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1 Introduction

The mean-variance portfolio theory of Markowitz (1952; 1959) is a milestone of modern

finance and remains pivotal in both investment teaching and practical investment decision

making. If investment opportunities are constant over time, the dynamic extension of

Merton (1969; 1971) leads, quite remarkably, to the same optimal portfolio as Markowitz’

static model. Markowitz’ approach is, however, considered unsuitable for households’

portfolio decisions over the life cycle. Such problems are studied in Merton-type dynamic

models, but realistic specifications are solved by complex numerical solution techniques,

which blurs economic insights.

This paper extends Markowitz’ traditional mean-variance setting to labor income by

incorporating human capital as an innate, illiquid asset. By maximizing the mean-variance

utility of total wealth instead of just financial wealth, we can easily derive the optimal

financial portfolio, i.e. how the current financial wealth should be allocated to different

financial assets. In the absence of portfolio constraints, the optimal portfolio equals the

traditional Markowitz-Merton portfolio scaled by the ratio of human capital to financial

wealth and then adjusted for the extent to which the human capital resembles the fi-

nancial assets, which is primarily determined by the income-asset correlations. Life-cycle

variations in household portfolios are generated from this simple model by varying the

magnitude of human capital relative to financial wealth. Compared to dynamic utility

maximization, the mean-variance approach clarifies the economic forces at play, easily

accommodates relevant portfolio constraints, and is comprehensible for a wider audience.

The extended Markowitz model accentuates two key determinants of life-cycle vari-

ations in individuals’ optimal financial portfolios: the size of human capital relative to

financial wealth and the correlation of labor income with available financial assets. An

individual’s human capital is unobservable and often calculated crudely by discounting

expected income by the riskfree rate. We explain how to incorporate mortality risk and

income uncertainty in a way that still leads to a simple formula for human capital. In an

illustration, we estimate that the ratio of human capital to financial wealth for the median

US worker is as large as 55 at age 25 and then gradually decreasing over life.

Based on survey or registry data, an existing literature has identified patterns in in-

dividuals’ labor income growth and volatility over the life cycle and also estimated the

correlation of income with the stock market (e.g. Attanasio and Weber, 1995; Campbell

and Viceira, 2002; Cocco, Gomes, and Maenhout, 2005; Guvenen, Karahan, Ozkan, and

Song, 2019). Our method is well-suited to handle several asset classes, but the correla-

tions of individual income with the returns on those asset classes are unknown from the

existing literature. Given both the methodological focus of the present paper and the mas-
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sive challenges in handling individual income data, an econometrically rigorous large-scale

analysis of how income-asset correlations and other relevant model inputs vary across the

population is beyond the scope of the paper. We emphasize that the same asset-income

correlations have to be estimated whether the portfolio decisions are determined using

this paper’s extended Markowitz approach or the Merton-style multi-period dynamic pro-

gramming approach. As an indication, Table 1 shows estimates of the correlation between

the annual US aggregate real income growth per capita and annual real returns on var-

ious asset classes. Note that, reflecting some of the empirical challenges, the correlation

estimates depend somewhat on the sample period and also on whether the annual income

growth is calculated using Q4-Q4 or Q1-Q1 changes, and it is not obvious which estimates

to prefer.1 Per capita income has a significant positive correlation with house prices and

all the considered stock portfolios—at least if we ignore the right-most column—whereas

the correlation with bond returns is close to zero. The standard deviation of annual in-

come changes is 2% for the aggregate measure, which is significantly smaller than the

10-20% estimated for individual labor income in other studies. This reflects a sizeable

idiosyncratic component which suggests that the typical correlation between individual

income and asset returns is lower than the estimates in the table, although a considerable

variation in income-asset correlations across individuals should be expected.2

We first derive the optimal unconstrained portfolio in a general setting with human

capital and characterize the efficient frontier. Then we consider three applications of

the extended mean-variance approach. In the first application, we revisit the classical

framework in which the household can invest only in a riskfree asset (a bond) and the

stock market index. Without formal modeling, Jagannathan and Kocherlakota (1996)

illustrate that the bond-stock allocation depends on the magnitude of the human capital

relative to financial wealth and on the extent to which the human capital resembles the

bond and the stock. Bodie, Merton, and Samuelson (1992) confirm these insights in

a stylized continuous-time model. Carefully modeling life-cycle income patterns, Cocco

et al. (2005) solve numerically for the bond-stock allocation through life assuming the

household is prohibited from borrowing. In their baseline parametrization, human capital

is more bond-like than stock-like so young households—having large human capital relative

1
The choice between Q4-Q4 and Q1-Q1 changes depend on precisely how the income is reported, when

during the quarter the income is available to households, etc. Since the estimation using aggregate income
is used only to get an impression of the relevant correlation values, we do not pursue this further. An
annual income growth measure is also available in NIPA, but seems to be a simple average of the quarterly
growth rates within the year, and thus not ideal in a correlation estimation.

2
For example, Davis and Willen (2000) find that—depending on the individual’s sex, age, and educa-

tional level—the correlation between aggregate stock market returns and labor income shocks is between
-0.25 and 0.3, while the correlation between industry-specific stock returns and labor income shocks is
between -0.4 and 0.1.
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Q1-Q1 income change Q4-Q4 income change

1947-2018 1980-2018 1947-2018 1980-2018

House prices 0.36 0.40 0.22 0.32
10Y T-bonds 0.02 -0.01 0.08 0.15
Stock market 0.34 0.29 0.17 -0.03

Growth stocks 0.39 0.27 0.17 -0.04
Neutral stocks 0.35 0.35 0.19 0.03
Value stocks 0.36 0.30 0.26 0.08

Small stocks 0.31 0.27 0.14 -0.12
Medium stocks 0.35 0.27 0.15 -0.14
Large stocks 0.39 0.32 0.21 0.03

Table 1: Correlations between aggregate income and asset class returns. We use
the aggregate disposable personal income per capita in the U.S. (in chained 2012 dollars,
i.e., inflation adjusted) from the NIPA tables published by the Bureau of Economic Analysis
(Table 2.1, line 39) at https://apps.bea.gov/itable/index_nipa.cfm. In the left part
income growth is measured from Q1 this year to Q1 next year, in the right part growth from
Q4 previous year to Q4 this year. For house prices we use the U.S. real home price index
published on Professor Robert Shiller’s homepage http://www.econ.yale.edu/~shiller.
Annual nominal returns on 10-year Treasury bonds are downloaded from Professor Aswath
Damodaran’s homepage http://pages.stern.nyu.edu/~adamodar/. Annual nominal re-
turns on the full US stock market as well as on three portfolios sorted on either book-to-
market or market capitalization (value-weighted returns) are taken from Professor Kenneth
French’s homepage http://mba.tuck.dartmouth.edu/pages/faculty/ken.french. We
deflate returns by the Consumer Price Index published by the Bureau of Labor Statistics.
Data were retrieved Jan. 30, 2020.

to financial wealth—should hold 100% of their financial wealth in stocks and only later

in life gradually include bonds in their portfolio.3 The same conclusions follow from our

much more transparent mean-variance approach.

The second application expands the investment menu by residential real estate, the

largest tangible asset for many households (Guiso and Sodini, 2013; Badarinza, Campbell,

and Ramadorai, 2016). Housing is typically excluded from theoretical portfolio studies

because of the added complexity, but it can easily be incorporated in the mean-variance

setting. Given historical prices and rents, real estate is a fairly attractive investment in

itself. The attractiveness is amplified by the ability to take out a loan using the house

as collateral, in contrast to stock investments which do not facilitate borrowing to the

same extent, if at all. The credit access is particularly important for young and risk-

tolerant households who want to lever up their investments in light of their sizeable bond-

like human capital. In a numerically solved, stylized multi-period model, Cocco (2005)

finds that housing crowds out stock holdings which, together with a sizable stock market

3
Other multi-period models with human capital were studied by Viceira (2001), Benzoni, Collin-

Dufresne, and Goldstein (2007), Munk and Sørensen (2010), and Lynch and Tan (2011), among others.
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entry cost, can explain stock market non-participation.4 Our transparent life-cycle mean-

variance model reaches the same conclusions (without stock market costs). We also find

that the stock portfolio weight can be increasing or hump-shaped over life. Furthermore,

the stock weight can be non-monotonic in risk aversion because agents compare stocks to

a (more risky) levered house investment so, when increasing the risk aversion, agents shift

from a levered house investment to stocks and eventually to the riskfree asset.

The third application investigates how households should invest in value and growth

stocks over the life cycle. Despite the immense focus on value investing among practition-

ers, the optimal value/growth portfolio tilts have not been studied in a formal life-cycle

model, but only in a few papers ignoring both human capital and housing. Jurek and

Viceira (2011) consider a discrete-time setting allowing for return-predicting variables.

They find that short [long] horizon investors tilt their portfolios towards value [growth]

stocks, and they attribute this horizon dependence to intertemporal hedging motives and

the observation that growth stocks hedge bad times better than value stocks. In a related

continuous-time model Larsen and Munk (2012) report that the hedging demands are small

so that the optimal value/growth/market allocation is almost constant across horizons.

However, both papers ignore human capital which is a key driver of life-cycle variations

in portfolios. In a rich Swedish data set Betermier, Calvet, and Sodini (2017) find that

value investors tend to be older than the average participant and have low human capital,

low income risk, low leverage, and high financial wealth. We show that our simple life-

cycle mean-variance model can support these findings, but also that optimal portfolios are

highly sensitive to the assumed values of correlations. Even small differences between the

(hard-to-estimate) correlations of two individuals’ income with different financial assets

may help explaining why the individuals choose very different financial portfolios.

The mean-variance approach has its limitations, of course. It suggests that households

determine their investment strategy over life by solving at regular time intervals a simple

one-period optimization problem. The problem solved at any given date refers to future

periods only through the human capital. Since the dynamic programming principle is not

invoked, the derived investment strategy is generally not maximizing the life-time expected

utility. However, when the relevant return moments are time invariant and portfolios are

unconstrained, the mean-variance strategy does coincide with the dynamically optimal

strategy for a power utility investor if human capital is either riskfree or perfectly spanned

by risky assets. In the more realistic case of a risky and imperfectly spanned human capital,

our simple strategy leads to a very small utility loss (measured by certainty equivalent of

4
Other multi-period models with housing were studied by Yao and Zhang (2005), Kraft and Munk

(2011), Fischer and Stamos (2013), Corradin, Fillat, and Vergara-Alert (2014), and Yogo (2016), among
others.
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wealth) compared to the unknown optimal strategy.5

The extended mean-variance approach accommodates time-varying moments as, for

example, implied by stock return predictability simply by applying different values of

the moments at different points in time. While the approach disregards the intertempo-

ral hedging demand typically generated by such variations in investment opportunities

(Merton, 1971, 1973), many studies conclude that the intertemporal hedging demand is

typically very small compared to the speculative mean-variance demand (see, e.g., Aı̈t-

Sahalia and Brandt, 2001; Ang and Bekaert, 2002; Chacko and Viceira, 2005; Gomes, 2007;

Larsen and Munk, 2012), and this is especially so if parameter uncertainty and transaction

costs are taken into account (see, e.g., Barberis, 2000; Pastor and Stambaugh, 2012).

Only few papers include human capital or housing in a mean-variance setting. Mayers

(1972) derives an equation for the optimal financial portfolio of a mean-variance investor

with a nonmarketable asset such as human capital. While very similar to the equation we

derive below, his equation does not directly show the importance of the relative size of

human capital to financial wealth. Based on a log-linearized approximation of the budget

constraint Weil (1994) obtains a related expression for the optimal investment in a single

risky asset for a power utility investor with human capital. Both Mayers and Weil focus on

the asset pricing consequences of human capital. Neither of them consider the implications

for household portfolios and the life-cycle variations therein, which is the aim of this paper.

Flavin and Yamashita (2002) and Pelizzon and Weber (2009) include housing in a

mean-variance framework, but assume the housing investment position is exogenously

given—as the human capital in the current paper—and ignore human capital. In reality

households change their housing investment and consumption in response to significant

changes in labor income or financial wealth, and the inclusion of human capital is crucial

to understand life-cycle variations in portfolios and consumption. Finally, note that while

the title of this paper resembles that of Cochrane (2014), the focus is very different.

Cochrane shows how a mean-variance approach to payoff streams leads to an interesting

characterization of the optimal payoff stream. However, his approach is generally not

explaining which investment strategy that generates the optimal payoff stream, and he is

not explicitly addressing life-cycle variations in household portfolios.

The paper is organized as follows. Section 2 sets up the general mean-variance frame-

work with human capital, presents a general explicit formula for the optimal unconstrained

portfolio, and derives properties of the efficient frontier. Section 3 explains how to value

human capital and how large a share human capital represents of total wealth at different

5
Some papers have considered dynamic portfolio problems with a mean-variance criterion. Such prob-

lems suffer from time inconsistency issues and lead to rather complicated optimal investment strategies,
cf., e.g., Basak and Chabakauri (2010) and Björk and Murgoci (2014).
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ages which is a key quantity for portfolio decisions. The subsequent sections consider

specific cases. The basic life-cycle stock-bond allocation problem is discussed in Section 4,

after which Section 5 adds housing to the model. Within the model with human capi-

tal and housing, Section 6 investigates how households should tilt their stock portfolios

towards value or growth stocks. Finally, Section 7 summarizes our findings.

2 A mean-variance model with human capital

This section explains how human capital can be included in the mean-variance framework

and thus how this one-period setting can provide a life-cycle perspective on portfolio

decisions. Let F denote the financial wealth and L the human capital (“L” for labor

income) of the agent so that total wealth is the sum W = F + L. The current date is

labeled as time t. The agent makes a buy-and-hold investment decision for a period of a

given length. The end of the period is labeled as time t + 1. We assume that the agent

has the traditional mean-variance objective

max

{
Et

[
Wt+1

Wt

]
− γ

2
Vart

[
Wt+1

Wt

]}
, (1)

where γ > 0 measures the agent’s relative risk aversion. The agent cares about expectation

and variance of the return on total wealth, not just on financial wealth.

The agent decides on the portfolio of traded assets to hold over the period. Suppose

that the agent can invest in a riskfree asset with rate of return rf over the period and in

a number of risky assets with rates of return given by the vector r. The expected rates of

return are represented by µ and the variance-covariance matrix by Σ. Let πt denote the

vector of fractions of financial wealth invested in the risky assets. The financial wealth

not invested in the risky assets, Ft(1 − πt · 1), is invested in the riskfree asset. Here, we

let 1 denote a vector of ones and write vector products using a center dot as in π · r.

Assumption 1 The matrix Σ is positive definite and µ 6= rf1.

The end-of-period total wealth is

Wt+1 = Ft
(
1 + rf + πt · (r − rf1)

)
+ Lt(1 + rL),

where rL is the rate of return on human capital with expectation µL and standard devia-
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tion σL. Consequently,

Wt+1

Wt
=

Ft
Ft + Lt

(
1 + rf + πt · (r − rf1)

)
+

Lt
Ft + Lt

(1 + rL)

=
1

1 + `t

(
1 + rf + πt · (r − rf1)

)
+

`t
1 + `t

(1 + rL),

(2)

where we have introduced the human-to-financial wealth ratio `t = Lt/Ft. Hence,

Et

[
Wt+1

Wt

]
=

1

1 + `t

(
1 + rf + πt · (µ− rf1)

)
+

`t
1 + `t

(1 + µL),

Vart

[
Wt+1

Wt

]
=

1

(1 + `t)
2 πt · Σπt +

`2t

(1 + `t)
2 σ

2
L + 2

`t

(1 + `t)
2 πt · Covt[r, rL],

where Cov[r, rL] is the vector of covariances between the returns on the individual risky

assets and the return on human capital. The objective (1) is thus equivalent to

max
πt

{
πt · (µ− rf1)− γ

2

1

1 + `t

[
πt · Σπt + 2`tπt · Covt[r, rL]

]}
. (3)

The solution of the unconstrained optimization problem (3) is straightforward and stated

in the following theorem, which also summarizes some notable less straightforward prop-

erties of the solution. First, we define the auxiliary constants

A = (µ− rf1) · Σ−1
(
µ− rf1

)
, B = (µ− rf1) · Σ−1 Covt[r, rL],

C = Covt[r, rL] · Σ−1 Covt[r, rL], D = AC −B2.

Assumption 1 implies that A > 0 and that Σ−1 exists and is positive definite. We have

C ≥ 0 with C > 0 if Covt[r, rL] 6= 0. And since

AD =
(
B(µ− rf1)−ACovt[r, rL]

)
· Σ−1

(
B(µ− rf1)−ACovt[r, rL]

)
≥ 0,

we have D ≥ 0, and provided that B(µ− rf1) 6= ACovt[r, rL] we even have D > 0. This

condition is violated, and thus D = 0, if µ− rf1 = kCovt[r, rL] for some scalar k, which

is the case when (i) the agent trades in only one risky asset, or (ii) all risky assets have the

same excess expected return, same standard deviation, and same covariance with human

capital, and all pairs of risky assets have the same correlation.

Theorem 1 (a) The optimal unconstrained portfolio is

π∗t =
1

γ
(1 + `t) Σ−1

(
µ− rf1

)
− `t Σ−1 Covt[r, rL]. (4)
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(b) The expectation and variance of the rate of return on the optimal portfolio are

Et[rt+1] = rf +
1

γ
(1 + `t)A− `tB, (5)

Vart[rt+1] =
1

γ2
(1 + `t)

2A+ `2tC −
2

γ
(1 + `t) `tB. (6)

If γ > A/B (resp., γ < A/B), then Et[rt+1] is decreasing (increasing) in `t and the

largest (smallest) expected return for a fixed γ over all `t-values is rf + (A/γ).

(c) The set of portfolios chosen by agents with the same `t > 0, but different levels of

risk aversion γ > 0, satisfy

Vart[rt+1] =
(Et[rt+1]− rf )2

A
+ `2t

D

A
. (7)

In the (standard deviation, mean)-diagram, these portfolios form, if D > 0 and

`t > 0, a hyperbola having (`t
√
C, rf − `tB) as an end point.

(d) The set of portfolios chosen by agents with the same level of risk aversion γ > 0, but

different values of the human-financial wealth ratio `t, satisfy

Vart[rt+1] =
1

A

(
1 +

γ2D

(A− γB)2

)
(
Et[rt+1]− rf

)2

− 2γD

(A− γB)2
(
Et[rt+1]− rf

)
+

AD

(A− γB)2
.

(8)

In the (standard deviation, mean)-diagram, these portfolios form, if D > 0, a hyper-

bola having (
√
A
γ , rf + A

γ ) as an end point.

Appendix A provides a proof. Concerning (c) and (d), note that if `t = 0 or D = 0, the

optimal portfolios for a fixed `t or a fixed γ trace out a wedge, i.e., a pair of straight lines

meeting at (0, rf ) with slopes of ±
√
A. In Section 4 we consider the case where only one

risky asset is traded, which implies D = 0. If multiple risky assets are traded, but their

expected returns, standard deviations, and correlations with human capital across assets

are close, then D will be close to zero, and the hyperbolas are close to straight lines. This

turns out to be so in the baseline parametrization of the problem studied in Section 5.

The ratio `t of human capital to financial wealth is clearly crucial for the optimal

portfolio. This ratio is typically very large for young individuals and small for older indi-

viduals, and the variations in this ratio over life is arguably the most important generator

of age-dependence in portfolio decisions. By applying the simple setting above for different

values of `t, we have effectively introduced a life-cycle perspective on portfolio choice.
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We can rewrite the optimal portfolio (4) as

π∗t =
1

γ
(1 + `t) 1 · Σ−1

(
µ− rf1

)
πtan − `t 1 · Σ−1 Covt[r, rL]πhdg,

where

πtan =
1

1 · Σ−1
(
µ− rf1

)Σ−1
(
µ− rf1

)
, πhdg =

1

1 · Σ−1 Covt[r, rL]
Σ−1 Covt[r, rL]

are the tangency portfolio and income-hedge portfolio, where the latter simply adjusts for

the extent to which the human capital replaces investments in the risky assets.

Appendix B shows that (4) is identical to the dynamically optimal portfolio strategy

of a power utility investor in a continuous-time setting with constant investment oppor-

tunities provided that labor income is either riskfree or spanned by traded assets. With

unspanned income risk, the dynamically optimal strategy is unknown for power utility

investors. The strategy suggested by our method is then very similar to that derived by

the (more complicated) combined analytical-numerical method of Bick, Kraft, and Munk

(2013). Their approach approximates both the investment and consumption strategy, and

they show that the utility generated by the approximate strategy comes very close to

the utility of the unknown optimal strategy as indicated by a tiny certainty equivalent

wealth loss. Also note that by applying a log-linearization approach, Viceira (2001) finds

an approximate formula for the optimal stock share that has a form similar to (4).

3 The size of human capital over the life cycle

The previous section highlights the importance of human capital for portfolio decisions.

But how large is human capital relative to financial wealth at different stages of life? Data

on financial wealth and labor income over life can be found, for example, in the Survey of

Consumer Finances (SCF) in the United States. However, to calculate human capital at

a certain age, we need to establish how to discount future labor income. For that purpose

we set up a discrete-time model in which income is paid out at the end of each year.

Suppose that the year t log returns on the n traded risky assets are of the form

lnRit = µi −
1

2
‖σi‖2 + σi · εt,

where εt follows the n-dimensional standard normal distribution. Let σ be the n×n matrix

with rows σ1, . . . ,σn and let µ = (µ1, . . . , µn)>. The log riskfree rate is the constant r.

9

                  



If alive at the end of year t, the agent receives an income of Yt. We assume that

Yt = Yt−1 exp

{
µY (t)− 1

2
σY (t)2 + σY (t)ρY · εt + σY (t)

√
1− ‖ρY ‖2εY t

}
,

where εY t follows a one-dimensional standard normal distribution independent of εt, and

where µY (t) and σY (t) are deterministic functions of time. Then

Et−1[Yt] = Yt−1e
µY (t), Vart−1[ln(Yt/Yt−1)] = σY (t)2, Corrt−1[ln(Yt/Yt−1), lnRt] = ρY .

Unless ‖ρY ‖ = 1 or σY (t) = 0, the income carries non-spanned risk. Let exp(−ν(t)) be

the probability that the agent survives year t given she was alive at the end of year t− 1,

so that ν(t) represents the mortality rate, assumed deterministic. We assume that the

agent at most lives until the end of year T = 100 so that ν(T + 1) = ∞ and the final

income received, if still alive, is YT .

Suppose that the agent associates a price of risk of λY with the unspanned income

shock εY and thus evaluates future income using the period-by-period state-price deflator

ζt
ζt−1

= exp

{
−r − 1

2

(
‖λ‖2 + λ2Y

)
− λ · εt − λY εY t

}
.

Here λ captures the market price of risk associated with ε since

Et−1[lnRit]− r = −Covt−1 [ln ζt, lnRit]−
1

2
Vart−1[lnRit] = σi · λ−

1

2
‖σi‖2.

We assume that λ and λY are constant over time. We show in Appendix C that the total

human capital at the end of year t, excluding the income just received, is then

Lt = YtM(t), (9)

where

M(t) =

T−t∑

k=1

exp

{
−

t+k∑

s=t+1

rm(s)

}
,

rm(t) = r + ν(t)− µY (t) + σY (t)

[
ρY · λ+

√
1− ‖ρY ‖2λY

]
.

We can think of rm(t) as the risk-, growth-, and mortality-adjusted discount rate for future

income. The multiplier M is easily calculated by backwards recursion using M(T ) = 0
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and M(t) = e−rm(t+1) (M(t+ 1) + 1). The expected future human capital is

Et[Lt+k] = M(t+ k)Et[Yt+k] = M(t+ k)Yt exp

{
t+k∑

s=t+1

µY (s)

}
. (10)

Next, we set up an example illustrating how human capital and its share of total

wealth vary with age. Labor income is generally found to be hump shaped over working

life: rapidly increasing in early years, then flattening out with a peak at an age of 45-

55, and then declining somewhat until retirement. Moreover, the life-cycle pattern over

the working phase is well approximated by the exponential of a polynomial of order 3 or

slightly higher. For example, these facts have been shown for various US data sets by

Attanasio and Weber (1995), Cocco et al. (2005), and Guvenen et al. (2019). Consistent

with these findings, we model the expected income over working life via

ln

(
Et0 [Yt]

Yt0

)
= a1(t− t0) + a2(t− t0)2 + a3(t− t0)3, t = t0, . . . , tR − 1,

which determines µY (t) for t ≤ TR − 1. We set the initial adult age to t0 = 24 and the

retirement age to tR = 65. Hence, the agent starts at her 25th birthday, faces a 40-year

working period, retires when turning 65, and lives on at most until the day turning 100.

The first-year retirement income is expected to be a fraction Υ = 0.85 of the income in

the preceding year, in line with final-salary pension schemes and a common assumption

in the life-cycle literature (Cocco et al., 2005; Lynch and Tan, 2011). Hence, µY (tR) =

ln(Υ). In retirement, labor (pension) income is expected to stay the same, i.e., µY (t) = 0,

t = tR + 1, . . . , T . We fix a1, a2, a3 by requiring that (i) expected income peaks at the age

tmax = 52; (ii) expected income at the peak is Kmax = 2.27 times the initial income; and

(iii) expected income just before retirement is Kdrop = 0.85 times the peak income. Also

these values comply with Guvenen et al. (2019) and other references given above. These

choices imply that a1 = 5.6929 × 10−2, a2 = −9.2946 × 10−4, and a3 = −2.0746 × 10−6.

Measuring income and wealth in thousands of US dollars, we fix Yt0 = 15, which seems

reasonable for a 24-year old individual given the median before-tax family income of 35.1

for the age group “less than 35” in the 2010 SCF, cf. Bricker, Kennickell, Moore, and

Sabelhaus (2012, Table 1). The red curve in the left panel of Figure 1 shows the resulting

expected income path.

In order to calculate the discount rate rm(t), we fix the riskfree rate at r = 1%,

roughly the historical average of short-term real interest rates in the US. We derive the

mortality intensity ν(t) from the life tables for the total US population as of 2009 with an
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Figure 1: Labor income, human capital, and financial wealth over the life cycle.
The left panel shows how expected income in thousand USD (red curve) and the ratio of
expected human capital to financial wealth (blue) vary with age measured in years. In the
right panel the expected human capital (blue) and the financial wealth (red) as functions
of age are measured on the left axis in thousands of USD, whereas the expected human
capital’s share of total wealth (dashed) is measured on the right axis. The graphs are based
on the assumptions and baseline parameter values described in the text.

imposed maximum age of 100.6 We assume that labor income risk declines linearly from

σY (25) = 0.3 to σY (65) = 0.1 and stays at that level through retirement. The decline over

working life is empirically supported, e.g., by Guvenen et al. (2019, Fig. 3). The retirement

income risk is motivated by continued business-related remuneration or uncertain health

care costs affecting disposable income (De Nardi, French, and Jones, 2010). Furthermore,

we suppose that a single risky asset (the stock index) is traded with a Sharpe ratio of

λ = (µ − r)/σ = 0.3 corresponding, e.g., to σ = 20% and µ = 7%. The income-stock

correlation is assumed to be ρ = 0.2; this value is somewhat lower than the estimates

0.29 and 0.34 from Table 1 based on aggregate income changes (using Q1-Q1 changes), in

order to reflect idiosyncratic risk in individual income, and the value is also in the range

of existing estimates in the literature. Finally, we fix λY by equating the time t present

value of a fully unspanned income at time t+1 and the agent’s certainty equivalent, which

leads to λY = γ
2σY (t+ 1). With γ = 2 and σY (t+ 1) = 0.2, the average income volatility

in the above parametrization, we obtain λY = 0.2. We vary the value of λY and selected

other parameters below.

The resulting discount rate over life is seen as the solid black line in both panels of

Figure 2. The left panel splits the discount rates into its components. Before retirement,

the mortality rate is almost flat, so the shape of the discount rate is determined by how

the expected growth rate and the risk adjustment linked to the volatility of income vary

with age. In the baseline case, the expected income growth rate decreases more steeply

than the risk adjustment, leading to an increasing discount rate. The peak at retirement is

6
Published at the Centers for Disease Control and Prevention under the US Department of Health and

Human Services, see http://www.cdc.gov/nchs/data/nvsr/nvsr62/nvsr62_07_V3.pdf.
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Figure 2: The risk-, growth-, and mortality-adjusted income discount rate. Both
panels depict the income discount rate rm(t) as a function of age. The left panel assumes
the baseline parameter values and shows the total discount rate rm(t) (solid black curve)
as well as its four constituents, namely the riskfree rate r (dashed blue), the mortality
rate ν(t) (dotted red), the expected income growth rate µY (t) (dashed green), and the risk

adjustment σY (t)[ρλ+ (1− ρ2)1/2λY ] (dashed purple). The right panel shows the total
discount rate with the baseline parameters (solid black) as well as three cases in which the
value of a single parameter is changed relative to the baseline value, namely the idiosyncratic
income risk premium λY = 0.4 (red dashed), the income-stock correlation ρ = −0.2 (green
dotted), and the ratio of peak income to initial income Kmax = 1.6 (solid purple).

due to the expected income drop. In retirement, the shape of the discount rate is entirely

determined by the mortality risk and therefore increases rapidly in the late years.

From the discount rates and the expected income, we compute the expected path of

human capital using (10). As shown by the blue curve in the right panel of Figure 1,

human capital is expected to grow from an initial level of around 315 (kUSD) to a peak

at around 478 at age 44, after which it declines steadily mainly because of the shortening

of the income-earning period.7

In order to estimate human capital’s share of total wealth, we need the financial wealth

over the life cycle. We assume a life-cycle pattern in financial wealth of the form

ln

(
F (t)

F (t0)

)
= b1(t− t0) + b2(t− t0)2 + b3(t− t0)3, t = t0, t0 + 1, . . . , T.

We fix b1, b2, b3 by requiring that (i) financial wealth peaks at retirement; (ii) financial

wealth at the peak is Cmax = 20 times the initial financial wealth; and (iii) financial wealth

at age 100 is Cend = 5 times the initial financial wealth. This implies that b1 = 0.16065,

b2 = −2.4865×10−3, and b3 = 8.5675×10−6. Fixing the initial level at F (24) = 5 (kUSD),

we obtain the financial wealth path shown by the red curve in the right panel of Figure 1.

7
In the spirit of Hall (1978) and others, Guiso and Sodini (2013) discount future income at the riskfree

rate and thus ignore the riskiness and expected growth of income as well as mortality risk. Hence, they
report a larger human capital that declines monotonically over life. However, the overall life-cycle pattern
in the human capital share of total wealth they report is not markedly different from our Figure 1.
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Figure 3: Human capital relative to wealth. The left panel shows how the expected
human capital’s share of total wealth varies with age, whereas the right panel illustrates
the ratio of human capital to financial wealth as a function of age. In both panels the black
curve corresponds to the baseline parameter values described in the text, whereas the other
curves correspond to cases in which the value of a single parameter is changed relative to
the baseline value, namely the idiosyncratic income risk premium λY = 0.4 (red dashed
curve), the income-stock correlation ρ = −0.2 (green dotted), the ratio of peak income to
initial income Kmax = 1.5 (purple solid), the initial income Y24 = 30 thousand USD (orange
solid), and the initial financial wealth F (24) = 10 thousand USD (dashed-dotted).

The shape and levels are in line with various empirical studies. For example, in the 2010

wave of the SCF, median family net worth is 12.4 kUSD for “less than 35” year old’s and

reaches around 200 kUSD at retirement (or maybe slightly later), cf. Bricker et al. (2012,

Table 4). In retirement, individuals reduce financial wealth to finance consumption.

The dashed curve in the right panel of Figure 1 shows that the human capital’s share

of total wealth starts at around 98%, remains above 90% until age 46, above 80% until age

59, above 70% until age 76, and above 60% until age 94. The blue curve in the left panel

shows the ratio of human capital to financial wealth, corresponding to ` in the previous

section. This ratio starts at around 55 and declines smoothly over life. When studying

specific models below, we report portfolios for ` = 1, 2, 5, 10, 20, 50, which with the above

baseline calculation roughly corresponds to ages of 97, 84, 55, 44, 35, and 26, respectively.

Income and wealth paths vary substantially across individuals as indicated, e.g., by

the huge difference between means and medians of income and net worth at different ages

in the SCF data (Bricker et al., 2012). Of course, if we scale either income or financial

wealth up or down and fix the other, the human capital’s share of total wealth changes.

However, across individuals income and wealth often move together since higher-earning

individuals tend to build more wealth. Hence, we expect less cross-sectional variation in

the human capital’s share of total wealth than seen in income or wealth.

Finally, we briefly consider the sensitivity of the above findings with respect to selected

inputs. Figure 3 depicts the human capital over life as a fraction of total wealth (left panel)

or financial wealth (right panel) for the baseline set of parameters explained above as well

as five cases where one of the key parameter values is varied. First, if initial income is
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doubled to 30, income at every age and thus the human capital are also doubled, which

of course induces a significant increase in the human capital’s share of wealth at any age,

cf. the solid orange curves. Second, doubling the initial financial wealth to 10 significantly

reduces the human capital’s share of wealth, cf. the dashed-dotted curve. In both of these

cases, the income discount rate rm(t) is unaffected. The remaining three cases vary either

Kmax, λY , or ρ and thus affect the discount rate and therefore the human capital and its

ratio to total or financial wealth. Third, if we keep the initial income level, but assume

that the growth until the expected income peak is only half as big as in the baseline case

(Kmax = 1.6 instead of 2.27), the income discount rate increases early in life and just

before retirement as indicated in the right panel of Figure 2, and the human capital’s

share of wealth is obviously reduced as depicted in Figure 3 (see the solid purple curves).

Fourth, if we double the idiosyncratic income premium λY to 0.4, the income discount

rate increases so that human capital is reduced (dashed red curves). Fifth, if we change

the income-stock correlation from 0.2 to −0.2, the discount rate drops as future income is

more valuable when negatively correlated with the stock market, so the human capital’s

share of wealth increases (dotted green curves). Note, however, that the life-cycle pattern

in the human capital’s share of wealth is little sensitive to these variations in inputs, and

in all cases considered the human capital is the dominant component of total wealth up

to age 85.

4 Stock-bond asset allocation

We first consider the case with only a single risky asset, the stock market index. From

Theorem 1 the unconstrained optimal fraction of financial wealth invested in the stock is

πt =
µS − rf
γσ2S

(1 + `t)− `t
ρSLσL
σS

=
µS − rf
γσ2S

+ `t

(
µS − rf
γσ2S

− ρSLσL
σS

)
. (11)

The term
µS−rf
γσ

2
S

is the solution in absence of human capital, as is well-known from

Markowitz’ original analysis, and it is identical to the solution to Merton’s intertemporal

portfolio choice problem with constant investment opportunities. Human capital affects

the optimal stock weight via the scaling term 1 + `t and through the term `tρSLσL/σS ,

which adjusts for the extent to which the human capital replaces a stock investment. Since

agents combine the riskfree asset and a single risky asset, their choices trace out a wedge

in the traditional standard deviation-mean diagram.

The upper panel of Table 2 illustrates the optimal portfolio over a one-year period

for frequently used parameter values: rf = 1%, µS = 6%, σS = 20%, σL = 10%, and

ρSL = 0.1. The values of the income volatility σL and the income-stock correlation ρSL
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Figure 4: Optimal stock weight with human capital. The figure shows the con-
strained optimal stock weight as a function of the human capital to financial wealth ratio
(left panel) and age (right panel) for three different values of the relative risk aversion co-
efficient γ. The stock weight is restricted to the interval from 0% to 100%. The baseline
parameter values listed in Table 3 are assumed.

are in the range of existing estimates in the literature; due to substantial idiosyncratic

income risk, the correlation is lower than the estimates 0.29 and 0.34 from Table 1 based

on aggregate income changes (using Q1-Q1 changes).

The numbers in the table are to be read in the following way. For an agent with a

relative risk aversion of γ = 5 and a human/financial wealth ratio of ` = 10, the optimal

decision is to invest 225% of current financial wealth in the stock, partly financed by a

loan of 125% of current financial wealth. This levered stock investment has an expected

rate of return of 12.25% and a standard deviation of 45%. The table reveals that, for

a fixed γ, the optimal stock weight is decreasing over life supporting the typical “more

stocks when young” advice. Formally, this is because the term in the last bracket in (11)

is positive. Intuitively, human capital resembles a riskfree investment more than a stock

investment so, to obtain the optimal overall risk profile, young agents (those with large `)

short the riskfree asset and invest a lot in stocks. If borrowing constrained so that πS ≤ 1,

then 100% in stocks is optimal for all risk-tolerant and also more risk-averse investors

with sufficient human capital relative to financial wealth. Furthermore, the stock weight

is decreasing in the degree of risk aversion. Figure 4 illustrates how the constrained

optimal stock weight varies with the human-financial wealth ratio for different degrees of

risk aversion (left panel) and age (right panel), where the translation to age follows the

baseline human capital calculation in Section 3.8 The patterns in the stock weight are

exactly as found in the much more advanced dynamic life-cycle models that have to be

solved numerically, cf., e.g., Cocco et al. (2005). Young investors, even quite risk averse,

should hold all their wealth in stocks. As they grow older, they should eventually—except

the most risk tolerant—start shifting from stocks to bonds.

8
Obviously, we use the parameter values described here in Section 4. We let the value of λY vary with

the relative risk aversion as explained in Section 3.

16

                  



γ = 1 γ = 5 γ = 10
` stock rf exp std stock rf exp std stock rf exp std

Baseline parameter values
0 125 -25 7.3 25 25 75 2.3 5 13 87 1.6 3
1 245 -145 13.3 49 45 55 3.3 9 20 80 2.0 4
2 365 -265 19.3 73 65 35 4.3 13 28 72 2.4 6
5 725 -625 37.3 145 125 -25 7.3 25 50 50 3.5 10
10 1325 -1225 67.3 265 225 -125 12.3 45 88 12 5.4 18
20 2525 -2425 127.3 505 425 -325 22.3 85 163 -63 9.1 33
50 6125 -6025 307.3 1225 1025 -925 52.3 205 388 -288 20.4 78

High income volatility or stock-income correlation
0 125 -25 7.3 25 25 75 2.3 5 13 88 1.6 3
1 230 -130 12.5 46 30 70 2.5 6 5 95 1.3 1
2 335 -235 17.8 67 35 65 2.8 7 -3 103 0.9 1
5 650 -550 33.5 130 50 50 3.5 10 -25 125 -0.3 5
10 1175 -1075 59.8 235 75 25 4.8 15 -63 163 -2.1 13
20 2225 -2125 112.3 445 125 -25 7.3 25 -138 238 -5.9 28
50 5375 -5275 269.8 1075 275 -175 14.8 55 -363 463 -17.1 73

Table 2: Optimal stock-bond allocation with human capital The table shows the
percentages of financial wealth optimally invested in stock and riskfree asset, as well as the
expectation and standard deviation of the financial return in percent. The upper panel
assumes the baseline parameter values rf = 1%, µS = 6%, σS = 20%, σL = 10%, and
ρSL = 0.1. The lower panel also assumes rf = 1%, µS = 6%, and σS = 20%, but either
(i) σL = 10%, ρSL = 0.4 or (ii) σL = 40%, ρSL = 0.1.
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The impact of human capital on optimal investments is parameter dependent, however.

The lower panel of Table 2 illustrates that results are very different for investors with

high risk aversion and either high income-stock correlation or high income uncertainty (or

both). For γ = 10 and either an income-stock correlation of 0.4 (instead of 0.1) or a human

capital standard deviation of 40% (instead of 10%), the term in the last bracket in (11) is

negative so that the optimal stock weight is now decreasing in the human-financial wealth

ratio `. Consequently, very risk-averse agents should hold less stocks when young if their

income is sufficiently risky or sufficiently stock-like. If such agents cannot short stocks, the

optimal strategy is to have nothing in stocks early in life and only introduce stocks into

the portfolio later in life when human capital has declined adequately. Bagliano, Fugazza,

and Nicodano (2014) pointed out such effects in the context of the more complex dynamic

life-cycle models.

5 Adding housing investments

Residential real estate is a major asset of many households and should therefore be included

in household decision problems. Here we consider real estate as a pure financial investment

and include it in the mean-variance setting above alongside the stock and the riskfree asset.

Let rH denote the rate of return on real estate or “housing” over the investment period

with an expectation of µH and a standard deviation of σH . At the beginning of the period,

the agent now has to choose the portfolio weights πS and πH of the stock and of housing,

respectively, with the remaining financial wealth invested in the riskfree asset. This fits

into our general model specification by choosing

πt =

(
πSt

πHt

)
, r =

(
rS

rH

)
, µ =

(
µS

µH

)
,

Σ =

(
σ2S ρSHσSσH

ρSHσSσH σ2H

)
, Covt[r, rL] =

(
ρSLσSσL

ρHLσHσL

)
,

with ρ’s denoting the various correlations as indicated by the subscripts.

In our illustrations below we assume the baseline parameter values listed in Table 3.

Using the US inflation-adjusted home prices over 1948-2018 (data as in Table 1), the

geometric average annual return is 0.6% and the volatility is 4.6%. The assumed 4%

expected annual return on residential real estate can be justified by adding an annual rent

of around 5.4% of home prices (in line with estimates of Flavin and Yamashita (2002) and

Fischer and Stamos (2013)) to the 0.6% average price appreciation and subtracting 2% to

account for taxes, maintenance, and transaction costs. Individual house prices are more
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volatile than the nationwide index, so we increase the house price volatility to 10% and

lower the correlation estimates based on the aggregate data in Table 1 to levels in line

with empirical studies and close to the values used by, e.g., Flavin and Yamashita (2002),

Cocco (2005), Yao and Zhang (2005), Davidoff (2006), and Fischer and Stamos (2013).

5.1 Unconstrained solution

In this case we can write the optimal unconstrained portfolio weights in (4) as

πSt =
1

γ(1− ρ2SH)σS
(1 + `t)

(
µS − rf
σS

− ρSH
µH − rf
σH

)
− `t

σL
σS

ρSL − ρSHρHL
1− ρ2SH

, (12)

πHt =
1

γ(1− ρ2SH)σH
(1 + `t)

(
µH − rf
σH

− ρSH
µS − rf
σS

)
− `t

σL
σH

ρHL − ρSHρSL
1− ρ2SH

. (13)

Again, the speculative demands are scaled due to the presence of human capital and the

portfolio weights are subsequently adjusted for the extent to which the human capital

resembles a stock and a real estate investment, respectively.

Table 4 shows optimal portfolios for different combinations of the risk aversion coef-

ficient γ and the human-financial wealth ratio `. As in the previous section, agents with

either low risk aversion or a combination of medium-to-high risk aversion and a significant

human capital want to borrow money to boost their investment in the risky assets. Human

capital works like an inherent investment primarily in the riskfree asset due to the low

correlations of human capital with risky assets. Hence, the larger the human capital, the

more the agent borrows and invests in risky assets. Real estate dominates the risky port-

folio. The tangency portfolio has 28% in stocks and 72% in real estate due to real estate

having a larger Sharpe ratio. Despite stocks and real estate having identical correlations

with human capital, the income hedge portfolio has 1/3 in stocks and 2/3 in real estate

Symbol Description Baseline value

rf Riskfree rate 0.01
µS Expected stock return 0.06
σS Stock price volatility 0.20
µH Expected housing return 0.04
σH House price volatility 0.10
σL Human capital volatility 0.10
ρSH Stock-house correlation 0.20
ρSL Stock-human capital correlation 0.10
ρHL House-human capital correlation 0.10

Table 3: Parameter values for stock index, real estate, and human capital.
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γ = 1 γ = 5 γ = 10
` stock house rf stock house rf stock house rf

0 99 260 -259 20 52 28 10 26 64
1 194 513 -606 35 96 -31 16 44 41
2 289 765 -953 51 140 -91 21 61 17
5 573 1521 -1994 98 271 -269 39 115 -53
10 1047 2781 -3728 176 490 -566 67 203 -170
20 1995 5302 -7197 332 927 -1159 124 380 -405
50 4839 12865 -17603 801 2240 -2941 296 911 -1108

Table 4: Optimal unconstrained portfolios with housing. Percentages of financial
wealth optimally invested in stock, real estate, and riskfree asset. The baseline parameter
values listed in Table 3 are assumed.

because of real estate having a standard deviation half the size of stocks. The income

hedge portfolio is subtracted from the (magnified) investment in the tangency portfolio

and thus causes an increase in the real estate to stock ratio. For example, with a relative

risk aversion of 5 the ratio is 52/20 = 2.6 without human capital and 927/332 ≈ 2.8 with

a human-financial wealth ratio of 20. By comparing Table 4 to Table 2, we see that the

introduction of real estate reduces the optimal weight in the stock index and in the riskfree

asset (for most investors the latter means: increases borrowing).

Figure 5 illustrates the optimal portfolios in the typical standard deviation and mean

diagram. Panels A and B show efficient frontiers for selected levels of the risk aversion

coefficient γ, when the human-financial wealth ratio ` is varied from zero to infinity.

Panels C and D illustrate efficient frontiers for selected levels of the human-financial wealth

ratio `, when the risk aversion coefficient γ is varied from zero to infinity. Panels E and F

of Figure 5 show that with a higher stock-income correlation of 0.6, the frontiers vary

much more across levels of risk aversion and levels of the human-financial wealth ratio,

and the hyperbolic shape of (at least some of) the frontiers become clearer.

5.2 Solution with collateral constraint

Holding real estate gives easy access to loans through mortgages, while stock investments

generally do not, at least not to the same extent. Suppose that you can borrow at most

a fraction 1−κ of the value of the real estate you own. This corresponds to the constraint

πSt + κπHt ≤ 1 (14)

on portfolio weights. We take κ = 0.2 corresponding to an 80% loan-to-value limit as

our benchmark. Panel A of Table 5 shows the optimal portfolio for various combinations

of the relative risk aversion and the human-financial wealth ratio. Several things are
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Figure 5: Efficient frontiers with human capital and housing. Each curve shows
the combinations of standard deviation and expected return chosen by unconstrained in-
vestors either with a certain level of risk aversion but different human-financial wealth ratios
(Panels A, B, and E) or with a certain human-financial wealth ratio but different degrees
of risk aversion (Panels C, D, and F). The baseline parameter values listed in Table 3 are
assumed except that in Panels E and F the stock-income correlation is ρSL = 0.6.
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worth noticing. First, a levered house investment is very attractive for investors who are

young/middle-aged or relatively risk tolerant. Secondly, non-participation in the stock

market is optimal for young investors. Thirdly, the optimal stock weight is increasing

or hump-shaped over life. Fourthly, the optimal stock weight can be non-monotonic in

risk aversion which with the assumed parameter values is the case for a human-financial

wealth ratio of 1, 2, or 5. This phenomenon occurs because the agent compares stocks

to a levered house investment and stocks are less risky than a levered house investment.

Hence, when increasing the risk aversion, the agent gradually shifts from a levered house

investment to stocks and eventually to the riskfree asset.

Let us briefly compare this model output to observed positions over the life cycle.

Table 6 indicates the relative importance of various asset and debt categories in different

age groups according to the 2017 Panel Study of Income Dynamics (PSID) survey of US

families. We include only families reporting that they own a residence with a non-trivial

value, as some families choose not to own their residence for reasons excluded from our

simple model. The upper part of the panel shows the average across families of the ratio

of the value of assets or debt in certain classes relative to the net worth of the family

(we exclude families with negative or a trivial positive net worth). For example, across

all homeowning families for which the age of the reference person (“head” of family) is

between 18 and 30, the value of real estate owned is on average 367.5 percent of the net

worth of the family. Clearly, real estate is the major tangible asset of homeowners, and

real estate debt (mortgage debt) is the major liability. Note that the portfolio weights

of real estate holdings and real estate debt decrease over life as predicted by the simple

model. While the main purpose of the model is to build intuition for life-cycle variations

in portfolios, and the model obviously excludes several relevant aspects, it is comforting

that some of the key predictions are in line with empirical observations. When including

retirement accounts, both the stock market participation rate and the stock share for

those participating are hump shaped starting low for young households, increasing with

age until the peak around retirement, and then decreasing slightly towards the end of life.

A similar pattern in the stock share could be generated by our model by pooling investors

with different risk attitudes, but then the participation rate of the pool would increase

monotonically over life. At least our simple model with housing can explain the observed

low stock market participation rate among younger families, in contrast to both the model

without housing and to many more advanced life-cycle models.

To understand the impact of the access to collateralized borrowing, Panel B of Table 5

lists optimal portfolios in the case of a 60% loan-to-value limit, whereas Panel C assumes

no borrowing at all. Note that a portfolio weight written in blue [red] is larger [smaller]

than the corresponding weight in the baseline case. The young investors’ appetite for
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γ = 1 γ = 5 γ = 10
` stock house rf stock house rf stock house rf

Panel A: Baseline case with max 80% LTV, κ = 0.2
0 52 240 -192 20 52 28 10 26 64
1 13 434 -347 35 96 -31 16 44 41
2 0 500 -400 51 140 -91 21 61 17
5 0 500 -400 50 250 -200 39 115 -53
10 0 500 -400 16 420 -336 60 200 -160
20 0 500 -400 0 500 -400 32 340 -272
50 0 500 -400 0 500 -400 0 500 -400

Panel B: max 60% LTV, κ = 0.4
0 33 167 -100 20 52 28 10 26 64
1 4 241 -145 35 96 -31 16 44 41
2 0 250 -150 47 133 -80 21 61 17
5 0 250 -150 30 174 -105 39 115 -53
10 0 250 -150 3 242 -145 36 159 -95
20 0 250 -150 0 250 -150 12 220 -132
50 0 250 -150 0 250 -150 0 250 -150

Panel C: no borrowing, κ = 1
0 62 38 0 20 52 28 10 26 64
1 100 0 0 31 69 0 16 44 41
2 100 0 0 38 62 0 21 61 17
5 100 0 0 60 40 0 31 69 0
10 100 0 0 95 5 0 43 57 0
20 100 0 0 100 0 0 67 33 0
50 100 0 0 100 0 0 100 0 0

Table 5: Optimal portfolios with housing and borrowing constraints. Percentages
of financial wealth optimally invested in stock, real estate, and riskfree asset. The baseline
parameter values listed in Table 3 are assumed. In Panels B and C the numbers in blue
are larger than in the baseline case of Panel A, numbers in red are smaller, whereas the
remaining numbers are unchanged.

23

                  



Age group All 18-30 31-40 41-50 51-60 61-70 71-80 81+
Observations 4373 318 839 912 868 913 351 172

Asset shares in percent
Real estate 195.7 367.5 264.1 235.1 144.1 141.9 97.7 82.1
Stocks 4.1 1.7 2.7 2.2 3.5 6.4 7.0 9.6
Check/savings 9.9 13.3 11.9 8.9 7.2 9.5 11.8 10.5
IRA/annuities 9.1 3.3 5.1 8.4 10.7 14.1 10.3 6.4
Vehicles 15.0 21.6 19.2 18.0 14.2 11.4 8.0 4.3
Other 5.2 3.6 5.5 5.3 5.4 5.3 5.4 5.3

Debt shares in percent
Real estate -138.7 -310.9 -207.3 -177.5 -84.8 -88.6 -40.3 -18.1
Other 0.4 0.1 1.2 0.4 0.3 0.1 0.0 0.1

Direct stocks
Participation (in pct) 18.8 12.9 15.5 13.7 17.7 24.1 27.1 32.0
Cond. share (in pct) 21.6 13.0 17.5 15.8 19.8 26.4 25.7 30.0

Stocks and retirement accounts
Participation (in pct) 37.4 22.0 28.8 33.2 38.6 49.1 46.2 44.8
Cond. share (in pct) 35.2 22.4 27.2 31.8 36.9 41.6 37.5 35.7

Table 6: A decomposition of the net worth of homeowners in PSID. The table
is based on the 2017 Panel Study of Income Dynamics. Data was retrieved on January 24,
2020 from https://simba.isr.umich.edu/. We include only families reporting they own
a home worth at least $10,000 and having a net wealth of at least $1,000. Furthermore, we
remove families for which the recorded age of reference person exceeds 100 or the recorded
home value or mortgage value exceeds $9,999,000. We group PSID entries as follows.
Real estate assets: ER66031 plus ER71439. Stocks: ER71445. Check/savings: ER71435.
IRA/annuities: ER71455. Vehicles: ER71447 (net worth). Other assets: ER71429 mi-
nus ER/1431 (equals business net worth) plus ER71451. Real estate debt: ER66051 plus
ER66072 plus ER71441. Other debt: ER71479. Net worth is then the sum of the assets
less the sum of the debts. The upper panel shows for each asset or debt class the value in
percent of net worth. The lower panel shows the stock market participation rate and the
average share of net wealth invested in the stock market conditional on participating, both
based only on directly held stocks (including mutual funds) and when retirement accounts
(IRA and similar) are included.
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financial investments with high risk (and high expected return) implies that if mortgages

are available, they prefer housing investments with a mortgage to an unlevered stock

investment. However, if borrowing is prohibited, the stock is more attractive than the

house because of the stock’s higher risk and expected return so young or risk-tolerant

households optimally invest their entire wealth in stocks. The credit access embedded in

a housing investment is thus essential for the optimal portfolio, especially for young or

risk-tolerant households. In line with intuition, a reduction in the loan-to-value limit (i.e.,

an increase in κ) decreases (or leaves unchanged) the portfolio weight of the house and

the borrowed amount, whereas the stock weight can vary non-monotonically.

5.3 Robustness of results

This subsection compares the optimal portfolios for a number of alternative specifications

to the optimal portfolios in the baseline case listed in Panel A of Table 5.

Selected parameters. First we illustrate the sensitivity of results to the values of

selected parameters that vary across households. Panel A of Table 7 considers an increase

in σH , the standard deviation of real estate prices, to 0.15 from the baseline value of 0.10.

This leads to a higher stock weight, a lower house weight, and a higher weight in the riskfree

asset (for most: less borrowing), except for relatively young and risk-tolerant agents who

still prefer a fully collateralized investment in real estate and no stocks. The qualitative

patterns in how the portfolio weights vary with the risk aversion and the human-financial

wealth ratio remain unchanged. Especially for young or fairly risk-tolerant agents, real

estate is still the dominant asset in the portfolio. Although real estate now has a lower

Sharpe ratio than stocks, real estate is attractive because of its inherent access to loans.

Panel B of Table 7 shows the effect of increasing the standard deviation of human

capital from 0.1 to 0.2. The optimal portfolios is unaffected for young or risk-tolerant

agents who still opt for a maximally levered house investment and no stocks. In other

cases, the larger background risk leads to less borrowing, especially for the most risk-averse

households, and a smaller housing portfolio weight, whereas the effect on the stock weight

depends on the combination of the risk aversion and the human-to-financial wealth ratio.

In the unconstrained case, we know from (12)–(13) that a larger value of σL reduces both

portfolio weights. The borrowing constraint generally twists weights in the direction of

less stocks and more housing, but a larger income risk reduces the credit appetite and

thus reduces the magnitude of this twist, which may lead to a larger stock weight.

Alternative assumptions on loan access. In the baseline case the 1% interest

rate applied both to lending and borrowing. Now assume that the borrowing rate is 2%,

whereas the lending rate is 1%. Panel C of Table 7 lists optimal portfolios for this situation.
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γ = 1 γ = 5 γ = 10
` stock house rf stock house rf stock house rf

Panel A: Higher house price risk, σH = 0.15
0 80 101 -81 22 21 57 11 10 79
1 62 188 -151 40 36 24 18 15 67
2 45 276 -220 57 51 -9 24 20 55
5 0 500 -400 81 94 -76 45 35 20
10 0 500 -400 68 161 -129 79 59 -38
20 0 500 -400 41 295 -236 80 101 -81
50 0 500 -400 0 500 -400 55 226 -181

Panel B: Higher income risk, σL = 0.2
0 52 240 -192 20 52 28 10 26 64
1 14 428 -342 31 87 -19 11 35 53
2 0 500 -400 43 123 -66 13 45 42
5 0 500 -400 56 220 -176 18 73 9
10 0 500 -400 28 360 -288 26 120 -45
20 0 500 -400 0 500 -400 41 214 -155
50 0 500 -400 0 500 -400 8 460 -368

Panel C: Higher borrowing than lending rate, rbor = 2%, rlen = 1%
0 68 160 -128 20 52 28 10 26 64
1 45 274 -219 30 70 0 16 44 41
2 22 388 -310 42 83 -25 21 61 17
5 0 500 -400 69 154 -123 31 69 0
10 0 500 -400 51 244 -195 50 100 -50
20 0 500 -400 15 424 -339 66 172 -138
50 0 500 -400 0 500 -400 30 352 -282

Panel D: Borrowing against human capital, θ = 0.1
0 52 240 -192 20 52 28 10 26 64
1 22 438 -360 35 96 -31 16 44 41
2 0 600 -500 51 140 -91 21 61 17
5 0 750 -650 96 270 -266 39 115 -53
10 0 1000 -900 108 460 -468 67 203 -170
20 0 1500 -1400 132 840 -872 124 380 -405
50 0 3000 -2900 204 1980 -2084 296 911 -1108

Panel E: Buying stocks on margin, ω = 0.5
0 97 258 -255 20 52 28 10 26 64
1 67 332 -299 35 96 -31 16 44 41
2 38 406 -344 51 140 -91 21 61 17
5 0 500 -400 94 265 -259 39 115 -53
10 0 500 -400 67 333 -300 67 203 -170
20 0 500 -400 12 470 -382 76 311 -286
50 0 500 -400 0 500 -400 3 492 -395

Table 7: Optimal portfolios with housing: robustness. Percentages of financial
wealth optimally invested in stock, real estate, and riskfree asset. The baseline parameter
values listed in Table 3 are assumed together with a maximum loan-to-value ratio of 80%
(κ = 0.2), except that σH = 0.15 in Panel A and σL = 0.2 in Panel B. Numbers in blue are
larger than in the baseline case, numbers in red are smaller, whereas the remaining numbers
are unchanged.
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Note that in this case the objective cannot be reduced from (1) to (3), but only to

max
πt

{
πt · µ+ (1− πt · 1)

(
rlen1{πt·1≤1} + rbor1{πt·1>1}

)

− 1

2
γ

1

1 + `t

[
πt · Σπt + 2`t πt · Covt[r, rL]

]
}
,

where rlen is the lending rate and rbor the borrowing rate, and 1{A} equals 1 if the claim

A is true and zero otherwise. Of course, portfolios not involving borrowing are unchanged

(high γ, low `t). Some agents who were borrowing in the baseline case are now neither

borrowing nor lending (for γ = 5, ` = 1 and γ = 10, ` = 5). Other agents are borrowing

less, whereas agents with low risk aversion and high human capital still borrow as much

as possible and invest nothing in stocks. Again, the overall qualitative patterns in how

the optimal portfolio weights vary with the level of risk aversion and the human-financial

wealth ratio remain unchanged.

Next, suppose that households can borrow up to a fraction θ of their human capi-

tal in addition to the collateralized mortgage. The constraint (14) is then replaced by

πSt + κπHt ≤ 1 + θ`t. Panel D lists optimal portfolios when θ = 0.1. The portfolio is

unchanged for the combinations of γ and `t for which the loan-to-value constraint was

not binding. The additional borrowing opportunity is taken by agents with low risk aver-

sion or moderate-to-high human capital. The more risk-averse of these agents increase

the weight of both stocks and houses, but the most risk-tolerant agents still prefer the

maximal possible position in housing and nothing in stocks.

Finally, suppose that agents can buy stocks on margin and borrow up to a fraction

1 − ω of the value of the stocks owned. The budget constraint (14) is then replaced by

ωπSt + κπHt ≤ 1. Panel E shows the optimal portfolios when agents can borrow 50% of

the value of their stocks in addition to the mortgage. The agents facing a binding portfolio

constraint in the baseline case find stocks relatively more attractive when they give access

to loans. Still, young and very risk-tolerant agents choose the maximal possible position

in housing and nothing in stocks. The older (smaller human capital) among the very risk-

tolerant agents as well as younger and more risk-averse agents do in fact increase their

stock share, but all portfolios remain dominated by housing investments.

6 Growth and value tilts in household portfolios

This section studies growth/value investing in the life-cycle mean-variance setting. Nu-

merous exchange-traded funds and mutual funds are devoted to value stocks or growth

stocks in specific countries, industries, or with other specific characteristics. Value invest-
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ing has gained popularity by the success of high-profiled declared value investors (most

notably Warren Buffett) and by empirical studies documenting that value stocks offer

higher average returns than growth stocks, also after standard market risk adjustments

(Rosenberg, Reid, and Lanstein, 1985; Fama and French, 1992). The academic literature

on the role of value and growth stocks in household portfolios is sparse, however. Ju-

rek and Viceira (2011) and Larsen and Munk (2012) consider value and growth stocks in

theoretical models of multi-period portfolio decisions, but both ignore human capital and

housing. This is problematic particularly if value stocks covary with house prices and labor

income differently than growth stocks do. Based on the asset holdings of a large number of

Swedish households, Betermier et al. (2017) find that, relative to growth investors, value

investors are generally older, have lower human capital, lower income risk, lower leverage,

and higher financial wealth.

To calculate optimal portfolios we assume the means, variances, and correlations in

Table 8. These numbers are based on the 1980-2018 sample of the same data as used

in Table 1 (with Q1-Q1 income changes). We adjust the mean and volatility of housing

returns and the labor income volatility as explained previously. Average past stock returns

are likely to overestimate future expected stock returns because of survivorship biases

(Brown, Goetzmann, and Ross, 1995) and the decline in taxes and discount rates and the

implied unexpected capital gains over the sample period (Fama and French, 2002). To

account for this, we subtract 4 percentage points from the average returns on the three

stock portfolios, which leads to expected returns being close to the 6% used in the single-

stock settings in earlier sections. We assume a real riskfree rate of 1% as in previous

sections. We divide the house-stock and income-stock correlations by two and the house-

income correlation by four to account for the idiosyncratic variations in individual house

prices and income growth compared to the aggregate time series. Consistent with the

prevalent view, value stocks exhibit a higher average return than growth stocks and neutral

stocks, but also a slightly higher volatility. Note that, compared to growth stocks, value

stock returns are more highly correlated with both labor income and real estate prices.

Other things equal, this makes value stocks relatively less attractive to young individuals

with a large human capital and individuals with a large position in real estate. However,

the optimal portfolio depends on the overall correlation structure of the available assets

as well as expected returns and volatilities.

With these inputs, the unconstrained tangency portfolio consists of 18.7% in Growth,

-25.3% in Neutral, 46.1% in Value, and 60.5% in housing. The value portfolio has the

largest Sharpe ratio, followed by housing, Neutral, and Growth, but due to the correlation

structure the neutral portfolio is optimally shorted in absence of human capital. The

income-adjustment portfolio (to be shorted) consists of 1.6% in Growth, 81.9% in Neutral,
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Correlations

Mean Std dev Growth Neutral Value House Income

Growth stocks 5.5% 17% 1.00 0.78 0.69 0.08 0.14
Neutral stocks 5.4% 15% 0.78 1.00 0.90 0.16 0.18
Value stocks 7.1% 18% 0.69 0.90 1.00 0.19 0.15
House 4.0% 10% 0.08 0.16 0.19 1.00 0.10
Income N.A. 10% 0.14 0.18 0.15 0.10 1.00

Table 8: Inputs for the growth-value analysis. The table shows the means, standard
deviations, and correlations used in the calculations of optimal portfolios with growth and
value stocks. The underlying data series are described in the text.

-23.5% in Value, and 40.0% in housing. These values are determined by the correlations

of the four assets with income and also by the correlations among the four assets. Neutral

stocks have the largest correlations with income, which explains their large weight in the

income-adjustment portfolio. From (2) the optimal portfolio of any household is a mix

of the speculative portfolio and a short position in the income-adjustment portfolio with

the weights being determined by the risk aversion γ and the ratio ` of human capital to

financial wealth. For any combination of γ and ` the position in neutral stocks will be

negative and the positions in value stocks positive, and for reasonable values of γ and `

growth stocks and housing will also have positive weights.

Panel A of Table 9 shows the optimal unconstrained portfolio for various combinations

of γ and `. In the absence of human capital the portfolios have positive weights on housing,

value stocks, and growth stocks, and negative weights on neutral stocks and the riskfree

asset. When increasing `, the household takes much more risk on its financial portfolio

and borrows substantial sums. In the present setting, growth stocks and especially value

stocks and housing have very high positive weights, whereas neutral stocks enter with a

significant negative weight.

Next we impose short-selling constraints on the assets and a collateral constraint so that

up to a fraction 1−κ = 0.8 of the value of the house can be borrowed, in line with (14) but

now πS is replaced by the sum of the weights in the three stock portfolios. Panel B show

the optimal portfolios for this case. As in earlier sections, housing (with an associated

mortgage) is the dominant asset for young and relatively risk-tolerant households, but

value stocks and sometimes growth stocks enter the portfolio for more risk-averse or older

households.

With the baseline parameters, growth stocks play only a small role in the optimal

portfolios, but only small adjustments of the inputs lead to significantly different outcomes.

As an example, suppose that the correlation between income and growth stocks is lowered

from 0.14 to 0.07. In this case, growth stocks are less like human capital and thus have a
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γ = 1 γ = 5 γ = 10
` Gro Neu Val Hou Rf Gro Neu Val Hou Rf Gro Neu Val Hou Rf

Panel A: Unconstrained portfolios, baseline parameters
0 77 -104 190 250 -411 15 -21 38 50 -81 8 -10 19 25 -40
1 153 -224 385 491 -804 30 -57 81 92 -145 15 -37 43 42 -62
2 230 -344 579 733 -1197 46 -94 123 134 -208 22 -63 66 59 -84
5 460 -704 1163 1459 -2376 91 -204 251 261 -397 45 -141 137 111 -150
10 843 -1304 2135 2668 -4341 166 -387 463 472 -713 81 -273 254 197 -260
20 1609 -2505 4080 5087 -8270 317 -754 889 894 -1345 155 -535 490 370 -479
50 3906 -6105 9916 12343 -20058 769 -1853 2164 2160 -3239 377 -1321 1195 887 -1137

Panel B: Constrained portfolios, baseline parameters
0 0 0 58 210 -168 10 0 26 50 14 5 0 13 25 57
1 0 0 23 385 -308 15 0 48 92 -54 5 0 21 42 31
2 0 0 0 500 -400 11 0 63 129 -103 6 0 30 59 5
5 0 0 0 500 -400 0 0 55 223 -178 7 0 55 110 -72
10 0 0 0 500 -400 0 0 24 379 -303 0 0 64 182 -145
20 0 0 0 500 -400 0 0 0 500 -400 0 0 37 315 -252
50 0 0 0 500 -400 0 0 0 500 -400 0 0 0 500 -400

Panel C: Constrained portfolios, growth-income correlation 0.07
0 0 0 58 210 -168 10 0 26 50 14 5 0 13 25 57
1 0 0 23 385 -308 23 0 42 92 -58 13 0 16 43 28
2 0 0 0 500 -400 23 0 51 129 -103 21 0 19 60 -1
5 0 0 0 500 -400 0 0 55 223 -178 46 0 29 114 -89
10 0 0 0 500 -400 0 0 24 379 -303 44 0 20 181 -145
20 0 0 0 500 -400 0 0 0 500 -400 37 0 0 314 -251
50 0 0 0 500 -400 0 0 0 500 -400 0 0 0 500 -400

Panel D: Constrained portfolios, growth-income correlation 0.07, higher income risk σL = 20%
0 0 0 58 210 -168 10 0 26 50 14 5 0 13 25 57
1 0 0 24 380 -304 26 0 33 85 -44 16 0 6 36 41
2 0 0 0 500 -400 39 0 37 119 -95 28 0 0 46 26
5 0 0 0 500 -400 36 0 25 199 -159 49 0 0 73 -22
10 0 0 0 500 -400 30 0 4 332 -266 77 0 0 116 -93
20 0 0 0 500 -400 0 0 0 500 -400 66 0 0 170 -136
50 0 0 0 500 -400 0 0 0 500 -400 33 0 0 333 -266

Panel E: Constrained portfolios, alternative income-stock correlations, income risk σL = 20%
0 9 0 46 222 -177 20 0 16 52 12 10 0 8 26 56
1 0 0 19 403 -322 34 18 10 88 -50 13 13 0 35 39
2 0 0 0 500 -400 42 29 5 121 -97 16 17 0 44 23
5 0 0 0 500 -400 46 6 7 205 -164 24 30 0 70 -24
10 0 0 0 500 -400 32 0 0 341 -272 33 45 0 110 -88
20 0 0 0 500 -400 0 0 0 500 -400 27 37 0 176 -141
50 0 0 0 500 -400 0 0 0 500 -400 12 13 0 375 -300

Table 9: Optimal portfolios with growth and value stocks. Percentages of financial
wealth optimally invested in growth stocks, neutral stocks, value stocks, real estate, and
the riskfree asset. See text for explanations.
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larger weight in the optimal portfolios of more risk-averse individuals, at the expense of

value stocks, as shown in Panel C. Among the more risk-averse households, the portfolio of

younger investors includes growth stocks, but not value stocks. As the household matures,

the weight of growth stocks declines and the weight of value stocks increases. This fits

well with the empirical findings of Betermier et al. (2017) that value investors tend to

be older, have lower human capital and higher financial wealth, as well as lower leverage.

Furthermore, they find that value investors have lower income risk. Panel D lists optimal

portfolios when the income risk is doubled to 20%. The increased income risk does indeed

lead to lower portfolio weights of value stocks, whereas the weight of growth stocks increase

for individuals with γ = 5 and ` = 5, 10.

Finally, in Panel E we use the income-stock correlations based on the 1947-2018 sample

with Q4-Q4 income growth. After dividing by two to reflect idiosyncratic income risk, the

correlation with income is 0.09 for both growth and neutral stocks, and 0.13 for value

stocks. In this case, the optimal portfolios for individuals with moderate or high risk

aversion are more balanced. In particular, neutral stocks are now included in the optimal

portfolio for individuals with high risk aversion or with a combination of moderate risk

aversion and moderate human capital.

To sum up, the above numerical examples highlight that, for a given correlation struc-

ture, the optimal growth/value tilts vary substantial with risk aversion and the ratio of

human capital to financial wealth, and that the optimal portfolios are very sensitive to the

assumed correlations of income with the different types of stock. Future empirical stud-

ies may provide better estimates of these correlations based on survey or registry income

data. Our results demosntrate that even small cross-sectional differences in the income-

asset correlations can lead to substantial differences in households’ optimal portfolios.

7 Conclusion

Human capital is one of the most valuable assets held by households. We have shown

how Markowitz’ basic mean-variance portfolio choice model can be extended to include

human capital. By solving the extended mean-variance problem (with relevant constraints)

for different ratios of human capital to financial wealth, the method effectively delivers

portfolio decisions over the life cycle of a household. We have argued that the life-cycle

investment strategy generated in this way comes close to the strategy that can be derived

using a much more involved, formal dynamic optimization approach.

Two of our three applications address settings that have been solved in the literature by

numerical dynamic optimization routines. These applications confirm that our approach

generates theoretically correct life-cycle portfolio patterns. The first application consid-
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ers the classical stock-bond asset allocation with human capital, but no housing. With

standard parameter values our results corroborates the findings of Cocco et al. (2005)

that 100% in stocks are optimal for young households, but we also show that results are

markedly different for certain changes in parameter values. The second application adds

housing as an investment object to the problem. Here our approach provides justification

and transparent arguments for the findings of Cocco (2005) that housing tends to crowd

out stock investments especially for young households. We provide additional results

highlighting the importance of the access to borrowing offered by housing investments.

Our final application generalizes the setting further by allowing investments in three

stock portfolios, representing growth stocks, value stocks, and neutral stocks. This is, to

the best of our knowledge, the first theoretical model of the role of growth and value stocks

in households’ portfolio decisions. We show that the optimal portfolios to some extent

agree with the growth/value tilts found in Swedish household portfolios by Betermier

et al. (2017), but results are highly sensitive to the assumed correlation values.
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A Proof of Theorem 1

(a) follows by direct optimization of the objective function.

(b) The expected rate of return on the optimal portfolio is

Et[r] = rf + π∗t · (µ− rf1)

= rf +
1

γ
(1 + `t) (µ− rf1) · Σ−1

(
µ− rf1

)
− `t (µ− rf1) · Σ−1 Covt[r, rL]

= rf +
1

γ
(1 + `t)A− `tB,

which shows (5). The variance of the optimal portfolio is

Vart[r] = π∗t · Σπ∗t

=
1

γ2
(1 + `t)

2 (µ− rf1) · Σ−1
(
µ− rf1

)
+ `2t Covt[r, rL] · Σ−1 Covt[r, rL]

− 2

γ
(1 + `t) `t(µ− rf1) · Σ−1 Covt[r, rL]

=
1

γ2
(1 + `t)

2A+ `2tC −
2

γ
(1 + `t) `tB,

which confirms (6).

(c) It follows from (5) that

1

γ
(1 + `t) =

Et[r]− rf
A

+ `t
B

A
, (15)

and by substituting this into (6), we obtain

Vart[r] =

(
Et[r]− rf

A
+ `t

B

A

)2

A+ `2tC − 2

(
Et[r]− rf

A
+ `t

B

A

)
`tB,

which can be rewritten as (7). The minimum standard deviation equals Lt
Ft

√
D/A and is

obtained for Et[r] = rf . From (15), we see that this combination is chosen by an agent

with a risk aversion coefficient of γ = (1 + `−1t )AB . For γ →∞, the expected rate of return

drops towards rf − `−1t B so one branch of the hyperbola is cut off at that level. This is

the downward-sloping branch if B > 0, and the upward-sloping branch if B < 0.

(d) Eq. (15) implies that

`t =
γ(Et[r]− rf )−A

A− γB , (16)

and by substituting that into (6), we find (8). For `t = 0, the expected return is rf + A
γ

and the variance is A

γ
2 , which defines the endpoint of one of the branches of the hyperbola.
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B Optimal investments in a continuous-time model

Let St denote the n-vector of traded risky asset prices at time t, and assume that

dSt = diag(St)
[
µ dt+ σ dzt

]
, (17)

where diag(St) is the n× n matrix with St along the diagonal and zeros off the diagonal,

z = (zt) is an n-dimensional standard Brownian motion representing shocks to prices,

µ is the n-vector of expected returns, and σ is the n × n matrix of asset price sensitiv-

ities towards the shocks. In addition a riskfree asset with a constant rate of return of r

(continuously compounded) is traded. We assume that µ 6= r1 and that σ is non-singular.

The investor receives a labor income stream given by the income rate Yt with dynamics

dYt = Yt

[
µY (t) dt+ σY (t)ρY · dzt + σY (t)

√
1− ‖ρY ‖2 dzY t

]
, (18)

where zY = (zY t) is a one-dimensional standard Brownian motion independent of z, µY is

the expected income growth rate, σY ≥ 0 is the income volatility, and ρY is the n-vector

of instantaneous correlations of the income rate with the risky asset prices. The income

stream contains unspanned risk if σY > 0 or ‖ρY ‖ 6= 1 or both. We assume that the agent

lives until a known terminal date T . At the known retirement date TR < T , there is a

one-time drop in the income rate,

YTR+ = ΥYTR−,

where Υ > 0 can be interpreted as the replacement rate in final-salary pension scheme.

We consider an investor maximizing the expected life-time power utility depending on

consumption or terminal wealth or both. The indirect utility is thus defined as

J(F, Y, t) = sup
c,π

Et

[
εc

∫ T

t
e−δ(τ−t)u(cτ ) dτ + εF e

−δ(T−t)u(FT )

]
, (19)

where F is current financial wealth, δ ≥ 0 is the subjective time preference rate, and

εc, εF ≥ 0 are indicators with εcεF > 0. We assume power utility u(x) = 1
1−γx

1−γ , where

γ > 1 is the constant coefficient of relative risk aversion.

The investor must choose a portfolio strategy π = (πt), where πt is the n-vector

of fractions of financial wealth invested in the n risky assets at time t. The remaining

financial wealth Ft(1−πt · 1) is invested in the riskfree asset. If εc > 0, the investor must

also choose a consumption strategy c = (ct), where ct is the consumption rate at time t.

If there is no unspanned income risk, and the investor is not facing any portfolio
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constraints, we can find the optimal portfolio in closed form.

Theorem 2 Suppose the investor is unconstrained and that either σY = 0 or ‖ρY ‖ = 1.

Then the indirect utility is

J(F, y, t) =
1

1− γG(t)γ (F + yM(t))1−γ , (20)

where

M(t) =





∫ T
t e−

∫ u
t rM (s) ds du, if t ∈ [TR, T ],

∫ TR
t e−

∫ u
t rM (s) ds du+ Υ

∫ T
TR
e−

∫ u
t rM (s) ds du, if t < TR,

(21)

G(t) = ε1/γc
1

rG

(
1− e−rG(T−t)

)
+ ε

1/γ
F e−rG(T−t), (22)

rM (t) = r − µY (t) + σY (t)λ · ρY , (23)

rG =
δ

γ
+
γ − 1

γ

(
r +
‖λ‖2
2γ

)
. (24)

The optimal portfolio at any time t is

πt =
1

γ

(
1 +

YtM(t)

Ft

)
(σσ>)−1 (µ− r1)− YtM(t)

Ft
σY (t)(σ>)−1ρY , (25)

and the optimal consumption rate is

ct = ε1/γc
Ft + YtM(t)

G(t)
. (26)

Proof: The financial wealth dynamics are

dFt = (Yt − ct) dt+ Ft
[
(r + πt · (µ− r1)) dt+ πt · σ dzt

]
.

If we let subscripts on J indicate partial derivatives, the HJB equation is

δJ(F, y, t) = L1J(F, y, t) + L2J(F, y, t) + L3J(F, y, t),

where

L1J = sup
c
{εcu(c)− cJF } ,

L2J = sup
π

{
FJFπ · (µ− r1) +

1

2
F 2JFFπ · σσ>π + Y FJY FσY π · σρY

}
,

L3J = Jt + Y JY µY + rFJF + Y JF +
1

2
Y 2JY Y σ

2
Y .
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The first-order condition for c leads to

c = ε1/γc J
−1/γ
F

and

L1J = ε1/γc
γ

1− γ J
γ−1
γ

F .

The first-order condition for π leads to

π = − JF
FJFF

(
σσ>)−1 (µ− r1)− Y JY F

FJFF
σY
(
σ>)−1 ρY ,

which implies that

L2J = −1

2

J2
F

JFF
‖λ‖2 − 1

2

Y 2J2
Y F

JFF
σ2Y ‖ρY ‖2 −

Y JFJY F
JFF

σY λ · ρY .

where

λ = σ−1(µ− r1).

With the conjecture (20), we obtain (26) and

L1J = ε1/γc
γ

1− γG
γ−1(F + yM)1−γ .

Since

− JF
FJFF

=
1

γ

(
1 +

yM(t)

F

)
,

Y JY F
FJFF

=
yM(t)

F
,

J2
F

JFF
= −1

γ
Gγ(F + yM)1−γ ,

Y 2J2
Y F

JFF
= −γGγy2M2(F + yM)−1−γ ,

Y JFJY F
JFF

= GγyM(F + yM)−γ ,

Eq. (25) follows and

L2J = Gγ(F+yM)−1−γ
{

1

2γ
(F + yM)2‖λ‖2 − yM(F + yM)σY λ · ρY +

γ

2
y2M2σ2Y ‖ρY ‖2

}
.

Furthermore,

L3J = Gγ(F + yM)−1−γ
{[

γ

1− γ
G′

G
+ r

]
(F + yM)2

+
[
M ′ − (r − µY )M + 1

]
y(F + yM)− γ

2
y2M2σ2Y

}
.

If either σY = 0 or ‖ρY ‖ = 1, then the final terms of L2J and L3J cancel, and the HJB
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equation is satisfied provided that

M ′(t)− (r − µY (t) + σY (t)λ · ρY )M(t) + 1 = 0,

G′(t)−
(
δ

γ
+
γ − 1

γ

[
r +
‖λ‖2
2γ

])
G(t) + ε1/γc = 0.

To ensure the terminal condition J(F, y, T ) = εF
1−γF

1−γ , we need M(T ) = 0 and G(T ) =

ε
1/γ
F . The solutions are given by (21) and (22). 2

C Proof of Equation (9)

The value at the end of period t of the income in period t+ k is

Vt,t+k = Et

[
e−[ν(t+1)+···+ν(t+k)]Yt+k

ζt+k
ζt

]
= exp

{
−

t+k∑

s=t+1

ν(s)

}
Et

[
Yt+k

ζt+k
ζt

]
.

For any t,

Et

[
Yt+1

ζt+1

ζt

]
= YtEt

[
exp

{
µY (t+ 1)− 1

2
σY (t+ 1)2 − r − 1

2

(
‖λ‖2 + λ2Y

)

+ (σY (t+ 1)ρY − λ) · εt+1 +

(
σY (t+ 1)

√
1− ‖ρY ‖2 − λY

)
εY,t+1

}]

= Yt exp {−r̂m(t+ 1)} ,

where

r̂m(s) = r − µY (s) + σY (s)

[
ρY · λ+

√
1− ‖ρY ‖2λY

]
.

By recursion and the law of iterated expectations we then get

Et

[
Yt+k

ζt+k
ζt

]
= Et

[
ζt+k−1
ζt

Et+k−1

[
Yt+k

ζt+k
ζt+k−1

]]

= Et

[
ζt+k−1
ζt

Yt+k−1e
−rm(t+k)

]

= e−rm(t+k)Et

[
ζt+k−1
ζt

Yt+k−1

]

= · · · = Yt exp

{
−

t+k∑

s=t+1

rm(s)

}
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so that

Vt,t+k = Yt exp

{
−

t+k∑

s=t+1

(r̂m(s) + ν(s))

}
= Yt exp

{
−

t+k∑

s=t+1

rm(s)

}
,

where rm(s) = r̂m(s) + ν(s) is a risk-, mortality, and growth-adjusted discount rate. The

total human capital at the end of period t, excluding the income just received, is therefore

Lt =

T−t∑

k=1

Vt,t+k = Yt

T−t∑

k=1

exp

{
−

t+k∑

s=t+1

rm(s)

}
= YtM(t),

which was to be shown.
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