using bounds for B − B̂(`,m), B̂c(`,m)− B̂(`,m), (A.24) and Lemma A.4, we have

Ĝ
(1)
η̂τ̂ (`G,mG) ≤ Op

((m
n

)d 1

`1+ε

)
. (A.29)

For the last term, Ĝ
(1,2)
τ̂ τ̂ (`G,mG), we, again, apply the decomposition τ̂

(1)
t−1 = τ̂

(1,1)
t−1 + τ̂

(1,2)
t−1 to write

Ĝ
(1,2)
τ̂ τ̂ (`G,mG) = Ĝ

(1,2,1)
τ̂ τ̂ (`G,mG) + Ĝ

(1,2,2)
τ̂ τ̂ (`G,mG), (A.30)

where, using the same arguments as above,

Ĝ
(1,2,1)
τ̂ τ̂ (`G,mG) = Op

(
Ĝûĉ(`G,mG)

)
×Op

(
B̂c(`,m)− B̂(`,m)

)
,

Ĝ
(1,2,2)
τ̂ τ̂ (`G,mG) = Op

(
Ĝĉĉ(`G,mG)

)
×Op

(
B̂c(`,m)− B̂(`,m)

)
,

which, if additionally invoking (A.23), delivers the asymptotic bound

Ĝ
(1,2)
τ̂ τ̂ (`G,mG) ≤ Op

((mG

n

)d 1

`1+ε
G

)
×Op

((m
n

)d 1

`1+ε

)
. (A.31)

Hence, by collecting results, we have

Ĝc
η̂η̂(`G,mG)− Ĝη̂η̂(`G,mG) ≤ Op

((mG

n

)d 1

`1+ε
G

)
+Op

((m
n

)d 1

`1+ε

)
, (A.32)

providing the final result, thereby concluding the proof.
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A.4 Proof of Theorem 5

Before proceeding to establish the asymptotic bounds in the theorem, note that we can apply the

decomposition ǔt−1 = D̂x(L)D−1
x (L)Dx(L)x̌t−1 and only the first k elements are non-trivial.

First, for (a), write F̂ ϑ
ûû(`,m) − F̂ûû(`,m) = F̂ǔǔ(`,m) + F̂ûǔ(`,m) + F̂ǔû(`,m). Hence, it suffices

to establish bounds for the diagonal elements of the non-trivial k × k matrices, F̂ǔǔ(`,m, i, i) and

F̂ûǔ(`,m, i, i), since the bounds for the off-diagonal terms of the error matrices will, then, follow by

the Cauchy-Schwarz inequality. Hence, by Lemma A.13,

F̂ǔǔ(`,m, i, i) ≤ 2π

n

m∑
j=`

Op

(
1

j2(δi+1−di+1)

(
1 +

ln(n)

j1/2

)2
)

+
2π

n

m∑
j=`

Op

(
1

j2

)

+
2π

n

m∑
j=`

Op

(
1

j1+(δi+1−di+1)

(
1 +

ln(n)

j1/2

))

≤ Op
( m

n`1+2(δi+1−di+1)

)
+Op

(
1

n`2

)
+Op

(
1

n`1+(δi+1−di+1)

)
, (A.33)

using Varneskov (2017, Lemma C.4) for the last inequality. Similarly, for the cross-product term,

Lemmas A.1, A.2 and A.13 allows us to write

F̂ûǔ(`,m, i, i) ≤ 2π

n

m∑
j=`

Op

(
1

j(δi+1−di+1)

(
1 +

ln(n)

j1/2

))
+

2π

n

m∑
j=`

Op

(
1

j

)

≤ Op
( m

n`1+(δi+1−di+1)

)
+Op

(
mε

n`1+ε

)
, (A.34)

using the same arguments as above. Hence, since F̂ǔǔ(`,m, i, i) ≤ op(F̂ûǔ(`,m, i, i)), the final result

follows by scaling the bound in (A.34) with λ−1
m .

For (b), we similarly have F̂ ϑ
ûê(`,m)− F̂ûê(`,m) = F̂ǔê(`,m). Hence, its asymptotic bound follows

by the same arguments used for (A.34).

For (c), write Ĝϑ
ûû(`G,mG) − Ĝûû(`G,mG) = Ĝǔǔ(`G,mG) + Ĝǔû(`G,mG) + Ĝûǔ(`G,mG), as in

(a). Hence, it suffices to establish bounds for the k×k matrices Ĝǔǔ(`G,mG) and Ĝûǔ(`G,mG). Using

the same arguments as in (a) and mG/(mG − `G + 1) ≤ K, we have,

Ĝǔǔ(`G,mG, i, i) ≤ Op

(
1

`
1+2(δi+1−di+1)
G

)
+Op

(
1

mG`2G

)
+Op

(
1

mG`
1+(δi+1−di+1)
G

)
,

Ĝûǔ(`G,mG, i, i) ≤ Op

(
1

`
1+(δi+1−di+1)
G

)
+Op

(
1

m1−ε
G `1+ε

G

)
. (A.35)

Since Ĝǔǔ(`G,mG, i, i) ≤ op(Ĝûǔ(`G,mG, i, i)), this provides the result.

For (d), make the decomposition η̂ϑt = êt− B̂ϑ(`,m)′ûϑt−1 = η̂t− τ̌ (1)
t−1− τ̌

(2)
t−1, where η̂t is defined as

15



in (14) with b = b̂ = 0, and we let τ̌
(1)
t−1 = (B̂ϑ(`,m)− B̂(`,m))′ûϑt−1 and τ̌

(2)
t−1 = B̂(`,m)′ǔt−1. Hence,

Ĝϑ
η̂η̂(`G,mG)− Ĝη̂η̂(`G,mG) = Ĝ

(1,1)
τ̌ τ̌ (`G,mG) + Ĝ

(2,2)
τ̌ τ̌ (`G,mG)

− 2Ĝ
(1)
η̂τ̌ (`G,mG)− 2Ĝ

(2)
η̂τ̌ (`G,mG) + 2Ĝ

(1,2)
τ̌ τ̌ (`G,mG),

where the first two terms are the (trimmed) long-run variance estimates for τ̌
(1)
t−1 and τ̌

(2)
t−1, respectively,

and the last three terms are covariances between τ̌
(1)
t−1, τ̌

(2)
t−1 and η̂t. First, for Ĝ

(1,1)
τ̌ τ̌ (`G,mG), write

Ĝ
(1,1)
τ̌ τ̌ (`G,mG) = (B̂ϑ(`,m)− B̂(`,m))′

(
Ĝûû(`G,mG) + Ĝǔǔ(`G,mG) + Ĝǔû(`G,mG)

+ Ĝûǔ(`G,mG)
)

(B̂ϑ(`,m)− B̂(`,m)). (A.36)

Then, by (a) and (b), B̂ϑ(`,m) − B̂(`,m) ≤ Op(1/`
1+b) + Op(1/(m

1−ε`1+ε)). Moreover, by Lemma

A.4(a), Ĝûû(`G,mG)
P−→ Guu. Hence, we may use (A.35) to show

Ĝ
(1,1)
τ̌ τ̌ (`G,mG) ≤ Op

((
1

`1+b
+

1

m1−ε`1+ε

)2

×

(
1

`
1+b
G

+
1

m1−ε
G `1+ε

G

))
. (A.37)

Next, for the second term Ĝ
(2,2)
τ̌ τ̌ (`G,mG), we have B̂(`,m)

P−→ B by Theorem 1, which, together with

the asymptotic bound for Ĝǔǔ(`G,mG, i, i), which is derived when proving in (c), delivers,

Ĝ
(2,2)
τ̌ τ̌ (`G,mG) ≤ Op

(
1

`
1+2b
G

)
+Op

(
1

mG`2G

)
+Op

(
1

mG`
1+b
G

)
, (A.38)

For the covariance term Ĝ
(2)
η̂τ̌ (`G,mG), use the decomposition, η̂t = ς̂t + ε̂t−1 where ς̂t = êt − B′ût−1

and ε̂t−1 =
(
B − B̂(`,m)

)′
ût−1. Here, we may invoke Theorem 1 to show B − B̂(`,m) = Op(m

−1/2),

such that by (A.35) and the same arguments used for (b),

Ĝ
(2)
η̂τ̌ (`G,mG) ≤ Op

((
1

`
1+b
G

+
1

m1−ε
G `1+ε

G

)
×
(

1 +m−1/2
))

. (A.39)

Next, for Ĝ
(1)
η̂τ̌ (`G,mG), we write τ̌

(1)
t−1 = τ̌

(1,1)
t−1 + τ̌

(1,2)
t−1 with τ̌

(1,1)
t−1 = (B̂ϑ(`,m) − B̂(`,m))′ût−1 and,

similarly, τ̌
(1,2)
t−1 = (B̂ϑ(`,m)− B̂(`,m))′ǔt−1, and use these with decomposition of η̂t to expand

Ĝ
(1)
η̂τ̌ (`G,mG) = Ĝ

(1,1)
ς̂ τ̌ (`G,mG) + Ĝ

(1,2)
ς̂ τ̌ (`G,mG) + Ĝ

(1,1)
ε̂τ̌ (`G,mG) + Ĝ

(1,2)
ε̂τ̌ (`G,mG), (A.40)

explicating the covariance terms between ς̂t, ε̂t−1, τ̌
(1,1)
t−1 and τ̌

(1,2)
t−1 . By the same arguments as above,

Ĝ
(1,1)
ς̂ τ̌ (`G,mG) = Op

(
Ĝς̂ ς̂(`G,mG)

)
×Op

(
B̂ϑ(`,m)− B̂(`,m)

)
,

Ĝ
(1,2)
ς̂ τ̌ (`G,mG) = Op

(
Ĝûǔ(`G,mG)

)
×Op

(
B̂ϑ(`,m)− B̂(`,m)

)
,
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Ĝ
(1,1)
η̂τ̌ (`G,mG) = Op

(
Ĝûû(`G,mG)

)
×Op

(
B̂ϑ(`,m)− B̂(`,m)

)
×Op

(
B − B̂(`,m)

)
,

Ĝ
(1,2)
η̂τ̌ (`G,mG) = Op

(
Ĝûǔ(`G,mG)

)
×Op

(
B̂ϑ(`,m)− B̂(`,m)

)
×Op

(
B − B̂(`,m)

)
.

Hence, by using bounds for B − B̂(`,m), B̂ϑ(`,m)− B̂(`,m), (A.35) and Lemma A.4, we have

Ĝ
(1)
η̂τ̌ (`G,mG) ≤ Op(1/`1+b) +Op(1/(m

1−ε`1+ε)). (A.41)

For the last term, Ĝ
(1,2)
τ̌ τ̌ (`G,mG), we, again, apply the decomposition τ̌

(1)
t−1 = τ̌

(1,1)
t−1 + τ̌

(1,2)
t−1 to write

Ĝ
(1,2)
τ̌ τ̌ (`G,mG) = Ĝ

(1,2,1)
τ̌ τ̌ (`G,mG) + Ĝ

(1,2,2)
τ̌ τ̌ (`G,mG), (A.42)

where, using the same arguments as above,

Ĝ
(1,2,1)
τ̌ τ̌ (`G,mG) = Op

(
Ĝûǔ(`G,mG)

)
×Op

(
B̂ϑ(`,m)− B̂(`,m)

)
,

Ĝ
(1,2,2)
τ̌ τ̌ (`G,mG) = Op

(
Ĝǔǔ(`G,mG)

)
×Op

(
B̂ϑ(`,m)− B̂(`,m)

)
,

which, if additionally invoking (A.35), delivers the asymptotic bound,

Ĝ
(1,2)
τ̌ τ̌ (`G,mG) ≤ Op

(
1

`
1+b
G

+
1

m1−ε
G `1+ε

G

)
×Op

(
1

`1+b
+

1

m1−ε`1+ε

)
. (A.43)

Hence, by collecting results, we have

Ĝϑ
η̂η̂(`G,mG)− Ĝη̂η̂(`G,mG) ≤ Op

(
1

`
1+b
G

+
1

m1−ε
G `1+ε

G

)
+Op

(
1

`1+b
+

1

m1−ε`1+ε

)
, (A.44)

providing the final result, thereby concluding the proof.

A.5 Proof of Theorem 3

(a) Consistency of the TELW Estimator

First, define S
(
ϕ, η̂(b)

)
= R

(
ϕ, η̂(b)

)
−R

(
ϕ0, η

(b)
)
, recall ϕ0 = −b and let

G̃
(
ϕ, η

)
=

Gηη
mb − `b + 1

mb∑
j=`b

λ
2(ϕ−ϕ0)
j .

Then, following the corresponding consistency proof in Shimotsu & Phillips (2005), we may write

S
(
ϕ, η̂(b)

)
= ln

Ĝ
(
ϕ, η̂

(b)
t

)
G̃
(
ϕ, η

) − ln
Ĝ
(
ϕ0, η

(b)
t

)
Gηη

+ (2(ϕ− ϕ0)− ln(2(ϕ− ϕ0) + 1))
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+ ln

2(ϕ− ϕ0) + 1

mb + `b + 1

mb∑
j=`b

(j/m)2(ϕ−ϕ0)


− 2(ϕ− ϕ0)

 1

mb − `b + 1

mb∑
j=`b

ln(j)− (ln(mb)− 1)

 ≡ U(ϕ)− T(ϕ)

where U(ϕ) = (2(ϕ− ϕ0)− ln(2(ϕ− ϕ0) + 1)) and T(ϕ) capture the remaining terms. The setting

differs from the exact Local Whittle setting in Shimotsu & Phillips (2005) since η̂
(b)
t is an estimated

version of η
(b)
t , it is constructed from variables that may have non-trivial mean, or initial value,

components, and since the objective function is trimmed. Next, define the sets Φ1 = {ϕ0− 1/2 + ∆ ≤
ϕ ≤ ϕ0 + 1/2} and Φ2 = {ϕ ∈ [∆1, ϕ0− 1/2 + ∆]∪ [ϕ0 + 1/2,∆2]}, with Φ2 being possibly empty and

0 < ∆ < 1/2. Then, it follows from Robinson (1995, (11), p. 1634) that

P(|ϕ̂− ϕ0| ≥ ρ̄) ≤ P
(

inf
ϕ∈Φ1\Nρ

S
(
ϕ, η̂(b)

)
≤ 0

)
+ P

(
inf
Φ2

S
(
ϕ, η̂(b)

)
≤ 0

)
(A.45)

where 0 < ρ̄ < 1/2 and Nρ = {ϕ : |ϕ − ϕ0| < ρ̄}. Moreover, since Robinson (1995, (3.4), p. 1635)

shows infϕ∈Φ1\Nρ U(ϕ) ≥ ρ̄2/2, it follows that P(|ϕ̂− ϕ0| ≥ ρ̄)→ 0, if

sup
Φ1

|T(ϕ)| P−→ 0, P
(

inf
Φ2

S
(
ϕ, η̂(b)

)
≤ 0

)
→ 0. (A.46)

Robinson (1995, Lemmas 1-2) provides asymptotic orders for the third and fourth term of T(ϕ) for the

case `b = 1. Lemma A.14 extends these results to 1/`b + `b/mb → 0 as n → ∞. Specifically, Lemma

A.14(a) shows that the fourth term is O(`b ln(`b)/mb), uniformly in ϕ ∈ Φ1, and Lemma A.14(b)

establishes that,

sup
Φ1

∣∣∣∣∣∣2(ϕ− ϕ0) + 1

mb − `b + 1

mb∑
j=`b

(j/m)2(ϕ−ϕ0) − 1

∣∣∣∣∣∣ = O(m−2∆
b ).

Hence, letting T3(ϕ) and T4(ϕ) denote the third and fourth term, respectively, of T(ϕ), then these

results readily establish supΦ1
|T3(ϕ)| → 0 and supΦ1

|T4(ϕ)| → 0. As in both Robinson (1995) and

Shimotsu & Phillips (2005), by the fact that P(| lnY |) ≥ ε) ≤ 2P(|Y − 1| ≥ ε/2) for any nonnegative

random variable Y and ε ≤ 1, we have supΦ1
|T(ϕ)| P−→ 0, if

sup
Φ1

∣∣∣∣∣Ĝ
(
ϕ, η̂

(b)
t

)
− G̃

(
ϕ, η

)
G̃
(
ϕ, η

) ∣∣∣∣∣ ≡ sup
Φ1

∣∣∣∣A(ϕ)

B(ϕ)

∣∣∣∣ P−→ 0, (A.47)

where, similarly to Shimotsu & Phillips (2005), we have defined

A(ϕ) =
g(ϕ)

mb − `b + 1

mb∑
j=`b

(
j

mb

)2θ(ϕ) [
λ
−2θ(ϕ)
j I

(ϕ+b)
η̂η̂ (λj)−Gηη

]
,
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B(ϕ) =
g(ϕ)Gηη

mb − `b + 1

mb∑
j=`b

(
j

m

)2θ(ϕ)

, where g(ϕ) = 2(ϕ− ϕ0) + 1,

as well as θ(ϕ) = ϕ−ϕ0. Next, to establish the requisite convergence result, (A.47), we first invoke the

asymptotic bound in Lemma A.14(b) to show supΦ1
|B(ϕ) − Gηη| ≤ O(m−2∆

b ). Moreover, we apply

the decomposition A(ϕ) = A1(ϕ)− A2(ϕ) + A3(ϕ), where

A1(ϕ) =
g(ϕ)

mb − `b + 1

mb∑
j=1

(
j

mb

)2θ(ϕ) [
λ
−2θ(ϕ)
j I(ϕ+b)

ηη (λj)−Gηη
]
,

A2(ϕ) =
g(ϕ)

mb − `b + 1

`b−1∑
j=1

(
j

mb

)2θ(ϕ) [
λ
−2θ(ϕ)
j I(ϕ+b)

ηη (λj)−Gηη
]
,

A3(ϕ) =
g(ϕ)

mb − `b + 1

mb∑
j=`b

(
j

mb

)2θ(ϕ)

λ
−2θ(ϕ)
j

[
I

(ϕ+b)
η̂η̂ (λj)− I(ϕ+b)

ηη (λj)
]
.

Here, A1(ϕ) is simply the object without trimming and estimation errors, which is examined by

Shimotsu & Phillips (2005, p. 1903). Hence, under the stated assumptions,

sup
Φ1

|A1(ϕ)| = Op

(
m−∆
b (ln(n))2

)
. (A.48)

The trimming induced A2(ϕ) is similar to A1(ϕ), albeit with fewer terms in the sum. Consequently,

write

A2(ϕ) =
`b

mb − `b + 1

(
`b
mb

)2θ(ϕ) g(ϕ)

`b

`b−1∑
j=1

(
j

`b

)2θ(ϕ) [
λ
−2θ(ϕ)
j I(ϕ+b)

ηη (λj)−Gηη
]
,

and use the same arguments provided in the proof of Lemma A.14(b) as well as those for the corre-

sponding A1(ϕ) results on Shimotsu & Phillips (2005, p. 1903) to show,

sup
Φ1

|A2(ϕ)| = `b
mb − `b + 1

(
`b
mb

)1−2∆

Op

(
m−∆
b (ln(n))2

)
. (A.49)

For the last term, A3(ϕ), we have, by addition and subtraction,

A3(ϕ) =
g(ϕ)

mb − `b + 1

mb∑
j=`b

(
j

mb

)2θ(ϕ)

λ
−2θ(ϕ)
j

[
2I

(ϕ+b)
η̂(η̂−η)(λj) + I

(ϕ+b)
(η̂−η)(η̂−η)(λj)

]
≡ A31(ϕ) + A32(ϕ),

Moreover, for A31(ϕ), we may use Lemmas A.10(b)-(c) to write

I
(ϕ+b)
η(η̂−η)(λj) = Op

(
λ

2θ(ϕ)−b
j

(
ln(n)
√
md
∨ λbm√

m

))
+Op

(
λbm√
m

λ
2θ(ϕ)−b
j

j1+ϕ

)
1{ϕ∈[−3/2,−1/2]} (A.50)

+Op

(
λ

2θ(ϕ)+d−b
j n1/2j−1

(
1{d+ϕ≥0} + j−(d+ϕ)1{d+ϕ≥0}

))
,
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and, similarly, for A32(ϕ), by applying Lemma A.10(b),

I
(ϕ+b)
(η̂−η)(η̂−η)(λj) = I1(λj) + I2(λj) + I3(λj) + I4(λj), where (A.51)

I1(λj) = Op

(
λ

2θ(ϕ)−2b
j

(
ln(n)
√
md
∨ λbm√

m

)2
)
, I2(λj) = Op

(
λ2b
m

m

λ
2θ(ϕ)−2b
j

j2(1+ϕ)

)
1{ϕ∈[−3/2,−1/2]},

I3(λj) = Op

(
λ

2(θ(ϕ)+d−b)
j nj−2

(
1{d+ϕ≥0} + j−2(d+ϕ)1{d+ϕ<0}

))
, and

I4(λj) = Op

(
(I1(λj)I2(λj))

1/2 ∨ (I1(λj)I3(λj))
1/2 ∨ (I2(λj)I3(λj))

1/2
)
.

Hence, for A31(ϕ), we apply (A.50) to write

A31(ϕ) =
2g(ϕ)

mb − `b + 1

mb∑
j=`b

(
j

mb

)2θ(ϕ) [
Op

(
λ−bj

(
ln(n)
√
md
∨ λbm√

m

))
+ (A.52)

Op

(
λbm√
m

λ−bj
j1+ϕ

)
1{ϕ∈[−3/2,−1/2]} +Op

(
λ
d−b
j n1/2j−1

(
1{d+ϕ≥0} + j−(d+ϕ)1{d+ϕ≥0}

))]
.

Now, since A31(ϕ) is decreasing in ϕ and θ(ϕ), we may study supΦ1
|A31(ϕ)| by fixing the parameters

at their lower bounds ϕ = ϕ0 − 1/2 + ∆ and θ(ϕ) = −1/2 + ∆, respectively, as

sup
Φ1

|A31(ϕ)| ≤ nbK

mb
√
m

mb∑
j=`b

Op

(
(j/mb)

2θ(ϕ)j−b
)

+
mb
bK

mb
√
m

mb∑
j=`b

Op

(
(j/mb)

2θ(ϕ)j−(1/2+∆)
)

+
n1/2−(d−b)K

mb

mb∑
j=`b

Op

(
(j/mb)

2θ(ϕ)j−(1−(d−b))(1 + j−(d+ϕ))
)

≤ nbK√
m

mb∑
j=`b

Op

(
(j/mb)

2∆j−(1+b)
)

+
mb
bK√
m

mb∑
j=`b

Op

(
(j/mb)

2∆j−(3/2+∆)
)

+ n1/2−(d−b)K

mb∑
j=`b

Op

(
(j/mb)

2∆j−2+(d−b)(1 + j−(d−b−1/2+∆))
)

≤ Op

(
nbmε

b

`1+b+ε
b

√
m

)
+Op

(
mb
b

`
3/2+∆
b

√
m

)
+Op

(
n1/2

(mb

n

)d−b
`−2
b

(
1 + `

−(d−b−1/2+∆)
b

))
,

for some arbitrarily small ε > 0, using also Varneskov (2017, Lemma C.4) and m/md → 0 as n→∞.

Hence, by Assumption T-B(a), it follows that A31(ϕ)
P−→ 0 as n → ∞. Next, for A32(ϕ), we may use

the decomposition in (A.51) to write A32(ϕ) ≡ A321(ϕ) + A322(ϕ) + A323(ϕ) + A324(ϕ), corresponding

to its four components terms. As for A31(ϕ), we can fix ϕ and θ(ϕ) at their respective lower bounds

in Φ1 when studying the supremum of the four terms. Hence, for A321(ϕ), write

sup
Φ1

|A321(ϕ)| ≤ K

mb

mb∑
j=`b

(
j

mb

)2θ(ϕ)

Op

(
λ−2b
j m−1

)
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≤ n2bK

m

mb∑
j=`b

(
j

mb

)2∆

Op

(
λ
−(1+2b)
j

)
≤ Op

(
n2bmε

b

`1+2b+ε
b m

)
,

for some arbitrarily small ε > 0. Similarly, for A322(ϕ), write

sup
Φ1

|A322(ϕ)| ≤ K

mb

mb∑
j=`b

(
j

mb

)2θ(ϕ)

Op

(
λ2b
mλ
−2b
j m−1j−2(1+ϕ)

)

≤
m2b
b K

m

mb∑
j=`b

(
j

mb

)2∆

Op

(
j−2(1+∆)

)
≤ Op

(
m2b
b

`
2(1+∆)
b m

)
,

and, by corresponding arguments for A323(ϕ),

sup
Φ1

|A323(ϕ)| ≤ K

mb

mb∑
j=`b

(
j

mb

)2θ(ϕ)

Op

(
λ

2(d−b)
j nj−2

(
1 + j−2(d+ϕ)

))
≤ Kn

(mb

n

)2(d−b) mb∑
j=`b

(
j

mb

)2(∆+d−b)
Op

(
j−3

(
1 + j−2(d−b−1/2+∆)

))

≤ Op

((
n

mb

)1−2(d−b)
`−2
b

(
mb

`b
+

mb

`
2(d−b)+2∆
b

))
.

Hence, by invoking Assumption T-B(a), supΦ1
|A321(ϕ)| + supΦ1

|A322(ϕ)| + supΦ1
|A323(ϕ)| P−→ 0 as

n → ∞ and, similarly, supΦ1
|A321(ϕ)| P−→ 0 by the derived asymptotic bounds in conjunction with

the Cauchy-Schwarz inequality and the continuous mapping theorem. Hence, by combining results,

we have supΦ1
|A32(ϕ)| P−→ 0 and, thus, supΦ1

|A3(ϕ)| P−→ 0, which, together with (A.48) and (A.49),

establish supΦ1
|A(ϕ)| P−→ 0 and, consequently, the desired convergence result (A.47).

Next, we take care of Φ2 = {ϕ ∈ [∆1, ϕ0 − 1/2 + ∆] ∪ [ϕ0 + 1/2,∆2]}, which implies θ(ϕ) ∈
{[∆1 − ϕ0,−1/2 + ∆] ∪ [1/2,∆2 − ϕ0]. Specifically, to show P

(
infΦ2 S

(
ϕ, η̂(b)

)
≤ 0
)
→ 0, note, as on

Shimotsu & Phillips (2005, p. 1904), that the objective function may be rewritten as,

S
(
ϕ, η̂(b)

)
= ln Ĝ

(
ϕ, η̂

(b)
t

)
− ln Ĝ

(
ϕ0, η

(b)
t

)
− 2(ϕ− ϕ0)

mb − `b + 1

mb∑
j=`b

log(λj)

= ln
1

mb − `b + 1

mb∑
j=`b

(
j

pm

)2θ(ϕ)

λ
−2θ(ϕ)
j I

(ϕ+b)
η̂η̂ (λj)− ln

1

mb − `b + 1

mb∑
j=`b

I(ϕ0+b)
ηη (λj)

≡ ln D̂(ϕ)− ln D̂(ϕ0), (A.53)

where pm = exp
(
(mb − `b + 1)−1

∑mb
j=`b

ln j
)
∼ mb/e. Then, as ϕ0 + b = 0 and D̂(ϕ0) is equivalent to
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the corresponding term analyzed on Shimotsu & Phillips (2005, p. 1904), we have

ln D̂(ϕ0)− lnGηη = ln

1 +G−1
ηη

 1

mb − `b + 1

mb∑
j=`b

Iηη(λj)−Gηη

 = op(1). (A.54)

Hence, it follows that P
(
infΦ2 S

(
ϕ, η̂(b)

)
≤ 0
)
→ 0 if ∃δ > 0 such that

P
(

inf
Φ2

ln D̂(ϕ)− lnGηη ≤ ln(1 + δ)

)
= P

(
inf
Φ2

D̂(ϕ)−Gηη ≤ δGηη
)
→ 0. (A.55)

Similarly to A(ϕ), we can write D̂(ϕ) = D̂1(ϕ)− D̂2(ϕ) + D̂3(ϕ), where

D̂1(ϕ) =
1

mb − `b + 1

mb∑
j=1

(
j

pm

)2θ(ϕ)

λ
−2θ(ϕ)
j I(ϕ+b)

ηη (λj),

D̂2(ϕ) =
1

mb − `b + 1

`b−1∑
j=1

(
j

pm

)2θ(ϕ)

λ
−2θ(ϕ)
j I(ϕ+b)

ηη (λj),

D̂3(ϕ) =
1

mb − `b + 1

mb∑
j=`b

(
j

pm

)2θ(ϕ)

λ
−2θ(ϕ)
j

(
I

(ϕ+b)
η̂η̂ (λj)− I(ϕ+b)

ηη (λj)
)
.

As D̂1(ϕ) corresponds to the object examined by Shimotsu & Phillips (2005, p. 1904), it suffices to

show infΦ2 D̂2(ϕ) + infΦ2 D̂3(ϕ) = op(1). First, for D̂2(ϕ), write

D̂2(ϕ) =
`b

mb − `b + 1

(
`b
pm

)2θ(ϕ) 1

`b

`b−1∑
j=1

(
j

`b

)2θ(ϕ)

λ
−2θ(ϕ)
j I(ϕ+b)

ηη (λj),

which, apart from the scale `b(`b/pm)2θ(ϕ)/(mb − `b + 1) is equivalent to D̂1(ϕ) with `b in place of the

bandwidth mb, implying that, by the corresponding results from Shimotsu & Phillips (2005),

inf
Φ2

1

`b

`b−1∑
j=1

(
j

`b

)2θ(ϕ)

λ
−2θ(ϕ)
j I(ϕ+b)

ηη (λj) = Gηη + op(1),

and, as a result, we can deduce the asymptotic bound,

inf
Φ2

D̂2(ϕ) = (Gηη + op(1)) inf
Φ2

`b
mb − `b + 1

(
`b
pm

)2θ(ϕ)

= (Gηη + op(1))O

((
`b
mb

)1+2(∆2+b)
)
,

which follows by setting θ(ϕ) = ∆2 − ϕ0 = ∆2 + b, i.e. at its upper bound, since D̂2(ϕ) is strictly

decreasing in θ(ϕ). The last term, D̂3(ϕ), is similar to A3(ϕ), albeit with several terms dropping from

sums including I
(ϕ+b)
η(η̂−η)(λj) and I

(ϕ+b)
(η̂−η)(η̂−η)(λj), respectively, since ϕ > 0 and θ(ϕ) > 0 when taking

infimum of the relevant statistics over the set Φ2. Hence, a very similar analysis of the corresponding
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D̂3(ϕ) terms shows that infΦ2 D̂3(ϕ) = op(supΦ1
Â3(ϕ)), implying that, by invoking Assumption T-

B(a), we have infΦ2 D̂3(ϕ) = op(1), which is sufficient for (A.55), thereby concluding the proof.

(b) Asymptotic Normality of the TELW Estimator

The consistency result in part (a) holds under the current trimming conditions and implies with a

probability approaching 1, as n→∞, that the estimator ϕ̂ satisfies,

R′
(
ϕ̂, η̂

(b)
t

)
= R′

(
ϕ0, η̂

(b)
t

)
+ R′′

(
ϕ̄, η̂

(b)
t

)
(ϕ̂− ϕ0) = 0, (A.56)

where ϕ̄ ∈ [ϕ̂, 0]. In analogy with the proof in Shimotsu (2010), who consider a non-trivial mean

extension of Shimotsu & Phillips (2005), the theorem is proven by showing that the results of the

latter carries through when replacing w
(b)
η (λj) with w

(b)
η̂ (λj). First, fix ρ̌ > 0 and let M = {ϕ :

(ln(n))4|ϕ − ϕ0| < ρ̌} . Then, note that supΦ1
|A(ϕ)| = op(ln(n)−10) still holds by the results from

Shimotsu & Phillips (2005) for A1(ϕ) since A2(ϕ) and A3(ϕ) both decay with polynomial rates by

Assumption T-B(b). Hence, supΦ1
|A(ϕ)/B(ϕ)| = op(ln(n)−10), as in Shimotsu & Phillips (2005,

(55)) and, thus, P(ϕ̄ /∈M) tends to zero. Consequently, we assume ϕ ∈M in what follows.

Next, make the decomposition,

Ĝ
(
ϕ, η̂

(b)
t

)
=

1

mb − `b + 1

mb∑
j=1

I(ϕ+b)
ηη (λj)−

1

mb − `b + 1

`b−1∑
j=1

I(ϕ+b)
ηη (λj)

+
1

mb − `b + 1

mb∑
j=`b

(
I

(ϕ+b)
η̂η̂ (λj)− I(ϕ+b)

ηη (λj)
)
≡ Ĝ1

(
ϕ
)
− Ĝ2

(
ϕ
)

+ Ĝ3

(
ϕ
)

where, since mb � `b, Ĝ1

(
ϕ
)

corresponds to the term covered by Shimotsu & Phillips (2005, pp.

1914-1917), (mb/`b)Ĝ2

(
ϕ
)

corresponds to the same term, but with the bandwidth, mb, replaced by

the trimming rate, `b, and the last term is induced by estimation errors. Moreover, define

G̃0

(
ϕ
)

= G̃01

(
ϕ
)

+ (2π/n)−2θ(ϕ)
(
−Ĝ2

(
ϕ
)

+ Ĝ3

(
ϕ
))

G̃1

(
ϕ
)

= G̃11

(
ϕ
)

+ (2π/n)−2θ(ϕ) ∂

∂ϕ

(
−Ĝ2

(
ϕ
)

+ Ĝ3

(
ϕ
))

G̃2

(
ϕ
)

= G̃21

(
ϕ
)

+ (2π/n)−2θ(ϕ) ∂
2

∂ϕ2

(
−Ĝ2

(
ϕ
)

+ Ĝ3

(
ϕ
))

where, as for the decomposition above, we may write

G̃01

(
ϕ
)

=
1

mb − `b + 1

mb∑
j=1

j2θ(ϕ)λ
−2θ(ϕ)
j I(ϕ+b)

ηη (λj),

G̃11

(
ϕ
)

=
1

mb − `b + 1

mb∑
j=1

j2θ(ϕ)λ
−2θ(ϕ)
j

∂

∂ϕ

(
w(ϕ+b)
η (λj)w̄

(ϕ+b)
η (λj)

)
,
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G̃21

(
ϕ
)

=
1

mb − `b + 1

mb∑
j=1

j2θ(ϕ)λ
−2θ(ϕ)
j

∂2

∂ϕ2

(
w(ϕ+b)
η (λj)w̄

(ϕ+b)
η (λj)

)
,

corresponding to the terms considered by Shimotsu & Phillips (2005). Hence, as in Shimotsu (2010), we

first have to show R′′
(
ϕ̄, η̂

(b)
t

) P−→ 4 by establishing (2π/n)−2θ(ϕ)
(
−Ĝ2

(
ϕ
)
+Ĝ3

(
ϕ
))

(1, ∂/∂ϕ, ∂2/∂ϕ2)′ =

op(ln(n)−2), uniformly in ϕ̄ ∈ [ϕ, 0] with ϕ ∈M. First, by the same arguments on Shimotsu & Phillips

(2005, pp. 1915-1916) in conjunction with the arguments for (A.63) and ϕ ∈M,

G̃02(ϕ̄) = (2π/n)−2θ(ϕ̄)Ĝ2

(
ϕ̄
)

= Op(`b/mb),

G̃12(ϕ̄) = (2π/n)−2θ(ϕ̄) ∂

∂ϕ
Ĝ2

(
ϕ
)∣∣∣∣
ϕ̄

= Op(ln(n)`b/mb),

G̃22(ϕ̄) = (2π/n)−2θ(ϕ̄) ∂
2

∂2ϕ
Ĝ2

(
ϕ
)∣∣∣∣
ϕ̄

= Op(ln(n)2`b/mb),

which are all op(ln(n)−2) by Assumption T-B(b). Next, as for A3(ϕ), write

Ĝ3

(
ϕ
)

=
1

mb − `b + 1

mb∑
j=`b

(
2<
(
I

(ϕ+b)
η̂(η̂−η)(λj)

)
+ I

(ϕ+b)
(η̂−η)(η̂−η)(λj)

)
= Ĝ31

(
ϕ
)

+ Ĝ32

(
ϕ
)
.

In the view of Lemma A.5, adopted from Shimotsu & Phillips (2005), (∂/∂ϕ)w
(ϕ+b)
η (λj) is no more

than a factor ln(n) larger than w
(ϕ+b)
η (λj). Moreover, by Lemma A.9(a), the same holds for w

(ϕ+b)
η̂ (λj)

since ln(n)j−1/2 → 0 and, thus, for w
(ϕ+b)
(η̂−η)(λj) as well. Similarly, ∂2/∂ϕ2(w

(ϕ+b)
η (λj) + w

(ϕ+b)
η̂ (λj) +

w
(ϕ+b)
(η̂−η)(λj)) is no more than a factor ln(n)2 larger, again, as ln(n)j−1/2 → 0. This implies,

G̃13(ϕ̄) = (2π/n)−2θ(ϕ̄) ∂

∂ϕ
Ĝ3

(
ϕ
)∣∣∣∣
ϕ̄

, G̃23(ϕ̄) = (2π/n)−2θ(ϕ̄) ∂
2

∂2ϕ
Ĝ3

(
ϕ
)∣∣∣∣
ϕ̄

,

is no larger than factors ln(n)2, respectively, ln(n)4 than G̃03(ϕ̄) = (2π/n)−2θ(ϕ̄)Ĝ3

(
ϕ̄
)
, which we turn

to next. Specifically, for G̃31(ϕ̄) = (2π/n)−2θ(ϕ̄)Ĝ31(ϕ̄), we have using the decomposition in (A.50), as

for A31(ϕ), together with ϕ ∈M, that, with probability approaching one,

∣∣G̃31(ϕ̄)
∣∣ ≤ K

mb

mb∑
j=`b

j2θ(ϕ̄)λ
−2θ(ϕ̄)
j

[
Op

(
λ

2θ(ϕ̄)−b
j√
m

)
+Op

(
λ

2θ(ϕ̄)+d−b
j n1/2

j

)
+Op

1

2

(
λbm√
m

λ
2θ(ϕ̄)−b
j

j1+ϕ̄

)]

≤ K

mb

mb∑
j=`b

j2θ(ϕ̄)

[
Op

(
λ−bj√
m

)
+Op

(
λ
d−b
j n1/2

j

)]

≤ Op

(
nbmε

b

mb
b`

1+ε
b

√
m

)
+Op

((
n

mb

)1/2−(d−b) mε
b

`1+ε
b

√
mb

)
,

for some arbitrarily small ε > 0, using Varneskov (2017, Lemma C.4), the fact that the third term is
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dominated by the first after the first inequality, and supM |j2θ(ϕ) − 1| ≤ O(ln(n)−3). The asymptotic

bound mimics the corresponding for A31(ϕ). Hence, by Assumption T-B(b),
∣∣G̃31(ϕ̄)

∣∣ ≤ op(1), at a

polynomial rate. Next, for G̃32(ϕ̄) = (2π/n)−2θ(ϕ̄)Ĝ32(ϕ̄), we have using the decomposition in (A.51),

as for A32(ϕ) and G̃31(ϕ̄), the together with ϕ ∈M, such that, with probability approaching one,

∣∣G̃32(ϕ̄)
∣∣ ≤ K

mb

mb∑
j=`b

j2θ(ϕ̄)λ
−2θ(ϕ̄)
j ×

[
Op

(
λ

2θ(ϕ̄)−2b
j

m

)
+Op

(
λ

2(θ(ϕ̄)+d−b)
j n

j2

)
+Op

1

2

(
λ2b
m

m

λ
2θ(ϕ̄)−2b
j

j2(1+ϕ̄)

)
+Op (J4(λj))

]

≤ K

mb

mb∑
j=`b

j2θ(ϕ̄)

[
Op

(
λ−2b
j

m

)
+Op

(
λ

2(d−b)
j n

j2

)]
≤ Op

(
n2bmε

b

`1+2b+ε
b m

)
+Op

((
n

mb

)1−2(d−b) 1

`2b

)
,

since the third asymptotic bound and the cross-product term, Op (J4(λj)), is dominated by the first

two asymptotic bounds after the first inequality. Hence, by Assumption T-B(b),
∣∣G̃32(ϕ̄)

∣∣ ≤ op(1),

at a polynomial rate. Consequently, by combining results, |Ĝ3

(
ϕ
)
| ≤ op(1) at a polynomial rate,

uniformly in ϕ̄ ∈ [ϕ, 0] with ϕ ∈ M, and together with the results for G̃02(ϕ̄), G̃12(ϕ̄) and G̃22(ϕ̄),

this show (2π/n)−2θ(ϕ)
(
− Ĝ2

(
ϕ
)

+ Ĝ3

(
ϕ
))

(1, ∂/∂ϕ, ∂2/∂ϕ2)′ = op(ln(n)−2), and, thereby, the desired

convergence result, R′′
(
ϕ̄, η̂

(b)
t

) P−→ 4.

The proof is completed by showing,

m
1/2
b R′

(
ϕ0, η̂

(b)
t

) D−→ N(0, 4). (A.57)

To this end, as in Shimotsu & Phillips (2005) and Shimotsu (2010), let us write

m
1/2
b R′

(
ϕ0, η̂

(b)
t

)
= m

1/2
b

G̃1

(
ϕ0

)
G̃0

(
ϕ0

) − 2

mb − `b + 1

mb∑
j=1

lnλj +
2

mb − `b + 1

`b−1∑
j=1

lnλj


= m

1/2
b

G̃11

(
ϕ0

)
G̃0

(
ϕ0

) − 2

mb − `b + 1

mb∑
j=1

lnλj

−m1/2
b

G̃12

(
ϕ0

)
G̃0

(
ϕ0

) − 2

mb − `b + 1

`b−1∑
j=1

lnλj


+m

1/2
b

G̃13

(
ϕ0

)
G̃0(ϕ0)

≡ m1/2
b

(
R′1
(
ϕ0, η̂

(b)
t

)
−R′2

(
ϕ0, η̂

(b)
t

)
+ R′3

(
ϕ0, η̂

(b)
t

))
.

Now, by the same arguments applied for R′′
(
ϕ̄, η̂

(b)
t

)
in conjunction with Shimotsu & Phillips (2005,

p. 1918), we have G̃0

(
ϕ0

)
= Ĝ0

(
ϕ0

) P−→ Gηη. Moreover, since R′1
(
ϕ0, η̂

(b)
t

)
is identical to the term

considered by Shimotsu & Phillips (2005, p. 1918), that is, the series is free of estimation errors, we

have by their arguments, m
1/2
b R′1

(
ϕ0, η̂

(b)
t

) D−→ N(0, 4). Since R′2
(
ϕ0, η̂

(b)
t

)
is similar, with `b in place
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of mb, we further have,

`
1/2
b (mb − `b + 1)

m
1/2
b `b

R′2
(
ϕ0, η̂

(b)
t

) D−→ N(0, 4),

which readily implies E[m
1/2
b

∣∣R′2(ϕ0, η̂
(b)
t

)∣∣] = Op
(
(`b/mb)

1/2
)
. Finally, we may use arguments equiv-

alent to those provided when establishing the asymptotic bound for G̃3(ϕ̄) to show,

m
1/2
b

∣∣R′3(ϕ0, η̂
(b)
t

)∣∣ ≤ Op(n2bmε
b ln(n)2√mb

`1+2b+ε
b m

)
+Op

((
n

mb

)1−2(d−b) ln(n)2√mb

`2b

)
,

which is op(1) by Assumption T-B(b). Hence, the asymptotic central limit theory for the trimmed

ELW estimator follows by combining results for R′′
(
ϕ̄, η̂

(b)
t

)
and R′

(
ϕ0, η̂

(b)
t

)
and applying these in

conjunction with the continuous mapping theorem and Slutsky’s theorem.

A.6 Technical Lemmas and Definitions

Definition 1 (Fractional Filters). Let θ ∈ R be a fixed scalar, then the following definitions are used

to derive the (higher-order) periodogram bounds below:

(a) Dn(eiλ; θ) =
∑n

k=0
(−θ)k
k! eikλ, where (θ)k = Γ(θ+k)

Γ(θ) = (θ)(θ + 1) · · · (θ + k − 1),

(b) Dn(L; θ) =
∑n

k=0
(−θ)k
k! Lk,

(c) D̃n(e−iλL; θ) =
∑n−1

p=0 θ̃λp e
−ipλLp, where θ̃λp =

∑n
k=p+1

(−θ)k
k! eikλ,

(d) Jn(eiλ) =
∑n

k=1 e
ikλ/k,

(e) J̃nλj (e
−iλjL) =

∑n−1
p=0 j̃λjp e

−ipλjLp, where j̃λjp =
∑n

k=p+1 e
ikλj/k.

Lemma A.5 (Shimotsu & Phillips (2005, Lemma 5.9)). Let the conditions for Theorem 1 hold.

Moreover, let ut be the ith element of qt, define ζt = (1 − L)θut1{t≥1} and let θ ∈ [−1 + ε, C] where

ε > 0 is arbitrarily small as well as C ∈ (1,∞), then

(a) −wln(1−L)ζ(λj) = Jn(eiλj )Dn(eiλj ; θ)wu(λj) + n−1/2Vn(λj ; θ),

(b) −wln(1−L)u(λj) = Jn(eiλj )wu(λj)− (2πn)−1/2J̃nλj (e
−iλjL)A(0, i)εn + rn(λj),

(c) wln(1−L)2ζ(λj) = Jn(eiλj )2Dn(eiλj ; θ)wu(λj) + n−1/2Ψn(λj ; θ),

where, uniformly in j = 1, . . . ,m, with m
n + 1

n = o(1),

E[sup
θ
|nθ−1/2j1/2−θVn(λj ; θ)|2] = O(ln(n)4), E[|j1/2rn(λj)|2] = o(1) +O(j−1),

E[sup
θ
|nθ−1/2j1/2−θΨn(λj ; θ)|2] = O(ln(n)6).
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Lemma A.6 (Shimotsu (2010, Lemma B.2)). Let κt = 1{t≥1} and C ∈ (1,∞). The following results,

then, holds uniformly in j = 1, . . . ,m with m
n + 1

n = o(1) and in θ:

(a) w∆θκ(λj) = O(n1/2−θjθ−1)1{θ≥0} +O(n1/2−θj−1)1{θ<0},

(b) −wln(1−L)∆θκ = Jn(eiλj )w∆θκ(λj) +O
(
n1/2−θ ln(n)

(
j−11{θ∈[−C,1]} + 1{θ∈[1,2]}

))
,

(c) wln(1−L)2∆θκ = Jn(eiλj )2w∆θκ(λj) +O
(
n1/2−θ ln(n)2

(
j−11{θ∈[−C,1]} + 1{θ∈[1,2]}

))
.

Lemma A.7 (Higher-order Periodogram Bounds). Let the conditions for Theorem 1 hold. Moreover,

define θn > 0 such that θn � n−ρ, ρ ∈ (0, 1) and maxi=1,...,k+1 |θ̂i| < θn with probability approaching 1.

Then, the periodograms of a
(1)
t−1(i) and a

(2)
t−2(i, θ̄i), the two terms in the Taylor expansion (A.8), satisfy

the following stochastic bounds for i = 1, . . . , k + 1 and j = 1, . . . ,m, with m
n + 1

n = o(1),

(a) I
(1,1)
aa (λj , i, i) = Op

(
ln(n)2

(
1 + n1/2/j + n/j2

))
,

(b) I
(2,2)
aa (λj , i, i) ≤ Op

(
ln(n)4

(
1 + ln(n)j−1/2 + n1/2j−1

)2)
.

Proof. Before proceeding to the proofs, note that for j = 1, . . . ,m with m
n + 1

n = o(1), we have

Jn(eiλj ) = O(ln(n)) and λ−θj Dn(eiλj ; θ) = e−(π/2)θi +O(λj) +O(j−1−θ), (A.58)

uniformly for θ ∈ (−1, C] and C ∈ (1,∞), by Shimotsu & Phillips (2005, Lemmas 5.2 and 5.8). These

bounds will be used throughout, sometimes without explicit reference.

For (a). First, use the decomposition of at(i) to write

a
(1)
t−1(i) = ln(1− L)vt(i)1{t≥1} + ln(1− L)µ̃t(i)1{t≥1} ≡ ṽ

(1)
t−1(i) + µ̃

(1)
t−1(i). (A.59)

and, as a result, the discrete Fourier transform as w
(1)
a (λj , i) = w

(1)
ṽ (λj , i) + w

(1)
µ̃ (λj , i). Now, by

combining (A.58), Assumptions D1-D3, and Lemma A.5(b), we have

w
(1)
ṽ (λj , i) = Op(ln(n)) + op(j

−1/2) +Op(j
−1) + (2πn)−1/2J̃nλj (e

−iλjL)A(0, i)εn,

and, moreover, since E[|J̃nλj (e−iλjL)A(0, i)εn|2] = O(n/j) follows by applying the results in Shimotsu

& Phillips (2005, (77) and (89)), this readily shows that w
(1)
ṽ (λj , i) = Op(ln(n)). Hence, by using this

bound in conjunction with Lemmas A.6(a)-(b) for w
(1)
µ̃ (λj , i), it follows that

w(1)
a (λj , i) = Op

(
ln(n)

(
1 + n1/2/j

))
, (A.60)

which, together with the Cauchy-Schwarz inequality, establishes (a) for elements i = 2, . . . , k+ 1, that

is, when vt(i) = ut(i − 1). Moreover, by using the relation (3) with Assumption D2 and the same

arguments, we get an identical bound (A.60) for i = 1, that is, with vt(i) = et. As this will also hold

true for the remaining arguments given below, we only establish results for i = 2, . . . , k + 1.
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For (b). First, decompose a
(2)
t−2(i, θ̄i) similarly to (A.59),

a
(2)
t−2(i, θ̄i) = ln(1− L)2(1− L)θ̄ivt(i)1{t≥1} + ln(1− L)2(1− L)θ̄i µ̃t(i)1{t≥1}

≡ ṽ(2)
t−2(i) + µ̃

(2)
t−2(i), and w(2)

a (λj , i) = w
(2)
ṽ (λj , i) +w

(2)
µ̃ (λj , i). (A.61)

Now, using |θ̄i| ≤ |θ̂i| < θn for all i = 1, . . . , k + 1, Lemma A.5(c) and (A.58), it follows that

w
(2)
ṽ (λj , i) ≤ Op

(
ln(n)2λ−θnj

)
+Op

(
ln(n)3λ−θnj j−1/2

)
. (A.62)

Next, to get a simpler asymptotic approximation, we make a second-order Taylor expansion of the

power function of Fourier frequencies λ−θnj around θn = 0,

λ−θnj = 1 + θn ln(1/λj) +
θ2
n

2
ln(1/λj)

2λ−θ̄nj , (A.63)

for some θ̄n ∈ [0, θn], using the mean-value theorem. Hence, since θn � n−ρ, ρ ∈ (0, 1), this readily

shows that λ−θnj = 1+o(1) and, as a result, w
(2)
ṽ (λj , i) ≤ Op

(
ln(n)2(1 + ln(n)j−1/2)

)
. Moreover, using

Lemma A.6(c) and the fact that θn → 0 as n→∞, this delivers the bounds

w
(2)
µ̃ (λj , i) ≤ K ln(n)2

(
n1/2

j

)(
(n/j)θn + (n)θn

)
≤ K ln(n)2

(
n1/2

j

)
nθn . (A.64)

Now, by combining (A.63) and (A.64) with the bound for w
(2)
ũ (λj , i), this shows that

w(2)
a (λj , i) ≤ Op

(
ln(n)2

(
1 + ln(n)j−1/2 + n1/2j−1

))
, (A.65)

which, together with the Cauchy-Schwarz inequality, establishes (b).

The following lemma collects various bounds from Shimotsu & Phillips (2005) to state a bound

for the discrete Fourier transform of ζt = (1− L)θct1{t≥1}, where ct is an element of ct satisfying the

regularity conditions in Assumption C as well as θ ∈ [−3/2, C] and C ∈ (1,∞).

Lemma A.8 (Discrete Fourier Transform Bound for ζt). Suppose the conditions of Assumption C

holds and θ ∈ [−3/2, C]. Then, for j = 1, . . . ,m with m/n+ 1/m→ 0, as n→∞,

wζ(λj) = λθje
−(π/2)θiwc(λj)

+Op(λ
θ
j ln(n)j−1/2) +Op(λ

−1
j n−θ−1)1{θ∈[−3/2,−1/2]} +Op(n

−θ−1)1{θ∈[1/2,C]}.

Proof. The proof proceeds by providing separate arguments and asymptotic bounds for different ranges

of the parameter space Θ = {θ ∈ [−3/2, C]}. First, for Θ1 = {θ ∈ [−1/2, 1/2]}, use the expansion in
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Shimotsu & Phillips (2005, Lemma 5.1) to make the decomposition,

wζ(λj) = Dn(eiλj ; θ)wc(λj)− (2πn)−1/2C̃n(λj , θ), C̃n(λ, θ) = D̃nλ(e−iλL; θ)cn, (A.66)

where Dn(eiλj ; θ) and D̃nλ(e−iλL; θ) are given in Definition 1. Hence, by Assumption C as well as

applying (A.58) and Shimotsu & Phillips (2005, Lemma 5.3) to the terms in (A.66), we have, uniformly

in j = 1, . . . ,m with m
n + 1

n = o(1), that wζ(λj) = λθje
−(π/2)θiwc(λj) + Op(λ

θ
j ln(n)j−1/2). Next, for

the subspace Θ2 = {θ ∈ [−3/2,−1/2]}, use the decomposition in Shimotsu & Phillips (2005, (45)),

λ−θj wζ(λj) = D̄n(λj ; θ)wc(λj)− C̄n(λj , θ) + λ−θj (2πn)−1/2eiλj (1− eiλj )−1ζn, (A.67)

noting that ζn is I(−θ), and where D̄n(λj ; θ) and C̄n(λj , θ) are defined as

D̄n(λj ; θ) = λ−θj (1− eiλj )−1Dn(eiλj ; θ + 1),

C̄n(λj , θ) = λ−θj (1− eiλj )−1(2πn)−1/2C̃n(λj , θ + 1).

Now, by Shimotsu & Phillips (2005, (31) and (39)), D̄n(λj ; θ) = e−(π/2)θi +O(λj)+O(j−1/2) as well as

C̄n(λj , θ) = Op(ln(n)j−1/2), respectively, uniformly in θ. For the last term in (A.67), since it follows

that the terms eiλj = O(1) and (1− eiλj )−1 = O(nj−1) as well as ζn = Op(n
−θ−1/2) by applying, e.g.,

Phillips & Shimotsu (2004, Lemma A.5), we have

wζ(λj) = λθje
−(π/2)θiwc(λj) +Op(λ

θ
j ln(n)j−1/2) +Op(λ

−1
j n−θ−1).

For the subspace Θ3 = {θ ∈ [1/2, 3/2]}, the decomposition in Shimotsu & Phillips (2005, (30)) and the

same arguments give wζ(λj) = λθje
−(π/2)θiwc(λj)+Op(λ

θ
j ln(n)j−1/2)+Op(n

−θ−1). As these arguments

and steps may be repeated for subsequent subspaces Θ3+i = {θ ∈ [1/2 + i, 3/2 + i]}, i = 1, . . . ,K for

some finite integer K, this gives the result for some finite C ∈ (1,∞), concluding the proof.

Next, the following lemma provides a generic bound for ζ̂t = (1 − L)γ̂ζt where γ̂
P−→ 0 as n → ∞

and ζt = (1− L)θct1{t≥1} is defined as above. This result is used to establish a DFT result for η̂t.

Lemma A.9 (DFT of Empirically Estimated Series). Suppose the conditions of Theorem 2 and As-

sumption C. Moreover, let ln(n)/j1/2 → 0 as n→∞ and θ ∈ [−1, C], then the following hold.

(a) Define γn > 0 such that γn � n−ρ, ρ ∈ (0, 1) and |γ̂| < γn with probability approaching 1, then

w
ζ̂
(λj) = wζ(λj)

(
1 +Op(γn ln(n)) +Op

(
γ2
n ln(n)2

))
.

(b) Define ḡn(m,mb,md) ≡ ln(n)√
mb
∨ ln(n)√

md
∨ λbm√

m
, then

wη̂(λj) = wη(λj) +Op

(
(j/n)d−bn1/2/j

)
+Op

(
ḡn(m,mb,md)λ

−b
j

)
.
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Proof. First, for (a), use the same Taylor expansion for (1 − L)γ̂ as in (A.7) such that the estimate

ζ̂t may be decomposed similarly to (A.8), ζ̂t = ζt + γnζ
(1)
t−1 + (γ2

n/2)ζ
(2)
t−2(γ̄n), where ζ

(1)
t−1 = ln(1− L)ζt

and ζ
(2)
t−2(γ̄n) = ln(1− L)2(1− L)γ̄nζt with γ̄n ∈ [γn, 0]. Hence, we have,

w
ζ̂
(λj) = wζ(λj) + γnw

(1)
ζ (λj) + (γ2

n/2)w
(2)
ζ (λj), (A.68)

where asymptotic approximation results for wζ(λj) are provided in Lemma A.8, and w
(1)
ζ (λj) as well

as w
(2)
ζ (λj) are the DFT of the higher-order terms ζ

(1)
t−1 and ζ

(2)
t−1(γ̄n), respectively. Next, as for

Shimotsu & Phillips (2005, Lemma 5.9), write ζ
(1)
t−1 = ln(1 − L)ζt = (−L − L2/2 − L3/3 − . . . )ζt =

−Jn(L)ζt. Moreover, by applying Shimotsu & Phillips (2005, Lemma 5.7), we have Jn(L) = Jn(eiλj )+

J̃nλj (e
−iλjL)(e−iλjL− 1), implying that, when taking the DFT,

−w(1)
ζ (λj) = Jn(eiλj )wζ(λj)−

1√
2πn

J̃nλj (e
−iλjL)ζn, (A.69)

since
∑n

t=1 e
iλj (e−iλjL − 1)ζt = ζn. Next, a bound is established for J̃nλj (e

−iλjL)ζn. To this end, as

in Shimotsu & Phillips (2005), define parameters a′p = j̃λjpe
−ipλj =

∑n
h=p+1 h

−1ei(h−p)λj such that we

may write J̃nλj (e
−iλjL)ζn =

∑n−1
p=0 a

′
pun−p and, thus, by using summation-by-parts,

J̃nλj (e
−iλjL)ζn =

n−2∑
p=0

(
a′p − a′p+1

) p∑
q=0

un−q + a′n−1

n−1∑
q=0

un−q,

where cnp =
∑n−1

h=p+1
1

h(h+1)e
i(h−p)λj and a′n−1 = e−ipλj/n, a′p − a′p+1 = cnp + a′n−1. Consequently, we

use Shimotsu & Phillips (2005, (72)) to make the decomposition J̃nλj (e
−iλjL)ζn = J̃1n + J̃2n,

J̃1n =
n−2∑
p=0

cnp

p∑
q=0

ζn−p, J̃2n =
eiλj

1− eiλj

1

n

n∑
h=1

ζh −
eiλj

1− eiλj

(2πn)1/2

n
wζ(λj).

Now, by applying Shimotsu & Phillips (2005, (80)), |cnp| ≤ K min(|p|−1
+ , |p|−2

+ nj−1) with |p|+ ≡
max(1, p), and E[(

∑p
q=0 ζn−q)

2] = (p + 1)
∑p

q=−p(1 − |q|/(p + 1))E[ζtζt+q] = O(|p|2(1/2−θ)
+ ) follows

using, e.g., Phillips & Shimotsu (2004, Lemma A.5). Hence, by Minkowski’s inequality,

E
[
|J̃1n|2

]
= O

n/j∑
p=0

|p|−1/2−θ
+ +

n∑
p=n/j

n

j
|p|−3/2−θ

+

1

2

2 ≤ O ((n/j)λ2θ
j

)
, (A.70)

and, thereby, E[|J̃1n|] ≤ O((n/j)1/2λθj). Next, since θ ∈ [−1, C], it follows by invoking Lemma A.8

that E[|wζ(λj)|2] = O(λ2θ
j ) and, similarly, E[|

∑n
t=1 ζt|2] = O(n2(1/2−θ)) by Phillips & Shimotsu (2004,
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Lemma A.5). As a result,

E[|J̃2n|] ≤ O
(

1

n

n

j
n1/2−θ

)
+O

(
1√
n

n

j
λθj

)
= O

(
n1/2j−1−θλθj

)
+O

(
n1/2j−1λθj

)
. (A.71)

Hence, by collecting asymptotic bounds for J̃1n and J̃2n,

E
[
|J̃nλj (e

−iλjL)ζn|
]
≤ O

(
n1/2j−1−θλθj

)
+O

(
n1/2j−1λθj

)
+O

(
n1/2j−1/2λθj

)
, (A.72)

and, since Jn(eiλj ) = O(ln(n)) by Shimotsu & Phillips (2005, Lemma 5.8) and ln(n)/j1/2 → 0, we

have

−w(1)
ζ (λj) = Jn(eiλj )wζ(λj)(1 + op(1)). (A.73)

Next, for ζ
(2)
t−2 = ln(1− L)2ζt = Jn(L)2ζt, we may write its DFT as,

wln(1−L)2ζ(λj) = Jn(eiλj )2wζ(λj)−
1√
2πn

(
Jn(eiλj ) + Jn(L)

)
J̃nλj (e

−iλjL)ζn. (A.74)

By the same arguments used to establish (A.72), and for some q ∈ N,

E
[
|LqJ̃nλj (e

−iλjL)ζn|
]
≤ O

(
n1/2j−1−θλθj

)
+O

(
n1/2j−1λθj

)
+O

(
n1/2j−1/2λθj

)
. (A.75)

Hence, together with Jn(eiλj ) = O(ln(n)), wln(1−L)2ζ(λj) = Jn(eiλj )2wζ(λj)(1+op(1)) and, by applying

the same arguments as for the Taylor expansion term in (A.63), this shows,

w
(2)
ζ (λj) = Jn(eiλj )2wζ(λj)(1 + op(1)). (A.76)

The final result, thus, follow by combining (A.68), (A.73) and (A.76).

For (b), let us make the decomposition,

η̂t ≡ (1− L)−b̂η̂
(b)
t = ξ̂

(1)
t + ξ̂

(2)
t + ξ̂

(3)
t + ξ̂

(4)
t + ξ̂

(5)
t , (A.77)

whose terms may be expanded as, observing η
(b)
t = (et −B′ut−1),

ξ̂
(1)
t = (1− L)−b̂η

(b)
t , ξ̂

(2)
t = (1− L)−b̂ (êt − et) , ξ̂

(3)
t = (1− L)−b̂B′ (ût−1 − ut−1) ,

ξ̂
(4)
t = (1− L)−b̂(B − B̂(`,m))′ut−1, ξ̂

(5)
t = (1− L)−b̂(B − B̂(`,m))′ (ût−1 − ut−1) .

First, note that ξ̂
(2)
t and ξ̂

(3)
t depends on the DFT of (1− L)−b̂(v̂t − vt) and denote ψ̂ = b− b̂, which

is Op(1/
√
mb) by Assumption B. Hence, we can further decompose these terms,

ε̂t(i) = (1− L)−b̂(v̂t(i)− vt(i)) = (1− L)ψ̂+θ̂i(1− L)di−bµ̃t(i) (A.78)

+
(
(1− L)θ̂i − 1

)
(1− L)ψ̂(1− L)−bvt(i) ≡ ε̂(1)

t (i) + ε̂
(2)
t (i),

31



for i = 1, . . . , k+ 1, and where θ̂i = d̂i − di. Since di − b ≥ 0 in the event of (fractional) cointegration,

then we have, by using Lemma A.6(a)-(c) together with the Taylor expansion in (A.63),

w
(1)
ε̂ (λj , i) = Op

(
(j/n)di−b n1/2j−1

)
.

Moreover, by applying (a),

w
(2)
ε̂ (λj , i) = Op

((
1
√
mb
∨ 1
√
md

)
ln(n)λ−bj

)
,

since mb and md exhibit polynomial growth in n. By combining bounds,

wε̂(λj , i) = Op

(
(j/n)di−b n1/2j−1

)
+Op

((
1
√
mb
∨ 1
√
md

)
ln(n)λ−bj

)
. (A.79)

Now, by applying this to ξ̂
(2)
t , ξ̂

(3)
t and ξ̂

(5)
t as well as (a) to ξ̂

(1)
t and ξ̂

(4)
t , we have

w
(1)

ξ̂
(λj) = wη(λj)

(
1 +Op

(
m
−1/2
b ln(n)

))
,

w
(2)

ξ̂
(λj) + w

(3)

ξ̂
(λj) = Op

(
(j/n)d−b n1/2j−1

)
+Op

((
1
√
mb
∨ 1
√
md

)
ln(n)λ−bj

)
,

w
(4)

ξ̂
(λj) = Op

(
m−1/2λbm

)
×Op

(
λ−bj

(
1 +m

−1/2
b ln(n)

))
,

w
(5)

ξ̂
(λj) = Op

(
m−1/2λbm

)
×
(
Op

(
(j/n)dx−b n1/2j−1

)
+Op

((
1
√
mb
∨ 1
√
md

)
ln(n)λ−bj

))
.

The final result follows by collecting asymptotic bounds.

The next lemma provides DFT bounds for (1 − L)γ(v̂t − vt) and (1 − L)γ η̂
(b)
t for some fractional

filtering parameter γ ∈ [−1, C] and C ∈ (1,∞). Moreover, it considers (1 − L)ϕη
(b)
t when taking

supremum and infimum over the sets Φ1 and Φ2, respectively. These are useful for establishing co-

periodogram bounds that are applied in the proof of Theorem 3.

Lemma A.10 (DFT of Scaled Estimated Series). Suppose the conditions of Theorem 3 are satisfied.

Moreover, let ln(n)/j1/2 → 0 as n→∞ and γ ∈ [−1, C], then the following hold.

(a) Define ε̃t ≡ (1− L)γ(v̂t − vt), then its DFT has asymptotic order,

wε̃(λj) = Op

(
m
−1/2
d ln(n)λγj

)
+Op

(
(j/n)d+γ n1/2j−1

)
1{d+γ≥0}+Op

(
n−(d+γ)n1/2j−1

)
1{d+γ<0}.

(b) Define the filtered series (1− L)γη
(b)
t = (1− L)γ+bηt = η

(γ+b)
t and its DFT w

(γ+b)
η (λj), then the

filtered estimated series (1− L)γ η̂
(b)
t has a DFT, which obey,

w
(γ+b)
η̂ (λj) = w(γ+b)

η (λj) +Op

(
λγj

(
ln(n)
√
md
∨ λbm√

m

))
+Op

(
λbm√
m
n−γ−1λ−1

j

)
1{γ∈[−3/2,−1/2]}
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+Op

(
λ
d+γ
j n1/2j−1

(
1{d+γ≥0} + j−(d+γ)1{d+γ<0}

))
.

(c) supϕ∈Φ1
w

(ϕ+η)
η (λj) = supϕ∈Φ1

Op(λ
ϕ+b
j ) and infϕ∈Φ2 w

(ϕ+η)
η (λj) = infϕ∈Φ2 Op(λ

ϕ+b
j ).

Proof. First, for (a), we use a decomposition similar to (A.78),

ε̃t(i) = (1− L)γ(v̂t(i)− vt(i)) = (1− L)θ̂i(1− L)di+γµ̃t(i) (A.80)

+
(
(1− L)θ̂i − 1

)
(1− L)γvt(i) ≡ ε̃(1)

t (i) + ε̃
(2)
t (i),

Since the fractional exponent, di+γ, may be either smaller or greater than zero, we have, by applying

Lemma A.6(a)-(c) in conjunction with the Taylor expansion in (A.63),

w
(1)
ε̃ (λj , i) = Op

(
(j/n)di+γ n1/2j−1

)
1{di+γ≥0} +Op

(
n−(di+γ)n1/2j−1

)
1{di+γ<0}.

Moreover, by applying Lemmas A.8 and A.9(a),

w
(2)
ε̃ (λj , i) = Op

(
m
−1/2
d ln(n)λγj

)
,

since md exhibit polynomial growth in n. The final bound follows by combining results.

For (b), let us make the decomposition,

(1− L)γ η̂
(b)
t = ξ̃

(1)
t + ξ̃

(2)
t + ξ̃

(3)
t + ξ̃

(4)
t + ξ̃

(5)
t , (A.81)

whose terms may be expanded as, noting η
(b)
t = (et −B′ut−1),

ξ̃
(1)
t = (1− L)γη

(b)
t , ξ̃

(2)
t = (1− L)γ (êt − et) , ξ̃

(3)
t = (1− L)γB′ (ût−1 − ut−1) ,

ξ̃
(4)
t = (1− L)γ(B − B̂(`,m))′ut−1, ξ̃

(5)
t = (1− L)γ(B − B̂(`,m))′ (ût−1 − ut−1) .

First, note that ξ̃
(2)
t , ξ̃

(3)
t and ξ̃

(5)
t depends on the DFT of (1 − L)γ(v̂t − vt), which is studied in (a),

and the DFTs of ξ̃
(1)
t and ξ̃

(4)
t are studied in Lemma A.8. By invoking the requisite results,

w
(1)

ξ̃
(λj) = e−(π/2)(γ+b)iλγ+b

j wη(λj) +Op

(
λγ+b
j ln(n)j−1/2

)
+Op

(
λ−1
j n−(γ+b)−1

)
1{(γ+b)∈[−3/2,−1/2]} +Op

(
n−(γ+b)−1

)
1{(γ+b)∈[1/2,C]}

w
(2)

ξ̃
(λj) + w

(3)

ξ̃
(λj) = Op

(
m
−1/2
d ln(n)λγj

)
+Op

(
(j/n)d+γ n1/2j−1

)
1{d+γ≥0}

+Op

(
n−(d+γ)n1/2j−1

)
1{d+γ<0}, w

(5)

ξ̃
(λj) = op

(
w

(2)

ξ̃
(λj) + w

(3)

ξ̃
(λj)

)
,

w
(4)

ξ̃
(λj) = m−1/2λbm

(
Op

(
e−(π/2)γiλγjwη(λj)

)
+Op

(
λγj ln(n)j−1/2

)
+Op

(
λ−1
j n−γ−1

)
1{γ∈[−3/2,−1/2]} +Op

(
n−γ−1

)
1{γ∈[1/2,C]}

)
.
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The final result follows by collecting asymptotic bounds.

For (c), this follows since ϕ ∈ Φ1 implies ϕ+b ∈ [−1/2+∆, 1/2] such that by invoking Lemma A.8,

we have supΦ1
w

(ϕ+b)
η (λj) = supΦ1

e−(π/2)(ϕ+b)iλϕ+b
j wη(λj)+supΦ1

Op(λ
ϕ+b
j ln(n)j−1/2) and, moreover,

ln(n)/j1/2 → 0 as n→∞. For ϕ ∈ Φ2, which spans ϕ+ b = ∆2 > 0, we similarly have,

inf
Φ2

w(ϕ+b)
η (λj) = inf

Φ2

e−(π/2)(ϕ+b)iλϕ+b
j wη(λj) + inf

Φ2

Op(λ
ϕ+b
j ln(n)j−1/2) + inf

Φ2

Op

(
n−(ϕ+b)−1

)
since the set ϕ+ b /∈ [−3/2,−1/2]} over the infimum operator. Hence, as ln(n)/j1/2 → 0 and the last

term of order Op(n
−3/2) is strictly smaller, this delivers the final result.

Lemma A.11 (Orthogonal Components Co-Periodogram Approximation Bound). Suppose that the

regularity conditions of Theorem 1 hold. Moreover, let S = S(n) be a sequence of positive integers,

which satisfies 1/S + S/n→ 0 as n→∞, then, for some arbitrarily small ε > 0, it follows

∥∥∥∥ S∑
j=1

<
(
wu(λj)w̄

(b)
η (λj)

)
−

S∑
j=1

<
(
wu(λj)λ

b
je

(π/2)biw̄η(λj)
)∥∥∥∥

≤ Op
(

(S/n)b ln(n)Sε/2
)

+Op

(
S3/2+b

n1+b

)
+Op

(
n−b

(
1 +m1/21{b∈[1/2,1]}

))
.

Proof. First, consider the interval b ∈ [0, 1/2], where, by Shimotsu & Phillips (2005, Lemma 5.1),

w(b)
η (λj) = Dn(eiλj ; b)wη(λj)− (2πn)−1/2η̃n(e−iλj , b), η̃n(e−iλj , b) ≡ D̃n(e−iλj ; b)ηn,

implying that we can make the decomposition,

L ≡
S∑
j=1

<
(
wu(λj)w̄

(b)
η (λj)

)
=

S∑
j=1

<
(
wu(λj)Dn(e−iλj ; b)w̄η(λj)

)

− 1√
2πn

S∑
j=1

<
(
wu(λj)η̃n(eiλj , b)

)
≡ L1 + L2.

First, we have that E[L2] = 0 readily follows by local orthogonality between the discrete Fourier

transforms of ut−1 and ηt when S/n→ 0 using Assumption D1. Moreover,

V[L2] =
1

2πn

S∑
j=1

E [<(Iuu(λj))]× E
[
<(η̃n(e−iλj , b)η̃n(eiλjb))

]
≤ K ln(n)2

2πn

S∑
j=1

O
(
λ

2(b−1/2)
j

)

≤ K ln(n)2mε

2π

(
S

n

)2b S∑
j=1

O

((
j

S

)2b 1

j1+ε

)
≤ O

((
S

n

)2b

ln(n)2mε

)
,

using Shimotsu & Phillips (2005, Lemma 5.3) for the first inequality and the fact that the last sum
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is a p-series with exponent 1 + ε > 1. Hence, E[‖L2‖] ≤ K(S/n)b ln(n)mε/2. Next, for L1, since

Dn(eiλj ; b) = e−(π/2)biλbj +O(λ1+b
j ) +O(j−1−bλbj) by Shimotsu & Phillips (2005, Lemma 5.2) , we may

write L1 = L11 + L12 + L13, where L11 =
∑S

j=1<
(
wz(λj)λ

b
je

(π/2)biw̄η(λj)
)

is the target of interest,

L12 =

S∑
j=1

<
(
wu(λj)w̄η(λj)O

(
λ1+b
j

))
, L13 =

S∑
j=1

<
(
wu(λj)w̄η(λj)O

(
j−1−bλbj

))
.

Now, using the same arguments as for L2, E[L12] = 0, E[L13] = 0, and

V[L12] ≤ KS3+2b

n1+b

1

S

S∑
j=1

O

((
j

S

)2(1+b)
)
≤ O

(
S3+2b

n1+b

)
, V[L13] ≤ K

n2b

S∑
j=1

O
(
j−2
)
≤ O

(
n−2b

)
,

using Robinson (1995, Lemma 1) to show S−1
∑S

j=1(j/S)2(1+b) ≤ K. Hence, we have the additional

approximation error bounds E[‖L12‖] ≤ KS3/2+bn−(1+b) and E[‖L13‖] ≤ Kn−b.
For b ∈ [1/2, 1], let η̄n(b) ≡

∑n
t=1 η

(b)
t ∼ I(1− b) and apply Shimotsu & Phillips (2005, (29)),

λ−bj w(b)
η (λj) = D̆n(eiλj ; b)wη(λj)− η̆n(e−iλj , b) + λ−bj (2πn)−1/2eiλj η̄n(b), (A.82)

where D̆n(eiλj ; b) = λ−bj (1−eiλj )Dn(eiλj ; b−1) and η̆n(e−iλj , b) = λ−bj (1−eiλj )(2πn)−1/2η̃n(e−iλj , b−1),

to further decompose discretely averaged co-periodogram as,

L = L3 −L4 + L5, L3 =

S∑
j=1

<
(
wu(λj)λ

b
jD̆n(e−iλj ; b)w̄η(λj)

)
,

L4 =
S∑
j=1

<
(
wu(λj)λ

b
j η̆n(eiλj , b)

)
, L5 =

1√
2πn

S∑
j=1

<
(
wu(λj)e

−iλj η̄n(b)
)
.

Next, since (1 − eiλj ) = O(λj), e
iλj = 1 + O(λj) and (b − 1) ∈ [−1/2, 1/2], we may apply the same

arguments provided for L2 to establish the bound E[‖L4‖] ≤ K(S/n)b ln(n)mε/2. Moreover, once

again, by applying local orthogonality, we have E[L5] = 0, and

V[L5] ≤ K

2πn

S∑
j=1

E [<(Iuu(λj))]× E
[
(η̄n(b))2

]
≤ K

2πn

S∑
j=1

O
(
n2(1/2−b)

)
≤ O

(
n−2bm

)
,

using, e.g., Phillips & Shimotsu (2004, Lemma A.5). Hence E[‖L5‖] ≤ Kn−bm1/2. For L3, use

Shimotsu & Phillips (2005, (3.1)) to show, D̆n(eiλj ; b) = e−(π/2)bi +O(λj) +O(j−1/2), uniformly in b.

Hence, as for L1, write L3 = L31 + L32 + L33 where L31 = L11 and

L32 =
S∑
j=1

<
(
wu(λj)w̄η(λj)O

(
λ1+b
j

))
, L33 =

S∑
j=1

<
(
wu(λj)w̄η(λj)O

(
j−1/2λbj

))
.
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As for L12, E[‖L32‖] ≤ KS3/2+bn−(1+b) and, using the same arguments as above, E[L33] = 0,

V[L33] ≤ K
(
S

n

)2b S∑
j=1

(
j

S

)2b

O
(
j−1
)
≤ O

((
S

n

)2b

mε

)
.

That is, E[‖L33‖] ≤ (S/n)bmε/2 , and the final result follows by collecting bounds.

Lemma A.12 (Approximate DFT bound for filtered series). Suppose that the regularity conditions of

Theorem 4 hold. Then, the following bounds hold uniformly in 0 < di < 2, i = 1, . . . , k + 1.

(a) for j = 1, . . . ,m with m
n + 1

n = o(1), it follows

wĉ(λj , i) = Op

(
λdij

(
1 +

ln(n)

j1/2
+

ln(n)

m
1/2
d

+
ln(n)2

j1/2m
1/2
d

+
ln(n)2

md
+

ln(n)3

j1/2md

))
,

wv̂(λj , i) = Op(1) +Op

(
n1/2−di

j1−di

)
+Op

(
ln(n)

m
1/2
d

(
1 +

n1/2

j
+

ln(n)

m
1/2
d

(
1 +

ln(n)

j1/2
+
n1/2

j

)))
.

(b) for j = `, . . . ,m with ` � nν , m � nκ, md � n%, 0 < ν < κ ≤ % ≤ 1 and 1/n→ 0,

wĉ(λj , i) = Op(λ
di
j ), wv̂(λj , i) = Op(1) +Op

(
n1/2−di

j1−di

)
+Op

(
ln(n)n1/2

m
1/2
d j

)
.

Proof. First, for (a), write similarly to the proof of Lemma A.1, ĉt(i) = (1−L)θ̂iζt(i) where we define

the series ζt(i) = (1 − L)dict and let θ̂i = d̂i − di = Op(m
−1/2
d ) by Assumption F. Next, by applying

the Taylor expansion of (1− L)θ̂i in (A.7), we may readily decompose wĉ(λj , i) as

wĉ(λj , i) = wζ(λj , i) + θ̂iw
(1)
ζ (λj , i) +

θ̂2
i

2
w

(2)
ζ (λj , i), (A.83)

with w
(1)
ζ (λj , i) and w

(2)
ζ (λj , i) being the discrete Fourier transforms of ζ

(1)
t−1(i) ≡ ln(1 − L)ζt(i) and

ζ
(2)
t−2(i, θ̄i) ≡ ln(1 − L)2(1 − L)θ̄iζt(i), respectively, for some θ̄i ∈ [θ̂i, 0]. Now, the bound for wĉ(λj , i)

follows by applying Lemmas A.5(a), A.5(c) and A.8 in conjunction with (A.58) and the same argu-

ments used to establish Lemma A.7 ((A.63)-(A.64)). Next, the bound for wv̂(λj , i) follows by the

decomposition in (A.8), Lemma A.6(a) and the bounds (A.60) and (A.65). (b) follows by (a).

Lemma A.13 (DFT bounds for ǔ). Suppose Assumptions FC-M, FC-R, FC-F and FC1-FC3 hold.

Then, for j = 1, . . . ,m with m
n + 1

n = o(1), the following bounds hold uniformly for i = 1, . . . , k,

wǔ(λj , i) ≤ Op
(

1

jδi+1−di+1

(
1 +

ln(n)

j1/2

))
+Op

(
1

j

)
.
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Proof. Decompose the ith element of ǔt as (ϑi − ϑ̂i)′{(1 − L)d̂i+1−di+1(1 − L)di+1χi,t}. The result,

then, follows by (ϑi− ϑ̂i) ≤ Op(ndi+1−δi+1), using Assumption FC-R, and Lemmas A.8 and A.12(a) in

conjunction with Phillips & Shimotsu (2004, Lemmas A.1-A.2) to establish an asymptotic bound for

the discrete Fourier transform of {(1− L)d̂i+1−di+1(1− L)di+1χi,t}, thereby concluding the proof.

Lemma A.14. Let 1/`b + `b/mb → 0, then

(a) 1
mb−`b+1

∑mb
j=`b

ln j − (lnmb − 1) = O
(
`b ln `b
mb

)
,

(b) supΦ1

∣∣∣∣2(ϕ−ϕ0)+1
mb−`b+1

∑mb
j=`b

(
j
mb

)2(ϕ−ϕ0)
− 1

∣∣∣∣ = O
(
m−2∆
b

)
,

(c) infΦ2

∣∣∣∣ 1
mb−`b+1

∑mb
j=`b

(
j
pm

)2θ(ϕ)
∣∣∣∣ = O(1).

Proof. First, (a) follows as

1

mb − `b + 1

mb∑
j=`b

ln j − (lnmb − 1) =
lnmb!

mb − `b + 1
− 1

mb − `b + 1

`b−1∑
j=1

ln j − (lnmb − 1)

=
mb

mb − `b + 1
(lnmb − 1 + o(1)) +O

(
`b ln `b
mb

)
− (lnmb − 1) = O

(
`b ln `b
mb

)
,

by repeated use of Stirlings approximation.

Next, (b) follows from writing

sup
Φ1

∣∣∣∣∣∣2(ϕ− ϕ0) + 1

mb − `b + 1

mb∑
j=`b

(
j

mb

)2(ϕ−ϕ0)

− 1

∣∣∣∣∣∣ ≤
sup
Φ1

∣∣∣∣∣∣2(ϕ− ϕ0) + 1

mb − `b + 1

mb∑
j=1

(
j

mb

)2(ϕ−ϕ0)

− 1

∣∣∣∣∣∣+ sup
Φ1

∣∣∣∣∣∣2(ϕ− ϕ0) + 1

mb − `b + 1

`b−1∑
j=1

(
j

mb

)2(ϕ−ϕ0)

− 1

∣∣∣∣∣∣
= O

(
m−2∆

)
+ sup

Φ1

∣∣∣∣∣∣2(ϕ− ϕ0) + 1

mb − `b + 1

`b−1∑
j=1

(
j

mb

)2(ϕ−ϕ0)

− 1

∣∣∣∣∣∣
using the triangle inequality in conjunction with Robinson (1995, Lemma 1). Then,

sup
Φ1

∣∣∣∣∣∣2(ϕ− ϕ0) + 1

mb − `b + 1

`b−1∑
j=1

(
j

mb

)2(ϕ−ϕ0)

− 1

∣∣∣∣∣∣ ≤ O
(
`−2∆
b

)
sup
Φ1

(
`b

mb − `b + 1

(
`b
mb

)2(ϕ−ϕ0)
)

using, again, Robinson (1995, Lemma 1). Now, as

sup
Φ1

(
`b

mb − `b + 1

(
`b
mb

)2(ϕ−ϕ0)
)

=
`b

mb − `b + 1

(
mb

`b

)1−2∆

,
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the second term is also O
(
m−2∆

)
and the conclusion follows straightforwardly.

Last, (c) follows by a slight extension of the arguments for Robinson (1995, Lemma 1). Specifically,

note that

inf
Φ2

∣∣∣∣∣∣ 1

mb

mb∑
j=1

(
j

mb

)2θ(ϕ)
∣∣∣∣∣∣ =

1

mb

mb∑
j=1

(
j

mb

)2(∆2−ϕ0)

and define γ̄ = 1 + ∆2 − ϕ0 > 1 over Φ2. Then, following Robinson (1995), we may write

1

γ̄

∣∣∣∣∣∣ γ̄mb

mb∑
j=1

(
j

mb

)γ̄−1

− 1

∣∣∣∣∣∣ ≤ O (m−γ̄)+O
(
m−1

)
.

Hence, infΦ2

∣∣∣m−1
b

∑mb
j=1 (j/mb)

2θ(ϕ)
∣∣∣ = O(1). Then, as pm = O(m) and by using the same argument as

the proof of (b) to show the asymptotic negligibility of trimming, this provides the desired result.

B Data Construction

We first account for the construction of the high-frequency (HF) return based realized volatility mea-

sure. Here, in particular, we decompose the daily return as rt,i = rt,i,τ +rt,i−τ,1−τ , where rt,i,τ measures

the open-to-close return for the ith trading day in month t of length τ , that is, the return over the

interval [i − τ, i]. Similarly, we denote by rt,i−τ,1−τ the overnight return from the preceding trading

day, that is, over [i− 1, i− τ ]. We then utilize HF data over the trading day to estimate the quadratic

variation of rt,i,τ , denoted by [r, r]t,i,τ , with arbitrarily high precision as the number of intra-daily

observations increases. Let V̄t,i,τ denote a generic estimator of [r, r]t,i,τ , then our HF estimator of the

monthly realized return variance is defined as

V̄t =

nt∑
i=1

(
V̄t,i,τ + r2

t,i−τ,1−τ
)
, (B.1)

that is, with a correction to account for the variation outside the trading window. We use 30-second

observations of S&P 500 futures contracts, traded on the Chicago Mercantile Exchange (CME), for

the computation of (B.1) for the period up and including 2010, and we use one-minute observations

obtained from TickData on the same ticker after 2010. Since the recorded high-frequency prices

are prone to be contaminated by, e.g., bid-ask bounce and asymmetric information effects (or other

market microstructure effects), it is pertinent to use an estimator that accounts for an array of market

frictions. For this purpose, we use the flat-top realized kernel of Varneskov (2016, 2017), which is

robust to general forms of market microstructure noise and has been shown to estimate the quadratic

variation with optimal asymptotic as well as good finite sample properties.

The monthly S&P 500, DS and TB data are obtained from the website of the Federal Reserve Bank

of St. Louis, while the PE data are from Professor Robert Shiller’s website, see Shiller (2000) for
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details on its construction.

C Additional Tables

As robustness checks for the numerical analysis in the main text, we have below included bias, RMSE,

size and power results using the semiparametric ELW estimator for fractional filtering in Tables C.1-

C.2. Moreover, we consider a scenario where the short memory structure is AR(2) in Tables C.3-C.4

for fractional ARMA(1, 0) filtering and in Tables C.5-C.6 for ELW filtering.
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Bias and RMSE of the Local Spectrum Estimator: ELW

DGP 1: Bias DGP 2: Bias

n = 300 n = 650 n = 300 n = 650

Implementation: ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2

(ν, κ) = (0.21, 0.749) 0.0006 -0.0027 0.0014 -0.0006 0.0007 -0.0058 0.0017 -0.0035

(ν, κ) = (0.25, 0.749) 0.0003 -0.0028 0.0018 -0.0002 0.0004 -0.0058 0.0020 -0.0031

(ν, κ) = (0.30, 0.749) 0.0002 -0.0028 0.0018 -0.0001 0.0004 -0.0055 0.0020 -0.0029

(ν, κ) = (0.25, 0.65) 0.0004 -0.0046 0.0048 0.0019 0.0004 -0.0074 0.0049 -0.0018

(ν, κ) = (0.25, 0.70) 0.0015 -0.0032 0.0025 -0.0001 0.0013 -0.0058 0.0025 -0.0030

DGP 3: Bias DGP 4: Bias

n = 300 n = 650 n = 300 n = 650

Implementation: ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2

(ν, κ) = (0.21, 0.749) 0.0006 -0.0029 0.0015 -0.0006 0.0008 -0.0060 0.0017 -0.0035

(ν, κ) = (0.25, 0.749) 0.0004 -0.0031 0.0018 -0.0002 0.0005 -0.0060 0.0020 -0.0030

(ν, κ) = (0.30, 0.749) 0.0003 -0.0031 0.0018 -0.0001 0.0005 -0.0057 0.0020 -0.0029

(ν, κ) = (0.25, 0.65) -0.0005 -0.0055 0.0046 0.0018 -0.0004 -0.0081 0.0048 -0.0018

(ν, κ) = (0.25, 0.70) 0.0009 -0.0039 0.0024 -0.0001 0.0007 -0.0064 0.0024 -0.0030

DGP 1: RMSE DGP 2: RMSE

n = 300 n = 650 n = 300 n = 650

Implementation: ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2

(ν, κ) = (0.21, 0.749) 0.0873 0.0877 0.0631 0.0633 0.0860 0.0869 0.0621 0.0624

(ν, κ) = (0.25, 0.749) 0.0876 0.0877 0.0634 0.0634 0.0864 0.0869 0.0625 0.0626

(ν, κ) = (0.30, 0.749) 0.0881 0.0879 0.0637 0.0637 0.0869 0.0871 0.0629 0.0629

(ν, κ) = (0.25, 0.65) 0.1207 0.1211 0.0893 0.0910 0.1194 0.1205 0.0876 0.0894

(ν, κ) = (0.25, 0.70) 0.1022 0.1027 0.0760 0.0775 0.1013 0.1021 0.0749 0.0765

DGP 3: RMSE DGP 4: RMSE

n = 300 n = 650 n = 300 n = 650

Implementation: ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2

(ν, κ) = (0.21, 0.749) 0.0873 0.0874 0.0633 0.0633 0.0860 0.0865 0.0623 0.0623

(ν, κ) = (0.25, 0.749) 0.0877 0.0875 0.0635 0.0635 0.0865 0.0866 0.0626 0.0626

(ν, κ) = (0.30, 0.749) 0.0882 0.0877 0.0639 0.0638 0.0870 0.0868 0.0630 0.0629

(ν, κ) = (0.25, 0.65) 0.1205 0.1213 0.0894 0.0909 0.1191 0.1210 0.0879 0.0893

(ν, κ) = (0.25, 0.70) 0.1019 0.1027 0.0760 0.0774 0.1010 0.1023 0.0748 0.0763

Table C.1: Bias and RMSE of the LCM estimator. This table displays the bias and RMSE of the local
spectrum estimator, B̂(`,m), for ρ = {0, 0.2} as a function of the trimming and bandwidth parameters, ` = nν

and m = nκ, respectively. As described in Section 6, the tuning parameters are fixed according to the asymptotic
theory and the DGPs are simulated as in Hong (1996) and Shao (2009). Two fractional ARMA(1, 0) processes
are simulated with φy = φx = 0.2 and varying fractional integration orders dy and dx. DGP 1 is configured with
memory parameters (dy, dx) = (0.30, 0.45); DGP 2 with (dy, dx) = (0.30, 0.80); DGP 3 with (dy, dx) = (0.55, 0.45);
and DGP 4 with (dy, dx) = (0.55, 0.80). The fractional filtering in the first step of the local spectrum procedure
is based on ELW estimates of the memory parameter, where the bandwidth is implemented as bn%c with % =
(0.75, 0.75, 0.75, 0.71, 0.71)′, corresponding to the five respective sets of tuning parameters for the second stage
MBLS regression; see Shimotsu & Phillips (2005) and Shimotsu (2010) for implementation details. Two sample
sizes are considered, n = {300, 650}, corresponding well with the respective sizes of the subsample and full sample,
see Tables 1 and 2. The simulations are carried out with 1,000 replications.
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Size and Power of the Local Spectrum Test: ELW

DGP 1 DGP 2

n = 300 n = 650 n = 300 n = 650

Implementation: ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2

(ν, κ) = (0.21, 0.749) 5.60 65.50 5.00 89.50 5.20 63.30 4.20 88.50

(ν, κ) = (0.25, 0.749) 5.60 65.40 5.20 88.90 5.20 63.10 5.10 88.30

(ν, κ) = (0.30, 0.749) 5.60 65.60 5.10 89.50 5.20 63.10 4.90 88.50

(ν, κ) = (0.25, 0.65) 6.50 42.30 5.00 64.50 6.30 41.30 4.80 62.90

(ν, κ) = (0.25, 0.70) 6.10 54.00 5.10 76.60 6.30 52.80 4.80 74.90

DGP 3 DGP 4

n = 300 n = 650 n = 300 n = 650

Implementation: ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2

(ν, κ) = (0.21, 0.749) 5.70 66.20 5.00 89.10 5.50 63.80 4.00 88.30

(ν, κ) = (0.25, 0.749) 6.00 66.10 5.20 89.10 5.30 63.50 5.10 88.30

(ν, κ) = (0.30, 0.749) 6.00 66.60 5.30 89.20 5.40 63.80 4.90 88.50

(ν, κ) = (0.25, 0.65) 6.40 42.30 5.50 64.90 5.80 40.50 5.00 62.70

(ν, κ) = (0.25, 0.70) 7.00 53.50 5.30 75.70 6.50 52.30 4.90 74.40

Table C.2: Size and power of the LCM test. This table displays the size (ρ = 0) and power (ρ 6= 0) of the
proposed local spectrum test from Theorem 2, LCM(`,m), as a function of the MBLS trimming and bandwidth
parameters, defined by ` = nν and m = nκ, respectively. As described in Section 6, the tuning parameters are fixed
according to the asymptotic theory and the DGPs are simulated as in Hong (1996) and Shao (2009). Specifically,
two (possibly, correlated) fractional ARMA(1, 0) processes are simulated with φy = φx = 0.2 and varying fractional
integration orders dy and dx. DGP 1 is configured with memory parameters (dy, dx) = (0.30, 0.45); DGP 2 with
(dy, dx) = (0.30, 0.80); DGP 3 with (dy, dx) = (0.55, 0.45); and DGP 4 with (dy, dx) = (0.55, 0.80). The fractional
filtering in the first step of the local spectrum procedure is based on ELW estimates of the memory parameter, where
the bandwidth is implemented as bn%c with % = (0.75, 0.75, 0.75, 0.71, 0.71)′, corresponding to the five respective sets
of tuning parameters for the second stage MBLS regression; see Shimotsu & Phillips (2005) and Shimotsu (2010) for
details. All tests are implemented with νG = 0.25 and κG = 0.9. Two sample sizes are considered, n = {300, 650},
corresponding well with the respective sizes of the subsample and full sample, see Tables 1 and 2. All tests are
implemented with a nominal size of 5%. The simulations are carried out with 1,000 replications.
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Bias and RMSE of the Local Spectrum Estimator: Robust to AR(2)

DGP 1: Bias DGP 2: Bias

n = 300 n = 650 n = 300 n = 650

Implementation: ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2

(ν, κ) = (0.21, 0.799) 0.0033 -0.0092 0.0026 -0.0004 0.0033 -0.0083 0.0025 0.0002

(ν, κ) = (0.25, 0.799) 0.0029 -0.0095 0.0028 -0.0002 0.0030 -0.0086 0.0028 0.0005

(ν, κ) = (0.30, 0.799) 0.0033 -0.0093 0.0028 -0.0001 0.0033 -0.0083 0.0028 0.0005

(ν, κ) = (0.25, 0.70) 0.0045 -0.0072 0.0034 0.0006 0.0045 -0.0064 0.0033 0.0014

(ν, κ) = (0.25, 0.75) 0.0034 -0.0088 0.0029 0.0000 0.0034 -0.0080 0.0028 0.0007

DGP 3: Bias DGP 4: Bias

n = 300 n = 650 n = 300 n = 650

Implementation: ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2

(ν, κ) = (0.21, 0.799) 0.0024 -0.0114 0.0028 -0.0010 0.0026 -0.0111 0.0027 -0.0003

(ν, κ) = (0.25, 0.799) 0.0023 -0.0113 0.0030 -0.0006 0.0024 -0.0110 0.0029 0.0000

(ν, κ) = (0.30, 0.799) 0.0028 -0.0109 0.0030 -0.0005 0.0032 -0.0104 0.0029 0.0001

(ν, κ) = (0.25, 0.70) 0.0037 -0.0098 0.0036 -0.0003 0.0036 -0.0099 0.0035 0.0005

(ν, κ) = (0.25, 0.75) 0.0026 -0.0111 0.0031 -0.0006 0.0027 -0.0110 0.0029 0.0001

DGP 1: RMSE DGP 2: RMSE

n = 300 n = 650 n = 300 n = 650

Implementation: ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2

(ν, κ) = (0.21, 0.799) 0.0782 0.0848 0.0546 0.0564 0.0786 0.0848 0.0548 0.0560

(ν, κ) = (0.25, 0.799) 0.0789 0.0853 0.0547 0.0564 0.0793 0.0852 0.0549 0.0559

(ν, κ) = (0.30, 0.799) 0.0782 0.0845 0.0550 0.0566 0.0787 0.0845 0.0552 0.0563

(ν, κ) = (0.25, 0.70) 0.1113 0.1176 0.0786 0.0806 0.1113 0.1176 0.0789 0.0805

(ν, κ) = (0.25, 0.75) 0.0934 0.0997 0.0644 0.0664 0.0934 0.0995 0.0647 0.0661

DGP 3: RMSE DGP 4: RMSE

n = 300 n = 650 n = 300 n = 650

Implementation: ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2

(ν, κ) = (0.21, 0.799) 0.0829 0.0866 0.0546 0.0568 0.0833 0.0870 0.0549 0.0564

(ν, κ) = (0.25, 0.799) 0.0836 0.0869 0.0547 0.0565 0.0840 0.0873 0.0550 0.0561

(ν, κ) = (0.30, 0.799) 0.0826 0.0859 0.0550 0.0569 0.0829 0.0861 0.0553 0.0566

(ν, κ) = (0.25, 0.70) 0.1189 0.1202 0.0786 0.0804 0.1190 0.1206 0.0790 0.0804

(ν, κ) = (0.25, 0.75) 0.0993 0.1019 0.0644 0.0663 0.0994 0.1022 0.0647 0.0661

Table C.3: Bias and RMSE of the LCM estimator. This table displays the bias and RMSE of the local
spectrum estimator, B̂(`,m), for ρ = {0, 0.2} as a function of the trimming and bandwidth parameters, ` = nν

and m = nκ, respectively. As described in Section 6, the tuning parameters are fixed according to the asymptotic
theory and the DGPs are simulated as in Hong (1996) and Shao (2009). Two fractional ARMA(2, 0) processes
are simulated with φl,y = φl,x = 0.2 for lags l = 1, 2 and varying fractional integration orders dy and dx. DGP
1 is configured with memory parameters (dy, dx) = (0.30, 0.45); DGP 2 with (dy, dx) = (0.30, 0.80); DGP 3 with
(dy, dx) = (0.55, 0.45); and DGP 4 with (dy, dx) = (0.55, 0.80). The fractional filtering in the first step of the local
spectrum procedure is based on ARFIMA parameter estimates of the memory parameter, where one AR lag has
been included; see Hualde & Robinson (2011) and Nielsen (2015). Two sample sizes are considered, n = {300, 650},
corresponding well with the respective sizes of the subsample and full sample, see Tables 1 and 2. The simulations
are carried out with 1,000 replications.
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Size and Power of the Local Spectrum Test: Robust to AR(2)

DGP 1 DGP 2

n = 300 n = 650 n = 300 n = 650

Implementation: ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2

(ν, κ) = (0.21, 0.799) 6.60 74.60 5.80 95.90 7.60 74.50 5.70 96.20

(ν, κ) = (0.25, 0.799) 6.90 74.60 5.40 96.20 7.50 74.50 5.70 96.40

(ν, κ) = (0.30, 0.799) 7.10 73.60 5.50 95.90 7.50 73.90 6.00 96.20

(ν, κ) = (0.25, 0.70) 8.80 52.30 5.90 76.20 9.10 52.90 6.10 76.30

(ν, κ) = (0.25, 0.75) 7.90 63.50 5.90 88.80 8.10 63.60 5.70 88.90

DGP 3 DGP 4

n = 300 n = 650 n = 300 n = 650

Implementation: ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2

(ν, κ) = (0.21, 0.799) 7.10 73.80 5.60 95.80 8.10 73.40 5.80 96.10

(ν, κ) = (0.25, 0.799) 7.40 73.90 5.20 96.20 7.80 73.00 5.40 96.30

(ν, κ) = (0.30, 0.799) 7.80 73.20 5.20 95.80 8.20 73.20 5.50 96.00

(ν, κ) = (0.25, 0.70) 9.20 51.60 5.80 75.80 9.30 51.60 6.10 75.70

(ν, κ) = (0.25, 0.75) 8.50 62.70 5.80 88.50 8.70 62.20 5.70 88.30

Table C.4: Size and power of the LCM test. This table displays the size (ρ = 0) and power (ρ 6= 0) of the
proposed local spectrum test from Theorem 2, LCM(`,m), as a function of the MBLS trimming and bandwidth
parameters, defined by ` = nν and m = nκ, respectively. As described in Section 6, the tuning parameters are fixed
according to the asymptotic theory and the DGPs are simulated as in Hong (1996) and Shao (2009). Specifically,
two (possibly, correlated) fractional ARMA(2, 0) processes are simulated with φl,y = φl,x = 0.2 for lags l = 1, 2 and
varying fractional integration orders dy and dx. DGP 1 is configured with memory parameters (dy, dx) = (0.30, 0.45);
DGP 2 with (dy, dx) = (0.30, 0.80); DGP 3 with (dy, dx) = (0.55, 0.45); and DGP 4 with (dy, dx) = (0.55, 0.80). The
fractional filtering in the first step of the local spectrum procedure is based on ARFIMA parameter estimates of the
memory parameter, where one AR lag has been included; see Hualde & Robinson (2011) and Nielsen (2015). All
tests are implemented with νG = 0.25 and κG = 0.9. Two sample sizes are considered, n = {300, 650}, corresponding
well with the respective sizes of the subsample and full sample, see Tables 1 and 2. All tests are implemented with
a nominal size of 5%. The simulations are carried out with 1,000 replications.
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Bias and RMSE of the Local Spectrum Estimator: ELW, Robust to AR(2)

DGP 1: Bias DGP 2: Bias

n = 300 n = 650 n = 300 n = 650

Implementation: ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2

(ν, κ) = (0.21, 0.749) 0.0010 -0.0025 0.0022 0.0005 0.0006 -0.0048 0.0027 -0.0002

(ν, κ) = (0.25, 0.749) 0.0008 -0.0026 0.0024 0.0007 0.0004 -0.0049 0.0029 0.0001

(ν, κ) = (0.30, 0.749) 0.0008 -0.0025 0.0024 0.0008 0.0004 -0.0047 0.0029 0.0002

(ν, κ) = (0.25, 0.65) -0.0001 -0.0041 0.0049 0.0039 -0.0006 -0.0057 0.0060 0.0012

(ν, κ) = (0.25, 0.70) 0.0012 -0.0026 0.0029 0.0019 0.0009 -0.0048 0.0035 -0.0017

DGP 3: Bias DGP 4: Bias

n = 300 n = 650 n = 300 n = 650

Implementation: ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2

(ν, κ) = (0.21, 0.749) 0.0011 -0.0015 0.0022 0.0009 0.0007 -0.0038 0.0027 0.0001

(ν, κ) = (0.25, 0.749) 0.0009 -0.0016 0.0024 0.0011 0.0005 -0.0039 0.0029 0.0004

(ν, κ) = (0.30, 0.749) 0.0008 -0.0016 0.0024 0.0011 0.0005 -0.0038 0.0029 0.0005

(ν, κ) = (0.25, 0.65) 0.0009 -0.0024 0.0049 0.0041 0.0004 -0.0040 0.0060 0.0014

(ν, κ) = (0.25, 0.70) 0.0019 -0.0014 0.0029 0.0020 0.0015 -0.0036 0.0035 -0.0015

DGP 1: RMSE DGP 2: RMSE

n = 300 n = 650 n = 300 n = 650

Implementation: ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2

(ν, κ) = (0.21, 0.749) 0.0875 0.0873 0.0645 0.0642 0.0873 0.0883 0.0656 0.0681

(ν, κ) = (0.25, 0.749) 0.0879 0.0875 0.0647 0.0644 0.0877 0.0884 0.0659 0.0681

(ν, κ) = (0.30, 0.749) 0.0883 0.0878 0.0650 0.0646 0.0881 0.0885 0.0661 0.0682

(ν, κ) = (0.25, 0.65) 0.1212 0.1220 0.0914 0.0915 0.1222 0.1238 0.0924 0.0971

(ν, κ) = (0.25, 0.70) 0.1026 0.1038 0.0778 0.0782 0.1025 0.1046 0.0780 0.0817

DGP 3: RMSE DGP 4: RMSE

n = 300 n = 650 n = 300 n = 650

Implementation: ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2

(ν, κ) = (0.21, 0.749) 0.0879 0.0879 0.0644 0.0642 0.0878 0.0887 0.0656 0.0680

(ν, κ) = (0.25, 0.749) 0.0883 0.0880 0.0647 0.0643 0.0881 0.0888 0.0659 0.0681

(ν, κ) = (0.30, 0.749) 0.0886 0.0882 0.0649 0.0646 0.0885 0.0889 0.0661 0.0682

(ν, κ) = (0.25, 0.65) 0.1215 0.1219 0.0911 0.0912 0.1227 0.1237 0.0922 0.0968

(ν, κ) = (0.25, 0.70) 0.1029 0.1040 0.0777 0.0783 0.1031 0.1048 0.0780 0.0817

Table C.5: Bias and RMSE of the LCM estimator. This table displays the bias and RMSE of the local
spectrum estimator, B̂(`,m), for ρ = {0, 0.2} as a function of the trimming and bandwidth parameters, ` = nν

and m = nκ, respectively. As described in Section 6, the tuning parameters are fixed according to the asymptotic
theory and the DGPs are simulated as in Hong (1996) and Shao (2009). Two fractional ARMA(2, 0) processes
are simulated with φl,y = φl,x = 0.2 for lags l = 1, 2 and varying fractional integration orders dy and dx. DGP
1 is configured with memory parameters (dy, dx) = (0.30, 0.45); DGP 2 with (dy, dx) = (0.30, 0.80); DGP 3 with
(dy, dx) = (0.55, 0.45); and DGP 4 with (dy, dx) = (0.55, 0.80). The fractional filtering in the first step of the local
spectrum procedure is based on ELW estimates of the memory parameter, where the bandwidth is implemented
as bn%c with % = (0.75, 0.75, 0.75, 0.71, 0.71)′, corresponding to the five respective sets of tuning parameters for the
second stage MBLS regression; see Shimotsu & Phillips (2005) and Shimotsu (2010) for details. Two sample sizes
are considered, n = {300, 650}, corresponding well with the respective sizes of the subsample and full sample, see
Tables 1 and 2. The simulations are carried out with 1,000 replications.
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Size and Power of the Local Spectrum Test: ELW, Robust to AR(2)

DGP 1 DGP 2

n = 300 n = 650 n = 300 n = 650

Implementation: ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2

(ν, κ) = (0.21, 0.749) 6.10 65.60 5.90 89.40 6.40 63.40 7.00 87.50

(ν, κ) = (0.25, 0.749) 6.40 65.10 5.50 89.60 6.30 63.60 7.10 87.90

(ν, κ) = (0.30, 0.749) 6.50 65.10 6.20 89.10 6.50 63.70 6.90 87.20

(ν, κ) = (0.25, 0.65) 6.00 42.30 5.90 65.80 7.30 41.70 6.90 61.40

(ν, κ) = (0.25, 0.70) 7.00 54.50 6.20 76.80 6.60 52.20 5.80 74.70

DGP 3 DGP 4

n = 300 n = 650 n = 300 n = 650

Implementation: ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2 ρ = 0 ρ = 0.2

(ν, κ) = (0.21, 0.749) 6.00 66.90 6.10 89.60 6.30 63.50 7.10 87.90

(ν, κ) = (0.25, 0.749) 6.10 65.80 5.60 89.50 6.20 64.30 7.20 87.80

(ν, κ) = (0.30, 0.749) 6.20 65.70 6.10 89.10 6.40 64.00 6.90 87.20

(ν, κ) = (0.25, 0.65) 6.50 43.60 6.00 65.40 7.60 41.80 6.90 61.20

(ν, κ) = (0.25, 0.70) 7.40 54.50 5.80 76.80 6.80 52.70 6.10 74.30

Table C.6: Size and power of the LCM test. This table displays the size (ρ = 0) and power (ρ 6= 0) of the
proposed local spectrum test from Theorem 2, LCM(`,m), as a function of the MBLS trimming and bandwidth
parameters, defined by ` = nν and m = nκ, respectively. As described in Section 6, the tuning parameters are fixed
according to the asymptotic theory and the DGPs are simulated as in Hong (1996) and Shao (2009). Specifically,
two (possibly, correlated) fractional ARMA(2, 0) processes are simulated with φl,y = φl,x = 0.2 for lags l = 1, 2 and
varying fractional integration orders dy and dx. DGP 1 is configured with memory parameters (dy, dx) = (0.30, 0.45);
DGP 2 with (dy, dx) = (0.30, 0.80); DGP 3 with (dy, dx) = (0.55, 0.45); and DGP 4 with (dy, dx) = (0.55, 0.80).
The fractional filtering in the first step of the local spectrum procedure is based on ELW estimates of the memory
parameter, where the bandwidth is implemented as bn%c with % = (0.75, 0.75, 0.75, 0.71, 0.71)′, corresponding to
the five respective sets of tuning parameters for the second stage MBLS regression; see Shimotsu & Phillips (2005)
and Shimotsu (2010) for details. All tests are implemented with νG = 0.25 and κG = 0.9. Two sample sizes
are considered, n = {300, 650}, corresponding well with the respective sizes of the subsample and full sample, see
Tables 1 and 2. All tests are implemented with a nominal size of 5%. The simulations are carried out with 1,000
replications.

45



References

Christensen, B. J. & Varneskov, R. T. (2017), ‘Medium band least squares estimation of fractional cointegration

in the presence of low-frequency contamination’, Journal of Econometrics 197, 218–244.

Davidson, J. (2002), Stochastic Limit Theory, Oxford University Press.

Hall, P. & Heyde, C. C. (1980), Martingale Limit Theory and Its Appplication, Boston: Academic Press.

Hong, Y. (1996), ‘Testing for independence between two covariance stationary time series’, Biometrika 83, 615–

625.

Hualde, J. & Robinson, P. M. (2011), ‘Gaussian pseudo-maximum likelihood estimation of fractional time series

models’, Annals of Statistics 39, 3152–3181.

Lobato, I. (1997), ‘Consistency of averaged cross-periodogram in long memory series’, Journal of Time Series

Analysis 18, 137–155.

Lobato, I. (1999), ‘A semiparametric two-step estimator in a multivariate long memory model’, Journal of

Econometrics 90, 129–155.

Nielsen, M. O. (2015), ‘Asymptotics for the conditional-sum-of-squares estimator in mutivariate fractional time

series models’, Journal of Time Series Analysis 36, 154–188.

Nielsen, M. O. & Frederiksen, P. (2011), ‘Fully modified narrow-band least squares estimation of weak fractional

cointegration’, The Econometrics Journal 14(1), 77–120.

Phillips, P. C. & Shimotsu, K. (2004), ‘Local whittle estimation in nonstationary and unit root cases’, The

Annals of Statistics 32, 656–692.

Robinson, P. M. (1995), ‘Gaussian semiparametric estimation of long range dependence’, The Annals of Statistics

23, 1630–1661.

Robinson, P. M. & Marinucci, D. (2003), ‘Semiparametric frequency domain analysis of fractional cointegration’.

In: Robinson, P.M. (Ed.), Time Series with Long Memory. Oxford University Press, Oxford, pp. 334-373.

Shao, X. (2009), ‘A generalized portmanteau test for independence between two stationary time series’, Econo-

metric Theory 25, 195–210.

Shiller, R. (2000), Irrational Exuberance, Princeton University Press, United States.

Shimotsu, K. (2010), ‘Exact local whittle estimation of fractional integration with unkown mean and time trend’,

Econometric Theory 26, 501–540.

Shimotsu, K. & Phillips, P. C. (2005), ‘Exact local whittle estimation of fractional integration’, The Annals of

Statistics 32, 656–692.

Varneskov, R. T. (2016), ‘Flat-top realized kernel estimation of quadratic covariation with nonsynchronous and

noisy asset prices’, Journal of Business and Economic Statistics 31(1), 1–22.

Varneskov, R. T. (2017), ‘Estimating the quadratic variation spectrum of noisy asset prices using generalized

flat-top realized kernels’, Econometric Theory 33(6), 1457–1501.

46


