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Abstract

The Malmquist index is widely used in empirical studies of productivity change over
time. The index is based on estimates of the frontier obtained from the convex en-
velopment of the data as in DEA. The statistical properties of the Malmquist index
and its components, i.e. the frontier shift and the efficiency change, have until re-
cently only been subject to a limited number of studies. The asymptotic properties
of the geometric mean of the individual Malmquist indexes are studied in Kneip et al.
(2018). Permutation tests for performing statistical inference in finite samples were
recently introduced in Asmild et al. (2018) and are easily performed. In the present
paper we illustrate the permutation methods by an analysis of data comprising or-
ganic and conventional dairy farms in Denmark from 2011-2015. Further, differences
between the frontiers of the production possibility sets for two separate samples are
studied, specifically those of the organic and the conventional producers. We sug-
gest to use jackknife methods when estimating the differences to ensure that these
are not affected by the well-known bias originating from estimation of the frontier.
In summary, the paper offers an illustration of how to analyse productivity data, in
particular a comparison of two independent groups, and furthermore an analysis of
how the separate groups evolve over time is provided.

Keywords: Malmquist index, frontier differences, Data Envelopment Analysis (DEA), in-
dependent samples, permutation tests, organic farming.
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1 Introduction

Using the Malmquist index to measure productivity change over time was proposed by

Caves et al. (1982). Following Färe et al. (1992), the productivity change is frequently

calculated using non-parametric data envelopment analysis (DEA) to estimate the relevant

frontiers. The Malmquist index and its components, measuring changes in efficiency and in

technology between two time periods respectively, are subsequently determined, and typi-

cally the geometric means of the individual indexes are reported. However, these indexes

are often interpreted without any associated measures of uncertainty. Simar and Wilson

(1999) propose methods for calculating confidence intervals for the Malmquist index and

its components using bootstrapping. Kneip et al. (2018) note that this bootstrap method

is not based on theoretical results, and provide methods for calculating asymptotic confi-

dence intervals for the Malmquist index. However, this method is only applicable for the

Malmquist index itself and not for the frontier shift nor the efficiency change components.

To the best of our knowledge, Asmild et al. (2018) are the first to suggest exact statistical

tests to assess the significance of the Malmquist index as well as of its components. The

present paper reviews the permutation tests recently developed by Asmild et al. (2018) and

provides an application hereof. Furthermore, where the Malmquist index is used to analyze

changes over time for balanced panel data, comparisons of frontiers for separate groups in

terms of the relative location of the group specific frontiers, provide information about

which group technology offers superior production possibilities. Comparison of frontiers

can be performed by calculating an index almost similar to the frontier change index for

two time periods which is also presented in the present paper.

The various approaches are used to analyze the case of dairy farms in Denmark, over a

number of years, with focus on comparison of the performance over time of organic and

conventional dairy farming. The development of the dairy industry over time is, of course,

relevant to practitioners and policy makers alike. Furthermore, it is of particular impor-

tance to distinguish between organic and conventional farms, not only with respect to the

relative locations of their frontiers, but also concerning the development over time of the

productivity within each of the groups. This has implications for, for example, policy in-
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terventions.

2 Methodology

Using standard notation, let input and output quantities be denoted by (x, y) ∈ Rp+q
+ .

Under the usual assumptions of closedness, convexity and strong disposability in both

inputs and outputs, the production possibility set is given as

Ψ = {(x, y) ∈ Rp+q
+ | x can produce y},

and the efficient frontier of Ψ is defined as

Ψδ = {(x, y) ∈ Ψ | (γ−1x, γy) /∈ Ψ, ∀γ > 1}.

The technical input efficiency index of Farrell (1957) is defined as

θ(x, y) = inf{θ > 0| (θx, y) ∈ Ψ}.

The production possibility set Ψ is unobserved and can in empirical applications be esti-

mated from a set of n observations of random variables, (Xi, Yi), i = 1, . . . , n, which are

assumed to be independent and identically distributed, such that (Xi, Yi) has distribution

F for all i = 1, . . . , n. Denoting X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn), the estimate, Ψ̂,

of the production possibility set assuming constant return to scale (CRS) is

Ψ̂ = {(x, y) ∈ Rp+q
+ |∃ω ∈ Rn

+ : x ≥ Xω, y ≤ Yω},

and the input efficiency for (x, y) can be estimated as θ̂(x, y) = inf{θ ∈ R+| (θx, y) ∈ Ψ̂}

or equivalently using the standard DEA linear programming formulation:

θ̂(x, y) = min
θ,ω
{θ | θx ≥ Xω, y ≤ Yω, ω ∈ Rn

+}.

Consider a situation, where each unit is observed in two time periods, t1 and t2, such that

we are given observations from the random variables (X t1
i , Y

t1
i ) and (X t2

i , Y
t2
i ) for the two

time periods, respectively. We will allow the possibility set and the distribution of the

variables to differ between the two time periods, and therefore we introduce the notation
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Ψt, Ψδ
t , and Ft for the possibility set, the frontier, and the distribution of the random

variables (X t
i , Y

t
i ) in time period t ∈ {t1, t2}. We shall allow dependence between variables

from the same unit in different time periods, i.e. (X t1
i , Y

t1
i ) and (X t2

i , Y
t2
i ), while there is

(still) independence between variables concerning different units.

The traditional Malmquist index of productivity change (see e.g. Färe et al. 1992), from

one period t1 to another t2 for unit i observed in both time periods is defined as

M(X t1
i , Y

t1
i , X

t2
i , Y

t2
i ) =

∏
t∈{t1,t2}

(
θ̂t(X t2

i , Y
t2
i )

θ̂t(X t1
i , Y

t1
i )

) 1
2

,

where θ̂t denotes the efficiency estimated relative to the frontier for time t, i.e.

θ̂t(x, y) = min
θ,ω
{θ | θx ≥ Xtω, y ≤ Ytω, ω ∈ Rn

+}, t ∈ {t1, t2}.

We consider the geometric mean of the calculated Malmquist indices i.e.

TM =
n∏
i=1

M(X t1
i , Y

t1
i , X

t2
i , Y

t2
i )

1
n , (1)

which can be interpreted as the productivity change for the whole technology, similar to

the logic of the global indexes of Asmild and Tam (2007). The Malmquist index is often

decomposed into two effects; the frontier shift and the efficiency change. The frontier shift

for an individual unit (X t
i , Y

t
i ) is defined as

FSti =
θ̂t1(X t

i , Y
t
i )

θ̂t2(X t
i , Y

t
i )
, t ∈ {t1, t2},

and the frontier shift component of the Malmquist index is the geometric mean of FSti over

t ∈ {t1, t2},

FS(X t1
i , Y

t1
i , X

t2
i , Y

t2
i ) =

(
FSt1i × FS

t2
i

) 1
2 .

The efficiency change between t1 and t2 for unit i is given as

EC(X t1
i , Y

t1
i , X

t2
i , Y

t2
i ) =

θ̂t2(X t2
i , Y

t2
i )

θ̂t1(X t1
i , Y

t1
i )

.
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With the above notation, the geometric mean of the frontier shift component can be written

TFS =
n∏
i=1

FS(X t1
i , Y

t1
i , X

t2
i , Y

t2
i )

1
n , (2)

and similarly the geometric mean of the efficiency change is

TEC =
n∏
i=1

EC(X i
t1
, Y i

t1
, X i

t2
, Y i

t2
)

1
n . (3)

Note that M(X t1
i , Y

t1
i , X

t2
i , Y

t2
i ) = FS(X t1

i , Y
t1
i , X

t2
i , Y

t2
i ) × EC(X t1

i , Y
t1
i , X

t2
i , Y

t2
i ) and

TM = TFS × TEC . All these statistics are positive.

The statistic TFS can be used as a measure of how the two possibility sets Ψt2 and Ψt1

are placed relative to each other. A TFS greater than 1 indicates that the possibility set

generally is smaller in time t1 than in time t2. Since intersections of the frontiers are pos-

sible, when TFS > 1 we can not generally conclude that Ψt1 is a subset of Ψt2 . For a more

thorough discussion of the properties and the interpretation of the statistic see Asmild et

al. (2018).

While the Malmquist Index and the efficiency change component are only defined for bal-

anced panel data sets, the (geometric mean of the) frontier shift can also be estimated for

unbalanced panels, with nt1 and nt2 observations in the two time periods respectively:

T uFS =
∏

t∈{t1,t2}

nt∏
i=1

(FSti )
1

nt1
+nt2 . (4)

If, like in the present analysis, there are separate (independent) groups within the data set,

the above analysis can be done within each of the groups, letting (Xg,t
i , Y g,t

i ) , i = 1., . . . , ng

denote observations from group g, g = 1, . . . , G in time period t. In the empirical example

we consider G = 2 separate groups of organic and conventional farms respectively, as well

as analysis done on the full data set.

Besides comparing frontiers over time (possibly within a given group), we are here also

interested in comparing the frontiers for the two independent groups (organic and conven-

tional producers) at a fixed time. Similar to the definitions above, the geometric mean of
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the difference between the two groups’ frontiers is defined as the ratio of the efficiencies

relative to each of the two frontiers

T g1,g2FD =
∏

g∈{g1,g2}

ng∏
i=1

(
θ̂g1(Xg

i , Y
g
i )

θ̂g2(Xg
i , Y

g
i )

) 1
ng1+ng2

, (5)

which for subsequent use can be decomposed as

T g1,g2FD =

ng1∏
i=1

(
θ̂g1(Xg1

i , Y
g1
i )

θ̂g2(Xg1
i , Y

g1
i )

) 1
ng1


ng1

ng1+ng2

×

ng2∏
i=1

(
θ̂g1(Xg2

i , Y
g2
i )

θ̂g2(Xg2
i , Y

g2
i )

) 1
ng2


ng2

ng1+ng2

, (6)

i.e. a weighted product of geometric means of the difference between the two groups’ fron-

tiers for observations from each of the two groups, which indicates the relative location of

the two possibility sets.

It is well known that the estimate of the production possibility set is downward biased and

therefore the efficiency scores are biased too. The bias decreases with increasing number

of observations, so with large differences between the sizes of the two groups, the numera-

tor and the denominator in (4) and (5) are determined with quite different biases. For a

review of the asymptotic properties of the efficiency estimates see Simar and Wilson (2015).

Jackknifing methods can be used to address the issue of (differences in) biases by ensuring

that whenever two frontiers are compared the frontier estimates are based on groups of

equal sizes: From the larger group, draw without replacement the same number of observa-

tions as in the smaller group, and calculate the relevant statistic ( T uFS or T g1,g2FD ). Repeat

this a large number of times, say 1000, and calculate the geometric mean of the frontier

difference measures (4) resp. (5) over the jackknife replications.

If the jackknifed T g1,g2FD is greater than 1, this indicates that the possibility set for g1 is

smaller than that for g2, implying that the g2 technology (on average) offers better pro-

duction possibilities (and similarly for T uFS). However, considering the two components

of T g1,g2FD in (6) provides additional information. Particularly, if one of the components is

larger than 1 and the other smaller than 1, this implies that neither production possibility
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set is a subset of the other, meaning that their frontiers intersect. Furthermore, it also

implies that the observations in the two groups are located differently in the production

space. This can be further investigated by considering the input- and output mixes in

the groups, for example represented by the dimension-specific contributions to the overall

length of the input- (or output) vector, Xi

||Xi|| (respectively Yi
||Yi||). Analysis hereof can, for

example, be performed using the methodology of Asmild et al. (2016), by transforming the

contributions into angles, φ, using the inverse cosine.1

2.1 Statistical inference of the Malmquist index and its compo-

nents

To test the significance of the changes over time, i.e. of the Malmquist Index and its

components, within each of the separate groups, we utilize permutation tests. Overall,

the hypothesis we wish to test is that (X t1 , Y t1 , X t2 , Y t2) and (X t2 , Y t2 , X t1 , Y t1) have the

same distribution, i.e. that the distribution in time period t1 can be interchanged with the

distribution in time period t2. For this we use three tests designed to detect different forms

of deviations from this hypothesis.

We first present the test procedures for balanced panels as described in detail in Asmild et

al. (2018). The procedure compares the observed values of the test statistics TM , TFS and

TEC given in (1), (2) and (3), respectively, with N similar values of the test statistics cal-

culated based on appropriate permutations of the original dataset: Each of the permuted

datasets are obtained by interchanging every pair of observations (X t1
i , Y

t1
i ) and (X t2

i , Y
t2
i )

randomly with probability 0.5 and independently for different i = 1, . . . , n.

Under the hypothesis being tested, the test statistics TM , TFS and TEC based on the orig-

inal dataset all have the same distributions as their N permuted counterparts calculated

1It is here worth noting that these angles are not scale invariant. Therefore, one should ensure that all

input (output) variables are measured in similar metrics, like e.g. in the present case where all inputs are

costs and the outputs are revenues.
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from permuted versions of the dataset. Thus, significance probabilities are obtained by

finding the proportion of simulated test statistics that are further away from 1 than the

observed test statistic.

As discussed in Asmild et al. (2018) a set of three tests can be used to identify the nature

of any differences between the two time periods: If the value of TM is significantly different

from one, an overall deviation from the null hypothesis can be concluded i.e. that there is

some difference between the distributions Ft1 and Ft2 in the two periods. If, furthermore,

the test associated with TFS is significantly different from one, the deviation from the null

hypothesis is of such nature that the two frontiers are different or at least that the distri-

butions Ft1 and Ft2 are different near the frontier. If, on the other hand, TEC has a value

significantly different from one, the the null hypothesis is rejected because the efficiency

distributions are different in the two periods.

As mentioned in the previous section, the test statistic for frontier shift, TFS, can be gen-

eralized to an unbalanced version, T uFS, as formulated in equation (4) in order to take

all available information into consideration. To perform a significance test, the permuta-

tion procedure for producing N permuted datasets also has to be modified: All complete

observation pairs (X t1
i , Y

t1
i ) and (X t2

i , Y
t2
i ) are randomly interchanged as before. All re-

maining observations, that by assumption are independent and furthermore are identically

distributed under the null hypothesis, are permuted and divided randomly into the two

groups such that the two group sizes remains unchanged in the permuted dataset. Finally,

a significance probability is obtained by comparing the observed (original) value of TFS

with the empirical distribution of the test statistic when based on each of the N permuted

datasets.

It should be noted, that while there is unequal bias when estimating the frontiers for the

two groups of different sizes, this will not give problems in the described test procedure as

long as the sizes of the groups are fixed in all permutations of the dataset. Thereby the

observed test statistic is still comparable with the permuted counterparts.
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3 Danish dairy farms

The dataset is provided by SEGES (who amongst other things provide specialist advisory

services to the Danish agricultural sector) and contains annual farm-level accounting data

from the years 2011-2015. For the current analysis, only full-time farmers specialized in

dairy production and with at least 100 dairy cows and at least 25 hectares of cultivated

land are included. Observations with problematic data based on various screening criteria

are excluded (as detailed in Lillethorup, 2017), resulting in an only partly balanced data

set comprising between 1355 and 1567 observations in each year.

The variables included in the efficiency models are:

Inputs:

• Feed costs (costs of purchasing grains and fodder)

• Labour costs (estimated value of family labour plus paid labour)

• Other variable costs, OVC (including energy, fuel, fertilizer, veterinary costs etc.)

• Fixed costs, FC (including costs of maintenance, taxes, insurances etc.)

• Capital costs (defined as 4% of the value of the tangible assets, including land)

Outputs:

• Milk revenue

• Other (output) revenue, OO (revenue from all other outputs)

Descriptive statistics of the variables in each year, for both the conventional and the organic

producers, are provided in Table 1.

Insert Table 1 about here

In Section 4 below we illustrate how the approaches outlined in Section 2, when used

together can provide various insights on the development over time of the Danish dairy
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producers, as well as on the differences between conventional and organic farms.

4 Results

4.1 Frontier differences

Comparison of the organic and conventional farms is performed within each of the five

years. The frontier differences are here defined as the efficiency scores relative to the fron-

tier for the organic farms divided by the efficiency scores relative to the frontier for the

conventional farms. Frontier difference measures (TFD) larger than 1 means that the ob-

servations on average are closer to the organic frontier than to the conventional frontier,

implying that the conventional technology (on average) offers better production possibili-

ties.

First, consider the geometric mean frontier difference within each of the two subgroups, ac-

counting for different sample sizes using the described jackknife technique. The results are

shown in the upper part of Table 2 where it is seen, that during the study period the organic

farms on average are located nearer the production frontier for the conventional farms than

that for the organic farms, implying that the organic technology (on average) offers better

production possibilities in the directions determined by the locations of the organic farms.

Conversely, for the conventional farms the frontier difference measures are larger than one

in 2012-2014, implying that the conventional technology (on average) offers better produc-

tion possibilities in the directions determined by the locations of the conventional farms in

2012-2014. However, in 2015 the frontier difference measure for the conventional farms is

smaller than one, implying that the organic technology now offers better possibilities for

the conventional farms (as well as for the organic farms). The (geometric) average of the

frontier differences for the organic and the conventional farms, is in all years smaller than

or equal to one, indicating that the organic technology overall tend to be superior (after

controlling for sample size biases).
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Calculating the frontier differences without jackknifing yields the results in the lower part

of Table 2, which give substantially different (and misleading) conclusions. In particular,

that the mean frontier difference across all the observations is larger than one all years

besides 2015, would lead to the (wrong) conclusion that the conventional technology is

superior in those years. This highlights the importance of controlling for sample size biases

using e.g. jackknifing.

As the organic technology (on average) offers better production possibilities for the organic

farms, but the conventional technology (on average) offers better production possibilities

for the conventional farms in 2012-2014, is evidence of the two frontiers intersecting in (at

least) those years. That the organic farms tend to be located with an input-output mix

where the organic technology offers better possibilities, and similarly for the conventional

farms, makes perfect sense from an economic point of view.

Insert Table 2 about here

4.2 Mix differences

To investigate the differences in input-output mix between the organic and the conventional

farms we express the dimension specific contributions to the overall length of the input and

the output vectors by the angles φ. The average angles for the organic and the conventional

farms in 2015 for each dimension are shown in the top part of Table 3. In the bottom part

of the table test statistics and corresponding p-values for equality of the mean direction in

the truncated ([0, π/2]) approximative normal distribution of the angles (c.f. Asmild et al.

2016).2 are shown.

Insert Table 3 about here

From the mean angles we observe that the average φMilk is much smaller than the average

φOO (for both conventional and organic farms), which implies that the share of revenue

2Note that since there are only two outputs, the angles are complementary and therefore the test

statistics and p values for the two output angles are identical.
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from milk is much larger than that from other outputs.

In terms of the comparison of the organic and the conventional farms we note that there

are significant differences on four out of the five inputs. The difference on labour and on

the outputs are not significant. The organic farms have a larger angle on feed than the

conventional farms, meaning a smaller contribution from feed to the overall length of the

input vector. Correspondingly, the organic farms have a larger contribution from capital

than the conventional farms. This is likely due to the fact that being classified as an or-

ganic dairy farm in Denmark entails requirements for animal welfare, which means that the

organic dairy cows in Denmark must be on pasture for around 6 month during the summer.

This requires additional farmland, but results in saving on hard feed, thus more capital

but less feed costs are necessary for the organic farmers compared to the conventional.

Furthermore, the organic farms have a larger angle thus smaller contribution from other

variable costs than the conventional farms, which is likely because of less veterinary costs

and/or costs associated with pesticides etc.

Performing similar analysis in the other years shows, that the main changes over time is on

the contribution from milk to the overall length of the output vector. Specifically it was

large in 2013 and 2014 (for both organic and conventional farms) but dropped substantially

in 2015. The latter is likely due to a drop in the raw milk prices in the European Union in

2015, as also discussed below.

4.3 Permutation tests for productivity change and its compo-

nents

To further investigate the changes over time the TM (1), TFS (2), and TEC (3) are calculated

for the balanced subsets of the organic, respectively the conventional, farms as well as T uFS

(4) for the unbalanced groups. Further, permutation tests as described in section 2.1 are

performed and shown in Tables 4 and 5.
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Considering the Malmquist indexes for all the year-on-year shifts, we note that the test

statistics for comparisons are extreme, so the null hypothesis is rejected, meaning that the

distributions Ft1 and Ft2 are not interchangeable for either the organic or the conventional

farms. This can be interpreted as significant productivity changes within both groups be-

tween all consecutive time periods. To understand the nature of the productivity changes

we next consider its components i.e. TFS and TEC . For TFS we do not need a balanced

dataset and more information is included when considering the unbalanced version T uFS

shown in the last rows of the tables. As these all are significant, the frontiers are sig-

nificantly different for all time shifts (or the distribution of points near the frontiers are

different). Furthermore, when the efficiency changes TEC are insignificant, we conclude

that the productivity changes are likely to be due to frontiers movements.

The change from 2014 to 2015 is particularly interesting: The conventional farms exhibit

worse production possibilities in 2015 compared to 2014, whereas the organic farms experi-

enced significantly better productions possibilities in 2015 than in 2014. This explains the

findings from Table 2, where the conventional farms in 2015 found the organic technology

to be superior, unlike earlier years. It is here worth noting that this does not imply that

the organic frontier strictly dominates the conventional frontier in 2015, since the frontiers

might still intersect.

The likely reason for the change in 2015 that made organic farming superior to conventional

farming for most input-output mixes is the abolishment of the milk quotas in Europe on

March 31, 2015. While it (especially in the long run) enables an increased production, it

in the short run led to a 25% drop in EU raw milk prices from 40 e per 100 kg in January

2014 to 30 e per 100 kg in January 2016, c.f. e.g. the EU Milk Market Observatory (2018).

This price drop had a relatively larger impact on the conventional farms since the premium

paid for the organic milk in Denmark is fixed/independent of the price level.

This result is also supported by the more standard profitability analysis in Jørgensen (2017)

which show that the profitability of the organic farms became much higher than that of
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the conventional farms in Denmark in 2015.

Insert Table 4 about here

Insert Table 5 about here

5 Final remarks

This paper has focused on measures of productivity changes over time as well as fron-

tier differences between independent groups. Statistical inference for productivity change

measured by the Malmquist index, and the corresponding measures of frontier shift and

efficiency change can be performed as permutation tests. These are exact tests and are

in a recent paper by Asmild et al. (2018) found to be very powerful. We also suggest a

method to measure frontier differences for separate independent groups, which accounts for

the inherent bias in DEA estimated frontiers by using a jackknife method to minimize the

effect of differences in sample sizes.

Formal tests for the significance of the differences between independent groups can be im-

plemented in line with the methods in Asmild et al. (2018) using permutations. These

methods, as well as the power of the tests, will be presented in a forthcoming paper.

The types of analyses presented here can have important policy implications, since the

Danish government is focused on enhancing the competitiveness of the agricultural sector

in Denmark at the same time as aiming at doubling the organic production between 2007

and 2020. Thus formal analysis comparing the economic production possibilities associated

with organic and with conventional (dairy) farming is important as are the analysis of their

respective productivity changes over time.

The results of the analysis presented in this paper showed that there might not have been

a compelling argument for organic dairy production up until 2014, since the conclusion in

terms of which production technology is superior differed depending on the input-output

mix. However, in 2015 both the organic and the conventional farmers on average agreed
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to the organic technology being superior. An explanation for this pattern could be that

the conventional farms have been ”protected” by high milk prices, partly caused by the

quota system. After the abolishment of the milk quotas and the corresponding drop in milk

prices, which had a relatively larger impact on the conventional farms than on the organic,

the frontier for the organic farming became superior to that of the conventional. This is

also evident from the Malmquist index results which showed a large and significant produc-

tivity decrease for the conventional farms from 2014 to 2015, likely caused by a significant

deterioration of the frontier, but a significant productivity (and frontier) improvement for

the organic farms in the same period.

If subsequent analysis find that the difference between the organic and the conventional

frontier is indeed significant (once the permutation based tests for comparisons of the fron-

tiers for independent groups are fully investigated and can be applied), and persistent over

the subsequent years, the business case for conversion to organic farming may be straight-

forward (at least if ignoring transition costs). This could also potentially be a solution to

the lack of competitiveness for Danish dairy farming identified by Asmild et al. (2019).
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Type Year Feed Labour OVC FC Capital Milk OO

Conv 2011 1353 976 1585 1393 1640 4590 1083
(833) (448) (749) (826) (794) (2268) (953)

2012 1494 1006 1658 1414 1641 4652 1182
(992) (481) (822) (776) (791) (2468) (1010)

2013 1798 1057 1722 1456 1681 5558 1001
(1133) (531) (841) (732) (819) (2922) (1013)

2014 1703 1116 1788 1568 1726 5811 952
(1081) (576) (870) (860) (850) (3056) (1017)

2015 1702 1137 1757 1571 1768 4968 1183
(1154) (615) (874) (956) (902) (2824) (916)

Org 2011 1096 1002 1352 1493 1925 4490 1076
(803) (472) (600) (833) (846) (2246) (728)

2012 1271 1036 1413 1498 1983 4542 1138
(1010) (463) (644) (639) (861) (2314) (794)

2013 1561 1087 1488 1561 2019 5324 957
(1357) (543) (759) (729) (902) (2964) (701)

2014 1569 1163 1558 1679 2079 5815 954
(1422) (629) (807) (842) (990) (3463) (728)

2015 1486 1168 1482 1656 2106 5504 1257
(1272) (608) (677) (796) (974) (3067) (826)

Table 1: Averages and standard deviations (in parenthesis) within year and group (in 1000

DKK)
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2011 2012 2013 2014 2015

With jackknife

Organic 0.840 0.900 0.864 0.934 0.786

Conventional 0.988 1.023 1.041 1.071 0.920

Average 0.911 0.959 0.948 1.000 0.850

Without jackknife

Organic 0.949 1.008 0.994 1.084 0.872

Conventional 1.070 1.115 1.167 1.206 0.991

All 1.054 1.102 1.144 1.191 0.976

Table 2: Group frontier differences, T g1,g2FD and its components (as in (6)).

Type φFeed φLab φOV C φFC φCap φMilk φOO

Conv 1.098 1.249 1.060 1.125 1.057 0.239 1.332

Org 1.177 1.244 1.146 1.097 0.950 0.229 1.342

LR 40.26 0.758 123.74 12.71 120.68 1.835 1.835

p 0.0000 0.384 0.0000 0.0004 0.0000 0.176 0.176

Table 3: Average input- and output angles φ in 2015, and test statistics for comparisons

(conventional and organic) and corresponding p-values.
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2011-12 2012-13 2013-14 2014-15

No. obs. balanced 1373 1348 1332 1220

No. obs. first year 1567 1530 1499 1454

No. obs. second year 1530 1499 1454 1355

Balanced data set

TM 0.970 (0.000) 1.050 (0.000) 1.026 (0.000) 0.871 (0.000)

TEC 1.002 (0.836) 0.991 (0.510) 1.000 (0.982) 1.059 (0.002)

TFS 0.968 (0.000) 1.059 (0.000) 1.026 (0.145) 0.823 (0.000)

Unbalanced data set

T uFS 0.971 (0.000) 1.081 (0.000) 1.031 (0.063) 0.811 (0.000)

Table 4: Test statistics and significance probabilities for the subset of conventional farms

(based on 1000 permutations).

2011-12 2012-13 2013-14 2014-15

No. obs. balanced 200 186 178 166

No. obs. first year 223 214 206 196

No. obs. second year 214 206 196 179

Balanced data set

TM 0.9511 (0.000) 1.0383 (0.000) 1.0152 (0.009) 1.0172 (0.002)

TEC 1.0119 (0.477) 1.0159 (0.228) 1.0477 (0.006) 0.9928 (0.412)

TFS 0.9399 (0.000) 1.0220 (0.123) 0.9689 (0.191) 1.0246 (0.009)

Unbalanced data set

T uFS 0.926 (0.000) 1.089 (0.000) 0.961 (0.027) 1.021 (0.023)

Table 5: Test statistics and significance probabilities for the subset of organic farms (based

on 1000 permutations).
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