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Abstract 
The purpose of this thesis is to investigate whether postings of collateral is an effective 

mitigation tool against counterparty risk for an interest rate swap between Bank of America 

and JPMorgan Chase in a general wrong-way risk scenario, namely the COVID-19 crisis. 

To do this, the thesis will seek to quantify the value of counterparty risk (known as CVA) 

through a two-part analysis. First, CVA is calculated on two almost identical interest rate 

swaps, the only difference being that one is collateralized, on their settlement date. This 

settlement date predates the beginning of the COVID-19 Pandemic. These CVA calculations 

are based on simulated interest rates and market data, as it would have been on the initial 

settlement date. Second, an empirical analysis back-tests these CVA calculations using actual 

data obtained from the COVID-19 Pandemic. The thesis will then compare the results and 

analyse the effectiveness of collateral.  

Throughout the thesis both the theory and importance of counterparty risk management is 

explained. Additionally, both the characteristics of interest rate swaps and the global 

derivatives market are described. This thesis will also seek to describe, model and calculate 

the components of counterparty risk: exposure, loss given default, probability of default, 

collateral calls and general wrong-way risk. The modelling and calculations will be done 

using the open source coding language, Python.  

The project concludes that collateral is a great tool for counterparty risk mitigation as it was 

able to mitigate between 49.9-53% of CVA. However, the empirical CVA remained at an 

elevated level even after collateralization. This was partially driven by a large spike in 

probability of default, which collateral was not able to mitigate. This led the thesis to 

conclude that collateral might be most effective when combined with other mitigation 

methods.  
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1. Introduction  

1.1 Introduction 
Over the past decades there has been an increase in the flow of cross-border financial 

transactions driven by institutional investors and big banks. These transactions have led to 

increased globalization of financial markets, which is happening through technological 

advances as well as financial innovations (Otmar, I. (2000) Introduction).  

A lot of benefits have been seen as a result of the globalization process, such as institutional 

investors having easier access to global investing opportunities, which in turn means easier 

access to capital for companies. Also, market participants have an easier time getting in contact 

with each other, which means possibilities of arbitrage are reduced, market efficiency is 

increased, and asymmetry of information is reduced. However, one major risk related to the 

increased globalization is that financial recessions have a much easier time turning into global 

crises (Häusler, G. (2002) Forces driving globalization). 

 

Especially the increased importance of the category of financial securities known as 

‘derivatives’ has played an important role in this trend (Otmar, I. (2000) Introduction). 

The global derivatives market is used by a wide variety of market participants such as 

sovereigns, global corporations, banks and institutional investors and has in recent decades 

grown exponentially in both size and complexity (Lindstrøm, M. D. (2013) Introduction). 

During the great recession of 2008-2009 the negative aspect of the increased financial 

globalization was seen as a US housing crisis turned into the worst global recession since the 

great depression. What enabled the initial crisis to turn into an international economic disaster 

was the use of complex derivatives without proper risk management. Especially a particular 

type of risk turned out to be very dangerous: counterparty credit risk (Gregory, J. (2015) Ch 

2). 

Because of the huge importance of derivatives on today’s economy, it is deemed important for 

anyone interested in international business to understand the risks, opportunities and drivers of 

these instruments. Therefore, this thesis will seek to analyse counterparty credit risk for the 
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most popular type of derivative1, the interest rate swap, in relation to a modern global economic 

crisis, the COVID-19 Pandemic. 

 

1.2 Problem 
Following the great recession, new regulations on the management of counterparty credit risk 

was introduced. These were the so-called Bassel III accords. The hope was that these new 

regulations would ensure that the issues the global market faced during the great recession 

would never happen again (Gregory, J. (2015) Ch 2). In the eyes of many experts, the COVID-

19 Pandemic was the first real test of the financial system and its regulations since the great 

recession (Khwaja, A. (2020)).  

 

In the months of February and March 2020, the financial markets were hit by a storm. This 

storm was the COVID-19 pandemic. As governments closed down local economies and the 

central banks cut interest rates to their zero-lower bound the financial markets experienced 

huge volatility. This was especially true for the interest rate swap market. As the international 

crisis hit the world’s economies, banks experienced substantial losses as counterparty credit 

risk increased. Usually banks would have just hedged their risk, but as the crisis hit, the 

derivatives markets experienced liquidity issues. This was especially true for the credit 

derivatives market. Thus, many of the banks’ hedges proved unable to cover the potential losses 

(Becker, L. (2020)). 

KPMG made a market study (2020) in which they warned market participants in the derivatives 

market of the risk of so-called wrong-way risk. Wrong-way risk is explained as a negative 

correlation between the credit quality of the counterparty and the exposure towards the 

counterparty2. This type of risk can enhance losses substantially and is therefore something 

market participants should always be vary of (Gregory, J. (2015) Ch 17).3 

 

 
1 Measured by notional amount (Lindstrøm, M. D. (2013)) 
2 If the negative correlation is dependent on macroeconomic factors, it is called general wrong-way risk 
(Gregory, J. (2015)) 
3 This will be further touched upon later 
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In academic literature there has been multiple articles explaining the methods for wrong-way 

risk calculation. Examples of these include authors such as G. Cespedes et al. (2010), who 

elaborated upon specific models to calculate wrong-way risk. Furthermore, A. Memartoluie, et 

al. (2016) has elaborated on much of the work of G. Cespedes et al. in relation to the Basel III 

regulations.  

However, this earlier work has primarily discussed wrong-way risk from a theoretical 

perspective, and according to an article made in collaboration with A. Aziz, B. Boetcher J. 

Gregory, A. Kreninin & IBM (2014) wrong-way risk models should often be tested through 

the use of stressed data. Therefore, it is believed that this thesis will fit well into the existing 

literature, as it will seek to apply the theory in a global crisis scenario and seek to draw 

conclusions from the results of this comparison. 

 

1.3 Research Question 
This thesis will seek to answer the following research question: 

• Is collateral an efficient mitigation method for counterparty credit risk for interest 

swaps between Bank of America and JPMorgan Chase in a general wrong-way risk 

scenario? 

This thesis will seek to answer the research question by creating a model to calculate a value 

for counterparty credit risk.4 This model will then calculate a value for two nearly identical 

interest rate swaps5 in a market scenario both with and without general wrong-way risk. Lastly, 

the results will be compared to an empirical analysis based on interest rates and credit data 

from the COVID-19 Pandemic. 

 

1.4 Methodology  
This thesis aims to describe the concept of counterparty credit risk for two interest rate swaps 

between Bank of America and JPMorgan Chase both mathematically, theoretically and 

practically. To describe the concept as well as answer the research question, this thesis uses a 

variety of methods, which will be discussed in this section.  

 
4 This value is known generally as CVA (Gregory, J. (2015)). This will be discussed later 
5 The only difference will be that one swap is collateralized, and one is uncollateralized 
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To understand the concepts and key terms of counterparty credit risk, the book “The xVA 

Challenge” by J. Gregory (2015) is used. Gregory is a very acknowledged author in the field 

of counterparty credit risk, and it does therefore make sense to build the theoretical 

explanations around his work. Additional authors are used for deep dives into specific subjects 

in the area of counterparty credit risk. Especially wrong-way risk is described using authors 

such as G. Cespedes et al. (2010) and A. Memartoluie et al. (2016).  

Furthermore, the thesis will seek to explain the COVID-19 Pandemic from a financial markets’ 

point-of-view using news articles as well as reports made by known companies such as KPMG 

and Standard & Poor’s.  

 

The analysis will be presented as a two-part case study: the CVA modelling analysis and an 

empirical analysis. Initially the CVA model will be constructed based on assumptions from the 

previously mentioned theory as well as historical data from The Federal Reserve Bank of St. 

Louis and Bloomberg.  

The CVA model for an interest rate swap is generally build around three steps:  

1) Interest rate simulations 

2) Component calculations 

3) CVA calculation 

 The first step of the CVA model creation is a simulation of interest rate movements used in 

later calculations. The simulations of the interest rate are performed using the so-called Vasicek 

model. The Vasicek model is a stochastic model framework that can simulate interest rate 

movements based on a single market risk factor.  

The second step of the CVA model is the calculations of the components: expected exposure, 

loss given default, probability of default, collateral and wrong-way risk. Here the previously 

simulated interest rates, market data and the assumptions based in the theory will be used. To 

calculate wrong-way risk this thesis will seek to calculate the so-called alpha multiplier, which 

is a multiplier that is added on top of the expected exposure. 

Lastly, the components will be inserted into the CVA formula and CVA will be calculated for 

both swaps. 
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After the creation of the CVA model, this model will be tested using real data during the 

COVID-19 Pandemic. Thus, the empirical analysis is based on actual interest rate 

developments, whereas the first part of the analysis was based on interest rate simulations. This 

is done so as to stress test collateral as a mitigation method during the biggest most volatile 

period for the financial markets since the great recession.  

 

The CVA model and the following empirical analysis will both be created and performed using 

the programming language Python. Usually when talking CVA modelling there are three 

standard tools that can be used: Excel, R Studio and Python. Excel was initially discarded as a 

viable tool in this thesis because of the limitations of the program. When setting up a CVA 

model it is a necessity to be able to run tens of thousands of simulations, and this would not be 

viable via Excel on a normal computer. The handling of such large datasets is much easier 

through a programming language such as R Studio or Python. The reason Python was selected 

over R Studio is based on the strengths of each language. R Studio is an excellent tool for 

statistical tasks, whereas Python is better suited for machine learning and simulations. 

Therefore, Python is used to carry out all data management as well as calculations in this thesis. 

All python code has been written by the author, however, source code from locations such as 

GitHub has been used for specific technical solutions and syntax corrections. 

 

1.5 Delimitations 
CVA modelling is a very complex financial modelling task. Therefore, it is important to find 

the right balance between simplicity and accuracy of results. It is not realistic for a master’s 

thesis to seek out to create a fully functional market standard CVA model incorporating wrong-

way risk. However, that does not mean that it is not possible to create a model that yields 

interesting results for the purpose of this thesis. This thesis will seek to build a CVA model 

with a focus on aligning with general market practice whenever possible. However, simplifying 

assumptions has been made to assure completion of the model.  

CVA is generally bilateral in nature since exposure can turn negative as well as positive and 

both the party and the counterparty are at risk of default. This thesis calculates CVA as 

unilateral, which means the party only need to consider the counterparty’s credit risk and not 

their own. This is a major simplification, but it does not directly hinder the thesis in analysing 
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and answering the research question. The unilateral CVA assumption basically means that the 

party, whose perspective this thesis takes is risk-free, which of course is not realistic, but a 

necessity for simplifying purposes. 

In this analysis rehypothecation and segregation are ignored.6 This assumption is fair as two 

almost identical interest rate swaps7 are analysed with the exclusion of unnecessary outside 

factors. This simplifying assumption means that it is also natural to ignore all other swaps in 

the portfolio of the banks. This is of course unrealistic, but without the exclusion of 

rehypothecation and segregation and the choice to ignore additional financial transactions of 

the banks, unnecessary noise would cloud the analysis, which in turn would cloud the results.  

Furthermore, both collateral funding and operational costs are assumed to be zero. There are 

so-called funding costs associated with the posting of collateral, which makes it less attractive 

to initiate collateralized positions. However, the inclusion of funding costs would be a lengthy 

process that in the end does not affect the CVA estimate but is more of a reporting issue. The 

same can be said for operational costs that are associated with how often collateral is posted. 

The more often collateral is posted the more expensive it is, however, again this does not affect 

the CVA estimate, and will therefore be set to zero to simplify the model.  

Lastly, the incorporation of wrong-way risk in the CVA model will be done through the copula 

approach. The copula approach is the simplest modelling approach for wrong-way risk and is 

therefore not generally seen as market practice. However, based on the complexity of the other 

modelling approaches, the copula approach was deemed the most suitable for this thesis.   

 

1.6 Structure of Thesis 
This section will give a brief description of the structure and the content of each major section 

of this thesis following the introduction. 

This thesis wills start off with a section describing the theory and the practical case. Here the 

initial theoretical foundation for the thesis is introduced and elaborated upon. The over-the-

counter market is introduced, interest rate swaps and how to value them is described. Also, the 

two interest rate swaps used in this thesis is introduced. Furthermore, one of the key terms, 

‘wrong-way risk’, is explained. Lastly, an in-depth explanation of the COVID-19 Pandemic’s 

 
6 Rehypothecation and segregation will be explained in greater detail later 
7 the only difference being one is collateralized, and one is uncollateralized 
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implications for the global interest rate swap markets as well as the presence of general wrong-

way risk is explained. 

Afterwards comes the counterparty credit risk section. This section further elaborates upon the 

theory from the previous section but moves further in-depth. The three components of 

counterparty credit risk (exposure, probability of default and loss given default) are explained. 

Then collateral as a mitigation method for counterparty credit risk is introduced and described. 

Lastly, the value of counterparty credit risk (CVA) is defined both theoretically and 

mathematically and wrong-way risk is incorporated into the CVA formula. 

The thesis then moves on to the component modelling & calculations section. Here the interest 

rates are simulated, and the three counterparty credit risk components are modelled. 

Furthermore, a model for general wrong-way risk is created and the alpha multiplier is 

calculated for all periods of the swaps’ durations. 

Then the CVA calculation section follows. Here the model components are combined in a 

Python script and CVA is calculated for both swaps with and without the presence of general 

wrong-way risk. Then the results are compared, and initial conclusions are drawn. 

After this it is time for the empirical analysis. Here the COVID-19 data for both interest rate 

movements and credit market movements are introduced. Then the empirical CVA will be 

calculated and the empirical results discussed and explained. Lastly, the modelled results will 

be compared with the empirical results and the usability of the CVA model can thereby be 

discussed. 

Then comes the discussion section. Here points of critique will be discussed. Also, the main 

limiting delimitations for the thesis will be touched upon. Also, methods to expand upon the 

thesis and ideas for future research will be discussed. All of this will be discussed relative to 

the results of the analysis. 

Finally, the conclusion will summarize the findings and conclude upon the research question. 
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2. Theory & Practical Case 
This section will describe the basic theory that supports and lays the foundation for the later 

sections of this thesis. Key concepts such as the derivatives market, interest rate swaps and 

wrong-way risk will be introduced and explained in a simple way that enables the introduction 

of future complexity. Furthermore, the impact of COVID-19 on financial markets and the 

monetary reaction by central banks will also be introduced. 

 

2.1 The Derivatives Market 
This section will describe the derivatives markets as well as touch upon different types of 

derivatives and their associated risks.  

 

2.1.1 Types of Derivatives 

A derivative is a financial contract to either make/receive payments based on the movements 

in an underlying asset or to make/receive a delivery of an underlying asset. Basically, a 

financial derivative is a synthetic position in an asset. This means you, as an owner of a 

derivative, do not actually own the underlying asset, but your position moves based on the 

moves of the underlying. Some financial contracts are exercisable, which means that at a time 

of expiry the holder of the derivative can choose to either buy or sell the underlying, thus 

becoming the owner of the underlying asset (Gregory, J. (2015) Ch 3). Market standard for 

trading derivatives is that they are traded “at market”. This means that the net present value of 

the derivative is zero. This is done to avoid credit risk. If you initiated a derivatives position 

with a positive net present value, one side would have to make an upfront payment against 

receiving a positive expected cashflow and is thus immediately exposed to the other side 

defaulting. Another reason for initiating trades with a net present value of zero is that making 

an upfront payment generates funding costs either through borrowing unsecured money and 

paying a borrowing spread or using money that could have been used elsewhere (Lindstrøm, 

M. D. (2013) Ch 3).   

In the last couple of decades, the derivatives market has grown a lot in both size and 

complexity. One of the main drivers behind this is the use of derivatives as hedging tools 

(Gregory, J. (2015) Ch 3). When market participants open derivative positions, they have to 

monitor a key factor: leverage. Leverage is one of the biggest potential threats in the derivatives 
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market, as only a fraction of the notional of a derivative is needed to trade said derivative. This 

means that the derivative can quickly rack up large losses if the market moves against the owner 

(Gregory, J. (2015) Ch 3). Even before the great recession, but especially after, it has become 

increasingly important to monitor leverage and ensure capital requirements are met. This has 

been done through extensive regulations – most notably the Basel Accords (Basel I, Basel II, 

Basel III) (Gregory, J. (2015) Ch 1 & 2). Usually the holder of a derivative has a counterparty, 

which means a party on the other side of the trade. In case the counterparty defaults, the 

derivative contract is voided. The risk of the counterparty defaulting is called counterparty 

credit risk, or just counterparty risk (Gregory, J. (2015) Ch 3). This thesis will go into greater 

detail on counterparty risk in section 3 of this thesis.  

 

2.1.2 The Over-the-counter Market 

There exist two markets for derivatives trading. The first one is the exchange-traded market 

and the second is the over-the-counter (OTC) market. The exchange-traded market consist of 

financial centers (exchanges), were parties are able to trade standardized products such as 

futures and options. Exchanges increase market efficiency and liquidity by making the market 

easier to enter and exit (Gregory, J. (2015) Ch 3). The OTC market is a more complicated 

structure. The contracts traded on the OTC market are private, non-reported contracts that are 

usually initiated between a party and a counterparty. This basically means that when you 

engage in a derivatives trade in the OTC market you are exposed to counterparty risk. The OTC 

market holds a lot of different products that are generally less standardized than the exchange-

traded products. The fact that the OTC market does not trade on exchanges also mean that the 

market is typically less liquid and less efficient (Gregory, J. (2015) Ch 3). However, the OTC 

derivatives market is by far the largest derivatives market measured in notional amount, with 

over 91% of all notional being traded OTC in 2014 (Gregory, J. (2015) Ch 3). The OTC market 

contains derivatives with many different underlying assets such as fixed income, forex, 

commodities, credit derivatives, and equities. Fixed income derivatives are by far the largest 

part of the OTC derivatives market and will be the main focus of this thesis (Lindstrøm, M. D. 

(2013) Ch 3). In the below figure the size of the derivatives market spread out among types of 

underlying from 1998 to 2015 is seen:  
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Figure 1: The OTC derivatives market by asset class. Source: Fixed Income Derivatives Lecture 1 

Derivatives on the OTC market can either be collateralized or uncollateralized. This in short 

means that fluctuations in the value of the derivative can either be compensated by the losing 

party with cash or securities (collateralized), or not (uncollateralized) (Gregory, J. (2015) Ch 

3). The uses of collateral will be touched upon later in this thesis. 

 

2.1.3 Application of OTC Derivatives 

All of the different market participants have different reasons for their presence in the OTC 

market. By generalizing a bit, it is possible to create two different roles that parties in the OTC 

market can take – investors and speculators. Speculators usually take a position in the market 

to “gamble” on a movement in the underlying. This could be a hedge fund that believes interest 

rates will fall and thus enters into an interest rate receiver swap, were the hedge fund will 

receive a fixed rate and pay a floating rate. This means that if the rates fall the hedge fund pays 

less to receive the fixed rate, thus making a profit. Investors usually take a position in the OTC 

market as a way to remove unwanted risk or hedge specific positions (Tuckman, B. & Serrat, 

A. (2012)). This can include corporates that has a floating loan and fears rate hikes. The 

corporate will buy an interest rate payer swap, were the corporate will pay a fixed rate and 

receive a floating rate. By entering into this swap position the corporate has effectively 

converted the floating rate loan to a fixed rate loan thus removing interest rate risk. It is possible 

to hedge a wide variety of risk via derivates, such as interest rate risk, FX risk, commodity risk, 

credit risk and more (Gregory, J. (2015) Ch 3).  
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2.1.4 The Dangers of Derivatives 

Derivatives are, as previously mentioned, very helpful in hedging and risk-removing. However, 

derivatives carry significant risk themselves. These include market risk, credit risk, operational 

and legal risk, liquidity risk, and counterparty risk. This thesis will primarily be focused on 

counterparty risk, but other risk types will be briefly mentioned when they are relevant. An 

example of the effect of excessive counterparty risk is the collapse of Lehman Brothers. 

The American investment bank Lehman Brothers filed for a chapter 11 bankruptcy after 

suffering heavy counterparty credit losses as counterparties could not pay the collateral calls 

that followed a downgrade in their credit ratings during the great recession. As will be 

explained later, the size of collateral postings can sometimes be determined based on credit 

ratings. The excessive risk taking, and lack of efficient risk management led to the collapse of 

Lehman Brothers, which now stands as a terrifying example of the lack of counterparty risk 

management (Gregory, J. (2015) Ch 3).  

 

2.2 Interest Rate Swaps 
This section will seek to introduce and explain the OTC derivative type known as an interest 

rate swap. The interest rate swap will be the instrument that the calculations of this thesis will 

be based around. Therefore, this section will seek to introduce some important interest rate 

concepts, define the derivative, showcase the valuation method of the derivative as well as 

introduce the specific swaps used in this thesis. 

 

2.2.1 Interest Rate Concepts 

This section will seek to introduce the concept of the so-called ‘discount factor of time’, which 

is used to a large extent in later calculations. 

The explanation of this factor begins with the assumption of a risk-free zero-coupon bond that 

pays its face value at maturity time !. The price of said bond at time " ≤ ! is denoted by 

$(", !). The price of the bond at maturity is logically $(!, !) = 1, which then means that 

$(", !) is the discount factor of time at time " for all cash flows at time !. This can be written 

as (Missouri University of Science & Technology. (n.y.)): 
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*+(,,-)(-.,)$(", !) = 1 

Where /(", !) is the continuously compounded spot interest rate.  

Because of the above formula the relation between the spot interest rate and the price of a zero-

coupon bond can be explained by (Missouri University of Science & Technology. (n.y.)): 

$(", !) = *+(,,-)(-.,) 

Where the continuously compounded spot interest rate is defined by (Missouri University of 

Science & Technology. (n.y.)): 

/(", !) = −
log	($(", !))
(! − ")

 

The last two important concepts to briefly explain is the simply compounded spot interest rate 

and the forward rate. The simply compounded spot interest rate is the constant rate an 

investment has to have in order to produce a single unit of cash at time ! (Missouri University 

of Science & Technology. (n.y.)): 

5(", ", !) =
1

! − "
∗ 7

1
$(", !)

− 18 

The forward rate is an interest rate that can be locked in today for a cash flow in a future time 

period. Forward rates are generally seen as a way to view future beliefs in the movement of the 

spot rate and is therefore often used as a forecasting tool. The simply compounded forward rate 

is given by (Missouri University of Science & Technology. (n.y.)): 

5(", !, 9) =
1

9 − !
∗ :
$(", !)
$(", 9)

− 1; 

The above formulas for the forward rate and the spot interest rates are not used directly in this 

thesis, but the rates they represent are used in future calculations, which is why it is briefly 

explained here. The calculation of the price of the zero-coupon bond will be touched upon 

again in section 4. 

 

2.2.2 Definition   

A swap is a bilateral OTC derivatives contract were two parties agree to exchange cashflows 

based on the movements in an underlying asset. For an interest rate swap the underlying asset 

is a specific interest rate. An interest rate swap has two so-called “legs”, one leg for each 
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party/type of cashflow. One leg pays cashflows based on the movements in the underlying asset 

(a floating leg based on a floating rate). The other leg pays cashflows based on a fixed rate (a 

fixed leg based on a fixed rate). The parties “swap” their cashflows – fixed for floating/floating 

for fixed (Hull, J. C. (2018) Ch 7). This is explained graphically in the figure below: 

 
Figure 2: Interest rate swap depicted. Source: Own creation 

Interest rate swaps can be either ‘payer swaps’ or ‘receiver swaps’ and are named based on the 

fixed leg. If you are the one paying a floating rate and receiving a fixed rate, you have entered 

into a receiver swap. On the other hand, if you are paying a fixed rate and receiving a floating 

rate, you have entered into a payer swap. The most popular interest rate swaps are abiding by 

some common conventions, known as the interest rate swap conventions. These conventional 

swaps are also known as plain vanilla swaps. The conventions that determines whether a swap 

is plain vanilla usually focus around the way days are counted, what to do when a payment date 

falls on a weekend and when payments should be made (Lindstrøm, M. D. (2013) Ch 3). These 

conventions can be seen in the below table for different types of interest rate swaps: 

 
Table 1: Interest rate swap conventions. Source: Lindstrøm, M. D. (2013) 
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As mentioned, an interest rate swap has an underlying rate, which determines the cash flows 

being paid on the floating leg. As can be seen in table 1, most swaps have historically followed 

the so-called Libor rates (London Interbank Offered Rate), which are the rates that so-called 

‘Libor panel banks’ can borrow funds to from each other (Hull, J. C. (2018) Ch 4). The Libor 

rate is slowly in the progress of being replaced, but for the sake of simplicity and data access, 

this thesis will assume that the floating rate for the swaps in this thesis will be a Libor rate 

(Cox, J. (2020)).  

 

2.2.3 Interest Rate Swap Valuation 

An interest rate swap is, as with most OTC derivatives, usually initiated with a net present 

value (NPV) of zero. However, during the existence of the swap, changes in the floating rate 

will affect the cashflows on the floating leg, which means the value of the entire swap will 

change. To monitor these value changes, it is important to know how to valuate an interest rate 

swap. There are two ways to perform this valuation, the first method is by treating the swap as 

a difference between a floating rate bond and a fixed rate bond, the second regards the swap as 

a portfolio of forward-rate agreements (FRAs). This thesis will focus on the valuation method 

that treats the swap as the difference between two bonds (Lindstrøm, M. D. (2013) Ch 3). 

 

This method dictates that a receiver swap can be regarded as a long position in a fixed rate 

bond and a short position in a floating rate bond: 

<=>?@ = ABCD − ABEF?, 

Where <=>?@ is the value of the swap, ABCD is the value of the fixed rate bond and ABEF?, is the 

value of the floating rate bond (Hull, J. C. (2018) Ch 7). 

The method for finding the value of the swap is now to value each of the legs, i.e. each of the 

bonds separately. To value the floating leg, the following formula is used: 

$<,
BEF?, = G HC

BEF?,I(", !C.J, !C)KC$(", !C)
L

CMNOJ

 

Where $<,
BEF?,

 is equal to ABEF?,, HC
BEF?,

 is the payment tenor, I(", !C.J, !C) is the floating rate 

(defined as 5(", ", !) in section 2.3.1), KC is the notional amount and $(", !C) is the discount 
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factor of time explained in section 2.3.1. Since the floating rate is calculated on the same zero-

coupon curve as the cash flows are discounted on, $<,
BEF?,

 is a telescoping series. A telescoping 

series is a mathematical series in which all terms cancel out except the first and last term. 

Telescoping series are generally very difficult to explain, so this thesis will not seek to deep 

dive into an explanation of this phenomenon. However, since this is a telescoping series, 

$<,
BEF?,

 can be simplified to the following expression (Aabo, L. P. (2019)): 

$<,
BEF?, = KC(1 − $(", !C) 

For the fixed leg, the following formula is used: 

$<,
BCDPQ = G HC

BCDPQRKC$(", !C)
L

CM=OJ

 

Where $<,
BCDPQ

 is equal to ABCDPQ, HC
BCDPQ

 is the payment tenor, R is the fixed rate KC is the 

notional amount, and $(", !C) is the discount factor of time.   

Now it is possible to calculate the value of the swap from the perspective of the receiver 

(Lindstrøm, M. D. (2013) Ch 3): 

$<,SPTPCUPS = G HC
BCDPQRKC$(", !C)

L

CM=OJ

− KC(1 − $(", !C)ó 

$<,SPTPCUPS = KC ∗ V G HC
BCDPQR$(", !C)

L

CM=OJ

− W1 − $(", !C)XY 

 

2.2.4 Interest Rate Swaps in This Thesis 

This thesis will seek to answer the problem formulation and research questions using two 

nearly identical interest rate receiver swaps. The only difference between the two swaps will 

be that one swap will be collateralized and the other will be uncollateralized (this will be 

explained in greater detail later). The two swaps will be assumed to be initiated between Bank 

of America (BAC) and JPMorgan Chase (JPM). with this thesis taking the point of view of 

BAC with JPM as the counterparty. The reason for the choice of banks is because they are both 

Libor panel banks, which means they are both able to lend interbank to the Libor rate. The 

following table displays the two swaps used in this thesis: 
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Table 2: Market instruments. Source: own creation 

As can be seen in the table above the swaps are receiver swaps with notional values of 

100,000,000 USD, a runtime of two years with start from January 6th, 2019. The floating rate 

used for the swaps is the 3-month USD Libor rate.  

 

The swaps are set to K$< = 0, which means that future cashflows (both fixed and floating) 

have been discounted to time 0 and $<,SPTPCUPS = 0. The floating cashflows have been 

calculated using forward rates for the 3M USD Libor rate. This is done as the forward rate, as 

previously mentioned, displays the market consensus of future interest rate movements.  

It is seen that the above swaps are not plain-vanilla USD swaps as that would have entailed 

that floating payments be made every 3 months, whereas fixed payments be made every 6 

months. The reason for both payments being made every 6 months is to avoid asymmetry in 

the payments. Since this thesis seeks to analyze general wrong-way risk and the way collateral 

can be used to mitigate said risk, it is deemed most interesting to remove this payment 

asymmetry and thereby remove unnecessary “noise” from the calculations. 

 

2.3 Wrong-way Risk 
In this section wrong-way risk will be introduced and explained. This section is very important 

as wrong-way risk is a key concept in this thesis and will shape the entire analysis and 

conclusion. This section will seek to first give a general definition of the term followed by a 

deep-dive into two different kinds of wrong-way risk: specific and general. Lastly this section 

will introduce some of the modelling challenges usually faced when trying to model wrong-

way risk. 

 

Instrument Swap 1 Swap 2
Type Receiver Receiver
Settlement date 06/01/2019 06/01/2019
Maturity 2Y 2Y
Notional 100,000,000.00 100,000,000.00   
Fixed rate 2.0475% 2.0475%
Fixed tenor 6M 6M
Float rate 3M LIBOR 3M LIBOR
Float tenor 6M 6M
CSA Yes No
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2.3.1 Definition 

The definition of wrong-way risk (from now on just WWR) is explained as a negative 

correlation between two risk management components: exposure and credit quality. Exposure 

is the loss incurred in the event of the counterparty defaulting. Credit quality is the ability of a 

counterparty to pay their credits and is often explained through the probability of counterparty 

default (Gregory, J. (2015) Ch 17). This thesis will dig deeper into both exposure and credit 

quality later in this thesis.  

The definition means that when the credit quality of the counterparty decreases, which means 

the probability of counterparty default increases, the exposure, i.e. the loss incurred in case of 

default, increases (Gregory, J. (2015) Ch 17). Obviously, this is a toxic scenario that has to be 

avoided whenever possible. In academic literature WWR is generally ignored, but in practice 

WWR can have huge implications from a counterparty risk perspective. There also exists an 

opposite term to WWR called right-way risk. Right-way risk is a positive correlation between 

credit quality and exposure and is therefore a positive term (Gregory, J. (2015) Ch 17). This 

thesis will, however, only focus on WWR. There exist two types of WWR: specific and general, 

which will be explained next. 

 

2.3.2 Specific Wrong-way Risk 

specific wrong-way risk (from now on SWWR) can be defined as a type of WWR driven by 

factors relevant to the specific counterparty or market. SWWR is basically when a counterparty 

or industry has a specific situation that leads to WWR in a derivatives position for the party. It 

is very difficult to model and capture SWWR as it obviously varies greatly from counterparty 

to counterparty. Unless you have extensive knowledge related to the specific industry or 

counterparty, it is very hard to find any correlation that can explain the SWWR (Gregory, J. 

(2015) Ch 17). SWWR will not be discussed further in this thesis, as it does not cover the 

desired type of WWR that is sought analyzed. 

 

2.3.3 General Wrong-way Risk 

General wrong-way risk (from now on GWWR) is a type of WWR driven by macroeconomic 

factors that affect the entire economy. This type of WWR is usually present during major 

economic crises. GWWR relationships are often captured through historical data and can be 

incorporated through models. However, the capturing of GWWR through historical data is a 
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very tedious and complicated task, so even though GWWR is easier to capture than SWWR, it 

is still not easy to locate. Since this thesis will seek to evolve around the COVID-19 Pandemic 

and its implications on interest rate derivative markets, GWWR is the preferred type of WWR 

to focus on (Gregory, J. (2015) Ch 17). 

 

2.3.4 Wrong-way Risk Modelling Challenges 

There are multiple challenges related to the modelling of WWR. One of these is the often-

encountered issue that historical data does not capture WWR correctly. Since WWR is so 

difficult to capture in general, it often requires substantial correlation analysis, and even then, 

it is not guaranteed that the actual relationship is found (Gregory, J. (2015) Ch 17).  

Furthermore, the misspecification of relationships is also an often-incurred challenge. This 

misspecification means that the relationships between different factors that cause WWR may 

be wrong – basically it is very difficult to prove independency between factors in some cases 

and dependency between factors in other cases (Gregory, J. (2015) Ch 17). 

At last the direction of WWR is often also a challenge for models. This is best explained 

through an example: if interest rates decrease, it often means that the economy is in a financial 

crisis with widening credit spreads and increasing default rates. However, sometimes an 

adverse credit environment can be possible, thus implying a reverse direction of WWR than 

what would be expected (Gregory, J. (2015) Ch 17). 

This thesis will seek to create relatively simple assumptions to minimize the above-mentioned 

modelling challenges an avoid having to create complex analytical models to capture 

relationships in historical data.  

 

2.4 Practical Case: The COVID-19 Pandemic 
The COVID-19 Pandemic started out with an unknown branch of pneumonia and ended up as 

a global pandemic leading to lockdowns on a massive scale with huge economic repercussions 

on both a macroeconomic as well as a microeconomic scale (Taylor, D. B. (2021)). This thesis 

will seek to compare the initial analysis with an empirical analysis based on financial data from 

the COVID-19 Pandemic. Therefore, it is deemed important to highlight the effect of the 

COVID-19 Pandemic on the interest rate swap market, the intervention from central banks and 

the presence of GWWR during COVID-19. If one wishes to read more in depth regarding the 
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progress of the COVID-19 Pandemic, as well as the governmental responses, see appendix 1 

and 2 respectively.  

 

2.4.1 Initial Effects on The Interest Rate Swap Market    

The COVID-19 Pandemic proved to be the biggest challenge for OTC market liquidity since 

the Great Recession. Traders expected a rate cut, but it came earlier than expected on March 

3rd. This early rate cut let to an increased sell-off in risk assets, which was seen from the 

volumes on interest rate swap markets that went from an average of 250 billion USD per day 

to a peak of a staggering 720 billion USD on March 4. After March 4 daily volumes stayed at 

an elevated level of around 400 billion USD before spiking again on March 13 with a daily 

volume of around 600 billion USD. These increased volumes were especially seen for short 

term swaps such as 2Y and 5Y swaps (Khwaja, A. (2020)). Even though the increase in daily 

volumes intuitively makes you think that it means liquidity held up, the case is not that simple. 

According to a global study made by the International Swaps and Derivatives Association 

(2020) 96% of UK-based swap market actors reported a decline in market liquidity before 

central bank intervention. This can be seen in the below figure: 

 
Figure 3: IRS liquidity during the COVID-19 crisis. Source: ISDA (2020) 

The participants also reported that even though the pandemic was the main driver of the crisis, 

the expected economic impact was the main force behind the increased volatility and decreased 

liquidity. Market actors from both the buy-side and the sell-side pointed to two reasons behind 

the disruption in liquidity. These were 1) a reduced risk appetite from banks and 2) corporates 

in sudden need of short-term funding as revenue decreased (ISDA. (2020)). The reduced risk 

appetite from banks is explained in the study as being a product of the reforms implemented 

after the great recession to ensure a larger degree of financial stability during recessions. 

However, market actors did not just criticize the regulations on the banks, they also felt that 

the reforms led to a safer and stronger banking system during COVID-19. So even though the 

banks were not able to intervene and take on risk, thus fueling liquidity, in the same way they 

used to, they were better suited to deal with the credit losses suffered during COVID-19 (ISDA. 

(2020)).  
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So, to recap, the interest rate swap market experienced initial liquidity issues and increased 

volatility due to the economic fallout of the COVID-19 Pandemic – this was especially true for 

shorter term swaps. The decrease in credit quality of market actors, the sudden need for short-

term funding as well as the lack of risk-taking from global banks due to reforms are believed 

to be the main driving forces behind the liquidity issues and volatility increase experienced 

during the initial stages of the economic crisis. 

 

2.4.2 Global Monetary Intervention  

Seeing the initial consequences of the COVID-19 Pandemic, global central banks were quick 

to act in the biggest act of monetary intervention in at least the last quarter of a century. The 

four largest central banks in key currencies (Japanese Yen, Euro, US dollars and British 

Sterling) expanded their balance sheet with 10 points of GDP, which can be seen in the figure 

below: 

 

Figure 4: Total assets on key central bank balance sheets. Source: Standard & Poor’s 1. (2020) 

To look at this in relation to the number of USD, it means that in four months the four central 

banks had injected 2.4 trillion USD into the economy (Standard & Poor’s 1. (2020)).  

The intervention started with the central banks using traditional monetary methods such as rate 

cuts. All the four central banks cut their rates to their effective zero lower bound, which for the 

FED meant a 150-bps rate cut. As explained previously, the early rate cuts were one of the 

factors that are believed to have spooked traders and thus led to liquidity constraints. To deal 

with this the central banks added liquidity to the market by increasing the size and duration of 

funding operations as well as easing credit conditions for certain industries to incentivize bank 

lending and risk-taking. This proved to not be effective enough, so the central banks began the 
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aforementioned major increase in their balance sheet. This asset purchase program led to the 

central banks even buying corporate assets as well as debt of so-called fallen angels (Standard 

& Poor’s 1. (2020)).8  

The monetary intervention was generally deemed relatively successful – especially in the US 

– were bond issuance across all credit ratings were increased compared to 2019, meaning that 

corporations in need of short-term funding was able to obtain said funding. The reason that the 

global monetary intervention is only deemed relatively successful is because one of the biggest 

threats to the current market situation in 2021, according to S&P, is if central banks decide to 

stop their monetary programs (Standard & Poor’s 1. (2020)). 

 
Figure 5: Money supply year-on-year in %. Source: Standard & Poor’s 1. (2020) 

Furthermore, the vast increase in the money supply – especially in the US – is also very 

worrying in regard to inflation (see the figure above). So, there may be repercussions, such as 

the risk of inflation, in the not-too-distant future (Standard & Poor’s 1. (2020)). However, 

according to the ISDA study mentioned earlier, 67% of study participants found the FED’s 

intervention to be effective in curving market liquidity issues and increased volatility (ISDA. 

(2020)). 

 

 

 
8 A fallen angel is a corporation with a credit rating being downgraded from higher than BB+ to BB+ or below 
(Standard & Poor’s 1. (2020)) 
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2.4.3 GWWR during COVID-19 

The COVID-19 Pandemic has been hitting banks (such as Bank of America & JPMorgan 

Chase) and other lenders hard. As many industries has had their revenue streams either reduced 

or cut completely, their risk of defaulting on loans has increased. Therefore, banks have had to 

set aside capital buffers to bear the brunt of the expected credit losses. This tendency of industry 

specific risk and increased economic risk is noted in the US BICRA score, which shows a 

negative trend for the US economy (Standard & Poor’s 2. (2020)): 

 

Figure 6: BICRA scores and economic and industry risk trends. Source: Standard & Poor’s 2. (2020) 

The BICRA (Banking Industry Counter Risk Assessment) score is a score of 1-10 ranging from 

the lowest risk banking systems to the highest risk banking systems. Generally, it is seen in the 

above figure that the risk to the US banking system is still generally low, but the COVID-19 

Pandemic has started a negative trend for US banks. S&P furthermore expects that the year 

2021 will not prove any easier for banks, as credit recoveries are not expected at this point in 

time (Standard & Poor’s 2. (2020)). 

Credit conditions has, as previously mentioned, been an ongoing concern during COVID-19 

as default rates have been at its highest level since 2009 with the US leveraged loan index at 

4.48% in October 2020. Credit conditions will probably also be an issue in 2021 as the 

projected default rate for 2021 edges higher to 5.47%. It is still a much lower default rate than 

during the great recession, were it peaked at 10.81% (Standard & Poor’s 3. (2020)). This can 

be seen in the figure below: 
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Figure 7: Historical leveraged loan default rates (US). Source: Standard & Poor’s 3. (2020) 

Since the great recession, banks have held substantial capital buffers intended to ensure strong 

balance sheets during the next global crisis. However, even with stronger balance sheets global 

banks still faced a revision of their credit ratings, with multiple banks facing either direct 

downgrades our negative outlook revisions as seen in the below figure (Standard & Poor’s 2. 

(2020)): 

 
Figure 8: Weekly distribution of banks affected by COVID-19. Source: Standard & Poor’s 2. (2020) 

The substantial fear of credit losses suffered by banks that was manifested in the negative 

change in credit ratings has led to a widening of credit default swap spreads, which combined 

with a falling interest rate environment has given rise to fears of WWR in the market according 

to a market outlook by KPMG (KPMG. (2020)). 

Now that the possibility of WWR in the market during COVID-19 has been introduced, this 

thesis will discuss how this WWR may exist for the specific instruments in this thesis.  
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When a receiver swap experiences a decrease in interest rates, the floating payments decrease 

while fixed payments remain fixed. This leads to an increase in the present value of the receiver 

swap, which also leads to an increase in the exposure. The exposure is, as briefly mentioned, 

the total amount of money the party stands to lose if the counterparty defaults (for more 

information see section 3.1.1).  

To recap, the definition of WWR was that there exists a negative correlation between exposure 

and credit quality. It was explained earlier that due to credit losses sustained as well as an 

increase in expected credit losses, credit outlooks for bank turned negative thus leading to an 

increase in the risk of default. This combination of increased exposure due to falling interest 

rates as well as a decreased credit quality for banks such as JPMorgan Chase, aligns well with 

the definition of WWR. Since this assumed WWR is created by macroeconomic events it is 

possible to categorize it as GWWR. The presence of GWWR during the COVID-19 Pandemic 

will be further elaborated on in the empirical analysis, when data relevant to the specific swaps 

and the specific counterparty (JPMorgan Chase) is analyzed. 

 

3. Counterparty Credit Risk 
When a market participant enters into an OTC derivative position it is usually a bilateral 

contract. This means that the position will have a counterparty on the other side. This can best 

be explained as a zero-sum game, in which two actors “play” against each other. If one side of 

the OTC derivative increases, it must mean that the other side decreases. If the counterparty 

fails to fulfil the contractual agreements, which for OTC derivatives usually are agreed upon 

exchanges of future cashflows, it usually leads to a loss for the party. The risk of the 

counterparty failing to fulfil these contractual agreements is called counterparty credit risk (or 

simply “counterparty risk”). Counterparty risk is mainly present in two markets: the OTC 

derivatives market and the securities financial transactions market (Gregory, J. (2015) Ch 4). 

This thesis focusses solely on the OTC market and will not spend any time explaining the 

securities financial transactions market. 

To understand counterparty risk, it is important to first understand credit risk. Traditionally 

when credit risk is explained, it is assumed to be the same as lending risk. Lending risk is 

characterized through two factors: the notional amount at risk, which is usually known 

beforehand, and a unilateral risk profile. However, counterparty risk varies a lot from this 
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traditional definition. Counterparty risk usually has a very uncertain notional amount at risk, 

and since the contract is bilateral the value of the contract can move to be both positive and 

negative (Gregory, J. (2015) Ch 4).  

This section will focus on explaining the components that make up counterparty risk, 

explaining the mitigation method of collateral and introduce the so-called credit value 

adjustment (CVA) through a definition as well as a mathematical derivation. 

 

3.1 Components 
Counterparty risk consists of three main components that all play an important role. The three 

components are the exposure, the probability of default and the loss given default. All three 

components will be explained in the following sections. 

 

3.1.1 Exposure 

A key determinant in the calculation of counterparty risk is the exposure. Exposure represents 

the core value that may be at risk in default scenarios. In the event of counterparty default the 

surviving party can close-out the relevant position and stop the contractual payments. When 

doing so the party has to look at the net amount between the party and the counterparty. This 

net amount is the exposure (Gregory, J. (2015) Ch 7).  

In case the value of the exposure is positive for the party, it means that the defaulted 

counterparty owed money to the party, and the party has to try and recover as much of the 

exposure as possible. It is however never expected that a party can recover the full exposure.9 

In case the exposure is negative it means that the party is owing money to the defaulted 

counterparty. In this case the party is still legally bound to settle the total negative exposure. 

This means that if the exposure is positive the party will incur a loss, and if the exposure is 

negative the party will not achieve a gain. This can be summarized in the following expression 

(Gregory, J. (2015) Ch 7): 

[\]^_`a* = max	(efg`*, 0) 

 
9 The realistic amount of the exposure that can be recovered will be discussed later, when loss given default is 
introduced 
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A key feature of counterparty risk that has already been discussed is the bilateral nature of the 

risk profile. This also counts for the exposure of a position, since both the party and the 

counterparty are at risk of a default and thus both the party and the counterparty can incur 

losses. This means that from the party’s point-of-view their own default will cause a loss to the 

counterparty. This is called negative exposure, and can be described using the following 

expression (Gregory, J. (2015) Ch 7): 

K*hf"ie*	[\]^_`a* = min	(efg`*, 0) 

However, since this thesis assumes a unilateral exposure, the negative exposure will not be 

explained further.  

In general, the calculation of the exposure is relatively simple. One has to calculate the mark-

to-market (from now on known as MtM) value, which is the value of the derivative in the 

market for a specific period (Gregory, J. (2015) Ch 7). The practical calculations of the 

exposure as well as further details will be discussed in section 4 of this thesis. 

 

3.1.2 Probability of Default 

Another important factor in measuring counterparty risk is the credit quality of the 

counterparty, and therefore also the probability of counterparty default. The term ‘probability 

of default’ covers two aspects: 1) the probability of default during a known time horizon and 

2) the probability of the counterparty suffering a decline in credit quality (Gregory, J. (2015) 

Ch 12).  

When a market actor engages in a derivatives position with a counterparty, they usually have 

an idea as to the short-term default probability of said counterparty (e.g. based on credit 

ratings). However, it is also important to consider future default probabilities when considering 

engaging in OTC derivatives positions with a specific counterparty. When considering future 

probabilities of default, one has to consider the relationship between credit quality and financial 

health. Future default probabilities will have a tendency to either increase or decrease over time 

based on the current financial health of the company. Consider a company with bad financials. 

Here default is expected to occur early on, which means the initial probability of default will 

be high and then decrease over time. The opposite is true for a company with strong financials. 

(Gregory, J. (2015) Ch 12). 
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Furthermore, it has been empirically proven that there is a mean-reversion effect in credit 

quality (Gregory, J. (2015) Ch 12). Mean reversion is a theory that suggests that asset price 

volatility and historical returns eventually will revert back to a long-term mean (Chen, J. 

(2021)). This means that companies with an above-average credit quality will tend to 

experience a decrease in credit quality over time, and companies with a below-average credit 

quality will tend to experience an increase in credit quality over time. This does not sound 

intuitive at first, but it makes sense when analysing it: Assume a company with weak financials 

that do not default in the short-term. If a company close to default does not default, it usually 

indicates an ability to turn the business around. This change will lead to an increase in credit 

quality over time (Gregory, J. (2015) Ch 12). 

 

When calculating the probability of default there are generally two methods: the ‘real-world’ 

method and the ‘risk-neutral’ method. The real-world method relies upon historical data to 

estimate default probabilities (usually credit ratings). This is a very static method and has 

generally been criticised for lack of sufficiency on multiple levels. The risk-neutral method is 

when the probability of default is derived from market data such as bonds or credit default 

swap spreads. This method is generally seen as market practice and usually yields a higher 

probability of default (Gregory, J. (2015) Ch 12). This thesis will use the risk-neutral method, 

which will be discussed again in section 4.   

 

3.1.3 Loss Given Default 

The final component of counterparty risk is the loss given default (from now on LGD). LGD 

is the percentage of the outstanding claim that is lost when a counterparty goes into default. As 

previously mentioned, it is not realistic to assume that a party can get 100% of the exposure 

back in case of a counterparty default, and therefore LGD plays an important role in estimating 

the expected amount of the exposure that can be reclaimed. LGD is calculated using the 

following formula (Gregory, J. (2015) Ch 4): 

5lm = 1 − n 

Where R is the recovery rate, which is the percentage of the outstanding that can be recovered 

in case of counterparty default. LGD is generally highly uncertain as it varies a lot from case 

to case (Gregory, J. (2015) Ch 4).  
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In the event of default an OTC derivatives holder gains the same status as senior bondholders. 

This means that the party’s claim is treated as senior unsecured debt and therefore it is often 

assumed that LGD for an OTC derivative position is the same as for senior bondholders. 

However, there is a major issue with this assumption, which is time and market liquidity. Since 

an OTC derivative in general cannot be freely traded, and especially not when the counterparty 

is in default, this can lead to a substantially different LGD (Gregory, J. (2015) Ch 4). However, 

for the sake of simplicity, this thesis will assume the same LGD as for a senior bondholder. 

What this exactly means will be discussed in greater detail in section 4. 

 

3.2 Mitigation of Counterparty Risk: Collateral 
One of the ways to manage counterparty risk is through mitigation methods. This section will 

deep dive into collateral as a counterparty risk mitigation method, as this is the mitigation 

method of choice for this thesis. Furthermore, this section will briefly mention other well-

known mitigation methods, and at last this section will discuss the collateral assumptions that 

will be made in this thesis for modelling purposes. 

 

3.2.1 Definition of Collateral 

The basic definition of collateral is:  

“an asset supporting a risk in a legally enforceable way” – J. Gregory. (2015) Ch 6 

This means that collateral functions as postings of an asset (either cash or securities) to reduce 

the exposure of a bilateral contract and thereby diminish counterparty risk.  By looking at 

collateral in relation to an interest rate swap, it can be said that if the swap moves in-the-money 

(ITM) and the present value of the swap goes up, the party will receive collateral from the 

counterparty, whose present value is now negative. Thus, it is a posting of assets from the 

“losing” side to the “winning” side of a bilateral derivative position. 

 

It is important to remember that the transfer of collateral does not mean that the posted 

collateral belongs to the receiving party. The posted collateral still belongs to the party, who 

originally posted it. Only in case of counterparty default is the ownership of the collateral 
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changed, in which case the collateral is used to pay out (some) of the owed money from the 

position’s exposure (Gregory, J. (2015) Ch 6).  

Collateral is posted at specific periods; this thesis will refer to these as ‘collateral calls’. The 

modelling of collateral calls will be discussed in greater detail later in this section. 

The hypothetical collateral amounts posted in the collateral calls can be determined based on 

the following formula: 

o^ggf"*afg = max(p"p − "ℎa*_ℎ^grs, 0) − max(−p"p − "ℎa*_ℎ^grt, 0) − o 

Where p"p represents the current mark-to-market value of the swap, "ℎa*_ℎ^grs  and 

"ℎa*_ℎ^grt represents the thresholds for the counterparty and the institution/party respectively 

and o represents the amount of collateral already held (Gregory, J. (2015) Ch 6). What these 

terms mean will be explained in greater detail in section 3.2.2. 

 

3.2.2 The Credit Support Annex 

As previously discussed, OTC derivatives can either be uncollateralized or collateralized. Thus, 

there is no standard obligation to post collateral for any OTC derivative. This means that to 

engage in collateralized positions, both parties have to sign what is known as a credit support 

annex (from now on known as a CSA). A CSA is a signed contract between both parties of an 

OTC derivative that states all the rules regarding the collateral calls. After the CSA has been 

agreed upon and signed, the only way to change it, is if both parties can agree on the change. 

The specifics of the CSA are often dictated by the party with the strongest credit quality. The 

reason for this is that collateral is generally dependent on credit quality, with a lower credit 

quality corresponding to higher collateral demands due to the increased counterparty risk 

(Gregory, J. (2015) Ch 6). There are however risks associated with this linkage between credit 

quality and collateral requirements. During the great recession the American International 

Group (AIG) faced liquidity problems due to increased collateral postings after their subsidiary 

AIGFP faced a credit rating downgrade (Gregory, J. (2015) Ch 2). 

 

There generally exist two types of CSAs: one-way and two-way CSA. A one-way CSA is a 

unilateral collateral arrangement, which means only one party agrees to post collateral. A two-

way CSA is a bilateral collateral agreement, which means both parties agree to post collateral 
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dependent on MtM movements. One-way CSAs are common when one party has a very high 

credit rating (such as a sovereign), whereas a two-way CSA is market practice in the interbank 

market. The CSA help with defining the two main types of collateral: the initial margin and the 

variation margin. The initial margin is an initial collateral posting made up-front when the 

derivative position is initiated. The use of initial margin creates the possibility of over-

collateralization. The variation margin is the collateral posted to compensate for MtM 

movements and can be said to be defined through a variety of factors: threshold, minimum 

transfer amount and haircut (Gregory, J. (2015) Ch 6).  

The threshold is the size of the exposure below which collateral is not required to be posted. 

The higher the threshold value, the larger the risk of under-collateralization, which means that 

the collateral is not as effective since there is not enough of it to effectively remove the risk 

from the exposure. The minimum transfer amount is the smallest amount of collateral that can 

be posted. Minimum transfer values are used to avoid operational expenses associated with 

insignificant changes in the amount of collateral. Minimum transfer amount is very helpful in 

keeping operational costs down when collateral is posted on a regular basis. Haircuts are an 

extra amount of collateral added on top of the required amount to compensate for decreases in 

the value of the collateral. Haircuts are only used when the collateral posted is securities, as 

these can fluctuate in value in a way that cash cannot (Gregory, J. (2015) Ch 6). 

 

3.2.3 Collateral in Practice 

In practice not all actors in the OTC derivatives market engage in collateral agreements, and 

there are specific tendencies depending on the type of actor in the market. Sovereigns usually 

never post collateral, but they can receive collateral. This bias is based on the excellent credit 

ratings that most sovereigns have. Non-financial corporations rarely engage in collateralized 

positions as they are generally not interested in committing to the resulting operational and 

liquidity requirements. However, financial firms usually engage in collateralized positions and 

it is, as previously mentioned, market practice to initiate a two-way CSA when both firms are 

related to the financial services industry (Gregory, J. (2015) Ch 6). Many financial firms 

actually face issues in the market, as they sometimes initiate an uncollateralized position with 

a counterparty, and then to hedge this position, they initiate another position with a financial 

firm, which will then be collateralized. This means that as their initial position moves ITM, 
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they have to post collateral to their hedge trade while receiving no collateral from their initial 

trade. (Gregory, J. (2015) Ch 6). 

 

One of the main factors to consider when discussing collateral in practice is the re-use of 

collateral, or so-called rehypothecation. Rehypothecation is when a company can use the same 

collateral for different financial contracts with different counterparties. Rehypothecation 

proved a major issue during the great recession as companies that defaulted had posted the 

same collateral for multiple financial contracts, thus leading to the counterparties not getting 

near enough of the collateral that was posted. This meant that collateral turned into a fake safety 

which proved unable to live up to the expected coverage of risk. The reason rehypothecation 

exist is because it reduces funding costs and therefore enables more market participants to enter 

into collateralized positions. Some parties in the OTC market refuses to allow rehypothecation 

and usually demands so-called segregation. Segregation dictates that when collateral is posted 

it is placed in the hands of a third party to legally protect it in case of default. When comparing 

rehypothecation and segregation, it is clear that segregation works better at reducing 

counterparty risk, but also leads to increased funding costs, while rehypothecation enables 

more actors access to the OTC market, but also increases the risk of inefficient collateral 

postings. Therefore, before deciding between any of the two methods, a cost/benefit analysis 

should be performed (Gregory, J. (2015) Ch 6). 

 

Lastly, when discussing collateral in practice the margin period of risk (MPR) is important. 

MPR is the part of the duration of a derivative, in which collateral is no longer posted. This is 

usually a period spanning the final time of the derivative before expiry, when the parties are 

certain that default will not happen (Gregory, J. (2015) Ch 6).  

 

3.2.4 Pros and Cons of Collateral 

Collateral is generally seen as a very effective way to mitigate counterparty risk. Collateral 

enables easier access to the OTC market; it improves pricing and it helps make markets more 

efficient (Bloomberg (2016)). However, there are also some issues related to the usage of 

collateral. Depending on how often collateral is posted, it may not be able to mitigate 

counterparty risk fast enough. If the underlying asset is very volatile, collateral may not be 

posted fast enough to combat major moves in the market. However, the interest rate market is 
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generally seen as one of the most stable markets, which is why sudden moves in the underlying 

should theoretically not be an issue (Gregory, J. (2015) Ch 6).  

 

Another important factor to remember when discussing counterparty risk mitigation methods 

(such as collateral), is that they do not remove risk. Mitigation methods are usually only seen 

in relation to their effect on exposure and counterparty risk, but they also affect the companies 

in ways not related to counterparty risk. Much like any other mitigation method, collateral 

transforms the mitigated counterparty risk into another type of risk such as liquidity risk (in 

case the collateral has to be liquidated in the event of default or in case of segregation), market 

risk (since residual counterparty risk is dependent on market movements), operational risk (the 

risk of errors, fraud and failed deliveries due to the large operational burden of maintaining 

collateral calls) and legal risk (arises due to either rehypothecation or segregation) (Gregory, J. 

(2015) Ch 6). This means that even though mitigation methods and specifically collateral is 

thought of as a viable method to reduce counterparty risk, this risk does not disappear, and 

managing it is not as simple as one might initially assume. 

 

3.2.5 Other Mitigation Methods  

There are two other well-known mitigation methods aside from collateral that is relevant to 

briefly mention. These are hedging and netting. 

 

Hedging is one of the most popular ways among general market participants to mitigate risk 

such as counterparty risk. Hedging is the usage of financial instruments to remove a specific 

kind of risk based on a specific factor or variable. An obvious way to generally hedge 

counterparty risk is by hedging with credit derivatives, since credit quality is of detrimental 

importance when discussing counterparty risk. One of the most well-known credit derivatives 

is the credit default swap (CDS), which works as a kind of insurance on the counterparty that 

kicks in in case of default (Hull, J. C. (2018) Ch 25).  

 

Another traditional mitigation method used by market participants is netting. Netting works 

when there are multiple financial transactions with both positive and negative value (Gregory, 

J. (2015) Ch 5). Netting helps to reduce risk by bundling financial obligations into a net 



 35 

financial obligation. Netting can be used both for bundling cashflows, but also in events of 

default (close-out netting) (Hargrave, M. (2020)). 

 

3.2.6 Collateral Assumptions and Limitations in This Thesis 

This thesis seeks to investigate the impact of collateral on counterparty risk, and whether it 

works during periods of financial distress. This means that this thesis seeks to see the full 

effects of collateral and the factors that make up the collateral calls. Therefore, even though 

both banks in this thesis have high credit ratings, it is still assumed that initial margin is posted. 

Initial margin is one of the factors that is usually only used for parties of lower credit quality, 

but from an academic point-of-view it is definitely interesting to see the different factors and 

how they affect the collateral calls and thereby also the exposure (Gregory, J. (2015) Ch 6). As 

mentioned, both parties of these positions will be banks, which means this is an interbank trade, 

and therefore it would usually be safe to assume that the CSA is a two-way CSA. However, it 

was stated earlier in this thesis that counterparty risk would be analysed unilaterally, which 

means that collateral will also be unilateral. This means that for simplicity’s sake only the 

counterparty (JPM) will post collateral in this thesis, and if the swap runs out-of-the-money 

(OTM) for BAC, then collateral will be set to zero.  

Furthermore, this thesis will assume that the collateral posted will be cash. The reason for this 

is both to make it easier to compute as collateral specific market movements and haircuts are 

taken out of the picture, but also because cash is by far the most used type of collateral, with 

75% of all collateral posted being cash (Gregory, J. (2015) Ch 6). Lastly, for simplicity this 

thesis will not assume the existence of either rehypothecation or segregation, neither will 

funding costs or the margin period of risk (MPR). The reason for this is that it would simply 

become a far too complex assignment to be able to carry out in a master’s thesis. Also, by 

excluding the MPR it will be clearer whether collateral is an effective mitigation method. 

 

3.3 CVA 
In this section the credit value adjustment (CVA) is introduced and explained through a 

definition as well as a mathematical derivation. Lastly, GWWR will be incorporated into the 

CVA formula. This section will seek to explain how the theory from section 2 and 3 will fit 

together in the modelling and calculations of section 4. 
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3.3.1 Definition 

The idea of the credit value adjustment (from now on known as CVA) was for it to function as 

an adjustment to the risk-free value of a derivative to compensate for the risk of default. This 

can be summed up in the following simple formula (Gregory, J. (2015) Appendix 14A): 

ni_u/	efg`* = ni_uva**	efg`* − o<w 

Based on this formula, it can be said that the CVA value is the quantification of counterparty 

risk. This is further proved by looking into the standard CVA formula: 

o<w = 5lmG[[("C)
x

CMJ

∗ $m("C.J, "C) 

Where 5lm is the loss given default, [[ is the expected exposure in the future given by time 

"C and $m is the probability of default. Here it is noted that both the expected exposure and the 

probability of default is assumed to be independent, which means that WWR is assumed to be 

non-existent (Gregory, J. (2015) Appendix 14A). This assumption will be touched upon later 

and it will be shown how WWR can be incorporated into the CVA formula. 

Now that CVA has been defined as an adjustment made to the risk-free value of a derivative 

as well as the quantification of counterparty risk, it is now possible to mathematically derive 

the CVA formula. 

 

3.3.2 Deriving CVA 

To derive the CVA formula under the risk-neutral measure10 it is natural to start with finding 

an expression for the risky value <y(", !) of a derivative position with a maturity date !. Denote 

the risk-free value of the derivative as <(", !) and default time of the counterparty as z. This 

denotation of the risk-free value is very important, but this will be touched upon later. For now, 

two scenarios are considered:  

1) The counterparty does not default before time T 

In case the counterparty does not default before time T, the payoff function can be described 

as follows: 

 
10 A probability measure used in mathematical finance to account for risk aversion. Theoretically the current 
value of an asset equals the future cashflows discounted to period 0. This does not function in reality as 
investors are risk averse (more afraid to lose money than eager to gain money). Therefore, the risk-neutral 
measures function as an adjustment to compensate for this (Chen, J. (2020)) 
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{(z > !)<(", !) 

Where {(z > !) is the so-called indicator function, which denotes counterparty default. The 

indicator function has a value of 1 if default has not occurred and a value of 0 if default has 

occurred. 

2) The counterparty defaults before time T 

In case the counterparty defaults before time T, the payoff function consists of two terms: 1) 

the value of the position that had been paid out prior to default, as well as 2) the payoff at 

default. 

The value of the position that had been paid out prior to default can be described as follows: 

{(z ≤ !)<(", z) 

The payoff function at default is a bit more intricate than the two prior payoff functions. This 

is because of the MtM value of the position at the time of default. If the MtM value is positive, 

the party can expect to receive a recovery fraction of the risk-free value based on the recovery 

rate (R). In case the MtM value is negative the party will have to settle this amount (this 

relationship was also described in the exposure section of this thesis). The payoff function can 

be described as follows: 

{(z ≤ !)(n<(z, !)O + <(z, !).) 

Where \. = min	(\, 0) and \O = max	(\, 0) 

 

If the three payoff functions above are put together, the following expression for the risky value 

is calculated: 

<y(", !) = [~[{(z > !)<(", !) + {(z ≤ !)<(", z) + {(z ≤ !)(n<(z, !)O + <(z, !).)] 

By using the relationship of \. = \ − \O the following expression can be constructed: 

<y(", !) = [~[{(z > !)<(", !) + {(z ≤ !)<(", z) + {(z ≤ !)(n<(z, !)O − <(z, !)O)] 

 

The above expression can then be iterated further upon and re-arranged into: 

<y(", !) = [~[{(z > !)<(", !) + {(z ≤ !)<(", z) + {(z ≤ !)((n − 1)<(z, !)O + <(z, !))] 
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Now, the two terms in the third payoff function can be combined since <(", z) + <(z, !) ≡

<(", !): 

<y(", !) = [~[{(z > !)<(", !) + {(z ≤ !)<(", !) + {(z ≤ !)((n − 1)<(z, !)O)] 

 

At last, it is known that {(z > !)<(", !) + {(z ≤ !)<(", !) ≡ <(", !), which can lead to a 

further simplification of the formula: 

<y(", !) = <(", !) − [~[(1 − n){(z ≤ !)<(z, !)O)] 

 

It is remembered from the start of this derivation that the risk-free value was denoted as <(", !), 

which means that the above formula is now corresponding to the basic formula of the risky 

value, and it can now be re-written as: 

<y(", !) = <(", !) − o<w(", !) 

Where: 

o<w(", !) = [~[(1 − n){(z ≤ !)<(z, !)O)] 

This is however not the entire derivation. If the standard CVA formula is sought to be derived, 

there are still a few more steps to complete. First of all, the CVA formula above has to be re-

written like so:11  

o<w(", !) = −(1 − nÇ)[~[{(` ≤ !)<∗(`, !)O] 

Where nÇ is the expected recovery rate, and <∗(`, !) = <(`, !). This is key for the derivation 

of the standard CVA formula, as this step means that WWR is ignored throughout the rest of 

the derivation. In the following section it will be demonstrated how to simply introduce WWR 

to the CVA formula, but for the derivation of the standard formula, WWR will be ignored. 

 

 
11 (1-R) becomes negative when leaving the brackets, as CVA is negative per definition (see the simple formula 
in section 3.3.1). Thus, there is a “hidden” minus in front of the calculation all the time. The remaining 
calculations will hide this minus again, as CVA will be calculated as a positive value (although it is in fact 
negative) 
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Since CVA is calculated over all times before the maturity date, it is necessary to integrate over 

all possible default times. This leads to: 

o<w(", !) = (1 − nÇ)[~ ÉÑ A(", `)<(`, !)OrI(", `)
-

,
Ö 

Where A(", `) is the risk-free discount factor and I(", `) is the cumulative probability of 

default for the counterparty. 

 

It is known that under the risk-neutral measure the expected exposure is calculated using the 

following formula: 

[[Q(`, !) = [~[A(", `)<(`, !)O] 

By assuming deterministic default probabilities12, it is possible to re-write the CVA formula 

and include expected exposure like this: 

o<w(", !) = (1 − nÇ) ÉÑ [[Q(`, !)rI(", `)
-

,
Ö 

Finally, the above formula can be computed via an integration scheme13, which leads to the 

following standard CVA formula: 

o<w(", !) ≈ (1 − nÇ)G[[Q(`, !)
x

CMJ

[I(", "C) − I(", "C.J] 

Remember that the above expression is only a CVA approximation, but as long as m (number 

of periods) is reasonably large, then the approximation should be fairly accurate (Gregory, J. 

(2015) Appendix 14A). 

 

 

 
12 Deterministic models stand opposite to stochastic models. Were deterministic models yield an output that is 
fully determined by parameter values and initial assumptions, stochastic models possess some inherent 
randomness (NC State University. (2013)) 
13 Integration is the process of finding a function when its derivative is given (Vedantu. (n.y.)) 
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3.3.3 Incorporation of GWWR 

As mentioned earlier, the above derivation led to the standard CVA formula which is written 

as: 

o<w = 5lmG[[("C)
x

CMJ

∗ $m("C.J, "C) 

This formula assumes that the expected exposure is unconditional of counterparty default. 

However, as determined earlier, GWWR demands that the exposure of a position is positively 

correlated to the probability of default, so that a decrease in credit quality would lead to both 

an increase in probability of default and exposure. The simplest way to incorporate GWWR 

into the CVA formula is therefore by making the expected exposure conditional upon the 

default of the counterparty.14 This changes the formula to look like this (Gregory, J. (2015) Ch 

17): 

o<w = 5lmG[[("C|tâ = zT)
x

CMJ

∗ $m("C.J, "C) 

Here [[("C|tâ = zT) represents the expected exposure at time "C conditional on that time being 

the default time of the counterparty. The conditional relationship for the expected exposure 

opens up for two ways of quantifying GWWR (Gregory, J. (2015) Ch 17): 

1) A qualitative assessing linked with the use of stressed data 

2) Modelling of the relationship between default probabilities and expected exposure 

This will be further discussed in the modelling section of GWWR.  

 

4. Component Modelling & Calculations  
This section will explain the modelling approaches for the CVA components and the results 

thereof. The components that are being modelled and calculated in this section is the simulated 

interest rates, exposure, probability of default, loss given default, the collateral calls as well as 

the GWWR model.  

 

 
14 This theoretically ensures that a linkage between PD and EE has been created  
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4.1 Interest Rates 
The following section will discuss the approach used to forecast the 3M USD Libor rate that is 

being used as the floating rate for the floating leg of the two interest rate swaps. The simulation 

has been performed using a model known as the Vasicek model, which will be introduced and 

elaborated on. When the model has been introduced, the calculation of zero-coupon bond prices 

under the Vasicek model will be discussed, as this is relevant for the later exposure calculations. 

Afterwards, the results of the interest rate simulation will be explained. 

 

4.1.1 The Vasicek Model 

To forecast the interest rates used for the two interest rate swaps in this thesis the Vasicek 

model will be used. The Vasicek model is a model that has a history of being applied as a 

forecasting tool for developments in the price of financial instruments. This model is composed 

of market risk, time, volatility and a mean reversion factor (Hull, J. C. (2018) Ch 31). When a 

model is only composed of a single risk factor (such as the Vasicek model), it is called a one-

factor model. This means that a single factor (the market risk factor) is used to explain the 

movements in an interest rate (Corporate Finance Institute. (n.y.)). This initially sounds very 

restrictive, as it is expected that movements in financial instruments is explained through 

multiple complex factors. However, in practice a one-factor model basically implies that rates 

move in the same direction over any short time interval, but that they do not move by the same 

amount (Hull, J. C. (2018) Ch 31). Therefore, a single-factor model is not as restrictive as one 

might come to believe, and by only using a single factor, unnecessary complexity is removed 

from the calculation. 

Two main assumptions in the Vasicek model are: 

1) Interest rates can be negative 

2) Interest rates will not increase or decrease to extreme levels 

The assumption of negative interest rates was previously a major issue for the model, but with 

recent years interest rates having been below zero, this is now a practical assumption. The 

assumption of interest rates not increasing or decreasing to extreme levels is enforced by the 

mean reversion factor in the model. As previously mentioned, mean reversion is a 

quantitatively proven factor in financial markets, and is therefore a sound assumption for an 
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interest rate model. To recap, mean reversion ensures that a financial instrument in the long-

term will move towards a mean (usually based on historical data). 

The function for the Vasicek model is: 

ra = f(ä − a)r" + ãrå 

Where f is the mean reversion speed, ä is the long-term mean, a is the rate of the previous 

period, r" is a time factor, ã is the standard deviation (and therefore displays market volatility) 

and rå is the market risk factor. f(ä − a)r" is also referred to as the drift. The market risk 

factor is explained in the Vasicek model through a so-called Wiener process (or Brownian 

motion), which is a stochastic (random) process (Hull, J. C. (2018) Ch 31). A Wiener process 

is a standard component in a wide array of industries such as engineering, physical sciences 

and finance (Probability Course. (n.y.)). 

 

To forecast the interest rates in this thesis a script has been set up in the open source coding 

language ‘Python’. This is done as it enables a large number of interest rate simulations, and 

for CVA risk management purposes it is advised to maximize the amount of simulations to 

properly account for all possible market outcomes. This thesis will run 25,000 simulations of 

the 3M USD Libor rate.  

 

4.1.2 Zero-coupon Bond Prices 

The computation of $(", !), which is used in the calculation of MtM values of the swaps, will 

be explained now.  

As explained in section 2, $(", !) is the price of a zero-coupon bond at time " with maturity at 

time !, and can therefore be used as a discount factor of time. In the Vasicek model $(", !) is 

calculated as follows (Hull, J. C. (2018) Ch 31): 

$(", !) = w(", !)*.ç(,,-)S(,) 

Where w(", !) is computed as (Hull, J. C. (2018) Ch 31): 

w(", !) = expê
(A(", !) − ! + ") 7fëä − ã

ë

2 8

fë
−
ãëA(", !)ë

4f
î 
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Where f is the mean-reversion spread, ä is the long-term mean, ã is the standard deviation 

(volatility) and A(", !) is given by (Hull, J. C. (2018) Ch 31): 

A(", !) =
1 − *.?(-.,)

f
 

The calculations of the factors that comprise $(", !) can be seen in appendix 3. 

 

4.1.3 Results 

All simulations will start in period 0, which is the start date of the swap. This means that the 

interest rate of period 0 will have a fixed value of 2.7968% across all simulations. From the 

Vasicek formula it can be explained that the long-term mean will take a constant value of 

3.7737%, which is the historical mean of the 3M USD Libor rate from its inception until period 

0. This means that the simulated interest rates should have a tendency to deviate towards this 

mean through the mean-reversion parameter. The volatility is described as the historical 

standard deviation of the 3M USD Libor rate, and takes the value of 0.0427. All of this is can 

be seen in appendix 4: ‘The Vasicek Script’, which contains the Python code that yielded the 

results. 

When running the Monte Carlo simulation, a total of 25,000 times, the following graph is 

created in Python: 

 

Figure 9: 25,000 interest rate simulations. Source: Own creation 
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It can be a bit difficult to read the above chart, however, it can be seen that the maximum 

simulation has a value around 7%, while the smallest simulation value lies just around 0%. It 

was previously mentioned that the Vasicek model enabled negative interest rates, and it can be 

seen that some of the simulations has dipped below 0% at a few points in time. The reason 

there are not a lot of negative rate simulations is primarily explained through the mean-

reversion. As interest rates deviate towards the long-term mean (which is positive), it is difficult 

for the simulation to end up negative. However, when looking at historical 3M USD Libor rates 

it is not necessarily an issue as these rates has never been below 0% for prolonged periods, 

however, they have reached the zero-lower bound on multiple occasions after the great 

recession (see appendix 5: ‘Historical Libor Rates’). 

The above interest rate simulations can now be used to calculate daily exposure paths in the 

following section of this thesis. 

 

4.2 CVA Components 
This section will seek to explain the modelling approaches and the results for the CVA 

components. The components explained in this section is the expected exposure, collateral, loss 

given default and probability of default. The Python code that have modelled the expected 

exposure and the collateral can be seen in appendix 6. The calculations of probability of default 

can be seen in appendix 7. 

 

4.2.1 Expected Exposure 

As explained in section 3, the exposure is the core value that may be at risk in a default scenario. 

When calculating the MtM values based on the interest rates simulated earlier in this section 

the following values are seen: 
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Figure 10: Simulated MtM values. Source: Own creation 

It is seen that some of the MtM values are negative, which does not abide by the unilateral 

assumption made for simplifying reasons. Therefore, it is important to use the exposure 

calculation introduced in section 3 of this thesis, which stated that exposure was calculated as 

the maximum value of either the MtM of the swap or zero. This leads to the following graph: 

 
Figure 11: Calculated exposure paths. Source: Own creation 
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When calculating the CVA value, one does not perform a calculation for each individual 

exposure, instead it is market practice to calculate the ‘expected exposure’. The expected 

exposure is a mean of all the calculated exposures based on all the interest rate simulations. 

The expected exposure therefore displays the expected value that may be at risk during the 

duration of the swaps (Gregory, J. (2015) Ch 7). 

Based on the above exposure paths, it is now possible to calculate the expected exposure via 

the following formula: 

[\]*ï"*r	[\]^_`a* =
∑[\]^_`a*_

K
	 

It is expected that the graphical depiction of expected exposure will be a sort of slightly skewed 

bell curve with an initial sharp increase followed by a slow decline. The reason for this is the 

risk associated with periodic cashflows.  

Consider a forward rate agreement (FRA). This derivative consists of a single exchange of 

cashflows in the future. This means that the exposure profile of such a derivative is a simple 

decreasing function that reflects that, as time passes uncertainty of future value decreases. 

However, interest rate swaps are not as simple as FRAs. An interest rate swap consists of 

multiple exchanges of cashflows in the future. This affects the risk profile, as risk will increase 

in the beginning as there is a lot of time until the contract expires (and therefore a lot of 

uncertainty about future cashflows). However, as time passes the risk decreases as cashflows 

are met and uncertainty disappears (Gregory, J. (2015) Ch 7). 

Another impact of periodic cashflows on the exposure profile is caused by the asymmetry in 

payments. As previously mentioned, plain vanilla swaps will usually have a divergence in 

payments on the floating and fixed legs (for example 3-month payments on the floating leg and 

6-month payments on the fixed leg). This asymmetry can lead to increased risk from a receiver 

swap owner’s point of view, as this party would make floating payments with a larger 

frequency than the counterparty’s fixed payments (Gregory, J. (2015) Ch 7). In this thesis it 

has, however, been decided to assume equal payment frequencies. This not only makes it less 

complicated to calculate the exposure profile, but it also ensures that unnecessary noise in 

regard to the problem formulation is filtered out. 

The below graph displays the expected exposure calculated for the uncollateralized interest rate 

swap, and as can be seen, it has the expected shape: 
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Figure 12: Expected exposure for the uncollateralized swap. Source: Own creation 

It can be seen that the expected exposure of the swap appears much lower than many of the 

exposure paths in figure 11. The reason for this is that all the exposure paths that had negative 

values and were set to zero are impacting the value of the expected exposure.  

The next section will focus on the calculation of the collateral calls as well as the expected 

exposure of the collateralized swap. 

 

4.2.2 Collateral Calls  

As discussed in section 3, collateral is used as a method to mitigate counterparty risk. More 

specifically it is used as a method to decrease the exposure of a derivative position. However, 

collateral can never be expected to fully remove an exposure, but it should be able to 

significantly decrease it given the right conditions in the CSA. This thesis assumes daily 

collateral calls, which is normal among big banks such as JPM and BAC (Gregory, J. (2015) 

Ch 6). Daily collateral calls enhance the ability to mitigate large volatilities in the market, but 

it also comes with increased operational costs. However, for the sake of simplicity this thesis 

will not assume operational costs and will therefore not be looked anymore into (Gregory, J. 

(2015) Ch 6). Furthermore, the existence of rehypothecation and segregation will not be 

covered in this thesis. Additionally, funding costs are assumed to be zero, which is a big 

assumption when dealing with cash collateral. However, as the funding costs are not important 
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for the analysis of the research question, it is not deemed necessary to analyse. However, 

funding costs will be briefly touched upon again in section 7. 

 

As mentioned in section 3, the CSA in this thesis will include both an initial margin, threshold 

as well as a minimum transfer amount. This is done to hopefully showcase their usability and 

also the risks of both under- and overcollateralization that can arise. As mentioned earlier, an 

initial margin is usually not posted between two parties with credit ratings as high as the ones 

of JPMorgan Chase and Bank of America. However, it is an efficient tool to introduce the 

chance of overcollateralization, which is why it is deemed important for an academic paper, 

even though it may deviate from real world scenarios. The below table showcases the values 

of the initial margin, threshold and minimum transfer amount selected for this thesis: 

 
Table 3: CSA values. Source: own creation 

It can be seen in the above table that the values of the initial margin, threshold and minimum 

transfer amount are very small compared to the notional value of the swap. However, due to 

the low value of the expected exposure it is assumed to be realistic.   

The collateral in this thesis will be calculated from the perspective of one party (adherent to 

the assumption of unilateral CVA) and will therefore be calculated as follows: 

o^ggf"*afg = max(p"p + iói"ifg	òfahió − "ℎa*_ℎ^gr

− òióiò`ò	"afó_v*a	fò^`ó", 0) − o 

Where p"p represents the current mark-to-market value of the swap and o represents the 

amount of collateral already held (Gregory, J. (2015) Ch 6). The daily collateral calls are 

expected to lead to minor daily fluctuations in the collateral value and therefore also in the 

value of the expected exposure. These collateral fluctuations are actually one of the reasons 

why daily collateral calls are a costly affair from an operational point of view. However, if a 

big bank decided to not go with daily collateral calls, under-collateralization and market risk is 

a larger threat, which is why it is usually deemed to be worth it from a risk management 

perspective (Gregory, J. (2015) Ch 6).  

Basic Collateral Rules Values % of Notional
Initial Margin 15,000.00  0.0150%
Threshold 5,000.00     0.0050%
Minimum Transfer Amount 5,000.00     0.0050%

CSA Values
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When subtracting the collateral postings from the expected exposure of the uncollateralized 

swap, the following expected exposure for the collateralized swap is calculated: 

 

Figure 13: Expected exposure for the collateralized swap. Source: Own creation 

Now both expected exposures can be put in a plot together, which will graphically showcase 

the impact of collateral: 

 
Figure 14: Expected exposures for both swaps. Source: Own creation 
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As can be seen above, collateral has had a huge impact on the expected exposure, with the 

uncollateralized swap’s peak exposure having a value close to 140,000 and the collateralized 

swap’s peak exposure having a value close to 70,000. All code related to the calculation of 

collateral calls and collateralized expected exposure can be seen in appendix 6. 

 

4.2.3 Loss Given Default 

LGD is a component that is very difficult to accurately model as it depends on the specific 

default scenario and therefore on the specific counterparty. Since default scenarios are so 

dependent on the specific defaulting party, no two default scenarios can be expected to be 

identical. Given that default scenarios can never be totally identical the LGD will naturally 

vary a lot. For simplification purposes, it is generally deemed appropriate in most cases to 

assume a fixed LGD throughout the entire runtime of the swaps, as long as the LGD is based 

on valid assumptions (Gregory, J. (2015) Ch 4). As previously mentioned, OTC derivatives 

are, in the case of counterparty default, treated as senior unsecured debt. This means that the 

recovery rate for an interest rate swap such as the two in this thesis would approximate the 

same recovery rate as for senior unsecured bonds (Gregory, J. (2015) Ch 4). The recovery rate 

for senior unsecured bonds has a mean of 38% according to Moody’ (2007): 

 

Figure 15: Discounted ultimate recovery rates by debt type. Source: Moody’s (2007) 

Therefore, this thesis will assume a recovery rate for the swaps of 38% and thus the LGD can 

be calculated as: 

5lm = 1 − 0.38 

5lm = 0.62 

The LGD of the swaps in this thesis is thereby assumed to be 62%. 
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4.2.4 Probability of Default  

In section 3 of this thesis the probability of default was briefly touched upon. Here the risk-

neutral method was introduced and decided upon as the calculation method for the probability 

of default going forward. The move from previous calculation methods to the risk-neutral 

method was driven by regulations following the great recession, as previous calculations 

proved unable to properly capture the probability of default. To re-iterate, the risk-neutral 

method is based upon market data such as credit default swap spreads (from now on CDS 

spreads). Usually CDS spreads are the preferred instrument to capture credit risk, but for 

companies that do not have associated CDSs, it is possible to use a proxy spread such as bond 

spreads (Gregory, J. (2015) Ch 12). The counterparty in this thesis is JPMorgan Chase, and 

since JPMorgan Chase is a major company, they have associated CDSs, which will be used in 

the calculations going forward.  

The start date for the 2-year interest rate swaps was January 6th, 2019. However, due to a lack 

of data it was not possible to obtain the CDS spread curve for this date. Instead the CDS spread 

curve that is used is downloaded from Bloomberg on January 6th, 2020. This is of course a 

source of error, but this thesis will nevertheless assume that the CDS spread curve can still be 

used as a proxy for the CDS spread curve on the start date. Even though it will add some error 

to the results, it is deemed better than just assuming values.  

According to the CVA formula derived in section 3, the probability of default should be 

calculated as the so-called marginal probability of default, which is a probability of default 

between two periods. This probability of default is calculated using the following formula 

(Gregory, J. (2015) Appendix 12A): 

$m("J, "ë) = I("ë) − I("J) 

Where " is a time period and ("J ≤ "ë) and I(") is calculated like so (Gregory, J. (2015) 

Appendix 12A): 

I(") = 1 − exp	(−ℎ") 

Where ℎ is the hazard rate, which is the conditional probability of default in a very small period. 

The hazard rate is calculated using the following formula (Gregory, J. (2015) Appendix 12A): 

ℎ =
_

5lm
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Where _ is the CDS spread and LGD is the loss given default. By writing the above formulas 

into the formula for the marginal probability of default the following expression is achieved: 

$m("J, "ë) = ù1 − exp ù−
_

5lm
"ëûû − ù1 − exp ù−

_
5lm

"Jûû 

In the below table the calculated marginal probabilities of default are showcased for JPM: 

 

Table 4: Marginal probabilities of default for JPM. Source: own creation 

The above table showcases the marginal PD for the maturities on the CDS spread curve. 

However, this thesis seeks to calculate the CVA estimate for the interest rate swaps on a daily 

basis to account for the daily collateral calls. To ensure that daily probabilities of default is 

calculated based on table 4, the daily values will be found using the method of interpolation. 

Interpolation is the process of constructing a full curve based on a set of discrete observations, 

such as the ones above. There are generally four methods of interpolation: 1) constant, 2) linear, 

3) log-linear and 4) hermite spline. Of these four, only a single method assumes no arbitrage 

and is therefore usable in this thesis – the hermite spline interpolation method. Hermite spline 

is calculated using the following formula (Hagan, S. P. & West, G. (2006)): 

a(") = fC + äC(" − "C) + ïC(" − "C)ë + rC(" − "C)ü 

The above formula has been implemented using the FidInterpolate function in VBA (see 

appendix 8) and can be summarized in the following figure for the total duration of the swaps 

in this thesis: 

Maturities Marginal PD JPM
6M 0.1872%
1Y 0.2480%
2Y 0.5531%
3Y 0.6721%
4Y 0.8143%
5Y 1.0344%
7Y 2.6106%
10Y 4.3240%
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Figure 16: Marginal probability of default interpolated over the duration of the swaps. Source: own creation 

The above probabilities of default are increasing over time, which is as expected. As previously 

mentioned, it is expected that companies with a good credit rating will have a low probability 

of default in the short run, which will increase over time. Thus, the interpolated results are 

aligned with the expectations. As mentioned in the start of section 4, all calculations related to 

the probability of default can be seen in appendix 7. 

 

4.3 General Wrong-Way Risk 
The following section will describe the considerations and methodology behind the modelling 

of GWWR in this thesis. This section will cover the different methods as well as the importance 

of the so-called alpha multiplier. Afterwards the method that was deemed most suitable for this 

thesis will be discussed. Then the limitations applied to the selected model will be touched 

upon. Lastly the results will be discussed.  

 

4.3.1 Modelling Methods & The Alpha Multiplier 

According to the Basel Accords an accepted way to compensate for GWWR is by adding a 

“buffer” on top of the position exposure. This buffer is calculated using the so-called alpha 

multiplier and is added in the following way (Cespedes, J. C. G. et al. (2010)): 

[\]*ï"*r	[\]^_`a*†°°¢ = [\]*ï"*r	[\]^_`a* ∗ £ 

According to the Basel Accords banks can decide to not model their alpha multiplier, in which 

case alpha takes a default value of 1.4. This means that the exposure in a GWWR-scenario 
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increases by 40%. The reasoning behind the alpha multiplier is that the capital buffer ensures 

that losses in case of counterparty default does not exceed liquidity (Aziz, A. et al. (2014)). 

However, banks can use their own models in which alpha can deviate from 1.4. In an internal 

GWWR-model, alpha can take the minimum value of 1.2, which is the lower bound according 

to regulations (Cespedes, J. C. G. et al. (2010)). A key factor when discussing GWWR 

modelling is the exposure-at-default (EAD). EAD is calculated using the following formula 

(Cespedes, J. C. G. et al. (2010)): 

[wm = 	£ ∗ [vv*ï"ie*	[$[ 

And the Effective EPE (effective expected positive exposure) is calculated as the weighted 

mean of the maximum values of the expected exposure during certain time intervals. By 

iterating on this expression, the following formula for alpha can be calculated (Cespedes, J. C. 

G. et al. (2010)): 

£ =
[wm

[vv*ï"ie*	[$[
 

To model EAD and thereby also the alpha multiplier there are different approaches. The most 

common include the hazard rate approach, the copula approach and the structured approach. 

However, after the great recession many new approaches for computing GWWR has been 

created (Aziz, A. et al. (2014)). This thesis will focus on the three most well-known approaches.  

The hazard rate approach is an approach based around the quantification of default scenarios 

based on developments in so-called hazard rates. Basically, a correlation between the specific 

hazard rate paths and the exposure of the position is created. This is done through a simulation 

of hazard rate paths with related exposure paths. All hazard rate simulations are then filtered 

based on whether default has occurred or not (this is usually approximated using a threshold 

for the hazard rate value). The hazard rate approach is generally seen as one of the simpler 

approaches to calculating WWR, but it generally only yields very weak dependencies. 

Therefore, it is not deemed as a suitable approach for this thesis, as a relatively strong 

dependency is preferred to fully analyse GWWR-scenarios (Aziz, A. et al. (2014)). 

 

Another known approach to the quantification of WWR is the copula approach. The copula 

approach is generally seen as the simplest method used to model WWR. The copula approach 

specifies a direct dependency between counterparty default and exposure, which is an effective 
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way to create a strong dependency. This basically means that one assumes a fixed correlation 

between market risk and credit quality, which ensures that theoretical GWWR-scenarios can 

be created. This method relies upon the use of a distribution (copula) to create the results. 

Usually the Gaussian (normal) distribution is used as it is the simplest and also the easiest to 

implement. There are multiple issues related to the use of the copula approach in real-world 

scenarios. These include most notably the fixed correlation between counterparty default and 

market risk. However, there are also positive aspects linked to the use of the copula approach, 

such as the strong dependency that can be created. Furthermore, the copula approach basically 

adds the WWR on top of pre-computed exposures, which means that it limits complexity and 

time consumption (Aziz, A. et al. (2014)). 

 

The structured approach is the final of the WWR modelling approaches that will be discussed 

in this thesis. The structured approach generally seeks to deal with some of the weak points of 

the copula approach. The structured approach deals with the fixed correlation of market risk 

and counterparty default risk by quantifying the correlation through large amounts of historical 

data. A default boundary (a boundary that defines default as when a firm value reaches a certain 

lower bound) is defined and linked to the firm value of the counterparty, which is dependent 

on the market risk factor. The structured approach is definitely the best model of the three to 

model GWWR, however, due to the level of complexity as well as the high demand for 

historical data, it can be very difficult to apply (Aziz, A. et al. (2014)). 

 

As have been mentioned previously, this thesis seeks to be as close to market practice as 

possible in both modelling and calculations. However, it is also important to keep in mind what 

is actually realistic to accomplish. Based on this, the modelling of GWWR using the structured 

approach is deemed far too complex for this thesis. Therefore, GWWR will be modelled using 

the copula approach as this is the least complex approach to model GWWR. In the discussion 

section of this thesis it will be discussed how improvements on the GWWR model could make 

for interesting later research. 
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4.3.2 The Gaussian Copula Approach  

For simplicity the copula approach in this thesis will be built as a single-factor model. This 

means that much like the interest rate simulation described in section 4.1, market risk will be 

explained through a single factor. This factor will be denoted by §, which is a normally 

distributed stochastic variable. To achieve the goal of this modelling approach, and be able to 

compute the alpha multiplier, two inputs are needed: ‘EAD’ and ‘Effective EPE’. To be able 

to calculate EAD on a daily basis throughout the duration of the swaps, default scenarios has 

to be simulated. Default scenarios are generally sought out via a simulation of the so-called 

creditworthiness index. The creditworthiness index is calculated using the following formula 

(Mermatoluie, A. et al. (2016)): 

o•{¶ = ß®¶ ∗ § + ß1 − ®¶ ∗ ©¶ 

Where ®¶ is known as the sensitivity of obligor (or simply the correlation parameter), § is the 

factor describing market risk and ©¶ is the counterparty default risk, which because of the lack 

of data combined with the need for simplicity are both described as normally distributed 

stochastic variables (Cespedes, J. C. G. et al. (2010)).  

 To specify whether a default scenario has occurred or not, a so-called default indicator has to 

be specified. The default indicator is a binary variable that can take either a value of 1 or 0 

based on whether or not a default has occurred in the simulation of the creditworthiness index. 

If o•{¶ ≤ $m the default indicator takes a value of 1, which means default has occurred. If 

o•{¶ > $m the default indicator takes a value of 0, which means default has not occurred 

(Mermatoluie, A. et al. (2016)). This default indicator is then used to calculate the exposure for 

default scenarios using the following formula (Mermatoluie, A. et al. (2016)): 

5x =G/¶x ∗ 1{o•{¶ ≤ $m}
¨

¶MJ

 

Where /¶x is the LGD adjusted exposure. 

Since defaults are rare it is important to make a lot of credit simulations to ensure that there are 

enough default scenarios to calculate EAD from. This thesis will make as many credit 

simulations as there are interest rate simulations. This corresponds to a total of 25,000 credit 

simulations, which is in the low end of what is normal for a GWWR model, but since it is 

demanding for a regular computer to run many simulations, it is not viable to simulate more 

(Mathworks. (n.y.)).  
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Following the quantification of the default scenarios in the credit simulation, it is possible to 

calculate EAD. EAD will in this thesis be described as the mean of all exposures with a 

corresponding default scenario. Furthermore, it is also possible to calculate the Effective EPE, 

which is calculated using the following formula: 

[[$[ =
1
"L
(max([[)) 

Where the max values are gathered over a number of dates. It can be seen that EEPE is 

calculated as a weighted average of the max values (FinCad. (2014)). 

In this thesis this will be implemented by calculating the maximum expected exposure for 8 

periods, each corresponding to 1 quarter for the total 2-year period. The weights will be 

identical for all periods. 

 

4.3.3 Model Limitations 

This thesis has had to implement multiple limitations to the GWWR model in order to achieve 

a functional model. Many of these limitations has of course had a negative effect on the model’s 

ability to function in a real-world scenario. However, as mentioned previously in this thesis 

there has to be a balance between complexity and usability. One of the main limitations is the 

correlation/sensitivity of obligor in the calculation of the creditworthiness index. This 

correlation is assumed to be a constant with a value of 0.75. This affects the credit simulation 

and therefore also the alpha multiplier. This assumption is not generally realistic to assume, 

but nevertheless the assumption enables the model to function without having to implement 

unnecessary complexity. Another limitation is the very small amount of simulations as it 

creates results with a risk of potential error from lack of data. Lastly, the use of normally 

distributed stochastic variables functions as a great placeholder instead of using real data, but 

it is not expected to yield the same results as a complex statistical data-based model (Aziz, A. 

et al. (2014)).  

 

4.3.4 Results 

The GWWR script started by simulating 25,000 CWIs, which each related to one of the 

calculated exposure paths. These CWIs were compared to the summed PD for JPMorgan 

Chase, and all exposure paths with a CWI with a value higher than the summed PD was 

dropped. Since this GWWR model is stochastic, a certain degree of randomness will always 
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influence the results. Some of this randomness was seen as OTM exposures or very little ITM 

exposures being marked as default scenarios. It was mentioned in the introduction that WWR 

modelling should generally test on stressed data, to ensure a bias towards the worst-case 

scenario. To ensure this holds true the model filters summed exposure values by a lower 

bound. If an exposure path has a summed value below 25,000,000, it is dropped. The reason 

for this is to remove exposure paths in which the swap is only a little ITM or even OTM.  

After this, all remaining exposure paths are used in the calculation of EAD: 

[wm =
5lm ∗ [\]^_`a*≠

K
 

The calculated EAD is showcased in the below graph: 

 

Figure 17: Exposure at default. Source: Own creation 

The next step is to calculate the Effective EPE, which as recalled is calculated as a weighted 

average of maximum expected exposure values over 8 periods, each corresponding to 1 

quarter. The 8 quarterly max values are seen in the below table: 
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Table 5: Quarterly maximum EE values. Source: Own creation 

It can be seen that the max values are taken from the expected exposure of the 

uncollateralized swap as the exposure paths used in the calculation of EAD are also 

uncollateralized. The use of the collateralized exposure should yield the same alpha 

multiplier, if one calculated collateral calls for all exposure paths. Using the above max 

values, the Effective EPE is calculated to be 109,527.8384, which can be seen relative to the 

expected exposure of the uncollateralized swap in the following graph: 

 

Figure 18: EEPE and EE. Source: Own creation 

Now the components are ready for the calculation of the alpha multiplier, which is calculated 

for each day. This daily alpha will then be used to calculate a mean of all alpha multipliers, 

which will be used as the modelled alpha. The reason for this is that if not then the only 

periods that will yield an alpha over 1.2 will be the periods in which the EAD is larger than 

the EEPE. 
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The average alpha multiplier value calculated as a mean of daily alpha values are 1.4390. 

This means that all expected exposure values in a GWWR scenario will increase by 43.9% 

compared to the normal expected exposure. The effects of this will be seen in the following 

section. 

 

5. Credit Value Adjustment  
This section will display the calculation of CVA both with and without GWWR for both the 

collateralized and the uncollateralized swap between Bank of America and JPMorgan Chase. 

Lastly, this section will compare the results and initial conclusions will be drawn. All 

calculations in this section has been performed using the Python code seen in appendix 10. 

 

5.1 Calculation of CVA for Swaps without GWWR 
This sub-section will calculate the CVA estimate for both swaps without the presence of 

GWWR. This subsection will compare the CVA estimate of both swaps, thus seeing the 

effect of collateral a scenario not trying to incorporate the risk of financial recessions. 

Since this CVA estimate assumes that GWWR does not exist, the formula used will be the 

classic CVA formula: 

o<w = 5lmG[[("C)
x

CMJ

∗ $m("C.J, "C) 

Here the only difference between the two swaps will be the expected exposure, which will be 

collateralized for one swap and uncollateralized for the other swap. 

 

When calculating the CVA estimate it is normal to summarize the value over all periods. This 

thesis will do the same. Hence the sum of all daily CVA estimates and its value in percent 

relative to the notional for both the collateralized and the uncollateralized swap can be seen in 

the below table: 
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Table 6: CVA results without GWWR. Source: Own creation 

The table above showcases swap 1 (collateralized) and swap 2 (uncollateralized). It can be 

seen in the above results that CVA has been reduced by nearly 53% through the use of 

collateral. This is a substantial reduction in the CVA estimate, which definitely backs up the 

claim that collateral is a very efficient mitigation method for counterparty risk. 

 

5.2 Calculation of CVA for Swaps with GWWR 
This sub-section will calculate the CVA estimate for both interest rate swaps between Bank 

of America and JPMorgan Chase under the assumption of GWWR. Much like the previous 

sub-section, the CVA estimates will be compared to see the effectiveness of collateral in a 

scenario incorporating the risk of financial recessions. 

From section 3, in which CVA was derived and WWR was incorporated, the following 

formula was presented: 

o<w = 5lmG[[("C|tâ = zT)
x

CMJ

∗ $m("C.J, "C) 

The only difference between this CVA calculation and the previous calculation is that this 

calculation will use the uncollateralized expected exposure times the alpha multiplier and 

then calculate a new collateral call with the same CSA values.  

The summarized CVA estimates for swap 1 (collateralized) and swap 2 (uncollateralized) are 

seen in the below table: 

 
Table 7: CVA results with GWWR. Source: Own creation 

It can be seen that the use of collateral has a significant impact on the CVA estimate in this 

model. In fact, collateral is able to reduce the CVA estimate with above 67% of the total 

Swap 1 Swap 2
CVA 36,323.16  76,938.23   
% of Notional 0.0363% 0.0769%

Swap portfolio without GWWR

Swap 1 Swap 2
CVA 36,323.21  110,716.45 
% of Notional 0.0363% 0.1107%

Swap portfolio with GWWR
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value. This appears to be a bit excessive, and the reason for this is might be that the GWWR 

model only adds GWWR to the CVA estimate through the exposure and not through any of 

the other CVA components. This means that at a glance it looks like collateral is very 

effective, but whether or not this is actually a realistic outcome will be discussed later in the 

empirical analysis. 

 

5.3 Comparison of Results  
The results of both the collateralized and the uncollateralized interest rate swap between 

Bank of America and JPMorgan Chase both with and without GWWR scenarios has been 

plotted in the below graph: 

 
Figure 19: CVA results with/without GWWR. Source: Own creation 

Market scenario 1 describes a scenario without GWWR and market scenario 2 describes a 

scenario with GWWR. 

It can be seen that for the uncollateralized swaps the GWWR scenario is substantially higher, 

which is expected since the alpha multiplier has increased the expected exposure with over 

43% while the remaining CVA components has remained unchanged. However, what 

initially seems a bit weird is that the collateralized swaps have (almost) the same CVA 

estimate. This means that collateral was able to remove all of the extra risk in the GWWR 

scenario. This initially seems really positive. However, as mentioned, the GWWR model 

assumes that the presence of GWWR is only displayed in the expected exposure and not 

actually in the PD of the counterparty. Therefore, it is only natural to expect collateral to be 

able to mitigate the extra risk. If, on the other hand the GWWR model had been more 
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complex, then collateral would not have been able to remove all the extra risk, thus leading to 

a higher (and more realistic) CVA estimate for the collateralized swap. 

The empirical analysis will seek to shed more light on this point of critique for the model, and 

if there is a tendency that the copula approach with the alpha multiplier is not efficient 

enough to capture the entirety of market risk, then this will be touched upon later in the 

discussion section. 

 

6. Empirical Analysis 
This section will conduct an empirical analysis with the intention of calculating an empirical 

CVA value that can be compared to the calculated CVA estimates of the previous section. The 

empirical analysis will be performed using a combination of market data and necessary 

assumptions. The first part of this empirical analysis section will be an introduction to the data 

and the assumptions. Afterwards the empirical CVA will be calculated for both of the original 

2Y swaps. Lastly, the results of the empirical analysis are compared to the results of the CVA 

calculation from section 5. This comparison will then draw conclusions on the usability of the 

CVA model as well as the ability of the collateral model in a real-world scenario. 

The Python script that has modelled all the calculations in this analysis can be seen in appendix 

11. 

 

6.1 Data Preparation 
This section will seek to present the data used in the empirical analysis as well as the necessary 

assumptions made in the calculation of the empirical CVA. All data used will stretch from the 

settlement date of the 2Y swaps until the date of expiry.  

 

6.1.1 Interest Rates 

For this empirical analysis the actual 3M USD Libor rate will be used instead of the simulation 

paths used in the CVA model.  
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The actual 3M USD Libor rate developments during the duration of the swaps are showcased 

in the following chart (Federal Reserve Bank of St. Louis. (n.y.)): 

 
Figure 20: 3M USD Libor rates. Source: Own creation 

As can be seen in the figure above, the interest rates have decreased slowly from the start date 

of January 6th, 2019 until February 26th, 2020 after which a period of increased market volatility 

ensued before the interest rate bottomed out at around 0.2-0.3%. The period of increased 

volatility is the initial phase of the COVID-19 Pandemic described in section 2.3. This period 

of increased market volatility is expected to cause some divergence between the empirical 

results and the CVA model, as this sharp drop in interest rates is irregular and therefore difficult 

to model. However, it is also expected that the GWWR model should be able to somewhat 

compensate for this divergence through the addition of the alpha multiplier in the CVA model.    

 

6.1.2 Exposure 

Based on the above interest rate it is now possible to calculate a single exposure path, which is 

the real exposure for the two swaps. The exposure is calculated as a day by day development 

instead of discounting back to the first day. This is done as the calculations take place after the 

expiry of the swaps instead of the settlement date. The exposure is based on the real 3M USD 

Libor rate and can be mapped in the following graph: 
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Figure 21: Empirical Exposure. Source: Own creation 

As can be seen in the above figure, the swap starts OTM as the floating rate is higher than the 

fixed rate. Therefore, the exposure value is 0. When the floating rate falls below the fixed rate 

the exposure turns above 0. The COVID-19 Pandemic’s influence on the interest rate swap 

market is clearly visible as the two major spikes in exposure.  

 

6.1.3 Collateral 

Since this empirical analysis seeks to analyze the effectiveness of collateral during a major 

international recession, it is detrimental that the components making up the CSA remains the 

same as for the previous calculations. This means that to ensure the results of the empirical 

analysis are actually comparable to the results of the CVA model, the collateral agreement has 

to be identical for the collateralized swaps in both the empirical and theoretical calculations.  

When applying the identical CSA to the exposure shown in figure 21, the following 

collateralized exposure is calculated:  
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Figure 22: Collateralized exposure. Source: Own creation 

As can be seen in the above figure, the collateral postings have decreased the exposure peaks 

substantially. The daily fluctuations appear larger, but this can be explained through the larger 

exposure value compared to the expected exposure from previous calculations. By comparing 

the empirical exposure values for both swaps with the expected exposures in section 4, it can 

be seen that the exposures are substantially larger in the empirical analysis. This divergence 

between results can be attributed to the interest rate simulation, which generally expected much 

higher interest rates than the rate levels caused by COVID-19. So, while the simulated interest 

rates gave a sort of best-case scenario the empirical data displays a worst-case scenario. 

 

6.1.3 LGD 

As discussed earlier in this thesis, it is very difficult to model LGD, which is why the CVA 

model assumed a constant LGD of 62%, as this was the average LGD of senior unsecured 

bonds. Since there was no additional market data to be had to contradict this assumption, and 

since it would be too complex a task to model an LGD value, LGD will still be assumed to 

have a constant value of 62%. This will ensure that the only factors that can create differences 

between the empirical CVA and the CVA model will be the interest rate movements and the 

probability of default. 
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6.1.4 Probability of Default 

The probability of default in the empirical analysis will be based on market data, but not in the 

same fashion as for the CVA model. The CVA model used a CDS curve to calculate a future 

expected marginal PD. The empirical analysis will calculate the marginal PD based on actual 

CDS spreads covering the duration of the swaps.  

The actual data used are week-by-week CDS spreads that has then been interpolated using the 

hermite spline method to get daily spreads (much like in the PD calculation in the CVA model). 

The CDS spread data available for JPMorgan Chase was 5-year CDS spreads, which does not 

align with the 2-year runtime of the swaps, but nevertheless it is still viable market data as it 

should be able to capture the COVID-19 Pandemic, which is expected to create a divergence 

in results. The CDS curve is represented in the following chart: 

 
Figure 23: JPM CDS spreads. Source: Own creation 

As can be seen in the above figure, the COVID-19 Pandemic led to an extreme increase in CDS 

spreads from a low of 29.2997 to a high of 167.5042. As discussed in section 2.3, the crisis led 

to a drying up in liquidity15 before central bank intervention, which led to credit hedging 

strategies being unable to function properly. This drying up in liquidity is seen as the extreme 

spike in CDS spreads. This should lead to yet another reason for divergence between the CVA 

 
15 especially in credit markets 
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model and the empirical results as the CDS curve had a much slower, gradual increase over 

time. 

 

The CDS spreads have been used to calculate the marginal PD using the same formula as for 

the CVA model: 

$m("J, "ë) = ù1 − exp ù−
_

5lm
"ëûû − ù1 − exp ù−

_
5lm

"Jûû 

This calculation has led to the following graph showcasing the marginal PD for the 

counterparty, JPMorgan Chase: 

 
Figure 24: JPM marginal PD. Source: Own creation 

As expected, the CDS spike during the COVID-19 Pandemic has led to a max value of marginal 

PD of 1.5676%. This is well above the expected 2-year marginal PD, which only reached a 

max value of 0.5531%.  

 

6.1.5 GWWR 

In the COVID-19 Pandemic section of this thesis, it was explained how GWWR was expected 

to be present for receiver swaps due to a combination of: 1) decreases in interest rates leading 

to swaps moving ITM and thereby also increasing exposures and 2) decreased credit quality of 

counterparties due to economic losses that showcased itself in widening CDS spreads.  
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To check whether or not this expected trend is true, and thereby if this is a case of GWWR the 

interest rate developments can be compared to the change in PD for JPM. This comparison is 

displayed graphically here: 

 
Figure 25: PD for JPM & 3M Libor. Source: Own creation 

When looking at the above figure, there appears to be a relatively consistent correlation 

between the movement of the CDS spreads and the movements in the interest rate during 

COVID-19. It can be seen that during the volatile period of the COVID-19 Pandemic, interest 

rates decreased at the same time as a rapid increase in PD began. Afterwards as interest rates 

remained low the probability of default of JPM remained at an elevated level.  

Basically, the tendency seen in the above graph means that when interest rates decreased, and 

the receiver swaps moved deep ITM the credit quality of the counterparty (JPMorgan Chase) 

decreased. Thereby, it can be assumed that GWWR was present in the market during the 

COVID-19 Pandemic for the interest rate receiver swaps in this thesis. 

This assumption that was first introduced in the COVID-19 Pandemic section and now 

described using data means that the premise this thesis has been built on is realistic. 

 

Libor rates & probability of default

Libor rate PD
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6.2 Empirical CVA Calculation 
The calculation of the empirical CVA value will be based around the same formula as for the 

CVA model: 

o<w = 5lmG[[("C|tâ = zT)
x

CMJ

∗ $m("C.J, "C) 

 This is done as to ensure the ability of comparison between the empirical analysis and the 

CVA model. This does in practice mean that the calculation will be carried out in the exact 

same way (of course without the alpha multiplier as it was proved that GWWR is present in 

the market). 

By using the empirically calculated exposures as well as PD and the assumed LGD, it is then 

possible to calculate the empirical CVA for both the uncollateralized and the collateralized 

swaps, which have been showcased in the below table: 

 
Table 8: Empirical CVA results. Source: Own creation 

As can be seen the CVA values are very large at 0.8091% of notional for the uncollateralized 

swap and 0.4048% for the collateralized swap. This is of course driven by the exposure as well 

as the PD. It was seen in figure 24 that the COVID-19 Pandemic led to a huge spike in PD for 

JPMorgan Chase. Also, the sudden rate cuts led to a large increase in exposure. It is seen that 

the collateral postings were able to mitigate 49.9% of the empirical CVA. This is great, as that 

means it has been able to greatly reduce the risk, however, elevated CVA levels are still seen 

even with the collateral postings.  

 

 

 

 

Swap 1 Swap 2
CVA 404,773.38 809,130.19 
% of Notional 0.4048% 0.8091%

Empirical swap portfolio
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6.3 Conclusion: Differences between Empirical and Forecasted Outcomes 
CVA estimates both with and without GWWR has been calculated and can now be compared 

to the empirical CVA values. The comparison can be seen graphically in the figure below: 

 

Figure 26: All CVA results. Source: Own creation 

The above figure displays 1) the two swaps without GWWR, 2) the two swaps with GWWR 

and 3) the two swaps in the empirical analysis. 

It can be seen that there is a very large divergence between the empirical CVA values and the 

CVA estimates (both with and without GWWR). This is of course sad to see, as it means the 

CVA model with GWWR was not able to compensate for the volatility of the COVID-19 

Pandemic. There are multiple assumed reasons behind this: 

 

1) The interest rate simulations are biased towards rate increases 

The Vasicek model used historical Libor rates to create the mean-reversion component, 

which the simulations would deviate around. The mean-reversion component was in general 

biased towards higher rates, which meant the model already from the start predicted wrong. 

To compensate for this, one could have used a more restricted dataset with a larger emphasis 

on lower rates. One could also have made a weighted average, which applied more weight on 

recent interest rate developments. 

Since the interest rate simulation were biased to predict OTM exposures, these results will 

have influenced the expected exposure to end up with a lower value. 

 -
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2) The enormous spike in CDS spreads for JPMorgan Chase during the COVID-19 

Pandemic 

During the initial phase of COVID-19, the CDS spreads widened by an enormous amount 

due to financial uncertainty as well as the lack of liquidity. This enormous spike meant that 

for certain periods the PD of JPMorgan Chase was nearly triple the PD that was calculated in 

the CVA model. This has of course had a major impact in the elevated CVA levels in the 

empirical analysis.   

 

3) COVID-19 was a unique crisis 

Based on the COVID-19 related economic data from section 2.3, it was seen that this crisis 

was very unique in that it was characterized by a lot of uncertainty as well as very bleak 

outlooks for the world economy. The very nature of this crisis was after all the primary 

reason some experts deemed this the biggest test of market liquidity since the great recession. 

This means that it is natural to expect some level of divergence between the CVA estimates 

and the empirical calculations. After all, what is the likelihood that a model can capture the 

risk of a very unique and severe financial recession? 

 

However, even though the CVA results are much higher than the CVA estimates, it can still 

be seen that the use of collateral mitigated 49.9% of the empirical CVA. This is almost as 

high as the regular CVA model without GWWR that mitigated just above 52%. The 

mitigation percentage of the CVA model with GWWR was over 67%, but this is deemed 

unrealistic as the main driver behind this is that GWWR was added as an additional layer on 

the expected exposure. 

Thus, it can be concluded that the CVA model both with and without GWWR was not 

particularly accurate in predicting and compensating for the economic fallout of the COVID-

19 Pandemic. However, it can be seen that collateral functioned well in mitigating 

counterparty risk both in the model and in the empirical analysis.  
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7. Discussion  
This section will discuss both points of critique as well as ideas for future research relevant to 

the thesis.  

 

7.1 Points of Critique  
This section will focus on discussing the thesis and its eventual pitfalls. Here the focus will be 

on discussing the usability of collateral to mitigate counterparty risk. Furthermore, the GWWR 

model and its usability in this thesis will be discussed. Lastly, this section will discuss some of 

the potential issues related to the runtime of the swap in relation to the empirical analysis and 

its results. 

 

7.1.1 Collateral in Relation to Probability of Default 

It has been seen in both the results from the CVA model as well as the results of the empirical 

analysis that collateral functions very well at reducing the exposure of a position. For the CVA 

model it was seen how CVA without GWWR was reduced by nearly 53% and empirical CVA 

was reduced by 49.9% because of the collateral posted. Therefore, one might draw the 

conclusion that collateral is a very efficient mitigation method of counterparty risk, but there 

are facets that has to be addressed.  

It is at the very core of collateral that it helps to reduce CVA by mitigating the exposure of a 

position, which is fine in normal market scenarios, but when the market is hit by a financial 

recession such as the COVID-19 Pandemic then the probability of counterparty default 

becomes a key influence on the MtM CVA value. By looking at the empirical analysis it can 

be seen that PD nearly tripled during the initial market response to COVID-19. Even though 

collateral calls were able to reduce the empirical CVA by 49.9%, it was still substantially larger 

than the CVA estimates both with and without GWWR 

This could indicate that collateral as a standalone mitigation method is not efficient. Perhaps 

collateral could be used in combination with an additional mitigation method that focused more 

on the mitigation of PD. Here a theoretical recommendation would be hedging through credit 

derivatives. However, one of the issues with the COVID-19 Pandemic was that liquidity in 

especially the credit derivatives market dried up, which meant that credit hedges proved 

inefficient. Another issue with hedging as a mitigation method that could harmonize with 
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collateral is that, as mentioned earlier, many market participants refuse to initiate collateralized 

positions. Thus, a party can end up hedging a collateralized position with an uncollateralized 

one. This would then create the risk of asymmetry in the collateral calls. 

 

7.1.2 Pitfall of GWWR: The Alpha Multiplier 

When looking at the results of the CVA estimates with GWWR compared to the estimates 

without GWWR, it is seen that the collateralized CVA estimate is close to identical. This is 

definitely not realistic in a real market scenario, which is backed up by the results of the 

empirical analysis. The reason for overly effective collateral calls in the GWWR scenario is 

that the GWWR model only incorporates GWWR through the use of the alpha multiplier, 

which adds an additional value on top of the expected exposure. As could be seen in the 

empirical analysis, financial recessions do not only reflect in the development of the interest 

rates, but also in the PD of the counterparty. This simplification of GWWR means that the 

effect of GWWR can be removed through the use of collateral in the CVA model, but not in 

the empirical analysis. If one wanted to compensate for this, then one would have to 

incorporate GWWR in the PD of the counterparty. This will be touched upon again later in 

this discussion, when ideas for future research is discussed.  

 

7.1.3 Swap Duration & The Empirical Analysis 

The swaps that are at the center of both the CVA model and the empirical analysis are both 2Y 

swaps. This means that approximately 50% of the empirical analysis uses data from a normal 

market scenario and 50% from the COVID-19 Pandemic. This is an issue for the validity of 

the empirical analysis since it can cloud the results. This does however not mean that it is 

impossible to use 2Y swaps for the empirical analysis. It does however mean that it could have 

been prudent to build a portfolio of different swaps for this thesis. E.g. one could have analyzed 

a 2Y, 5Y and 10Y swap. This would also have been useful to further the analysis of GWWR 

scenarios across duration.  

Initially, this thesis had planned to analyze a 5Y swap, as this would mean approximately 80% 

of the data in the empirical analysis would be from normal market conditions. However, there 

was not enough available data (such as CDS spreads) to be able to create an analysis of a 5Y 

swap. And since the market analysis made by ISDA (2020) pointed to 2Y swaps being 
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especially hard hit by the COVID-19 Pandemic, it was still deemed relevant to analyze the 2Y 

swap. 

 

7.2 Ideas for Future Research 
This section will look into how the thesis could be expanded upon in case of future research. 

Here the focus will primarily be on technical improvements on the calculations as well as more 

theoretical improvements. The subjects that will be covered in this section is GWWR, collateral 

and CVA. 

 

7.2.1 GWWR: The Structured Approach 

One way to improve upon this thesis from a more technical point of view would be through the 

implementation of a more advanced GWWR model. It was discussed in section 4.3 that the 

copula approach, which is the model of choice for this thesis, is not particularly advanced. 

There are a few challenges related to the use of the copula approach, which include the 

extensive use of simplifying assumptions. The reason for the use of the copula approach instead 

of the more advanced structured approach is because of the extensive need for data as well as 

complex calculations. However, future research could implement the structured approach and 

thereby gain a better ability to model GWWR correctly, thus coming closer to a more accurate 

CVA model. 

Future research could even take it the step further and create multiple GWWR models inspired 

by the new methods introduced after the great recession. This could turn the research in the 

direction of an exercise in analyzing and comparing the effectiveness of WWR models. The 

first step to do this would be to gain access to the necessary data, which would be able to link 

counterparty default to market movement. Also, one would need to gain a broad knowledge of 

market practice in WWR modelling – preferably through discussion with personnel from a 

CVA-desk in a bank of some size or through new research papers on the subject.  

 

7.2.2 Collateral: Operational Cost and Funding Costs 

One of the main simplifications made for the collateral model was the exclusion of operational 

cost and funding costs. The exclusion of the two main sources of cost related to collateral makes 

collateral seem as a better mitigation tool than it actually is. If a party is able to remove around 
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50% of their CVA without suffering any drawbacks, obviously it is an optimal solution. By 

introducing funding costs as well as operational cost (a cost incurred based upon the frequency 

of collateral calls) it would enable the thesis not just to conclude whether collateral can be used 

to mitigate the risks of financial recessions, but also if it is an efficient tool to do so.  

By implementing operational cost and funding costs it could be possible to analyze the 

efficiency of collateral based upon multiple factors such as notional amount and frequency of 

collateral calls. Perhaps an efficient collateral model could be created based upon the notional 

amount and call frequency – it could already be assumed that the larger the notional amount 

the more frequent collateral calls should be posted. Perhaps it could even be analyzed if swaps 

with very small notional amounts are worth the funding costs and operational cost to 

collateralize. Collateral is in general the most expensive mitigation method, and this could be 

an interesting aspect to bring into an analysis for future research.  

 

7.2.3 Combining Mitigation Methods 

As mentioned earlier in this discussion, collateral proved an efficient tool to mitigate the 

exposure of a position, however it does not impact changes in PD. PD proved a real challenge 

in the empirical analysis, as major CVA spikes was seen during the COVID-19 Pandemic, even 

though the collateral model removed a substantial amount of the exposure. This indicates that 

collateral might be more efficient when combined with additional mitigation methods that can 

focus directly on PD. It would be interesting for future research to analyze optimal 

combinations of mitigation methods. As previously mentioned, it would be expected that 

hedging would prove a theoretically efficient tool to combine with collateral, but this is not 

necessarily true based upon the research on the COVID-19 Pandemic, which explained that a 

dry up in liquidity for traditional hedging tools (such as CDSs) meant that the hedges were 

inefficient.  

Furthermore, it could be expected that the optimal combination of mitigation methods would 

deviate from financial recessions, as different macroeconomic factors are to blame for 

individual recessions (e.g. the great recession starting of as a housing crisis were as COVID-

19 was a global pandemic). To put it differently, there is no guarantee that financial recessions 

behave the same way, so why would the same combination of mitigation methods function for 

all types of recessions? This viewpoint could prove very interesting to analyze as one could 

test mitigation methods in combination with each other to find the most efficient combination 
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in theory, and then test these combinations with historical data built around different financial 

recessions. This would obviously require a very large amount of data from different time 

periods, and it would also require a very broad knowledge surrounding multiple mitigation 

methods such as collateral, netting, hedging and more.   

 

8. Conclusion 
The purpose of this thesis is to investigate whether postings of collateral is an effective 

mitigation tool against counterparty risk for an interest rate swap between Bank of America 

and JPMorgan Chase in a general wrong-way risk scenario, namely the COVID-19 crisis. 

The two swaps used in this thesis are two 2Y interest rate swaps with a settlement date on the 

6th of January 2019 and an expiration date on the 7th of January 2021. The notional amount of 

both swaps is 100 million USD. The only difference between the two swaps is that one is 

collateralized, and one is uncollateralized. 

To analyze the effectiveness of collateral, three scenarios has been created: 1) a normal 

market scenario calculated from the settlement date looking forward, 2) a GWWR market 

scenario that includes the risk of a financial recession calculated from the settlement date 

looking forward and 3) an empirical analysis calculated after the expiry of the swaps that 

back-tests the previous results. The results are summarized in the table below: 

 

Table 9: Summarized results as % of notional. Source: Own creation 

In the above table it can be seen that both CVA calculations performed from the settlement 

date looking forward are a bit optimistic on the effectiveness of collateral. It is seen that the 

normal market scenario expects a reduction in CVA of 53% and the GWWR market scenario 

expects a reduction in CVA of 67%. The large expected CVA reduction in the GWWR 

scenario was explained earlier as a result of the very simple GWWR model that only 

incorporated GWWR in the expected exposure, which is the CVA component that collateral 

seeks to mitigate.  

Uncollateralized CVA Collateralized CVA CVA reduction
Normal 0.0769% 0.0363% 52.7892%
GWWR 0.1107% 0.0363% 67.1926%
Empirical 0.8091% 0.4048% 49.9743%

Summarized results as % of notional
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It can also be seen that the empirical CVA calculation performed after the expiry of the swap 

looking back yields a reduction of CVA of 50%, which is a very good result, and definitely 

proves the effect of collateralization. However, it can be seen that compared to both the 

normal and GWWR market scenario the CVA value as a percentage of notional is still highly 

elevated even after the posting of collateral. This is believed to be a result of the presence of 

GWWR during the COVID-19 Pandemic, as a spike in the exposure of the swaps was 

combined with major spikes in the PD of the counterparty. This can lead one to believe that 

even though collateral is a helpful tool, it might not be efficient as a standalone tool in 

GWWR scenarios such as the COVID-19 Pandemic. 

 

Based on the calculations performed in this thesis, it can be concluded that collateral is 

a good mitigation method for counterparty risk for the analyzed interest rate swaps. 

However, during real GWWR scenarios, such as financial recessions, it might not be 

prudent to only use collateral as it only mitigates exposure and not the probability of 

counterparty default. Both of which increased drastically during COVID-19 as a result 

of the presence of GWWR.  
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10. Appendices 

Appendix 1: Progress of the pandemic during 2020 
The following appendix has a focus on COVID-19 related events happening in especially the 

US, but also the EU as this is deemed most relevant to the thesis. 

In the end of December, the first cases of an unknown type of pneumonia (COVID-19) 

appeared in the Wuhan province of China. In January the first reports of deaths at the hand of 

COVID-19 came in from China. At the same time the first cases began to appear outside of 

China – including in the US (Taylor, D. B. (2021)).  

In the end of January Wuhan was put under a severe lockdown and the WHO declared a global 

health emergency, which led to travel bans from multiple western countries towards Chinese 

tourists travelling from China (Taylor, D. B. (2021)).  

In February the first deaths outside of China due to Covid-19 was confirmed (including in the 

US), Italy experienced a surge in cases and multiple members of the EU bloc began to enter 

into lockdowns (Taylor, D. B. (2021)).   

In March the US became the hardest hit country in the world and the CDC therefore 

recommended that people stopped attending gatherings of more than 50 people to contain the 

spread. To relieve the waning economy, president Trump signed the CARES act as nearly 10 

million American workers applied for unemployment benefits (the highest number of 

applicants in the history of the US). Furthermore, the EU countries imposed a complete travel 

ban on all countries outside of the bloc (Taylor, D. B. (2021)). 

In April and May the global death toll rose to over 200,000 with US death tolls rising to over 

100,000. Furthermore, both the Japanese and German economies entered into official 

recessions (Taylor, D. B. (2021)).  

June saw a bit of recovery and the EU launched their reopening plans and prepared to lift the 

lockdowns (Taylor, D. B. (2021)).  

In July and August however, it was published that around 5 million Americans had lost their 

health insurance. Furthermore, the EU passed their 857 billion USD stimulus package (Taylor, 

D. B. (2021)).  

In September and October global deaths rose above 1,000,000 and US deaths rose above 

200,000 while the US unemployment rate increased to 7.9% (Taylor, D. B. (2021)). 



 84 

In November the UK re-entered lockdown and the US surpassed 10,000,000 cases and 250,000 

deaths (Taylor, D. B. (2021)).  

In December, the year 2020 ended with the UK beginning their vaccination program against 

COVID-19 and US deaths rose to 300,000 while the FDA approved the Moderna vaccine 

(Taylor, D. B. (2021)).  

 

Appendix 2: Global fiscal stimulus 
This section will focus on the US CARES act as this is the biggest fiscal stimulus package and 

it is deemed most relevant for this thesis. 

The CARES act injected 2 trillion USD into the private economy of the US. It was split, so 560 

billion USD was reserved to individuals, 500 billion USD to major corporations, 377 billion to 

small businesses, 340 billion to states and local governments, 154 billion to public health and 

44 billion to education and other posts. One of the most discussed posts in the CARES act was 

a one-time cash payment of 1,200 USD to individuals that qualified as well as a 600 USD 

increase in unemployment benefits per week. Furthermore, the CARES act offers up to a 13-

week extension of payments for qualified individuals as well as a deferral of student loans 

without adding interest. This economic help was supposed to do two things: 1) relieve financial 

distress for households suffering due to the economic consequences of the COVID-19 

Pandemic, and 2) increase consumer spending and stimulate the economy. The money reserved 

to relieve businesses was not a direct cash payment as for the households. Instead that money 

would be used as a way for businesses to secure short-term funding at low interest rates, which 

as mentioned earlier was one of the reasons the financial markets struggled during the initial 

days of the COVID-19 Pandemic (Law, T. J. (2020)). Of course, the short-term funding 

provided to small businesses would not directly impact the swap market, but short-term funding 

for larger corporations might, as these are, as previously mentioned, typical actors in the swap 

market. 

 

Appendix 3: Calculation of P(t,T) factors 
See attached MS Excel file. 
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Appendix 4: The Vasicek script 
The following code has also been attached as an ipynb file with the same name as this 

appendix. This appendix contains screen dumps corresponding to the entire code from the 

ipynb file. All code has been written by the author with additional explanations (blue writing) 

in the code to explain certain processes.  

NB: All code has been written in the Python environment, JupyterLab, using Anaconda 

Navigator. 
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Appendix 5: Historical Libor rates 
See attached MS Excel file. 

 

Appendix 6: The Exposure & Collateral script 
The following code has also been attached as an ipynb file with the same name as this 

appendix. This appendix contains screen dumps corresponding to the entire code from the 

ipynb file. All code has been written by the author with additional explanations (blue writing) 

in the code to explain certain processes.  

NB: All code has been written in the Python environment, JupyterLab, using Anaconda 

Navigator. 
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Appendix 7: FidInterpolate function 
The code in this appendix is acquired from the FidAnalytics library used in the CBS Master’s 

elective course: ‘Fixed Income Derivatives and Risk Management for Financial Institutions’. 

This code is the only code in this thesis that has not been written by the author. 
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Appendix 8: Probability of default calculation 
See attached MS Excel file. 

 

Appendix 9: The GWWR script 
The following code has also been attached as an ipynb file with the same name as this 

appendix. This appendix contains screen dumps corresponding to the entire code from the 

ipynb file. All code has been written by the author with additional explanations (blue writing) 

in the code to explain certain processes.  

NB: All code has been written in the Python environment, JupyterLab, using Anaconda 

Navigator. 
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Appendix 10: The CVA script 
The following code has also been attached as an ipynb file with the same name as this 

appendix. This appendix contains screen dumps corresponding to the entire code from the 

ipynb file. All code has been written by the author with additional explanations (blue writing) 

in the code to explain certain processes.  

NB: All code has been written in the Python environment, JupyterLab, using Anaconda 

Navigator. 
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Appendix 11: The empirical analysis script 
The following code has also been attached as an ipynb file with the same name as this 

appendix. This appendix contains screen dumps corresponding to the entire code from the 
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ipynb file. All code has been written by the author with additional explanations (blue writing) 

in the code to explain certain processes.  

NB: All code has been written in the Python environment, JupyterLab, using Anaconda 

Navigator. 
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Appendix 12: Bloomberg: CDS data for JPM & BAC 
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Appendix 13: Interest rate swap calculation 
See attached MS Excel file. 

 

Appendix 14: CVA Components 
See attached MS Excel file. 
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Appendix 15: CVA Results 
See attached MS Excel file. 

 

Appendix 16: Empirical Results 
See attached MS Excel file. 

 

Appendix 17: Forward Libor rates 
See attached MS Excel file.  

 

Appendix 18: Discount Factor 
See attached MS Excel file.  

 

 

 


