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Abstract 

Portfolio Optimisation is at the core of Asset Management since the invention of the Mean Variance 

Portfolio Optimisation by Harry Markowitz (1952). Its theoretical usefulness as well as its practical 

flaws have been studied by several academics. The recent developments within the Machine Learning 

environment enabled researchers to use modern technologies to find solutions on how to make Mean 

Variance Optimisation work. Enhanced Portfolio Optimisation has been coined and termed by 

Pedersen et al. (2021). It makes use of Machine Learning through the unsupervised algorithm 

Principal Component Analysis to detect noise and structure in the underlying correlation matrices of 

portfolios. By shrinking the correlation matrix towards the identity matrix, they realise substantially 

higher Sharpe ratios than their benchmarks. In their study, they are able to effectively address the 

problem of estimation noise. This finding cannot be confirmed by this thesis. Instead, it shows that 

their strategy yields inferior Sharpe ratios than the classical Mean Variance Optimisation. A modified 

version of the Enhanced Portfolio Optimisation is proposed by shrinking towards the average 

correlations instead of the identity matrix. This approach appears to be superior to the original 

approach. However, the Mean Variance Portfolio as well as the equally weighted portfolio are tough 

benchmarks to beat. The main finding is displayed by the dependence of the shrinkage parameter on 

the prevailing economic cycle, as well as the dependence of Enhance Portfolio Optimisation on the 

estimation of the correlation matrix.  

 

Keywords: Enhanced Portfolio Optimisation, Mean Variance Optimisation, Machine Learning, 

Principal Component Analysis, Shrinkage 
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1. Introduction 

Harry Markowitz has been awarded the 1990 Nobel Memorial Prize in Economic Sciences for having 

developed the theory of portfolio choice in 1952 (Riksbank, 1990). In said theory, Markowitz studies 

how wealth should be invested when assets differ in terms of risk and expected return. The theoretical 

contribution is vast, still influencing modern portfolio theory (Berk & DeMarzo, 2014). Opposite to 

the academic value of Markowitz study, the practical usefulness has not been proven yet. Michaud 

(1989) was the first to ask why practitioners do not rely on the optimisation techniques proposed by 

Markowitz. Ang (2012) and several others before him argue that the answer can be found in the high 

reliance on input parameters to Mean Variance Optimisation (MVO). 

Several approaches have been undertaken to make MVO functional, working either on the estimated 

inputs or on the technicalities proposed by Markowitz. Jagannathan et al. (2003) state that the solution 

to solving MVO is always found in the covariance matrix. Random Matrix Theory and, more recently, 

Machine Learning helped to gain new insights and develop new approaches to portfolio optimisation. 

The latest attempt has been undertaken by Pedersen et al. (2021) who established Enhanced Portfolio 

Optimisation (EPO). Pedersen et al. and López de Prado (2020) make use of Machine Learning 

through Principal Component Analysis, an unsupervised algorithm to differentiate between random 

structures and signal contained in the underlying data. 

Pedersen et al. (2021) further show that the same result obtained with Principal Component Analysis 

can be achieved by shrinking the correlation matrix towards the identity matrix. By doing so, they 

argue that the impact of noise in the covariance matrix as well as the expected returns can be 

significantly reduced. In their simulations, their EPO realised higher Sharpe ratios than the equally 

weighted portfolio and the classical Mean Variance Portfolio. Pedersen et al. (2021) do not motivate 

why they shrink towards the identity matrix. Depending on the dataset used to simulate the 

performance of the EPO, the underlying true correlation will also differ and thus require a different 

amount of shrinkage. 

This thesis focuses on modifying the EPO provided by Pedersen et al. (2021) by shrinking the 

correlation matrix towards the average correlation of all assets. This approach enables investors to 

bypass the simulation to figure out the optimal amount of shrinkage needed. This approach is found 

to be more efficient in predicting Sharpe ratios, yet it produces lower realised Sharpe ratios than the 

original EPO.  
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The underlying research question is to show if and how Machine Learning technologies can help 

addressing the problem of noise in covariance matrices when optimising portfolios. First, this thesis 

presents the theoretical foundations of portfolio choice theory, Principal Component Analysis, and 

estimation noise. Second, EPO is introduced. Third, the specific methodology of this thesis is 

discussed, specifying how EPO can be modified to potentially achieve greater estimation accuracy. 

Next, the results of the analysis and testing are outlined. Lastly, the results are discussed, and a 

conclusion is drawn. 

2. Theoretical Foundations 

The fundamental cornerstone of modern portfolio optimisation is the MVO as formulated by 

Markowitz (1952). Its basic idea is to make use of the co-movements of different assets to create 

diversification effects within a portfolio and thereby enable an investor to balance the rate of return 

and corresponding risk of the portfolio in any desired way. Before outlining the details of MVO, the 

basics of portfolio theory are explained.  

2.1 Portfolio Theory 

Two fundamental assumptions are required to explain portfolio theory. First, investors are assumed 

to prefer high expected returns over low expected returns, ceteris paribus. Second, investors always 

prefer a low variance over high variance, ceteris paribus. In short, investors are assumed to be greedy 

and risk averse. Consequently, the investor will always choose the portfolio with the lowest variance 

amongst all portfolios offering the same expected return. Similarly, investors will always choose the 

portfolio with the highest expected return amongst all portfolios with the same level of variance. 

The Sharpe ratio combines both assumptions by expressing an expected rate of excess return for each 

unit of risk. A rational investor will always prefer any asset with a higher Sharpe ratio over an asset 

with a lower Sharpe ratio because each unit of risk is rewarded with a higher rate of excess return by 

the asset with a higher Sharpe ratio. The Sharpe ratio of an asset can increase by either lowering the 

risk or an increase of the expected excess return. However, such a scenario is unlikely as the investor 

is usually compensated for each unit of risk incurred. Therefore, it is more likely that the expected 

return increases once the variance of a portfolio increases to account for the higher risk of the 

portfolio. Similarly, investors can expect to obtain lower returns in case of a lower total variance of 

the portfolio. 
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Once further assets are included into the investor’s portfolio, the relationship of fluctuations of the 

returns of all different assets needs to be taken into consideration. The co-movements of assets are 

captured by the covariance and the correlation of assets. The covariance describes the direction of the 

relationship of the return of assets. If the covariance is positive, one can generally assume the returns 

of the assets move into the same direction. In contrast, with a negative covariance one can assume 

that asset returns usually move in opposing directions. Correlation also measures how asset returns 

are related to each other but is bounded by −1 and 1. A correlation of 1 means that the returns of 

both assets always move into the same direction. With a correlation of −1 both assets have exactly 

opposing returns. A perfect negative or positive correlation does not mean that both assets have the 

same level of return. Instead, it means that the sign of the return is always the same, or always the 

opposite. A correlation coefficient of 0 can be interpreted as there being no detected relationship 

between the two assets, their returns are therefore considered to be independent of each other. 

The formulas to calculate volatilities, correlations, and covariances are presented in matrix notation 

where the superscripts𝒔𝑻 and𝒔−𝟏 indicate the transpose and the inverse of a vector or matrix. Matrices 

and vectors are printed in bold throughout the thesis. The correlation of assets x and y can generally 

be defined as: 

𝜌 =
Σ(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)

√Σ(𝑥𝑖 − 𝑥̅)2Σ(𝑦𝑖 − 𝑦̅)2
         (01), 

with 𝑥𝑖 and 𝑦𝑖 being the individual returns at day 𝑖 of both assets, and 𝑥̅ and 𝑦̅ referring to the means 

of each series of returns. The pairwise correlations of all assets can then be transformed into matrix 

form through the correlation matrix 𝛀. 

The variance of each individual asset is calculated as:  

𝜎2 =
∑ (𝑥𝑖 −𝑛

𝑡=1 𝑥̅)2

𝑛 − 1
     (02), 

with 𝑛 being the number of observations in the sample. The standard deviation or volatility is 

calculated through the square root of the variance 𝜎 = √𝜎2. Lastly, the covariance matrix 𝚺 showing 

the pairwise covariances on the off diagonals and the individual variance on the diagonals is 

calculated as:  

𝚺 = 𝝈𝑻𝛀𝝈      (03). 
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Investors can benefit from the co-movements of assets through diversification of risk. This is best 

illustrated with an example: An investor has the choice between two assets. Asset A has an expected 

return of 6% and a volatility of 15%. Asset B also has an expected return of 6% and a volatility of 

15%. If the investor chooses to invest into a single asset only, the expected return of the portfolio is 

6% with a volatility of 15%. However, if the investor chooses to invest in both assets the co-

movement of both assets needs to be considered. For the sake of simplicity of this illustration both 

assets are assumed to be perfectly negatively correlated. In that case, whenever one asset has a 

positive return, the other asset has a negative return. The expected return of any portfolio with both 

assets included is always 6%, irrespective of how the weights are divided. The risk, however, can be 

entirely eliminated due to the perfect negative correlation of both assets. With an even split of both 

assets, it is possible to achieve a risk of 0% while maintaining the expected return of 6%. As described 

above, this portfolio is always preferred by investors as they achieve the same expected return with 

less risk.  

Nevertheless, perfectly negatively correlated assets are rarely existing making the above example 

impractical. Yet, diversification effects can still be achieved with any other correlation of assets. For 

example, a correlation of −0.5 would decrease the portfolio variance in the above example to 7.5%. 

The volatility of a portfolio consisting of two assets can generally be calculated as: 

𝜎𝑝 =  √𝑤1
2 ∗  𝜎1

2 +  𝑤2
2 ∗  𝜎2

2 + 2 ∗  𝑤1 ∗  𝑤2 ∗ 𝜌1,2 ∗ 𝜎1 ∗ 𝜎2         (04), 

with the correlation between the two assets given by 𝜌1,2, the weights of each asset 𝑤𝑖, and the 

volatilities of the assets  𝜎𝑖. The formula used to compute expected return of portfolios 𝑟𝑝 is:  

𝑟𝑝 = ∑ 𝑟𝑖 ∗ 𝑤𝑖

𝑁

𝑖=1

                (05), 

where the weights 𝑤𝑖 of each asset are multiplied with the corresponding expected returns 𝑟𝑖.  

While the return formula is applicable for any number 𝑁 of assets within a portfolio, the formula used 

to calculate the risk needs to be adjusted. Each asset has a different correlation to all other assets. 

Hence, each pair of assets is assigned a specific correlation. The formula for the risk of a portfolio is 

therefore:  

𝜎𝑝
2 = 𝒘𝑻𝚺𝒘          (06), 

where 𝒘 is the vector of weights and  𝚺 is the variance-covariance matrix.  
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Using the formulas for portfolio risk and return, investors can combine assets and calculate the 

expected return and risk of the portfolios. The resulting set of risk and return can be plotted as 

illustrated in Figure 1. By 

combining the different 

assets, it is possible to 

achieve any combination of 

risk and return on the plotted 

line. However, one can 

differentiate between 

efficient and inefficient 

portfolios. Efficient 

portfolios are those on the 

solid blue line, while those on the dashed orange line are considered as inefficient. For a given level 

of risk, any point on the orange part has a counterpart on the blue part of the line, which means that 

a portfolio with the same level of risk but a higher expected return exists. These portfolios are always 

preferrable to those on the orange line. The blue line is referred to as the efficient frontier as it 

represents the efficient set of weight allocations within the portfolio. 

2.2 Markowitz’ Mean Variance Optimisation 

Two portfolios that are of particular interest in portfolio optimisation are the minimum variance 

portfolio and the maximum slope portfolio. The minimum variance portfolio can be observed in 

Figure 1 as the point the furthest to the left, where the blue and the orange lines meet. The maximum 

slope portfolio is not as easily detected. Before plotting the maximum slope portfolio, the intuition is 

explained. The slope of the graph in Figure 1 can be translated as total expected portfolio return (y-

axis) divided by portfolio volatility (x-axis). The slope hence describes how much return is achieved 

per unit of risk. Identifying the portfolio with the highest slope therefore corresponds to identifying 

the portfolio offering the highest expected return per unit of risk. One important note on the maximum 

slope portfolio is that this portfolio does not automatically have the maximum Sharpe ratio of all 

portfolios. The Sharpe ratio measures excess return per unit of variance. The maximum slope 

portfolio instead shows the portfolio with the highest share of total expected return per unit of risk. 

Mathematically, the minimum variance portfolio is found by minimizing the following objective 

function:  

Ex
p
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o
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et

u
rn

Portfolio volatility

Figure 1 Efficient and inefficient portfolio allocations (own illustration) 
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min
𝑤  

𝒘𝑻𝚺𝒘        (07), 

subject to all weights summing up to one: 

𝟏𝑻𝒘 =  1                 (08). 

This can be achieved by using the Lagrangian approach and the Lagrangian multiplier 𝜆: 

𝐿 = 𝒘𝑻𝚺𝒘 + λ ∗ (1 − 𝟏𝐓𝒘)           (09) 

The next step is to set the first derivative of 𝐿 with respect to 𝑤 equal to 0 and solving the equations 

for 𝜆. After inserting the found 𝜆 back into equation 𝐿, the equation can be solved for 𝑤: 

𝑤𝑚𝑖𝑛 =
𝚺−𝟏𝟏

𝟏𝑻𝚺−𝟏𝟏
         (10), 

which is the portfolio with the lowest achievable risk amongst all set of portfolios. Shaw et al. (2008) 

show the detailed steps of the 

computations above. This 

portfolio is shown in Figure 2 

as the most left point on the 

efficient frontier, indicated by 

the blue triangle on the 

frontier. Furthermore, the 

maximum slope is shown as 

the yellow diamond. The 

maximum slope portfolio is 

the portfolio where the dashed 

black line touches the frontier. The mathematical derivation on how to find the maximum slope 

portfolio is outlined in the following.  

The most striking difference between the formula on how to calculate the minimum variance portfolio 

and the maximum slope portfolio is seen in the inputs. While the objective function of the minimum 

variance portfolio contains the weight vector and the variance-covariance matrix as inputs, the 

objective function of the maximum slope portfolio also includes the return variable 𝝁. 𝝁 is a vector 

of expected returns of all assets. The objective function for the maximum slope portfolio looks as 

follows:  
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Portfolio volatility

Figure 2: Minimum variance and maximum slope portfolio mapped on the efficient frontier. 
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max
𝑤 

𝒘𝑻𝝁

√𝒘𝑻𝚺𝒘
              (11), 

subject to all weights summing up to one: 

𝟏𝑻𝒘 = 1               (12). 

Again, by setting the first derivative of the Lagrangian function with respect to the weights 𝒘 equal 

to 0, one obtains a function which can be solved for 𝒘. The ultimate formula which solves for the 

weights of the maximum slope portfolio is:  

𝑤𝑚𝑎𝑥 =
𝚺−𝟏𝜇

𝟏𝑻 ∗ 𝚺−𝟏𝜇
         (13). 

Now, both formulas have been derived to calculate the portfolio with the lowest variance and the 

portfolio with the steepest slope.  

As already pointed out above, the maximum slope portfolio does not take excess returns into account. 

Overall, interest rates have so far been excluded from the theoretic derivation of the portfolio choice. 

By including the interest rate to the available set of assets, investors are confronted with new 

possibilities in terms of weight allocation, risk and return trade-offs. The interest rate is referred to as 

the risk-free rate, enabling investors to achieve a level of return without having to incur any risk at 

all. Investors are therefore able to construct their portfolios with assets and interest rate instruments 

such as bonds. The implications of including interest rates as risk-free assets to the portfolio choice 

theory are that the efficient frontier in Figure 1 and 2 can be further adjusted. The red line in Figure 

Figure 3Adding the risk-free rate and tangency portfolio to the model (own illustration). 

Ex
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Portfolio volatility
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3 replaced the dashed black line which used to go from the origin through the maximum slope 

portfolio in Figure 2. The red line starts at the expected return of the interest free rate. Furthermore, 

the portfolio, which is the tangent point of the red line and the efficient frontier, is shown as the green 

dot. The red line shows a new set of attainable portfolios by combining the tangent portfolio with the 

risk-free rate. The maximum slope portfolio, for example, is now considered to be inefficient a 

portfolio slightly above on the red line with a higher expected return exists. The red line is called the 

Capital Market Line (CML). The slope of the CML depicts the Sharpe ratio of the tangent portfolio. 

The derivation of the tangency portfolio is similar to the derivation of the maximum slope portfolio. 

However, instead of maximising the total return for each unit of risk, the expected excess return for 

each unit of risk is maximised. Since the tangency portfolio is the only portfolio consisting of only 

risky assets that lies on the CML, rational investors should ignore all other portfolios from the 

efficient frontier. The risk aversion should further dictate how much weight is put on the tangency 

portfolio and how much on the interest rate. 

The invention of Markowitz’ portfolio theory explained above still has a major influence on modern 

finance and is taught at universities as the way to optimize portfolios. However, investors face 

difficulties when trying to implement MVO in practice. One of the problems is that MVO typically 

tells investors to build highly leveraged positions on those portfolios with a low estimated variance. 

The reason for that leverage is that those portfolios are expected to achieve higher returns per unit of 

risk than the other assets. As explained above, investors are compensated for the amount of risk they 

assume. This is captured by the Capital Asset Pricing Model (CAPM) developed by William Sharpe 

in 1964. The CAPM states that the return of an asset depends on its underlying risk. It should therefore 

not be possible for the MVO to identify assets which yield higher returns per unit of risk than others. 

The underlying problem of these weight allocations is found in estimation errors. Estimation errors 

occur when estimations are based on samples from an underlying population. The most important 

difficulty of MVO is known to be estimation errors in the variance-covariance matrix and expected 

returns. This notion constitutes the focus of this thesis and will be explained in greater detail in the 

subsequent sections. 

2.3 Principal Component Analysis 

Principal Component Analysis (PCA) is one of the most commonly used unsupervised machine 

learning algorithms. It further serves as the foundation towards understanding dimensionality 

reduction (Shlens, 2014). Explaining how PCA works, is best done through an example. A correlation 
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matrix of ten assets is a 10 x 10 matrix has 
10∗10

2
= 50 correlations to estimate. When applying PCA 

to that matrix, PCA decomposes that matrix into a new 10 𝑥 10 matrix, where each column is now 

called an eigenvector. This process is called Feature Extraction (Abdi et al., 2010). Each of the newly 

created eigenvectors consists of a combination of weights from the old variables in the initial 

correlation matrix. The eigenvectors are created in such a way that each eigenvector has a correlation 

of zero to all other eigenvectors. Further, each eigenvector is assigned a specific eigenvalue which 

shows how much of the total variance is explained by each eigenvector (Ringnér, 2008). Eigenvectors 

can be ranked by their eigenvalues, so that the first eigenvector is the eigenvector explaining the 

largest part of the variance within the underlying data. The eigenvalue can be translated into a 

percentage by dividing an eigenvalue by the sum of all eigenvalues. The resulting percentage shows 

how much of the variance can be explained by the corresponding eigenvector. PCA therefore provides 

a way to extract the features explaining the largest share of the variance without deleting any variables 

but instead reshuffling the weights of the underlying variables (López de Prado, 2020). 

In more detail, eigenvectors represent directions, just like the best-fitting line in a basic regression 

analysis. An eigenvector shows a particular direction in a scatterplot of data, while eigenvalues 

represent the magnitude or importance of the eigenvectors. The larger the eigenvalue, the higher the 

importance of the direction of the corresponding eigenvector. The reason why PCA is of relevance 

for this thesis is its ability to split variance into signal and noise and differentiate between signal and 

noise through the eigenvalues. Noise is the term used in machine learning environments to describe 

estimation errors. Usually, a lot of variance within one direction indicates an underlying signal or 

feature that can be detected and used for estimation purposes (Wold et al., 1987). Low variance 

instead indicates that the underlying feature is random and composed of noise. This is highly relevant 

as MVO takes high leveraged positions in the low estimated variance portfolios as they are expected 

to be low risk. However, if that variance is estimation noise, one can safely assume the realised 

volatility to be a lot higher than expected. This is why MVO is generally not used in practice. 

2.4 Estimation Errors (Noise) 

The terms estimation errors and noise are used interchangeably throughout this thesis. Noise is the 

difference between an estimation and the true underlying parameters of the population. The 

parameters which are estimated in MVO are the expected returns, correlations, as well as variances 

and covariances. Hence, all these estimated parameters are exposed to estimation noise. Generally, 

noise can be reduced by increasing the sample size. With infinite data available for an estimation, the 
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estimation converges to the underlying true population values, which has been proven through the 

Central Limit Theorem (Heyde, 2014). 

However, the problem with using return data is that not many data points are available. One data 

entry per day does not suffice to assume that the estimation based on daily returns converges to the 

true parameters. That problem could potentially be avoided by taking more years of data into account. 

Nevertheless, the underlying true parameters may also change over time. Hence, when taking ten 

years of data into account for an estimation, there is a chance that the underlying parameter changed 

and is not the same at the end of the estimation period as in the beginning. Longin et al. (1995) prove 

this in their study on correlation coefficients of international equity returns. Ball et al. (2000) further 

confirm that finding in their study. This trade-off is addressed in section 5. 

To demonstrate the origin of noise, a simulation with three assets is performed. In that simulation the 

true underlying population values of expected returns, volatilities, correlations, and the corresponding 

covariances are defined. Based on those values, a random multivariate simulation is performed with 

the mean, correlation, variance, and covariance inputs taken from the population. This enables to 

compare the estimations to the true underlying values. The population parameters are defined as: 

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑚𝑒𝑎𝑛 =  [0.1 0.05 0.075] 

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 =  [0.3 0.19 0.25] 

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = [
1 0.2 0.8

0.2 1 0.4
0.8 0.4 1

] 

The true covariance matrix can then be calculated as: 

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

= (𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦)𝑇 (𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛) (𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦). 

Resulting in 

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  [
0.09 0.0114 0.06

0.0114 0.0361 0.019
0.06 0.019 0.0625

]. 

The simulation is a multivariate normal estimation based on the parameters from above, simulating 

20 yearly returns. It is performed using numpy in Python 3.7.6. 

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

= 𝑛𝑢𝑚𝑝𝑦. 𝑟𝑎𝑛𝑑𝑜𝑚. 𝑚𝑢𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒_𝑛𝑜𝑟𝑚𝑎𝑙(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑚𝑒𝑎𝑛, 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒, 20) 
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The sample statistics are then calculated based on the simulated returns (rounded to fourth digit): 

𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛 = [0.1238 0.0366 0.0813] 

𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 =  [0.291 0.1349 0.2306] 

𝑠𝑎𝑚𝑝𝑙𝑒 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = [
0.0847 0.0065 0.0493
0.0065 0.0182 0.0092
0.0493 0.0092 0.0531

] 

𝑠𝑎𝑚𝑝𝑙𝑒 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = [
1 0.1646 0.7346

0.1646 1 0.2968
0.7346 0.2968 1

] 

One can see the differences between the sample statistics and the population statistics. This difference 

is calculated below for each parameter: 

(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑚𝑒𝑎𝑛 − 𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛) =  [−0.0238 0.0134 −0.0063] 

(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑡𝑖𝑦 − 𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑡𝑖𝑦) =  [0.0090 0.0551 0.0194] 

(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 − 𝑠𝑎𝑚𝑝𝑙𝑒 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒) =  [
0.0053 0.0049 0.0107
0.0049 0.0179 0.0098
0.0107 0.0098 0.0093

] 

(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 − 𝑠𝑎𝑚𝑝𝑙𝑒 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛) =  [
0 0.0035 0.0065

0.0035 0 0.0103
0.0065 0.0103 0

] 

The differences between the sample estimations to the underlying values of the population should, in 

the absence of noise, all be zero. Instead, they show that noise, stemming from the estimation, exists. 

Estimation noise in the context of portfolio optimisation has been addressed and researched by several 

academics. Among others, Michaud (1989) asks why MVO is not used by practitioners, which Jorion 

(1992) answers with the inability of MVO to recognize estimation risk. The question arising next is 

how to differentiate between the signal contained in the estimations and the noise, reasoning why the 

Marčenko-Pastur distribution is explained next. 
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2.5 The Marčenko-Pastur Distribution 

The Marčenko-Pastur distribution is part of the random matrix theory and describes the distribution 

of eigenvalues of a completely random matrix (Marčenko & Pastur, 1967). Its mathematical 

derivation and proof are beyond the scope of this thesis. Instead, the distribution of eigenvalues is 

used to differentiate between those eigenvalues of random eigenvectors and those eigenvalues of non-

random eigenvectors. The probability density function of the distribution can be seen Figure 4 below, 

where the eigenvalues are labelled as 𝜆 on the x-axis and the probabilities on the y-axis. Figure 4 

displays how eigenvalues are distributed if the underlying matrix on which PCA has been performed 

is entirely made of noise and thus random. The graph in Figure 4 is therefore used as a blueprint to 

identify those principal component portfolios that are not entirely random. Those portfolios not 

matching the Marčenko-Pastur distribution hence possess some underlying structure that is able to 

explain the variance of the distribution.  

3. Related Literature 

3.1 How to make Mean Variance Optimisation work 

The theoretical value of MVO is unquestioned. Its usefulness, however, is just as clearly rejected due 

to the impact of estimation noise. The challenge on how to make MVO work in practice has been of 

great concern for many academics. The approaches put forward by academics and researchers thus 

Figure 4 The Marčenko-Pastur distribution of eigenvalues (own illustration) 
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far can be classified into two categories. One part takes the input criteria as given and tries to work 

on the mechanisms of MVO. The second category looks at the input values of MVO and attempts to 

reduce the impact of noise by reducing the noise in the data itself before calculating the different 

weights of the assets. Even though the approaches differ in where they tackle the problem of 

estimation errors, Jagannathan and Ma (2003) find that all approaches can be interpreted as fixing the 

variance-covariance matrix. Recently, modern technologies enabled researchers to look for other 

opportunities to solve the problems of MVO. Machine learning technologies were used by some 

scholars to optimize the input datasets and achieve a superior result of MVO. 

Mechanisms used to adjust the input variables before performing MVO include random matrix theory, 

shrinkage, and resampling. Further, Black and Litterman propose to merge the individual views of 

investors into the MVO calculations. Random matrix theory has been applied by Laloux et al. (1999), 

who looked at the correlation matrix of stocks in the S&P 500. They apply random matrix theory to 

extract those eigenvalues which carry most of the information needed to estimate the correlation 

matrix. This approach is picked up by Pedersen et al.’s (2021) Enhanced Portfolio Optimisation which 

is explained separately. The resampling approach has been coined by Richard and Robert Michaud 

(1998) producing several estimates of risks and returns around the initial estimates. Those newly 

resampled estimates are then used to perform MVO. Michaud (1989) further takes the average of all 

the different outcomes of the MVO performed on the different resampled estimates. However, Becker 

et al. (2009) find that classical MVO outperforms Michaud’s resampling method within their 

simulations. 

The approach of utilizing shrinkage has been suggested by Ledoit and Wolf (2004), who estimate the 

covariance matrix of stock returns through a weighted average of the sample covariance matrix and 

a single-index covariance matrix. This approach is merged with Pedersen et al.’s (2021) Enhanced 

Portfolio Optimisation in this thesis. Lastly, Black and Litterman (1992) compute a set of neutral 

weights by using the CAPM enabling investors to merge their own personal expected returns with the 

weights returned by the CAPM. Pedersen et al. (2021) incorporate this in two ways: For one, the 

simple EPO a vector of signals can be included. For another, the anchored EPO an anchor portfolio 

can be specified. 

The focus of studies looking at resolving the problems of MVO by taking the input data for granted 

lies at setting up bounds of weights, regularizations, or penalisation of objective functions. Setting up 

bounds for weights signifies to limit the values each weight can take on. Roncalli (2010) examines 
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the impact of weight constraints on portfolio theory. He shows that weight constraints may modify 

the covariance matrix substantially. This refers to Jagannathan and Ma’s (2003) finding that 

restrictions on weights ultimately imply the same as modifying the covariance matrix itself. 

Regularization as well as penalisation objectives go into similar directions by restricting the weights 

in becoming too extreme. However, as argued by Bruder et al. (2013), all these approaches ultimately 

point towards changing the covariance matrix.  

Machine learning algorithms enabled academics and researchers to pursue new opportunities on 

finding solutions to reducing noise in the covariance matrix. López de Prado (2020) introduces 

machine learning as means to building powerful financial theories as well as to better understanding 

existing theories. López de Prado (2020) further classifies machine learning in finance as a separate 

sub-category of machine learning due to the low signal-to-noise ratio. The main advantage of machine 

learning applications in finance is its ability to work with unstructured data, which represents 80% of 

all available data. The first chapter of his book is devoted to denoising and detoning of covariance 

matrices. 

López de Prado (2020) presents two techniques enabling asset managers to work with the correlation 

matrix: denoising and detoning. Denoising replaces the eigenvalues of the eigenvectors classified as 

random by Marčenko-Pastur with a constant eigenvalue. This technique leads to an elimination of the 

noise contained in the correlation matrix while preserving the signal included. The author highlights 

the key difference between denoising and shrinkage as the ability of denoising to preserve even the 

smallest signal. Shrinkage instead, as argued by López de Prado (2020), eliminates some noise but 

also a part of the signal, which is prohibitively dangerous considering the small signal-to-noise ratio 

of financial return data. This finding is further confirmed by Zakamulin (2014). Once the signal has 

been extracted and the noisy eigenvectors reduced, López de Prado (2020) proceeds with the detoning 

of the eigenvectors. Detoning is based on the observation that financial correlation matrices always 

incorporate the general market factor. This market factor is found in the PCA as the eigenvector with 

the highest eigenvalue. López de Prado (2020) suggests removing that eigenvector to focus on other 

signals within the correlation matrix. Portfolio optimisation can then be performed on the denoised 

and detoned eigenvectors. The weights of the original assets can be reversely calculated from the 

weights of the eigenvectors.  

The performance of this approach has been tested in a Monte-Carlo simulation with a minimum 

variance portfolio. The out-of-sample result for the denoised approach shows an improvement of 60% 
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compared to the original MVO. It was also compared to the Ledoit and Wolf (2004) shrinkage 

approach, which showed a worse performance compared to the denoising. For a maximum Sharpe 

ratio portfolio, a similar simulation has been undertaken showing a stronger performance for the 

denoised approach compared to the original maximum Sharpe ratio portfolio as well as the shrinkage 

approach (López de Prado, 2020).  

Finally, Pedersen et al.’s (2021) Enhanced Portfolio Optimisation is introduced. It takes into account 

all the theoretical foundations outlined so far. Additionally, it integrates the several approaches made 

by academics to tackle the estimation noise in covariance and return estimations. López de Prado 

(2020) laid the foundation of using machine learning to enable investors to use MVO. Pedersen et al. 

(2021), however, take it one step further by showing in a simplistic way, that what is needed to make 

MVO work is to reduce the correlation matrix towards the identity matrix. 

3.2 Enhanced Portfolio Optimisation 

Enhanced Portfolio Optimisation (EPO) is developed by Pedersen et al. (2021) as a solution on how 

to adjust the correlation matrix in a way that reduces the impact of estimation noise. EPO calculates 

weights for portfolios based on the structure contained in the historic return data. They thereby enable 

investors to obtain more reliable portfolio weights than from MVO. Pedersen et al. (2021) present two 

use cases of EPO: one simple application, and an anchored approach allowing investors to anchor the 

enhanced portfolio to any desired benchmark portfolio. The simple EPO is the approach of interest 

for this thesis as it shows how machine learning techniques help address noise in covariance matrices 

and solve that problem for MVO.  

The simple EPO starts by applying PCA to the original assets to differentiate between noise and 

structure. Each eigenvector is treated as a separate portfolio, where the elements of an eigenvector 

are used as weights. The common statistics such as variance, return, or Sharpe ratio are calculated for 

the returns of those principal component portfolios. These calculations are performed to show the 

expected statistics against the realised ones. Figure 5 shows that the portfolios with the lowest 

eigenvalues are those with higher expected returns compared to the realised returns as well as lower 

expected volatility than realised (Pedersen et al., 2021). This Figure is used to prove the point that 

MVO tends to leverage on those portfolios which are wrongly estimated through noise. 
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Figure 5.A shows the estimated volatilities of the principal component portfolios versus the realised 

volatilities per principal component portfolio. The two main conclusions from that graph are that 

those portfolios with higher eigenvalues overestimate the risk and tend to realise lower volatilities 

than estimated. Instead, those portfolios on the right end, with low eigenvalues (per definition of PCA 

mostly consisting of noise) realise a higher volatility than estimated. Figure 5.B is similarly built as 

Figure 5.A but shows expected returns versus realised returns for each principal component portfolio. 

Again, a striking difference can be noted between those principal component portfolios with high 

eigenvalues and those with lower eigenvalues. Realised returns tend to be higher than the expected 

returns for the left half of the portfolios, while the right half realised lower returns than expected.  

Figure 5 Extracted from Pedersen et al. (2021). 
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Figure 5.C merges the two findings from Figure 5.A and 5.B by showing the realised and expected 

Sharpe ratios per principal component portfolio. Overall, expected Sharpe ratios are higher for those 

portfolios with low eigenvalues than the portfolios with higher eigenvalues. However, the realised 

Sharpe ratios are higher for those portfolios with high eigenvalues than those with low eigenvalues. 

Further, the difference between expected and realised Sharpe ratios is larger for the portfolios with 

low eigenvalues. This is in line with the previous findings and highlights the randomness of the 

portfolios with low eigenvalues. Lastly, Figure 5.D shows that MVO puts a large part of the portfolio 

weight into those portfolios which are essentially random and noisy. The danger with MVO is 

therefore that the outcome of the MVO portfolio is random and not optimising the portfolio in any 

way. Rather, it places weights on the sub-optimally estimated portfolios and exposes the investor to 

the opposite of what it was supposed to: portfolios with high realised volatilities and low realised 

returns. Michaud framed it in 1989 as:  

“The unintuitive character of many optimized portfolios can be traced to the fact that 

MV optimizers are, in a fundamental sense, estimation error maximisers. Risk and return 

estimates are inevitably subject to estimation error. MV optimization significantly 

overweights (underweights) those securities that have large (small) estimated returns, 

negative (positive) correlations and small (large) variances. These securities are, of course, 

the ones most likely to have large estimation errors” (Michaud, 1989, p. 33). 

Having the flaws of MVO established, Pedersen et al. (2021) show how to address them effectively. 

The basic idea is to shrink the correlation matrix towards the identity matrix and thereby reduce the 

correlations towards zero. It must be noted that this is not done in the space of principal component 

portfolios but in the space of the original assets available to the investor. This is the main difference 

between Pedersen et al. (2021) and López de Prado (2020). The amount of shrinkage needed is an 

empirical question, which will be addressed further below. The simple EPO is built similarly to the 

minimum variance portfolio. Instead of using the original covariance matrix, a new covariance matrix 

is computed with the shrunk correlation matrix. Further, risk aversion enters the formula to adjust the 

portfolios to the specific risk appetite of the investors. Additionally, investors can include their own 

expectations of future returns through a signal variable.  

Before showing the specific mathematical steps, the intuition behind shrinkage is explained and why 

it solves the problem of MVO. Relating back to Figure 5 and moving into the space of principal 

component portfolios, the intuitive solution to MVO is to increase the volatility estimates of the 
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principal component portfolios. Pedersen et al. (2021) show that shrinking the correlation matrix of 

the original assets towards the identity matrix is the same as changing the volatilities at the level of 

the principal components. They even go one step further by showing that the shrinking of correlations 

also addresses noise in the expected return estimations. However, noise in expected returns is not the 

focus of this thesis and hence not pursued any further. 

The reason why a shrunk correlation matrix at the level of the original assets leads to an overall higher 

estimated variance of the portfolio can be found in the choice of weight allocations in MVO. MVO 

places high importance on assets with high correlations towards the other assets by placing large 

positive or negative weights on those assets. By, for example, shorting an asset with high positive 

correlations to the other available assets that short position ensures a rather low overall estimated 

volatility of the portfolio. With pairwise correlations shrunk towards zero, this technique becomes 

inherently difficult, and MVO is forced to place more importance on the volatilities (recall Formula 

03 for calculation of the covariance matrix) of the individual assets instead. This, in turn leads to an 

overall higher expectation of the volatility of the portfolio. Even though it seems counter-intuitive 

that shrinking correlations leads to an overall higher expected risk, the key to understanding this step 

is to realise how the weights are allocated using the original MVO.  

In mathematical terms, shrinking the correlation matrix towards the identity matrix looks as follows:  

𝛀̃ = (1 − 𝜃)𝛀 + 𝜃𝑰           (14), 

where 𝛀 is the original correlation matrix, 𝑰 the identity matrix, and θ the shrinkage parameter. The 

shrunk correlation matrix can further be used, together with the initially estimated volatilities, to 

calculate a new variance-covariance matrix 𝚺̃: 

𝚺̃ = 𝝈𝛀̃𝝈            (15), 

with the volatilities given by 𝝈. The weights allocated to the simple EPO portfolio are calculated as 

follows:  

𝐸𝑃𝑂𝑠 =
1

𝛾
𝚺̃−𝟏𝒔           (16). 

The risk aversion of each investor enters through the parameter 𝛾, while 𝒔 is the vector of signals 

through which an investor can incorporate own expectations of future returns into the weight 

allocations. 
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Pedersen et al. (2021) compare their method to several benchmarks such as the equally weighted 

portfolio and MVO portfolio with numerous differently composed datasets and portfolios. They find 

their portfolios to always outperform the benchmarks in terms of gross realised out-of-sample Sharpe 

ratios. 

As impressive as the presented results are, the question of how much shrinkage to use is still 

unanswered. Pedersen et al. (2021) choose the optimal shrinkage parameter as the shrinkage 

parameter that would have previously yielded the highest possible Sharpe ratio. On average, the 

optimal level of shrinkage is reported as 0.75. However, Pedersen et al. (2021) also show that the 

optimal shrinkage parameter depends on the underlying set of available assets. Pedersen et al. (2021) 

do not explicitly state that the underlying correlation within the dataset influences the optimal 

shrinkage parameter. However, it can be drawn from the results presented, and understood intuitively. 

Also with estimation noise blurring the truly underlying correlation of a dataset of local equities, the 

probability that these correlations are closer to one than to zero is quite high. Hence, this thesis 

proposes to shrink the correlation matrix towards the average correlation among all assets instead of 

the identity matrix. 

4. Research Proposal 

The research question this thesis intends to answer is how machine learning technologies help 

addressing the problem of noise in covariance matrix estimations when optimizing portfolios. The 

needed theoretical background has been established as well as the different approaches proposed by 

academics on how to deal with noise and how to make MVO work in practice are outlined. Pedersen 

et al. (2021) and López de Prado (2020) are the most recent ones who “fix” MVO with the help of 

machine learning. Both make use of machine learning algorithms when assessing the principal 

components of the portfolios. The focus of this thesis lies on Pedersen et al.’s (2021) simple EPO 

instead of López de Prado’s (2020) denoising approach because it does not solely focus on noise in 

risk but also noise in expected returns. Even though noise in the expected returns is not the focus of 

the thesis, it is still better to take it into account instead of blindly accepting it. Ultimately, Pedersen 

et al. (2021) do not require the help of machine learning anymore, showing that shrinking the 

correlation matrix yields the same outcome. 

This thesis compares estimated risk and returns with the realised risk and return for different portfolio 

optimisation strategies. Additionally, a mix of Pedersen et al. (2021) and Ledoit and Wolf (2003) will 



20 

 

be applied to another strategy of portfolio optimisation. This portfolio is calculated by shrinking the 

correlation matrix towards the average correlation of all assets instead of shrinking it towards the 

identity matrix. The motivation for that is found in the portfolios Pedersen et al. (2021) use and the 

optimal shrinkage parameters they associate with the different portfolios. 

In Table 2 Pedersen et al. (2021) report their model to perform best with a shrinkage parameter of 

𝜃 = 0.75. The underlying portfolio in that example is composed of global equities, bonds, currencies, 

and commodities. As it includes different types of assets and covers all geographies, the average 

correlation among this portfolio can be assumed to be comparatively low. In Table 5 instead, they 

show that the optimal shrinkage parameters are rather low ranging from 10% to 50%. The portfolios 

considered here only contain equities on industries in the United States. The average correlation 

among these assets can be assumed to be rather high. This thesis therefore tries to establish a link 

between the shrinkage parameter and the underlying correlations. Consequently, the approach is to 

shrink towards the average correlations instead of the identity matrix. 

The research undertaken in this thesis adds value on top of the existing literature through the added 

approach of Enhanced Portfolio Optimisation. If the new approach of shrinking towards the average 

correlations of all assets proves to be performing better than the original EPO, an additional portfolio 

optimizing method has been created. On the other hand, if the new approach does not turn out to be 

more efficient, the EPO gains considerable strength and is shown to be a very strong method to 

optimise portfolios.  

5. Methodology 

Saunders (2019) defines a study that focuses on the testing and adjusting of existing theories as an 

abductive approach. Taking the MVO as a starting point and then applying a few selected changes to 

that method to check if the changes have a positive effect on the performance hence qualifies this 

thesis as an abductive study. Abductive studies usually first describe a surprising fact about an 

existing theory, followed by the testing section and a section discussing the results and performance 

of the modified models. The role MVO plays in finance since its invention in 1952 is exceptional and 

its theoretical usefulness unquestioned. However, the practical usefulness has been questioned by 

several scholars as shown in the literature review. It is therefore rather surprising that that MVO is 

rarely used in practice, despite its unquestioned theoretical value. 
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The fundamental problem underlying the purpose of this thesis is the prevalence of estimation noise 

in data on return and risk of stocks and portfolios. The literature review referred to several papers 

neglecting the practical usefulness of Markowitz’ (1952) MVO due to noise. Nevertheless, Pedersen 

et al.’s (2021) EPO makes use of MVO and finds a way to deal with noise through the shrinkage of 

the correlation matrix. To discuss the possibilities of machine learning in addressing the problem of 

noise in data, this thesis uses different strategies to calculate the weights of several assets within a 

portfolio and compares the performance over time. 

5.1 Dataset 

The data needed to perform such tests are high-dimensional quantitative stock- or portfolio returns. 

Data on individual stocks have a disadvantage, as companies enter and leave the stock market 

resulting in the number of daily returns available for each stock being not very high. Data on portfolio 

returns instead have the advantage that they are available for a longer time as portfolios are at any 

point in time composed of those companies which are at that time publicly traded. One common 

source for such portfolio returns is the Kenneth French data library.  

For the analysis of this thesis two different datasets have been used: ten value weighted industry 

portfolios and 100 value weighted portfolios on market and book value. Both datasets are retrieved 

from the Kenneth French data library. The industry portfolio dataset contains daily returns from 1926 

until and including 2021. The dataset includes the following industries: consumer nondurables, 

consumer durables, manufacturing, energy, high-tech, telecommunication, shops, health, utilities, and 

other. Companies that are listed on the New York Stock Exchange (NYSE), American Stock 

Exchange (AMEX), or the National Association of Securities Dealers Automated Quotations 

(NASDAQ) are classified each year to belong to one of the aforementioned industries. The 

classification is done as per the four-digit SIC codes. The advantage of using this dataset is that it 

contains daily returns for almost one hundred years. This is extraordinarily important when estimating 

the covariance and correlation matrices.  

As high dimensionality amplifies the problem of noise in estimations of covariances and expected 

returns (Liu et al., 2015), a dataset with a dimensionality of at least one hundred is needed (Negahban 

& Wainwright, 2011). The 100 portfolios formed on size and book-to-market dataset includes daily 

returns from 1926 until and including 2021 and is also retrieved from the French data library. The 

portfolios include all stocks listed on the NYSE, AMEX, or NASDAQ. This dataset is built in a 

similar way as the industry portfolios. Instead of looking at the industry code, in this dataset French 
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classifies companies according to their market capitalisation and book-to-market ratio. As the dataset 

is composed of one hundred portfolios, the dataset matches the high dimensionality criterion. Both 

datasets will be used in the analysis and testing. One key difference between the two datasets is that 

the average correlation among the different portfolios is higher for the industry portfolios. This allows 

to test whether shrinking towards a different matrix is more efficient than shrinking towards the 

identity matrix when the average correlation among the different assets is already known to be high. 

Furthermore, data on the risk-free rate is needed to calculate excess returns. As the portfolio return 

data is obtained on a daily basis and the portfolio weight adjustments are assumed to occur on a 

monthly basis, the interest rate chosen to resemble the risk-free rate is the effective federal funds rate. 

The effective federal funds rate is the rate which is charged in the overnight market of depositary 

institutions in the financial American market. It is a short-term rate and thus matches the investment 

horizon of the different strategies. The effective federal funds rate can be retrieved from the Federal 

Reserve Economic Database. The rate is available from July 1954 onwards. To match the availability 

of both datasets, this thesis makes use of the portfolio data and interest rate data from July 1954 until 

and including March 2021. All datasets have been accessed and downloaded on the 8th of May 2021. 

5.2 Data Preparation 

The dataset of the interest rates includes data for every day, including weekends and holidays. Hence, 

the first step in preparing the dataset is to delete all days on which no trading took place in the 

American stock market. The number of daily returns per year in the cleaned-up dataset averages to 

252 per year. Next, the dataset was adjusted to show daily interest rates as opposed to annualised 

data. This was done through geometric compounding. At the level of the return datasets not much 

data preparation was needed. Some portfolios have missing data especially towards the beginning of 

the dataset. The procedure on how to treat missing values is described by Acock (2005) as listwise 

deletion. The day on which any portfolio has a missing value is deleted and not taken into 

consideration for the calculations. Additionally, all datasets were divided by 100 to be shown as 

decimals instead of percentages. 

The analysis, testing, and production of the graphs is conducted in Python 3.7.6. The testing consists 

of calculating different weights of the portfolios to optimise the overall asset allocation. The weights 

are calculated with the classical MVO, Pedersen et al.’s (2021) EPO, and the adjusted EPO, with the 

correlation matrix shrunk towards the average correlations. These weights are adjusted monthly. An 
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additional portfolio that the EPO is compared to is the equally weighted portfolio, where each 

instrument receives the same weight. 

5.3 Overview of the Different Strategies Applied 

The equally weighted portfolio consists of all available assets with equal proportions. The equally 

weighted portfolio is a naïve view of an investor into the future without any expected returns or 

expected risk. Even though the strategy is technically not very complicated, its performance is 

difficult to beat historically. Ormos (2012) finds positive abnormal returns for equally weighted 

portfolios in the American stock market. Also, Pedersen et al. (2021) report the equally weighted 

portfolios to be a tough benchmark to beat. Furthermore, Bruder (2013) classifies the equally 

weighted portfolio to minimise the impact of estimation errors on the optimized portfolio. 

The MVO and its advantages and disadvantages as well as the formulae used to calculate the weights 

have been described above. Nevertheless, as Pedersen et al. (2021) derive EPO from MVO, MVO 

weights can alternatively be obtained the same way as the EPO weights, just by using the original 

correlation and covariance matrix. As each portfolio is updated on a monthly basis, the weights for 

the MVO need to be adjusted accordingly. This requires the covariance matrix to be calculated each 

month. The MVO strategy returns weights for a portfolio that consists of a mix of the same set of 

assets which together yield the portfolio that minimises the total variance of returns. These weights 

are used to calculate the desired statistics on expected and realised returns and risk.  

The EPO method is further split into two different strategies. Both EPO strategies calculate the 

weights based on the covariance matrix which is composed of the shrunk correlation matrix. 

However, the two strategies differ in the way the correlation matrices are shrunk. The first strategy 

(EPO 1) uses the same approach as described by Pedersen et al. (2021) and shrinks the correlation 

matrix towards the identity matrix: 

𝛀̃𝐸𝑃𝑂1 = (1 − 𝜃)𝛀 + 𝜃𝑰            (17), 

where 𝛀 represents the original correlation matrix, 𝑰 the identity matrix, and 𝜃 the shrinkage 

parameter dictating how much of the original correlation matrix is kept. 𝜃 can take on values between 

0 and 1, where 0 would imply not applying any shrinkage at all. The second strategy (EPO 2) instead 

shrinks the correlation matrix to a matrix which consists of ones on the diagonals and the average 

correlations of all portfolios on the off diagonals.  

𝛀̃𝐸𝑃𝑂2 = (1 − 𝜃)𝛀 + 𝜃𝚳             (18), 
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where 𝛀 and 𝜃 are the same as in the formula 17, 𝚳 is the matrix consisting of ones on the diagonals 

and the average correlations of all portfolios off the diagonals. This is also done monthly, where the 

average of the correlations is calculated each month on a rolling basis.  

When choosing the number of days to include in the covariance and correlation calculations, a trade-

off is faced. On the one hand, when estimating covariance matrices, including more data is always 

better as, among others, Fabozzi et al. (2010) or Tsay (2005) describe. On the other hand, when 

including more datapoints from the past, one runs the risk of estimating the average covariance and 

correlation over the past instead of showing the current covariance and correlation (Fabozzi et al., 

2010). Covariances are likely to change over time and it is essential to use accurate covariances and 

correlations to forecast co-movements of stocks and adjust the weights accordingly. Gupta et al. 

(1987) advise to use between 670 and 5243 data points for the calculation of covariances with 

multivariate datasets. As 5243 data points corresponds to over twenty years of data, this number 

seems too high. The data used for all correlation and covariance calculations therefore consist of the 

last 750 daily returns, incorporating the last three years of daily returns. Fan, Fan and Lv (2008) also 

use a sample size including three years of daily returns.  

The newly obtained covariance matrices are calculated with the original volatilities and the shrunk 

correlation matrices:  

𝚺̃𝐸𝑃𝑂1 = 𝝈𝛀̃𝐸𝑃𝑂1𝝈       (19) 

𝚺̃𝐸𝑃𝑂2 = 𝝈𝛀̃𝐸𝑃𝑂2𝝈      (20). 

Further, the vector of signals 𝒔 describes the expected returns of each instrument. The signal has been 

computed along the lines of time series momentum used by Pedersen et al.:  

𝒔 =  0.1 ∗ 𝝈𝒊 ∗ 𝒔𝒊𝒈𝒏(𝑟𝑡−(𝑡−12)
𝑖 )         (21), 

consisting of the volatilities of each asset 𝝈𝒊 and the sign of the return each asset realised within the 

last year, where t denotes the current month and t-12 the month one year ago. The factor of 0.1 is 

used because it is necessary to translate the volatilities into returns. The Sharpe ratio puts return and 

volatilities into perspective and allows to estimate the return based on the volatility by returning an 

expected return per unit of risk. Hence, the Sharpe ratio is assumed to be at a constant level of 0.1 for 

the analysis of this thesis. This assumption is in accordance with Babu et al. (2020), Moskowitz et al. 

(2012), and López de Prado (2020). Moreover, the 𝒔𝒊𝒈𝒏 variable is a binary variable which can take 

on the value of 1 or −1. It takes on 1 if the return of the last year was positive of the specific asset. 
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Likewise, it takes on −1 if the return over the last year was negative. This formula can be translated 

into the expectation of positive returns for any individual instrument if the return of that asset was 

positive for the last year. This can be derived from the fact that volatilities only take on positive values 

and the sign of 𝒔 is solely determined by the variable 𝒔𝒊𝒈𝒏. This formulation of expectations is a 

typical time series momentum strategy, which is calculated at the end of each month using daily return 

data. 

The adjusted covariance matrices, signals, and degree of risk aversion are used to establish weights 

of each instrument for the overall portfolio. The weights using the two different EPO strategies are 

calculated as: 

𝐸𝑃𝑂1  =  
1

𝛾
 𝚺̃𝐸𝑃𝑂1

−𝟏  𝒔      (22) 

𝐸𝑃𝑂2  =  
1

𝛾
𝚺̃𝐸𝑃𝑂2

−𝟏  𝒔      (23), 

consisting of the degree of risk aversion 𝛾, the inverted newly configured covariance matrices, and 

the vector of signals 𝒔. It is important to state that each variable is calculated for every date on which 

the portfolio weights are adjusted.  

5.4 Comparing the Performance of the Strategies 

As shrinking the correlation matrices reduces noise in both the covariance matrix and the expected 

returns, the best approach to compare the different strategies is to compare the Sharpe ratios of all 

strategies:  

(𝑟𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 − 𝑟𝑓)

𝜎𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜
       (24), 

with the return of each portfolio 𝑟𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜, the risk-free interest rate 𝑟𝑓, and the volatility of the 

portfolio 𝜎𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜. To come up with an even more precise evaluation of the different strategies, the 

expected Sharpe ratios are compared to the realised ones. For the realised Sharpe ratios, the realised 

return is calculated as: 

    𝑟𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜  = 𝑤𝑖 ∗ 𝑟𝑖,𝑡+1       (25), 

multiplying the weight at the beginning of the month with the return that has been achieved 

throughout the entire month. The realised volatility is calculated based on the weights at the beginning 
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of the month and the covariance matrix of each strategy at the end of the month. The formula can 

therefore be applied to all strategies, with a differing covariance matrix and the individual weights of 

each strategy:  

𝜎𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜  =  √𝒘𝑻𝚺𝐭+𝟏𝒘          (26). 

Two variables influencing the calculations above still need to be discussed: 𝜃 and 𝛾. The level of risk 

aversion 𝛾 is, for the purposes of this thesis, set to a level of one. Pedersen et al. (2021) suggest 

choosing a level of risk aversion between 1 and 10. However, it is not essential to decide on a specific 

level of risk aversion. What matters is to be consistent and use the same level throughout the different 

strategies to make the outcomes comparable. The shrinkage parameter 𝜃 instead is chosen empirically 

by running each strategy with different levels of 𝜃. Based on the realised Sharpe ratios with each level 

of shrinkage, the ultimate shrinkage parameter is decided upon, where a higher realised Sharpe ratio 

is always preferred over a lower Sharpe ratio. 

The performance of each method is judged based on the difference of the expected Sharpe ratio, 

volatility, and return, and the realised Sharpe ratio, volatility, and return. The method with a lower 

discrepancy between estimated and realised results is deemed to be the superior method. The reason 

for this choice of testing methods can be found in the research question. To show if machine learning 

technology, which is in this case represented by the two EPO approaches, produces more reliable 

weight allocations and portfolios than the classical MVO is at the core of this thesis. Consequently, 

the results of the testing method must enable the reader to choose between those alternatives. Under 

the assumption that investors only care about risk and return, the proposed testing method suffices to 

show which of the methods delivers a smaller gap between expected and realised results. The research 

question can also be answered by looking at the results. Pedersen et al. (2021) uses machine learning 

technology to counter the noise in data. If the EPO outperforms the MVO, machine learning can 

effectively address the problem of noise in data. Further, the adjusted EPO can be compared to the 

simple EPO based on the performance on the different datasets. 

6. Results 

This section first shows the results of the Principal Component Analysis, which is used to demonstrate 

how to differentiate between noise and signal. Second, the optimal shrinkage parameters for the two 

Enhanced Portfolio Optimisation strategies are determined. Last, the returns, volatilities, and Sharpe 

ratios for the different strategies are analysed. This is done for both datasets simultaneously. 
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The PCA 

decomposed each 

monthly correlation 

matrix into its 

eigenvectors and 

sorted them in a 

descending order by 

their eigenvalues. 

The figures below 

show the different 

eigenvectors on the 

x-axis which were 

used to construct portfolios. The eigenvector furthest to the left is therefore the eigenvector with the 

highest eigenvalue. The single elements within a principal component were used as weights to form 

a portfolio which has been adjusted monthly. Therefore, every month 10 new portfolios were 

calculated for the industry dataset, and 100 for the size dataset, as each month 10 and 100 eigenvectors 

are obtained. 

The average expected and realised volatilities over time are depicted in Figure 6 for the 10 industry 

portfolios. The realised volatility is constant around 0.1, while the expected volatility is high for the 

first principal component and decreasing thereafter. The last principal component is the only principal 

component with a higher realised volatility than expected, which is in line with Pedersen et al.’s 

(2021) findings. Figure 7 shows the average expected and realised volatilities over time for the 100 

size portfolios. 

Pedersen et al.’s 

(2021) findings are 

further supported 

here, showing that 

the principal 

components with the 

highest eigenvalues 

are the ones with the 

highest expected Figure 7 Volatility by principal component portfolio for the 100-size dataset (own illustration) 

Figure 6 Volatility by principal component portfolio for the 10-industry dataset (own illustration) 
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and realised volatilities. However, they are the only ones where the expected volatility is above the 

realised volatility. Most of the principal component portfolios realise a higher volatility than expected. 

Especially, those with the lowest eigenvalues have a large gap between realised and expected. This 

proves the random nature of the last principal components.   

Similarly, the 

average expected 

and realised 

returns are 

examined for each 

principal 

component 

portfolio over 

time, shown in 

Figures 8 and 9. 

Especially the 

principal component portfolios from the 10 industry dataset show that the portfolios formed for the 

eigenvectors with low eigenvalues tend to realise lower returns than expected. While the first two 

eigenvectors realise the returns as expected, or slightly better; the others diverge drastically from the 

expectations. Together with Figure 6, one can conclude that the portfolios formed through the 

eigenvectors with the lowest eigenvalues are the ones where the expectations on risk and return 

deviate the most. This highlights the portfolios with low eigenvalues are random and composed of 

noise, while the portfolios which are obtained through the eigenvectors with high eigenvalues are 

based on underlying structure. The underlying structure leads to a low difference between 

expectations and realisations. These differences between realised and expected risk and return are in 

both datasets even favourable for the investor, as the realised volatility is lower than expected and the 

realised returns are higher than expected. The opposite is the case for the portfolios built through the 

eigenvectors with low eigenvalues.  

This conclusion cannot be drawn as easily for the 100-size portfolio dataset. As seen in Figure 9, the 

expected and realised returns for each principal component are surprisingly close and do not differ 

much from each other. Overall, the expected and realised returns are the highest for the principal 

component portfolios with the highest eigenvalues and constantly low for the portfolios with lower 

eigenvalues. Nevertheless, the PCA also shows for this dataset a dangerous discrepancy of expected 

Figure 8 Return by principal component portfolio for the 10-industry dataset (own illustration) 
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and realised volatilities. This is dangerous for investors who use MVO to allocate the weights of their 

portfolios 

because MVO 

would place high 

weights on the 

principal 

component 

portfolios with 

low eigenvalues, 

the ones to the 

right end on the 

Figures. This is 

for the reason 

that these portfolios expect high returns for each unit of expected risk. However, they realise low 

returns for each unit of risk, as the returns are less than expected and the risk higher than expected. 

The opposite is true for the portfolios which are to the left on the graphs and possess high eigenvalues. 

These portfolios are reasonably estimated based on the underlying structure found by PCA. Their 

expectations match the realised results. In case the expectations do not match, they tend to be 

favourable to the investor by being lower risk than expected and higher returns than expected. 

This section so far showed that it is possible to differentiate between noise and structure through PCA. 

The next step is to show if the Enhanced Portfolio Optimisation 1 as proposed by Pedersen et al. 

(2021) or the Enhanced Portfolio Optimisation 2 as developed in this thesis perform better than the 

MVO and the equally weighted portfolio. Before doing so, the optimal shrinkage parameters 𝜃 need 

to be decided upon. 

Figure 9 Return by principal component portfolio for the 100-size dataset (own illustration) 
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The optimal shrinkage parameter needs to be set four times, once for each strategy within each dataset. 

Tables 1 to 4 show simulations for each scenario. The strategies were simulated by using eleven 

different shrinkage parameters, ranging from 0 to 1 in steps of 0.1. The results of the average realised 

and expected risk, return, and Sharpe ratios are shown for each level of shrinkage. Furthermore, the 

absolute difference between the expectations and realisations are shown. The maximum values for 

each category are highlighted in red, while the minimum values are shown in green. Though Pedersen 

et al. (2021) choose the shrinkage parameter based on the realised Sharpe ratios, this thesis chooses 

the shrinkage parameter based on the smallest absolute difference between the expected and the 

realised Sharpe ratio. The reason to look at the Sharpe ratio is that shrinking the correlation matrices 

reduces the noise in returns as well as the noise in the risk assessment, as discussed in section 3.2 

“Enhanced Portfolio Optimisation”. However, the fundamental idea of reducing noise is to achieve a 

level of predictability of returns and risk and thereby exclude the influence of the randomness of noise 

on the weight allocations. The key performance indicator (KPI) for the shrinkage parameter is 

therefore chosen as the absolute difference between the average realised and expected Sharpe ratios. 

Table 1 Shrinkage simulation EPO 1 10 industry portfolios (own illustration) 

Table 2 Shrinkage simulation EPO 2 10 industry portfolios (own illustration) 
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The EPO 1 strategy achieves the lowest difference between the average realised and expected Sharpe 

ratios in the 10-industry dataset with a level of shrinkage of 0.6 towards the identity matrix. The EPO 

2 strategy achieves an even lower difference by setting the shrinkage parameter to 0.8 and shrinking 

towards the average correlations of all assets. These results are shown in Table 1 and Table 2. The 

shrinkage parameters used to show the overall performance against the MVO and the equally 

weighted portfolio are thus set accordingly.  

When looking at the realised results for each shrinkage parameter, the EPO 1 seems to work best 

without applying any shrinkage as the average realised return is highest here. The realised risk is 

lowest for a shrinkage parameter of 0.3. EPO 2 achieves the highest average of realised return and 

lowest average of realised risk for a shrinkage parameter of 0, indicating that not applying any 

shrinkage is also optimal in this scenario. In this case, EPO 2 also attains the highest realised Sharpe 

ratio by not applying any shrinkage. Nevertheless, the KPI is not simply the realised result, but the 

absolute difference between expectations and realisations, which is why 0.6 and 0.8 are chosen for 

both strategies as the best performing shrinkage parameters.  

For the second dataset the optimal shrinkage parameter differs. As Table 3 and Table 4 show, the 

difference between the average realised and average expected Sharpe ratios is the lowest when not 

Table 4  Shrinkage simulation EPO 1 100 size portfolios (own illustration) 

Table 3   Shrinkage simulation EPO 2 100 size portfolios (own illustration) 
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shrinking at all for both strategies. In that case, both strategies would converge towards the MVO 

strategy. As shown in both tables, both strategies would achieve the same results if they were executed 

without any shrinkage. For the purpose of showing the performance of the different strategies, the 

shrinkage parameters will be set to the values which maximised the performance on the smaller 

dataset. However, this adjustment will be taken into consideration when drawing conclusions on the 

effectiveness of both strategies.  

When comparing both strategies to each other, EPO 2 seems to produce more reliable expectations 

than EPO 1. The absolute difference of realised Sharpe ratios and expected Sharpe ratios is less for a 

fully shrunk EPO 2 than for a fully shrunk EPO 1. Nevertheless, the fully shrunk EPO 1 realised 

higher returns than the fully shrunk EPO 2. EPO 2 lead to a lower realised risk instead.  

Investigating the Sharpe ratio within the 10-industry portfolio dataset further, Figure 10 shows the 

differences over time between expected Sharpe ratio and realised Sharpe ratio for the MVO, EPO 1 

(with 𝜃 = 0.6), and EPO 2 (with 𝜃 = 0.8) strategies. Generally, differences of zero are preferred as 

this relates to accurate predictions by the strategies. If differences occur, positive differences are in 

this case preferred by investors as this would mean that the realised Sharpe ratios exceeded the 

predicted ones. EPO 1 seems to produce the most extreme differences between expectations and 

realised Sharpe ratios. In the first ten years of the dataset, the realised Sharpe ratios were lower than 

the expected Sharpe ratios. The next ten years were the opposite, with higher realised Sharpe ratios 

Figure 10 Prediction accuracy Sharpe ratios 10 industry dataset (own illustration) 
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than expected. However, since then the difference was rather constant in the negative space, implying 

lower realised Sharpe ratios than expected. The predictions of EPO 1 are the least accurate among 

the three strategies. EPO 2 and the MVO are very similar; however, the MVO seems to be more stable.  

Including the equally weighted portfolio into the set of strategies that are evaluated, the realised 

Sharpe ratios of each strategy are compared in Figure 11 using the 100-size-portfolios dataset. The 

equally weighted portfolio seems to produce the least volatile Sharpe ratios over time, providing more 

evidence for Bruder (2013). For the first ten years, the equally weighted portfolio was the best 

performing strategy, even though it delivered negative Sharpe ratios. The economic context in the 

1970s and 1980s serves as an explanation for the overall poorly performing strategies within that 

time. The 1970s marked the end of the post-World-War II boom and was paired with high 

unemployment as well as high inflation rates in the United States. EPO 2 yielded the highest Sharpe 

ratios from the late 1970s until the end of the 1980s. In times of expansionary monetary policies EPO 

2 was the only strategy leading to positive Sharpe ratios. From the beginning of the 1990s until the 

Financial Crisis in 2008, all strategies achieved positive Sharpe ratios. The best performing strategy 

in that time was the MVO. From the time of the Financial Crisis until approx. 2015, the equally 

weighted portfolio produced highest Sharpe ratios. It is overall worth mentioning that the equally 

weighted portfolio seems to produce the best result from all the strategies during periods of economic 

recessions or financial crises. EPO 1 performed the worst, yielding a lower Sharpe ratio than EPO 2 

and MVO and only marginally better than the equally weighted portfolio.  

Figure 11 Realised Sharpe ratios 100 size dataset (own illustration) 
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7. Discussion 

This part discusses the main findings from section 6. The differently performing strategies are 

discussed as well as interpretations on why the different strategies might have performed better than 

the others are outlined. Furthermore, the discussion will analyse the components leading towards a 

well-functioning strategy in setting expectations of risk, return, and Sharpe ratios. Additionally, the 

practical usefulness of Enhanced Portfolio Optimisation with high-dimensional data is analysed. 

Two performance indicators are discussed: the (1) forecasting accuracy regarding Sharpe ratio and 

the (2) realised Sharpe ratio. In terms of forecasting accuracy, the best performing strategy is the 

Mean-Variance Optimisation. Its difference between the realised and expected Sharpe ratios is 

constantly the closest to zero out of all strategies (Figure 10). The fact that MVO outperforms EPO 1 

and EPO 2 is surprising, given that EPO is built to reduce the impact of noise on the expected returns 

and expected risk. A lower impact of noise can only be translated into a more precise prediction. 

However, the opposite seems to be the case. The reason for the poorer prediction accuracy of EPO 1 

could potentially be explained by a changing optimal shrinkage parameter over time. 

It is possible to differentiate between the performance of the active portfolio optimising strategies 

(EPO 1, EPO 2, MVO) and the equally weighted portfolio based on the economic cycle. It is obvious 

from Figure 11 that the equally weighted portfolio performs better in financial downturns. Procacci 

and Aste (2019) find that the correlation between different assets changes between bull and bear 

phases. This would imply on the one hand, that the correlation matrices estimated on past data during 

a specific economic cycle and used to calculate the portfolio optimising weights are not valid anymore 

for all three active strategies for the next economic cycles. On the other hand, a changing correlation 

structure depending on the state of the economy also implies that the optimal shrinkage parameter for 

the EPO 1 strategy might change over time, too. This finding could explain the poor performance of 

the active strategies in the 1970s as well as during the financial crisis in the 2010s. The shrinkage 

parameter has been set to a level that minimizes the difference of the average realised and expected 

Sharpe ratios, and is not constantly adjusted. Nevertheless, Dzikevičius and Vetrov (2013) refer to 

realised returns and find that actively managed strategies outperform the equally weighted portfolio 

in a complete economic cycle. In periods of downturns, the equally weighted approach yields superior 

results. But the returns achieved with actively managed portfolios in periods of economic recoveries 

and expansions are higher than the difference to the returns achieved by the equally weighted portfolio 
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in economic downturns and slowdowns. Even though this does not increase the prediction accuracy, 

it is still a point worth mentioning in favour of EPO.  

The same reasoning cannot be applied to justify the worse performance of EPO 2 against MVO 

though, as it is shrunk towards the average prevailing correlation matrix each month. It should 

therefore caption changes of the underlying correlations. However, Andersen et al. (2006) present 

Constant Conditional Correlations (CCC) and Dynamic Conditional Correlations (DCC) as means to 

estimate the correlation matrix on a rolling basis. The key difference towards the computation of the 

correlation matrix applied by EPO 2 is the application of an autoregressive moving average (ARMA) 

model. ARMA models allow to estimate correlation matrices based on historical correlations and not 

just the historical return data displaying an advantage of the model. The forecasting accuracy has 

been shown to be superior (Andersen et al., 2006). Applying EPO 2 on a correlation matrix estimated 

with CCC or DCC could thus yield better results than the current EPO 2 due its potentially better 

estimation of the correlation matrix.  

Referring to the second performance indicator of interest, namely the realised Sharpe ratio, EPO 1 is 

constantly outperformed by EPO 2 and MVO. In certain times, it is even outperformed by the equally 

weighted portfolio. Table 3 and 4 show that EPO 2 produces an overall higher realised Sharpe ratio 

than EPO 1. One reason for the difference between EPO 1 and EPO 2 is certainly the fact that 

shrinking towards the average correlations is a better approximation for the true underlying 

correlation than shrinking towards the identity matrix. The average correlations in the two datasets 

throughout the whole periods are 0.72 and 0.58 in the 10-industry portfolio and the 100-size 

portfolios, respectively. Shrinking towards zero might therefore not be the optimal solution and yield 

inferior Sharpe ratios compared to the EPO 2. 

Despite EPO 2 outperforming EPO 1 in most characteristics, in comparison to the MVO it is also not 

constantly producing better results than the MVO. The prediction accuracy is better than EPO 1 but 

inferior to MVO. Its realised Sharpe ratio is only for a comparatively small period of ten years better 

than the realised Sharpe ratio of MVO. Throughout both datasets limited evidence is found in favour 

of either of the EPO strategies to outperform the other strategies. Depending on the performance 

indicator used, they were even outperformed by most strategies. The realised Sharpe ratio in the 

dataset with 100 portfolios was worse than the MVO strategy, as well as the equally weighted in 

financial crises. The realised Sharpe ratio of the EPO 1 in the 10-industry dataset was better than the 

other strategies, even though the difference to the predicted Sharpe ratio is quite large. Overall, the 
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question arises of how useful the EPO is when working with high dimensional datasets. Pedersen et 

al. (2021) do not try it out on large datasets. This has been highlighted by Tables 3 and 4, showing 

that the optimal shrinkage parameters for EPO 1 and EPO 2 in the large dataset are 0 and can be 

interpreted as the MVO always outperforming the EPO strategies because not shrinking means the 

weights are the same as MVO. 

This thesis provides evidence against the EPO in the space of highly dimensional datasets. The 

nonlinear common factor (NCF) approach taken on by Zhang et al. (2020) might be able to solve that 

problem. The NFC estimates correlation matrices of high-dimensional datasets over time. Their 

algorithm provides the advantage that it does not assume linear relationships but instead allows for 

non-linearity. The authors claim their algorithm to be more accurate at forecasting correlations than 

the classical shrinkage approach. The shrinkage approach taken on by Pedersen et al. (2021) is not 

the classical method. However, future research could entail an application of EPO with a correlation 

matrix estimated through the NCF.  

One further point worth mentioning is made by Halbleib and Voev (2016) who compute the 

covariance matrix forecasts based on correlation matrices and volatilities in a similar way as Pedersen 

et al. (2021). However, they do not use the original volatilities but instead calculate the correlation 

matrix and the diagonal volatility matrix “independently” from each other. This approach yields the 

advantage that noise in the estimation of volatilities is also reduced. The EPO approach used in this 

thesis and developed by Pedersen et al. (2021) does not address noise in volatility estimation. The 

lack of doing so could explain the partial underperformance by EPO 1 and EPO 2 against the equally 

weighted portfolio and MVO. 

The discussion so far highlighted the importance of the correlation matrix, as well as the dependence 

of the performance of EPO on it. Pedersen et al. (2021) use the original correlation matrix and shrink 

it towards the identity matrix. The reason for them to do so can be found by linking the analysis done 

on the level of the Principal Component portfolios with the weight allocations done at the level of the 

original assets. Comparing Figure 5.A (Pedersen et al., 2021) and Figures 6 and 7 in this thesis, the 

variances of the Principal Component portfolios seem to be estimated too high for the eigenvectors 

with high eigenvalues and too low for the eigenvectors with low eigenvalues. Pedersen et al. (2021) 

argue that shrinking the correlation matrix towards the identity matrix achieves the estimated 

variances of the principal components to decrease for the principal component portfolios with high 

eigenvalues and increase for those with low eigenvalues. This thesis showed that shrinking towards 
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the average correlations is more precise at predicting Sharpe ratios and achieves higher Sharpe ratios. 

Future research could target different correlation estimates to shrink towards and apply EPO.  

7.1 Limitations 

This thesis is subject to limitations. First, EPO 2 has only been applied to two datasets in this thesis. 

The dataset of 10 industry portfolios does not contain high-dimensional data. It therefore does not 

reflect the highest impact estimation noise can have. Second, the way the optimal shrinkage parameter 

has been selected could be optimised. Instead of only looking at the prediction accuracy of Sharpe 

ratios, one could take other components into account. Prediction accuracy of volatility and returns 

could possibly be used to evaluate which shrinkage parameter to use. Third, to place a higher focus 

on the PCA and the machine learning component of this thesis, comparing Pedersen et al.’s (2021) 

approach to another approach which used machine learning for portfolio optimisation would be 

beneficial. Due to short time frame available to write this thesis, this has not been undertaken. Last, 

the results presented in the tables have not been statistically tested and might therefore not be 

statistically significant. The interpretation of the results is based entirely on the empirical findings 

which have not been tested for significance.  

8. Conclusion 

Portfolio optimisation can benefit substantially from the usage of machine learning algorithms such 

as Principal Component Analysis. The detection and extraction of signals in the variance of estimated 

correlation matrices is used by Enhanced Portfolio Optimisation. The PCA applied to the two datasets 

of 10-industry portfolios and 100-size portfolios revealed that it is possible to differentiate 

eigenvectors which are composed of noise and eigenvectors which are based on some underlying 

structure. Generally, it is not known what the variable underlying those eigenvectors is, yet, as Figures 

8,9,10, and 11 show, it is possible to detect those eigenvectors with high eigenvalues and the ones 

with low eigenvalues. The ones with high eigenvalues are able to explain a larger part of the total 

variance. This is the contribution of machine learning in addressing the problem of noise in 

correlation and covariance matrices. Machine learning enables researchers, academics, and 

practitioners to exactly pinpoint those eigenvectors which cause problems in portfolio optimisation 

because they are entirely random, due to noise.  

By shrinking the original correlation matrix, one can reduce the impact of the noisy eigenvectors on 

the weight allocation in optimised portfolios. Pedersen et al. (2021) shrink towards the identity matrix, 
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while this thesis applies shrinkage of the correlation matrix towards the average correlations of the 

underlying assets. The resulting covariance matrices are used to perform portfolio optimisation. Their 

performance is judged based on the prediction accuracy against the classical MVO as well as on the 

overall achieved Sharpe ratios against the MVO and the equally weighted portfolio. It proved difficult 

to beat the MVO portfolio in terms of prediction accuracy as well as realised Sharpe ratio for the EPO 

by Pedersen et al. (2021). The modified EPO introduced in this thesis managed to beat MVO for a 

time frame of about ten years in realising a higher Sharpe ratio. The prediction accuracy performed 

better than the strategy proposed by Pedersen et al. (2021), however, not quite as strong as the MVO.  

Reasons for the poor performance can be assumed to be found in the correlation matrix. Correlations 

are found to change depending on the economic cycle, which has implications on the optimal 

shrinkage parameter used by EPO (Procacci & Aste, 2019). Further, there are more possibilities to 

estimate the correlation matrix than solely basing it on historical returns. The reason for Pedersen et 

al. (2021) to use this simple approach is its simplicity, however, it has been proven to be a rather poor 

predictor of future correlations (Andersen et al., 2016). Overall, the outstanding performance of EPO 

reported by Pedersen et al. (2021) cannot be confirmed by the findings of this thesis. The modified 

version yielded superior results but struggled to beat the classical MVO. In spite of the performance, 

it has been shown that Machine Learning can play a major role in the detection and circumvention of 

noise in correlation and covariance matrices. Several other approaches and algorithms have been 

shown to calculate correlation matrices. Combining those with the Enhanced Portfolio Optimisation 

could be a promising opportunity on making Markowitz’ Mean Variance Optimisation finally work.   
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