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Abstract

In this paper, we develop the first formal nonparametric test for whether the observation errors

in option panels display spatial dependence. The panel consists of options with different strikes

and tenors written on a given underlying asset. The asymptotic design is of the infill type – the

mesh of the strike grid for the observed options shrinks asymptotically to zero, while the set of

observation times and tenors for the option panel remains fixed. We propose a Portmanteau test

for the null hypothesis of no spatial autocorrelation in the observation error. The test makes use

of the smoothness of the true (unobserved) option price as a function of its strike and is robust to

the presence of heteroskedasticity of unknown form in the observation error. A Monte Carlo study

shows good finite-sample properties of the developed testing procedure and an empirical application

to S&P 500 index option data reveals mild spatial dependence in the observation error, which has

been declining in recent years.
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1 Introduction

Option prices embed important information about the risks in the underlying asset and the compensa-

tion for those risks demanded by investors. Consequently, option data may serve both to complement

and enhance inference regarding dynamic asset pricing models from underlying asset returns. The

inclusion of option data results in more efficient inference and, if the return data by themselves do

not identify all the parameters associated with the risk pricing, the option prices typically resolve the

issue, rendering full identification and estimation feasible. For example, in the Black-Scholes model,

Black and Scholes (1973), in which the continuously-compounded asset returns are i.i.d. normally

distributed, all parameters are identified, yet a single option on the underlying asset suffices to deter-

mine the volatility parameter of the model, thus supplementing the standard return-based volatility

estimator and enhancing the efficiency of the inference. In contrast, for a more general setting with

time-varying volatility, such as the well-known Heston model, Heston (1993), the price of volatility risk

cannot be identified from return data alone without auxiliary assumptions. Here, option prices provide

the necessary information for both identifying and pricing the model’s volatility risk component.

Prior work uses a variety of parametric and nonparametric methods to extract information from

options. The earlier empirical option pricing literature typically relies on only a small number of

options on the underlying asset to complement the return data, see, e.g., Bates (1996, 2000), Pan

(2002), Pastorello et al. (2003), Eraker (2004) and Gagliardini et al. (2011). The reason is twofold.

One, there are often limitations in the strike coverage, stemming from a lack of liquidity in the option

markets. Two, using a large number of options can be challenging, because option prices usually are

known only in semi-closed form, as for the popular exponential-affine model class of Duffie et al. (2000),

necessitating numerical techniques for computation. In these circumstances, the asset returns remain

the primary source of information, and options are included for estimation of parameters that are not

identifiable from return data and/or provide information about state variables, which are latent from

the perspective of return data alone, such as stochastic volatility.

Over the last several decades, however, the liquidity in option markets has improved greatly,

implying that much more option data may be utilized for inference. Specifically, in our empirical

application, using options written on the S&P 500 index over 2007-2014, we have, on average, in

excess of 70 end-of-day option quotes with different strikes for each fixed short maturity. Inspired by

this trend, Andersen et al. (2015) develop parametric option inference methods in an infill asymptotic

setting, for which the cross-sectional dimension of the option data, for a given day and written on

the same underlying asset, increases asymptotically while, simultaneously, the mesh of the strike

grid shrinks to zero.1 In such a setup, one may consistently estimate both the parameters and the

concurrent state variable realizations from a cross-section of options recorded at a given point in time.

Infill asymptotics are also at work for various nonparametric measures based on the following

1Their inference method has been extended in various directions by Andersen et al. (2019a,b), who, however, maintain

similar cross-sectional infill asymptotic frameworks.
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general option spanning result due to Carr and Madan (2001),

EQ
t (f(Xt+τ )) = f(Ft,τ ) + e rt,τ · τ

∫ ∞

0
Ot,τ (log(K)) f

′′

(K) dK , (1)

where f is some twice-continuously differentiable function, EQ(·) denotes the expectation under the

risk-neutral measure, Xt is the date t price of the underlying asset and Ft,τ is the date t price of a

futures contract written on the asset and expiring at t + τ , rt,τ is the annualized risk-free rate for

[t, t + τ ], and Ot,τ (k) denotes the out-of-the-money (OTM) option price written on the underlying

asset at time t with strike ek and expiring at time t + τ . All of these quantities are formally defined

in Section 2 below. The integral on the right-hand side of the equation can be approximated via

a Riemann sum using the available options at date t, expiring at date t + τ . By supplementing

this approximation with f(Ft,τ ), we readily obtain a nonparametric estimator of EQ
t (f(Xt+τ )). For

this to constitute a consistent estimator, the mesh of the strike grid of available options must shrink

asymptotically to zero, i.e., consistency can be established in an infill asymptotic setup. A leading

example of this type of nonparametric estimator is the VIX volatility index computed by the Chicago

Board of Option Exchange (CBOE). The VIX corresponds to setting f(x) = log(x) in equation (1), see,

e.g., Britten-Jones and Neuberger (2000) and Carr and Wu (2009). Other examples include the risk-

neutral moments of Bakshi and Madan (2000) and Bakshi et al. (2003), the tail measures of Bollerslev

and Todorov (2011) and Bollerslev et al. (2015), the corridor volatility estimators of Andersen et al.

(2015), the characteristic function portfolios used in Qin and Todorov (2019) and Todorov (2019), the

divergence portfolio of Schneider and Trojani (2019), etc.

To develop feasible inference procedures based on options, one must take a stand on the nature of

the associated observation errors, see Renault (1997) for an early discussion of the subject. Absence

of arbitrage implies that the fundamental option value lies within the bid-ask spread posted by the

brokers, dealers and trading firms operating as market makers. The liquidity provision offered by

market makers induces random variation in their holdings of individual options - reflecting whether

customers are buying or selling. In particular, investor groups may follow hedging or trading strategies

that involve shifts in positions across a limited segment of the strikes, because the price and payoff of

any option is similar to those for options with nearby strikes. This can generate clientele effects, where

the market makers experience an unbalanced order flow across a limited set of options. They typically

seek to mitigate such exposures through their own hedges but, in particular, out-of-the-money options

can be difficult and costly to insulate against abrupt shifts (jumps) in asset prices. Therefore, the

size of the spreads across distinct regions of the strike range may well fluctuate with the developing

inventory positions and perceptions of the future asset price variation, reflecting compensation de-

manded by market makers for handling their risk exposures. A natural implication is a certain degree

of dependence among mid-quote prices for options with similar strike prices. However, as markets

grow increasingly liquid and attract a more diverse set of customers, it is also natural to expect such

hedging and trading costs as well as the impact of random demand imbalances to decline.
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One extreme approach is to assume that options are observed without error as, for example, in

Pan (2002). However, option bid-ask spreads are sizable, see, e.g., Figure 1 in Andersen et al. (2015),

suggesting that observation errors are non-negligible. If such errors are acknowledged, consistent

estimation of option-related quantities requires the imposition of assumptions regarding the error

dependence. The exact conditions will depend on whether the analysis is parametric or nonparametric,

and whether the asymptotic design is applied to the time series and/or the cross-section. In particular,

for the infill asymptotic setting, the dependence in the observation errors across neighboring strike

prices must be limited. Henceforth, we label this feature spatial dependence, with the spatial dimension

referring to the range of option strikes for a given tenor and date. Most existing studies, e.g., Carr

and Wu (2007), Bakshi et al. (2008), Andersen et al. (2015) and Todorov (2019), assume option errors

are uncorrelated. A rare exception is Bates (2003), who relies on an asymptotic setting with a fixed

set of option strikes per maturity. At each date and tenor, he invokes perfect correlation in the option

observation error across certain strike ranges. Such errors cannot be mitigated by integrating option

prices across strikes and, therefore, cannot be separated from the true latent option prices in an infill

asymptotic setting. The only possibility to mitigate such errors is through intertemporal averaging,

i.e., by resorting to large T asymptotics, with T representing the time span of the option panel. In other

words, for any given date, these errors are indistinguishable from pricing errors and, indeed, Bates

labels them “specification errors.” Accordingly, for inference procedures exploiting a cross-sectional

asymptotic scheme, we deem errors, that are highly persistent across a broad, fixed range of strikes,

as “true” pricing errors stemming from model misspecification rather than observation errors.

Even excluding perfect, or very high, spatial error dependence from the category of observation

errors we may still, as discussed previously, expect a host of institutional features to generate weak

spatial dependence in the observation errors. To formally account for this type of dependence within

parametric and nonparametric inference procedures, we need a spatial infill asymptotic counterpart to

the long-run variance in the time series setting. No such statistic has been developed in the literature,

so a natural first step is to establish whether this type of extension is empirically relevant. The

goal of the current paper, therefore, is to develop a nonparametric test for the presence of cross-

sectional dependence in the option observation error within an infill asymptotic setting where, for

the option prices recorded on a given date with fixed tenor, the mesh of the strike grid shrinks

asymptotically to zero. Specifically, we derive consistent estimates for the spatial autocorrelation

in the option observation error, and we derive a feasible central limit theory for these autocorrelation

coefficients under the null hypothesis of no spatial dependence. This new limit theory enables us to

devise a simple Portmanteau test for spatial autocorrelation.

The basic intuition behind our estimates for spatial autocorrelation is as follows. Under general

conditions for the data generating process, the true (unobserved) option prices are smooth functions of

their strikes. Therefore, by applying a suitable second-order difference to the observed (noisy) option

price in the strike domain, we can eliminate the true latent price component and “isolate” the option

observation error, subject only to an asymptotically negligible error due to our infill asymptotic setting.
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This is analogous to the removal of fixed effects in classical panel data. The resulting estimates of

the option observation errors are correlated in the strike dimension, even under the null hypothesis

of no spatial error dependence, because a set of adjacent options are employed in estimating the

error. However, this dependence arises from an overlap involving only a few options, and is readily

accounted for. Therefore, we can test for the presence of spatial error dependence by comparing the

sample spatial autocorrelation of the estimated option observation errors with their asymptotic limit

under the hypothesis of no spatial dependence.

Our feasible CLT for spatial correlation of the option observation errors is derived under the null

hypothesis of no error dependence. The limit distribution is mixed Gaussian due to the heteroskedastic

observation errors. The latter feature is important, because the option bid-ask spread displays pro-

nounced heterogeneity and heteroskedasticity, both across the strike range and over time. On the basis

of the limit theory we develop, we propose a Portmanteau test, akin to the one of Box and Pierce (1970)

and Ljung and Box (1978), for the null hypothesis of no spatial dependence in the observation error.

However, because we do not impose an i.i.d. assumption for the process under the null hypothesis,

we must scale our test statistic appropriately to account for heteroskedastic observation errors. The

limit distribution of our Portmanteau test for spatial dependence is pivotal, but it is not chi-squared

because the limiting covariance matrix of the spatial autocorrelation vector is non-diagonal.

Our paper is related to a large econometric literature dealing with spatial dependence. Conley

(1999) develops GMM estimation techniques for cross-sectional dependence. Jenish and Prucha (2012)

derive general limit results for processes with spatial dependence. Kuersteiner and Prucha (2013)

consider estimation for panel models with spatial dependence in the error term. Delgado and Robinson

(2015) and Robinson (2008) derive tests for spatial dependence in the error term of regressions. Kelejian

and Prucha (2007, 2010) and Robinson and Thawornkaiwong (2012) propose HAC asymptotic variance

estimators in settings with spatial dependence. There is also a large literature on inference for spatial

autoregressive models, see, e.g., Gupta and Robinson (2015, 2018), Kelejian and Prucha (1999), Lee

(2002, 2003, 2004), Lee and Liu (2010), Robinson (2010), Su and Jin (2010) and Xu and Lee (2015).

The major distinction between this body of work and our contribution lies in the asymptotic setup.

We can only obtain consistent nonparametric estimates for the spatial autocorrelation of the option

observation errors within an infill asymptotic design. That is, as we gather more option observations,

the distance between consecutive strikes shrinks to zero. This has a number of implications. First,

since the latent option price is similar for nearby strikes – a direct consequence of virtually all asset

pricing models – it is natural to assume that market participants quote them similarly, implying

the existence of spatial dependence in the observation errors, and this effect will diminish as the gap

between the option strikes widens. Second, and more importantly, the infill asymptotic setup is crucial

for our nonparametric inference procedure. We exploit this feature by differencing consecutive option

observations, ordered in terms of their strike prices, to annihilate, asymptotically, the unobserved true

option price, generating a “direct” estimator of (differences of) the latent observation error. That is,

unlike existing econometric work for regression models, we do not need a model for the latent option
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price to obtain an estimate for the observation error. This is attractive from an applied point of view,

given the extensive evidence for misspecification of standard option pricing models. Finally, unlike

most of the work on spatial dependence – with the notable exception of Kuersteiner and Prucha (2013)

– our limit distributions are mixed Gaussian. This arises from the generality of allowing for stochastic

heteroskedasticity of unknown form. This feature is crucial for the applicability of our analysis because

financial data are known to exhibit pronounced conditional heteroskedasticity.

Our paper is also related to the recent work of Dalla et al. (2019) on testing the null hypothesis

of white noise for time series exhibiting heteroskedasticity and, possibly, general forms of serial de-

pendence. In particular, they show that the sample autocorrelations may have a limiting distribution

that is non-standard for general white noise time series. As a result, the conventional tests of Box and

Pierce (1970) and Ljung and Box (1978) for testing for presence of autocorrelation may no longer be

valid if the process under the null hypothesis is a white noise, but not an i.i.d., sequence. Dalla et al.

(2019) use their limit results to design a test for white noise, with chi-squared limiting distribution,

which works in general settings. As in their case, we allow for general forms of heteroskedasticity

in the option observation error. Moreover, and similarly to them, the sample autocorrelations of the

estimated option observation error have a limiting covariance matrix that is not diagonal. The deter-

mining factors for the latter, however, differ. In our case, it is due to the differencing of the observed

option price, which is done to account for the true, unknown, and latent option price. In Dalla et al.

(2019), the limiting covariance of the sample autocorrelation vector might be non-diagonal due to

general forms of dependence in the underlying (white noise) time series.

Upon implementing our new testing procedures for options written on the S&P 500 index, we

find evidence for correlation in the option observation error across strikes. This dependence vanishes

quickly, as the gap between the option strikes increases. In addition, the spatial dependence in the

observation errors exhibits a strong time series and maturity pattern. In particular, it is weakest for

the short-dated options and substantially stronger for more long-dated ones. In addition, we find that

the spatial dependence for the short-dated options has declined over time across our sample period

2007-2014. This is consistent with the fact that short-dated options are relatively more liquid, and

this liquidity has increased notably over time, see, e.g., Andersen et al. (2017).

The rest of the paper is organized as follows. We first introduce our setup and the option observation

scheme in Section 2. We next state our assumptions in Section 3. Section 4 provides our nonparametric

estimators for spatial dependence in the observation error, and Section 5 presents the associated

feasible limit theory for the estimators and related tests for the presence of spatial dependence in

the observation error. Section 6 contains a Monte Carlo study of the finite sample properties of the

proposed estimator and its associated test. Section 7 provides an empirical application of the developed

inference procedures on options written on the S&P 500 index. Finally, Section 8 concludes. The proofs

of the asymptotic results are relegated to Section 9.
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2 Setting and Option Observation Scheme

Our inference is based on options written on an underlying asset whose price is denoted by X. The

asset and option price series are defined on the probability space
(
Ω(0),F (0),P(0)

)
, with (F (0)

t )t≥0 being

the associated filtration. We rely on “plain-vanilla” European call and put options. A call option gives

the owner the right to buy the underlying asset at a pre-specified strike price on the future maturity

date of the option, while the put option, similarly, gives the owner the right to sell at the strike price

at maturity. For each strike, we use either a call or a put price, since the put-call parity relation, which

holds in the absence of arbitrage, implies an exact linear functional relationship between these option

prices and the spot price of the underlying asset. Specifically, for each strike, we rely on the so-called

out-of-the-money (OTM) option price – the cheaper of the call and the put for the given strike – which

would be worth zero, if the option were to expire today. We denote OTM option prices by Ot,τ (k),

where t is the time the option prices are recorded, τ is the tenor, or time to expiration, and k is their

log-strike price. The OTM option price, Ot,τ (k), is a call if k > log(Ft,τ ), and a put, if k ≤ log(Ft,τ ),

where Ft,τ is the time t futures price of the asset with expiration date t+ τ .

Our data consist of options observed at time t ∈ T and expiring at time t+ τ , for τ > 0 and τ ∈ Tt.
Here, T denotes a finite set of observation times and, for each t ∈ T, Tt represents the set of option

tenors available at that time. For each pair (t, τ), we observe N τ
t options with log-strikes given by,

kt,τ ≡ kt,τ (1) < kt,τ (2) < · · · kt,τ (N τ
t ) ≡ kt,τ . (2)

The gap between the log-strikes is denoted ∆t,τ (i) = kt,τ (i) − kt,τ (i − 1), for i = 2, ...., N τ
t . The log-

strike grid need not be equidistant, i.e., ∆t,τ (i) may differ across i’s. The asymptotic theory developed

below is of infill type, i.e., we keep the observation times, option tenors and associated strike range

fixed, while the mesh of the log-strike grid, supi=2,...,Nτ
t
∆t,τ (i), shrinks towards zero, as N

τ
t → ∞.

Following common practice, we convert the option price into a Black-Scholes Implied Volatility,

or BSIV. The BSIV corresponding to Ot,τ (k) is labeled κt,τ (k). We note that κt,τ (k) is a (known)

nonlinear transformation of
ert,τ Ot,τ (k)

Xt
, where rt,τ is the continuously-compounded risk-free interest

rate over [t, t+ τ ], and rt,τ and Xt are observed. We stress that we do not assume the Black-Scholes

model is true, but simply use BSIV as a convenient way of quoting the observed option prices.2

Finally, we allow for observation error, i.e., instead of observing κt,τ (kt,τ (j)) directly, we observe,

κ̂t,τ (kt,τ (j)) = κt,τ (kt,τ (j)) + ǫNt,τ (j), ǫNt,τ (j) = σt,τ (kt,τ (j)) ζ
N
t,τ (j), j = 1, ..., N τ

t , (3)

where σt,τ (k) is an F (0)
t - adapted process, the sequence {ζNt,τ (j)}j≥1 is defined on a space Ω(1) =



t∈T


τ∈Tt
RR, and N refers to the cross-sectional infill sampling scheme. The space Ω(1) is equipped with

the product Borel σ-field F (1), and transition probability P(1)(ω(0), dω(1)) from the original probability

2Similarly, coupon bonds are often quoted in terms of their annualized yield to maturity without the need to reference

any formal term structure or bond pricing model.
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space Ω(0), on which X is defined, to Ω(1). We further define,

Ω = Ω(0) ×Ω(1), F = F (0) ×F (1), P(dω(0), dω(1)) = P(0)(dω(0))P(1)(ω(0), dω(1)) .

The observation error consists of two parts. The first component, σt,τ (kt,τ (j)), is F (0)
t - adapted and

captures the F (0)
t - conditional heteroskedasticity of the observation error. The second component, ζNt,τ ,

is assumed independent of F (0) and has mean zero, but may be spatially dependent in the strike

domain. Specifically, for every t ∈ T and τ ∈ Tt, the sequence {ζNt,τ (j)}j=1,...,Nτ
t
is a stationary process,

when viewed as a random function of j. Furthermore, the observation errors {ζNt,τ (j)}j=1,...,Nτ
t
are

independent across different tenors and days, i.e., the errors are independent for (t, τ) 6= (t′, τ ′).

Since {ζNt,τ (j)}j=1,...,Nτ
t

is stationary, we have, for any pair (t, τ), that Cov(ζNt,τ (j), ζ
N
t,τ (j − h))

depends on h, but not j, for h, j ∈ N. The autocovariance function of {ζNt,τ (j)}j=1,...,Nτ
t
is given as,

γt,τ (h) = Cov(ζNt,τ (j), ζ
N
t,τ (j − h)), h, j ∈ N. (4)

Stationarity of the observation error component ζNt,τ (j) implies that its covariance structure depends

only on the distance between the strikes (in terms of number of strikes on the observed strike grid), not

on the location of the points within the strike domain. This assumption may be weakened by allowing

the dependence in the observation error to be a function of the given region of the strike domain. We

also note that, in this asymptotic design, for any two fixed points in the strike domain, the dependence

between the observation errors of the corresponding option prices converges to zero, as the mesh of

the strike grid shrinks. Of course, in practice, we have a fixed strike grid, and the asymptotic setup

serves only as an approximation to this configuration for a fixed N τ
t . The situation is analogous to

the modeling of dependence in the microstructure noise, contaminating asset prices at high frequency,

see, e.g., Jacod et al. (2017) and Varneskov (2017).

In the current setting, our primary objective is to design a nonparametric test for the null hypothesis

of γt,τ (h) being identically equal to zero for any integer h 6= 0, i.e., that the observation errors feature

no spatial correlation.

3 Assumptions

Our theoretical results require assumptions for the true latent option price, the observation scheme

and the observation error. These assumptions are stated below.

A1. We have

|κt,τ (k1)− κt,τ (k2)| ≤ Ct |k1 − k2|, k1, k2 ∈ [kt,τ , kt,τ ], t ∈ T, τ ∈ Tt , (5)

where Ct is a finite-valued F (0)
t - adapted random variable.
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A2. The log-strike grids {kt,τ (j))}N
τ
t

j=1 are F (0)
t - adapted, and we have,

Ct∆ ≤ ∆t,τ (j) ≤ Ct∆, j = 1, ..., N τ
t , t ∈ T, τ ∈ Tt, as ∆ ↓ 0 , (6)

where 0 < Ct ≤ Ct are finite-valued F (0)
t - adapted random variables, and ∆ is a deterministic sequence.

In addition, for some arbitrary small ζ > 0 as well as t ∈ T, and τ ∈ Tt , as ∆ ↓ 0,

sup
j=2,...,Nτ

t

∣∣∣∣
∆t,τ (j)

∆
− ψ−1

t,τ (kt,τ (j))

∣∣∣∣ = op(∆
1/2),

∣∣N τ
t ∆ − ϑ−1

t,τ

∣∣ = op(∆
1/2), (7)

where ϑt,τ and ψt,τ (k) are F (0)
t - adapted variables and functions, respectively, that are bounded from

above and below for all t ∈ T and τ ∈ Tt, and ψt,τ (k) is continuously differentiable in k.

A3. The function σt,τ (k) is continuously differentiable in k, for t ∈ T and τ ∈ Tt. The sequences

{ζNt,τ (j)}j=1,...,Nτ
t
are defined on Ω(1), are independent from F (0) and for different pairs (t, τ). More-

over, E(ζNt,τ (j)) = 0, E(ζNt,τ (j)
2) = 1, and E(|ζNt,τ (j)|4+ς ) <∞, for some ς > 0.

A4. For every (t, τ) and N τ
t ∈ N+, we have ζNt,τ (j) =

∑∞
g=−∞ φg νt,τ (j − g), where the sequence

{νt,τ (g)}g∈Z is defined on Ω(1), is independent of F (0), is i.i.d. across t, τ and j, and has moments

E(νt,τ (j)) = 0, E(ν2t,τ (j)) = 1 and E(ν4t,τ (j)) = η <∞. Finally,
∑∞

g=−∞ |φg| <∞.

We briefly discuss these assumptions. Assumption A1 imposes Lipschitz continuity on the true

option price. Note that Ct in equation (5) is a random variable and, therefore, A1 is satisfied, whenever

the density of the conditional (risk-neutral) return distribution is continuous. Assumption A2 concerns

the asymptotic behavior of the strike grid. In stating this assumption, we introduce a reference

deterministic sequence ∆ → 0, which may be interpreted as the “average mesh” of the log-strike grid.

We note, however, that ∆ does not appear in the feasible versions of the limit results, we develop

below. Assumption A2 allows for a non-equidistant strike grid, and the function ψt,τ (k) controls the

sampling frequency in the strike domain (for given t and τ) relative to the benchmark grid. Similarly,

ϑt,τ captures the relative sampling frequency across maturities on a given day. Assumptions A3 and A4

concern the observation error. In Assumption A3, we assume the error is F (0)- conditionally centered

at zero and that F (0)- conditional moments above four exist. In Assumption A4, we require that

ζNt,τ (j) is an infinite moving average, viewed as a process in j, with absolutely summable coefficients.

This assumption can likely be relaxed to cover all stationary processes, but such an extension seems

inconsequential from a practical point of view, as measurement errors in derivatives data, typically,

have limited spatial dependence, readily accommodated through Assumption A4.

We note that Assumption A4 implies the dependence between two observation errors on the ob-

servable strike grid depends not on the distance between strikes, but on the number of available strikes
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between them. When the strike grid is irregular, the dependence between observation errors with the

same distance in terms of strikes can differ due to the different denseness of the strike grid in separate

regions of the strike domain. A possible extension of Assumption A4, in this case, would be, similarly

to Robinson (2011), to let the moving average coefficients φg in ζNt,τ (j) =
∑∞

g=−∞ φg νt,τ (j− g) depend
also on j. This extension adds a layer of complexity to the analysis since stationarity of ζt,τ is no

longer preserved. We do not pursue such a generalization of Assumption A4 here because the strike

grids are approximately equidistant for the option panels typically available.

4 Nonparametric Recovery of Spatial Dependence in the Error

We are now ready to develop our inference techniques for measuring the spatial dependence in the

observation error. We do not observe the true (theoretical) option price directly, and we prefer to

avoid imposing potentially misspecified parametric assumptions for it. Therefore, we instead exploit

the infill sampling scheme along with Assumption A1 ensuring smoothness of the true option price

κt,τ (k). In particular, we rely on the following estimate of the option error,

ǫ̂Nt,τ (j) =

√
2

3

(
κ̂t,τ (kt,τ (j)) −

1

2

(
κ̂t,τ (kt,τ (j − 1)) + κ̂t,τ (kt,τ (j + 1))

))
, j = 1, ..., N τ

t − 1,

≃
√

2

3

(
ǫNt,τ (kt,τ (j)) −

1

2

(
ǫNt,τ (kt,τ (j − 1)) + ǫNt,τ (kt,τ (j + 1))

))
,

(8)

where the approximation above makes use of Assumption A1, with the precise statement of this type

of relation provided in the proofs. The scaling by
√

2/3 in equation (8) is just a normalization of ǫ̂Nt,τ (j)

ensuring that we have Var(ǫ̂Nt,τ (j)|F (0)) ≃ σ2t,τ (kt,τ (j)) in the leading case of no spatial dependence in

the option observation error. Of course, ǫ̂Nt,τ (j) is not a consistent estimator for the observation error at

a given point in the strike domain. It is rather a consistent estimate for the second-order difference of

the observation error (viewed as a function of the strike of the option it is attached to) for a given strike.

Nonetheless, cross-sectional averages involving ǫ̂Nt,τ (j) can form the basis for consistent estimation of

the spatial dependence in the observation error. Specifically, using ǫ̂Nt,τ (j), we form estimators of the

covariance in the option error, across the strikes, via,

χ̂t,τ (h) =
1

N τ
t − h− 2

Nτ
t −1∑

j=h+2

ǫ̂Nt,τ (j) ǫ̂
N
t,τ (j − h), h ∈ N. (9)

In the next section, we establish the following convergence in probability,

χ̂t,τ (h)
P−→ 2

3

(
3

2
γt,τ (h) − γt,τ (h+ 1) − γt,τ (h− 1) +

1

4
γt,τ (h− 2) +

1

4
γt,τ (h+ 2)

)

× ϑt,τ

∫ k(t,τ)

k(t,τ)
ψt,τ (k)σ

2
t,τ (k) dk, h ∈ N.

(10)
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The autocovariances γt,τ (h ± 1) and γt,τ (h ± 2) appearing in the probability limit of χ̂t,τ (h) reflect

the second-order differencing of the option price in the construction of ǫ̂Nt,τ (j). The quantities ϑt,τ

and ψt,τ (k) naturally impact the limiting value, because they capture the relative denseness of the

strike grid, as formalized through Assumption A2. Generally, ϑt,τ and
∫ k(t,τ)
k(t,τ) ψt,τ (k)σ

2
t,τ (k) dk are

random, as they may differ from one day to another and across different option tenors. Nevertheless,

the following correlation coefficients have scale-free and nonrandom probability limits,

ρ̂t,τ (h) =
χ̂t,τ (h)

χ̂t,τ (0)
, (11)

with

ρ̂t,τ (h)
P−→ ρt,τ (h) ≡

3
2 γt,τ (h) − γt,τ (h+ 1)− γt,τ (h− 1) + 1

4 γt,τ (h− 2) + 1
4 γt,τ (h+ 2)

3
2 γt,τ (0) − 2 γt,τ (1) +

1
2 γt,τ (2)

, (12)

where 3
2γt,τ (0)− 2γt,τ (1) +

1
2γt,τ (2) equals Var

(
ǫNt,τ (j) − 0.5ǫNt,τ (j − 1)− 0.5ǫNt,τ (j + 1)|F (0)

)
> 0 up to

a proportionality factor given by an F (0)-measurable random variable.

The second-order differencing of the option price induces spatial dependence in the estimate ǫ̂Nt,τ (j),

even if the option observation error is independent across strikes. Specifically, under the null hypothesis

of no spatial F (0)- conditional dependence in the observation errors, ρt,τ (h) takes the form,

ρind(h) =





−2
3 , if h = ±1,
1
6 , if h = ±2,

0, if |h| > 2.

(13)

Hence, deviations of ρt,τ (h) from ρind(h) are indicative of spatial dependence. Given the normaliza-

tions in Assumptions A3 and A4, the null hypothesis of no spatial dependence implies that φ(L) =∑∞
g=−∞ φgL

g = φ0 = 1. Consequently, we may characterize our null hypothesis as follows,

H0 : φ(L) = 1 ⇐⇒ ρt,τ (h) = ρind(h), for h ∈ N . (14)

Remark 1. In the estimation strategy outlined above, we draw inference for the dependence in the

option observation errors based on the second-order difference of the latter. This is carried out to

account for the unknown κt,τ (k) in the observed option price but, naturally, leads to a loss of informa-

tion when compared to the infeasible case, where inference is based directly on the option observation

errors. Our choice of second-order differencing of the observed options implies that we rely on a linear

approximation for the true option price between the two surrouding observations in the strike domain.

Alternatively, inference may be drawn based on first-order differencing, which will lead to a smaller

loss of information about the option errors relative to second-order. However, it also implies that

a larger bias will impact the estimation, stemming from the changes to the true option price as a

function of its strike. This feature arises since the first-order differencing of observed options rests on

an approximation that the true option price is constant over two consecutive strikes.
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Remark 2. An alternative to the differencing approach adopted in this paper is to construct a kernel-

based estimate of the true option price at a given strike from neighboring option prices. When the

estimate is subtracted from the observed option price, we may work, asymptotically, as if the option

error is directly observable since the estimation error for the kernel-based estimate of the true option

price will be of higher order (due to the local averaging).

However, for such an inference strategy to work well in practice, i.e., to generate an inconsequential

bias from the estimation of the true option price, we require the latter to be approximately constant

over the local window from which it is recovered. Empirically relevant option pricing models, including

the one used in our Monte Carlo experiments, typically generate a lot of movement in the true option

price across nearby strikes (particularly around the money) given the strike grids available in existing

derivatives markets. For this reason, we rely on the second-difference approach developed above.

5 Inference for the Nonparametric Estimators

This section provides theoretical results regarding the inference for the spatial autocorrelation in the

option observation error, and it introduces our Portmanteau test for spatial dependence.

5.1 Limit Theory

In order to design a test for spatial dependence, it is necessary to derive limit theory for ρ̂t,τ (h). To

this end, we first present a consistency result for the spatial autocorrelation estimator.

Theorem 1. Under Assumptions A1-A4, it follows that,

ρ̂t,τ (h)
P−→ ρt,τ (h), ∀h ∈ N, (15)

for t and τ fixed, and ∆ → 0.

We next present a Central Limit Theorem (CLT) associated with this convergence in probability

under the null hypothesis of no spatial dependence in the observation error, i.e., when the observation

error is F (0)- conditionally independent across strikes.

Theorem 2. Under Assumptions A1-A4 with φ(L) =
∑∞

g=−∞ φgL
g = 1, it follows that,

1√
∆

(
{ρ̂t,τ (h)}h=1,...,H − {ρind(h)}h=1,...,H

)
L−s−→ (MH,ind

t,τ )1/2 × Yt,τ , (16)

for t and τ fixed, and ∆ → 0. Yt,τ is an H × 1 vector of standard Gaussian random variables, defined

on an extension of the original probability space, independent from F . The asymptotic covariance

matrix M
H,ind
t,τ is provided in equation (43).
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The (random) covariance matrix M
H,ind
t,τ depends on the F (0)- conditional volatility of the obser-

vation error as well as limiting features of the sampling scheme (ψt,τ (k) andϑt,τ ) through the ratio,

Q4
t,τ

(Q2
t,τ )

2
=

ϑ2t,τ
∫ k(t,τ)
k(t,τ) ψt,τ (k)σ

4
t,τ (k)dk

(
ϑt,τ

∫ k(t,τ)
k(t,τ) ψt,τ (k)σ2t,τ (k)dk

)2 =

∫ k(t,τ)
k(t,τ) ψt,τ (k)σ

4
t,τ (k)dk

(∫ k(t,τ)
k(t,τ) ψt,τ (k)σ2t,τ (k)dk

)2 . (17)

This term does not feature in the limiting distribution of estimators for the autocorrelation of stationary

time series with conditionally homoskedastic errors, see, e.g., Theorem 7.2.1 in Brockwell and Davis

(1991). It appears in the asymptotic variance M
H,ind
t,τ , because the option observation errors display

F (0)- conditional heteroskedasticity. This feature is important, as the magnitude of the observation

error varies with the volatility of the underlying asset, and fluctuates significantly across time.

5.2 Towards Feasible Inference and Testing

The fact that MH,ind
t,τ is random implies that the limiting distribution for the autocorrelation estimator

is mixed Gaussian. Feasible implementation of the CLT in Theorem 2 requires that we construct a

consistent estimate of MH,ind
t,τ and utilize the fact that this convergence result holds stably. The latter

allows to use Slutsky’s theorem, even if the convergence in probability is to a random variable.3 To

estimate M
H,ind
t,τ , we must estimate the ratio in equation (17). This is carried out under H0 of no

spatial dependence in the observation error. For the denominator, we may simply use χ̂t,τ (0). For the

numerator, we make use of the following class of estimators, as a function of h,

L̂t,τ (h) ≡ 1

∆ (N τ
t − h− 2)

1

N τ
t − h− 2

Nτ
t −1∑

j=h+2

(ǫ̂Nt,τ (j))
2 (ǫ̂Nt,τ (j − h))2. (18)

The intuition behind this estimator is as follows. First, if h = 0, then for any k ∈ Z, and under H0,

1

N τ
t − h− 2

Nτ
t −1∑

j=2

(ǫ̂Nt,τ (j))
4 P−→ E

((
ζNt,τ (k)−

1

2
ζNt,τ (k − 1)− 1

2
ζNt,τ (k + 1)

)4 ∣∣∣∣F (0)

)

× ϑt,τ

∫ k(t,τ)

k(t,τ)
ψt,τ (k)σ

4
t,τ (k) dk ,

and from Assumptions A3 and A4, we note that, under H0, the random variables ζNt,τ (j) are i.i.d.

The constant E
((
ζNt,τ (j) − 0.5ζNt,τ (j − 1)− 0.5ζNt,τ (j + 1)

)4 ∣∣F (0)
)
depends on the unknown fourth and

cross-product moment of ζNt,τ (j). To avoid these terms, we consider products of second powers of ǫ̂Nt,τ (j)

for different values of j, and exploit the smoothness of σt,τ (k) from Assumption A3, plus the fact that
2
3 E
((
ζNt,τ (j)− 1

2ζ
N
t,τ (j − 1)− 1

2ζ
N
t,τ (j + 1)

)2 | F (0)
)

= 1, due to ζNt,τ (j) having unit F (0)- conditional

3In Slutsky’s theorem, Xn
L

−→ X and Yn
P

−→ Y implies XnYn
L

−→ XY , provided Y is non-random. If Xn
L−s
−→ X,

then the Slutsky theorem can be extended to the case where Y is random.
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variance by Assumption A3. Specifically, under H0,

1

N τ
t − h− 2

Nτ
t −1∑

j=h+2

(ǫ̂Nt,τ (j))
2 (ǫ̂Nt,τ (j − h))2

P−→ ϑt,τ

∫ k(t,τ)

k(t,τ)
ψt,τ (k)σ

4
t,τ (k) dk, h ≥ 2. (19)

By imposing h ≥ 2, we avoid overlap between the options entering into ǫ̂Nt,τ (j) and ǫ̂Nt,τ (j − h).

Hence, they are F (0)- conditionally independent under H0. Now, equation (19) follows by apply-

ing the conditional moment results for χ̂t,τ (h) in Lemmas 3 and 6 as well as Assumption A2 to show

1/(∆(N τ
t − h− 2))

P−→ ϑt,τ . Thus, by collecting results, it follows that, under H0,

χ̂t,τ (0)
P−→ Q 2

t,τ , L̂t,τ (2)
P−→ Q 4

t,τ , (20)

and, hence, the ratio in equation (17) may be estimated via L̂t,τ (2)/χ̂
2
t,τ (0). Utilizing this relation, we

define M̂
H,ind

t,τ ≡ {M̂ind
t,τ (h, g)}Hh,g=1 , with elements given by,

M̂ ind
t,τ (h, g) ≡ W ind(h, g) × L̂t,τ (2)

χ̂ 2
t,τ (0)

, (21)

where W ind(h, g) is a matrix of constants, provided in equation (43) of the proofs, and M̂
H,ind

t,τ is our

consistent estimator of M
H,ind
t,τ under H0 of no spatial dependence in the observation error.

5.3 Bias Correction

Before stating the feasible CLT, we bias-correct our estimator. Specifically, ρ̂t,τ (h) is biased due to the

variability of χ̂t,τ (0) and χ̂t,τ (h) as well as the nonlinear transformation of these quantities in forming

ρ̂t,τ (h). Although the bias is asymptotically negligible and has no effect on the CLT, it affects the

estimation in small samples. Hence, we construct the bias-corrected estimator of ρt,τ (h),

ρ̂BC
t,τ (h) ≡ ρ̂t,τ (h) − χ̂t,τ (h)

χ̂t,τ (0)3
Âcovt,τ (0, 0) +

1

χ̂t,τ (0)2
Âcovt,τ (0, h) , (22)

where Âcovt,τ (h, g) ≡ Âcov(χ̂t,τ (h), χ̂t,τ (g)) is a consistent estimator of the asymptotic covariance

between χ̂t,τ (h) and χ̂t,τ (g), defined as,

∆−1 Âcovt,τ (h, g) =
(
η̂t,τ − 3× L̂t,τ (2)

)
ρind(h) ρind(g) (23)

+ L̂t,τ (2)

∞∑

s=−∞

{
ρind(s) ρind(s+ h− g) + ρind(s+ h) ρind(s− g)

}
,

and for which the fourth moment of the observation error is estimated via,

η̂t,τ ≡ 9

5

(
L̂t,τ (0) − 14

9
L̂t,τ (2)

)
. (24)
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5.4 The Feasible CLT

We are now in a position to state a feasible CLT result. To this end, let 0H and IH be anH-dimensional

vector of zeroes and an H ×H identity matrix, respectively.

Corollary 1. Under the conditions of Theorem 2, it follows that,

1√
∆

(
M̂

H,ind

t,τ

)−1/2 (
{ρ̂BC

t,τ (h)}h=1,...,H − {ρind(h)}h=1,...,H

)
L−→ N (0H , IH ) . (25)

Importantly, Corollary 1 shows that the bias-correction has no first-order impact on the central

limit theorem and that the consistent estimator of the conditional asymptotic covariance matrix, in

conjunction with the scale 1/
√
∆, normalizes the statistic. Moreover, despite the reference mesh of

the strike grid ∆ appearing, when defining the bias correction and the conditional variance estimator,

it cancels from the relevant expressions when constructing test statistics using equation (25). To see

this, note that L̂t,τ (h) depends on ∆−1, thus vanishing when computing Âcovt,τ (h, g) in equation (22)

as well as when using the unnormalized variance estimator, ∆M̂
H,ind

t,τ . Hence, for feasible inference,

∆ is not needed. It merely represents a convenient way of conveying the convergence rate for our

estimator.

5.5 Tests for Spatial Dependence in the Observation Error

This section leverages the (feasible) limit theorem and presents our test for the null hypothesis of no

spatial dependence in the option observation error. Given the limit result in Corollary 1, a natural

candidate test for this hypothesis, based on the first H autocorrelations, is given by,

1

∆

(
{ρ̂BC

t,τ (h)}Hh=1 − {ρind(h)}Hh=1

)′ (
M̂

H,ind

t,τ

)−1 (
{ρ̂BC

t,τ (h)}Hh=1 − {ρind(h)}Hh=1

)
. (26)

This self-normalized test statistic may be considered an option analogue of the corresponding statistic

in Dalla et al. (2019) for examining the null hypothesis of white noise in time series, that can exhibit

heteroskedasticity and general forms of dependence. Importantly, from Corollary 1, equation (26)

converges in law to a χ2(H) distribution, rendering it readily implementable in practice.

However, the finite sample performance of a test based on equation (26) depends on the sample

correlations between the elements of the vector {ρ̂BC
t,τ (h)}h=1,...,H being well approximated by their

asymptotic counterparts. In particular, for the relatively small sample sizes available in a typical

application to option data, including the sample of S&P 500 options considered below, this type of

approximation may be inadequate due to a non-trivial impact of higher-order biases.

As a result, we suggest working with an alternative test, that does not depend on the cross-products

ρ̂BC
t,τ (h) ρ̂BC

t,τ (g), for h 6= g. Our test can be viewed as a heteroskedasticity-adjusted Box and Pierce test.

That is, it is defined as the sum of squared differences between the estimated spatial autocorrelations

ρ̂BC
t,τ (h) and their asymptotic limits under the null hypothesis of no error dependence, adjusted by a
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scaling factor to account for heteroskedasticity in the series. More specifically, the proposed test takes

the following form,

Q̂H
t,τ =

1

∆

χ̂2
t,τ (0)

L̂t,τ (2)

H∑

h=1

( ρ̂BC
t,τ (h)− ρind(h) )2 , (27)

where ρind(h), defined in equation (13), equals the probability limit of ρ̂BC
t,τ (h) in the absence of F (0)-

conditional spatial dependence in the observation error. By Corollary 1 and equation (21),

Q̂H
t,τ

L−→ Y ′
W

H,ind Y , (28)

where Y is an H×1 vector of standard Gaussian random variables and W
H,ind ≡ {WH,ind(h, g)}Hh,g=1

with W ind(h, g) being a matrix of constants, provided in equation (43). The limiting distribution of

Q̂H
t,τ is time invariant and known. We denote its (1− ϑ)’th quantile by,

qH(ϑ) = {x ∈ R+ ∪ 0 : P(Y ′
W

H,ind Y > x) ≥ ϑ},

which can be easily computed via simulation. We have the following formal size and power result.

Theorem 3. Under Assumptions A1-A4, it follows that for t and τ fixed, as ∆ ↓ 0,

(a) If H0 : φ(L) = 1 holds, P
(
Q̂H

t,τ > qH(ϑ)|F (0)
)
→ ϑ.

(b) If HA : φ(L) 6= 1 holds, ∃H ≥ 1 sufficiently large, so that P
(
Q̂H

t,τ > qH(ϑ)|F (0)
)
→ 1.

Implementation of the test (27) requires a choice of H, which involves a size-power tradeoff. Specif-

ically, from equation (13), we have non-trivial theoretical predictions for the first two autocorrelations

under H0. Hence, to ensure proper size of the test, we must choose H ≥ 2. However, the addition

of, possibly many, insignificant higher-order autocorrelations will reduce test power. Consequently, we

may want to restrict H to only exceed two slightly. We implement the test with H = 4 in a numerical

exercise below and find that it has excellent finite sample properties in empirically realistic settings.

5.6 Extensions

The estimation precision and the power of the spatial dependence test may be increased by pooling

option data across tenors and dates, leading to the following set of correlation coefficients,

ρ̂T,T (h) =

∑
t∈T

∑
τ∈Tt

χ̂t,τ (h)∑
t∈T

∑
τ∈Tt

χ̂t,τ (0)
. (29)

Then, to draw feasible inference, we utilize the fact that, per Assumption A4, we have F (0)- conditional

independence between observation errors for options with different tenors and/or recorded at different
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times. Hence, we may define the aggregated bias-corrected estimators analogously,

ρ̂BC
T,T (h) ≡ ρ̂T,T (h) −

∑
t∈T

∑
τ∈Tt

χ̂t,τ (h)(∑
t∈T

∑
τ∈Tt

χ̂t,τ (0)
)3

∑

t∈T

∑

τ∈Tt

Âcovt,τ (0, 0)

+
1

(∑
t∈T

∑
τ∈Tt

χ̂t,τ (0)
)2

∑

t∈T

∑

τ∈Tt

Âcovt,τ (0, h), (30)

and the associated estimate of the asymptotic variance by,

M̂
H,ind

T,T = W
H,ind ×

∑
t∈T

∑
τ∈Tt

L̂t,τ (2)(∑
t∈T

∑
τ∈Tt

χ̂t,τ (0)
)2 , W

H,ind ≡ {WH,ind(h, g)}Hh,g=1. (31)

With this notation, applying Corollary 1 and exploiting the F (0)- conditional independence in the

observation errors across time and tenors, we have, under no spatial dependence in observation errors,

1√
∆

(
M̂

H,ind

T,T

)−1/2 (
{ρ̂BC

T,T (h)}h=1,...,H − {ρind(h)}h=1,...,H

)
L−→ N (0H , IH) . (32)

Finally, we may similarly extend our test statistic as,

Q̂H
T,T =

1

∆

(∑
t∈T

∑
τ∈Tt

χ̂t,τ (0)
)2

∑
t∈T

∑
τ∈Tt

L̂t,τ (2)

H∑

h=1

( ρ̂BC
T,T (h)− ρind(h) ) 2, (33)

with its limit distribution being the same as that of Q̂H
t,τ .

Remark 3. Our pooling together of cross-sections of options across different time periods and tenors

is based on the premise that the associated errors are uncorrelated. Following Dalla et al. (2019), we

can also construct a cross-correlation test of such a hypothesis.

6 Monte Carlo Study

This section provides simulation evidence focused on the finite-sample performance of the spatial

correlation estimator defined in equation (30) and the Portmanteau test statistic in equation (33).

6.1 Setup

The numerical experiments rely on the double-jump stochastic volatility model introduced by Duffie

et al. (2000) and studied empirically in Broadie et al. (2007). Specifically, the risk-neutral dynamics

of the stock price in this model obey the stochastic differential equations,

dXt

Xt−
= (rt − δt)dt+

√
Vt dWt + dLx,t , dVt = κd (v − Vt) dt+ σd

√
Vt dBt + dLv,t , (34)
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where (Wt, Bt) is a two-dimensional Brownian motion with corr (Bt,Wt) = ρd , (Lx,t, Lv,t) is a bivariate

compound Poisson process with intensity λj , and Lx,t is demeaned, making it a jump martingale. The

marginal distribution of volatility jumps, Zv, is exponential with mean µv , while jumps in the log-price,

log(Zx + 1), are Gaussian with mean µx + ρjZv and standard deviation σx, conditional on Zv.

Although our inference procedure only requires a characterization of the data generating process

under the risk-neutral measure, the dynamics of the state variables must be generated from the true

(statistical) probability measure in the simulation experiment. For simplicity, we assume X belongs to

the same parametric model class under the statistical (P) and risk-neutral (Q) measures. In addition,

following Broadie et al. (2007), we impose ρj = 0. Finally, for convenience, we also let rt = δt = 0.

Table 1 reports the full set of parameter values used in our numerical experiments.

Under P Under Q

Parameter Value Parameter Value Parameter Value Parameter Value

ρd −0.4600 λj 1.0080 ρd −0.4600 λj 1.0080
v 0.0144 µx −0.0284 v 0.0144 µx −0.0501
κd 4.0320 σx 0.0490 κd 4.0320 σx 0.0751
σd 0.2000 µv 0.0315 σd 0.2000 µv 0.0930

Table 1: Parameter Setting for the Numerical Experiments

In the simulations, we price options on an equispaced log-moneyness grid, covering the range

[−4, 1] · σATM√
τ , where σATM is the at-the-money Black-Scholes implied volatility (ATM-BSIV) on a

given day. This results in a time-varying range of moneyness, depending on the level of volatility, which

mimics the corresponding trait in actual option data. For the volatility of the option error, we follow

Andersen et al. (2015) and set σt,τ (k) = 0.5ψk κt,τ (k)/Q0.995, with ψk denoting the estimate from a

kernel regression of the relative bid-ask spreads of SPX options used in our empirical application against

their volatility-adjusted log-strike, and Q0.995 signifying the 0.995-quantile of the standard normal

distribution. This specification of σt,τ (k) allows for significant time-variation of the (conditional) noise

variance, depending on both the level of volatility and the moneyness. The errors {ζNt,τ (j)}j=1,...,Nτ
t
are

generated as jointly normally distributed variables with mean zero and variance one. When studying

dependence under the null hypothesis, they are independent. In addition, we consider two alternative

specifications that accommodate spatial dependence in the observation errors,

• Alternative (A1): For ∀(t, τ), ζNt,τ (j) is an MA(1) process with moving-average parameter 0.5.

• Alternative (A2): For ∀(t, τ), ζNt,τ (j) is an AR(1) process with autoregressive parameter 0.5,
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Finally, we consider three different scenarios for the option observation scheme,

• Scenario 1: |T| = 1, |Tt| = 1, N τ
t = 500 and τ = 15 days,

• Scenario 2: |T| = 1, |Tt| = 1, N τ
t = 50 and τ = 15 days,

• Scenario 3: T consists of 21 consecutive days, |Tt| = 1, N τ
t = 50 and τ = 15 days.

6.2 Simulation Results

We start by assessing the finite-sample performance of the feasible CLT for ρ̂BC
T,T (h) under the null

hypothesis. Figures 1, 2, and 3 show the histograms of (ρ̂BC
T,T (h) − ρind(h)))/

√
∆MH,ind

T,T (h, h), for

h = 1, · · · , 4 on the basis of 1,000 Monte Carlo replications under the null hypothesis of no cross-

sectional dependence in the observation error. Figure 1 shows that the feasible CLT for ρ̂BC
T,T (h) works

very well in the setup of Scenario 1, for which we have a lot of option data on a single day. For Scenario

2, Figure 2 reveals a slight upward bias at lag 1 and a downward bias at lag 2. Relative to Scenario

1, Scenario 2 has a much coarser strike grid, so the quality of our asymptotic expansions worsens

somewhat, as the true option price displays more variability across adjacent strikes, rendering the

underlying approximation in equation (8) less accurate. Finally, Figure 3 shows there is an upward bias

at lag 2 under Scenario 3, contrary to a slight downward bias at that lag under Scenario 2. Scenarios

2 and 3 have the same denseness of the strike grid, but Scenario 3 utilizes data across multiple days,

corresponding to different realizations of the latent stochastic volatility, leading to additional variation

in the true option price. Hence, the pooling of option data across volatility regimes will naturally

generate a different behavior for the correlation coefficients under Scenarios 2 and 3.

Overall, the finite-sample performance of our feasible inference for the spatial autocorrelations is

very good. This conclusion is further corroborated by comparing empirical coverage rates for the

confidence intervals of these quantities, reported in Table 2, with their nominal levels. In all the cases

we consider, the empirical coverage rates are very close to their nominal counterparts.

We next explore the finite-sample behavior of our Portmanteau test for cross-sectional dependence

in the observation error. We set H = 4 in our implementation, i.e., we use the first four autocorrela-

tions. The results are reported in Table 2. In all three scenarios, the rejection rates of the test under

the null hypothesis are very close to the nominal size. The test appears only mildly undersized for the

5% and 1% size under Scenario 3. In terms of power, not surprisingly, Scenario 2 is the weakest. This

scenario relies on a single cross-section of 50 options on one day. For the identical denseness of the

strike grid, we gain significantly more power in detecting spatial dependence in the observation errors

by pooling data across days, as evident from the results for Scenario 3. Of course, by pooling option

data across days, we can make inference only about the average correlations across the days used in
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Figure 1: Finite-sample distribution of (ρ̂BC
T,T (h) − ρind(h))/

√
∆M̂H,ind

T,T (h, h) under H0 for Scenario

1. The solid line corresponds to the pdf of the standard normal distribution, while the dashed vertical
line originates at zero. The histograms are computed from 1, 000 Monte Carlo replications.

the test. This seems, however, to constitute a reasonable compromise in settings for which we may

not have enough option data available each day to obtain sufficient test power.

Finally, we repeated the above Monte Carlo study with the identical setup, except that we replaced

τ = 15 days with the longer maturities of τ = 90 and τ = 250 days. The performance of the test for

the longer-dated options is very similar to the one for the short-dated options reported in Table 2.

These results are omitted for brevity.

7 Empirical Application

We now apply our newly developed inference techniques to study the dependence in observation errors

for options written on the S&P 500 index. These options are European style and trade on the CBOE

with ticker SPX. The data consist of closing bid and ask quotes and are obtained from OptionMetrics.

We take the mid-quote as our observed option price. The sample covers January 2007 – December

2014. We apply standard filters. First, we retain only options with a tenor below one year, as longer

maturity contracts are less liquid. We do, however, retain very short-maturity options, as they become

19



-5 0 5

0

0.1

0.2

0.3

0.4

0.5

-5 0 5

0

0.1

0.2

0.3

0.4

0.5

-5 0 5

0

0.1

0.2

0.3

0.4

0.5

-5 0 5

0

0.1

0.2

0.3

0.4

0.5

Figure 2: Finite-sample distribution of (ρ̂BC
T,T (h) − ρind(h))/

√
∆M̂H,ind

T,T (h, h) under H0 for Scenario

2. The solid line corresponds to the pdf of the standard normal distribution while the dashed vertical
line originates at zero. The histograms are computed from 1, 000 Monte Carlo replications.

very liquid in the recent part of the sample, see, e.g., Andersen et al. (2017). Second, for each day and

maturity, we compute the implied futures price on the underlying index using put-call parity. For this

purpose, we retain only cross-sections with, at least, five put-call contracts with the same strike price.

We then extract the futures price from the full set of put-call pairs with identical strikes.

Table 3 provides summary statistics for our final dataset. Importantly, the moneyness range,

expressed as standard deviations from the futures price, covers on average the interval [−5, 2] and the

average number of available options per maturity is between 37 and 96. This resembles the setup for

our numerical experiments in Section 6.

In our empirical application, we pool all options within a month, corresponding to the sampling

scheme described by Scenario 3 in Section 6. Moreover, we explore short- (τ ≤ 31), medium- (31 <

τ ≤ 180), and longer-dated (180 < τ ≤ 365) options separately to examine features of the option

surface. This categorization of the maturities is standard within the broad option pricing literature;

see, e.g., Christoffersen et al. (2012) and Babaoglu et al. (2017), among many others.

The results from our test for spatial dependence in the option observation errors are reported in

the last panel of Table 3. We draw several conclusions. First, there is evidence of spatial dependence in
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Figure 3: Finite-sample distribution of (ρ̂BC
T,T (h) − ρind(h))/

√
∆M̂H,ind

T,T (h, h) under H0 for Scenario

3. The solid line corresponds to the pdf of the standard normal distribution while the dashed vertical
line originates at zero. The histograms are computed from 1, 000 Monte Carlo replications.

the option observation error. It is weakest for the short-dated options and strongest for the long-dated

ones. Second, the dependence has declined over time for short- and medium-dated options, while it

remains largely unchanged for longer-dated options. These patterns are visualized in Figure 4 which

plots the time series of the test statistics along with the corresponding 5% critical values.

To further assess the evolution of the spatial dependence in the option observation error over time,

Figure 5 depicts the first two autocorrelation coefficients centered around their value under the null

hypothesis of spatial error independence, ρ̂t,τ (1)− ρind(1) and ρ̂t,τ (2)− ρind(2), as well as an estimate

for the average (across strikes) absolute value of the option observation error. Consistent with our

evidence from the test reported above, the spatial dependence in the option observation error has

declined markedly over time for the short- and medium-maturity options, while it appears roughly

constant for the ones with long tenor.

To provide a context for the reported figures we note that, in the case of spatial MA(1) dynamics

for the observation errors with MA coefficient of θ, we have,

ρt,τ (1) =
7θ − 4

6− 8θ
and ρt,τ (2) =

1− 4θ

6− 8θ
, where θ =

θ

θ2 + 1
.
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Scenario 1 Scenario 2 Scenario 3
90% 95% 99% 90% 95% 99% 90% 95% 99%

Under the Null

ρ̂1 90.80 94.90 99.20 87.90 93.20 98.20 90.30 95.80 99.20
ρ̂2 91.00 95.70 99.10 94.00 98.30 99.90 91.30 96.00 99.80
ρ̂3 91.40 95.20 99.30 91.00 96.20 99.50 91.60 97.20 99.60
ρ̂4 91.20 95.50 98.50 90.80 95.10 98.60 92.20 96.80 99.50

Test Size 8.70 4.80 1.00 9.70 4.30 0.40 9.40 3.10 0.50

Under the Alternative

Power A1 (MA 0.5) 99.70 99.40 95.90 35.30 16.70 1.70 100.00 100.00 100.00
Power A2 (AR 0.5) 49.40 32.20 8.10 15.10 7.00 0.70 83.00 66.30 31.90

Table 2: Simulation results for short-maturity options. Rows 1-4 provide coverage rates for two-sided
confidence intervals for the autocorrelation coefficients under the hypothesis of no spatial dependence
in the observation errors. Rows 5-7 give rejection rates of the non-central Chi-square test for no spatial
dependence in the option errors, under the null hypothesis (test size), and the alternatives A1 and A2
(test power), respectively.

Therefore, the reported autocorrelations for the short-maturity options are consistent with an MA(1)

model with θ around 0.45 for the first half of the sample and θ around only 0.03 for the second half,

reflecting the significant decline in the persistence of the observation error. In contrast, the evidence

for the long-dated options cannot be rationalized with an MA(1) model, as the latter is incompatible

with a large value for ρ̂t,τ (1)− ρind(1) and, simultaneously, a small value for ρ̂t,τ (2)− ρind(2). Hence,

the dependence structure for these options is more complex. We further note the fairly dramatic drop

over time in the size of the observation error for short- and, to a lesser extent, medium-dated options.

A possible explanation is the strong improvement in the liquidity of the market for shorter dated

options over the latter part of our sample. As discussed in Section 1, improved liquidity should lower

the exposure of the market makers to inventory risk and–all else equal–reduce the size of the bid-ask

spreads. Consistent with this prediction, Figure 6 documents a sizable drop in the spreads for the

short-dated options over the sample period, while the decline is more modest for the medium-dated

options, and barely noticeable for the longer-dated ones.

8 Conclusion

In this paper, we develop the first procedure for nonparametric inference regarding spatial dependence

of option observation errors. It is based on a panel of option prices with different strikes and tenors

written on a given underlying asset. The asymptotic design is of the infill type – the set of times and

tenors at which the options are observed remains fixed, while the strike grid mesh becomes finer. In
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2007-2010 2011-2014 2007-2014

Q05 moneyness short -5.85 -7.06 -6.45
Q05 moneyness medium -5.11 -7.05 -6.07
Q05 moneyness long -4.06 -6.29 -5.17

Q95 moneyness short 2.19 1.86 2.03
Q95 moneyness medium 2.00 1.70 1.85
Q95 moneyness long 1.68 1.44 1.56

# maturities short 21.49 62.52 41.78
# maturities medium 88.57 137.00 112.53
# maturities long 65.91 87.50 76.59

# options short 74.03 79.46 78.05
# options medium 65.60 90.50 80.59
# options long 36.98 49.71 44.17

Test rejection rate short (%) 38.30 19.57 29.03
Test rejection rate medium (%) 97.87 78.26 88.17
Test rejection rate long (%) 93.62 97.83 95.70

Table 3: S&P 500 index option data description and test results. The table reports: (i) the time
series average of the 5th and 95th monthly quantiles of the moneyness range, measured in units of
Black-Scholes Implied Volatility from at-the-money, in rows 1-3 and 4-6, respectively; (ii) the average
number of maturities per month in rows 7-9; (iii) the average number of options per maturity in rows
10-12; and (iv) the 5% rejection rates for our Portmanteau test in rows 13-15. Short, medium, and
long refer to options with maturities less than 31, between 31 and 180, and more than 180 calendar
days, respectively.
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Figure 4: Tests for spatial dependence in observation error for S&P 500 index options. The shaded
area represents the acceptance region of the test at the 5% critical level, while dots indicate the value
of the test statistic. The left panel corresponds to options with maturity up to 31 calendar days, the
middle panel to options with maturities of 31-180 days, and the right panel to options with maturities
of 181-365 days. The value of the test and the test critical level are reported on a logarithmic scale.

this setup, we develop estimators for the spatial autocorrelation of the observation error by using a

second-order difference of the option price as a function of its strike. We derive a feasible CLT for

the spatial autocorrelations, with the limit distribution being mixed Gaussian. Exploiting the newly

developed limit theory, we propose a Portmanteau test for the presence of cross-sectional correlation

in the option observation errors. The proposed inference procedures are evaluated on simulated data

and used to study the spatial dependence in the observation errors for S&P 500 index options. We

find evidence of limited dependence, but also note that the spatial dependence at short tenors has

declined sharply in recent years, as the liquidity of trading in short-dated options has improved.

9 Proofs

This section contains definitions of various quantities given in the main text as well as the proofs of

the theoretical results. Before proceeding, however, let us introduce some general notation to be used

throughout the proofs. First, denote by K a generic constant, which may take different values from

line to line and from (in)equality to (in)equality. Similarly, we let Kt denote a generic finite-valued

and F (0)
t -adapted random variable that can take different values in different places. Finally, we will

be using shorthand notation ǫNt,τ (kt,τ (j)) ≡ ǫNt,τ (j) and,

ǭNt,τ (j) ≡
√

2

3

(
ǫNt,τ (j)−

(
ǫNt,τ (j − 1) + ǫNt,τ (j + 1)

2

))
,
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Figure 5: Autocorrelation coefficients and size of observation errors for S&P 500 index options. The
top panels display the differences ρ̂t,τ (1)−ρind(1) and ρ̂t,τ (2)−ρind(2). The bottom panels display the
average absolute value of the option observation errors across strikes. The left column covers options
with maturity up to 31 calendar days, the middle one covers options with maturities of 31-180 days,
and the right panel covers options with maturity of 181-365 days.

χ̄t,τ (h) ≡
1

N τ
t − h− 2

Nτ
t −1∑

j=h+2

ǭNt,τ (j)ǭ
N
t,τ (j − h), ̟̂ t,τ (h) ≡

1

N τ
t − h− 2

Nτ
t −1∑

j=h+2

ǫNt,τ (j)ǫ
N
t,τ (j − h),

γ̄t,τ (h) ≡
2

3

(
3

2
γt,τ (h)− γt,τ (h+ 1)− γt,τ (h− 1) +

1

4
γt,τ (h− 2) +

1

4
γt,τ (h+ 2)

)
,

ǫ̃Nt,τ (j) ≡
√

2

3
ζ̄Nt,τ (j)σt,τ (j), ζ̄Nt,τ (j) ≡ ζNt,τ (j)−

(
ζNt,τ (j − 1) + ζNt,τ (j + 1)

2

)
,

χ̃t,τ (h) ≡
1

N τ
t − h− 2

Nτ
t −1∑

j=h+2

ǫ̃Nt,τ (j)ǫ̃
N
t,τ (j − h), h ∈ N,

Q2
t,τ ≡ ϑt,τ

∫ k(t,τ)

k(t,τ)
ψt,τ (k)σ

2
t,τ (k)dk, Q4

t,τ ≡ ϑ2t,τ

∫ k(t,τ)

k(t,τ)
ψt,τ (k)σ

4
t,τ (k)dk.
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Figure 6: Average bid-ask spreads for S&P 500 index options. From left to right, the panels display the
average size of the percentage bid-ask spread for short-, medium- and long-dated options, respectively,
as a function of log-moneyness. The bid-ask spread is measured in units of implied volatility, with IVa
and IVb being the Black-Scholes Implied Volatility computed at the ask and bid prices. Each panel
displays the results for 2007-2010 and 2011-2014 separately.

9.1 Moment Definitions

For any h, g ∈ N, define the F (0)-conditional asymptotic covariance between ̟̂ t,τ (h) and ̟̂ t,τ (g),

Ct,τ (h, g) ≡ Vt,τ (h, g) ×Q4
t,τ , with (35)

Vt,τ (h, g) ≡ (η − 3)γt,τ (h)γt,τ (g) +

∞∑

s=−∞

{
γt,τ (s)γt,τ (s+ h− g) + γt,τ (s+ h)γt,τ (s− g)

}
.

Note that the structure of (35) is reminiscent of the corresponding asymptotic covariance for depen-

dent, yet stationary processes, given in Proposition 7.3.4 of Brockwell and Davis (1991). The main

differences between their expression and the asymptotic covariance in (35) is that we estimate spatial,

not time series, autocovariances, the variances of the individual observations are F (0)-conditionally het-

eroskedastic, and the option “error” observations, whose dependence we are interested in estimating

and testing for, are measured with “noise”; namely, the latent BSIVs.

For the asymptotic covariance between χ̂t,τ (h) and χ̂t,τ (g), define a ≡ (3/2,−1 − 1, 1/4, 1/4)′ ,

̟̂t,τ (h) = ( ̟̂ t,τ (h), ̟̂ t,τ (h− 1), ̟̂ t,τ (h+ 1), ̟̂ t,τ (h− 2), ̟̂ t,τ (h+ 2))′, (36)

as well as the 5× 5 matrix,

B̄t,τ (h, g) ≡ (37)
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Vt,τ (h, g) Vt,τ (h, g − 1) Vt,τ (h, g + 1) Vt,τ (h, g − 2) Vt,τ (h, g + 2)

Vt,τ (h− 1, g) Vt,τ (h− 1, g − 1) Vt,τ (h− 1, g + 1) Vt,τ (h− 1, g − 2) Vt,τ (h− 1, g + 2)

Vt,τ (h+ 1, g) Vt,τ (h+ 1, g − 1) Vt,τ (h+ 1, g + 1) Vt,τ (h+ 1, g − 2) Vt,τ (h+ 1, g + 2)

Vt,τ (h− 2, g) Vt,τ (h− 2, g − 1) Vt,τ (h− 2, g + 1) Vt,τ (h− 2, g − 2) Vt,τ (h− 2, g + 2)

Vt,τ (h+ 2, g) Vt,τ (h+ 2, g − 1) Vt,τ (h+ 2, g + 1) Vt,τ (h+ 2, g − 2) Vt,τ (h+ 2, g + 2)



.

Moreover, let us define the estimated version of Vt,τ (h, g), as

V̄t,τ (h, g) ≡ (η − 3)γ̄t,τ (h)γ̄t,τ (g) +

∞∑

s=−∞

{
γ̄t,τ (s)γ̄t,τ (s+ h− g) + γ̄t,τ (s + h)γ̄t,τ (s− g)

}
. (38)

By noting that
∑∞

s=−∞ γt,τ (s)γt,τ (s + h − g) =
∑∞

s=−∞ γt,τ (s + g)γt,τ (s + h) as well as the compos-

ite variance a′B̄t,τ (h, g)a being linear and symmetric in its leads, lags and loadings, it follows that

the expressions V̄t,τ (h, g) and a′B̄t,τ (h, g)a are exactly equivalent, implying that the F (0)-conditional

asymptotic covariance may be defined as

C̄t,τ (h, g) = V̄t,τ (h, g) ×Q4
t,τ . (39)

Next, to define and derive the F (0)-conditional asymptotic covariance matrix between the correspond-

ing correlation estimates, let

DH
t,τ ≡

(
γ̄t,τ (0)×Q2

t,τ

)−1




−ρ̄t,τ (1) 1 0 . . . 0

−ρ̄t,τ (2) 0 1 0
...

. . .

−ρ̄t,τ (H) 0 1 . . . 1




(40)

be an H × (H + 1) matrix of partial derivatives, with ρ̄t,τ (h), h = 1, . . . ,H, defined in (12). Hence,

we may, then, define the H ×H covariance matrix M
H
t,τ ≡ {Mt,τ (h, g)}Hh,g=1, with elements given by,

Mt,τ (h, g) ≡ Wt,τ (h, g) ×
Q4

t,τ

(Q2
t,τ )

2
, with (41)

Wt,τ (h, g) ≡
∞∑

k=−∞

[
ρ̄t,τ (k)ρ̄t,τ (k + h− g) + ρ̄t,τ (k + h)ρ̄t,τ (k − g) + 2ρ̄t,τ (h)ρ̄t,τ (g)ρ̄

2
t,τ (k)

− 2ρ̄t,τ (h)ρ̄t,τ (k)ρ̄t,τ (k − g)− 2ρ̄t,τ (g)ρ̄t,τ (k)ρ̄t,τ (k + h)

]
. (42)

When invoking the null hypothesis, H0 : φ(L) = 1, the asymptotic variance of the correlation estimates
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may be written as MH,ind
t,τ ≡ {Mind

t,τ (h, g)}Hh,g=1, with elements defined as

Mind
t,τ (h, g) ≡ W ind(h, g) × Q4

t,τ

(Q2
t,τ )

2
, with (43)

W ind(h, g) ≡
∞∑

k=−∞

[
ρind(k)ρind(k + h− g) + ρind(k + h)ρind(k − g) + 2ρind(h)ρind(g)(ρind(k))2

− 2ρind(h)ρind(k)ρind(k − g)− 2ρind(g)ρind(k)ρind(k + h)

]
. (44)

9.2 Technical Lemmas

Lemma 1. Under Assumptions A1-A4. Then, for some F (0)
t -adapted random variable Kt,

(a)
∣∣ǫ̂Nt,τ (j) − ǭNt,τ (j)

∣∣ ≤ Kt∆, for j = 2, . . . , N τ
t .

(b) |χ̂t,τ (h)− χ̄t,τ (h)| ≤ Op(∆).

(c) |ǭNt,τ (j) − ǫ̃Nt,τ (j)| ≤ Kt∆(|ζNt,τ (j − 1)|+ |ζNt,τ (j + 1)|), for j = 2, . . . , N τ
t .

Proof. For (a). First, let us make the decomposition,

|ǫ̂Nt,τ (j) − ǭNt,τ (j)| =
√

2

3

∣∣∣∣κt,τ (kt,τ (j)) −
(
κt,τ (kt,τ (j − 1)) + κt,τ (kt,τ (j + 1))

2

)∣∣∣∣

≤ Kt

(
|kt,τ (j) − kt,τ (j − 1)|+ |kt,τ (j) − kt,τ (j + 1)|

)

≤ Kt

(
∆t,τ (j) + ∆t,τ (j + 1)

)
, j = 2, . . . , N τ

t − 1, (45)

using Assumptions A1. The result, then, follows by Assumption A2, equation (6).

For (b). First, by addition and subtraction as well as the triangle inequality,

|χ̂t,τ (h)− χ̄t,τ (h)| ≤

K

N τ
t − h− 2

Nτ
t −1∑

j=h+2

(∣∣ǫ̂Nt,τ (j) − ǭNt,τ (j)
∣∣∣∣ǫ̂Nt,τ (j − h)

∣∣+
∣∣ǭNt,τ (j)

∣∣∣∣ǫ̂Nt,τ (j − h)− ǭNt,τ (j − h)
∣∣
)
. (46)

The result, then, follows as by (a) since E
∣∣ǭNt,τ (j)

∣∣ < K, j = 1, . . . , N τ
t , by Assumption A4.

For (c). First, let us decompose ǭNt,τ (j) − ǫ̃Nt,τ (j) for j = 2, . . . , N τ
t ,

∣∣ǭNt,τ (j)− ǫ̃Nt,τ (j)
∣∣ ≤ 1√

6

∣∣(σt,τ (j) − σt,τ (j − 1)
)
ζt,τ (j − 1)

∣∣+ 1√
6

∣∣(σt,τ (j) − σt,τ (j + 1)
)
ζt,τ (j + 1)

∣∣.

The result, then, follows by Assumption A2, equation (6) and Assumption A3 (specifically, the con-

tinuous differentiability of σt,τ (k) as a function of k).
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Lemma 2. Under Assumptions A1-A4. Then, for h ∈ N and some F (0)
t -adapted variable Kt,

(a) supj=h,...,Nτ
t

∣∣σt,τ (j) − σt,τ (j − h)
∣∣ ≤ Kt|h|∆.

(b) supj=h,...,Nτ
t

∣∣σ2t,τ (j) − σ2t,τ (j − h)
∣∣ ≤ Kt|h|∆.

(c)
∣∣ 1
Nτ

t −h−2

∑Nτ
t −1

j=h+2 σ
2
t,τ (j) −Q2

t,τ

∣∣ ≤ op(∆
1/2) and

∣∣ 1
Nτ

t −h−2

∑Nτ
t −1

j=h+2 σ
4
t,τ (j)− ϑ−1

t,τQ4
t,τ

∣∣ ≤ op(∆
1/2).

Proof. For (a). First, by the triangle inequality,

∣∣σt,τ (j) − σt,τ (j − h)
∣∣ ≤

h−1∑

g=0

∣∣σt,τ (j − g)− σt,τ (j − g − 1)
∣∣ (47)

Next, since σt,τ (k) is continuously differentiable in k by Assumption A3, we may use the mean-value

theorem in conjunction with Assumptions A1-A2, as for Lemma 1(a), to show

|σt,τ (j)− σt,τ (j − 1)| ≤ Kt∆t,τ (j), j = 2, . . . , N τ
t . (48)

Hence, since ψt,τ (k) is F (0)
t -adapted, finite-valued and continuously differentiable in k ∈ [kt,τ , k̄t,τ ] by

Assumption A2, we may combine the latter with (48) and A3 to establish the stated bound.

For (b). First, by addition and subtraction and the triangle inequality,

|σ2t,τ (j)− σ2t,τ (j − h)
∣∣ ≤ σt,τ (j)|σt,τ (j)− σt,τ (j − h)

∣∣ + σt,τ (j − h)|σt,τ (j) − σt,τ (j − h)
∣∣. (49)

The results, then, follows by Assumptions A2-A3 in conjunction with the bound in (a).

For (c). We only establish the first convergence below as the second follows by identical arguments.

First, write

∆

∆(N τ
t − h− 2)

Nτ
t −1∑

j=h+2

σ2t,τ (j) −Q2
t,τ = Et,τ,1 + Et,τ,2 + Et,τ,3, (50)

where the three error terms are defined as:

Et,τ,1 ≡ ∆

(
1

∆(N τ
t − h− 2)

− ϑt,τ

) Nτ
t −1∑

j=h+2

σ2t,τ (j),

Et,τ,2 ≡ ϑt,τ

Nτ
t −1∑

j=h+2

σ2t,τ (j)∆t,τ (j)

(
∆

∆t,τ (j)
− ψt,τ (kt,τ (j))

)
,

Et,τ,3 ≡ ϑt,τ

Nτ
t −1∑

j=h+2

ψt,τ (kt,τ (j))σ
2
t,τ (j)∆t,τ (j) −Q2

t,τ .

By Assumptions A2 and A3 and the continuous mapping theorem, we have |Et,τ,1| ≤ op(∆
1/2) and
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|Et,τ,2| ≤ op(∆
1/2). Next, by continuous differentiability of σt,τ (k) and ψt,τ (k) in k, uniformly on the

interval finite-valued interval kt,τ (j) ∈ [kt,τ , k̄t,τ ], it follows that

∣∣∣∣∣ψt,τ (kt,τ (j))σ
2
t,τ (j)∆t,τ (j) −

∫ j∆t,τ(j)

(j−1)∆t,τ (j)
ψt,τ (k)σ

2
t,τ (k)dk

∣∣∣∣∣ ≤ Op(∆
2
t,τ (j)), (51)

implying that, by invoking Assumption A2, |Et,τ,3| ≤ Op(∆). Hence, by combining the three bounds

with the triangle inequality and (50), this provides the stated bound in the lemma.

Lemma 3. Under Assumptions A1-A4,

(a)
∣∣E
(
̟̂ t,τ (h)|F (0)

)
− γt,τ (h)Q2

t,τ

∣∣ ≤ op(∆
1/2), for h ∈ N.

(b) ∆−1COV
(
̟̂ t,τ (h), ̟̂ t,τ (g)|F (0)

) P−→ Ct,τ (h, g), for h, g ∈ N.

(c)
∣∣E
(
χ̄t,τ (h)|F (0)

)
− γ̄t,τ (h)Q2

t,τ

∣∣ ≤ op(∆
1/2), for h ∈ N.

(d) ∆−1COV
(
χ̄t,τ (h), χ̄t,τ (g)|F (0)

) P−→ C̄t,τ (h, g), for h, g ∈ N.

Proof. For (a). By Assumption A3 and stationarity of ζNt,τ (j), we may write

E
(
̟̂ t,τ (h)|F (0)

)
=

γt,τ (h)

N τ
t − h− 2

Nτ
t −1∑

j=h+2

σt,τ (j)σt,τ (j − h).

The result, then, follows by applying Lemmas 2(a) and 2(c).

For (b). Before proceeding, define zt,τ (j) ≡ σt,τ (j)νt,τ (j) and observe that,

E
(
zt,τ (j1)zt,τ (j2)zt,τ (j3)zt,τ (j4)|F (0)

)
=





ησ4t,τ (j1) if j1 = j2 = j3 = j4

σ2t,τ (j1)σ
2
t,τ (j3) if j1 = j2 6= j3 = j4

0 if j1 6= j2, j1 6= j3, j1 6= j4

(52)

by independence of νt,τ (j) from F (0) as well as the spatial properties of νt,τ (j) by Assumptions A3

and A4. Moreover, by standard quadrature distribution expectations,

E
(
ǫNt,τ (j)ǫ

N
t,τ (j − h)ǫNt,τ (i)ǫ

N
t,τ (i− g)|F (0)

)
= E

(
ǫNt,τ (j)ǫ

N
t,τ (j − h)|F (0)

)
× E

(
ǫNt,τ (i)ǫ

N
t,τ (i− g)|F (0)

)

+ E
(
ǫNt,τ (j)ǫ

N
t,τ (i)|F (0)

)
× E

(
ǫNt,τ (j − h)ǫNt,τ (i− g)|F (0)

)

+ E
(
ǫNt,τ (j)ǫ

N
t,τ (i− g)|F (0)

)
× E

(
ǫNt,τ (j − h)ǫNt,τ (i)|F (0)

)
+K4(i− j, h, g − h|F (0)),

with K4(i− j, h, g − h|F (0)) being the fourth conditional cumulant. Hence, by applying these decom-
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positions and conditional expectation results, we may write

E
(
̟̂ t,τ (h) ̟̂ t,τ (g)|F (0)

)
= At,τ (h, g, 1) +At,τ (h, g, 2) +At,τ (h, g, 3) +At,τ (h, g, 4), (53)

whose components, with N τ
t,h ≡ N τ

t − h− 2 and N τ
t,g ≡ N τ

t − g − 2, are defined as follows:

At,τ (h, g, 1) ≡ E
(
̟̂ t,τ (h)|F (0)

)
× E

(
̟̂ t,τ (g)|F (0)

)
,

At,τ (h, g, 2) ≡
1

N τ
t,h

1

N τ
t,g

Nτ
t −1∑

j=h+2

Nτ
t −1∑

i=g+2

E
(
ǫNt,τ (j)ǫ

N
t,τ (i)|F (0)

)
× E

(
ǫNt,τ (j − h)ǫNt,τ (i− g)|F (0)

)
,

At,τ (h, g, 3) ≡
1

N τ
t,h

1

N τ
t,g

Nτ
t −1∑

j=h+2

Nτ
t −1∑

i=g+2

E
(
ǫNt,τ (j)ǫ

N
t,τ (i− g)|F (0)

)
× E

(
ǫNt,τ (j − h)ǫNt,τ (i)|F (0)

)
,

At,τ (h, g, 4) ≡
1

N τ
t,h

1

N τ
t,g

Nτ
t −1∑

j=h+2

Nτ
t −1∑

i=g+2

K4(i− j, h, g − h|F (0)).

Now, as COV
(
̟̂ t,τ (h), ̟̂ t,τ (g)|F (0)

)
= E

(
̟̂ t,τ (h) ̟̂ t,τ (g)|F (0)

)
−At,τ (h, g, 1), it suffices to analyze the

three remaining terms. First, for At,τ (h, g, 2), using Assumption A3, it follows that

At,τ (h, g, 2) =
1

N τ
t,h

1

N τ
t,g

Nτ
t −1∑

j=h+2

Nτ
t −1∑

i=g+2

γt,τ (i− j)γt,τ (i− g− j+h)σt,τ (j)σt,τ (i)σt,τ (j−h)σt,τ (i− g). (54)

Next, by a change of variable i− j = s, Assumption A2 and Lemmas 2(a)-2(b),

∣∣∣∣∣At,τ (h, g, 2) −
1

N τ
t,hN

τ
t,g

Nτ
t −1∑

j=h+2

σ4t,τ (j)
∑

|s|≤Nτ
t −1

(
1− |s|

N τ
t − 1

)
γt,τ (s)γt,τ (s − g + h)

∣∣∣∣∣ (55)

≤ 1

N τ
t,hN

τ
t,g

Nτ
t −1∑

j=h+2

σ4t,τ (j)
∑

|s|≤Nτ
t −1

(
1− |s|

N τ
t − 1

)
|γt,τ (s)γt,τ (s− g + h)|

(
|s|+ |h|+ |s− g|

)
Kt∆

≤ Kt

N τ
t,hN

τ
t,g

Nτ
t −1∑

j=h+2

σ4t,τ (j)
∑

|s|≤Nτ
t −1

|s|∆
(
1− |s|

N τ
t − 1

)
|γt,τ (s)γt,τ (s− g + h)| .

Hence, when taking limits over j and using Lemma 2(c) in conjunction with absolutely summability

of the dependence parameters in Assumption A4, the dominated convergence theorem, the uniform

convergence conditions for the sampling scheme in A2 and the continuous mapping theorem,

∆−1

N τ
t,hN

τ
t,g

Nτ
t −1∑

j=h+2

σ4t,τ (j)
∑

|s|≤Nτ
t −1

(
1− |s|

N τ
t − 1

)
γt,τ (s)γt,τ (s− g + h)
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P−→ Q4
t,τ

∞∑

s=−∞

γt,τ (s)γt,τ (s− g + h), (56)

and, by another application of the dominated convergence theorem and Assumptions A2 and A4,

∆−1Kt

N τ
t,hN

τ
t,g

Nτ
t −1∑

j=h+2

σ4t,τ (j)
∑

|s|≤Nτ
t −1

|s|∆
(
1− |s|

N τ
t − 1

)
γt,τ (s)γt,τ (s− g + h)

P−→ 0. (57)

As a result, we have

∆−1At,τ (h, g, 2)
P−→ Q4

t,τ

∞∑

s=−∞

γt,τ (s)γt,τ (s− g + h), (58)

and, by the same arguments, ∆−1At,τ (h, g, 3)
P−→ Q4

t,τ

∑∞
s=−∞ γt,τ (s− g)γt,τ (s + h). Next, for the last

term in the covariance decomposition, At,τ (h, g, 4), we may similarly write

At,τ (h, g, 4) =
η − 3

N τ
t,hN

τ
t,g

Nτ
t −1∑

j=h+2

Nτ
t −1∑

i=g+2

σ4t,τ (j)
∞∑

z=−∞

φzφz−hφz+i−jφz+i−j−g. (59)

Hence, by the same arguments used to establish (56) and (57),

∆−1At,τ (h, g, 4)
P−→ (η − 3)Q4

t,τ

∞∑

s=−∞

∞∑

z=−∞

φzφz−hφz+sφz+s−g = (η − 3)Q4
t,τγt,τ (h)γt,τ (g). (60)

The covariance result follows by combining limits for At,τ (h, g, 2), At,τ (h, g, 3) and At,τ (h, g, 4).

For (c). First, note that by collection terms and Assumptions A2-A4, we have

χ̄t,τ (h) ≡
1

N τ
t − h− 2

Nτ
t −1∑

j=h+2

ǭNt,τ (j)ǭ
N
t,τ (j − h) (61)

=
2

3

(
3

2
̟̂ t,τ (h)− ̟̂ t,τ (h− 1)− ̟̂ t,τ (h+ 1) +

1

4
̟̂ t,τ (h+ 2) +

1

4
̟̂ t,τ (h− 2)

)
+Op(∆),

uniformly. The result, thus, follows by repeated application of (a).

For (d). First, write (61) in vector form, χ̄t,τ (h) =
2
3a

′̟̂t,τ (h) + Op(∆) , with the 5 × 1 vectors

a and ̟̂t,τ (h) defined in Section 9.1. Hence, we can rewrite the conditional covariance as,

∆−1COV
(
χ̄t,τ (h), χ̄t,τ (g)|F (0)

)
= ∆−1(2/3)2a′COV

(
̟̂t,τ (h), ̟̂t,τ (g)

′|F (0)
)
a+Op(∆

1/2). (62)

The result, thus, follows by applying (b) to each element of COV
(
̟̂t,τ (h), ̟̂t,τ (g)

′|F (0)
)
as well as

the variance definitions in (37)-(39), concluding the proof.

Lemma 4. Suppose Assumptions A1-A4 hold. Moreover, let f(·) be a function mapping from RH+1
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to RH, defined by

f([x0, x1, . . . , xH ]′) = [x1/x0, . . . , xH/x0]
′, x0 6= 0. (63)

Then, for ξ̄t,τ (h,H) ≡ (ξ̄t,τ (h), ξ̄t,τ (h + 1), . . . , ξ̄t,τ (H))′, ξ = {χ, γ}, write f(γ̄t,τ (0,H)) and let DH
t,τ

be its associated H × (H + 1) matrix of partial derivatives defined in (40), it follows:

∆−1DH
t,τCOV

(
χ̄t,τ (0,H), χ̄t,τ (0,H)′|F (0)

)
(DH

t,τ )
′ P−→ M

H
t,τ .

Proof. The result follows by Lemma 3(d), by applying the definitions (37)-(39), observing that

Mt,τ (h, g) =
Q4

t,τ

(γ̄(0)Q2
t,τ )

2

×
(
C̄t,τ (h, g) − ρ̄t,τ (h)C̄t,τ (0, g) − ρ̄t,τ (g)C̄t,τ (h, 0) + ρ̄t,τ (h)ρ̄t,τ (g)C̄t,τ (0, 0)

)
(64)

and by rewriting the expression on correlation form, noticing that the cumulants cancel.

Lemma 5. Suppose Assumptions A1-A4 hold with φ(L) = 1. Then, for some H ∈ N,

(a) {∆−1/2
(
̟̂ t,τ (h)− γt,τ (h)Q2

t,τ

)
}h=1,...,H

L−s−→ {Yt,τ (h)}h=1,...,H,

(b) {∆−1/2
(
χ̄t,τ (h)− γ̄t,τ (h)Q2

t,τ

)
}h=1,...,H

L−s−→ {Ȳt,τ (h)}h=1,...,H ,

where {Yt,τ (h)}h=1,...,H and {Ȳt,τ (h)}h=1,...,H are defined on an extension of the original probability

space, and are F-conditionally zero-mean H×1 Gaussian vectors with E(Yt,τ (h)Yt,τ (g)|F) = Ct,τ (h, g)
and E(Ȳt,τ (h)Ȳt,τ (g)|F) = C̄t,τ (h, g), for h, g = 1, ...,H.

Proof. For (a). First, let us denote

ZN
t,τ (h) ≡ ∆−1/2( ̟̂ t,τ (h)− γt,τ (h)Q2

t,τ ), h = 1, ...,H.

Then, given the product structure of F , we need to prove

E
(
Zg({ZN

t,τ (h)}h=1,...,H)
)
−→ E (Zg({Yt,τ (h)}h=1,...,H)) , (65)

for a continuous and bounded function g : RH → R and Y being a bounded random variable, which is

either F (0)-adapted or is a function of a fixed number of the error terms {ǫt,τ (j)}j=1,...,Nτ
t
. Given the

F (0)-conditional H-dependence of the summands in ̟̂ t,τ (h) (recall, we are in the case φ(L) = 1), this

convergence will follow if we can establish the following, stronger, result

{∆−1/2
(
̟̂ t,τ (h)− γt,τ (h)Q2

t,τ

)
}h=1,...,H

L|F(0)

−→ {Yt,τ (h)}h=1,...,H , (66)
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where L|F (0) means convergence in probability of the conditional probability laws when the latter are

considered as random variables taking values in the space of probability measures equipped with the

weak topology. For this, it suffices to show that every subsequence of {ZN
t,τ (h)}h=1,...,H has a further

subsequence, which converges to {Yt,τ (h)}h=1,...,H for every ω(0) ∈ F (0). Since F (0)-conditionally, the

summands in ̟̂ t,τ (h) are H-dependent, we may apply a CLT for H-dependent sequences, see e.g.,

Berk (1973). Hence, taking into account that ZN
t,τ (h)−E(ZN

t,τ (h)|F (0)) = op(
√
∆) by Lemma 5(a), the

proof will be completed by showing:




E(ZN

t,τ (h)ZN
t,τ (g)|F (0))− E(ZN

t,τ (h)|F (0))E(ZN
t,τ (g)|F (0))

P−→ Ct,τ (h, g), h, g = 1, ...,H,
∑H

h=1 E(|ZN
t,τ (h)|2+ι|F (0))

P−→ 0, for some ι > 0.
(67)

First, since the spatially (and time-) varying volatility σt,τ (j), j = 1, . . . , N τ
t , is F (0)

t -adapted and the

respective sequences of observation errors ǫNt,τ (j), j = 1, . . . , N τ
t , are independent for (t, τ) 6= (t′, τ ′),

the first result in (67) follows by successive conditioning in conjunction with the conditional moment

results in Lemmas 3(a) and 3(b). Next, for some F (0)
t -adapted bounded constant Kt > 0,

E(|ZN
t,τ (h)|2+ι|F (0)) ≤ Kt∆

−1−ι/2

(N τ
t )

2+ι

Nτ
t −1∑

j=h+2

E
(
|ζNt,τ (j)ζNt,τ (j − h)|2+ι

)
|σt,τ (j)σt,τ (j − h)|2+ι

≤ Kt∆
−1−ι/2

(N τ
t )

1+ι

1

N τ
t

Nτ
t −1∑

j=h+2

|σt,τ (j)σt,τ (j − h)|2+ι,

using the triangle inequality for the first inequality, and the fact that E
(
|ζNt,τ (j)|4+ς |F (0)

)
is bounded

by a finite positive constant, for some ς > 0, by Assumption A3 for the second inequality. Next, by

applying Lemma 2(a) in conjunction with the triangle inequality,

|σt,τ (j)σt,τ (j − h)|2+ι ≤ Kt|σt,τ (j)|2+ι(|σt,τ (j)|2+ι + (|h|∆)2+ι).

Moreover, since we may write |h| ≤ N τ
t for all finite samples, without loss of generality, it follows that

(|h|∆)2+ι ≤ Kt + op(∆
1/2). Hence, it suffices to establish that the sum (N τ

t )
−1
∑Nτ

t −1
j=h+2 |σt,τ (j)|4+2ι =

Op(1) since the corresponding stochastic bound for the second term in the decomposition will, then,

follow by the dominated convergence theorem. Now, since σt,τ (j) is continuously differentiable, we

may use the same arguments as for Lemma 2(c) to show

(N τ
t )

−1

Nτ
t −1∑

j=h+2

|σt,τ (j)|4+2ι P−→ ϑt,τ

∫ k(t,τ)

k(t,τ)
ψt,τ (k)σ

4+2ι
t,τ (k)dk.

34



Hence, by combining results, this shows E(|ZN
t,τ (h)|2+ι|F (0)) ≤ Op((∆N

τ
t )

−1−ι/2/(N τ
t )

ι/2), which, by

invoking Assumption A2 and the continuous mapping theorem, provides the final result in (67) and

thereby (a).

(b) follows by applying the decomposition in (61), the moment results of Lemma 3(c) and (d) in

conjunction with successive conditioning, as for (a), the stable central limit theory in (a) for each

h ∈ N and a stable Cramér-Wold theorem, see, e.g., (Varneskov, 2017, Lemmas C.1(d)-(e)).

Lemma 6. Under the conditions of Theorem 2, then,

(a) L̂t,τ (h)
P−→ Q4

t,τ , for some finite integer h ≥ 2.

(b) L̂t,τ (0)
P−→ ((5/9)η + 14/9

)
Q4

t,τ .

(c) η̂t,τ
P−→ ηQ4

t,τ .

Proof. For (a). First, by addition and subtraction of ǫ̃Nt,τ (j) in (18) together with the triangle in-

equality,

∣∣∣L̂t,τ (h)− L̃t,τ (h)
∣∣∣ ≤ 1

∆(N τ
t − h− 2)2

Nτ
t −1∑

j=h+2

∣∣(ǫ̂Nt,τ (j))2 − (ǫ̃Nt,τ (j))
2
∣∣ (ǫ̂Nt,τ (j − h))2

+
1

∆(N τ
t − h− 2)2

Nτ
t −1∑

j=h+2

(ǫ̃Nt,τ (j))
2
∣∣(ǫ̂Nt,τ (j − h))2 − (ǫ̃Nt,τ (j − h))2

∣∣ , (68)

where L̃t,τ (h) ≡ 1
∆(Nτ

t −h−2)
1

Nτ
t −h−2

∑Nτ
t −1

j=h+2(ǫ̃
N
t,τ (j))

2(ǫ̃Nt,τ (j − h))2. Next, using addition and subtrac-

tion, once again, we have

∣∣(ǫ̂Nt,τ (j))2 − (ǫ̃Nt,τ (j))
2
∣∣ ≤ 2|ǫ̃Nt,τ (j)|

∣∣ǫ̂Nt,τ (j)− ǫ̃Nt,τ (j)
∣∣ + 2

∣∣ǫ̂Nt,τ (j) − ǫ̃Nt,τ (j)
∣∣2 , (69)

as in (49). From here, we can make use of Lemma 1(a) and Lemma 1(c), the F (0)-conditional inde-

pendence of ζNt,τ (j) and ζNt,τ (j
′) for j 6= j′, to conclude that |L̂t,τ (h) − L̃t,τ (h)| ≤ Op(∆). Hence, we

may analyze L̃t,τ (h) henceforth.

Next, to establish the stated convergence result, we have, for h ≥ 2 and under H0,

E
(
L̃t,τ (h)|F (0)

)
=

(2/3)2

∆(N τ
t − h− 2)2

Nτ
t −1∑

j=h+2

E
(
ζ̄Nt,τ (j)

2
)
E
(
ζ̄Nt,τ (j − h)2

)
σ2t,τ (j)σ

2
t,τ (j − h)

=
(γ̄t,τ (0))

2

∆(N τ
t − h− 2)

1

N τ
t − h− 2

Nτ
t −1∑

j=h+2

σ2t,τ (j)σ
2
t,τ (j − h)

P−→ Q4
t,τ ,
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using γ̄t,τ (0) = 1 under H0, independence of ζ̄Nt,τ (j) and ζ̄
N
t,τ (j − h) for h ≥ 2, and Assumption A2 for

∆(N τ
t − h− 2), Lemma 3(c) and the continuous mapping theorem. Moreover, by the same arguments

as well as N τ
t /(N

τ
t − h− 2) ≤ Kt, we have

V
(
L̃t,τ (h)|F (0)

)
≤
(

K2
t

(∆N τ
t )N

τ
t

)2 Nτ
t −1∑

j=h+2

Nτ
t −1∑

i=h+2

E
(
ǫ̃Nt,τ (j)

2 ǫ̃Nt,τ (j − h)2ǫ̃Nt,τ (i)
2ǫ̃Nt,τ (i− h)2|F (0)

)

≤ 3

(
K2

t

(∆N τ
t )N

τ
t

)2 Nτ
t −1∑

j=h+2

E
(
ǫ̃Nt,τ (j)

4|F (0)
)
E
(
ǫ̃Nt,τ (j − h)4|F (0)

)

using, again, independence between ζ̄Nt,τ (j) and ζ̄
N
t,τ (j − h) for h ≥ 2, in conjunction with the Cauchy-

Schwarz inequality. Hence, since σt,τ (j) is continuously differentiable by Assumption 3, the integration

bounds, k ∈ [kt,τ , k̄t,τ ] are F (0)
t -adapted and finite valued by Assumption A2, ζ̄Nt,τ have a finite fourth

moment by Assumption A3-A4, and since the same arguments for E(L̃t,τ (h)|F (0)) apply, it follows

that V(L̃t,τ (h)|F (0)) = Op(∆), thereby showing convergence of L̃t,τ (h) in L2.

For (b). By the same arguments provided for (a), it follows that |L̂t,τ (0)−L̃t,τ (0)| ≤ Op(∆) where,

as above, L̃t,τ (0) ≡ 1
∆(Nτ

t −2)
1

Nτ
t −2

∑Nτ
t −1

j=2 ǫ̃Nt,τ (j)
4, and we may, thus, analyze L̃t,τ (0) henceforth.

Next, to establish the stated convergence result under H0, note first that

ǫ̃Nt,τ (j)
2 =

2

3

(
ζNt,τ (j)

2 − ζNt,τ (j)ζ
N
t,τ (j − 1)− ζNt,τ (j)ζ

N
t,τ (j + 1)

+ ζNt,τ (j − 1)2/4 + ζNt,τ (j + 1)2/4 + ζNt,τ (j − 1)ζNt,τ (j + 1)/2
)
σ2t,τ (j) (70)

such that, by utilizing (52) and independence of ζNt,τ (j) across j, we may write

E
(
ǫ̃Nt,τ (j)

4|F (0)
)
= (2/3)2

(
E
(
ζNt,τ (j)

4
)
+ E

(
ζNt,τ (j − 1)4

)
/42 + E

(
ζNt,τ (j + 1)4

)
/42+

+ (3/2)E
(
ζNt,τ (j)

2
)
E
(
ζNt,τ (j − 1)2

)
+ (3/2)E

(
ζNt,τ (j)

2
)
E
(
ζNt,τ (j + 1)2

)

+ E
(
ζNt,τ (j)

2
)
E
(
ζNt,τ (j + 1)2

)
/2
)
σ4t,τ (j)

= (2/3)2
(
(5/4)η + 7/2

)
σ4t,τ (j) =

(
(5/9)η + 14/9

)
σ4t,τ (j). (71)

Using this decomposition in conjunction with Assumption A2 for ∆(N τ
t −h− 2), Lemma 3(c) and the

continuous mapping theorem, this provides

E
(
L̃t,τ (0)

∣∣F (0)
)

P−→
(
(5/9)η + 14/9

)
Q4

t,τ . (72)

Now, by noticing that ǫ̃Nt,τ (j) and ǫ̃Nt,τ (j
′) are F (0)-conditionally independent whenever |j − j′| > 1,

making use of Burkholder-Davis-Gundy inequality, for some ι ∈ (0, ς/4), with ς being the constant in
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Assumption A3, we have,

E

(∣∣∣L̃t,τ (0) − E
(
L̃t,τ (0)

∣∣F (0)
)∣∣∣

1+ι
∣∣∣∣F (0)

)

≤ Kt

(∆N τ
t )

1+ι

1

(N τ
t )

1+ι
E




Nτ
t −1∑

j=2

∣∣∣(ǫ̃Nt,τ (j))4 − E
(
(ǫ̃Nt,τ (j))

4
∣∣F (0)

)∣∣∣
1+ι
∣∣∣∣F (0)




≤ Kt

(∆N τ
t )

1+ι

1

(N τ
t )

ι
sup

k∈[kt,τ ,kt,τ ]

(|σt,τ (k)|4+4ι ∨ 1),

(73)

where we, additionally, utilized the boundedness of the (4+ς)th moment of ζNt,τ (j) from Assumption A3.

Since σt,τ (j) is continuously differentiable, supk∈[kt,τ ,kt,τ ]
|σt,τ (k)|4+4ι is finite almost surely. Moreover,

by Assumption A2, we have ∆N τ
t = Op(1). Therefore, altogether, we get

L̃t,τ (0) − E
(
L̃t,τ (0)

∣∣F (0)
)
= op(1).

By applying this bound together with the convergence result in (72), this provides (b).

For (c). It readily follows by (a) and (b).

9.3 Proof of Theorem 1

First, by Lemmas 1(b), 3(c), 3(d) and the law of iterated expectation, χ̂t,τ (h) converges to γ̄t,τ (h)Q2
t,τ

in L2. The consistency result for ρ̂t,τ (h), thus, follows by the continuous mapping theorem.

9.4 Proof of Theorem 2

The stable CLT readily follows by combining the delta method with the moment result in Lemma 4,

the stable central limit theorem for autocovariances in Lemmas 5(b) and Slutsky’s theorem.

9.5 Proof of Corollary 1

The feasible limit result follows by combining the stable central limit theory in Theorem 2 with

Theorem 1, Lemma 6 and the continuous mapping theorem to establish consistency of the asymptotic

covariance matrix and bias correction, respectively, and Slutsky’s theorem.

9.6 Proof of Theorem 3

For (a). First, by Theorem 1, Lemma 6 and the continuous mapping theorem, we have, under the null

hypothesis H0, χ̂
2
t,τ/(0)L̂tτ (2)

P−→ (Q2
t,τ )

2/Q4
t,τ , thus eliminating the heteroskedasticity of the statistic.

Hence, the result follows by combining Theorem 2, Corollary 1 and Slutsky’s theorem.
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For (b). By Theorem 1, we have ρ̂t,τ (h)
P−→ ρ̄t,τ (h), ∀h ∈ N. Hence, the proof proceeds in three

steps. First, we show |ρ̂BC
t,τ (h)−ρ̂t,τ (h)| ≤ Op(∆), ∀h ∈ N. Second, we establish χ̂2

t,τ (0)/L̂tτ (2) = Op(1).

Finally, we show that when HA holds, ρ̄t,τ (h) 6= ρind(h) for some h ∈ 1, . . . ,H, for sufficiently high H.

For the first part, since χ̂2
t,τ (h)

P−→ γ̄t,τ (h)Q2
t,τ , ∀h ∈ N, by Lemmas 1(b), 3(c)-(d), it suffices to

study the properties of L̂t,τ (0) and L̂t,τ (2) under HA. As for Lemma 6(a) and 6(b), this simplifies by

the bounds |L̂t,τ (0)− L̃t,τ (0)| ≤ Op(∆) and |L̂t,τ (2) − L̃t,τ (2)| ≤ Op(∆) such that we may analyze,

L̃t,τ (0) ≡
1

∆(N τ
t − 4)2

Nτ
t −1∑

j=4

(ǫ̃Nt,τ (j))
4, L̃t,τ (2) ≡

1

∆(N τ
t − 4)2

Nτ
t −1∑

j=4

(ǫ̃Nt,τ (j))
2(ǫ̃Nt,τ (j − 2))2,

in the following. By Assumption A3 and the Cauchy-Schwarz inequality, we have

E
(
|L̃t,τ (2)|

∣∣F (0)
)
=

(2/3)2

∆(N τ
t − 4)2

Nτ
t −1∑

j=4

E
(
(ζ̄Nt,τ (j))

2(ζ̄Nt,τ (j − 2))2
)
σ2t,τ (j)σ

2
t,τ (j − 2)

≤ (2/3)2

∆(N τ
t − 4)2

Nτ
t −1∑

j=4

√
E
(
(ζ̄Nt,τ (j))

4
)
E
(
(ζ̄Nt,τ (j − 2))4

)
σ2t,τ (j)σ

2
t,τ (j − 2)

≤ (2/3)2K

∆(N τ
t − 4)2

Nτ
t −1∑

j=4

σ2t,τ (j)σ
2
t,τ (j − 2)

Next, by Assumption A2, the continuous mapping theorem, Lemmas 2(b)-(c) and the dominated

convergence theorem, we have ∆−1(N τ
t − 4)−2

∑Nτ
t −1

j=4 σ2t,τ (j)σ
2
t,τ (j − 2)

P−→ Q4
t,h. Hence, this implies

that L̃t,τ (2) ≤ Op(1), uniformly, and similar arguments provide |L̃t,τ (0)| ≤ Op(1). Together with

consistency of χ̂2
t,τ (h), ∀h ∈ N, and the continuous mapping theorem, this establishes that the bias

correction in ρ̂BC
t,τ (h) is, uniformly, Op(∆), thus providing the first result.

For the second part, we may use the same arguments for χ̂2
t,τ (h) and L̃t,τ (2) with the continuous

mapping theorem to show χ̂2
t,τ (0)/L̂tτ (2) ≤ Op(1), uniformly, under the alternative HA.

For the third part, note that this is equivalent to establishing that, if

γ̄t,τ (h) =





1, if h = 0,

−2
3 , if h = ±1,

1
6 , if h = ±2,

0, if |h| > 2,

(74)

this necessarily implies γt,τ (h) = 0 for |h| > 0. In the following, without loss of generality, we will show

this assuming that γt,τ (h) = γt,τ (−h), as the arguments apply correspondingly to positive and negative

lags. Moreover, define θ(L) ≡ 2
3(3/2 − (L+ L−1) + (L2 + L−2)/4) = 2

3 (L− 1)4/(4L2), that is, the lag
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polynomial describing the autocovariance structure of γ̄t,τ (h) in terms of γt,τ (h). Next, let us define

γt,τ,k(h) = (L−1)kγt,τ (h). Then, using (74), (L−1)4γt,τ (h) = 0, for |h| ≥ 5, which further implies that

(L − 1)γt,τ,3(h) = 0 and, thus, γt,τ,3(h) = γt,τ,3(h − 1). Moreover, by utilizing absolute summability

of the autocovariances, γt,τ (h), in Assumptions A3-A4, we must have γt,τ,3(h) = γt,τ,3(h − 1) = 0 for

|h| ≥ 5, that is, γt,τ,3(h) for |h| ≥ 4. We may, thus, continue and use similar deductions to show

that γt,τ,3(h) = 0 implies (L − 1)γt,τ,2(h) = 0 for |h| ≥ 4, further providing γt,τ,2(h) = 0 for |h| ≥ 3,

γt,τ,1(h) = 0 for |h| ≥ 2, and γt,τ (h) = 0 for |h| ≥ 1. Hence, under HA, ∃H ≥ 1 that is sufficiently

high such that ρ̄t,τ (h) 6= ρind(h) for some h ∈ 1, . . . ,H. Together with the first and second parts, this

shows that q̂h(ϑ) = Op(1) and Q̂
H
t,τ = Op(∆

−1), thus providing the final result.
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