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Abstract

.
We propose two models of illiquidity to determine how an investor be-
haves optimally in the presence of an illiquid asset, which can only be
traded infrequently and on random dates. The investor is less willing to
invest in the illiquid asset compared to a situation where all assets are liq-
uid, and his optimal amount invested in the illiquid asset is almost half of
what it would be if the asset was liquid. The presence of illiquidity also
distorts the investor’s willingness to take gambles in his liquid wealth,
because he can only meet his immediate obligations with liquid wealth.
Together with the fact that the next trading opportunity is random, the
investor is less willing to invest in liquid risky asset. We find that in-
vestors with shorter investment horizons will never invest any amount in
the illiquid asset, and risk-averse investors will need an investment hori-
zon of at least 5 years before they are willing to buy any amount of an
illiquid asset that is trade-able on average every year. There is very little
difference between long-term investors, as an investor with a investment
horizon of 10 year will allocate 1% less in the illiquid asset than an in-
vestor with infinite investment horizon. We conclude that the degree of
liquidity is an important determinant of the behaviour of the investor.
The more illiquid the asset is, the less willing the investor is to buy it,
and therefore the more he will need to be compensated in order to invest
in it.
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1 Introduction

In this paper, we seek to derive a financial model that shows how an utility maximizing
investor behaves optimally in the presence illiquidity. We define an illiquid asset as asset
which can not be traded frequently, but instead only at random and unknown trading
dates, i.e only at what we refer to as a "liquidity event" . We model the liquidity event
with an independent and identically distributed Poisson process with some intensity λ.
The randomness of the liquidity event might seem niche at first, but it is, in fact, a very
common thing that assets have unknown trading dates. Some examples of assets not hav-
ing a known trade date are private equity, venture capital, large real estate, Structured
products, infrastructure projects and much more.

Illiquidity is a very relevant phenomena, and it comes in many shapes and form in various
different asset markets. Illiquid asset classes range over a big spectrum. Assets with vary-
ing degree of illiquidity are more common than pure liquid assets or quasi-liquid assets,
where an asset is more illiquid the less frequent it is traded. From Table 1 below, a list
of various asset classes and the typical time between transaction can be seen. It can be
seen that one of the most liquid asset classes is Public equities, which can be traded every
second. The more illiquid assets are OTC product, real estate, private equity and Art.
In general, Illiquid asset classes are large. For example, Residential housing has a typical
time between transactions of 4-5 years, But ranges from months to years (Hansen 1998).
The estimated size of the residential real estate market is $16 trillion, which is compare-
able to the market capitalization of NYSE and NASDAQ of approximately $17 trillion2.
Kaplan and Violante (2010) show that individuals have the majority of their net wealth
in illiquid assets, with roughly 81% of households portfolio tied up in illiquid positions.
Illiquid assets, in general, has had an increasing presence in investors portfolios. Pension
funds, for example, had an average illiquid asset holdings of 5% of their total portfolio
in 1995, which has increased to close to 20% in 2010, as reported in the "Global Pension
Asset Study 2011" by Tower Watson.

Asset class Typical time between transaction
Public Equities Within Seconds
OTC equities Within days, but many assets over a week
Private equity The median investment duration is 4 years

Residential Housing 4-5 years
Institutional real estate 8-11 years

Institutional infrastructure 50-60 years
Art 40-70 years

Table 1: Holding Periods of Various Asset Classes. Source: Ang et al. (2014).

2Public equities can be traded quasi continuous, as the typical time between trades are less than 1-2
seconds, i.e it is a very liquid asset market
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Since Illiquidity is such a big part of various Asset Markets, it is safe to say one would
be interested in how an investor behaves optimally in the presence of such an asset. Does
illiquidity have any significant effect on the decision of the investor? If so, to what degree
does the investor’s portfolio choice change? What effect does the intensity of liquidity have
on the investors portfolio choice? How much does the investor need to be compensated in
order to be willing to buy the illiquid asset as if it was liquid? In other words, what is the
quantity of a so-called liquidity premium? These are some of the questions we will try to
answer.

1.1 Overview of the Paper

In this paper, we will first consider an asset pricing model with infinite time horizon. That
is, we consider an investor who has the choice between consuming or investing at each
time period, and his investment horizon is infinite. With this setup, we then derive the
so called Hamilton-Jacobian-Bellman (HJB) equation, which we solve numerically to get
an approximation of the investors value function, i.e the function that shows how well
the investor is off for different values of fraction of total wealth invested in the illiquid
asset. The value function is essential in deciphering the behaviour of the investor, as it
tells us what the optimal allocation in liquid and illiquid wealth is. We find out that not
only does illiquidity distort the investor’s allocation in the illiquid asset, but also in the
liquid risky asset. The main reason for this, is that liquid and illiquid wealth are imper-
fect substitutes - That is, the investor can only meet his obligation with liquid wealth,
and not illiquid wealth. In our model, the investor’s only obligation is his consumption,
which can be interpreted as spendings, payments and general obligations. If the investor’s
liquid wealth drops low enough, the investor can not meet his obligations before the next
liquidity event. This coupled with the fact that the investor does not know when he will
be able to trade the illiquid asset makes the investor behave in an extremely risk-averse
manner compared to a stiuation where all assets are liquid. As such, the investor prefers
to take fewer risks in both his liquid and illiquid wealth, and thereby reduce his allocation
in both liquid risky asset and illiquid risky asset, in order to reduce the chance of being
in a scenario with zero liquid wealth.

We also consider a generalized version of the model, where we allow the investor to have
finite investment horizon. This does not change the main result, i.e distortion of invest-
ment in both risky liquid asset and risky illiquid asset allocation, but it does show us
how an investors behaves optimally with different investment horizons. Noticeably, the
investor will never hold any amount of the illiquid asset for dates closer to the terminal
date. This, of course, depends on the intensity of liquidity, i.e how often the illiquid asset
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is trade-able on average. With finite time horizon, our approach in estimating the value
function will be similar to the one used in the infinite horizon model. That is, we derive
the HJB equation and approximate the value function numerically from the HJB equa-
tion. However, with finite time horizon the numerical approximation becomes much more
complicated. We will study this closer later.

As explained, we will consider two theoretical models with illiquidity. one with infinite
time horizon and one with finite time horizon. Both illiquidity models we consider will be
a generalization of the Merton Model, and they will be compared to the Merton Model
thoroughly throughout the paper. Hence, the Merton Model will be used as a benchmark
to quantify the effect of illiquidity. We derive both a result for the behaviour of an investor
with infinite time horizon and finite time horizon with the Merton Model.

1.2 Our approach compared to other

Illiquidity and its effects has been studied thoroughly in the literature, with different
approaches and different underlying assumptions. We compare our approach to earlier
approaches in the literature. Our notion of liquidity is identical to the one studied in Ang
et al. 2014, and most of our theory with regards to liquidity will be based on this. But our
notion of liquidity is also conceptually different from other two common ways done earlier
in the literature. The first commonly studied concept is that liquidity is costly. That is,
every asset can be traded as if they were liquid, but each asset requires a premium paid
to be traded. depending on the size of the premium, some assets are more liquid than
others, i.e an asset with a very small premium is a liquid asset and an asset with a very
high premium is an illiquid asset (See Grossman and Laroque 1990, Vayanos 1998). This
notion of liquidity does not take into account the uncertain waiting time, which is the
case for many assets. Our results imply that the uncertain waiting time has an important
effect on the investor’s portfolio choice. The second type of liquidity studied is where the
illiquid asset can be traded at known dates (e.g., Kahl et al. 2003). In other words, the
investor knows when the asset will be trade-able again. The difference from our notion
of liquidity is that the investor can pick his portfolio and consumption choices with the
deterministic trading date in mind, i.e the investor can account for the illiquidity, where
as in our case the investor can not account for the illiquidity, due to the stochastic nature
we impose. As such, we would expect any effect of illiquidity to be magnified with our
setup compared to the one with deterministic trading dates.
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2 Discrete Time Framework

While the model we will use in our main analysis will be in continuous time, we will start
by deriving some results in discrete time. The reason for this is that a continuous time
framework can intuitively be viewed as the limit of a discrete time frame work, when the
length between periods go towards 0. As such, some of the results in continuous time can
easily be derived and motivated by simply taking the discrete time corresponding result
and let the length between periods go towards 0.

We consider an individual living over the the period [0;T ] for T > 0. We further as-
sume that the individual can rebalance his portfolio at any date ti = i ·∆t, where t0 = 0,
t1 = t0 + ∆t, t2 = t1 + ∆t,..., tN = tN−1 + ∆t = T . We assume there are n + 1 assets
in the economy, where n of the assets are risky and 1 of them is a risk-free asset. The
risk-free asset has a rate of return of rt, such that the return over a period [t, t + ∆t]
is rt∆t. Let T = {t0, t1, ..., tN−1} be the set consisting of date, where the investor can
rebalance his portfolio. Let P 0

t denote the price of the risk-free rate at time t, and let
Pt = (P 1

t , ..., P
n
t )T denote the vector of prices of the n risky assets at time t. Lastly let

Rt+∆t = (R1
t+∆t, ..., R

n
t+∆t)T be a vector of returns where each entrance corresponds to

each of the risky assets, such that Rit+∆t = P i
t+∆t−P

i
t

P it
. The return vector Rt+∆t is not

necessarily known at time t. Other than choosing how much to invest in the assets, the
investor also chooses how much to consume ct at any given period t, such that his con-
sumption over a period [t, t+ ∆t] is ct∆t.

With the above in mind, we will now try to specify the dynamics of the investors wealth
over time. The wealth of the investor at some date t ∈ T will be given by:

Wt =
n∑
i=0

Mt−∆tP
i
t

Where M i
t−∆t is the amount invested in asset i the previous period. This formula for

wealth at time t imposes a natural restriction on how much the investor can consume at
time t. We have:

ct∆t ≤
n∑
i=0

Mt−∆tP
i
t −

n∑
i=0

MtP
i
t =

n∑
i=0

(Mt−∆t −Mt)P it

That is, the investor can not consume more than what is left from his investment decision
at time t. As the investor is utility maximizing, he will consume everything not used for
investing. Thus, we have that the above equation is binding:

ct∆t =
n∑
i=0

(Mt−∆t −Mt)P it
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Using this, we can calculate:

Wt+∆t −Wt =
n∑
i=0

MtP
i
t+∆t −

n∑
i=0

Mt−∆tP
i
t

=
n∑
i=0

MtP
i
t+∆t −

n∑
i=0

Mt−∆tP
i
t −

n∑
i=0

MtP
i
t +

n∑
i=0

MtP
i
t

=
n∑
i=0

Mt(P it+∆t − P it )−
n∑
i=0

(Mt −Mt−∆t)P it

=
n∑
i=0

Mt(P it+∆t − P it )− ct∆t

Let θit = M i
tP

i
t denote the amount invested in asset i at time t, and further let θt =

(θ1
t , ..., θ

n
t )T . Rewriting the above in terms of returns, we get:

Wt+∆t −Wt = θ0
t rt∆t+ θTt Rt+∆t − ct∆t (1)

We will now decompose the returns into a stochastic term and a deterministic term, i.e
we have:

Rt+∆t = µt∆t+ σ
t
εt+∆t

√
∆t

Where µt is a vector of expected rates of return,εt+∆t is a stochastic variable representing
the shock to the economy from time t to time t+∆t with mean 0 and variance of 1, and σ

t

is the volatility matrix determining how the assets are affected by the shocks. Notice that
the shock, εt+∆t, is not known until t+ ∆t. Inserting this in the above wealth dynamics,
we get:

Wt+∆t −Wt = θ0
t rt∆t+ θTt Rt+∆t − ct∆t

= θ0
t rt∆t+ θTt (µt∆t+ σ

t
εt+∆t

√
∆t)− ct∆t

= (θ0
t rt + θTt µt − ct)∆t+ σ

t
εt+∆t

√
∆t

(2)

The above gives a nice, intuitive representation of the dynamics of the investors wealth
over time. It says that the change in the investors wealth over a time period ∆t is
equal to the average return he gets over that period from the risk-free asset and his risky
portfolio minus what he consumes. Lastly, there is also a stochastic term affecting the
investors change in wealth over the period to represent the idiosyncratic and risky nature
of investing. This equation can also easily be converted to continuous time, which we will
do later on when we introduce The Merton Model.

2.1 Behaviour of the investor

So far, we have only derived a budget constraint on the investors wealth without minding
how the investor behaves or what his preferences are. First, let us define πt = (π1

t , ..., π
n
t )T ,

where πit = θit
Wt−ct∆t for i = 1, .., n. Hence, πt is the vector of weights for the risky assets
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of the portfolio. We assume that the investor maximizes his life-time utility at any given
date, and that his lifetime utility in discrete time is given by:

U(ct0 , ..., ctN ) =
N∑
j=0

e−βtju(ctj )∆t

Where u(ctj ) is the utility gained from consumption ctj at time tj . The investor maximizes
the above, or more correctly„ and β is the subjective discount factor of the investor. he
maximizes the expectation of the above as seen from time t, since his future wealth is
unknown. The maximum obtained expected utility at time t = i∆t ∈ T is thus given by:

Ft = max
(ctj ,πtj )Nj=i

Et

 N∑
j=i

e−β(tj−t)u(ctj )∆t


The subscript on the expectation denotes that the expectation is taken conditional on
information available at time t, i.e we have that E[Xt+1|Xt] := Et[Xt+1]. The above is also
referred to as the indirect utility of the investor, as Ft is the highest attainable expected
life-time utility the investor can derive from his current wealth level. The careful reader
would notice that such a maximum does not always exist, and while that is true, for our
purpose, we will assume that such a maximum always exist3. The indirect utility will be
the main component in our derivations when introducing an illiquid asset in a continuous
time setting, and we will now derive an important simplification of the indirect utility.
consider Ft at some time t. We can thus rewrite:

Ft = max
(ctj ,πtj )Nj=i

Et

 N∑
j=i

e−β(tj−t)u(ctj )∆t


= max

(ctj ,πtj )Nj=i
Et

e−β(t−t)u(ct)∆t+
N∑

j=i+1
e−β(tj−t)u(ctj )∆t


= max

(ctj ,πtj )Nj=i
Et

u(ct)∆t+ e−β∆t
N∑

j=i+1
e−β(tj−(t−β∆t))u(ctj )∆t


= max

(ctj ,πtj )Nj=i
Et

Et+∆t

u(ct)∆t+ e−β∆t
N∑

j=i+1
e−β(tj−(t−β∆t))u(ctj )∆t


= max

(ctj ,πtj )Nj=i
Et

u(ct)∆t+ e−β∆tEt+∆t

 N∑
j=i+1

e−β(tj−(t−β∆t))u(ctj )∆t


= max

ct,πt
Et

u(ct)∆t+ e−β∆t max
(ctj ,πtj )Nj=i+1

Et+∆t

 N∑
j=i+1

e−β(tj−(t−β∆t))u(ctj )∆t


= max

ct,πt
Et
[
u(ct)∆t+ e−β∆tFt+∆t

]
3This assumption is not as restrictive as it might seem. We could easily do all the derivations with

supremum instead of a maximum. With this assumption, we do not need to go into any arguments with
supremum.
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First equality comes from the definition of indirect utility, second equality comes from
splitting the sum, third equality comes from adding 0 in power of e, fourth equality comes
from law of iterated expectations (that is for t < t′, we have Et[X] = Et[Et′ [X]]), fifth
equality comes from linearity of expectation and the fact that u(ct)∆t is not stochastic
at time t+ ∆t, sixth equality comes from splitting the maximization problem in two, and
finally the last equality comes from the definition of indirect utility. In total, we have:

Ft = max
ct,πt

Et
[
u(ct)∆t+ e−β∆tFt+∆t

]
= max

ct,πt

(
u(ct)∆t+ e−β∆tEt [Ft+∆t]

)
(3)

This is called the Bellman Equation. The Bellman equation is central in understanding
how an investor decides on an optimal investment and consumption scheme. The investors
decision at time t can be split in two: (1) The amount to consume and invest at time t, and
(2) the amount to invest and consume in all future periods. In other words, the investor
makes a utility maximizing decision on consumption and portfolio under the assumption
that he behaves optimally in all future periods.

3 The Merton Model

The merton model is the baseline model, which we will expand to account for liquidity.
In this section, we will briefly review the model. The model is a continuous-time model,
and as such, we will be in a continuous time setup. As mentioned earlier, a continuous
time model can be seen as the limit of a discrete-time model where the length between
periods go towards 0. Therefore, we can use many of the derivations we derived earlier
in discrete time by simply taking the limit. While this approach is quite heuristic and a
bit informal, it holds the advantage that we do not need to dive deep into the continuous
time arguments (although very interesting), such as sigma-algebra and measurability of
sets, and still make use of the intuition and precision of a continuous time model.

Consider an agent, which maximizes his expected lifetime utility of consumption with
the utility given by Constant Relative Risk Aversion (CRRA):

u(C) = C1−γ

1− γ (4)

Where C is consumption. We Assume that the investor has infinite time horizon. We
further assume constant investment opportunities, i.e the short-term interest rate r, ex-
pected rates of return µ, and the volatility matrix σ are all assumed to be constant. We
further assume that the volatility matrix is non-singular, i.e it is invertible. Thus, the
investors indirect utility will be given by:

F (W, t) = max
ct,πt

Et

[∫ ∞
t

e−β(s−t) c
1−γ
s

1− γ ds
]
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In order to get as general of a result as possible, we will first consider an investor with
finite time horizon, and later return to an investor with infinite time horizon. Thus, we
first consider an investor with the following indirect utility:

F (W, t) = max
ct,πt

Et

[∫ T

t
e−β(s−t) c

1−γ
s

1− γ ds
]

(5)

Taking the limit of (2) for ∆t → 0 and assuming that εt+∆t is multivariate standard
normally distributed, we get that the dynamics of wealth in continuous time is given by:

dWt = (θ0
t r + θTt µ− ct)dt+ σdzt

Where dzt is an n-dimensional standard brownian motion. The amount invested in the
risk-free asset is the total wealth minus what is invested in the risky asset:

θ0
t = Wt − θTt 1

where 1 is an n dimensional vector with 1 in each entrance. Now defining the following
n-dimensional process:

λ = σ−1(µ− r1)

m

µ = σλ+ r1

λ is called the vector of market prices of risk, as it measures the excess rate of return
per units of standard deviation for each asset. Inserting these results in the dynamics of
wealth, we get:

dWt = (Wtr − θTt 1r + θTt (σλ+ r1)− ct)dt+ σdzt

m

dWt = (Wtr + θTt σλ− ct)dt+ σdzt

And in terms of portfolio weights, πt = (π1
t , ..., π

n
t ), the above can be rewritten to:

dWt = (Wt[r + πTt σλ]− ct)dt+Wtπ
T
t σdzt (6)

, Where we have that πt is a vector of portfolio weights for the n risky assets, σ is an
n × n volatility matrix such that σ × σT is the variance covarince matrix and λ is the
market price of risk as described above. To find a solution to the investors problem, we
use a dynamic programming approach.
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3.1 Dynamic Programming Approach

In order to continue with the derivations of the Merton Model, we will briefly introduce
dynamic programming and the Hamilton-Jacobian-Bellman (HJB) equation in this sec-
tion. Notice that we will motivate the HJB equation in a general setting, and not under
the assumption of constant investment opportunities as we assumed earlier. The reason
for this is so the derivations can be used in the widest possible application. Thus, we
allow for rt, µt and σt to vary with time. Our main goal is to solve the investor’s problem
with regards to consumption strategy and investment strategy. To solve the investor’s
problem, that is maximizing his expected infinite continuous sum of utility, we will use an
approach called dynamic programming. This way of solving the investor’s maximization
problem in continuous-time was first done in Merton (1969, 1971). The approach requires
a so-called state variable Xt to exist (possibly multi-dimensional), such that this variable
follows a Markov process. The idea is then, that we assume the state variable captures
all the variation of the risk-free return, expected return of the assets and the volatility of
the assets. In other words, we can write:

rt = r(Xt), µt = µ(Xt, t), σ
t

= σ(Xt, t)

With this assumption, we can through the state variable derive a highly non-linear second-
order partial differential equation called the Hamilton-Jacobi-Bellman (HJB) equation,
and use the HJB equation (under some technical assumptions) to derive the optimal
investment strategies and indirect utility of the investor. We will now go through all the
derivations. For simplicity, assume that we are in a 1-dimensional setting, such that we
have 1 risky asset4. Let θt be the fraction of wealth invested in the risky asset. Thus, we
have that the multi-dimensional notation from earlier can be rewritten to:

σ
t

= σt ∈ R λt = µt − rt
σt

∈ R, πt = θt ∈ R, rt = 1− θt ∈ R

So we can rewrite the dynamics of wealth from (6) to:

dWt

Wt
= (r + (µ− rt)θt − ct)dt+ θtσdZ

1
t

where Z1
t is a 1-dimensional standard brownian motion. Now let the state variable Xt be

given by:
dXt

Xt
= m(Xt)dt+ v1dZ

1
t + v2dZ

2
t

Where Z2
t is also a standard brownian motion independent of Z1

t and v1, v2 ∈ R. From
the Bellman equation in (3), we have:

Ft = max
Ct,θt

[
u(ct)∆t+ e−β∆tEt[Ft+∆t]

]
4The derivations for mutli-dimensional setting is indentical to the 1-dimensional setting, but as our

analysis, when introducing liquidity, is in the 1-dimensional setting, we will try to stay consistent with
that.
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If we multiply with eβ∆t, we get:

Fte
β∆t = max

Ct,θt

[
eβ∆tu(ct)∆t+ Et[Ft+∆t]

]
Subtracting Ft(W,x) and deviding with ∆t on both sides, we get:

Ft ·
(
eβ∆t − 1

∆t

)
= max

Ct,θ

[
eβ∆tu(ct) + Et[Ft+∆t]− Ft

∆t

]
(7)

Letting ∆t→ 0, then by l’Hôspital’s rule we have:

lim
∆t→0

eβ∆t − 1
∆t = lim

∆t→0

βeβ∆t

1 = β

And furthermore when ∆t→ 0, then per the definition of the drift of a process, we have
that:

lim
∆t→0

Et[Ft+∆t]− Ft
∆t → drift(Ft)

This comes from the fact that Et[Ft+∆t] − Ft is the expected change in Ft over a small
periode ∆t. dividing this number with ∆t yields the expected change over 1 periode of
time, which is exactly the drift of the Ft process.
Using Ito’s Lemma on Ft = F (W,X, t), we see that:

drift(Ft) = ∂F

∂t
+FWW (rt+(µt−rt)θt−ct)+FXm(X)+1

2FWWW
2θ2
t σ

2
t+

1
2FXX(X2v2

1+X2v2
2)

+FWXWtXtθσtv1

, Where FW , FX , FWW and FWX denotes the derivatives, such that FW = ∂F
∂W and similar

for the others. Using these facts, and taking the limit of (7) when ∆t→ 0, we get:

βFt(W,X) = max
c,θ

[
u(c) + ∂F

∂t
+ FWW (rt + (µt − rt)θt − c) + FXm(X) + 1

2FWWW
2θ2σ2

t

+ 1
2FXX(X2v2

1 +X2v2
2) + FWXWtXtθσtv1

]
(8)

This is called the Hamilton-Jacobi-Bellman (HJB) equation corresponding to the above
stated optimization problem. The above maximization can be conveniently rewritten as:

βFt(W,X) = max
c,θ

[
LcFt(W,X) + LθFt(W,X) + ∂F

∂t
+ rWFW + FXm(X) + 1

2FXX(X2v2
1 +X2v2

2)
]

(9)

Where
LcFt(W,X) = max

c
[u(c)− cFW ]

LθFt(W,X) = max
θ

[
FWW (µ− rt)θ + 1

2FWWW
2θ2σ2 + FWXWtXtθσtv1

]
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Equivalently, one can derive the HJB equation for a multi-dimensional setup in exactly
the same way as the one-dimensional setup. The multi-dimensional HJB is given by:

βFt(W,X) = max
c,π

[
LcFt(W,X)+LπFt(W,X)+∂F

∂t
+rtWFW+FXm(X)+1

2X
2FXX(W,X)(vT1 v1+v2

2)
]

(10)
Where

LcFt(W,X) = max
c

[u(c)− cFW ]

LπFt(W,X) = max
π∈Rn

[
WFW (W,X)πTσ

t
λt + 1

2FWWW
2πTσ

t
σT
t
π + FWXWπ

Tσ
t
v

]
In total, we have derived a highly non-linear equation, but this equation in itself does not
appear to be the same as the investors maximization problem in (5), but the two are, in
fact, closely linked. It can be shown that if you can solve the above HJB equation and
find a feasible consumption scheme c∗ and an feasible investment portfolio π∗, then this
solution to the HJB equation is equal to the investors indirect utility, and the feasible
consumption and investment scheme for the HJB equation are optimal for the investor as
well. There are, of course, some technical assumptions, but we will not go into details with
them here. We will simply use the fact that if we can solve the HJB equation, and thereby
find a feasible consumption and investment strategy, then we have solved the investors
problem. This is called The Verification Theorem. For a precise statement and proof
of the theorem, see Øksendal (2003). We will continue below with the derivation of the
Merton Model, and apply the verification theorem directly.

3.2 Merton Model - Continued

With constant investment opportunities, the HJB equation can be rewritten to:

βF (W, t) = LcF (W, t) + LπF (W, t) + ∂F

∂t
(W, t) + rWFW (W, t)

where

LcF (W, t) = max
c

[u(c)− cFW (W, t)] (11)

LπF (W, t) = max
π

[
WFW (W, t)πTσλ+ 1

2FWW (W, t)W 2πTσσTπ

]
(12)

This comes from the fact that the volatility matrix, market price of risk and returns
are constant, which implies that the state variable will have no impact on them, and
thereby no impact on the value function. Hence, all derivatives with respect to the state
variable Xt will be 0. Since the utility function is concave, and FW (W, t) is a constant
in consumption, we can solve the maximization problem of (11) by taking the first order
condition. Taking the first order condition for (11) gives us:

u′(c) = FW (W, t) (13)
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This is the so-called envelope condition. Intuitively, the condition states that the utility
gained from consuming 1 extra unit of wealth today should equal the utility from investing
1 extra unit of wealth optimally, and consuming it optimally at a later date. If that is not
the case, then an investor can get a positive utility gain from reallocating wealth between
consumption and investment. For example, if u′(c) < FW (W, t), then the amount invested
should increase and consumption today should decrease. Let I denote the inverse of u′(c).
Taking the inverse of both side in the above equation, we get:

C(W, t) := ct = I(FW (Wt, t))

substituting this optimal consumption scheme in to (11), we get:

LcF (W, t) = u(I(FW (Wt, t)))− I(FW (Wt, t))FW (W, t)

Similarly, taking the FOC in (12), we get:

WFW (W, t)σλ+ FWW (W, t)W 2σσTπ = 0

m

π = − WFW (W, t)
FWW (W, t)W 2 (σT )−1λ

Inserting this optimal solution in to (12), we get:

LπF (W, t) =−WFW (W, t) WFW (W, t)
FWW (W, t)W 2λ

Tσ−1σλ+ 1
2FWW (W, t)W 2 WFW (W, t)

FWW (W, t)W 2λ
Tσ−1σσTπ

= −WFW (W, t) WFW (W, t)
FWW (W, t)W 2λ

Tλ+ 1
2WFW (W, t)λTσT WFW (W, t)

FWW (W, t)W 2 (σT )−1λ

= −WFW (W, t) WFW (W, t)
FWW (W, t)W 2 ||λ||

2+1
2WFW (W, t) WFW (W, t)

FWW (W, t)W 2 ||λ||
2

= −1
2WFW (W, t) WFW (W, t)

FWW (W, t)W 2 ||λ||
2

Where the second equality comes from Transpose and inverse rules, third equality comes
from definition of the Rn product norm and last equality comes from simplifying. Thus,
the HJB equation can be rewritten to:

βF (W, t) =u(I(FW (W, t)))− I(FW (W, t))FW (W, t)− 1
2WFW (W, t) WFW (W, t)

FWW (W, t)W 2 ||λ||
2+∂F

∂t
(W, t)

+ rWFW (W, t)
(14)

To simplify the HJB equation further, we calculate the marginal utility function from (4):

u′(c) = c−γ

m
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c = u′(c)−
1
γ

Thus the inverse of the above function evaluated at some point a ∈ R will be given by:

I(a) = a
− 1
γ

We can further calculate:

u(I(a)) = I(a)1−γ

1− γ = (a−
1
γ )1−γ

1− γ = a
1− 1

γ

1− γ

and thereby, we have:

u(I(a))− aI(a) = a
1− 1

γ

1− γ − aa
− 1
γ = a

1− 1
γ

1− γ − aa
− 1
γ = a

1− 1
γ

( 1
1− γ − 1

)

= a
1− 1

γ
γ

1− γ
With this the first two terms in (14) will be given by:

u(I(FW (Wt, t)))− I(FW (W, t))FW (W, t) = FW (W, t)1− 1
γ

γ

1− γ (15)

Now let k ∈ R. For a given level of wealth W and an optimal consumption plan c∗,
we will assume that if we multiply the wealth with some constant k, then they optimal
consumption plan for k ·W will be given by k · c∗. Intuitively, this means that a doubling
in wealth will result in a doubling in optimal consumption. The linear nature of this
assumption stems from how the wealth dynamics in (6) has been defined. In other words,
to offset an increase in W , a proportional decrease in consumption would be needed. Per
this assumption, we see from our definition of F (W, t) that:

F (kW, t) = max
ct,πt

Et

[∫ T

0
e−β(s−t) (kcs)1−γ

1− γ ds

]
= k1−γ max

ct,πt
Et

[∫ T

0
e−β(s−t) (cs)1−γ

1− γ ds

]
= k1−γF (W, t)

(16)
m

F (W, t) = 1
k1−γ F (kW, t)

Thus, letting k = 1
W , we get:

F (W, t) = W 1−γF (1, t) = W 1−γF (1, t)1− γ
1− γ = W 1−γH(t)γ

1− γ

where we define H(t)γ = (1− γ)F (1, t). Calculating the derivatives of F, we get:

FW = W−γH(t)γ , FWW = −γW−γ−1H(t)γ

∂F

∂t
(W, t) = W 1−γγH(t)γ−1H

′(t)
1− γ
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Inserting these derivatives in our HJB equation together with the equation for F (W, t)
and (15), we get:

β
W 1−γH(t)γ

1− γ =FW (W, t)1− 1
γ

γ

1− γ −
1
2WW−γH(t)γ WW−γH(t)γ

−γW−γ−1H(t)γW 2 ||λ||
2+W 1−γγH(t)γ−1H

′(t)
1− γ

+ rWW−γH(t)γ

m

0 =− βW
1−γH(t)γ

1− γ + (W−γH(t)γ)1− 1
γ

γ

1− γ −
1
2W

−γH(t)γ W−γH(t)γ

−W−γ−1H(t)γγ ||λ||
2

+W 1−γγH(t)γ−1H
′(t)

1− γ + rWW−γH(t)γ

m

0 =
(
− βH(t)γ

1− γ +H(t)γ−1 γ

1− γ + 1
2γH(t)γ ||λ||2+γH(t)γ−1H

′(t)
1− γ + rH(t)γ

)
W 1−γ

m

0 =
(( −β

1− γ + 1
2γ ||λ||

2+r
)
H(t) + γ

H ′(t)
1− γ + γ

1− γ

)
W 1−γH(t)γ−1

We see that the above equation has to hold for any t ∈ [0, T ) and any W ≥ 0. If we make
a reasonable assumption that ∃t ∈ [0, T ) : H(t) ≥ 0, then the only way the above can be
0 is if: ( −β

1− γ + 1
2γ ||λ||

2+r
)
H(t) + γ

H ′(t)
1− γ + γ

1− γ = 0 (17)

m

H ′(t) = A ·H(t)− 1 (18)

where A = β+r(γ−1)
γ + 1

2
γ−1
γ2 ||λ||2. This is a well known Ordinary Differential Equation

with explicit solution. The solution to the given ODE is given by:

H(t) = 1
A

(
1− e−A(T−t)

)
This can quickly be verified by calculating:

H ′(t) = −e−A(T−t) = 1− e−A(T−t) − 1 = A
1
A

(1− e−A(T−t))− 1 = AH(t)− 1

Hence, we have derived a formal solution to the investors initial optimization problem.
Inserting the solution in the optimal portfolio derived from earlier, we can further calculate
the explicit composition of the portfolio:

π∗ = − FW (W, t)
FWW (W, t)W (σT )−1λ = − W−γH(t)γ

−γW−γ−1H(t)γW (σT )−1λ = 1
γ

(σT )−1λ (19)

Notice that in order to get the solution for an investor with infinite time horizon, we can
simply let T →∞, which yields:

H(t) = 1
A

In conclusion, we have derived a theoretical expression for the value of function of the
investor, and his associated optimal investment scheme.
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3.3 Merton model with Two Risky Assets

In this section we will go through the results for the Merton model with two risky assets,
where we assume a set of specific parameter values. We will use the results from this
section to compare with the case where one of the assets is illiquid, so we can see what
effect illiquidity has on the investors optimal decision. Thus, assume we have two risky
asset and one risk-free asset. We assume, for simplicity, that the two asset are uncorrelated.
Assume the following parameter values:

σ =

σ1 0
0 σ2

 =

0.15 0
0 0.15

 , µ =

µ1

µ2

 =

0.12
0.12


γ = 6, β = 0.1, r = 0.04, ρ = 0

The above parameter values are the same we will be using later on, when we introduce
illiquidity. Inserting the above values in (19), we get:

π∗ = 1
6

0.15 0
0 0.15

−10.15 0
0 0.15

−10.12
0.12

−
0.04

0.04

 =

0.5926
0.5926


With the given parameters, the optimal portfolio weights are given by roughly 0.6 in the
Merton two asset case.

4 Model with Illiquid Asset and Infinite Time Horizon

We will, in this section ,go through a similar asset pricing model as the Merton Model
with two risky assets, but instead of assuming both assets can be traded continuously, we
will assume that one of the assets is an illiquid asset. We define an illiquid asset as an
asset which can not be traded on a continuous basis, and the next day, which the asset can
be traded again, is unknown and random. We further impose that the investor can only
meet his obligations through his liquid wealth, that is everything of value he has except
the illiquid wealth.

There are three assets in the economy, one risk-free bond B, a liquid risky asset S and an
illiquid risky asset P. The dynamics of the risk-free bond is given by:

dBt = rBtdt (20)

The price of the liquid risky asset follows a geometric Brownian motion with drift µ and
volatility σ:

dSt
St

= µdt+ σdZ1
t (21)
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Where Z1
t is a standard Brownian motion. The illiquid risky asset also follows a geometric

Brownian motion with drift ν and volatility φ. Furthermore, we allow for correlation
between the risky liquid asset and the illiquid risky asset through a correlation parameter
ρ:

dPt
Pt

= νdt+ φρdZ1
t + φ

√
1− ρ2dZ2

t (22)

Where Z2
t is a standard Brownian motion independent of Z1

t . We differentiate the illiquid
risky asset P from the others by allowing it only to be traded at a stochastic time τ . The
way we model the timing of trading date τ is through a poisson process Nt with intensity
λ. The parameter λ captures the severity of illiquid asset. The expected time before the
illiquid asset can be traded again is given by 1/λ. Thus, the investor can freely trade the
illiquid asset at price Pt when the Poisson process hits, but not at any other time period.

We denote the investor’s liquid wealth at any time t with Wt, and his illiquid wealth
with Xt. Since the only liquid assets he can invest in is the risk-free bond and the illiquid
risky asset, then the dynamics of his liquid wealth will be composed of those two minus
what he consumes over an instant. Let θt denote the amount the investor has invested in
the risky liquid asset at time t and let ct denote the fraction of liquid wealth consumed.
Thus, we have:

dWt

Wt
= dBt

Bt
(1− θt) + dSt

St
θt −

CT
Wt

dt = rdt(1− θt) + (µdt+ σdZ1
t )θt − ctdt (23)

rearranging the above, we get:

dWt

Wt
= (r + (µ− r)θt − ct)dt+ θtσdZ

1
t (24)

Similarly, the dynamics of the illiquid wealth, Xt, is simply given by the dynamics of the
what is invested in the risky illiquid asset:

dXt

Xt
= dPt

Pt
= νdt+ φρdZ1

t + φ
√

1− ρ2dZ2
t (25)

To impose transfer of wealth from liquid to illiquid and vice versa, the investor can transfer
an amount dIτ from his liquid wealth to illiquid, when the Poisson process hits. Thus,
the above two types of wealth can be rewritten to:

dWt

Wt
= (r + (µ− r)θt − ct)dt+ θtσdZ

1
t −

dIt
Wt

(26)

dXt

Xt
= m(Xt)dt+ v1dZ

1
t + v2dZ

2
t + dIt

Xt
(27)

Where dIt = 0 except for when t = τ . These are the two processes we will primarily work
with, and later on when we derive a HJB equation, we will use the illiquid wealth as a
state variable. We will further assume that there is some incentive to invest in the illiquid
asset, i.e we assume that:

ν − r
φ
≥ µ− r

σ
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So the illiquid asset has at least as high of a Sharpe ratio as the liquid risky asset.

As in the Merton model, we assume that the investor is CRRA utility maximizer, and that
he maximizes the expected utility with infinite time horizon. Let Ct denote the investors
consumption at time t. Thus, the investors indirect utility is given by:

F (W,X, t) = max
Ct,πt

Et

[∫ ∞
t

e−β(s−t) c
1−γ
s

1− γ ds
]

(28)

Where β is the subjective discount factor and γ is the relative risk-aversion. We will,
interchangeably, also call the indirect utility F for the value function. We assume that
γ > 1. For simplicity, we assume that the investor is standing at time t = 0. Hence, we
can drop the ”t” from our notation, and reduce the above to:

F (W,X) = max
ct,πt

Et

[∫ ∞
0

e−β·s
c1−γ
s

1− γ ds
]

(29)

The assumption of infinite time horizon is conservative, as any effect of illiquidity will be
much greater with finite time horizon. The intuition here is, that an investor with finite
time horizon would be less willing to buy illiquid assets, as the poisson process might not
necessarily hit during his lifetime, where an investor with infinite time horizon would care
less about whether or not the Poisson process hits before a specified time period, but if it
hits at some point.

4.1 Solving the Investor’s Problem

As mentioned earlier, the investor performs the maximization:

F (W,X) = max
ct,πt

Et

[∫ ∞
0

e−β·s
c1−γ
s

1− γ ds
]

(30)

Subject to the dynamics of liquid and illiquid wealth given in (26) and (27) respectively.
Identical to the derivations done in (16), it can be shown that with illiquid wealth as well
F is homogeneous of degree 1− γ. Thus, we can rewrite:

F (W,X, t) = (W +X)1−γH(x) (31)

Where x = X
W+X (the fraction of total wealh in illiquid assets), and H(x) = F (1, x). The

rewriting of the indirect utility function is key in our simulation of the optimum, as we
now only need to consider a function H with one unknown variable x, as oppose to a
function F with two unknowns W and X.

When the Poisson process hits, the investor can rebalance his portfolio, such that the
value function will potentially jump discretely. Denote this new value function as F ∗. At
the arrival of the Poisson process, we characterize the new value function F ∗ as:

F ∗(Wt, Xt) = max
I∈[−Xt,Wt)

F (Wt − I,Xt + I) (32)
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We notice that F ∗ ≥ F , since we have that:

F ∗(Wt, Xt) = max
I∈[−Xt,Wt)

F (Wt − I,Xt + I) ≥ F (Wt, Xt) (33)

Intuitively, the investor rebalances optimally, and if he can not get a higher value function
by changing consumption or his portfolio, he will simply keep the same consumption and
portfolio. In other words, he will only rebalance if he can get a higher value function.
Thus, the total jump at time τ will be given by F ∗ − F . We can now derive the first
import result of this paper.

Proposition 1
Assume that the investor’s problem is given by:

F (W,X) = max
ct,πt

Et

[∫ ∞
0

e−β·s
c1−γ
s

1− γ ds
]

(34)

Furthermore, assume that the investor must satisfy the budget constraints (26) and (27).
Then the function H(x) is characterized by the following:

0 = max
c,θ

[
1

1− γ c
1−γ(1− x)1−γ − βH(x) + λ(H∗ −H(x)) +H(x)A(x, c, θ) +H ′(x)B(x, c, θ)

+ 1
2H
′′(x)C(x, c, θ)

]

Where H∗ = maxxH(x), and we have that:

A(x, c, θ) = (1−γ)
(
r + (1− x) ([(µ− r)θ]− c) + x(ν − r)− 1

2γ
(
σ2θ2(1− x)2 +φ2x2 + 2x(1− x)φθσρ

))

B(x, c, θ) = x(1− x)
(
− ([r + (µ− r)θ]− c) + γ(1− x)σ2θ2 + ν + γxφ2 + γ(2x− 1)φθσρ

)

C(x, c, θ) = x2(1− x)2
(
σ2θ2 + φ2 − 2φθσρ

)
Proof:
Wé can prove the statement by using the theory for the HJB equation derived earlier.
Writing the HJB equation associated with F = F (W,X, t), as derived in the dynamic
programming section and expressed in (8), we get:

βF (W,X, t) = max
c,θ

[
1

1− γ (cW )1−γ + λ(F ∗ − F ) + FW (W,X, t)W ([r + (µ− r)θ]− c)

+ 1
2FWW (W,X, t)W 2σ2θ2 + FX(W,X, t)Xν + 1

2FXX(W,X, t)(φ2X2ρ2

+
√

1− ρ2
2
X2φ2) + FWX(W,X, t)WXφθσρ

]

Notice that there is a slight difference between how the HJB is formulated in (8) and the
above equation. First, in the equation above, we have that ∂F

∂t = 0. The reason for this,
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is that we have an investor with infinite time horizon. With infinite time horizon, the
value function does not change if the start period is changed, i.e everything else equal, it
does not matter if the investor starts at time t or t′, his optimal utility will be the same
with infinite time horizon, which in turn means that ∂F

∂t = 0. Second, we have a term
λ(F ∗ − F ) in the above equation, which is not in (8). This comes from the fact that the
HJB equation consists of two parts. It consists of the utility gained today, and the drift of
the value function, i.e the expected value gained over a period. λ(F ∗−F ) is the expected
amount that will be gained over a period from the possibility of rebalancing the portfolio,
and therefore it is included in the drift term of the HJB equation.

Since we have that F (W,X) = (W + X)1−γH( X
W+X ), we can calculate all the associ-

ated derivatives in the above HJB equation. A standard verification argument gets the
desired result, i.e calculating all the associated derivative, and inserting them in the HJB
equation, we can simplify, isolate and reduce the HJB equation until we get to the desired
form. Thus, we calculate:

FW (W,X, t) = (1− γ)(W +X)−γH( X

W +X
)− (W +X)1−γH ′( X

W +X
) X

(W +X)2

= (1− γ)(W +X)−γH( X

W +X
)−H ′( X

W +X
) X

(W +X)1+γ

FWW (W,X, t) =− (1− γ)γ(W +X)−γ−1H( X

W +X
)− (1− γ)(W +X)−γH ′( X

W +X
) X

(W +X)2

+H ′′( X

W +X
) X

(W +X)2
X

(W +X)1+γ + (1 + γ)H ′( X

W +X
) X

(W +X)2+γ

=− (1− γ)γ(W +X)−γ−1H( X

W +X
) +H ′′( X

W +X
) X2

(W +X)3+γ

+ 2γH ′( X

W +X
) X

(W +X)2+γ

FX(W,X, t) =(1− γ)(W +X)−γH( X

W +X
) + (W +X)1−γH ′( X

W +X
)
( 1
W +X

− X

(W +X)2

)
=(1− γ)(W +X)−γH( X

W +X
) +H ′( X

W +X
)
( 1

(W +X)γ −
X

(W +X)1+γ

)
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FXX =− (1− γ)γ(W +X)−γ−1H( X

W +X
) + (1− γ)(W +X)−γH ′( X

W +X
)
( 1
W +X

− X

(W +X)2

)
+
( 1
W +X

− X

(W +X)2

)
H ′′( X

W +X
)
( 1

(W +X)γ −
X

(W +X)1+γ

)
+H ′( X

W +X
)
( −γ

(W +X)γ+1 −
1

(W +X)1+γ + (1 + γ) X

(W +X)2+γ

)
=− (1− γ)γ(W +X)−γ−1H( X

W +X
) + 2H ′( X

W +X
)
(
−γ 1

(W +X)1+γ + γ
X

(W +X)2+γ

)
+
( 1
W +X

− X

(W +X)2

)
H ′′( X

W +X
)
( 1

(W +X)γ −
X

(W +X)1+γ

)

FWX =− (1− γ)γ(W +X)−γ−1H( X

W +X
) + (1− γ)(W +X)−γH ′( X

W +X
)
( 1
W +X

− X

(W +X)2

)
−H ′′( X

W +X
)
( 1
W +X

− X

(W +X)2

)
X

(W +X)1+γ

−H ′( X

W +X
)
( 1

(W +X)1+γ − (1 + γ) X

(W +X)2+γ

)
=− (1− γ)γ(W +X)−γH( X

W +X
)− γ(W +X)−γH ′( X

W +X
)
( 1
W +X

− 2 X

(W +X)2

)
−H ′′( X

W +X
)
( 1
W +X

− X

(W +X)2

)
X

(W +X)1+γ

With the above, we can calculate the following expressions, which the HJB equation
consists of:

FW (W,X, t)W ([r + (µ− r)θ]− c)

=
(

(1− γ)(W +X)−γH( X

W +X
)−H ′( X

W +X
) X

(W +X)1+γ

)
W ([r + (µ− r)θ]− c)

= (1− γ)(W +X)−γH( X

W +X
)W ([r + (µ− r)θ]− c)

−H ′( X

W +X
) X

(W +X)1+γ (W [r + (µ− r)θ]− c)

1
2FWW (W,X, t)W 2σ2θ2 = 1

2

(
− (1− γ)γ(W +X)−γ−1H( X

W +X
) +H ′′( X

W +X
) X2

(W +X)3+γ

+ 2γH ′( X

W +X
) X

(W +X)2+γ

)
W 2σ2θ2

FX(W,X, t)Xν = (1−γ)(W+X)−γH( X

W +X
)Xν+(W+X)1−γH ′( X

W +X
)
( 1
W +X

− X

(W +X)2

)
Xν
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1
2FXX(W,X, t)(φ2X2ρ2+

√
1− ρ2

2
X2φ2) = 1

2FXX(W,X, t)X2φ2

=− 1
2(1− γ)γ(W +X)−γ−1H( X

W +X
)X2φ2

+H ′( X

W +X
)
(
−γ 1

(W +X)1+γ + γ
X

(W +X)2+γ

)
X2φ2

+ 1
2

( 1
W +X

− X

(W +X)2

)
H ′′( X

W +X
)

·
( 1

(W +X)γ −
X

(W +X)1+γ

)
X2φ2

Since we have an investor with infinite time horizon, it holds that ∂F
∂t = 0.

Inserting all the above results in the HJB equation, we get:

0 = max
c,θ

[
1

1− γ (cW )1−γ + λ(F ∗ − F )− βF

+
(

(1− γ)(W +X)−γH( X

W +X
)−H ′( X

W +X
) X

(W +X)1+γ

)
W ([r + (µ− r)θ]− c)

+ 1
2

(
−(1− γ)γ(W +X)−γ−1H( X

W +X
) +H ′′( X

W +X
) X2

(W +X)3+γ + 2γH ′( X

W +X
) X

(W +X)2+γ

)

·W 2σ2θ2 +
(

(1− γ)(W +X)−γH( X

W +X
) +H ′( X

W +X
)
( 1

(W +X)γ −
X

(W +X)1+γ

))
Xν

− 1
2(1− γ)γ(W +X)−γ−1H( X

W +X
)X2φ2 +H ′( X

W +X
)
(
−γ 1

(W +X)1+γ + γ
X

(W +X)2+γ

)
X2φ2

+ 1
2

( 1
W +X

− X

(W +X)2

)
H ′′( X

W +X
)
( 1

(W +X)γ −
X

(W +X)1+γ

)
X2φ2

+
(
− (1− γ)γ(W +X)−γ−1H( X

W +X
) +H ′( X

W +X
)
( −γ

(W +X)1+γ + 2γ X

(W +X)2+γ

)
−H ′′( X

W +X
)
( 1
W +X

− X

(W +X)2

)
X

(W +X)1+γ

)
WXφθσρ

]
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= max
c,θ

[
1

1− γ (cW )1−γ + λ(F ∗ − F ) + ∂F

∂t
− βF

+ (1− γ)(W +X)−γH( X

W +X
)
(
W ([r + (µ− r)θ]− c)− 1

2W
2σ2θ2γ(W +X)−1 +Xν

− 1
2X

2φ2γ(W +X)−1 − (W +X)−1WXγφθσρ

)

+H ′( X

W +X
)
(

X

(W +X)1+γW ([r + (µ− r)θ]− c) + γ
X

(W +X)2+γW
2σ2θ2

+
( 1

(W +X)γ −
X

(W +X)1+γ

)
Xν +

(
−γ 1

(W +X)1+γ + γ
X

(W +X)2+γ

)
X2φ2

+
( −γ

(W +X)1+γ + 2γ X

(W +X)2+γ

)
WXφθσρ

)

+H ′′( X

W +X
)
(

1
2

X2

(W +X)3+γW
2σ2θ2 + 1

2

( 1
W +X

− X

(W +X)2

)( 1
(W +X)γ −

X

(W +X)1+γ

)

·X2φ2 −
( 1
W +X

− X

(W +X)2

)
X

(W +X)1+γWXφθσρ

)]

= max
c,θ

[
1

1− γ (cW )1−γ + λ(F ∗ − F ) + ∂F

∂t
− βF + (1− γ)H( X

W +X
) W

W +X
([r + (µ− r)θ]− c)

− 1
2W

2σ2θ2γ(W +X)−2 + (W +X)−1Xν − 1
2X

2φ2γ(W +X)−2 − (W +X)−2WXγφθσρ

+H ′( X

W +X
)
(

X

(W +X)2W ([r + (µ− r)θ]− c) + γ
X

(W +X)3W
2σ2θ2

+
(

1− X

(W +X)1

)
X

W +X
ν +

(
−γ 1

(W +X)1 + γ
X

(W +X)2

)
X2

W +X
φ2

+
( −γ

(W +X)1 + 2γ X

(W +X)2

)
WX

W +X
φθσρ

)
+H ′′( X

W +X
)
(

1
2

X2

(W +X)4W
2σ2θ2

+ 1
2

( 1
W +X

− X

(W +X)2

)(
1− X

(W +X)1

)
X2

W +X
φ2 −

( 1
W +X

− X

(W +X)2

)
· X

(W +X)2WXφθσρ

)]

Now let x = X
W+X . We notice that 1 − x = W+X

W+X −
X

W+X = W
W+X . We can thus
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rewrite the above to:

0 = max
c,θ

[
1

1− γ c
1−γ(1− x)1−γ − βH(x) + λ(H∗ −H(x))

+ (1− γ)H( X

W +X
) ((1− x) ([r + (µ− r)θ]− c)

−1
2σ

2θ2γ(1− x)2 + xν − 1
2γφ

2x2 − x(1− x)γφθσρ
)

+H ′( X

W +X
)
(
− x(1− x) ([r + (µ− r)θ]− c) + γx(1− x)2σ2θ2

+ x(1− x)ν + γx2(1− x)φ2 + γx(1− x)(2x− 1)φθσρ
)

+H ′′( X

W +X
)
(

1
2x

2(1− x)2σ2θ2 + 1
2x

2(1− x)2φ2 − x2(1− x)2φθσρ

)]

rearranging and simplifying the above yields:

0 = max
c,θ

[
1

1− γ c
1−γ(1− x)1−γ − βH(x) + λ(H∗ −H(x)) +H(x)A(x, c, θ) +H ′(x)B(x, c, θ)

+ 1
2H
′′(x)C(x, c, θ)

]

Where we have that:

A(x, c, θ) = (1− γ)
(
r + (1− x) ([(µ− r)θ]− c) + x(ν − r)− 1

2γ(σ2θ2(1− x)2 + φ2x2

+ 2x(1− x)φθσρ)
)

B(x, c, θ) = x(1− x)
(
− ([r + (µ− r)θ]− c) + γ(1− x)σ2θ2 + ν + γxφ2 + γ(2x− 1)φθσρ

)

C(x, c, θ) = x2(1− x)2
(
σ2θ2 + φ2 − 2φθσρ

)
This concludes the proof. �

4.2 Numerical Estimation of the HJB Equation

As mentioned earlier, we wish to estimate the HJB equation numerically. The reason is
that it is very hard to get an explicit solution to a partial differential equation such as
the HJB equation (although not impossible). The reason why it is so hard, is that you
basically have to guess the solution in order to solve it. Although one can come up with
a very qualified guess, the exact solution can be very far off. We will now describe how
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we solve the HJB equation numerically. From proposition 1, we have that:

0 = max
c,θ

[
1

1− γ c
1−γ(1− x)1−γ − βH(x) + λ(H∗ −H(x))

+H(x)(1− γ)
(
r + (1− x) ([(µ− r)θ]− c) + x(ν − r)− 1

2γ
(
σ2θ2(1− x)2 +φ2x2 + 2x(1− x)φθσρ

))
+H ′(x)x(1− x)

(
− ([r + (µ− r)θ]− c) + γ(1− x)σ2θ2 + ν + γxφ2 + γ(2x− 1)φθσρ

)

+ 1
2H
′′(x)x2(1− x)2

(
σ2θ2 + φ2 − 2φθσρ

)]

To solve the HJB equation numerically, we follow the method outlined in Kushner and
Dupuis (1992). First, we use a discrete state space for the input variables with a discrete
step of h = 1/100. Hence we have:

x, c, θ ∈
{

0, 1
100 ,

2
100 ,

3
100 , ..., 1

}
Now let xn denote the value of x at grid point n, such that x1 = 0, x2 = 1

100 , xn =
n

100 ..., x100 = 1. We separate the positive and negative part of the coefficient for the first
derivative in order to ensure that the implied probabilities we get are positive5. Thus, we
rewrite the above to:

0 = max
c,θ

[
1

1− γ c
1−γ(1− x)1−γ − βH(x) + λ(H∗ −H(x))

+H(x)(1− γ)
(
r + (1− x) ([(µ− r)θ]− c) + x(ν − r)− 1

2γ
(
σ2θ2(1− x)2 +φ2x2 + 2x(1− x)φθσρ

))
+H ′+(x)x(1− x)

(
c+ γ(1− x)σ2θ2 + ν + γxφ2

)

+H ′−(x)x(1− x)
(
− ([r + (µ− r)θ) + γ(2x− 1)φθσρ

)

+ 1
2H
′′(x)x2(1− x)2

(
σ2θ2 + φ2 − 2φθσρ

)]

Notice, the above is under the assumption that µ ≥ r, i.e the expected return of the
liquid risky asset is greater than the risk-free asset. With a discrete state space and with
h = 1/100, we use various differencing methods to estimate the derivatives. We use the
following approximations:

H ′+(x) = Hn+1 −Hn

h

H ′−(x) = Hn −Hn−1
h

H ′′(x) = Hn+1 +Hn−1 − 2Hn

h2
5This is mainly done to ensure stability when the algorithm converges, and it does not have any large

implication on the actual converged result

26 of 56



The first two can be derived from standard differentiation theory. The third one comes
from Taylor expanding H(x+ h) and H(x− h) around x, and solving two equations with
two unknowns for H ′′(x). Inserting these estimated values in the HJB equation, and
isolating for Hn, we get:

0 = max
c,θ

[
1

1− γ c
1−γ(1− x)1−γ − βH(x) + λ(H∗ −H(x))

+Hn(1− γ)
(
r + (1− x) ([(µ− r)θ]− c) + x(ν − r)− 1

2γ
(
σ2θ2(1− x)2

+φ2x2 + 2x(1− x)φθσρ
))

+ Hn+1 −Hn

h
x(1− x)

(
c+ γ(1− x)σ2θ2 + ν + γxφ2

)

+ Hn −Hn−1
h

x(1− x)
(
− ([r + (µ− r)θ]) + γ(2x− 1)φθσρ

)

+ 1
2
Hn+1 +Hn−1 − 2Hn

h2 x2(1− x)2
(
σ2θ2 + φ2 − 2φθσρ

)]

m

0 = max
c,θ

[
h

1− γ c
1−γ(1− x)1−γ + hλH∗

+ h ·Hn

(
− λ− β + (1− γ)

(
r + (1− x) ([(µ− r)θ]− c) + x(ν − r)

− 1
2γ
(
σ2θ2(1− x)2 +φ2x2 + 2x(1− x)φθσρ

)))

+ (Hn+1 −Hn)x(1− x)
(
c+ γ(1− x)σ2θ2 + ν + γxφ2

)

+ (Hn −Hn−1)x(1− x)
(
− ([r + (µ− r)θ]) + γ(2x− 1)φθσρ

)

+ 1
2
Hn+1 +Hn−1 − 2Hn

h
x2(1− x)2

(
σ2θ2 + φ2 − 2φθσρ

)]
m
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0 = max
c,θ

[
h2

1− γ c
1−γ(1− x)1−γ + h2λH∗

+ h2 ·Hn

(
− λ− β + (1− γ)

(
r + (1− x) ([(µ− r)θ]− c) + x(ν − r)

− 1
2γ
(
σ2θ2(1− x)2 +φ2x2 + 2x(1− x)φθσρ

)))

+ (Hn+1 −Hn)hx(1− x)
(
c+ γ(1− x)σ2θ2 + ν + γxφ2

)

+ (Hn −Hn−1)hx(1− x)
(
− ([r + (µ− r)θ]) + γ(2x− 1)φθσρ

)

+ 1
2(Hn+1 +Hn−1 − 2Hn)x2(1− x)2

(
σ2θ2 + φ2 − 2φθσρ

)]
We now define the following constants:

A =
(
− λ− β + (1− γ)

(
r + (1− x) ([(µ− r)θ]− c) + x(ν − r)

− 1
2γ
(
σ2θ2(1− x)2 +φ2x2 + 2x(1− x)φθσρ

)))

B =
(
c+ γ(1− x)σ2θ2 + ν + γxφ2

)

C =
(
− ([r + (µ− r)θ]) + γ(2x− 1)φθσρ

)

D =
(
σ2θ2 + φ2 − 2φθσρ

)

Rewriting the HJB equation with these constants, we get:

0 = max
c,θ

[
h2

1− γ c
1−γ(1− x)1−γ + h2λH∗ + h2 ·Hn ·A+ (Hn+1 −Hn)hB + (Hn −Hn−1)hC

+ 1
2(Hn+1 +Hn−1 − 2Hn)D

]

m

0 = max
c,θ

[
h2

1− γ c
1−γ(1− x)1−γ + h2λH∗ +Hn · (h2 ·A− hB + hC −D) +Hn+1hB −Hn−1hC

+ 1
2(Hn+1 +Hn−1)D

]
m

−Hn · (h2 ·A− hB + hC −D) = max
c,θ

[
h2

1− γ c
1−γ(1− x)1−γ + h2λH∗ +Hn+1hB −Hn−1hC

+ 1
2(Hn+1 +Hn−1)D

]
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m

−Hn · (h2 ·A− hB + hC −D) = max
c,θ

[
h2

1− γ c
1−γ(1− x)1−γ + h2λH∗ +Hn+1(hB + 1

2D)

+Hn−1(−hC + 1
2D)

]
m

Hn = max
c,θ

[
h2

−h2 ·A+ hB − hC +D

( 1
1− γ c

1−γ(1− x)1−γ + λH∗
)

+ 1
−h2 ·A+ hB − hC +D

Hn+1(hB + 1
2D)

+ 1
−h2 ·A+ hB − hC +D

Hn−1(−hC + 1
2D)

]
Once again, define the following variables to make future calculations more simple:

C1 := B − C = x(1− x)
(
c+ γ(1− x)σ2θ2 + ν + γxφ2 + ([r + (µ− r)θ])− γ(2x− 1)φθσρ

)

C2 := −A =
(
λ+ β − (1− γ)

(
r + (1− x) ([(µ− r)θ]− c) + x(ν − r)

− 1
2γ
(
σ2θ2(1− x)2 +φ2x2 + 2x(1− x)φθσρ

)))

C3 := D = x2(1− x)2
(
σ2θ2 + φ2 − 2φθσρ

)

Inserting the above definitions in the derived expression for Hn, we get:

Hn = max
c,θ

[
h2

h2 · C2 + hC1 + C3

( 1
1− γ c

1−γ(1− x)1−γ + λH∗
)

+ 1
h2 · C2 + hC1 + C3

Hn+1

(
hx(1− x)(c+ γ(1− x)σ2θ2 + ν + γxφ2)

+ 1
2x

2(1− x)2(σ2θ2 + φ2 − 2φθσρ)
)

+ 1
h2 · C2 + hC1 + C3

Hn−1

(
− hx(1− x)(− ([r + (µ− r)θ]) + γ(2x− 1)φθσρ)

+ 1
2x

2(1− x)2(σ2θ2 + φ2 − 2φθσρ)
)]

Now define:

∆tn(c, θ) := h2

h2 · C2 + hC1 + C3

pun(c, θ) :=
hx(1− x)(c+ γ(1− x)σ2θ2 + ν + γxφ2) + 1

2x
2(1− x)2(σ2θ2 + φ2 − 2φθσρ)

h2 ∆tn(c, θ)

pdn(c, θ) =
−hx(1− x)(− ([r + (µ− r)θ]) + γ(2x− 1)φθσρ) + 1

2x
2(1− x)2(σ2θ2 + φ2 − 2φθσρ)

h2 ∆tn(c, θ)
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Inserting these values in the expression for Hn, we get:

Hn = max
c,θ

[
∆tn(c, θ)

( 1
1− γ c

1−γ(1− x)1−γ + λH∗
)

+Hn+1p
u
n(c, θ) +Hn−1p

d
n(c, θ)

]
(35)

The numerical algorithm iterates over steps i, where we start at step i = 0. At i = 0,
initiate the algorithm with an initial guess of H0, such that we guess H0

n for each n ∈{
0, 1

100 ,
2

100 ,
3

100 , ..., 1
}
.For each iteration step i, do the following:

1. compute the optimal rebalancing utility:

H∗ = max
n

H i
n

2. GivenH i, compute the optimal policies for step i+1 at each grid point n ∈
{

0, 1
100 ,

2
100 ,

3
100 , ..., 1

}
based on:

ci+1
n = arg max

c

[
∆tn(c, θ)

( 1
1− γ c

1−γ(1− x)1−γ + λH∗
)

+H i
n+1p

u
n(c, θ) +H i

n−1p
d
n(c, θ)

]

θi+1
n = arg max

c

[
∆tn(c, θ)

( 1
1− γ c

1−γ(1− x)1−γ + λH∗
)

+H i
n+1p

u
n(c, θ) +H i

n−1p
d
n(c, θ)

]

3. Given consumption and fraction invested in liquid risky asset for step i + 1, ci+1
n

and θi+1
n for each n, we can now compute H i+1 based on:

H i+1
n = ∆tn(c, θ)

( 1
1− γ c

1−γ(1− x)1−γ + λH∗
)

+H i
n+1p

u
n(c, θ) +H i

n−1p
d
n(c, θ)

4. Repeat step 1-3 until H i converges.

5. You should now have a function H i over the grid with an associated maximum x∗.

Notice, that the algorithm is not feasible for end-points of the grid, that is n = 0 and
n = 100. We will now see how we can handle this case.

4.3 Handling the end-points of the grid

The careful reader would notice that our algorithm is not feasible for when n = 0 and
n = 100. The reason for this, is that in step 3, we interpolate between Hn−1 and Hn+1. So
if n = 0 or n = 100, then we would be outside of the grid. To handle this issue, we assume
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that the value function is linear at the end points. With this, we can use the following
approximations of the relevant derivatives for when n = 0:

H ′+(x) = Hn+1 −Hn

h

H ′−(x) = Hn+1 −Hn

h

H ′′(x) = 0

And for n = 100, we get:
H ′+(x) = Hn −Hn−1

h

H ′−(x) = Hn −Hn−1
h

H ′′(x) = 0

Thus, for n = 0, The HJB equation can be rewritten to:

0 = max
c,θ

[
h2

1− γ c
1−γ(1− x)1−γ + h2λH∗

+ h2 ·Hn

(
− λ− β + (1− γ)

(
r + (1− x) ([(µ− r)θ]− c) + x(ν − r)

− 1
2γ
(
σ2θ2(1− x)2 +φ2x2 + 2x(1− x)φθσρ

)))

+ (Hn+1 −Hn)hx(1− x)
(
c+ γ(1− x)σ2θ2 + ν + γxφ2

)

+ (Hn+1 −Hn)hx(1− x)
(
− ([r + (µ− r)θ]) + γ(2x− 1)φθσρ

)

+ 1
20x2(1− x)2

(
σ2θ2 + φ2 − 2φθσρ

)]

m

0 = max
c,θ

[
h2

1− γ c
1−γ(1− x)1−γ + h2λH∗

+ h2 ·Hn

(
− λ− β + (1− γ)

(
r + (1− x) ([(µ− r)θ]− c) + x(ν − r)

− 1
2γ
(
σ2θ2(1− x)2 +φ2x2 + 2x(1− x)φθσρ

)))

+ (Hn+1 −Hn)hx(1− x)
(
c+ γ(1− x)σ2θ2 + ν + γxφ2 − ([r + (µ− r)θ])

+ γ(2x− 1)φθσρ
)]

m
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0 = max
c,θ

[
h2

1− γ c
1−γ(1− x)1−γ + h2λH∗ + h2 ·HnM + (Hn+1 −Hn)hx(1− x)N

]

where

M =
(
− λ− β + (1− γ)

(
r + (1− x) ([(µ− r)θ]− c) + x(ν − r)

− 1
2γ
(
σ2θ2(1− x)2 +φ2x2 + 2x(1− x)φθσρ

)))

N =
(
c+ γ(1− x)σ2θ2 + ν + γxφ2 − ([r + (µ− r)θ]) + γ(2x− 1)φθσρ

)

Thus we get:

Hn(−h2M + hx(1− x)N) = max
c,θ

[
h2

1− γ c
1−γ(1− x)1−γ + h2λH∗ +Hn+1hx(1− x)

]

m

Hn = max
c,θ

[
1

(−h2M + hx(1− x)N)

(
h2

1− γ c
1−γ(1− x)1−γ + h2λH∗ +Hn+1hx(1− x)

)]

Similarly, we can calculate for n = 100, and get:

Hn = max
c,θ

[
1

(−h2M − hx(1− x)N)

(
h2

1− γ c
1−γ(1− x)1−γ + h2λH∗ −Hn−1hx(1− x)

)]

4.4 Problems with Numerical Approximations

While we have derived a theoretical pleasing way of approximating the value function,
the method is not without issues. Numerical approximation is not an exact science, and
it is not even guaranteed that the function converges, let alone converging to something
meaningful. Implementing such an algorithm is both time consuming and difficult, as you
have multiple variables that needs to be "aligned" in order for the algorithm to converge
properly. There are a couple of issues related to our numerical approximation approach.
First, we have to make a guess of H∗ in order to initiate the algorithm. This is in it
self not an issues, if the guess is reasonable and close to the actual value function. But
more often than not, the guess will be such that the algorithm diverges to either ∞ for
every points in the grid, or it diverges to −∞ for every points in the grid. The curvature
of the function is also important. If the guess consists of a function that is too steep at
some points, or being monotonous wrong (that is, increase when it should be decreasing
and vice versa), then the numerical approach has a tendency to explode in one of the end
points, and since each point affects the value of adjacent points in the next iteration of
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the algorithm, the whole approximation can converge to something horribly wrong after
a couple of iterations. For these reasons, the initial guess is very important for the result,
and one is often led to do a trial-and-error approach in order to get a good initial guess.
This can be very time consuming - especially if the algorithm takes a lot of time - and in
our case it took days before we got to a reasonable initial guess. Second, The program
can become computationally very heavy very quickly, if one is not careful. One can easily
fall in the "loop" trap, and make a for loop into a for loop into a for loop and so on, as
this approach seems most appropriate and intuitive. This is, however, very ineffecient
code wise, and it can easily overload the program, making it take several hours - which is
bad, since bugfixing and adjustment of initiation variables and analysis in general becomes
very slow and time consuming. As such, we used a lot of time to make the code efficient
and be smart with how it was implemented, namely by using vectorized packages and
efficient matrix calculations. Overall, the whole process of implementing the algorithm,
fixing bugs, adjusting variables and making the code efficient is a slow and time consuming
process, but a necessary one to yield useful results.

Another difficulty with approximating non-linear second order partial differential equa-
tions such as the HJB equation, is that we have to approximate derivatives. approximating
derivatives, especially second order derivatives, can lead to some very unexpected results,
as we are dividing with a very small number. This is most impacting when an error has
been made in the previous iteration of the algorithm. Any mistakes made i estimating Hn

will be magnified by the derivative, as we are dividing with a very small number. This
leads to the issue of picking h. While a smaller h is desirable, since it corresponds to a
better approximation, it does magnify the issue explained above. A smaller h also makes
the algorithm computationally heavier, as the number of points in the grid becomes larger.
As such, we set h = 1/100, i.e not too small so it is computationally feasible, and not too
big, so the approximation is reasonably correct.

4.5 Results of numerical estimation of the HJB

In our numerical solution, we take conservative parameter values. We set µ = 0.12 and
σ = 0.15 and we set the risk-free rate r = 0.04. We also set ν = µ = 0.12 and φ = 0.15,
i.e the same values as for the liquid risky asset. We do this in order to isolate the effect
of illiquidity, and avoid any "noise" from other parameters We work with the case of the
investor being risk-averse and let γ = 6, which corresponds to a holding of 60% equity
and 40% bond for many institutional investors. These will be the parameter values used
throughout the entire paper, unless otherwise stated. We do not, at any point, hold λ

constant, as we want to see what happens with the investors behaviour when the intensity
of illiquidity changes.
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Figure 1

In figure 1, a plot of H against the fraction of wealth invested in illiquid asset, that is
x = X

W+X , can be seen for λ = 16. In the merton two-asset model derived earlier, we
saw that the optimal fraction of total wealth invested in the second risky asset was 0.6,
which is not the case when the second risky asset is illiquid. We see that the presence of
illiquidity distorts the optimal investment in illiquid asset from x = 0.6 to x = 0.37. The
explanation here is straightforward and intuitive, as the pressence of illiquidity makes the
second asset less attractive. The investor can only meet his obligations (consumption in
our model) with liquid wealth, except at time t = τ , and therefore there is an extra risk
associated with investing in the illiquid risky asset. The ratio between liquid and illiquid
wealth holds the importance here. Since the illiquid asset cannot be traded, the ratio of
liquid to illiquid wealth is not under the investor’s control, except for trading dates. As
such, the investor does not want to invest as much as in the Merton case, as that would
yield a large portion of his wealth outside of his control. The ability to optimally rebalance
is only available at liuidity events, i.e on average every year.

In Figure 2 and Figure 3, we see what happens when we vary λ from the initial value
of 1. In Figure 2, we see what happens with the value function H as λ→ 0. We see that
the value function starts exploding around x = 0. This means that for λ sufficiently close
to 0, the optimal fraction of total wealth invested in illiquid asset is 0. The intuition is that
when λ→ 0, then the average period between dates where the illiquid asset can be traded
will approach limλ→0

1
λ =∞. Hence, the investor finds the illiquid asset less attractive, as

there will be less trading opportunities. And when λ approaches 0, the investor will invest
6λ = 1 corresponds to the illiquid asset being tradeable in expectation every 1/λ = 1 year
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0 in the illiquid asset, because his opportunity to trade it will approach "never" - even
when the investor has infinite time horizon. The investor will, in fact, act as if the illiquid
asset does not exist, and we will be back to a case where the investor chooses optimally
between 1 risk-free asset and 1 risky asset, i.e exactly the same as the Merton 1 asset case.

In figure 3, we see what happens to the value function H, when λ gets bigger. We
see that the value function smooths out, and it takes a maximum close to x = 0.6, which
corresponds to the Merton two asset case. The reason for this, is that when λ gets bigger,
the average time between periods where the illiquid asset can be rebalanced goes towards
0, i.e the illiquid asset can be traded more frequent. The illiquid asset approaches a state
where it can be continuously traded, and thereby the optimal fraction invested in this
asset will correspond to the Merton case. The maximum λ value we did the model for
was λ = 100, because the algorithm became very unstable for greater values of λ. That is
to say, it often diverged towards infinity, and on rare occasions it converged.

Figure 2
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Figure 3

4.6 Illiquidity effect on Liquid Asset Holdings

We will now see how illiquidity affects the investors optimal holdings of the liquid risky
asset. To do this, we will compare the behaviour of an investor in the Merton model with
the behaviour of an investor in the illiquidity baseline model. The Relative Risk Aversion
(RRA) with respect to wealth W for a utility maximizer is be defined as following:

RRA = W
FWW

FW

Relative Risk Aversion is measurement to capture the curvature of the investors prefer-
ences, i.e how willing is an investor to take gambles in wealth W . As such, we can use this
measure to capture how an investors willingness to take gambles, and thereby willingness
to invest in the liquid risky asset, changes in the presence of illiquidity. Calculating the
RRA of a Merton investor by using the derivatives found in the Merton model derivation
section, we get:

RRAMerton = γ (36)

As we have seperated the wealth in a liquid and illiquid part, the value function from a
merton investor perspective will be given by:

F (W,X, t) =
(W +X)1−γ 1

Aγ

1− γ

And thereby the relevant derivatives to calculate the RRA will be given by:

FW = (1− γ)(W +X)−γ
1
Aγ

1− γ

FWW = −γ(1− γ)(W +X)−γ−1
1
Aγ

1− γ
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Thus, the Relative Risk Aversion in liquid wealth will be given by:

RRAMerton −W
FWW

FW
= −W

−γ(W +X)−γ−1 1
Aγ

(W +X)−γ 1
Aγ

= γ(1− x)

Similarly, we can calculate the RRA for an investor acting in the pressence of illiquidity
by using the derivatives derived in the proof of proposition 1. A plot of the two Relative
Risk Aversion’s as a function of x can be seen in figure 4. As oppose to the Relative
Risk Aversion of the merton investor, which is a linear decreasing function in fraction
of wealth invested in the illiquid asset, the relative risk aversion of the investor facing
illiquidity increases non-linearly with x from around 0.4. For small values of allocation
to the illiquid asset, x, the two types of wealth are viewed as perfect substitutes, and the
two types of investors behave in a similar fashion. As the allocation in liquid wealth, W ,
decreases in the investors total wealth W + X, the investor’s aversion towards gambles
in the liquid wealth, W , decreases as well. However, when the investors liquid wealth
becomes sufficiently low, the investor aversion towards gambles in liquid wealth increases
heavily, as the liquid wealth is no longer viewed as a substitute for illiquid wealth. The
reason for this, is that the investor can only meet his obligations with liquid wealth, and
as such, if he already has a lot of illiquid wealth relative to his total wealth, he will be
more ”protective” of his liquid wealth. This shows that for suffiently large illiquid wealth,
the investor will invest less in the risky liquid asset, because he becomes more risk-averse
as with liquid wealth, as it is the only reliable means of consumption for him.

Figure 4

In total, we see that illiquidity, isolated and in itself, distorts both the allocation in the
illiquid asset and the allocation in the risky liquid asset.

37 of 56



5 Model with Illiquidity and Finite Time Horizon

We will now extend the model presented earlier, and generalize it to a setting that allows
for the investor to have a finite time horizon. All of our assumptions with regards to the
investor and the investor’s budget constraint will be identical to the previous section, with
the only difference being that the investor now has an investment horizon spanning over
[0, T ], instead of [0,∞). Thus, the wealth dynamics of the investor is still given by:

dWt

Wt
= (r + (µ− r)θt − ct)dt+ θtσdZ

1
t −

dIt
Wt

(37)

dXt

Xt
= m(Xt)dt+ v1dZ

1
t + v2dZ

2
t + dIt

Xt
(38)

Where Xt is the illiquid wealth and Wt is the liquid wealth, as derived in (26) and (27).
The method we will use is also identical to the one used earlier, where we assumed that
the investor had an infinite time horizon. That is, we will first derive an expression for
the HJB equation. Given the HJB equation, we will then estimate the investor’s value
function numerically. The main difference in our methodology from earlier is that we will
have a slightly different HJB equation and the numerical estimation method will be vastly
different. The method we will use is called The implicit finite difference approach, as
described in Munk: Fixed Income Modelling, Oxford University Press, 2011. Estimating
a model where the investor has finite time horizon is generally computationally heavier
than estimating a model where the investor has infinite time horizon. The reason is that
we have to calculate the investor’s preferences at any time period t before the end date,
whereas with infinite time horizon, we only have to estimate the preferences at one period.
For example, if we are interested in the investor’s preferences 30 years before the end date,
and we work with an interval of 1 month, the total time of computing will be roughly
12 · 30 = 360 times longer than if we had a model with infinite horizon. The derivative
∂F
∂t will no longer be 0, which also further complicates both the derivation of the value
function, and the numerical computation. We will look at this later on.

With finte time horizon, we assume that the investor has an investment horizon span-
ning over [0, T ], and he performs the following maximization problem:

F (W,X) = max
ct,πt

Et

[∫ T

0
e−β·s

c1−γ
s

1− γ ds
]

(39)
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We further assume that at time T , he consumes all the wealth he is able to consume, that
is all his liquid wealth7. Thus, his terminal utility will be given by:

F (W,X, T ) = ((W +X)(1− x))1−γ

1− γ (40)

With the terminal condition, we will now describe how the HJB equation looks. The
difference between the HJB equation derived in proposition 1 and the one with finite time
horizon is minimal, although not insignificant at all. It is identical to the HJB equation
derived in proposition 1, but only with ∂H

∂t added to the right-side of the equation, such
that we get:

0 = max
c,θ

[
1

1− γ c
1−γ(1− x)1−γ + ∂H

∂t
− βH(x) + λ(H∗ −H(x)) +H(x)A(x, c, θ) +H ′(x)B(x, c, θ)

+ 1
2H
′′(x)C(x, c, θ)

]

To get to the above form, simply derive the HJB equation again, but where ∂F
∂t = 0 is

not assumed. While this extra addition of ∂H∂t seems simple at first, it heavily complicates
the process of estimating the HJB equation numerically. We now have an extra derivative
to estimate. Not only that, the derivative is with respect to a different variable than x,
which adds an extra dimension in the numerical optimization problem. We will see later
how we deal with this.

To solve the above stated HJB equation numerically, we will transform it to a sequence
of differenced equations which can be solved iteratively starting from the known terminal
utility (40). To do this, we first assume that x can only take a finite number of values
between 0 and 1 (discretization of the state space), such that we have:

xmin ≡ 0 = x0, x1, x2, ..., xN−1, xN = 1 ≡ xmax

Where xn+1 − xn = h = 1
100 . We further assume that the time variable can only take the

following values:
0,∆t, 2∆t, ..., T

We set ∆t = 1/12, i.e corresponding to 1 month in a year and the highest T we consider
is 30 years. Thus, the state space in our numerical solution is given by the lattice:

{x0, x1, x2, ..., xN−1, xN} × {0,∆t, 2∆t, ..., T}

The Value function H in the lattice note (n, t) is denotedby Hn,t, and it corresponds to
the x-value xn and time step ∆t · t. As in the section with infinite time horizon, we use
the following estimators for the derivatives of H with respect to x:

H ′+(xn) = Hn+1 −Hn

h
7He could technically consume all of his wealth if the Poisson process hits at time T, but in that case

he would simply sell all the illiquid wealth and convert it to liquid, and we would technically still have him
consuming all his liquid wealth.
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H ′−(xn) = Hn −Hn−1
h

H ′′(xn) = Hn+1 +Hn−1 − 2Hn

h2

Where we have separated the first order derivative of H into a positive and a negative
part, such that the HJB equation is given by:

0 = max
c,θ

[
1

1− γ c
1−γ(1− x)1−γ + ∂H

∂t
− βH(x) + λ(H∗ −H(x))

+H(x)(1− γ)
(
r + (1− x) ([(µ− r)θ]− c) + x(ν − r)− 1

2γ
(
σ2θ2(1− x)2 +φ2x2 + 2x(1− x)φθσρ

))
+H ′+(x)x(1− x)

(
c+ γ(1− x)σ2θ2 + ν + γxφ2

)

+H ′−(x)x(1− x)
(
− ([r + (µ− r)θ) + γ(2x− 1)φθσρ

)

+ 1
2H
′′(x)x2(1− x)2

(
σ2θ2 + φ2 − 2φθσρ

)]
To approximate the derivative with respect to time, we use the implicit finite first difference
approach, and thereby the approximation:

∂H

∂t
(xn, t) ≈

Hn,t+1 −Hn

∆t
Inserting the relevant differencing approximations in the HJB equation, we get:

0 = max
c,θ

[
1

1− γ c
1−γ(1− x)1−γ + Hn,t+1 −Hn,t

∆t − βHn,t + λ(H∗ −Hn,t)

+Hn,t(1− γ)
(
r + (1− x) ([(µ− r)θ]− c) + x(ν − r)− 1

2γ
(
σ2θ2(1− x)2 +φ2x2 + 2x(1− x)φθσρ

))
+ Hn+1,t −Hn,t

h
x(1− x)

(
c+ γ(1− x)σ2θ2 + ν + γxφ2

)

+ Hn,t −Hn−1,t
h

x(1− x)
(
− ([r + (µ− r)θ) + γ(2x− 1)φθσρ

)

+ 1
2
Hn+1,t +Hn−1,t − 2Hn,t

h2 x2(1− x)2
(
σ2θ2 + φ2 − 2φθσρ

)]
Isolating Hn,t+1, we get:

Hn,t+1 = −max
c,θ

[
Hn,t + ∆t 1

1− γ c
1−γ(1− x)1−γ −∆tβHn,t + ∆tλ(H∗ −Hn,t)

+ ∆tHn,t(1− γ)
(
r + (1− x) ([(µ− r)θ]− c) + x(ν − r)− 1

2γ
(
σ2θ2(1− x)2 +φ2x2 + 2x(1− x)φθσρ

))
+ ∆tHn+1,t −Hn,t

h
x(1− x)

(
c+ γ(1− x)σ2θ2 + ν + γxφ2

)

+ ∆tHn,t −Hn−1,t
h

x(1− x)
(
− ([r + (µ− r)θ) + γ(2x− 1)φθσρ

)

+ ∆t12
Hn+1,t +Hn−1,t − 2Hn,t

h2 x2(1− x)2
(
σ2θ2 + φ2 − 2φθσρ

)]
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Which we can further reduce to:

Hn,t+1 = −max
c,θ

[
Hn,t(1−∆tβ) + ∆t 1

1− γ c
1−γ(1− x)1−γ + ∆tλ(H∗ −Hn,t)

+ ∆tHn,t(1− γ)
(
r + (1− x) ([(µ− r)θ]− c) + x(ν − r)− 1

2γ
(
σ2θ2(1− x)2 +φ2x2 + 2x(1− x)φθσρ

))
+ (Hn+1,t −Hn,t)

∆t
h
x(1− x)

(
c+ γ(1− x)σ2θ2 + ν + γxφ2

)

+ (Hn,t −Hn−1,t)∆t
1
h
x(1− x)

(
− ([r + (µ− r)θ) + γ(2x− 1)φθσρ

)

+ (Hn+1,t +Hn−1,t − 2Hn,t)∆t
1
2

1
h2x

2(1− x)2
(
σ2θ2 + φ2 − 2φθσρ

)]

m

Hn,t+1 = −max
c,θ

[
Hn,t

(
(1−∆tβ) + ∆t(1− γ)

(
r + (1− x) ([(µ− r)θ]− c) + x(ν − r)

− 1
2γ
(
σ2θ2(1− x)2 +φ2x2 + 2x(1− x)φθσρ

))
− ∆t

h
x(1− x)

(
c+ γ(1− x)σ2θ2 + ν + γxφ2

)
−∆tλ

+ ∆t1
h
x(1− x)

(
− ([r + (µ− r)θ) + γ(2x− 1)φθσρ

)
− 2∆t12

1
h2x

2(1− x)2
(
σ2θ2 + φ2 − 2φθσρ

))

+ ∆t 1
1− γ c

1−γ(1− x)1−γ + ∆tλH∗

+Hn+1,t
∆t
h
x(1− x)

(
c+ γ(1− x)σ2θ2 + ν + γxφ2 + 1

2
1
h
x(1− x)

(
σ2θ2 + φ2 − 2φθσρ

))

+Hn−1,t

(
∆t12

1
h2x

2(1− x)2
(
σ2θ2 + φ2 − 2φθσρ

)
−∆t1

h
x(1− x)

(
− [r + (µ− r)θ] + γ(2x− 1)φθσρ

))]

And lastly, we have that Hn,t+1 is given by:

Hn,t+1 = −max
c,θ

[
Hn,tA+ ∆t 1

1− γ c
1−γ(1− x)1−γ + ∆tλH∗ +Hn+1,tB +Hn−1,tC

]
(41)

where:

A =(1−∆tβ) + ∆t(1− γ)
(
r + (1− x) ([(µ− r)θ]− c) + x(ν − r)

− 1
2γ
(
σ2θ2(1− x)2 +φ2x2 + 2x(1− x)φθσρ

))
− ∆t

h
x(1− x)

(
c+ γ(1− x)σ2θ2 + ν + γxφ2

)

−∆tλ+ ∆t1
h
x(1− x)

(
− ([r + (µ− r)θ) + γ(2x− 1)φθσρ

)

− 2∆t12
1
h2x

2(1− x)2
(
σ2θ2 + φ2 − 2φθσρ

)

B = ∆t
h
x(1− x)

(
c+ γ(1− x)σ2θ2 + ν + γxφ2 + 1

2
1
h
x(1− x)

(
σ2θ2 + φ2 − 2φθσρ

))
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C = ∆t12
1
h2x

2(1− x)2
(
σ2θ2 + φ2 − 2φθσρ

)
−∆t1

h
x(1− x)

(
− [r + (µ− r)θ] + γ(2x− 1)φθσρ

)
With the above form of Hn,t+1, we can now calculate the value of H for each point in the
lattice. We start backwards with the known terminal utility condition. From terminal
condition in (40), we have:

F (W,X, T ) = ((W +X)(1− x))1−γ

1− γ

m

H(x, T ) = (1− x)1−γ

1− γ
And thereby, Hn,T will be given by the following for every n ∈ {0, ..., N}:

Hn,T = (1− xn)1−γ

1− γ (42)

With this and (41) , we can find a solution for Hn,t for every node in the lattice. Suppose
Hn,t+1 is known for every n ∈ 0, ..., N , and suppose c and θ are picked such that the
maximization in (41) is solved, we can reduce it to the following:

Hn,t+1 = −Hn,tA−∆t 1
1− γ c

1−γ(1− xn)1−γ −∆tλH∗ −Hn+1,tB −Hn−1,tC

Since (41) has to hold for every n = 1, ..., N − 1, we have a system of linked equations
with the unknown function Hn,t. More precisely, we have N − 1 equations and N + 1
unknowns H0,t, ...,HN,t. Furthermore, if we handle the end points of the lattice, and add
equations on the form:

H0,t+1 = −H0,tA−∆t 1
1− γ c

1−γ(1− x0)1−γ −∆tλH∗ −H0+1,tB

HN,t+1 = −HN,tA−∆t 1
1− γ c

1−γ(1− xN )1−γ −∆tλH∗ −HN−1,tC

We have a full system of linear equations, which we can solve for each time periode t. The
below linear system corresponds to what we have to solve at each time period.



A0,t B0,t 0 0 0 ... 0
C1,t A1,t B1,t 0 0 ... 0

0 C2,t A2,t B2,t 0 ... 0
... . . . . . . . . . ...
0 ... 0 0 CN−1,t AN−1,t BN−1,t

0 ... 0 0 0 CN,t AN,t





H0,t

H1,t

H2,t
...

HN−1,t

HN,t


=



d0,t+1

d1,t+1

d2,t+1
...

dN−1,t+1

dN,t+1


(43)

Where we define dn,t = Hn,t+1 + ∆t 1
1−γ c

1−γ(1− xn)1−γ + ∆tλH∗t .
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With the above characterisation of the solution to the HJB over a lattice, we can now
describe how to solve it numerically. The algorithm goes as following:

1. Initiate the algorithm with the terminal condition. That is, calculate Hn,T for ev-
ery n as described in (42).

2. Guess on a value of the optimal H∗T−1 to initiate the calculation of Hn,T−1∀n ∈
{0, ..., N} from (5).

3. Given H∗T−1, then for every combination of c and θ solve the linear system below
for H0,T−1, ...,HN,T−1:

A0,T−1 B0,T−1 0 0 0 ... 0
C1,T−1 A1,T−1 B1,T−1 0 0 ... 0

0 C2,T−1 A2,T−1 B2,T−1 0 ... 0
... . . . . . . . . . ...
0 ... 0 0 CN−1,T−1 AN−1,T−1 BN−1,T−1

0 ... 0 0 0 CN,T−1 AN,T−1





H0,T−1

H1,T−1

H2,T−1
...

HN−1,T−1

HN,T−1


=



d0,T

d1,T

d2,T
...

dN−1,T

dN,T


You should now have a series of values H0,T−1, ...,HN,T−1 over the lattice {0, ..., N} ×
{T − 1} for each combination of c and θ.

4. Pick the combination of c and θ which solves:

max
c,θ

[
−Hn,T−1An,T−1−∆t 1

1− γ c
1−γ(1−xn)1−γ −∆tλH∗T−1−Hn+1,tB−Hn−1,tCn,T−1

]

Denote the optimal values by c∗ and θ∗.

5. From the series of values H0,T−1, ...,HN,T−1 corresponding to c∗ and θ∗, let H∗T−1 =
max{H0,T−1, ...,HN,T−1}.

6. Repeat step 3-5 for the new H∗T−1 until convergence of arg maxxH∗T−1.

7. With step 1-6, you now have a characterization of the value function H over the
given lattice at time T − 1. To calculate the value function at time T − 2, redo step 1-6
with the converged H∗T−1 as the terminal utility, and replace T with T − 1. Repeat this
until you get a characterization of the value function enough time before the end date as
desired.
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5.1 Numerical Results for Finite Time Horizon Model

In figure 5, we see a plot of the investor’s value function against fraction of total wealth
invested in the illiquid asset for different dates before the terminal date, when λ = 1. All
other parameters are identical to the ones used in the section with infinite time horizon8.
We see that for dates close to the terminal date, the risk-averse investor prefers not to have
any amount of his total wealth invested in the illiquid asset. The reason for is that with
λ = 1, the illiquid asset is only trade-able in expectation every year. So for a risk-averse
investor, investing any amount of wealth in the illiquid asset, when close to the terminal
date, yields very little utility, and doing so is equivalent to removing potential consumable
wealth from the terminal date, as only liquid wealth can be consumed at the terminal
date. In other words, the two assets are not viewed as perfect substitutes, because only
the liquid asset can be used for consumption at any date. We also see that for earlier dates,
that is dates which are further away from the end date (terminal date), the investor’s value
function converges to that of an investor with infinite time horizon. Already for an investor
with a time horizon of 10 years, his optimal allocation will be roughly 36% of his total
wealth in the illiquid asset, compared to an investor with infinite time horizon having an
optimal allocation of roughly 37% of total wealth in the illiquid asset. We can conclude
that an investor’s time horizon does not necessarily have to be extremely large before he
starts behaving identical to an investor with infinite time horizon. Interestingly, we see
that the investor does not invest anything in the illiquid asset if his time horizon is not
greater than 5 years. This comes mainly from the characterization of the investor and the
degree of risk-aversion we have assumed, i.e γ = 6, and not so much from the illiquidity in
it self. This naturally raises the question, "how does the relative risk aversion parameter,
γ, affect the minimum time horizon the investor needs before he is willing to invest any
amount in the illiquid asset?". We will later look at how this risk-aversion parameter
affects the minimum time horizon for which the investor is willing to invest any amount
in the illiquid asset.

8σ = φ = 0.15, µ = ν = 0.12, r = 0.04, γ = 6, λ = 1, ρ = 0
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Figure 5
Plot of H against the fraction of total wealth invested in the illiquid asset for different

time periods, when λ is equal to 1

Below in figure 6, the same plot of the investor’s value function against his fraction of
total wealth invested in illiquid asset can be seen, with the only difference from figure 5
being that λ has been adjusted to 10. This case is done to see what happens with the
investor’s preferences, when the illiquid asset becomes more liquid. With λ = 10, the
investor can expect to trade the illiquid asset on average every 1/10 year. Or in terms
of months, every 12/10 month. Like the situation with λ = 1, it seems that the investor
will not invest in the illiquid asset at all, if his investment horizon is very small. But we
also see that the investor is willing to invest with a much smaller investment horizon in
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the illiquid asset when λ = 10 compared to when λ = 1. A risk-averse investor with an
investment horizon as small as a year is willing to buy the illiquid asset when the asset is
trade-able on average every 12/10 month. This makes sense, as over a year the Poisson
distribution with parameter λ = 10 will have a probability of hitting at least once very
close to 1. Thus, from the investor’s perspective, the risk associated with illiquidity is
negligible, as he can trade the asset quasi-continuous. We also see that as the investment
horizon increases, the investor’s optimal allocation in the illiquid asset approaches that
of an investor with infinite time horizon (60%), which is the same as a merton-investor.
With a horizon of 10 year or more, the investor starts behaving like a merton investor.
Again, we can conclude that the investor does not need an unreasonably large investment
horizon before he starts acting like an investor with infinite time horizon.
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Figure 6
Plot of H against the fraction of total wealth invested in the illiquid asset for different

time periods, when lambda is equal to 10

In figure 7, we see what happens to the investor’s value function when the λ ≈ 0. We
see that it is not optimal for the investor, no matter the investment horizon, to hold any
amount of the illiquid asset. Even for investors with very long investment horizons, the
expected time between rebalancing periods is too long for investor to trade the illiquid
asset. From the investors perspective, the asset is not a "feasible" asset, as he will almost
surely never be able to sell it again. The investor will act as if the illiquid asset does
not exist, and we will be back to a case where the investor chooses optimally between 1
risk-free asset and 1 risky asset. This is consistent with the results found earlier for an
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investor with infinite time horizon and the Merton 1-asset model. Surprisingly, the shape
of the value function changes heavily over time, but the optimum does not. This is more
of a consequence of the numerical method used, rather than any economic reasoning.

Figure 7
Plot of H against the fraction of total wealth invested in the illiquid asset for different

time periods when lambda is equal to 0.00001

Risk-aversion dictates, to a great degree, at which point the investor is willing to invest
any amount in the illiquid asset. In figure 8, a plot of the investor’s relative risk aversion
parameter γ against number of months before end date for which the investor is willing to
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invest any amount in the illiquid asset can be seen. We see that the curve is increasing in
number of months, which means that a very risk-averse investor will need a longer time
horizon before he is willing to buy any amount of the illiquid asset. For example, the latest
date an investor with γ = 4 will be willing to buy any amount of the illiquid asset is the
date corresponding to 64 months before the end date. We see that the curve is exploding,
as the number of month increases, which indicates that even for very risk averse investors,
they will invest in the illiquid risky asset within a reasonable time horizon.

Figure 8 Plot of γ against the smallest
number of months before end date for which the investor is willing to buy the illiquid asset.

5.2 Conclusion

We study two models on how an investor behaves in the presence of illiquidity by extending
the Merton Model to allow for infrequent and stochastic trading opportunities of the
illiquid asset. We show that illiquidity distorts the optimal portfolio choice of the investor,
no matter the investor’s time horizon, by a significant amount. For an illiquid asset with
an average time between trading dates of 1 year, a long-term investor only allocates 37%
of his portfolio in that asset, compared to the Merton case, where he would have invested
60%. The presence of illiquidity also distorts the investor’s willingness to take gambles
in his liquid wealth, and as such illiquidity distorts both the allocation in illiquid risky
asset and liquid risky asset. The main reason for this is the fact that the investor can
only use liquid wealth to meet his immediate obligations, and if his allocation in illiquid
wealth is large enough, the investor can not meet his obligations before the next liquidity
event. Therefore, the investor acts in a more risk-averse fashion, wanting to avoid states
with low liquid wealth. We also see that investors with smaller time horizon prefer not
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buying the illiquid asset, as they can not be sure to sell it again before the end of their
investment horizon. The difference in behaviour between an investor with a finite time
horizon of 10 or more years and an investor with infinite time horizon is minimal, and as
such the infinite time horizon model is a good approximation for a long term investor’s
behaviour in the pressence of illiquidity.

5.3 Further Studies

While we have analysed the investor’s portfolio choice thoroughly, we have not spent much
time on consumption. For future studies, the consumption aspect of the problem would
be a direction to go. In our study, and in the numerical approximations, consumption
is mostly considered as an economic input, which exists in order to derive the portfolio
decision of the investor. This is, however, a very bland look at consumption, and a thor-
ough study on the effect of illiquidity on consumption is something one could look at. We
would expect that consumption will also be distorted, such that the investor consumes
less compared to the Merton case, because we see from our study the investor behaves in
a more risk-averse fashion in the presence of illiquidity.

Another aspect one could look at for future studies would be the initial assumption. It
would be interesting to see what would happen if our initial illiquidity assumption changed
slightly. The initial assumption we made was that illiquid assets can only be traded at
infrequent and random dates. While this is a somewhat realistic assumption, it does not
quite capture reality. If an asset is very illiquid, it still holds value, and therefor investors
are willing to buy it (maybe for a lower price). If an investor holds this asset, and for
some reason, is in need of selling it to meet his obligations, he would not necessarily need
to wait too long before he can sell it, if he is willing to sell it at a lower price. Instead
of assuming that investors can only trade at specific trading dates, we could assume that
investors can trade at any date, but has to pay a premium except for the liquidity event
dates. The size of the premium would be dictated by the degree of the illiquidity. The
conclusion would probably still be that the investor invests less in the illiquid asset, but
not to such an extreme degree as we derive, since the investor’s immediate obligations
wouldn’t be as vulnerable.
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6 Appendix

Below is the code for the two algorithms.� �
1 from scipy . optimize import minimize
2 import numpy as np
3 import math
4 import matplotlib . pyplot as plt
5 x= np. arange (0 ,1 ,1/100)
6 x[0] = 0.0001
7 x[-1] = 0.99
8 h=1/100
9 x_optimal = 0.4

10 gamma = 6
11 beta = 0.1
12 mu = 0.12
13 v = 0.12
14 r = 0.04
15 psi = 0.15
16 sigma = 0.15
17 lmbda = 1
18 rho = 0
19
20
21
22 def H_N(input , x):
23 c = input [0]
24 theta = input [1]
25
26 upper_p_u = h∗ x∗ (1-x)∗ (c+ gamma∗ (1-x)∗ sigma∗ ∗ 2∗ theta +v+ gamma∗ x∗ psi∗ ∗ 2) + 0.5∗ x∗ ∗

2∗ (1-x)∗ ∗ 2∗ ( sigma∗ ∗ 2∗ theta∗ ∗ 2+psi∗ ∗ 2-2∗ psi∗ theta∗ sigma∗ rho)
27 upper_p_d = -h∗ x∗ (1-x)∗ ( -(r+(mu-r)∗ theta ) + gamma∗ (2∗ x-1)∗ psi∗ theta∗ sigma∗ rho

) + 0.5∗ x∗ ∗ 2∗ (1-x)∗ ∗ 2∗ ( sigma∗ ∗ 2∗ theta∗ ∗ 2+psi∗ ∗ 2-2∗ psi∗ theta∗ sigma∗ rho)
28
29 C_1 = x∗ (1-x)∗ (c+ gamma∗ (1-x)∗ sigma∗ ∗ 2∗ theta∗ ∗ 2+v+ gamma∗ x∗ psi∗ ∗ 2+r+(mu-r)∗ theta

- gamma∗ (2∗ x-1)∗ psi∗ theta∗ sigma∗ rho)
30 C_2 = lmbda + beta -(1- gamma )∗ (r+(1-x)∗ (( mu-r)∗ theta -c)+x∗ (v-r)-0.5∗ gamma∗ (

sigma∗ ∗ 2∗ theta∗ ∗ 2∗ (1-x)∗ ∗ 2+psi∗ ∗ 2∗ x∗ ∗ 2+2∗ x∗ (1-x)∗ psi∗ theta∗ sigma∗ rho))
31 C_3 = x∗ ∗ 2∗ (1-x)∗ ∗ 2∗ ( sigma∗ ∗ 2∗ theta∗ ∗ 2+psi∗ ∗ 2-2∗ psi∗ theta∗ sigma∗ rho)
32 Delta_T = h∗ ∗ 2/(h∗ ∗ 2∗ C_2+h∗ C_1+C_3)
33 p_u = Delta_T∗ upper_p_u /h∗ ∗ 2
34 p_d = Delta_T∗ upper_p_d /h∗ ∗ 2
35 if x == 0:
36 M = - lmbda -beta+(1- gamma )∗ (r+(1-x)∗ (( mu-r)∗ theta -c)+x∗ (v-r)-0.5∗ gamma∗ (

sigma∗ ∗ 2∗ theta∗ ∗ 2∗ (1-x)∗ ∗ 2+psi∗ ∗ 2∗ x∗ ∗ 2+2∗ x∗ (1-x)∗ psi∗ theta∗ rho∗ sigma ))
37 N = c+ gamma∗ (1-x)∗ sigma∗ ∗ 2∗ theta∗ ∗ 2+v+ gamma∗ x∗ psi∗ ∗ 2-r-(mu-r)∗ theta + gamma∗

(2∗ x-1)∗ psi∗ theta∗ sigma∗ rho
38
39 K = 1/(-h∗ ∗ 2∗ M+h∗ x∗ (1-x)∗ N)
40 H_nn = H[int(x∗ 100+1)]
41 H_n = K∗ (h∗ ∗ 2/(1- gamma )∗ c∗ ∗ (1- gamma )∗ (1-x)∗ ∗ (1- gamma )+h∗ ∗ 2∗ lmbda∗ G∗ (1+

x_optimal )∗ ∗ (1- gamma )+H_nn∗ h∗ x∗ (1-x))
42 return max(min(H_n ,H[3]) ,- 1000000)
43 # return H[int(x *100) -1]
44 #H_0 = H[int(x *100) -1]
45 #H_0 = 0
46 else:
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47 H_0 = H[int(x∗ 100-1)]
48
49 if int(x∗ 100) == 99:
50 # return H[99]
51 H_nn = H[int(x∗ 100)]
52
53 else:
54 H_nn = H[int(x∗ 100+1)]
55
56 H_n = p_d∗ H_0 + H_nn∗ p_u + Delta_T∗ (1/(1- gamma )∗ c∗ ∗ (1- gamma )∗ (1-x)∗ ∗ (1- gamma ) +

lmbda∗ G∗ (1+ x_optimal )∗ ∗ (1- gamma ) )
57
58 if x <= 0.03:
59 return max(min(H_n ,H[3]) ,- 1000000)
60 else:
61 return H_n
62
63
64
65 def perc_diff (x,y):
66 x = np. array (x)
67 y = np. array (y)
68 x = x[!np. isnan (x)]
69 x = x[x<1E308]
70 x = x[-1E308<x]
71 y = y[!np. isnan (y)]
72 y = y[y<1E308]
73 y = y[y>-1E308]
74 y = y[: min(len(x),len(y))]
75 x = x[: min(len(x),len(y))]
76 return np. nansum (np.abs(x-y)/np.abs(x) ,)/len(x)
77
78 # total_fun = H
79 a = 0
80 H= np.full (100 ,1)
81 total_fun = [np.log(i) for i in np. arange (0 ,1 ,1/100)]
82 # total_fun = H
83 C_OPT = []
84 while True:
85 print ("diff = ",perc_diff (H, total_fun ))
86 H = total_fun
87 print ("opt=",H. index (np. nanmax (H[:])))
88 total_fun = []
89
90 total_C = []
91 G=H[int (100∗ x_optimal )-1]/(1+ x_optimal )∗ ∗ (1- gamma )
92 for t in np. arange (0 ,1 ,1/100):
93 print (t)
94 fun_v =[]
95 C = []
96 for i in np. arange (0.01 ,1.001 ,1/100):
97 for j in np. arange (0.01 ,1.001 ,1/100):
98 x0 = np. array ([i, j])
99 fun_v . append (H_N(x0 ,t))

100 C. append ((x0 ,t))
101 #if math. isinf (H_N(x0 ,t)):
102 # print (i,j,t)
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103 total_fun . append (np. nanmax ( fun_v ))
104 if math. isnan (np. nanmax ( fun_v )):
105 total_C . append (math.nan)
106 else:
107 total_C . append (C[ fun_v . index (np. nanmax ( fun_v ))])
108 #for i in [0 ,1 ,2]:
109 # total_fun [i] = total_fun [3]
110
111 C_OPT = total_C
112 plt.plot(np. arange (0 ,1 ,1/100) [:] ,[-np.log(-i) for i in total_fun [:]])
113 #plt.ylim ( -2260639.860577891*0.05)
114 #plt.xlim (0 ,1)
115 plt.show ()
116 print ( total_fun )
117 a = a + 1
118 if a == 50:
119 break
120
121
122
123
124 # Below is code for model with finite time horizon
125
126
127 # terminal utility :
128 terminal_utility = np. array ([(1-x)∗ ∗ (1- gamma )∗ 1/(1- gamma ) for x in np. arange (0 ,1 ,1/

100) ])
129 # terminal_utility = -np.log(- terminal_utility )
130 #plt.plot(np. arange (0 ,1 ,1/100) ,terminal_utility )
131 #plt.show ()
132 # terminal_utility = total_all_fun [0]
133 x= np. arange (0 ,1 ,1/100)
134 theta = 0
135 lmbda = 1
136 dt = 1/12
137 gamma = 6
138 v = 0.12
139 # x_optimal = 0.2
140
141 def tridiag (a, b, c, k1=-1, k2=0, k3 =1):
142 return np.diag(a, k1) + np.diag(b, k2) + np.diag(c, k3)
143
144 total_all_fun = []
145 time_t_fun = []
146 time_t_opt = []
147 time_t_index = []
148 for t in np. arange (1 ,400 ,1):
149 if total_all_fun != []:
150 terminal_utility = total_all_fun [ total_optimal . index (max( total_optimal ))]
151 total_optimal = []
152 total_all_fun = []
153 total_index =[]
154 for x_optimal in np. arange (0 ,1 ,1/100):
155 c =0.99 -0.66∗ x_optimal
156 opt_H = - 1000000000000000000000000000000
157 opt_x = np. argmax ( terminal_utility )
158 while True:
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159 temp_opt_H = opt_H
160 temp_opt_x = opt_x
161 theta = 0
162 while True:
163 # print ( theta )
164 theta = theta + h
165 #if theta >=1:
166 # break
167 T_1 = -1-dt∗ beta+ dt∗ (1- gamma )∗ (r+(1-x)∗ (( mu-r)∗ theta -c)+x∗ (v-r)-

0.5∗ gamma∗ ( sigma∗ ∗ 2∗ theta∗ ∗ 2∗ (1-x)∗ ∗ 2+psi∗ x∗ ∗ 2+2∗ x∗ (1-x)∗ psi∗ theta∗ sigma∗ rho)
) - (dt/h)∗ x∗ (1-x)∗ (c+ gamma∗ (1-x)∗ sigma∗ ∗ 2∗ theta∗ ∗ 2+v+ gamma∗ x∗ psi∗ ∗ 2) - dt∗

lmbda + (dt/h)∗ x∗ (1-x)∗ (-r-1∗ (mu-r)∗ theta + gamma∗ (2∗ x-1)∗ psi∗ theta∗ sigma∗ rho)-2∗

dt∗ 0.5∗ (1/h∗ ∗ 2)∗ x∗ ∗ 2∗ (1-x)∗ ∗ 2∗ ( sigma∗ ∗ 2∗ theta∗ ∗ 2+psi∗ ∗ 2-2∗ psi∗ theta∗ sigma∗ rho)
168 T_1 = -T_1
169 T_2 = (dt/h)∗ x∗ (1-x)∗ (c+ gamma∗ (1-x)∗ sigma∗ ∗ 2∗ theta∗ ∗ 2+v+ gamma∗ x∗ psi

∗ ∗ 2+ (0.5∗ 1/h)∗ x∗ (1-x)∗ ( sigma∗ ∗ 2∗ theta∗ ∗ 2+psi∗ ∗ 2-2∗ psi∗ theta∗ sigma∗ rho))
170 T_2 = -T_2
171 T_3 = dt∗ 0.5∗ (1/h∗ ∗ 2)∗ x∗ ∗ 2∗ (1-x)∗ ∗ 2∗ ( sigma∗ ∗ 2∗ theta∗ ∗ 2+psi∗ ∗ 2-2∗ psi

∗ theta∗ sigma∗ rho) - dt∗ (1/h)∗ x∗ (1-x)∗ (-r-(mu-r)∗ theta + gamma∗ (2∗ x-1)∗ psi∗ theta∗

sigma∗ rho)
172 T_3 = -T_3
173 G= terminal_utility [int (100∗ x_optimal )-1]/(1+ x_optimal )∗ ∗ (1- gamma )
174 H_before = terminal_utility + dt∗ (1/(1- gamma ))∗ c∗ ∗ (1- gamma )∗ (1-x)∗ ∗

(1- gamma )+dt∗ lmbda∗ G∗ (1+ x_optimal )∗ ∗ (1- gamma )
175 A = tridiag (T_3 [1:] , T_1 , T_2 [:-1])
176 H = np. linalg . solve (A, H_before )
177 H = H
178 if theta >= 1:
179 temp_opt_H = np. nanmax (H)
180 temp_opt_x = np. nanargmax (H)
181 temp_all_H = H
182 break
183 if np. nanmax (H)< temp_opt_H :
184 break
185 else:
186 temp_opt_H = np. nanmax (H)
187 temp_opt_x = np. nanargmax (H)
188 temp_all_H = H
189
190 #if theta >=1:
191 # break
192
193 if opt_H == temp_opt_H :
194 break
195
196 opt_H = temp_opt_H
197 print ( opt_H )
198 opt_x = temp_opt_x
199 opt_all_H = temp_all_H
200 print ("c=",c)
201 c = c-h
202 if c <= 0:
203 break
204
205 total_optimal . append ( opt_H )
206 total_all_fun . append ( opt_all_H )
207 total_index . append ( opt_x )
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208
209
210 time_t_opt . append ( total_optimal [ total_optimal . index (max( total_optimal ))])
211
212 time_t_fun . append ( total_all_fun [ total_optimal . index (max( total_optimal ))])
213
214 time_t_index . append ( total_index [ total_optimal . index (max( total_optimal ))])� �
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