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Abstract 

 
The rapidly evolving field of machine learning, fostered by the eruption of data availability and 

computing power, is auspicious for investment management. The ability of machine learning 

to uncover patterns in data holds particular promise for return prediction and thus, for the 

enhancement of trading strategies. One of the most pervasive trading strategies in the financial 

literature is the price momentum strategy. With its occasional but severe profit punctuations, 

the momentum strategy poses an interesting case for reformation through machine learning. 

Motivated by the unique potential of coupling “momentum and machines”, we investigate the 

performance of three trading strategies based on machine learning models with momentum-

related input variables. We find that such machine learning-based trading strategies outperform 

the conventional price momentum strategy and mitigate its profit punctuations considerably. 

Further, we document a large economic potential from an ensemble strategy that equally 

weighs the three machine learning-based trading strategies and the conventional price 

momentum strategy. The ensemble strategy outshines all individual strategies and 

approximately doubles the Sharpe ratio of the conventional momentum strategy. Thus, our 

findings offer supportive evidence for the benefits of applying machine learning to return 

prediction. However, the complex nature of machine learning models makes it difficult to draw 

meaningful interpretations of what drives their superior performance. Hence, while the 

machine learning models engender profitable trading strategies, their complexity induces 

limited interpretability. Consequently, the enigma of machine learning hinders the practical 

implementation of our findings. 
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1 Introduction 
The era of machine learning has emerged from the nexus of unprecedented computing power, widely available 
data, and advances in scientific methods. This era offers traders and investment managers novel opportunities 
to exploit previously undiscovered patterns in, and beyond, stock markets for superior investment decisions 
(Arnott, Harvey & Markowitz, 2019). This thesis participates in the ongoing discussion on the prospect of 
applying machine learning in investment management.  
 
“Machine learning” is the study of computer algorithms that possess the ability to automatically learn through 
experience (Mitchell, 1997). As the public media frequently reminds us, machine learning can accomplish the 
once unthinkable - from recognizing images and speech to beating grandmasters at complex games of strategy 
(Israel, Kelly & Moskowitz, 2020). The tremendous success of machine learning has spurred interest in 
applying it across a variety of fields - and investment management is no exception. At the heart of investment 
management is portfolio construction, in which the most important task is return prediction. The ability of 
machine learning algorithms to learn through experience allows them to uncover subtle, contextual, and 
nonlinear relationships when predicting returns and thus, shows great promise for developing successful 
trading strategies (Gu, Kelly & Xiu, 2019; Israel et al., 2020). Against this background, a question arises: 
Which trading strategy emerges as the preferred choice for capitalizing on the opportunities presented by 
machine learning?  
While research documenting the benefits of machine learning for trading strategies lies within its infancy, the 
findings of Gu et al. (2019) point to large economic gains for traders and investment managers when utilizing 
machine learning forecasts for stock-selection strategies.  
 
One of the most pervasive stock-selection strategies documented in the financial literature is the price 
momentum strategy. The strategy exploits the continuing trend in stock prices over a horizon of up to 12 
months, by predicting the cross-section of future stock returns based on the cross-section of past stock returns. 
The existence of price momentum in the US stock market was first documented by Jegadeesh and Titman 
(1993). They observe that stocks with higher (lower) past returns during the past 3-12 months, continue to 
exhibit higher (lower) returns over the following 3-12 months. Multiple researchers confirm the findings of 
Jegadeesh and Titman (1993), by demonstrating the profitability of a stock-selection strategy exploiting the 
momentum effect (e.g., Rouwenhorst, 1998; Griffin, Ji & Martin, 2003, Israel & Moskowitz, 2013). While the 
financial literature documents the efficacy of momentum, the strong performance of the strategy is punctuated 
with occasional crashes. These crashes are referred to as “momentum crashes” and occur in times of market 
stress - when a bear market is followed by a sudden and dramatic market upswing (Daniel & Moskowitz, 
2016). 
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Figure 1.1: Cumulative returns of the momentum strategy  

 
Figure 1.1 notes: The figure depicts the total cumulative return (including the risk-free rate) of the momentum strategy during the 
period January 1995 - December 2020. The momentum strategy is based on a 12-month formation period, skipping the most recent 
month, and a one-month holding period. The momentum strategy crashed in 2009, evident by a substantial drop in the cumulative 
returns. (Source: Own creation based on Kenneth French Data Library). 

 
The momentum crash following the 2008-2009 financial crisis (Figure 1.1) engendered scholars to shift their 
attention towards enhancing the “conventional” momentum strategy. By incorporating various risk factors or 
combining the strategy with alternate trading strategies, scholars mitigate the crash risk inherent to the 
conventional strategy. Specifically, they utilize several variables that impact the performance of the 
conventional momentum strategy (“momentum variables”), such as the volatility of the strategy or the market 
state. These enhanced momentum strategies all exhibit superior performance relative to the conventional 
momentum strategy, in the literature (Blitz, Huij & Martens, 2011; Moskowitz, Ooi & Pedersen, 2012; Asness, 
Moskowitz & Pedersen, 2013; Barroso & Santa-Clara, 2015; Wang & Xu, 2015; Hanauer & Windmüller, 
2020).  
 
The crash risk inherent to the conventional momentum strategy makes it an unappealing strategy for any risk-
averse trader or investment manager. At the same time, a large body of research on how to enhance the strategy 
exists. Uniting these two properties of the momentum strategy renders it an interesting case for amelioration 
through machine learning: Machine learning may be able to find a novel way to enhance the conventional 
strategy by uncovering contextual and nonlinear relationships across the momentum variables utilized in the 
literature that seeks to enhance the momentum strategy. 
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1.1 Problem Statement 

With the unique potential of coupling momentum and machines, we aspire to address an untapped research 
gap in the literature. The research of this thesis manifests itself in two overarching forms. First, we investigate 
if stock-selection strategies based on machine learning showcase superior performance and less crash risk 
relative to the conventional momentum strategy. Second, we examine if machine learning-based stock-
selection strategies may advantageously be combined with the conventional momentum strategy in order to 
enhance its performance.   

Specifically, we employ the momentum variables that have been documented in the literature to enhance the 
performance of the conventional strategy. While a consensus remains to be found on which of the enhanced 
momentum strategies is superior, they all offer the potential for improving the conventional strategy in each 
their own way. As a result of the latter, this thesis deploys all of the momentum variables collectively as inputs 
for the machine learning models. By combining several momentum variables, the machine learning models 
can extract previously undiscovered patterns from each of these variables as well as the interactions between 
them. In contrast, the conventional momentum strategy relies exclusively on recent past returns when it sorts 
stocks into portfolios.  

We aspire to construct machine learning-based stock-selection strategies that exhibit superior economic 
performance relative to the conventional momentum strategy while being exposed to less crash risk. As such, 
we participate in the ongoing debate on the potential of applying machine learning for investment management. 
Thus, we arrive at the following problem statement: 
 
How do stock-selection strategies utilizing machine learning based on momentum variables perform relative 
to the conventional momentum strategy, and how does the impact of stressed economic markets compare for 
the two strategies? 
  
To answer our problem statement, we dissect the research of this thesis into six areas: First, we outline the 
theoretical framework underpinning the conventional and enhanced momentum strategies as well as the 
machine learning models. We then replicate the conventional momentum strategy and examine its crash risk 
during periods of market stress. Subsequently, we investigate if stock-selection strategies based on machine 
learning exhibit superior performance relative to the conventional momentum strategy, across market states. 
More specifically, we implement three machine learning models, namely Random Forest, the Multilayer 
Perceptron, and a Recurrent Neural Network with a Long Short-Term Memory architecture. For each of these 
models, we utilize the various momentum variables as inputs. Next, we explore the performance of an 
ensemble strategy that combines the three machine learning-based stock-selection strategies with the 
conventional momentum strategy. Then, we investigate possible explanations for the performance of the 
machine learning-based stock-selection strategies (and the ensemble strategy, implicitly), by examining both 
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the input variables and renowned risk factors of the asset management literature. Finally, we discuss our 
findings and place them in an academic and practical context. 
 
To guide our research and answer our overall problem statement, we have outlined the following research 
questions: 
  

1. What evidence underpins momentum strategies and the ability of machine learning models to predict 
stock returns? 

2. How does a conventional momentum strategy perform over time and during periods of market stress? 
3. How do stock-selection strategies based on machine learning perform over time and during periods 

of market stress, and how does the performance compare to the conventional momentum strategy? 
4. What is the potential for enhancing the conventional momentum strategy when combining it with 

machine learning-based stock-selection strategies? 
5. Which input variables and risk factors may explain the performance of the machine learning-based 

investment strategies? 
6. What does the performance of the machine learning-based investment strategies relative to the 

conventional momentum strategy imply for academia and practitioners? 
 

1.2 Contribution of the Thesis 

The research of this thesis carries relevance across multiple arenas in both academia and practice. Its academic 
contribution manifests itself in two ways: First, this thesis combines insights from multiple studies on enhanced 
momentum strategies. We do not seek to single out one superior enhanced strategy but to extract a combined 
effect by leveraging the insight of the studies. To the best of our knowledge, no previous studies apply this 
approach, substantiating the relevance and novelty of our research. Second, this thesis bridges the chasm 
between two previously separated bodies of research: momentum strategies and machine learning. 
Specifically, we deploy three machine learning models to predict future excess stock returns. The machine 
learning models utilize the momentum variables as inputs, enabling the models to extract previously 
undiscovered patterns across the variables. Ultimately, we contribute to the literature on momentum strategies, 
by using machine learning to enhance the performance of and mitigate the crash risk inherent to the 
conventional momentum strategy. With an annualized Sharpe ratio of 0.83 and a Sortino ratio of 1.16, the 
ensemble strategy exhibits superior performance and lower crash risk relative to the conventional momentum 
strategy. Thus, the findings of this thesis may also be of interest to practitioners who wish to deploy a machine 
learning-based stock-selection strategy. However, the research of this thesis offers limited insights into the 
underlying drivers of these strategies. In this regard, we note that potential traders or investment managers 
should be cautious and not blindly trust the findings of this thesis for two reasons: First, we rely on the method 
of backtesting, and thus, our results hold no promise for the future performance of a trading strategy. Second, 
the machine learning models we deploy are inscrutable and produce results that are associated with 
randomness, rendering them difficult to apply in practice. 
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1.3 Scope and Delimitations 

The contribution of this thesis should be considered in light of its limitations. In bridging the chasm between 
momentum and machine learning, the research of this thesis is naturally nested in a wide area of both economic 
and machine learning theory. Thus, minding the scope of this thesis, we assume that the reader possesses a 
fundamental understanding of asset pricing models and statistics. However, we do not expect the reader to 
have any programming experience and do not include any code in our thesis, accordingly. Hence, when 
discussing the computational methods for constructing each machine learning model, we do not dwell on the 
subtle technical nuances of the models. Instead, we refer to our code in appendices B and point to relevant 
appendices underway with more in-depth technical details. 
 
The research of this thesis is constrained along three dimensions, namely a geographic, temporal, and thematic 
dimension (Yin, 2018). We proceed by identifying the most important delimitations within these overarching 
dimensions. 
 
Geographic scope 
Several studies document that the profitability of the momentum strategy is not limited to the US market but 
also evident in other geographies (see section 2.1). However, given our problem statement, we do not consider 
it prudent to span our analysis across multiple markets. The rationale for this delimitation is twofold: First, the 
US stock market bears more relevance for our research as it eases comparability of our findings with studies 
on enhanced momentum strategies that mostly concentrate on this market. Second, the computational power 
in our possession constitutes a considerable limitation that makes it infeasible for us to include several markets. 
In fact, the entire US stock market is too large to include in this thesis: There are three major stock exchanges 
in the US stock market, namely the New York Stock Exchange (“NYSE”), the National Association of 
Securities Dealers Automated Quotations (“NASDAQ”) and the American Stock Exchange (“AMEX”). The 
total amount of stocks listed on one of these exchanges at some point during our sample period is 25,432 stocks 
which result in an infeasible amount of data for this thesis. Consequently, we select the 500 largest stocks each 
month, measured by the beginning of month market capitalization1. We refer to this sample as our “investment 
universe”.  
 
Temporal scope 
The research of the thesis is constrained temporally with a sample period from January 1929 to December 
2020. Machine learning models thrive in data-rich environments from which the algorithms can learn the 
patterns in data (Israel et al., 2020). Hence, we seek to include a long sample period, dating back as far as 
possible. However, the data from the Center for Research in Security Prices (CRSP) prior to 1929 is not 
applicable for our thesis, as we require a minimum of 500 stocks to enter our universe each month. As a result, 
we exclude the first years (from 1926 to 1929) from our sample.  

                                                
1 The calculation of the market capitalization can be found in section 5.2. 
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Of particular importance to this thesis, the sample period includes the two periods with the most predominant 
momentum crashes: the Great Depression and the financial crisis. Thus, we are able to investigate whether a 
machine learning-based stock-selection strategy is subject to the same crash risk as the momentum strategy. 
 
Thematic scope 
Cross-sectional Momentum 
The research of this thesis is centered around cross-sectional momentum which focuses on the relative 
performance of stocks in the cross-section rather than time-series momentum which focuses on a stock’s own 
past returns. Time series momentum has gained much attention since it was introduced by Moskowitz, Ooi, 
and Pedersen (2012). However, time series momentum has been documented to exhibit superior performance 
than the conventional momentum strategy during crashes, rendering it less relevant for our research, as we 
focus on the crash risk of the momentum strategy. Throughout this thesis, any remarks on momentum refer to 
cross-sectional momentum.  
This thesis focuses on long-short (zero-cost) momentum strategies as these are the most predominant 
momentum strategies in the literature (e.g., Jegadeesh & Titman, 1993; Rouwenhorst, 1998; Asness et al., 
2013). Unless explicitly stated otherwise, we refer to a long-short momentum strategy when mentioning a 
momentum strategy.  
 
Machine learning models  
Several different machine learning algorithms exist with many variants of each algorithm. Deploying 
numerous algorithms would be infeasible within the scope of this thesis. Thus, we single out machine learning 
algorithms which the literature documents as most promising for stock predictions. Specifically, we select 
three different algorithms, namely Random Forest, Multilayer Perceptron, and Recurrent Neural Network with 
the Long Short-Term Memory architecture. The choice of machine learning algorithms relies mainly on the 
results of Gu et al. (2019), who obtain the best results using tree-based models and neural networks. Out of the 
several variations of tree-based models and neural networks, we limit ourselves to pick the three 
aforementioned models. We further elaborate on the rationale hereof in chapter 7.  
 
Transaction costs and short sale  
Consistent with most of the literature on momentum, the research of this thesis does not account for transaction 
costs but focuses on gross returns. In this regard, we note that gross returns are considered more suitable for 
investigating the relationship between risk and returns. Applying gross returns overstate the profitability of 
investment strategies if pursued in practice (Asness et al., 2013). Hence, the findings of this thesis bear no 
guarantee for profitability if applied as a real-time trading strategy - even if the methodology of backtesting 
and the randomness associated with the models are no constraint.  
In line with extant literature, the research of this thesis assumes no margin calls during the holding period as 
well as no limitations on short sales (Daniel & Moskowitz, 2016).  
 
Acknowledging that the contribution of this thesis is bound by its delimitations, we emphasize the possibility 
for further research to enrich our analysis.  
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1.4 Structure of the Thesis 

With our problem statement and research questions as a point of departure, we structure this thesis into six 
overarching parts. To guide the reader, we have illustrated the structure of the thesis in Figure 1.2. 
The first part sets the scene of the thesis. The aim of this part is to introduce the overall topic, clarify the 
contributions of the thesis, and specify its scope and delimitations. Most importantly, the first part articulates 
the problem statement and research questions that function as a guide for our research. 
In the second part of the thesis, we strive to answer the first research question by placing the research in its 
academic and theoretical context. Specifically, this part provides an overview of the most profound studies on 
momentum strategies as well as studies documenting the ability of machine learning models to construct 
trading strategies. Furthermore, we outline the theoretical framework underpinning the research of this thesis: 
First, we offer an understanding of the key concepts of equity trading and the momentum strategy. Then, we 
provide a fundamental understanding of machine learning and unfold the architecture of machine learning 
algorithms.  
The third part sheds light on the methodology that our research relies on. We outline the overarching 
methodology of the thesis by introducing the method of backtesting and providing an overview of our data 
sample. Further, we zero in on the methodological approach for constructing the momentum variables, the 
conventional momentum strategy, and the stock-selection strategies based on machine learning. Finally, the 
third part presents a framework for evaluating the performance of the four stock-selection strategies. 
On the basis of the first three parts, the fourth part of the thesis unfolds the analysis and results of our research, 
answering four of our research questions. More specifically, we initiate the fourth part by presenting the 
replicated conventional momentum strategy, and thus, we address the second research question. We answer 
the third research question by examining the predictability of the three machine learning models and construct 
stock-selection strategies that rely on the model predictions. In order to examine the ability of machine learning 
to enhance the momentum strategy and answer research question four, we form an ensemble strategy. Lastly, 
we aspire to answer research question five by examining two possible explanations for the performance of the 
machine learning-based stock-selection strategies, namely the input variables of the machine learning models 
and risk factors in the financial literature.  
In the fifth part, we answer the final research question by discussing the findings of our research. In this 
regard, we shed light on the implications of our findings for both academia and practitioners and explore 
interesting topics for further research. 
Finally, the sixth part of the thesis synthesizes the findings of our research and provides an overall conclusion 
to our problem statement.  
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Figure 1.2: Structure of the thesis 

 
(Source: Own creation) 
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2 Literature review 
This chapter presents a review of the most relevant studies for the research of this thesis. The chapter serves a 
two-fold purpose: The first section outlines the origins of the momentum literature and places the topic in its 
current academic context. The second section introduces the literature that combines machine learning and 
investment management, pointing out recent developments. Please note that this chapter presents an overview 
of the extant literature exclusively, while chapters 3 and 4 present the theoretical foundation underpinning the 
relevant studies of this thesis. Collectively, these three chapters serve to answer research question one. 
 

2.1 The Evolution of the Momentum Strategy 

The price momentum effect is one of the most widely studied phenomena in the financial literature and has 
arisen as an input to the debate on whether financial markets are efficient. The literature on momentum takes 
its point of departure with the seminal work of Jegadeesh and Titman (1993) who documented the existence 
of the price momentum effect; the tendency for past winners to outperform past losers. Focusing on NYSE 
and AMEX over the sample period spanning 1965 to 1989, they examine a variety of momentum strategies. 
In forming these strategies, they first observe the returns of stocks over a J-month period, referred to as the 
formation period. Then, they rank stocks into decile portfolios according to their performance in the formation 
period. They form a long-short portfolio, also referred to as the winner minus loser portfolio (“WML”) by 
taking a long position in the stocks that yielded the highest returns and shorting the stocks that yielded the 
lowest returns. This portfolio is held for a K-month holding period. Jegadeesh and Titman (1993) demonstrated 
that following this strategy for J/K = [3, 6, 9, 12] months2 generates a monthly return of as much as 1.49% 
when applying overlapping holding periods and rebalancing the portfolios every month to maintain equally 
weighted portfolios.  
 
A range of different scholars adopt a similar approach as Jegadeesh and Titman (1993) and confirm the 
momentum effect across different geographical markets and asset classes (Rouwenhorst 1998, 1999; Chui, 
Wei & Titman, 2000; Jegadeesh and Titman 2001; Griffin, Ji & Martin, 2003; Okunev & White 2003; Sapp 
& Tiwari, 2004; Miffre & Rallis 2007; Chui, Titman & Wei, 2010; Asness et al., 2013; Menkhoff, Sarno, 
Schmeling, & Schrimpf, 2012; Jostova, Nikolova, Philipov & Stahel, 2013) 
 
However, conventional price momentum strategies have also been criticized for their highly unstable 
performance across subperiods (e.g., Grundy & Martin, 2001; Blitz et al., 2011; Daniel & Moskowitz, 2016). 
Grundy and Martin (2001) document that price momentum strategies have substantial time-varying exposure 
to systematic risk factors. Specifically, momentum loads positively (negatively) on systematic factors in the 
holding period when these factors have positive (negative) returns during the formation period. Consequently, 
the strategy experiences losses when the sign of the factor returns over the holding period is opposite to the 
sign over the formation period. 

                                                
2 Today, most scholars deploy a formation period observing returns over the past 12 months, skipping the most recent month, and a 
holding period of one-month  
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Grundy & Martin (2001) argue that a momentum strategy tends to go long in stocks with betas greater than 
one and short in stocks with betas less than one following up markets (“positive beta bet” on the market) and 
vice versa for down markets (“negative beta bet” on the market). When a down market rebounds quickly, the 
negative beta bet leads the profit of the momentum strategy to punctuate.  
In the light of Grundy and Martin’s (2001) findings, Daniel and Moskowitz (2016) examine the “crashes” of 
the momentum strategy at market rebounds. For their US equity sample spanning 1927 to 2013, Daniel and 
Moskowitz (2016) find that the performance of a momentum strategy with a 12-month formation period 
(skipping the most recent month) experienced the worst performance following the Great Depression and the 
2008-2009 financial crisis. In July and August 1932, the loser portfolio generated a return of 232% while the 
winner portfolio obtained a return of only 32%. Similarly, over a three-month period from March to May 2009, 
the loser portfolio rose by 163% while the winner portfolio gained only 8%. Based on their empirical 
observations, Daniel and Moskowitz (2016) conclude that the momentum crashes occur following market 
declines, when volatility is high, and the market dramatically rebounds. Moreover, they demonstrate that 
momentum crashes are mostly attributable to the performance of the loser portfolio.  
 
The crash of the conventional momentum strategy following the 2008-2009 financial crisis engendered 
scholars to shift their attention towards enhancing the performance of the strategy (e.g., Blitz et al. 2011; 
Barroso & Santa-Clara 2015; Wang & Xu 2015; Daniel & Moskowitz, 2016). To mitigate the risk of 
momentum crashes, multiple scholars have developed volatility-scaled extensions of the conventional 
momentum strategy (e.g., Barroso & Santa-Clara, 2015; Daniel & Moskowitz, 2016). Where Barroso and 
Santa-Clara (2015) propose a constant volatility-scaled momentum strategy, Daniel and Moskowitz (2016) 
suggest a dynamic volatility-scaled momentum strategy. Both studies find that the volatility of the 
conventional momentum strategy is predictable and demonstrate that the volatility-scaled extensions 
approximately double the Sharpe ratios of the conventional momentum strategy.  
Additional extensions of the conventional momentum strategy have emerged, including alpha momentum and 
idiosyncratic (residual) momentum. The difference between these extensions and the conventional momentum 
strategy revolves around the ranking of stocks during portfolio formation (Singh & Walia, 2020). While 
conventional momentum strategies rank stocks based on their total return, the extended momentum strategies 
focus on the stock-specific return components to minimize the dependency on factor realizations. Grundy and 
Martin (2001) as well as Hühn and Scholz (2018) rank stocks based on their alpha and show that alpha 
momentum exhibits less dynamic factor exposures than conventional momentum. Moreover, several scholars 
examine idiosyncratic momentum, where stocks are ranked based on their residual returns (e.g., Gutierrez & 
Prinsky, 2007; Blitz et al., 2011; Blitz et al., 2020).  
More recently, Hanauer and Windmüller (2020) compare the constant volatility-scaled, the dynamic volatility-
scaled, and the idiosyncratic momentum strategy. Based on a sample of 48 international markets that spans 
1991 to 2017, they document that all three strategies exhibit higher t-statistics and Sharpe ratios than the 
conventional momentum strategy.  
 
In summary, while the profitability of the momentum strategy has been documented extensively, it exhibits 
crash risk that makes it unappealing to any risk-averse investor. Several enhancements of the conventional 
momentum strategy exist that exhibit superior performance relative to the conventional strategy. However, a 
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consensus remains to be found on which of the extensions is superior. For the purpose of this thesis, the lack 
of consensus is emphasized, as it prompts us to leverage the insights of the strategies collectively. 
 

2.2 Trading with Machine Learning 

Resonating Israel et al. (2020), machine learning has the potential to be an important step forward for 
investment management. While methodical research examining the benefits of machine learning for stock-
selection strategies is still in its early stages, research on utilizing machine learning for financial time series 
forecasting has been around for decades (Trippi & Turban, 1993; Kaastra & Boyd, 1996). 
 
Throughout time, many different machine learning algorithms have been deployed within the field of finance. 
During the 2000s, the support vector machine (“SVM”) became a popular algorithm for financial time series 
forecasting following the seminal work of Tay and Cao (2001A). They document the ability of SVMs to predict 
stock indices and bond values based on historical prices, obtaining a better mean squared error and mean 
absolute error than previous time series models. In the following years, several studies yield similar results, 
demonstrating the superior performance of the SVM relative to conventional statistical methods, when 
predicting the movements in stock indices (Tay & Cao, 2001B; Huang, Nakamori & Wang, 2002; Kim, 2003; 
Ince & Trafalis, 2008).  
 
Recently, scholars document that neural networks and tree-based models substantially outperform the more 
traditional machine learning counterparts (e.g., Heaton, Polson, & Witte, 2016; Chong, Han, & Park, 2017; 
Krauss, Do, & Huck, 2017). Notably, Fischer & Krauss (2018) document that Recurrent Neural Networks with 
a Long Short-Term Memory architecture outperform less advanced machine learning models when predicting 
the out-of-sample directional movements for the stocks of the S&P 500 over a sample period spanning 1992 
to 2015. Other studies support these findings, arguing that Recurrent Neural Networks with a Long Short-
Term Memory architecture are superior due to their ability to learn long-term dependencies in time series (Bao, 
Yue, & Rao, 2017; Shen & Shafiq, 2020; Wang, Li, Zhang & Liu, 2020; Pang et al., 2020). 
 
However, most previous research focuses on predicting stock index returns, while few scholars examine a 
stock-selection strategy that utilizes machine learning predictions of individual stock returns. Recently, Gu et 
al. (2019) lay forth pivotal and methodical research examining several different machine learning models for 
individual stock return predictions. Using a sample of US stocks from 1957 to 2016, they identify the best 
performing models for a long-short decile portfolio as neural networks, followed by tree-based models. 
Specifically, a stock-selection strategy that relies on stock returns predicted by a neural network earns an 
annualized out-of-sample Sharpe ratio of 2.45, more than doubling the performance of leading regression-
based strategies from the literature. In a similar manner, other financial scholars are initiating the research of 
deploying machine learning for stock-selection strategies (e.g., Chen, Pelger & Zhu, 2020; Freyberger, 2020). 
 
In summary, two key points can be deduced from this section: First, while methodical research into how 
machine learning can enhance stock-selection strategies is still in its infancy, the potential of machine learning 
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to enhance investment strategies is profound. Second, recent literature emphasizes the superior performance 
of tree-based models and neural networks. For the purpose of this thesis, the latter point is emphasized, as 
these findings constitute the rationale for our choice of machine learning models. 
 

3 Equity Trading 
This chapter provides the theoretical framework for replicating the momentum strategy and constructing the 
momentum variables used as inputs for the machine learning models. The chapter is composed of five sections. 
The two first sections survey the key concepts of technical analysis and efficient markets. The third section 
describes the asset pricing models utilized in this thesis. Subsequently, the fourth section zooms in on the 
momentum effect and the performance of the momentum strategy over time. Moreover, this section provides 
an overview of the four enhanced momentum strategies that constitute the foundation for the momentum 
variables. Finally, the fifth section provides a brief overview of the explanations for the momentum effect.  
 

3.1 Technical Analysis 

There are two major types of analyses for stock investing, namely fundamental analysis and technical analysis. 
Fundamental analysis focuses on the intrinsic value of a stock and compares it to the stock price (Pedersen, 
2015). If the intrinsic value is higher than the price of the stock, the stock is undervalued and presents an 
attractive investment opportunity for an investor. To estimate the intrinsic value, analysts use factors that might 
affect the future profits of the stock, be it macroeconomic factors such as interest rates or microeconomic 
variables such as the earnings of a company. However, the research of this thesis relies on technical analysis 
and thus fundamental analysis is de-emphasized.  
 
Technical analysis focuses on recurrent and predictable patterns in the movements of stock prices. Investment 
opportunities are identified through statistical trends in the history of the stock price, return, volatility, etc. 
(Pedersen, 2015). Technical analysis does not deny the value of fundamental information but seeks to exploit 
that prices diverge from their intrinsic value. Consequently, technical analysis relies on the timing of the stock 
price reaction to fundamental information.  
 
The trends in stock prices arise due to initial stock price underreaction or delayed overreaction. If a stock price 
initially underreacts to fundamental information, investors can exploit a slow price adjustment towards a new 
equilibrium. In a similar manner, prices can be driven away from the fundamental value if investors overreact 
to information (see section 3.5 for elaboration on under- and overreaction) (Pedersen, 2015). As a result, 
technical analysis can exploit trends regardless of the (fundamental) reason for the stock price movement. 
 
Both fundamental and technical analysts attempt to beat the market. However, the efficient market hypothesis 
contends that utilizing fundamental and/or technical analysis to beat the market is in vain.  
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3.2 The Efficient Market Hypothesis 

The efficient market hypothesis was introduced by Fama (1970) and has since been a cornerstone in asset 
pricing theory. Fama (1970) outlined three market conditions consistent with efficiency: 1) No transaction 
costs, 2) all information is available to all market participants without charge, and 3) market participants all 
agree on the implications of the information for the stock price. If these conditions are fulfilled, the hypothesis 
dictates that prices reflect all relevant information at all times. Fama (1970) argued that competition in the 
market ensures that new information is quickly incorporated into stock prices. If all information is reflected in 
stock prices, and the flow of information is unpredictable and unimpeded, future movements in stock prices 
will be random. Therefore, stock prices are assumed to follow “a random walk” (Fama, 1970).  
 
Fama (1970) introduced three forms of market efficiency, namely weak, semi-strong and strong. First, a market 
is efficient in the weak form if the stock prices reflect market trading data, such as past stock prices or trading 
volume. For this form of efficiency, investors are unable to use technical analysis as the basis for a profitable 
investment strategy, as the data would already have been exploited insofar the data conveyed reliable signals 
about future performance. Second, a market is efficient in the semi-strong form if the stock prices reflect all 
publicly available information regarding the prospects of a firm, e.g., annual reports, quality of management, 
and earnings forecasts. As a result, no publicly available data can be utilized to predict the future stock price, 
rendering technical and fundamental analysis futile. Lastly, a market is efficient in the strong form if the stock 
prices reflect all information relevant to the firm, be it publicly or privately available (Fama, 1970).  
 
Of relevance to this thesis, the momentum strategy exploits patterns in stock returns and is one of the most 
infamous stock-selection strategies relying on technical analysis. Furthermore, the scholars that enhance the 
conventional momentum strategy equally rely on various technical variables. Consequently, generating 
abnormal returns through either the conventional momentum strategy or enhanced momentum strategies is a 
direct contradiction to the efficient market hypothesis, as the market would not even be efficient in the weak 
form.  
The machine learning-based stock-selection strategies constructed in this thesis also rely on technical 
variables. Hence, if these strategies generate abnormal returns, they will equally be a violation of the weak 
form efficient market.  
 

3.3 Asset Pricing Models 

Multiple scholars within the field of momentum document that technical variables can be deployed to minimize 
the crash risk of the conventional momentum strategy. We rely on their findings and utilize these variables 
when creating the machine learning-based stock-selection strategies. The technical variables are constructed 
based on two asset pricing models. This section unfolds the theory of the asset-pricing models before section 
3.4 elaborates on how the momentum variables are constructed in the literature. We initiate the section by 
describing the theory of the Capital Asset Pricing Model (CAPM). Subsequently, we outline the Fama/French 
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three-factor model. Finally, we briefly describe two additional Fama/French factors which are not used for 
variable construction but applied in the factor analysis in section 9.6. 
 
The Capital Asset Pricing Model 
In finance, the most acknowledged risk component is systematic risk, composed of the risk inherent in the 
overall market and the covariance of stocks with the market. The systematic risk of an individual asset denoted 
beta (β"), is measured by its contribution to the variance of the overall market portfolio. Beta can be expressed 
as follows: 
 

 β" =
σ(R", R()
σ*(R()

 (1) 

where R" is the return of stock i and R( is the market return 

 
The beta of an asset can be derived from the most predominant asset pricing model in the literature of finance, 
namely the CAPM, introduced by Sharpe (1964) and Lintner (1965). 
 
The central prediction of the CAPM is that the market portfolio is mean-variance efficient as argued by 
Markowitz (1952). The efficiency of the market implies that the expected return of an asset is independent of 
firm-specific risk factors. Consequently, the expected return of a security is a positive linear function of its 
beta, and beta suffices to describe the cross-section of expected returns in a univariate model. The model can 
be expressed as below where the stock (or portfolio) i’s expected return is a function of the expected market 
return in excess of the risk-free rate: 
 

 E(R") − R- = β"[E(R() − R-] (2) 
where E(R") denotes the expected return of stock i, R- is the risk-free return, and E(R() is the expected market return 

 
In equation 2, beta can also be defined as the slope in the time-series regression model for stock i: 
 
 R",0 − R-,0 = α" + β"3R(,0 − R-,04 + e",0 (3) 

where 𝛼7 is the intercept of the regression model and 𝑒7,9 is a zero-mean residual 

 
As evident by equation 2, stocks with a high beta, i.e., stocks with high covariance with the market, are 
expected to generate higher returns than low beta stocks. Consequently, CAPM is an expression of a 
compensated risk premium; the higher the systematic risk of an asset, the higher the expected return must be. 
As CAPM assumes that all assets yield expected returns that are commensurate with their risk, all assets are 
“fairly priced” and hence, no alpha (intercept) exists in the CAPM. Any discrepancy in the market is assumed 
to be eliminated by competitive forces, leaving an alpha equal to 0.  
 
CAPM relies on the efficiency of the market portfolio which is based on several non-viable assumptions. These 
include e.g., unrestricted risk-free borrowing and lending, as well as unrestricted short selling of risky assets 
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(see appendix A.1 for the full list of assumptions). As a result, subsequent research challenged the notion of 
CAPM which the following subsection unfolds. 
 
The Fama/French Factor Models 
While the CAPM has shaped the way financial academics and practitioners perceive the risk-return trade-off, 
the model has been heavily criticized for its inability to explain various market anomalies. That is, the market 
exposure does not capture all patterns in average returns, yielding a portfolio intercept (alpha) unequal to zero 
in equation 3. 
 
Against this background, Fama and French (1992) rejected the CAPM based on their findings that the size and 
book-to-market ratio capture cross-sectional variation in average returns which the market factor cannot 
explain on its own. They found that realized average returns, ceteris paribus, have been higher for small firms 
relative to larger ones and for value firms relative to growth firms, historically. As a result, they introduced a 
three-factor model which better describes the expected return of a portfolio (Fama & French, 1993, 1996). The 
first factor reflects the excess return of the market portfolio (R( − R-), similarly to the CAPM. However, two 
additional components are included. The second factor incorporates the superior return on a (diversified) 
portfolio of small stocks relative to a portfolio of large stocks (small minus big, SMB). The third factor 
incorporates the superior return on a portfolio of high-book-to-market stocks relative to the return on a portfolio 
of low-book-to-market stock (high minus low, HML). The resulting three-factor model for portfolio i is given 
by the following: 
 

 E(R") − R- = β"[E(R() − R-] + s"E(SMB) + h"E(HML) (4) 
where E(RA) − R-, E(SMB), and E(HML) are expected premiums. SMB is the difference between the average return on a portfolio 
of small stocks and a portfolio of big stocks, and HML is the difference between the average returns on a portfolio of high book-to-

market stocks and a portfolio of low book-to-market stocks  
 

The factor loadings, 	β", s", and	h" are the slopes in the time-series regression: 
 

 R",0 − R-,0 = α" +β"[R( − R-]0 + s"SMB0 + h"HML0 + e",0 (5) 
 
However, scholars such as Novy-Marx (2013) and Titman, Wei, and Xie (2004) found evidence of 
incompleteness in the model as the three factors still missed some of the variations in average returns related 
to profitability and investment. Motivated by these studies, Fama and French (2015) added two additional 
factors to their model, creating a five-factor model. The fourth factor (robust minus weak, RMW) is the 
difference between the returns on stocks with robust and weak profitability, whereas the fifth factor 
(conservative minus aggressive, CMA) is the difference between the returns on stocks of low and high 
investment firms. The five-factor model can be expressed as: 
 
 E(R") − R- =β"[E(R() − R-] + s"E(SMB) + h"E(HML) + r"E(RMW) + c"E(CMA) (6) 

where E(RMW) and E(CMA) are expected premiums. RMW is the difference between the average  
returns on a portfolio of the most profitable companies and a portfolio of the least profitable  

companies, and CMA is the difference between the average returns on a portfolio of firms that  
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invest conservatively and a portfolio of firms that invest aggressively. 
 

While SMB, HML, RMW, and CMA may not themselves be obvious candidates for relevant risk factors, Fama 
and French (1993, 2015) argue that these factors are proxies for hard-to-measure fundamental determinants of 
risk. The argument is that the model captures the expected return effects of state variables without identifying 
them. 
 
Relating these asset pricing models to our specific research, several momentum scholars have investigated 
how to enhance the performance of momentum strategies, accounting not only for market risk but also the 
SMB and HML factors (Hühn & Scholz, 2018, Blitz et al., 2011). The following section describes these 
enhanced momentum strategies. 
 

3.4 Conventional and Enhanced Momentum Strategies 

This section serves a threefold purpose. The first subsection defines the momentum effect which constitutes 
the building blocks for the conventional momentum strategy. The second subsection describes the performance 
of the conventional momentum strategy and unfolds the concept of momentum crashes. Building on the 
insights of these two subsections, the final subsection elaborates on four enhanced momentum strategies as 
well as the construction of the variables that the strategies rely on. 
 

3.4.1 The Conventional Momentum Strategy 
This thesis follows the definition of the conventional price momentum effect of Jegadeesh and Titman (1993). 
The momentum effect exists if stocks with returns above (below) the cross-sectional average over some past 
period, J, are expected to yield a return above (below) the cross-sectional average in the following period, K. 
This can be expressed mathematically as: 
  

 EKR",L − RMLNR",O − RMO > 0R > 0 (7) 

 EKR",L − RMLNR",O − RMO < 0R < 0 (8) 
where R" denotes the return of stock i and RM is the cross-sectional average return of the sample 

 
Multiplying the return of stock i in excess of the cross-sectional average for the past and following period, will 
result in a value above 0 for both equations 7 and 8. Consequently, the equations can be combined as follows: 
 

 ETKR",L − RMLRKR",O − RMORU > 0 (9) 
 
Henceforth, when this thesis mentions the momentum effect, it refers to equation 9 being valid. When equation 
9 is violated, stock returns reverse rather than follow a trend. 
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3.4.2 The Performance of the Conventional Momentum Strategy 
The “zero-cost” momentum strategies documented by Jegadeesh and Titman (1993) constitute the foundation 
for the momentum strategies in the recent literature. In fact, the momentum effect became so predominant that 
Carhart (1997) proposed adding a momentum factor to the Fama/French three-factor model. Figure 3.1 
visualizes the value of 1 dollar invested in the SMB and HML factor and the Fama/French momentum factor 
that ranks stocks based on the past 12 months’ returns, skipping the most recent month, and holds this position 
for one month. 
 

Figure 3.1: Cumulative returns of the SMB, HML, and momentum strategy from 1960-2020 

 
Figure 3.1 notes: The figure illustrates the total cumulative returns (including the risk-free rate) of the momentum, SMB, and HML 
portfolio on a log scale. The factor returns are based on the US equity market. The momentum portfolio is formed by ranking stocks 
on their prior 2-12 months returns. (Source: Own creation based on factor portfolios obtained from the Kenneth French Data Library). 

 
Consistent with the findings of the existing literature, Figure 3.1 illustrates the superior performance of the 
momentum strategy and the presence of a strong momentum premium over the last century (Jegadeesh & 
Titman, 1993, 2001; Grinblatt, Titman & Wermers, 1995; Moskowitz & Grinnblatt, 1999; Israel & Moskowitz, 
2013). The momentum portfolio substantially outperforms the SMB and HML portfolios. Despite the strong 
profitability of the momentum strategy, scholars have noted that the predictive power of returns seems to have 
diminished over time (Novy-Marx, 2012). As evident in Figure 3.1, a momentum strategy would have been 
less profitable if initiated at some point during the last two decades.  
 
Moreover, Figure 3.1 illustrates the profit punctuations of the momentum strategy following the Great 
Depression in the 1930s and the 2008-2009 financial crisis (Daniel & Moskowitz, 2016). Recall that zero-cost 
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momentum strategies long past winners and short past losers. When the market outperforms Treasury bills, 
winner (loser) stocks tend to be stocks with betas greater (lower) than one. Therefore, in upstate markets, the 
momentum strategy places a positive beta bet on the market by longing high-beta stocks and shorting low-beta 
stocks. Conversely, in downstate markets, the momentum strategy places a negative beta bet on the market by 
longing low-beta stocks and shorting high-beta stocks (Grundy & Martin, 2001).  
 

Figure 3.2: Market betas of winner and loser decile portfolios 

 
Figure 3.2 notes: The betas are estimated based on a 126-day rolling regressions of the excess returns of the momentum portfolio 
against the contemporaneous excess market return and ten (daily) lags of the market return, summing the betas (Source: Daniel & 
Moskowitz, 2016) 

 
Figure 3.2 visualizes the time-varying market exposure (beta) of the winner and loser portfolio before, during, 
and after the momentum crashes of the Great Depression (panel A) and the 2008-2009 financial crisis (panel 
B), respectively. Notably, the beta of the loser portfolio increases dramatically during volatile periods. While 
the beta of the winner portfolio is rarely above 2, the beta of the loser portfolio reaches much higher levels of 
up to 5. Such a big difference in the betas, results in a large negative beta for the combined WML portfolio. A 
large negative beta of the WML portfolio coupled with a quick and dramatic market rebound lead the WML 
portfolio to experience huge losses. The crashes of the momentum strategy result in negative skewness in the 
return distribution that is highly unattractive from an investor perspective (Daniel & Moskowitz, 2016)3. 

                                                
3 A return distribution is negatively skewed (left skewed) when the left tail of the distribution is longer or fatter than the right tail (see 
appendix A.2). 
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We note that Daniel & Moskowitz (2016) do not specify exact requirements for when a loss of the momentum 
strategy can be defined as a “momentum crash”. Thus, we refer to “crashes” of the strategy only in periods 
that have been confirmed in the literature as “crash periods” (e.g., following the Great Depression, the dot-
com bubble, and the 2008-2009 financial crisis). 
 
The crash risk inherent to the momentum strategy has become a well-known phenomenon in the momentum 
literature. Several scholars have developed extensions of the momentum strategy attempting to enhance its 
performance which we describe in the following section.  
 

3.4.3 Enhanced Momentum Strategies 
The most predominant enhanced momentum strategies include constant and dynamic volatility-scaled 
momentum (Barroso & Santa-Clara, 2015; Daniel & Moskowitz, 2016) as well as idiosyncratic momentum 
(Blitz et al., 2011). Recently, an enhancement of the momentum strategy, referred to as alpha momentum, has 
also been introduced (Hühn & Scholz, 2018). The below section will describe the theoretical foundation 
underpinning these four strategies. 
 
Constant and Dynamic Volatility-Scaled Momentum 
The core idea of volatility scaling approaches is taking investment positions that scale inversely to the risk of 
the underlying asset (Asness, Frazzini, & Pedersen, 2012). In the literature of momentum, there are two 
prevalent volatility scaling methods. First, the constant volatility scaling approach of Barroso and Santa-Clara 
(2015), and second, the dynamic volatility scaling approach documented by Daniel and Moskowitz (2016).  
 
Barroso and Santa-Clara (2015) estimate the risk of momentum in their study and find that it is highly 
predictable. Using the previous six months' realized volatility of daily returns as the variance forecast, they 
scale the long-short momentum portfolio, targeting a strategy with constant volatility: 
 

 RVAW,0
∗ =

σ0YZ[\0
σ]0

RVAW,0 (10) 

where RVAW,0
∗  is the monthly constant volatility scaled momentum return, RVAW,0 is the monthly returns of the conventional  
momentum strategy, and σ]9 is the previous six months realized volatility used as the variance forecast, and 

 

 σ]VAW,0
* = 21`RVAW,abcdef

* 	/126
i*j

fkl

 (11) 

where 𝑅nop,q is the daily return of the conventional momentum strategy 
 

Daniel and Moskowitz (2016) extend the volatility scaling approach by additionally taking the forecasted 
momentum return and its variance into account, creating a dynamic volatility-scaled approach. In this 
approach, the first step is to forecast the returns of the momentum strategy using the following time-series 
regression, which depends on a market indicator and the realized volatility of the market: 
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 RrVAW,0 = γl + γtIt,0ei + γvwx σ](,0ei

* + γ"y0It,0eiσ](,0ei* + ez0 (12) 
where It,0ei is the bear market indicator that equals one if the cumulative past two-year market return leading  p to the formation 

date is negative (and zero otherwise), and σ](,0ei*  is the variance of the daily returns  
on the market, measured over the 126 days preceding the start of month t 

 

The expected return is defined as the fitted values from the above regression with the dynamic momentum 
return given by: 

 RVAW,0
∗ =

1
2λ
∗
µz0
σ}0*
∗ RVAW,0 (13) 

where µz0 = E(RrVAW,0~i) and σ}0* = EKRrVAW,0~i − µ0R
*
 and  

λ is a static scalar that scales the dynamic strategy to the full sample volatility of momentum return 

 
Both volatility-scaled strategies almost eliminate the crash risk and approximately doubles the Sharpe ratio of 
the conventional momentum strategy (Barroso and Santa-Clara, 2015; Daniel and Moskowitz, 2016). 
 
Idiosyncratic and Alpha Momentum 
Two additional extensions of the conventional momentum strategy are idiosyncratic and alpha momentum, as 
described by Blitz et al. (2011, 2020)4 and Hühn & Scholz (2018). In the spirit of Grundy and Martin (2001), 
both extensions of the conventional momentum strategy seek to account for its time-varying factor exposure. 
Accordingly, the two momentum adaptations rely on the Fama and French (1993) three-factor model (see 
equation 4). To minimize the effect of changes in factor realizations, Blitz et al. (2011, 2020) as well as Hühn 
and Scholz (2018), utilize only the part of the returns that is not dependent on the three factors.  
 
Idiosyncratic momentum strategies focus on residual returns in the Fama/French three-factor regression 
model: 
 

 e",0 = R",0 − R-,0 − α" − β"[R( − R-]0 − s"SMB0 − h"HML0 (14) 
 

The residual returns, ei,t, are estimated over the past 36 months and are scaled using their volatilities so that  
 

 Idiosyncratic	Momentum",0 =
∑ e",00e*
0ei*

�∑ (e",0 − e�")*0e*
0ei*

 (15) 

 
Stocks are ranked based on the idiosyncratic momentum, defined as the 2-12 months volatility-scaled residuals 
(Blitz et al., 2020). Based on the idiosyncratic rank, they are placed into equal-weighted decile portfolios that 
are reformed monthly. A long position is taken in the highest decile portfolio whereas a short position is taken 
in the lowest decile portfolio.  
 
                                                
4 Other scholars also examine idiosyncratic momentum (Gutierrez & Prinsky, 2007; Chaves, 2016) 
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Alpha momentum relies on the same principle as idiosyncratic momentum but utilizes the alpha in the 
Fama/French three-factor model  
 

 α",0 = R",0 − R-,0 − β"[R( − R-]0 − s"SMB0 − h"HML0 − e",0 (16) 
 
To find the alpha coefficient, Hühn & Scholz (2018) apply equation 4 on daily stock returns instead of the 
monthly returns used by Blitz et al. (2011, 2020). The regressions are estimated over a period of 12 months, 
excluding the most recent month. Similar to idiosyncratic momentum, Hühn & Scholz (2018) rank stocks 
based on past alphas and places them into decile portfolios with monthly rebalancing. 
 
In summary, there are various ways to enhance the momentum strategy. The research of this thesis relies on 
the four enhanced momentum strategies presented in this subsection. Specifically, the four enhanced strategies 
constitute the foundation of the momentum variables that will be incorporated into the machine learning-based 
stock-selection strategies of this thesis. In this regard, we note that this thesis seeks to create stock-selection 
strategies that incorporate the momentum variables at the individual stock level. Hence, we do not scale the 
returns of the conventional momentum strategy, as done by Barroso and Santa-Clara (2015) and Daniel and 
Moskowitz (2016). Yet, their insights are implicitly deployed on an individual stock level. Section 5.3 
elaborates on the implementation of the momentum variables. 
 

3.5 Explanations of the Existence of Momentum  

As the momentum effect is one of the most pervasive asset pricing anomalies documented in financial literature 
(Fama & French, 2012), many scholars have embarked on the journey of discovering why the momentum 
effect exists. This section provides an overview of the most predominant views on the existence of momentum. 
In this regard, we note that the research of this thesis does not examine possible explanations of the existence 
of momentum. Therefore, the following section outlines a brief overview of the most dominating views in this 
field.  
 
Broadly speaking, explanations of the momentum effect can be divided into two perspectives, namely a 
rational and a behavioral perspective. The first perspective consists of rational thinkers that declare the 
momentum effect a manifestation of various risk premia (Conrad & Kaul, 1998; Berk, Green & Naik, 1999; 
Moskowitz & Grinblatt, 1999; Johnson, 2002; Bansal, Dittmar & Lundblad, 2005). However, the explanations 
provided by the rational perspective have been criticized and challenged by several studies providing 
contradicting evidence (e.g., Jegadeesh & Titman, 2002; Griffin, Ji & Martin, 2003). In fact, proponents of the 
behavioral perspective argue that the explanatory power of the rational perspective is due to overfitting bias 
and data mining (Singh & Walia, 2020). Thus, we do not unfold this perspective further. 
 
The predominant perspective explaining the momentum effect is behavioral-based. This perspective interprets 
momentum as a market inefficiency, caused by irrational investor behavior. The behavioral perspective 
expands the seminal work by Tversky and Kahneman (1974) who found that people rely on heuristics when 



 22 

they make judgments under uncertainty which can lead to biases. A variety of different behavioral biases exist 
that each can lead to stock price under- or overreactions. 
 
Underreaction 
Put simply, underreaction theories argue that stock prices underreact to news (Chan, Jegadeesh and 
Lakonishok, 1996; Barberis, Shleifer & Vishny, 1998; Hong & Stein 1999; Hong, Lim, & Stein, 2000). For 
instance, Barberis et al. (1998) argue that stock prices underreact to good news over horizons of 1-12 months. 
As a result, stock prices deviate from their fundamental value during this period. Because news is slowly 
incorporated into the stock prices, a predictable trend, and thus a momentum effect arises. However, once the 
stock price equals its fundamental value, there is no further predictability in the stock return (Barberis et al. 
1998). Thus, if momentum is caused by an underreaction, the abnormal returns are followed by normal returns 
in the subsequent period (Jegadeesh & Titman, 2002).  
Hong and Stein (1999) propose that the market consists of two types of agents, namely “news-watchers" and 
“momentum traders". The gradual diffusion of information amongst the news-watchers fosters an 
underreaction in the stock price. The underreaction creates a trend that momentum traders can exploit.  
The underreactions in stock prices can be explained by various biases, such as conservatism (Barberis et al., 
1998) and the disposition effect (Grinblatt & Han, 2005).  
 
Overreaction 
Several scholars argue that momentum profits can be explained by stock price overreactions (Barberis et al., 
1998; Daniel, Hirshleifer & Subrahmanyam, 1998; Cooper, Gutierrez & Hameed, 2004). According to 
Barberis et al. (1998), overreaction evidence shows that over longer horizons of 3-5 years, stock prices 
overreact to consistent patterns of news pointing in the same direction. More specifically, stocks that have 
performed well for a long time tend to become overpriced, giving rise to a predictable trend and a momentum 
effect. Barberis et al. (1998) rely on what Tversky and Kahneman (1974) call representativeness heuristics in 
their explanation of stock price overreactions. 
According to Daniel et al. (1998), biased self-attribution leads to stock price overreaction, fostering short-term 
momentum. Investors attribute good investment performance to their own skills and poor performance to bad 
luck. As a result, investors become overconfident about their ability to pick winner stocks, pushing the stock 
prices above the fundamental value of the stock. In this regard, Cooper et al. (2004) argue that the 
overconfidence stemming from self-attribution is magnified during upstate markets which leads to a stronger 
momentum effect. 
 
The overreaction in prices is eventually corrected, as investors observe future news and realize their errors 
(Daniel et al., 1998). Thus, when momentum profits are caused by overreaction, the abnormal returns will be 
followed by negative returns, i.e., reversal (Jegadeesh & Titman, 2002).  
 
Behavioral Explanations for the Momentum Crashes and the Enhanced Momentum Strategies 
The above explanations of the momentum effect are centered around the conventional momentum strategy. In 
this regard, Daniel & Moskowitz note that momentum crashes are compatible with the behavioral explanation 
of Cooper et al. (2004) who argue that momentum profits depend on the state of the market. Following down-
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state markets, risk aversion increases, as wealth has decreased, which leads to a smaller (delayed) overreaction. 
As a result, the momentum premium decreases. This is compatible with the momentum strategy performing 
particularly poorly during market rebounds. 
 
Blitz et al. (2020) find that the relationship between conventional momentum and investor overreaction, as 
well as risk-based explanations, is much less profound for idiosyncratic momentum. Rather, their empirical 
findings are in line with the underreaction theories (Blitz et al., 2020). In addition, Hühn & Scholz (2018) 
suggest that while conventional momentum is predominantly driven by momentum trading that pushes prices 
up (overreaction), alpha momentum is more strongly related to underreaction to firm-specific news. 
 
In summary, there are several explanations of the existence of the momentum effect, with the behavioral 
perspective proposing the most plausible explanations. Advocates of the behavioral perspective argue that the 
momentum effect can be explained by stock price under- and overreactions, caused by various behavioral 
biases. While consensus on specific behavioral biases and their implication on stock prices remains incomplete, 
the behavioral perspective reconciles by suggesting that active investment strategies can yield abnormal returns 
by exploiting market inefficiencies. Against this background, the behavioral perspective is contradicting the 
rational perspective and the notion of an efficient market.  
 

4 Machine Learning 
This chapter outlines the theoretical foundation for the machine learning models utilized in this thesis to create 
the stock-selection strategies. The first section introduces general concepts of machine learning. The two 
following sections provide a theoretical description of the machine learning models deployed in this thesis: 
Random Forest, the Multilayer Perceptron, and a Recurrent Neural Network with Long Short-Term Memory 
cells. The last section provides an overview of the key characteristics of the three models. 
 

4.1 Introduction to Machine Learning 

Before this section elaborates on the specific components of each machine learning model, we initiate with a 
brief introduction of general machine learning concepts. Machine learning lies at the intersection of computer 
science and statistics and revolves around building algorithms that automatically improve through experience 
(Mitchell, 1997). Compared with traditional statistical approaches, machine learning offers advantages to 
handle complex prediction problems (Mitchell, 1999). More specifically, machine learning algorithms can 
identify underlying patterns of complex data that humans and more simple models would struggle to uncover. 
These data patterns can be used to predict future events (Géron, 2019). 
The acceleration in computing power over recent years, low cost of data storage, availability of big data, as 
well as the variety of open-source software has fostered a renaissance in the field of machine learning. 
Resonating Arnott et al (2019), the pace of transformation is striking. Machine learning as well as other 
statistical methods, that were impractical to use in the past, now hold considerable promise across various 
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industries. Within the field of finance, Israel et al. (2020) argue that machine learning has the potential to 
become an important step forward for investment management, in which the most important task is return 
prediction. 

4.1.1 Supervised Machine Learning 
Supervised and unsupervised machine learning are two archetypes of machine learning. Unsupervised machine 
learning is a type of machine learning in which algorithms are used to extract knowledge of input data by 
identifying patterns in the data. The algorithm is solely fed input data, as there is no known output data, and 
thus the algorithm is said to “learn without a teacher” (Müller & Guido, 2016). However, the research of this 
thesis relies on supervised machine learning, and thus, unsupervised machine learning will not be further 
elaborated on. 
 
Supervised machine learning is a type of machine learning where both input and output data are known, and 
thus, the output data are said to be “a teacher” from which the algorithm learns (Müller & Guido, 2016). Figure 
4.1 depicts the process of a supervised machine learning algorithm in its simplest form. The algorithm is fed 
pairs of inputs and target outputs (x,y), comprising the training set. The algorithm learns the mapping (the 
prediction rule, f(x)) between the inputs and outputs. Then, the algorithm relies on this prediction rule to make 
predictions of outputs for inputs it has never seen before (𝑦�7 = 𝑓(𝑥7)). 

 
Figure 4.1: The process of a supervised machine learning algorithm when making predictions 

 
(Source: Own creation) 

 
An example of a supervised machine learning problem is to predict future stock returns (the output variable, 
y) based on firm-specific news (the input variable, x). For a machine learning algorithm to be successful in 
predicting stock returns, it must have seen previous examples of how firm-specific news is related to stock 
returns. On the basis of these previous examples, the algorithm makes a prediction rule that it relies on when 
predicting future stock returns for a piece of firm-specific news. 
 
Though supervised machine learning requires human effort to provide the input-output pairs of the training 
set, it enables the tedious task of finding the future output, for each given input, to be automated. 
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4.1.2 Classification and Regression Problems 
There are two major categories of supervised machine learning problems, namely regression and classification 
problems. The primary difference between the two categories is the output variable, Y. In brief, classification 
problems have discrete categorical outputs, y" ∈ Y = {0,1,2, … , C}, where C is the number of classes. The goal 
for classification problems is to predict a discrete class label (category), y", from a list of predefined class 
labels. The categorical output is based on the likelihood of the observation belonging to the respective category. 
An example of a (binary) classification problem is predicting whether a stock price will rise or fall (Müller & 
Guido, 2016).  
 
In contrast, the task of a regression problem is to predict continuous and numerical outputs y" ∈ ℝ based on a 
given set of input variables, x" (Müller & Guido, 2016). As this thesis applies machine learning models for 
predicting future excess stock returns, it revolves around a regression problem. A popular method to assess 
how well the predicted numerical outputs match the actual (target) output is by use of a loss function. This loss 
function is (often) given by the mean squared error (MSE):  
 

 MSE =
1
n
`(y" − y�")*	
y

"ki

 (17) 

where y�" is the predicted output based on the input variables, y" is the target output, and n is the number of predictions. 

 
If the machine learning algorithm does well in capturing the relationship between the input and the output data, 
the predicted outputs will be similar to the target outputs, and thus MSE will be low (Géron, 2019). 
 

4.1.3 Training and Optimizing Machine Learning Models 
Training and Test Data 
This section outlines how supervised machine learning models are trained and tested. To obtain a successful 
machine learning model, the complete dataset is split into two parts, namely a training set and a test set. First, 
the training set is fed to the algorithm for it to learn the relationship between the inputs and outputs. Second, 
the algorithm is fed unseen inputs of the test set for it to make predictions of the corresponding outputs. The 
test dataset is used to measure the performance of the model, by comparing the predicted outputs with the 
target outputs. The ability of the model to “generalize” refers to its ability to adapt to new and previously 
unseen test data. If the algorithm makes accurate predictions on the training set, and the distribution of the 
training and test data are similar, the model is expected to make accurate predictions on the test dataset as well 
(Müller & Guido, 2016).  
 
Overfitting and Underfitting 
If a machine learning model is complex enough, it will always be able to make accurate predictions on the 
training set. However, highly complex models fit the individual observations, noise, and particularities of the 
training data too closely, which results in poor performance on the test set. Such a model is said to overfit and 
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has high variance error as well as low generalizability. Overfitting poses a major issue when attempting to 
extract signals from noisy historical data. In contrast, models that are too simple cannot capture the patterns 
and variability in the training data, which results in poor performance on both the training and test dataset. 
Such a model is said to underfit and is associated with a high bias error (Müller & Guido, 2016).  
The dilemma between choosing a complex model that may overfit and a simple model that may underfit is 
known as the bias-variance trade-off. The optimal model with the best ability to generalize to new data lies in 
a sweet spot between being too simple and too complex (Müller & Guido, 2016), as illustrated in Figure 4.2: 
 

Figure 4.2: Bias Variance Trade-off (overfitting and underfitting) 

 
Figure 4.2 notes: The figure illustrates the sweet spot of the bias-variance trade-off which minimizes the total error (the loss). In 
practice, the prediction error cannot fully be eliminated. Thus, we do not model a prediction error equal to 0. (Source: Own creation 
based on Goodfellow, Bengio, & Courville, 2017). 

 
The models we deploy, especially neural networks, are complex models that are often prone to overfitting. To 
avoid overfitting and approach the sweet spot, we deploy several regularization techniques which we describe 
in section 7.4. 
 
Hyperparameter Optimization 
Most machine learning algorithms have various “settings” that control the behavior of the algorithm. These 
settings are referred to as hyperparameters or the external characteristics of the model. The hyperparameters 
are not updated by the machine learning algorithm itself but set externally by the machine learning scientist 
(Goodfellow, Bengio, & Courville, 2017). To avoid that the model under- or overfits the data, the fit of the 
model can be adjusted through its hyperparameters. The hyperparameters are crucial for the performance of 
the model as they control model complexity. The search for optimal hyperparameters is an iterative process 
where models with different combinations of hyperparameters are trained and tested. The hyperparameters 
that minimize the loss function is chosen. In mathematical terms, hyperparameter optimization can be 
expressed as: 
 



 27 

 x∗ = argmin
���

f(x) (18) 

where f(x) is a loss function, such as MSE, to be minimized, x is a given set of hyperparameters that can  
take any value in the domain χ, and x* is the set of optimized hyperparameters that minimize the objective function. 

 
Note that different machine learning algorithms have distinct hyperparameters. We address the specific 
hyperparameters of the machine learning models utilized in this thesis in section 7.4. 
 
Validation Set 
There are various ways to optimize hyperparameters. One option is to train various versions of a model with 
different hyperparameters and then test the versions directly on the test set. The optimal model is the model 
that exhibits the best performance on the test set, given its hyperparameters. However, as the hyperparameters 
are specifically tuned on the test set, the model might overfit the test data, and as a result, the model is likely 
to exhibit inferior performance on unseen data (Géron, 2019). 
An option that overcomes this problem is to hold-out a part of the training set for validation purposes. The 
held-out part of the training set is often referred to as the validation set. When utilizing a validation set, various 
versions of the model with different hyperparameters are trained on the reduced training set5 and tested on the 
validation set – instead of on the test set, directly (Goodfellow et al., 2017). The optimal model is the one that 
performs best on the validation set given its hyperparameters. This model is then trained on the full training 
set (including the validation set) and subsequently tested on the true out-of-sample test set.  
Thus, the key purpose of introducing a validation set is to simulate the out-of-sample performance of the model 
before presenting the test data to the model. This avoids overfitting the test data and consequently, it provides 
a more realistic estimate of the model’s ability to generalize (Goodfellow et al., 2017).  
 
Cross-Validation 
Splitting the training set into a reduced training set and a validation set gives rise to another challenge; selecting 
the size of the held-out validation set. A validation set that is too small results in imprecise model evaluations. 
In contrast, a validation set that is too big leaves a highly reduced training set, which might hinder the model 
in learning patterns in the data. The best model for a highly reduced training set might not be the best model 
for the full training set. A solution to this dilemma is to use k-fold cross-validation, where the training set is 
split repeatedly into k folds, resulting in k small validation sets. A visual representation of an example with 
five-fold cross-validation is provided in Figure 4.3:  
 

                                                
5 The training set minus the validation set 
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Figure 4.3: Cross-validation for hyperparameter optimization 

 
Figure 4.3 notes: The figure depicts a process of five-fold cross-validation. First, the overall data sample is split into a training and 
test data sample. The training sample is then split repeatedly into five folds, resulting in five small validation sets. The optimal model 
is defined as the model with the hyperparameters that minimize the loss function across all five validation sets. The optimal model is 
applied to the test data for final evaluation. (Source: Own creation). 

 
One at a time, each of the five folds is left out of the training data and used as a validation set6. The optimal 
hyperparameters are found by minimizing the loss function across all five validations sets. Subsequently, the 
model with the optimal hyperparameters is applied to the true out-of-sample test set for final evaluation. K-
fold cross-validation offers a more realistic estimate of the model’s ability to generalize by averaging model 
performance for each k validation set (Müller & Guido, 2016). Unfortunately, there is also a drawback of using 
cross-validation. First, the method is time-consuming as the model must be trained k times across the training 
set. Second, it is not well suited for time-series data which this thesis relies on. Consequently, we deploy a 
time-series adaptation of k-fold cross-validation which we describe in section 7.3. 
 

4.1.4 Gradient Descent 
Having established how hyperparameters are optimized, we now turn to the optimization process of the 
internal parameters (or simply, parameters) of machine learning models. Parameters are internal 
configurations of the model that are not set manually by the machine learning scientist (in contrast to 
hyperparameters). In the field of machine learning, gradient descent is used across many different models to 
update the parameters of the models. Two of the three machine learning models deployed in this thesis also 
rely on gradient descent (the neural networks). Consequently, this section briefly describes the intuition behind 
the gradient descent algorithm while subsections 4.3 describe how the algorithm is applied for our models.  

                                                
6 This corresponds to repeating the method of creating a held-out validation set k times 
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Gradient descent is a first-order optimization algorithm for finding the minimum of a differentiable function. 
The algorithm is often deployed to minimize a loss function. The algorithm minimizes the loss by measuring 
the local gradient (derivative) of the loss function for a given set of parameters, θ, and taking a step (learning 
step) towards the descending gradient. The closer the gradient is to zero, the closer the loss function is to its 
minimum as illustrated in Figure 4.4 (Deisenroth, Faisal & Ong, 2020).   
 

Figure 4.4: Gradient descent 

 
Figure 4.4 notes: The figure depicts the loss function with respect to the parameters θ. The gradient descent algorithm starts to the left 
and takes learning steps towards the descending gradient in order to minimize the loss function (Source: Own creation based on Géron, 
2019). 

 
The size of the learning step is an important parameter in gradient descent and is determined by the learning 
rate. With a learning rate that is too big, the algorithm might jump over the minimum of the loss function. In 
contrast, with a learning rate that is too small, the algorithm will require many training iterations to find the 
minimum of loss function which is very time-consuming (Deisenroth et al., 2020). Figure 4.5 depicts the 
possible result of a learning rate that is either too big (panel A) or too small (panel B). 
 

Figure 4.5: Size of learning steps in gradient descent 

 
Figure 4.5 notes: The figure illustrates the learning steps of a gradient descent algorithm that minimizes the loss function. Panel A 
depicts learning steps that are too big and consequently, the gradient descent algorithm skips the minimum of the loss function. Panel 
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B depicts learning steps that are too small and consequently, the gradient descent algorithm is very slow in reaching the minimum of 
the loss function. (Source: Own creation based on Géron, 2019). 

 
Gradient descent can be performed on all differentiable (non-linear) loss functions (Hastie, Tibshirani & 
Friedman, 2009). However, some loss functions are not convex and might have local minima or plateaus, 
implying that there is a risk of getting stuck in a local minimum rather than the global minimum, as illustrated 
in Figure 4.6.  
 

Figure 4.6: Loss function with local and global minimum as well as plateau 

 
Figure 4.6 notes: The figure illustrates the learning steps of a gradient descent algorithm that minimizes a non-convex loss function. 
There may be ridges, plateaus, or other irregular terrains in the loss function, making convergence to the minimum difficult. For 
instance, if the algorithm initiates on the left, it will converge to a local minimum and never reach the global minimum. (Source: Own 
creation based on Géron, 2019). 
 
Stochastic gradient descent addresses this issue by replacing the actual gradient (calculated from the entire 
dataset) with an estimate of the gradient (calculated from a randomly selected subset of the dataset). While 
this randomness might prevent the algorithm from identifying the exact global minimum it can help the 
algorithm escape local minima and get sufficiently close to the global minimum (Deisenroth et al., 2020). 
 
Having established the fundamentals of machine learning and the process of constructing machine learning 
models, the following subsections turn to a more in-depth description of the models deployed in this thesis. 
We aim to provide a sufficiently in-depth description of the machine learning models, without dwelling on the 
specific programming details. 
 

4.2 Tree-Based Models 

This section is composed of three subsections. The first subsection unfolds the terminology and intuition 
behind tree-based machine learning models. The second subsection introduces regression trees. Finally, the 
third subsection presents the specific tree-based model used in this thesis, namely Random Forest. 
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4.2.1 Introduction to Tree-Based Models 
The concept of tree-based models was introduced by Hunt, Marin, & Stone (1966). In general, a tree-based 
model is designed to find groups of observations that are similar to each other. The structure of the model is 
flow-based and resembles that of a tree, as is shown in Figure 4.7. The top of the tree is called the “root node”. 
In the below example, the root node is divided into two new nodes (internal nodes). Those nodes are further 
split into either internal nodes or leaf nodes (leaves). Leaves are the end nodes that do not further split (Géron, 
2019).  
 

Figure 4.7: Structure of a tree-based model 

 
Figure 4.7 notes: The figure illustrates a simple architecture of a tree-based model with four nodes and six leaves. (Source: Own 
creation). 

 
While various decision tree algorithms exist, we focus on the CART algorithm which is the most predominant 
decision tree algorithm (Breiman, Friedman, Stone, & Olshen, 1984). As this thesis revolves around predicting 
stock returns, regression trees are the focus of the following subsection.  
 
Tree-based algorithms split the training dataset into a set of regions. The objective of the algorithms is to find 
the optimal splits of the training dataset that minimize the loss function. Specifically, the algorithm fits a simple 
model (e.g., a constant) in each region. 
 
Assume a regression problem with a continuous output variable, Y, and inputs, Xi and X*, that each takes 
values in unit intervals. The splitting process starts by splitting the training set into two regions. Then, each of 
these two regions is split into subregions, and each of these subregions is split into sub-subregions, recursively, 
until some stopping rule is applied or the algorithm is unable to find a split that reduces the loss function 
further. To better understand this process, a visual representation of an example of the regression tree method 
is depicted in Figure 4.87: 
 

                                                
7 For simplicity, we restrict attention to recursive binary splits in this explanation 
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Figure 4.8: The splitting process of the tree-based method 

 
(Source: Own creation based on Hastie et al., 2009) 

 
Let s denote the threshold that splits the inputs (the splitting point). First, 𝑋i is split at 𝑋i = 𝑠i. Next, region 
“Xi ≤	 si” is split at 𝑋* = 𝑠*, and region “𝑋i > 𝑠i” is split at Xi = s�. Last, region “𝑋i > 𝑠�” is split at 𝑋* =
𝑠�. The process results in a partition into five regions (𝑅i, 𝑅*, …	, 𝑅j). The model then fits a constant in each 
region. 
 
The corresponding regression model predicting the output y� with a constant 𝑐  in region Rm can be formalized 
as: 

 y� = ` c(I{(Xi, X*) ∈ R(}
j

(ki

 (19) 

 
This model can also be represented as a binary tree, depicted in Figure 4.9 (Hastie et al., 2009). The complete 
training dataset is at the top of the tree. At each node, observations that satisfy the threshold are delegated to 
the left branch, while the remaining observations are delegated to the right branch. The leaves of the tree 
correspond to the five regions in Figure 4.8 (Hastie et al., 2009).  
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Figure 4.9: Binary regression tree 

 
(Source: Own creation based on Hastie et al., 2009). 

 

4.2.2 Mathematical Foundation for Regression Trees 
This subsection explains the process of splitting data into regions for a single regression tree, such as the one 
in the above example, i.e., how the tree is “grown”. Assume that the data consists of p input variables and one 
output variable for each of the N observations, i.e., (x", y")	for	i = (1, 2, …	, N), with 𝑥7 =
(𝑥7i, 𝑥7*, …	, 𝑥7¢).	For simplicity, we apply sum of squared errors, ∑(y" − y�")*, as the loss function in this 
example. 
 
Recall that the objective of the algorithms is to find the optimal splits of the training dataset that minimize the 
loss function. The algorithm needs to decide on the variables that are split (splitting variables), the points where 
the splitting variables should be split (splitting points), and the shape of the tree. To decide on these three 
aspects, assume that the training set is split into M regions, Ri,R*, …	, RA and the response is modeled as a 
constant 𝑐  in each region: 
 

 y = ` c(I{(Xi, X*) ∈ R(}
A

(ki

 (20) 

 

Note that equation 20 generalizes the example in equation 19 but uses the target output to optimize c(.  
 
If the sum of squares	∑(y" − y�")*	is the minimization criterion, the best c�( simply becomes the average of the 
y" in the respective region R(:  

 c�( = avg(y"|x" ∈ R() (21) 
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The process of growing a complete tree that minimizes the loss function is computationally infeasible8 if all 
the best splits need to be found at the same time. Consequently, the CART algorithm first searches for the 
optimal split at the top node level, and then finds the optimal split for the next level, given the top-level split. 
This splitting process is continued for all subsequent levels9. Starting with all the training data, consider a 
splitting variable, j, and split point, s. Define the pair of regions as:  
 

 Ri(j, s) = TX|Xf ≤ sU	and	R*(j, s) = TX|Xf > sU (22) 
 

To find the splitting variable j and split point s that minimizes the loss function, the following must be solved:  
 

 min
f,§

¨min
©d

` (y" − ci)* +min©x
�ª∈«d(f,§)

` (y" − c*)*
�ª∈«x(f,§)

¬ (23) 

 
For each combination of splitting variable j and split point s, the inner minimizations are solved by: 
 

 c�i = avgKy"Nx" ∈ Ri(j, s)R	and	c�* = avgKy"Nx" ∈ R*(j, s)R (24) 
 

Finding the best pair (j, s) is now feasible by scanning through the input variables. This best pair is used to 
split the training data into two regions. Then, the splitting process is repeated for each of those two regions 
and subsequently repeated for the subregions, recursively. This splitting process continues until the tree has 
grown to its maximum depth, or the algorithm is unable to find a split that reduces the loss function (Hastie et 
al., 2009).  
 
The process described in this section is for one regression tree only. Individual trees are infamous for being 
associated with high variance error, i.e., overfitting the training data. The deeper the trees, the more specific 
behavior of the dataset they describe which results in predictions with high variance. Due to the hierarchical 
nature of the splitting process, the effect of an error in the first split is propagated through all the subsequent 
splits. As a result, individual trees tend to perform poorly on out-of-sample data. However, the limitations of 
individual trees can be mitigated by combining multiple trees into one ensemble model (Géron, 2019). 
 

4.2.3 Random Forest 
The ensemble method is a technique that combines the predictions from multiple algorithms to obtain better 
predictions than the ones provided by any of the individual models. A model consisting of multiple models is 
called an ensemble model. An ensemble model relies on the “wisdom of the crowd”, in which multiple models 

                                                
8 Finding the optimal tree is known to be an NP-Complete problem 
9 The algorithm focuses on selecting the best split for one given level at a time. As the algorithm does not check whether the split at a 
given level is the split that minimizes the loss function several levels down, the solution is seldom optimal, but still reasonably good. 
(Géron, 2019) 
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protect each other from their individual weaknesses (Suthaharan, 2016). Ensemble models can consist of either 
multiple different algorithms or multiple of the same algorithms. 
  
Random forest is an ensemble method that combines the predictions from a collection of trees, as illustrated 
in Figure 4.10. The idea of Random Forest is to build many trees that overfit individually in different ways but 
to reduce the amount of overfitting by averaging their predictions (Müller & Guido, 2016). Random Forest 
uses a variation of the bootstrap aggregation (bagging) technique to combine a collection of trees into one 
ensemble model (Breiman, 2001).  
 

Figure 4.10: Random Forest prediction process 

 
Figure 4.10 notes: The figure depicts the process of making predictions for a Random Forest model. The inputs are passed to the 
individual regression trees that each predict the corresponding target output. The final prediction made by the Random Forest model is 
found by averaging the predictions made by all the individual trees. (Source: Own creation). 
 

The bagging technique fits the same regression tree to different subsamples (bootstrap samples) of the training 
data and averages the predictions of each sample. Note that each tree generated in bagging is identically 
distributed, and as a result, the expectations of an average of all trees are assumed to be equivalent to the 
expectation of any one of the trees individually. This implies that the bias of the bagged trees is equivalent to 
that of the individual trees. Thus, the only way to improve the prediction of the ensemble model is through 
variance reduction (Hastie et al., 2009). 
 
Random Forests use a modification of the bagging technique that is specifically designed to reduce variance 
by de-correlating the trees across bootstrap samples (Gu et al., 2019). The de-correlation of trees is achieved 
by only choosing a random subset, m, of the input variables, p, to be split. Consequently, the early branches 
of each tree are split based on different input variables (splitting variables), which lowers the average 
correlation of predictions. Each individual predictor will not fit the training data as well (i.e., it has a higher 
bias error) as if it was trained on the original training set. However, the aggregation of predictions reduces 
both bias and variance. The result is that the ensemble model has a similar bias but a lower variance than a 
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single predictor (Hastie et al., 2009). 
 
In mathematical terms, the Random Forest algorithm works as follows:  
1. For b = 1 to B:  

a) Generate bootstrap samples Z* of size N from the training dataset T(x", y",()U"ki
y

 

b) Grow a Random Forest tree 𝑇® on the bootstrapped data by recursively repeating the below three steps 
for each bottom node of the tree, until the leaf is reached 

i) Use a random subsample of m out of the p variables 
ii) Select the best variable/split-point among the m variables 

iii) Split a given node into two subnodes  
2. The output of the resulting ensemble bth tree is	{T°}it 
 
To make a prediction given a new input, x, the Random Forest model takes the average of the outputs of all 
the trees, so that:  

 y�Z-
t =

1
B
` T°(x)

t

°ki
 (25) 

 
Having established the architecture of the Random Forest model, we proceed with the two additional models 
applied in this thesis. For the convenience of the reader, we note that an overview of the Random Forest model 
is presented in section 4.4. 
 

4.3 Artificial Neural Networks 

The neural networks leveraged in this thesis are a Multilayer Perceptron (MLP) and a Recurrent Neural 
Network (RNN) with Long Short-Term Memory (LSTM). Before unfolding the theory behind these networks, 
it is necessary to understand the building blocks of neural networks. Accordingly, this section first elaborates 
on the basic characteristics of neural networks, after which an explanation of the specific architecture of MLP 
and RNN will be presented. 
 

4.3.1 Introduction to Neural Networks and the Perceptron 
In general, neural networks are often explained with an analogy to the human brain - a network composed of 
biological neurons that receive and pass signals to other neurons via the connections between them. This is 
what allows us, humans, to continuously learn from and adapt to our dynamic surroundings (Dawani, 2020). 
In a similar vein, a neural network consists of connected artificial neurons (often referred to as nodes) which 
are the building blocks of the network and enable it to “learn”. A neural network typically has multiple nodes 
that are organized in rows. These rows are referred to as layers. Each node is a mathematical operation that 
takes an input, multiplies it by a specified weight, and passes an output (Géron, 2019). Note that the weight in 
a neural network is not a hyperparameter but a parameter that is updated internally by the network. 
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One of the first and simplest neural network architectures is the Perceptron, invented in 1958 by Frank 
Rosenblatt. It consists of only two layers of nodes, namely the input and the output layer. These layers are 
connected through one artificial node, which is referred to as a “threshold logic unit” (TLU). Figure 4.11 shows 
an example of the Perceptron taking four inputs and passing one output: 
 

Figure 4.11: The perceptron 

 
 (Source: Own creation based on Géron, 2019) 

 
The input layer takes the raw input and passes it inside the network. The Perceptron then applies a specific 
weight to each of the input connections before it is passed to the TLU. The TLU then transforms the weighted 
connections into a weighted sum, z, which can be articulated mathematically as follows:  
 

 z = wixi + w*x* +⋯+ wyxy (26) 
 
The sum of the weighted inputs is finally passed through an activation function that transforms the weighted 
inputs before passing it to the output node. The activation function in the preliminary Perceptron was a 
“heaviside step function" that computes a binary output based on a linear combination of the inputs. If the 
results exceed a certain threshold (typically 0), the model predicts a positive class. Otherwise, the prediction 
is a negative class (Géron, 2019). For a threshold of 0 it can be expressed as: 
 

 y" = ´1							if	 ∑ z"y
"kl 		x ≥ 0

0																			otherwise
. (27) 

 
Training of the Perceptron 
For the Perceptron to learn and compute outputs that are accurate predictions, the TLU needs to be “trained”. 
Training a TLU means finding the values for each weight of the input connections that minimize the prediction 
error (loss) of the network. The weights are initially picked randomly by the network but then adjusted towards 
the optimal values of the weights. This is done by feeding the Perceptron one training instance (i.e., one 
subsample of the training dataset) at a time and letting the network make predictions each time. Note that a 
greater weight of a certain input results in a greater impact on the respective prediction. Therefore, the 
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adjustment occurs by strengthening the weights of the inputs that would have contributed to the correct 
prediction, relative to the inputs that would have contributed to the wrong prediction. How much to adjust the 
weights in response to the prediction error depends on the learning rate. The learning rate controls how quickly 
the weights are adjusted. Mathematically it can be articulated as: 

 
 w",¶

y\· = w",¶ + η(y¶ − y�¶)x" (28) 
where w",¶ is the weight between input node i and output node o, 𝑥7 is the input variable of the current 

training subsample, y�¶ is the output of the output node o for the current training subsample, 
 y¶ is the target output of node o for the current training subsample, and η is the learning rate. 

 
Rosenblatt (1958) proved that the Perceptron will converge to a solution if the training instances passed to the 
algorithm are linearly separable10. However, because the preliminary Perceptron is a linear and binary 
classifier, it is unable to solve nonlinear problems. Against this background, Perceptrons with multiple TLUs 
have been introduced, enabling a neural network to solve non-linear problems (Dawani, 2020). 
 

4.3.2 The Multilayer Perceptron 
A Perceptron with multiple TLUs is called a Multilayer Perceptron (MLP). It consists of multiple nodes 
combined in “layers” that are fully connected to one another. This includes the input layer, one or more hidden 
layers of nodes, and a final output layer of nodes which outputs a prediction of the target value. Every layer, 
except the output layer, includes a bias node that computes a constant which enhances the ability of the network 
to best fit the given data. The signal in the MLP is computed sequentially from inputs to outputs and flows in 
only one direction. This is also called a Feed-Forward Neural Network (Dawani, 2020). 
Figure 4.12 visualizes an MLP with four input nodes, a hidden layer with five nodes, and one output node (for 
simplicity, we do not visualize the bias terms). The layers in this figure are fully connected (so-called ‘dense 
layers’), meaning that the input nodes are connected to all nodes in the hidden layer which in turn are connected 
to all nodes in the output layer. More advanced MLPs have several hidden layers and are referred to as deep 
neural networks. 
 

                                                
10 This is referred to as the Perceptron convergence theorem, see appendix A.3 for visualization. Specifically, the Perceptron calculates 
the distance of the hyperplane (the decision boundary) from the points to be classified and adjusts itself to find the best position, so 
that it can perfectly linearly classify the two target classes  
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Figure 4.12: Multilayer Perceptron 

 
(Source: Own creation based on Géron, 2019) 

 
MLP is trained through an iterative process in order to minimize its loss function. This involves two stages, 
namely calculating the gradients of the error function with respect to the weights and subsequently using the 
gradients to compute the adjustments to be made to the weights, i.e., using gradient descent (Bishop, 2006). 
The two stages are elaborated upon below. Note that we, for simplicity, focus only on how weights are updated 
in the network during training, even though other internal parameters (e.g., biases) are also updated via the 
two stages.  
 
Stage 1: Compute the Gradient Through Backpropagation 
The first stage is performed using backpropagation, a method introduced by Rumelhart, Hinton, and Williams 
(1986). In training an MLP, the network is exposed to one data sample at a time. Initially, the model makes a 
forward pass in the network: The input nodes pass the data forward to the nodes in the first hidden layer that 
continues to pass the data forward to each consecutive layer until it reaches the last layer in which the final 
output is computed. The outputs of the input and hidden layers are transformed using an activation function 
(activation outputs) before entering as inputs to the subsequent layer. For a given node j and layer l, the input 
into the node is then given by 

 zf = `wf,¹a¹

y

¹ki

 (29) 

where k denotes the [1, … ,n] nodes in the previous layer, l-1, wf¹ is the weight connection between  
node j in the current layer and k, and a¹ denotes the activation output from the previous layer for a given node k. 

 

The activation output of node j in the current layer can then simply be expressed as: 
 

 af = gKzfR (30) 
where g(z) denotes some applied activation function 

 

Input layer Hidden layer Output layer

ŷ∑
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When the network reaches the output layer it computes the prediction and compares it to the target output. The 
loss is calculated via a loss function (MSE) which is given by 

 ℒ =
1
n
`(y" − y�")*	
y

"ki

 (31) 

where n denotes the number of the input-output pairs in a subsample (batch) of the training dataset 

 
The gradient of the network loss function with respect to each weight is computed by propagating back through 
the network, one layer at a time. Specifically, the backpropagation algorithm measures how much of the output 
node’s loss contribution came from each node in the last hidden layer, then how much of this loss contribution 
came from each node in the previous hidden layer, and so on. The process continues until the algorithm reaches 
the input layer. Mathematically, the backpropagation algorithm works by applying the chain rule. The gradient 
of the network loss function with respect to one specific weight in the last layer, L, can be expressed as follows: 

 

 
∂ℒ"
∂wf¹

p =
1
n
`¼

∂ℒ"
∂afp

½ ¼
∂afp

∂zfp
½ ¼

∂zfp

∂wf¹
p ½

y

"ki

 (32) 

 
This thesis will not dwell any deeper into the math underlying this algorithm, however, we have shown an 
example in appendix A.4 which proves equation 32.  
 
Stage 2: Adjusting the Weights 
In order for the network to enhance its ability to predict an outcome, the network must adjust the weights in a 
way that minimizes the loss function in equation 31. After running one subsample (batch), the weights are 
adjusted by the amount that they contributed to the loss for that given batch using an optimization algorithm. 
Many optimization algorithms exist, however, the most predominant optimization algorithms in the literature 
rely on variations of gradient descent where the weights are adjusted one step at a time for each batch. This 
process of adjusting the weights is often repeated for multiple passes of the entire training dataset (epochs) 
until the network converges to a solution - ultimately computing the most accurate predictions.  

 
Activation Functions 
In order for the backpropagation algorithm to work properly, the activation function for the Perceptron (the 
heaviside step function) needs to be replaced with a differentiable activation function that enables gradient 
descent to make progress at every batch (recall that gradient descent works only for differentiable functions). 
Many potential options for a nonlinear activation function exist, including the sigmoid, hyperbolic tangent, 
rectified linear unit (ReLU), and softmax function. We apply the first three activation functions for our MLP 
and RNN model (see subsection 7.4.2 for rationale). Figure 4.13 shows the three activation functions (panel 
A) and their derivatives (panel B). 
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Figure 4.13: The three activation functions and their corresponding derivatives 

 
(Source: Own creation) 

 
The sigmoid activation function was the first activation function used in the MLP (Rumelhart et al., 1986). 
The sigmoid function squeezes the sum of the weighted inputs of a node into a range between (0, 1) which can 
be expressed as: 
 

 sig(x) =
1

1 + ee�
 (33) 

 
with the derivative 

 

 
d
dx
sig(x) =

ee�

(1 + ee�)*
= f(x)K1 − f(x)R (34) 

 
As evident in Figure 4.13, the derivative of the sigmoid function becomes very small when the value of the 
sigmoid function is either very high or very low. This can cause vanishing gradients which lead to very small 
adjustments of the weights in the various layers within a neural network and ultimately poor learning for deep 
networks. Consequently, the sigmoid function is often used in the output layer only. 
 
The hyperbolic tangent or ‘tanh’ function is similar to the sigmoid function but compresses the output values 
into the (-1, 1) range: 

 tanh(x) =
e� − ee�

e� + ee�
 (35) 

 
with the derivative 

 

Sigmoid
Tanh
ReLU

Panel A: Activation functions Panel B: Derivatives
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 d
dx
tanh(x) = 1 − f(x)*	 (36) 

 
As evident by the tanh derivative in Figure 4.13, the function is centered around 0, leading to higher 
derivatives. Consequently, the updates of the weights are much larger which (often) makes it a superior 
activation function for hidden layers compared to the sigmoid function. 
 
Finally, the rectified linear unit (ReLU) is one of the most widely used activation functions in recent literature 
as it encourages sparsity in the number of active nodes (Gu et al. 2019). This allows for faster derivative 
evaluation and consequently, for the network to converge towards a solution more quickly.  
The ReLU function is given by: 

 ReLU(x) = ´0, if	x < 0
x, otherwise (37) 

 
with the derivative11:  

 

 
d
dx
ReLU(x) = ´0, if	x < 0

1, if	x > 0 (38) 

 
The ReLU can end up in what is referred to as the “dying ReLU problem”. If x is below 0, the ReLU function 
has a gradient equal to 0. As a result, gradient descent will not work as it cannot alter the weights at this stage 
(i.e., the node is “dead”). However, ending up in such a stage can be mitigated by incorporating a lower 
learning rate into the model (Dawani, 2020). 
 

4.3.3 Recurrent Neural Networks 
Having established the fundamental architectures of neural networks, we now address the more advanced 
network, Recurrent Neural Network (RNN). Long Short-Term Memory (LSTM) cells are one of the several 
types of RNN architectures (How, Loo & Sahari, 2016). Therefore, this paragraph briefly introduces the idea 
behind RNN followed by its LSTM architecture.  
 
The RNN is a neural network that is specialized for processing a sequence of values 𝑥i, . . . , 𝑥9. MLPs store 
no information of the predictions made on one sample at a time step t-1 when predicting the next sample in 
time step, t. In contrast, RNNs are known to have memory cells (hidden states) that enable them to remember 
and understand sequential data with e.g., a temporal relation. The hidden states have connections pointing back 
to themselves which enables them to have memory. Consider the following equation that defines how a simple 
RNN evolves over time: 

 
 h0 = f(h0ei, x0; θ) (39) 

                                                
11 Note that the derivative of ReLU(x)=0 is undefined 
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where, x0 is the input to the RNN at time t, h0ei is the hidden state at time step t-1,  
and θ is a parameter that (for simplicity) describes both the weights for h and x 

 
Equation 39 is recurrent because the hidden state, h, at time step t refers back to h at time step t−1, with the 
former hidden state containing information about the whole past sequence, 𝑥i, . . . , 𝑥9ei. Thus, we can also 
denote the hidden state at time step t as follow12: 
 

 h0 = g(x0, x0ei, … , x*, xi; θ) (40) 
 
Consequently, the RNN remembers its past, by allowing past computations to influence the present 
computations.  
 
To better understand the RNN, it is helpful to visualize the network structure which can be done in two distinct 
ways. One way to visualize the RNN is through a diagram that contains one hidden state for all time steps. In 
this graph, the hidden state points back to itself, similar to a circuit that operates in real-time, with a current 
hidden state that influences the future hidden state (Figure 4.14, panel A). The second way to visualize the 
RNN is via an unrolled computational graph. Such a graph depicts the hidden state at each time step, with each 
hidden state representing the state at one point in time (similar to a “chain of events”). Unrolling refers to the 
operation that maps the circuit to a computational graph that has repeated pieces (Figure 4.14, panel B). The 
unrolled graph has a size equal to the length of the time steps, t, in the sequence x. 
 
At a given time step t, the inputs are xt and the hidden states are ht. The function f maps the hidden state at t-1 
to the hidden state at time step t. Note that we do not yet visualize the output of the network. 
 

Figure 4.14: An RNN visualized as circuit diagram (panel A) unrolled through time (panel B) 

 
Figure 4.14 notes: The circuit diagram (panel A) is visualized with a black square indicating that an interaction takes place with a 
delay of a single time step. The same network (panel B) is unfolded to a computational graph where each hidden state is associated 
with one specific time step. The recurrent network processes information from the input x by incorporating it into the hidden state, h, 
which is passed forward through time. (Source: Own creation based on Géron, 2019). 

 
The graph is unrolled by repeatedly applying the equation of ht, t − 1 times. For example, if equation 39 is 
unrolled for t = 3 time steps the hidden state, h3, is: 
 

                                                
12 Note that RNNs share parameters across time steps. Parameter sharing enables statistical strength across different positions in time 
and across different sequence lengths 
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ℎ� = 𝑓(ℎ*, 𝑥�; 𝜃) 

																								= 𝑓(𝑓(ℎ*, 𝑥*; 𝜃), 𝑥�; 𝜃)	 
																																= 𝑓(𝑓(𝑓(𝑥i, 𝜃)𝑥*; 𝜃), 𝑥�; 𝜃) 

(41) 

 
In a similar manner as equation 40, we can also denote ℎ� as 
 

h� = g(xi, x*, x�; θ) 
 
RNNs also add an output layer that reads information via a function I from the hidden state to make predictions: 
 

 y�0 = I(h0, θ) (42) 
where 𝑦�9 is the output of the RNN at time step t 

 
Figure 4.15 visualizes a computational graph of the entire RNN. At each time step t, the inputs are xt, the 
hidden states are ht, the outputs are 𝑦�9: 

 
Figure 4.15: An RNN visualized with outputs, as circuit diagram (panel A) unrolled through time (panel B) 

 
Figure 4.15 notes: The computational graph (panel B) maps the values of an input sequence, x, to the corresponding sequence of 

output values 𝑦�. (Source: Own creation based on Géron, 2019). 
 
Similar to MLPs, RNNs are trained via the backpropagation algorithm. However, for an RNN the algorithm is 
called “backpropagation through time”, as it is applied to the unrolled RNN, that is, the network propagates 
backward through each time step when computing gradients. 
 
An RNN can also take a sequence of inputs for a given number of time steps, ignore all outputs except for the 
last one, but still retain memory through the hidden state (Figure 4.16). This is typically referred to as a 
sequence-to-one network and is the type of network applied in this thesis: 
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Figure 4.16: A sequence-to-one Recurrent Neural Network 

 
(Source: Own creation based on Géron, 2019) 

 

4.3.4 Long Short-Term Memory 
A specific type of RNN that applies a Long Short-Term Memory (LSTM) cell was first introduced by 
Hochreiter and Schmidhuber (1997). The key feature of the LSTM cell is its ability to learn both what to 
remember and what to forget. Such an ability enables the model to learn long-term dependencies which is 
challenging for a regular RNN that can (often) only retain short-term memory13. 
 
While the RNN has only one type of hidden state, the state of an LSTM cell can be split into two parts: the 
short-term state, h(t), and the long-term state, c(t). The LSTM cell regulates what to remember and what to 
forget through three gates, namely, a forget gate, an input gate, and an output gate. We first describe how the 
gates work followed by an explanation of how the two states are propagated forward in the LSTM cell through 
the three gates. 
 

Figure 4.17: LSTM cell architecture 

 
(Source: Own creation based on Géron, 2019) 

 
Figure 4.17 illustrates the architecture of one LSTM cell. To explain the architecture of the LSTM cell, we 
follow Figure 4.17, closely: In order for the three gates to decide what to forget and what to remember, the 

                                                
13 This is due to the vanishing or exploding gradient problem (see subsection 7.4.2) 
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LSTM cell first computes four gate inputs, f0, i0, g0, and	o0. These gate inputs are transformed through the tanh 
or sigmoid activation function and fed to the three gates, namely the forget gate, the input gate, and the output 
gate.  
The main gate input is g0. The g0 is a tanh transformation of the current inputs, x0, and the previous short-term 
state, h0–i14. The additional three gate inputs are referred to as gate controllers (f0, i0	and	o0). These three gate 
controllers are sigmoid transformations of x0 and h0–i, and thus become values in the interval [0:1]. The gate 
controllers determine how much information is passed through the gates. As each gate operates through a 
multiplication operation, a gate will “close” if the respective gate controller equals 0. In contrast, a gate will 
“open” if the respective gate controller is above 0.  
 
The forget gate (enabled by f0	) controls which parts of the long-term state should be dropped. The input gate 
(enabled by i0	) controls which parts of g0 should be added to the long-term state. Finally, the output gate 
(enabled by o0	) controls which parts of the long-term state should be passed on as the new short-term state 
(ℎ9). 
 
Having established how the gates work, we turn to how the long-term state, c, is passed forward in the LSTM 
cell. First, the long-term state of the previous LSTM cell, 𝑐9–i, encounters the forget gate. Here, elements of 
information are excluded. Following this gate, the long term-state encounters an additional operation that lets 
parts of new information enter the long-term state. At this point, the long-term state has both forgotten old and 
obtained new information, and becomes the new long-term state, 𝑐9 (marked as “updated c” in Figure 4.17). 
Subsequently, c0	is duplicated and passed forward along two paths: One path directly propagates c0 forward to 
the next LSTM cell. The other path transforms c0 via a tanh activation function and passes it through the output 
gate, ultimately resulting in the new short-term state,	h0. The h0 is fed forward to the next LSTM cell.  
 
The above explanation is for one LSTM cell only. A snapshot of an unrolled RNN with LSTM cells is 
visualized in Figure 4.18 where an LSTM cell is represented at each time step. Note that for the last LSTM 
cell, the h0 is equivalent to the output y�0 (Géron, 2019). 
 

Figure 4.18: Snapshot of an RNN with LSTM cells, unrolled through time 

 
Figure 4.18 notes: The figure depicts an RNN with LSTM cells unrolled through time. Only the last three time steps in a sequence x 
are visualized. In the last layer, the hidden state h0 becomes 𝑦�9. (Source: Own creation). 

 

                                                
14 Note that in a basic RNN cell, there is nothing else than this input, and ht passes directly on to the next cell, without passing through 
any gates (Géron, 2019) 
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The computation of the LSTM cell’s long-term state, short-term state, and the output at the last timestep is 
summarized below: 
 

 f0 = σ(w�- ∗ x0 + wÃ- ∗ h0ei) (43) 
 i0 = σ(w�" ∗ x0 + wÃ" ∗ h0ei) (44) 
 g0 = tanh	(w�[ ∗ x0 + wÃ[ ∗ h0ei) (45) 
 o0 = σ(w�¶ ∗ x0 + wÃ¶ ∗ h0ei) (46) 
 c0 = f0⨂c0ei + i0⨂g0 (47) 
 y�0 = h0 = o0tanh⨂(c0) (48) 

where w�-, w�",  w�[, w�¶ are the weights of each of the four gate inputs for their connection 

 o the input vector x(t), and wÃ-, wÃ", wÃ[, wÃ¶ are the weights of each of the four gate inputs for their  
connection to the previous short-term state h0ei 

 
Collectively, the two states of the LSTM cell enable it to recognize essential inputs, preserve them for as long 
as necessary, and extract them when required. This is why RNNs with LSTM cells have been highly successful 
at capturing long-term patterns in time series - including stock prediction (Fischer & Krauss, 2018). 
 
As a final note on neural networks, it can be extremely challenging to draw meaningful interpretations of the 
underlying mechanisms from these networks due to their high complexity (Ghorbani et al., 2019). 
Consequently, they are often referred to as “black boxes”. This thesis aspires to unfold the black box by 
assessing the importance of each input variable of the machine learning models and regressing their predictions 
against profound risk factors in the literature in sections 9.5 and 9.6, respectively (research questions 5). 
 

4.4 Summary of Machine Learning Models 

For the convenience of the reader, we provide an overview of the theory outlined in the previous machine 
learning sections (sections 4.2-4.3). Table 4.1 presents the key characteristics of the three machine learning 
models deployed in this thesis. 
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Table 4.1: Summary of the three machine learning models  

 
(Source: Own creation) 

 
 

5 Overarching Methodology 
This chapter sheds light on the overarching methodology on which our research relies. First, we address the 
validity and reliability of our data sample and the actions taken to ensure the quality of our research. Second, 
we introduce the method of backtesting, our investment universe, and the initial preprocessing of the data. 
Finally, we explain the eleven momentum variables that constitute the inputs for our selected machine learning 
models. 
 

5.1 Validity and Reliability 

This section reviews the quality of our data sample by assessing its validity and reliability. Validity is a 
measure of the extent to which the collected data can be used for answering the problem statement (Carmines 
& Zeller, 1979). We refine the validity of our research through two primary undertakings. First, as previously 
established, this thesis investigates the performance of machine learning-based stock-selection strategies 
relative to a conventional momentum strategy. Our research focuses, inter alia, on the momentum crashes of 
the momentum strategy that occur during stressed markets - a phenomenon that has been documented by 
several scholars (e.g., Grundy & Martin, 2001; Daniel & Moskowitz, 2016). However, when we replicate the 

Algorithm Overall description Architecture Training process Predictions

Random Forest

A tree-based model that 
relies on ensemble 
learning via a collection 
of decision trees

Each tree consists of nodes that 
are repeatedly split into new 
nodes or leaves. Trees are 
constructed through a Random 
Forest bagging approach that 
draws random bootstrap 
samples from the training set 
and selects a random subset of 
variables for each split in each 
tree. 

Relies on tree 
construction. For each 
tree, Random Forest finds 
the best splitting variables 
(among the random subset 
of variables) and the best 
splitting points for these 
variables. 

Averaging the 
predictions of each 
individual tree

Multilayer 
Perceptron

A neural network 
composed of layers of 
nodes with data flowing 
forward only

Recurrent 
Neural Network 
with LSTM cells

A recurrent neural 
network that incorporates 
LSTM cells allowing it to 
forget and remember 
short- and long-term 
dependencies

Nodes are organized into input, 
hidden, and output layers. 
Weights connect the nodes with 
outputs passed to nodes in the 
subsequent layers via an 
activation function. For 
recurrent neural networks, an 
additional temporal dimension 
is added, allowing it to have 
memory (state) of previous 
events.

Initially, the network 
assigns random internal 
parameters (e.g. weights) 
to the network. Parameters 
are updated using the 
backpropagation method 
and gradient descent in 
order to minimize the loss. 
The parameters are 
adjusted for every 
subsample (batch).

Extracted from the 
final output layer 
that relies on the 
inputs from 
previous layers and 
the optimal internal 
parameters
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conventional momentum strategy, we limit ourselves to a smaller data sample than the literature which consists 
of 500 stocks each month (see section 1.3). Thus, our data sample can only be regarded as valid for answering 
our problem statement, insofar momentum crashes are also evident in our data sample. Therefore, we initiate 
our results (subsection 9.1) by examining if momentum crashes are also inherent in our data sample.  
 
Second, we include periods of stressed markets in both the training and test set for our research to be valid. 
Doing so permits the machine learning models to learn the patterns that occur during stressed markets (using 
the training set). Moreover, it also allows us to assess the performance of the machine learning-based stock-
selection strategies during stressed markets (using the test set). There have been two major momentum crashes 
over time, namely following the Great Depression and the 2008-2009 financial crisis. Thus, we have included 
the Great Depression in the training sample and the 2008-2009 financial crisis in the test sample.  
Collectively, the two undertakings foster a data sample that can be used to answer our problem statement. 
 
Reliability is a measure of how dependable the data sample is and whether the results might be affected by 
coincidences (Carmines & Zeller, 1979). We encourage reliability in our research through four areas: 
First, we exclusively rely on credible data sources in our research. The qualitative data consist of peer-reviewed 
articles from renowned journals primarily, such as The Journal of Finance and Journal of Financial Economics. 
The quantitative data have been collected from the Center for Research in Security Prices (“CRSP”), the 
Kenneth French Data Library15, and the website of AQR Capital Management16. These are all data sources that 
academic scholars rely on in their peer-reviewed research. By solely relying on these credible data sources, we 
attempt to ensure reliability of our data. 
 
Second, we are cautious when interpreting our results. As we explain in the following section, this thesis 
follows the method of backtesting. The backtesting methodology is associated with certain data mining biases, 
some of which are unavoidable (Pedersen, 2015). For example, the machine learning-based stock-selection 
strategies rely on variables that previous scholars have identified as relevant for the enhancement of the 
conventional momentum strategy. However, at the beginning of our backtest period, these variables were not 
yet discovered by scholars, and hence, we would not be able to deploy them at that point on time. Furthermore, 
it would not have been possible to deploy machine learning 45 years back in time. We are attentive towards 
these unavoidable biases by acknowledging that our results function only as an estimate of whether the 
proposed stock-selection strategies would have been profitable, had they been deployed in real-time. In a 
similar manner, we note that our results (based on the past) are not guaranteed to hold in the future. 
Besides the unavoidable bias, we have actively attempted to circumvent biases in our data analysis. For 
instance, we test the performance of our stock-selection strategies on an out-of-sample test set to obtain a 
reliable estimate of their performance (recall subsection 4.1.3). Further, we include dead stocks17 in our data 
sample to avoid survivorship bias, and exclusively include stocks at the time they are a part of our investment 
universe to avoid look-ahead bias.  
 

                                                
15 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
16 https://www.aqr.com/Insights/Datasets/Betting-Against-Beta-Equity-Factors-Daily 
17 Stocks that were delisted during the holding period 
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A third way in which we encourage reliability in our research is by ensuring replicability of our results. The 
results of our machine learning-based stock-selection strategies rely on the predictions made by the machine 
learning models. These predictions vary slightly every time the models are run, leading to a certain randomness 
in our results which ultimately hinders replicability. In a modest attempt to counter the randomness and 
improve the reliability of our results, we run the machine learning models five times and average their 
predictions. 
 
Finally, we deploy a simple baseline model for comparison with the more complex models deployed in this 
thesis. Specifically, we apply a simple OLS linear regression model. The rationale for doing so is to ensure 
that the simpler counterpart does not exhibit superior or similar performance relative to the three machine 
learning models, rendering them overly tortuous (complexity bias). Hence, the performance of the baseline 
model functions as floor value which the more complex models should outperform.  
 

5.2 Backtesting, Data Description, and Fundamental Preprocessing 

As this thesis examines the performance of a conventional momentum strategy and three machine learning-
based stock-selection strategies, we apply the method of backtesting. More specifically, we assess the viability 
of these stock-selection strategies by simulating their performance over time (Schmidt, 2011). Where the 
specific trading rules of the respective stock-selection strategies are specified in chapter 6 and 7, this section 
introduces the data and investment universe used for the backtesting of the stock-selection strategies. 
 
This thesis examines the US equity market and covers a period from January 1929 to December 2020. The 
sample includes common equity stocks traded on NYSE, AMEX, or NASDAQ, extracted from CRSP. We 
include common stocks with a CRSP share code (SHRCD) equal to 10 or 11. 
 
We rely on monthly returns and apply the monthly delisting returns when a stock has been delisted during the 
holding period. The choice of utilizing monthly returns rather than daily returns is consistent with scholars 
using machine learning for asset pricing (Gu et al., 2019; Gu, Kelly & Xiu, 2021). In fact, Israel et al. (2020) 
argue that using monthly returns is a sensible starting point when applying machine learning to stock market 
analysis. In addition, it would be infeasible to use daily returns as inputs to our machine learning models given 
the limited computational power in our possession. We do, however, evaluate the performance of the stock-
selection strategies using daily return data. This allows us to evaluate the stock-selection strategies on a both 
daily and monthly basis, enabling comparability with the literature that relies on both daily returns (e.g., Daniel 
& Moskowitz, 2016) and monthly returns (e.g., Gu et al., 2019). Moreover, using daily returns resemble a real-
life investment strategy. 
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We define our investment universe as the 500 largest stocks each month, measured by market capitalization. 
At the beginning of each holding period, (t-1), we rank the stocks based on their market capitalization so that: 
 

 𝑋7,9 ∈ ℧9|	𝑟𝑎𝑛𝑘(𝑀𝐶7,9ei) 	≥ 	500 (49) 
where 𝑋7,9 denotes stock i in the holding period t, and ℧9	denotes the investment universe at month t 

 
When no price is available, we apply the bid-ask average instead. The market capitalization used to rank stocks 
at time t is then given by: 
 

 𝑀𝐶7,9ei = 𝑎𝑏𝑠(𝑃𝑅𝐶7,9ei)(𝑆𝐻𝑅𝑂𝑈𝑇7,9ei) (50) 
where 𝑃𝑅𝐶 is the price or bid-ask average and 𝑆𝐻𝑅𝑂𝑈𝑇	is the number of shares outstanding 

 
For a stock to be included in the portfolio, we require valid returns from months ‘t to t-24’ as this is a necessity 
when calculating our variables for our machine learning-based stock-selection strategies. Note that this implies 
that the first full calendar year for which we investigate portfolio returns is 1931, as our data sample begins in 
1929. 
 
We end up with an investment universe consisting of 3,250 stocks, spanning a period of 1,080 months. Table 
5.1 summarizes the descriptive statistics for the stocks in the final sample: 
 

Table 5.1: Descriptive statistics of data sample 

 
(Source: Own creation) 

  

Number of stocks in investment universe 3,250

Number of stocks per month 500

First observation date 01 Jan 1931

Last observation date 31 Dec 2020

Duration of sample period in months 1,080

Return frequency, investment strategy construction Monthly

Return frequency, investment strategy evaluation Daily
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5.3 Momentum Variables 

We construct eleven momentum variables based on the momentum literature as input variables for our machine 
learning models. While the scholars described in subsection 3.4.3 estimate their momentum variables using 
different time horizons and different return frequencies, we apply monthly returns and a one-year time horizon 
when creating the variables. We describe these variables and the rationale for utilizing them below. The 
variables are divided into market and stock-specific variables.  
 
The Market Variables 
We include three market variables. Let t denote the month in which the machine learning models predict a 
return of stocki. Then, the variables can be expressed as: 
 

1) The return of the market at month t-1 
2) The cumulative market return from month t-2 to t-12 
3) The standard deviation of the market computed on a rolling basis over month t-2 to t-12 

 
The rationale for including the market variables is inspired by the findings of Barroso and Santa-Clara (2015) 
as well as Daniel and Moskowitz (2016): As mentioned in subsection 3.4.2, Daniel and Moskowitz (2016) find 
that momentum crashes occur following bear markets that suddenly rebound. To incorporate these findings, 
we deploy the cumulative t-2 to t-12 months returns and the one-month market return at time t-1. We further 
include the standard deviation of the market as Daniel and Moskowitz (2016) as well as Barroso and Santa-
Clara (2015) document that momentum crashes occur when the market volatility is high. Accordingly, this 
enables the machine learning models to extract additional information on stressed market situations. 
 
The Stock-Specific Variables 
We include eight stock-specific variables: 

4) The return of stocki at month t-1 
5) The cumulative return of stocki from month t-2 to t-12 
6) The standard deviation of stocki computed on a rolling basis from month t-2 to t-12 
7) The beta of stocki computed based on a rolling regression over month t-2 to t-12 using the CAPM 

model 
8) The alpha of stocki at month t-1, computed based on a rolling regression over month t-1 to t-12 using 

the Fama/French three-factor model 
9) The cumulative alpha of stocki from month t-2 to t-12 
10) The idiosyncratic returns of stocki at month t-1, computed based on a rolling regression over month t-

1 to t-12 using the Fama/French three-factor model 
11) The cumulative idiosyncratic returns of stocki from month t-2 to t-12 

 
The two first stock-specific variables (four and five) are included as they are closely related to the conventional 
momentum strategy: Variable four incorporates possible short-term reversal in stock returns and represents the 
skipping period for a conventional momentum strategy. The fifth variable constitutes the key variable for the 
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conventional momentum strategy that ranks stocks according to their past t-2 to t-12 months cumulative 
returns. 
 
We have previously established that the conventional momentum strategy has a highly time-varying beta. 
Further, we have established that momentum crashes occur during periods characterized by high volatility.  
Consequently, we include the market beta and the standard deviation for each stock (variables six and seven) 
as input variables18. 
As the final four variables (eight to eleven), we include the monthly as well as the cumulative idiosyncratic 
and alpha momentum (using equations 14 and 16). These variables incorporate the findings of Hühn & Scholz 
(2018) and Blitz et al. (2011, 2020) on alpha and idiosyncratic momentum, respectively19. 
These eleven momentum variables incorporate the findings of the enhanced momentum strategies. Hence, they 
comprise the foundation for which the machine learning models may uncover contextual and nonlinear 
relationships to enhance the conventional momentum strategy. 
 
Some of the momentum variables are based on a rolling basis while others are observations in a single month. 
The rationale for incorporating both is two-fold: First, the machine learning models deployed in this thesis do 
not all comprehend the temporal dimension (recall that only RNNs have a memory of past inputs). Thus, we 
need variables that in themselves contain a time dimension (e.g., cumulative returns) and variables at a specific 
month that can be placed at each time step (e.g., monthly returns). Second, we choose to deploy the two “types” 
of variables to all models to ensure consistency. This enables us to compare the performance of our models as 
no additional inputs are fed to one model. Note that this means we “artificially” assign timesteps to Random 
Forest and the MLP model. We explain how we apply such an approach in section 7.2. 
  

                                                
18 Note that Daniel & Moskowitz (2016) as well as Barroso and Santa-Clara (2015) calculate the standard deviation of the aggregate 
momentum portfolio whereas we calculate the standard deviation on an individual stock level. 
19 We do not apply equation 15 as Blitz et al. (2020) notes that their results do not hinge on scaling idiosyncratic momentum  
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6 Methodological Framework of the Momentum Strategy 
This chapter presents the methodological approach for replicating the conventional price momentum strategy, 
popularized by Jegadeesh and Titman (1993). As such, the chapter explains the trading rules underpinning the 
backtest of the conventional momentum strategy. 
 
Recall that the first step in forming a momentum strategy is ranking stocks based on their past returns (in the 
formation period). Subsequently, stocks are held in a portfolio during the holding period. We follow the most 
broadly used momentum definition in recent literature (e.g., Asness et al., 2013; Daniel & Moskowitz, 2016; 
Blitz et al. 2020), and rank stocks based on their cumulative returns20 from 12 months to one month before the 
formation date (i.e., from t−2 to t−12 months). We include a one-month skipping period (t−1) to disentangle 
the intermediate-term momentum effect from the short-term reversal effect as documented by Jegadeesh 
(1990) and Lehmann (1990). Figure 6.1 visualizes the formation and holding period. 
 
 

Figure 6.1: Formation period and holding period of a conventional momentum strategy 

 
(Source: Own creation) 

 
 
Based on the stock ranking, we form decile portfolios and assign equal weights to the stocks in each decile 
which is common in the literature (see Jegadeesh & Titman 1993, Chordia & Shivakumar, 2002; Griffin et al., 
2003; Blitz et al. 2011, 2020). Alternative weighting schemes incorporating market capitalization (value-
weighted portfolios) are also applied in the literature (see Moskowitz & Grinblatt, 1999; Korajczyk & Sadka, 
2004; Asness et al., 2013; Daniel & Moskowitz, 2016). The value-weighted approach is advantageous when 
the stock universe includes small and illiquid stocks, as they receive less weight in the momentum portfolios. 
However, our stock universe cannot be regarded as illiquid as the sample consists of the top 500 stocks based 
on their market capitalization. The top (bottom) portfolio comprises the 10% of stocks with the highest (lowest) 
cumulative returns. The literature has primarily focused on a “zero-cost” strategy involving a long position in 
the top decile (the winner portfolio) and a short position in the bottom decile (the loser portfolio). We deploy 
such a long-short momentum portfolio (recall that we refer to this portfolio as WML). 
 
Consistent with the literature, we rebalance portfolios monthly (e.g., Daniel & Moskowitz, 2016; Blitz et al., 
2011, 2020). While varying the rebalance frequency to optimize portfolio trading costs may improve the 

                                                
20 The cumulative return for each stock is calculated as the compounded returns, i.e., ∏ (1 + 𝑅9)Ô

9ki , where t is the given month 
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implementation of the strategy (Garleanu & Pedersen, 2012), we note that this is beyond the scope of our 
thesis. For the convenience of the reader, we visualize the fundamental step-by-step approach of our replicated 
conventional momentum strategy in Figure 6.2.  
 
 
 

Figure 6.2: Step-by-step approach of the conventional momentum strategy 

 
 

Figure 6.2 notes: The figure illustrates the four steps of our replicated conventional momentum strategy. Note that steps one, two, and 
three are performed on the formation date, while step four takes place during the holding period. The process (steps one to four) is 
continued in a cyclic form. (Source: Own creation). 
 

7 Methodological Framework of the Machine Learning Strategies 
This chapter provides an overview of the methodological considerations related to the machine learning-based 
stock-selection strategies. First, we provide a brief introduction to how we construct the stock-selection 
strategies based on the predictions made by the machine learning models. Subsequently, we outline how the 
data are preprocessed before we pass the data to the machine learning models. The third section explains the 
methodology used for optimizing the hyperparameters of the machine learning models. Finally, the last three 
sections offer an in-depth description of how the three machine learning models are constructed as well as 
their respective hyperparameters.  
 

7.1 Introduction to the Machine Learning-Based Stock-Selection Strategies  

To construct the machine learning-based stock-selection strategies, we build supervised machine learning 
models that predict the excess stock returns of the following month, based on the eleven momentum variables. 
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We sort stocks into decile portfolios according to their respective predicted excess returns21. Then, the machine 
learning-based stock-selection strategies follow the approach for the conventional momentum strategy by 
longing the winner portfolio and shorting the loser portfolio. The position is held for one month.  
 
For the convenience of the reader, a visual representation of the process of constructing a machine learning 
model and utilizing it to create a stock-selection strategy is provided in Figure 7.1. 
 

Figure 7.1: Step-by-step approach of constructing a machine learning model and applying it for a stock-
selection strategy 

 
Figure 7.1 notes: The figure depicts the process for constructing a machine learning model and utilizing it to create a stock-selection 
strategy. We visualize three types of steps. The light blue steps are related to the machine learning modeling process. The dark blue 

                                                
21 Note that we rank stocks based on the excess stock returns in the cross-section at formation date. Thus, predicting returns or excess 
returns should not influence our result. In practice, however, withdrawing the risk-free rate creates less noise for the machine learning 
models, resulting in better predictions. 
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steps outline the process of forming portfolios based on the machine learning predictions. The grey step represents the holding period. 
(Source: Own creation). 

 
The remaining sections in this chapter unfold the specific methodology deployed in this thesis when 
performing each of the machine learning-related steps (marked in light blue in Figure 7.1). We will not dwell 
on the details of the steps for creating the stock-selection strategies, as these resemble the process of forming 
a conventional momentum strategy. Hence, the trading rules for the backtest of the machine-learning-based 
stock-selection strategies are similar to that of the conventional momentum strategy, except that the stocks are 
ranked based on their predicted excess returns rather than their cumulative returns in the formation period.  
 
We proceed by specifying the regression problem that we aspire to solve. We define our input variables as the 
eleven momentum variables. The input variables, z, for stock, i, of a given month, t-1, are used to predict the 
excess return for the following month, t. As the output variable is a continuous numerical value, the problem 
at hand is a regression problem. In the most general form, we describe the excess stock return as an additive 
prediction error model: 
 

 𝑟7,9 = �̂�7,9 + 𝑒7,9  (51) 
and 

 �̂�7,9 = g∗(z",0ei) (52) 
where stocks are indexed as 𝑖 = 1, . . . , 𝑁9, and months are indexed as 𝑡 = 1, . . . , 𝑇  

 

Our objective is to find the predicted excess stock return, �̂�7,9  that minimizes the loss function (MSE) for the 
target output 𝑟7,9. Assume that the predicted excess return is a flexible function,	𝑔∗(·)	, of the eleven momentum 
variables, 𝑧7,9. The prediction of a given excess stock return is based on the input variables z for stock i at time 
t. The input variables for each stock i do not contain information about individual stocks other than the ith.  
 
Statistical Properties of Data 
Before we unfold how we have preprocessed the data for our machine learning models, we briefly explain the 
statistical properties of our data that are relevant for the models. First, we note that the machine learning models 
deployed in this thesis do not assume any formal distributions of the data and are not restricted by the various 
assumptions underlying more traditional statistical models. However, stationarity in time-series data is 
generally recommended in the field of machine learning. For machine learning models without a temporal 
dimension, stationary time series can be easier to analyze, as the mean and standard deviation of data are not 
time-dependent (Lazzeri, 2020). To ensure that the statistical properties of our data remain constant over time, 
we perform an Augmented Dickey-Fuller test (Dickey & Fuller, 1979) in appendix A.5 which illustrates that 
the variables are stationary. 
 
Neural networks and tree-based models, similar to those deployed in this thesis, are documented in the financial 
literature to successfully handle correlated input variables (e.g., Gu et al., 2019). However, the input variables 
should not be perfectly correlated as this would involve redundancy in our machine learning models. Appendix 
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A.6 demonstrates that this is not the case for the eleven momentum variables that exhibit a correlation no 
higher than 0.64. 
 

7.2 Preprocessing of Data for Machine Learning Models 

Training and Test Set 
Having defined the input and output variables for the machine learning algorithms, the first step of data 
preprocessing is to divide the dataset into a training and test sample. We use the training sample to build and 
train our machine learning models. The out-of-sample test set is used to assess the predictive performance of 
the machine learning models. Deciding which proportion of the data should be in each of these samples is 
somewhat arbitrary in the literature (Müller & Guido, 2016). The split is dependent on the size of the overall 
sample, as a small sample requires a higher fraction of training data for the algorithms to learn patterns in data. 
Gu et al. (2019) divide 60 years of data equally into a training set (including a validation set) and a test set, 
maintaining the temporal ordering of the data. We follow their approach and split the datasets equally, 
maintaining the temporal dimension. As our data sample is longer than the sample of Gu et al. (2019), spanning 
90 years, the length of the training sample should constitute a solid foundation for the algorithms to learn 
patterns in data. 
  
Scaling input variables 
In general, a machine learning algorithm creates a mapping from the input variables to an output variable. The 
input variables can vary in terms of different scales and distributions, as is the case for our variables (see 
appendix A.7). While Random Forest, by construction, is capable of handling variables with different scales, 
it poses a challenge for neural networks22. Hence, we scale our eleven momentum variables. Two different 
scaling methods are applied, as a result of utilizing both market and stock-specific variables: 
 
For each of the three market variables, m, we scale values Xm such that the distribution of a given variable has 
a mean of zero and a standard deviation of one. Specifically, when scaling a value for variable m, we subtract 
the mean of variable m in the training dataset and divide by the standard deviation of variable m from the 
training dataset. We apply the scaler on both values in the training and test dataset. The scaled observation Z 
for a variable m is given by: 
 

 𝑍  =
X( − µ0ZY"y
𝜎9Þß7Ô

 (53) 

where 𝑋  is an observation for the variable m, 𝜇9Þß7Ô is the mean of the training dataset  
and 	𝜎9Þß7Ô  is the standard deviation of the training sample 

 

                                                
22 As the networks learn how to combine the inputs through a series of linear combinations (and nonlinear activation 
functions), the weights associated with each input will also have different scales. In practice, this leads to more 
emphasis on certain weight gradients and an unstable learning process (Bishop, 1995) (we elaborate on this in 
subsection 7.4.2) 
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We follow the approach of Gu et al. (2019); Kelly, Pruitt, and Yinan, 2019; as well as Freyberger, Neuhierl, 
and Weber (2020) when scaling the eight stock-specific variables. The purpose of deploying the three machine 
learning algorithms to predict excess returns is to sort stocks into portfolios for a given month. When we form 
portfolios, we are not interested in the variable for a given stock in isolation, but rather the value in the cross-
section. Consequently, we cross-sectionally rank values of the stock-specific variables, month-by-month, and 
map the ranks into an interval of [-1,1]. Specifically, we apply the following function for each month, t: 
 

 𝑍 ,9 =
2

𝑁9 − 1
∗ 𝑟𝑎𝑛𝑘K𝑋 ,9R − 1 (54) 

where 𝑟𝑎𝑛𝑘 á𝑚𝑖𝑛7ki…ãäK𝑋 ,9,7Rå = 0,   𝑟𝑎𝑛𝑘 á𝑚𝑎𝑥7ki…ãäK𝑋 ,9,7Rå = 𝑁9 − 1,	 

𝑁9 denotes the total number of stocks at month t, and i denotes a single stock 

 
Reshaping the Data Format 
The three machine learning algorithms deployed in this thesis require different shapes of the input variables. 
Random Forest and Multilayer Perceptrons (MLPs) are only capable of handling inputs formatted as fixed-
length vectors, N, with M input variables. In contrast, Recurrent Neural Networks (RNNs) are structured to 
specifically accommodate sequences of inputs, and thus the network requires a matrix format that adds the 
timesteps, T, to the Ni vector, where i is one row of observations. We proceed by explaining how we reshape 
our input data to accommodate the required format for the three models and refer to a graphical representation 
of the input shape of the data in Figure 7.2. 
 
Let M denote our momentum variables, then 𝑁7,9 is a vector of all M variables for one stock 𝑖 at month t. For 
each month, we have 500 firms in our universe so  𝑁7,9	is for 𝑖 = 1, . . . , 500. We further add time steps to this 
vector. Currently, there is no rule of thumb to select the number of time steps (Bao, Yue, & Rao, 2017). We 
include a sequence of 12 time steps, T, corresponding to one year. We are unable to increase the time steps 
further, as this exceeds the computational resources available for this thesis. Note that we incorporate the time 
dimension into our models in two distinct ways: For Random Forest and the MLP that require a vector format, 
we add T to the vectors, so the length of the vectors N∗ = NxT. For the RNN we add T as a new dimension, 
creating NxT-matrices. In both cases, this results in 11𝑥12 = 132 inputs, presented in two different shapes. 
For the RNN, T enables the model to “memorize” observations one year back in time23. While the MLP and 
Random Forest do not comprehend the temporal aspect of the data, they still incorporate this aspect in their 
predictions through the vectors 𝑁∗. 
Figure 7.2 visualizes the inputs to the models at month t with 𝑖 = 1, . . . . , 500 vectors 𝑁7∗ for MLP and Random 
Forest, and 𝑁7𝑥𝑇 matrices for the RNN: 

 

                                                
23 We indirectly enable it to memorize further back in time as seven of our variables are estimated over a 12-month period, skipping 
the most recent month 
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Figure 7.2: Input data shape (at each month) 

 
Figure 7.2 notes: The figure depicts how the input data are shaped to fit the required input shape of the three machine learning 
algorithms. Panel A shows the 𝑁∗ vector required for Random Forest. Panel B shows the NxT matrix required for RNN. (Source: Own 
creation). 

 
For each month, t, the machine learning models process 66,000 data points (500	𝑥	11	𝑥	12). This results in 
71,280,000 data points for our entire data sample spanning 90 years. 
 

7.3 Hyperparameter Optimization 

Having outlined the preprocessing of the data for the machine learning models, we proceed by explaining how 
we optimize the performance of our models. Finding the optimal hyperparameters for a machine learning 
model is crucial for optimizing model performance. Recall that the optimal hyperparameters for a given model 
are the hyperparameters that minimize the loss function. We deploy MSE as the loss function. To optimize the 
hyperparameters, we follow the most common approach in the machine learning literature and decompose the 
training data into a hold-out validation set and a reduced training set (Goodfellow et al., 2017). The validation 
set is used for tuning the hyperparameters. 
 
As mentioned in subsection 4.1.3, a common approach for finding the optimal hyperparameters is k-fold cross-
validation, where the model is validated on multiple validation sets. However, the standard k-fold cross-
validation method is not applicable for time series data, as it does not maintain the temporal ordering of the 
training and validation data (Arnott et al., 2019). As our sample consists of time series data, deploying k-fold 
cross-validation would imply that investors have perfect future hindsight of stock returns, i.e., look-ahead bias. 
Consistent with the literature applying machine learning on stock data, we cross-validate our models by 
repeatedly increasing the size of the training sample and rolling the validation set forward so that it consists of 
the most recent data (Chen et al., 2020; Gu et al., 2021). We split the training set to obtain ten validation sets 
and show the rolling process in Figure 7.3: 



 61 

 
Figure 7.3: Training, validation, and out-of-sample test data 

 
Figure 7.3 notes: The total dataset is split into a training and test dataset. The training dataset is further divided into a reduced training 
set and a validation set. To validate the models, the size of the reduced training set is repeatedly increased (10 times), and the validation 
set is rolled forward to include the most recent data. This method is a variation of k-fold cross-validation that remains the temporal 
ordering of the time series data. (Source: Own creation). 

 
There are several different methods for obtaining the optimal hyperparameters that minimize the loss function 
for a given model. Two common methods are grid search, which systematically evaluates specified values of 
the hyperparameters “in a grid”, and random search, which randomly tests different values of hyperparameters 
from a search range. We visualize an example of the two methods in Figure 7.4: 
 

Figure 7.4: Grid search and random search 

 
Figure 7.4 notes: Panel A shows the grid search method and panel B shows the random search method. The y-axis depicts a 
hyperparameter that has little impact on the model’s loss function (MSE). The x-axis depicts a hyperparameter that has a substantial 
effect on the MSE. (Source: Own creation based on Géron, 2019). 
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Consider an optimization process for two hyperparameters. For a grid search with a 3x3 grid, only three 
different values for each hyperparameter are tuned (corresponding to three rows and three columns in panel 
A), even though the model is evaluated nine times. In contrast, when the model is evaluated nine times using 
random search, nine different values for each hyperparameter are evaluated (corresponding to nine distinct 
rows and nine distinct columns in panel B). Because grid search evaluates much fewer values for each 
parameter, there is a risk that it never encounters the value that minimizes the MSE. Thus, deploying random 
search (in general) results in more optimal hyperparameters (Géron, 2019).  
However, both methods are completely uninformed when deciding which values for the hyperparameters to 
try next. As a result, they spend time and computational resources evaluating unimportant hyperparameters. 
The two neural networks deployed in this thesis are highly complex models with many hyperparameters to 
optimize and as a result, they are renowned for being tricky to train. As a result, we must test a wide range of 
hyperparameter values to ensure that optimal value lies within the search range, rendering grid search and 
random search computationally infeasible for our research. Therefore, we use Bayesian optimization, an 
efficient hyperparameter optimization approach, that leverages past information when deciding on which 
values of the hyperparameters to try next.  
 
Bayesian Optimization 
We proceed by explaining how Bayesian optimization works and how we deploy it to find the optimal 
hyperparameters for the machine learning models in this thesis. Bayesian optimization is used to find the 
extrema of a loss function, without having a closed-form expression of the function, but where observations 
of the function can be obtained. When we optimize the hyperparameters, we do not have a closed-form 
expression of the loss function that can lead us to the best hyperparameters. However, we can try different 
combinations of hyperparameters and evaluate the model performance in terms of the MSE. In this regard, we 
note that the Bayesian optimization is a maximization problem rather than a minimization problem. Therefore, 
we transform the minimization of the loss function into a maximization of an objective function by 𝑓(𝑥) =
−𝑔(𝑥)  (Brochu, Cora and De Freitas, 2010). 
 
Bayesian optimization relies on the Bayes’ theorem. Put simply, Bayes’ theorem suggests that the posterior 
probability of a model, M, given the evidence (or observations), E, is proportional to the likelihood of the E 
given the M, multiplied with the prior probability of M (Brochu et al., 2010):  

 
 𝑃(𝑀|𝐸) ∝ 𝑃(𝐸|𝑀)𝑃(𝑀) (55) 

 
The Bayesian optimization method builds a probabilistic model of the objective function24 that follows Bayes 
theorem. While the actual objective function is unknown, we assume some prior belief about the function, 
such as its smoothness. The prior belief makes some possible objective functions more plausible than others.  
The actual objective function is tested on samples, 𝑥7, which generates observations of the objective function, 
𝑓(𝑥7). The observations are accumulated	𝒟i:9 = {𝑥i:9, 𝑓(𝑥i:9)}, and the likelihood of these accumulated 

                                                
24 The probabilistic model of the objective function is often referred to as the surrogate function 
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observations, given the prior belief, is found 𝑃(𝒟i:9|𝑓). For example, if the prior belief is that the objective 
function is smooth, noisy observations are less likely than observations similar to the mean. By multiplying 
the likelihood of the accumulated observations with the prior belief, we get the proportional posterior 
distribution:  

 
 𝑃(𝑓|𝒟i:9) ∝ 𝑃(𝒟i:9|𝑓)𝑃(𝑓) (56) 

 
The posterior 𝑃(𝑓|𝒟i:9) distribution contains the updated belief of the objective function, based on the prior 
belief and the likelihood of the accumulated observations given the prior belief.  
 
Furthermore, Bayesian optimization uses an acquisition function to efficiently locate the next sample of 
hyperparameters 𝑥9~i ∈ 𝒜. The acquisition function describes the utility for all values of the hyperparameters, 
according to a probabilistic model over the objective function. The best next sample is the sample with the 
highest utility which is found by maximizing the acquisition function. The decision of where to locate the best 
next sample is a utility trade-off between exploitation and exploration. Exploitation focuses on locations where 
the value of the objective function is expected to be high. Exploration focuses on undiscovered locations 
associated with high uncertainty (Brochu et al., 2010).  
The following figure provides an example of a Bayesian optimization for a 1-dimensional problem: 
 

Figure 7.5: Bayes optimization for a 1-dimensional problem 

 
Figure 7.5 notes: The dashed line represents the actual unknown objective function. The probabilistic model of the objective function 
for this example is a Gaussian process, with the dark blue line as the mean function and the blue area as the uncertainty, 𝜇(·) ± 𝜎(·). 
The yellow shaded area is the acquisition function. (Source: Brochu et al., 2010) 
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As shown in Figure 7.5, for each iteration, the acquisition function is maximized to find the location for the 
best next sample of the objective function (yellow arrow). The acquisition is high when the Gaussian process 
predicts a high observed objective function (exploitation) and when the prediction uncertainty is high 
(exploration). The objective function is sampled 𝑓(𝑥9) at the best next location, and the probabilistic model is 
updated accordingly. This process is iteratively repeated until the objective function is maximized, leading to 
the optimal hyperparameters (Brochu et al., 2010).  
 
In general terms, the Bayesian optimization algorithm can be articulated as (Brochu et al., 2010):  
For each 𝑡 = 1, 2, …	, iteration 

1) Find a sample, 𝑥9, by maximizing the acquisition function (utility), based on the prior distribution 
(according to exploration and exploitation):  

 
𝑥9 = 𝑎𝑟𝑔𝑚𝑎𝑥í𝑢(𝑥|𝒟i:9ei) 

 
2) Sample the actual objective function: 

𝑦 = 𝑓(𝑥9) + 𝑒9  
3) Accumulate the observations 𝒟i:9 = {𝒟i:9ei, (𝑥9, 𝑦9)}, and combine the prior distribution P(f) with 

the likelihood function 𝑃(𝒟i:9|𝑓) to get the posterior distribution. The posterior distribution contains 
the updated beliefs about the unknown objective function: 

 
𝑃(𝑓|𝒟i:9) ∝ 𝑃(𝒟i:9|𝑓)𝑃(𝑓) 

 
This iteration continues until the algorithm converges to the global extrema or until some stopping rule is 
applied.  
 
There are two decisions to make when using Bayesian Optimization. The first decision is regarding which 
approximation of the objective function to use for the probabilistic model. We utilize the Gaussian process as 
an approximation of the objective function due to its flexibility and power, in line with extant literature (Brochu 
et al., 2010; Snoek, Larochelle & Adams, 2012). The second decision concerns which acquisition function to 
use. We incorporate three different acquisition functions that are often deployed in the literature, namely the 
probability of improvement, expected improvement, and the lower confidence bound (Kushner, 1964; Mockus, 
Tiesis & Zilinskas, 1978; Srinivas, Krause, Kakade & Seeger, 2010). We will not dwell on the specifics of the 
Gaussian process and the three acquisition functions, however, we provide an explanation of these in appendix 
A.8. 
 
In summary, we use Bayesian optimization to optimize model hyperparameters as it is efficient from a 
computational resources point-of-view, enabling a wider search range compared to the grid or a random search. 
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7.4 Model Construction and Hyperparameter Specification 

Having established how our data are preprocessed and how we optimize the hyperparameters of the machine 
learning models, we proceed by describing the specific hyperparameters deployed in each of our three models. 
The first subsection describes the hyperparameters of Random Forest. The subsequent subsection outlines the 
hyperparameters of MLP and RNN and depicts how the networks are constructed. As limited methodical 
literature exists on applying machine learning for stock return prediction, we rely primarily on the findings of 
Gu et al. (2019) when setting the search reach for our hyperparameters. The final subsection provides a table, 
summarizing the search range for our hyperparameters along with their optimal values according to Bayesian 
Optimization. Note that we do not include the linear regression (baseline) model in this subsection as it has no 
hyperparameters to optimize, by construction. 
 

7.4.1 Construction of the Random Forest Model 
The first machine learning model deployed in this thesis is Random Forest. The Random Forest model has 
been documented to be highly successful in the literature despite its simple nature (Gu et al., 2019). Random 
Forest requires less adaptation to a specific problem compared to neural networks, as it has fewer 
hyperparameters to tune. The simpler architecture of the model makes it an attractive alternative for 
practitioners deploying machine learning for return prediction insofar the model is capable of obtaining an 
equivalent performance to the neural networks. We optimize the hyperparameters that have been identified as 
most important in the literature (Moritz & Zimmermann, 2016).  
 
First, we define the number of trees in the forest. Recall that the prediction of Random Forest relies on the 
average predictions of individual regression trees. Averaging across trees will result in a more robust model 
with reduced overfitting. However, there are diminishing returns of adding more trees, and the computational 
resources required to run the model increase with the number of trees added to the forest (Müller & Guido, 
2016). Consistent with Gu et al. (2019) we set the number of trees to [300], which provides enough trees to 
create a robust model that is feasible to implement, given our computational resources. 
 
Second, we specify the maximum depth of the trees in the forest. The depth of a tree depends on the number 
of times the nodes are split into subnodes. The more splits, the deeper the tree, and thus, the more specific 
information is captured in the tree. Therefore, limiting the maximum depth of the tree can reduce the overfitting 
of the model. We set the maximum depth of trees to the range of [1:6] to avoid the default value with no depth 
limitation (Gu et al., 2019). 
 
Finally, we define the number of input variables (momentum variables) to consider in the search for the best 
split. This hyperparameter controls how similar the trees in the forest are. A high number of momentum 
variables leads to more similar trees as the trees will consider more of the same variables when finding the 
best split. A low number of momentum variables leads to more different trees and the trees might need to grow 
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deeper to fit the data. Similar to Gu et al. (2019) we define the hyperparameter ranging from three to the total 
number of input variables, i.e., as [3:132]. 
 

7.4.2 Construction of the MLP and RNN 
As argued by Gu et al. (2019), there are many choices to make when structuring and selecting hyperparameters 
for a neural network. At the same time, there is little theoretical guidance on the best approach. Consequently, 
our rationale for the search range of the hyperparameters is somehow arbitrary and relies on a combination of 
literature suggestions and a “trial and error” approach. This subsection first describes the key hyperparameters 
for neural networks, namely the number of layers, nodes, and batch size. Second, it describes the regularization 
hyperparameters utilized to mitigate overfitting. 
 
Layers 
Recall that a neural network consists of an input layer, one or more hidden layers, and an output layer, the 
latter of which produces the prediction for the given inputs. In recent literature, there is no consensus on the 
number of layers to include in a neural network. Some scholars suggest that deeper networks (with as many as 
152 hidden layers) can achieve the same results as shallow networks with substantially fewer parameters 
(Hinton, Osindero, & Teh, 2006; Eldan & Shamir, 2016; Rolnick & Tegmark, 2018). Eldan and Shamir (2016) 
document that depth, when increased by just one layer, can be exponentially more valuable than an increase 
in the width of neural networks (adding more nodes). In contrast, Gu et al. (2019) demonstrate that a shallower 
network is superior to deeper networks in their study. Training a very deep neural network is also highly 
challenging: It entails many parameters, because the loss function is highly non-convex, and because back-
propagation entails recursive calculation of the gradients which values can explode or vanish (we explain this 
further below, see batch normalization). Gu et al. (2019) find that when predicting stock returns, their best 
performing neural network has three layers. Consequently, we choose to incorporate architectures for both 
MLP and RNN with up to three hidden layers. We start by building a simple model with just one hidden layer 
and subsequently increase the number of hidden layers to test if it improves model performance. 
 
Nodes 
A common practice in the literature is to select a number of nodes that form a funnel by reducing the number 
of nodes at each subsequent layer. The rationale for this approach is that many low-level input variables can 
coalesce into far fewer but high-level input variables (Géron, 2019). In our example, we have 132 input nodes. 
In line with common practice, we define the search range for the number of nodes in the first hidden layer so 
that it does not exceed the number of input nodes. Specifically, we define the range [10:132] for the first hidden 
layer. For each subsequent layer, we bisect the number of nodes to form a funnel, which resembles the 
geometric pyramid rule25, as proposed by Masters (1993). All layers are fully connected so each node receives 
an input from all nodes in the previous layer. 
 

                                                
25 The nodes in a hidden layer are given by √𝑁𝑥𝑀 nodes where n is the nodes of the previous layers, and m is the nodes of the 
subsequent layer 
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Batch Size 
During training, neural networks do not utilize the total number of samples at the same time, but rather use 
smaller fractions of the total sample, called batches. The batch size defines the number of samples to work 
through before the internal parameters (e.g., the weights) of the model are updated (Goodfellow et al., 2017). 
For our specific problem, it is important that the batch size is 500, because we rank the stock variables cross-
sectionally, month-by-month. Placing the firms of a given month into different batches would make it difficult 
for the network to understand potential patterns in the dataset. Consequently, we do not create a search range 
for optimizing the batch size hyperparameter but specify it as [500]. Specifically for the RNN, we reset the 
long- and short-term states in the LSTM cells after each batch (i.e., a stateless LSTM). For our problem, it is 
crucial that the state of the LSTM cells is independent from the previous batches, as the same firms are not 
part of the investment universe each month. 
 
Activation Function 
Referring to subsection 4.3.2, an activation function transforms the output of a given layer to an “activation 
output” before the output is passed as input to the next layers. The choice of activation function results in 
different activation outputs and thus, affects network training. There are many choices of nonlinear activation 
functions. The LSTM cell deploys a sigmoid and tanh activation function which we rely on. For the MLP, we 
use the same activation function at all nodes, namely the ReLU. We deploy this function, as it efficiently makes 
the network converge towards a solution, and is widely deployed in recent literature (Glorot, Bordes & Bengio, 
2011; Feng, He & Polson, 2018; Gu et al., 2019). 
 
Batch Normalization  
We apply batch normalization to the MLP26. Recall that a neural network is trained through backpropagation, 
where gradients are computed with respect to each parameter, and the parameters are updated through gradient 
descent. If the network ends up creating vanishingly small gradients, then the update to the parameter at each 
subsequent training step is going to be vanishingly small as well. As a result, the newly updated parameter will 
barely move from its prior value. Moreover, the update to the parameter will have a vanishing effect when 
carried through the network, ultimately not helping to reduce the loss. The same principle goes for exploding 
gradients, however, instead of the parameter barely changing, the update at each training step will become too 
large, and the parameter will continue to move further and further away from its optimal value (Géron, 2019).  
Batch normalization was proposed by Ioffe and Szegedy (2015) to counter the vanishing/exploding gradient 
problem and is a simple technique for controlling the variability of outputs in different layers of a network. 
Note that batch normalization is applied to a network layer on a per batch basis. Batch normalization consists 
of two overarching steps. First, when applying batch normalization to a layer, the algorithm cross-sectionally 
de-means and standardizes the variance of the activation outputs from the previous layer. The algorithm does 
so by computing the mean and standard deviation of all activation outputs over the current batch. Let X be the 
activation output from the previous layer, l. To normalize X, we replace it with X*: 
 

                                                
26 We do not deploy batch normalization to RNNs as batch normalization does not consider the recurrent part of the network 
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where 𝜇ð is the empirical mean, evaluated over the whole batch B, 𝜎ð is the empirical standard deviation,  
evaluated over the whole batch, 𝑚ð is the number of instances in the batch and e is a smoothing term  

(a small number to avoid division by zero, typically 10–�) 

 
Second, the algorithm multiplies the normalized output X* by some arbitrary scaling parameter, γ, and adds 
another arbitrary offset parameter, β, to the product. Denote 𝑧ô the final output of the batch normalization 
algorithm, then: 

 𝒛𝒍 = 𝛾𝑿𝒊∗ + 𝛽 (60) 
 

Applying the two parameters scales and shifts the activation with a new standard deviation and mean. During 
model training, the two parameters γ (scale) and β (offset) are optimized together with other internal parameters 
(such as the weights) through backpropagation. The values are optimized so the normalized activation outputs 
best correct weight imbalances within the network (Géron, 2019).  
 
Note that the scaling process mentioned in section 7.2 scales the variables before they are passed to the 
network. In contrast, batch normalization scales the activation outputs for the individual layers within a model. 
Consistent with most literature, we apply both techniques to optimize model training (Gu et al., 2019). 
 
Regularization 
The high degree of nonlinearity and nonconvexity in neural networks, together with their rich parameterization, 
makes neural networks both highly computationally intensive and prone to overfitting. Consistent with the 
literature, we deploy several regularization techniques to enhance the performance of the network (Chen et al, 
2020; Gu et al., 2019). Specifically, we leverage three popular regularization techniques: early stopping, 
dropout, and the learning rate. We elaborate on each of the regularization parameters below. 
 
Epochs and Early Stopping 
The number of epochs defines the number of complete passes through the entire training set (i.e., all the 
batches). As commonly done within the field of machine learning (Goodfellow et al., 2017), we implement 
early stopping to find the number of training epochs. Too many (few) epochs can lead to overfitting 
(underfitting) of the training dataset. By utilizing the early stopping method, we simply set the epochs to a 
large number [300] and stop the training of the model, when the model performance stops improving on the 
validation set (Goodfellow et al., 2017). More specifically, we use MSE as the error measure and stop the 
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algorithm if there has not been an 0.0001 absolute decrease in the MSE after 10 consecutive epochs. Apart 
from mitigating overfitting, early stopping also makes sense from a limited computational resources point-of-
view. 
 

Dropouts  
In recent literature, one of the most popular regularization techniques for neural networks is dropouts, proposed 
by Srivastava et al. (2014). Networks utilizing dropouts are less sensitive to slight changes in the inputs and 
are more robust networks with a better ability to generalize. During training, nodes in a given layer (excluding 
the output nodes) have a probability of being kept (𝑝) or of being temporarily dropped out (1 − 𝑝). One node 
may be ignored during one training batch, while possibly being active during the next.  
 

Figure 7.6: Dropout of neural networks 

 
Figure 7.6 notes: The figure depicts an example of a neural network that deploys dropouts. The network has two hidden layers, and 
one neuron is (temporarily) dropped out in each hidden layer. (Source: Own creation based on Géron, 2019). 

 
The hyperparameter (1 − 𝑝) is referred to as the dropout rate, and we set this to a range of [0:0.7] for our 
networks in line with common practice (Géron, 2019). Note that because dropouts are only applied during 
training, more nodes are present in the network at the same time during testing. As a result, the strength of the 
activation outputs of the nodes during testing is higher than the activation outputs of the nodes during training. 
For instance, if the dropout rate is 50% during training, then a node during testing will be connected to twice 
as many nodes as it was (on average) during training. To counter this effect, a technique referred to as inverted 
dropout is applied. Specifically, during training of a neural network, nodes are first randomly dropped (with 
probability 1-p), and then the values of the activation outputs of the kept nodes are divided by the keep rate, p. 
As a result, no changes are required to the network during testing (Géron, 2019). 
 
A more traditional approach that resembles the effect of dropouts is deploying L2 regularization to the loss 
function which penalizes large weights. We restrain ourselves from deploying both approaches 
simultaneously, as the two do not work well collectively (Phaisangittisagulm, 2016; Brownlee, 2017). 
Moreover, Chen, et al. (2020) argue that dropouts are preferable and generally result in better performances. 
 
Optimization Algorithm and Learning Rate 
It is common to train neural networks using the backpropagation algorithm with variations of stochastic 
gradient descent (SGD) for optimizing the weights in the network (Goodfellow et al., 2017). A popular 
optimization algorithm for neural networks in recent literature is the adaptive moment estimation algorithm 
(Adam), which is an efficient adaptation of the SGD, introduced by Kingma and Ba (2014). Consistent with 
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the literature, we apply Adam in this thesis (Chen et al., 2020; Gu et al., 2019). As subsection 4.1.4 elaborated 
on the gradient descent optimization algorithm, we do not dwell on the technical details of Adam. Instead, we 
refer to appendix A.9 which provides a more in-depth explanation of the algorithm.  
While Adam is generally regarded as being fairly robust to the choice of hyperparameters, Goodfellow et al. 
(2017) point out that altering the learning rate from its default value can be beneficial, as the learning rate can 
impact model performance substantially. If the learning rate is set too high, the Adam algorithm risks shooting 
past the minimum of the loss function. In contrast, if the learning rate is set too low, the algorithm might take 
too long to minimize the loss. The learning rate is typically set to a value < 0.1 (Goodfellow et al., 2017). 
Through trial-and-error, we observed that our models did not perform well with high learning rates. 
Consequently, we define our search range as [10eû: 10e*] for the MLP and [10ej: 10e*] for the RNN. 
Neural Network Construction 
We summarize this subsection by visualizing the process of constructing our neural networks (Figure 7.7). For 
simplicity, we show only one of our neural networks, the RNN. However, the process is identical for MLP, 
except that we add batch normalization, and the layers do not contain LSTM cells.  
 

Figure 7.7: Construction of the RNN 

 
Figure 7.7 notes: The figure illustrates the process of constructing the RNN. We initiate with one hidden layer with LSTM cells. Then, 
we increase the complexity of the network by adding a layer with dropouts. We proceed by increasing the complexity of the network 
by adding additional layers, repeatedly, until we reach three hidden layers with LSTM cells that all have layers with dropouts in 
between. (Source: Own creation). 

 
The process for constructing the network is as follows: 

1) We initiate by creating an RNN in its simplest form with only one hidden layer with LSTM cells. We 
set the batch size to 500 to account for the number of firms in our universe at a given month. Our 
training sample consists of 45 years of data, and therefore 540 batches (45 years x 12 months) are fed 
to the network during training. We use Bayesian optimization to optimize the hyperparameters using 
the hold-out validation set and compare the predictive performance of the model on our training and 
validation data. 

2) Having trained the model with the simplest architecture, we proceed by increasing model complexity. 
We add an additional layer with dropouts (and batch normalization for MLP) to avoid overfitting and 
to enhance model performance. Again, we optimize the hyperparameters using the hold-out validation 
set and compare the predictive performance of the model on our training and validation data. 
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LSTM Dropout Output layerInput layer
(500,12,11) !̂

Output layerLSTM Dropout LSTMInput layer
(500,12,11) !̂…

… …… …



 71 

3) Steps 1 and 2 continue. We proceed until we have three hidden layers of LSTM cells that all have 
layers with dropouts in between. We choose the model with the best performance on the validation 
set.  

 

7.4.3 Defining the Optimal Models 
The above subsections explained the methodology for optimizing model hyperparameters as well as the 
specific hyperparameters of each of the three machine learning models that we deploy in this thesis. We 
summarize this subsection with an overview of the search range for the hyperparameters as well as the optimal 
hyperparameters that are identified through Bayesian optimization. Note that the models with the optimal 
hyperparameters are the ones applied on the out-of-sample dataset for evaluation.  
 

Table 7.1: Search ranges and optimal hyperparameters 

 
Table 7.1 notes: The table presents the search range for each of the hyperparameters, and the optimal values identified through 
Bayesian optimization for each model. For the RNN, the lower search range value is reported in brackets. For early stopping and batch 
normalization, the tick mark denotes implementation during training. (Source: Own creation). 
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7.5 Evaluation of the Machine Learning Models 

Having constructed the machine learning models with the optimal hyperparameters, this section turns to the 
method used for evaluation of the models when applied on the out-of-sample test set. In the first subsection, 
we present two statistical measures used to evaluate the predictive power of the individual machine learning 
models. In the second subsection, we unfold a method for pairwise comparison of the predictive power of the 
machine learning models. Lastly, the third subsection outlines the method for examining the importance of the 
input variables for the machine learning models. 

7.5.1 Predictive R2 and Spearman Correlation 
Predictive R2 
We deploy the predictive R2 coefficient to assess the predictions of the excess returns made by our machine 
learning models relative to the target returns. The R2 aggregates the prediction error across excess stock returns 
and over time into one single figure that expresses the predictive power for each of the three machine learning 
models. We calculate the out-of-sample R2 following the methodology of Gu et al. (2019): 
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where R",0 denotes the target excess return and Rþ",0 is the predicted excess return 
for a single stock i at time t  

 
Note that the denominator of the out-of-sample R2 metric is the sum of squared excess returns without 
demeaning. Resonating Gu et al. (2019), assuming a mean of zero is more sensible when predicting excess 
stock returns, as the historical mean is too noisy.  
 
We briefly note that the machine learning models are optimized by minimizing the MSE. However, we use the 
similar metric R2 instead of the MSE measure to evaluate the out-of-sample performance of the machine 
learning models to ensure that our results are comparable with the literature (Gu et al. 2019). 
 
Spearman Rank Correlation 
The Spearman rank correlation is deployed as an additional coefficient to examine the rank correlation between 
the predicted excess returns of the machine learning models and the target excess returns. R2 is used as a 
measure of the ability of the machine learning models to predict excess returns but it relies on the predictions 
of individual stocks. However, the ability to approximate an individual excess stock returns does not 
necessarily imply that the model can successfully predict the cross-section of excess stock returns. As 
understanding the cross-section of excess stock returns constitutes the foundation for utilizing predictions for 
stock-selection strategies, we also deploy the Spearman rank correlation. Consequently, the rationale for 
utilizing the Spearman rank correlation is to bridge the chasm between machine learning predictions and stock-
selection strategies. 
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We calculate the Spearman correlation by converting the predicted and target excess returns into ranks on a 
month-by-month basis. Each stock i receives two ranks, 𝑅7 and 𝑅ÿ7 for its target and predicted excess returns, 
respectively. For the total sample period T, the spearman rank correlation between the two ranks is calculated 
as: 
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where B denotes the batch size (in our case 500 stocks), t denotes one month and 
where 𝑑7 = ℛ7 − ℛÿ7, for 𝑖 = (1, . . ,500) 

 
If the model is successful in predicting excess returns in the cross-section, the Spearman correlation between 
the predicted and target excess returns will be positive.  
 

7.5.2 Diebold-Mariano Test 
We deploy the Diebold and Mariano (1995) test to make pairwise comparisons of the machine learning models’ 
performance. The null hypothesis of the statistical test is that there is “no difference in the accuracy of two 
competing forecasts”27 (Diebold & Mariano, 1995). A condition of the Diebold-Mariano test is that the forecast 
errors have weak dependence. Resonating Gu et al. (2019), it is unlikely that the condition of weak error 
dependence underlying the Diebold Mariano test is fulfilled when predicting excess stock returns, due to a 
potentially strong dependence in the cross-section. Consequently, we follow Gu et al. (2019) and adjust the 
test to a cross-sectional setting by comparing the cross-sectional average of the prediction errors rather than 
stock level prediction errors. We calculate a single time series of error differences, 𝑑i*, as 
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where e�",0
(i) and e�",0

(*) are the prediction errors for stock i at time t for model 1 and 2,  

respectively, and B is the batch size (for our case 500 stocks) 

 
The modified Diebold-Mariano test statistic is given by 

 DMi* =
d�i*
σ]adx

 (64) 

where d�i*	denotes the mean and σ]adx denotes the Newey-West  
standard error of 𝑑i*,9 with a maximum lag of 1 month 

 

Diebold-Mariano statistics are normally distributed, N(0;1), under the null hypothesis that the predictive power 
of the models does not differ. As a result, the test statistic maps to p-values in a similar fashion as t-statistics 
in a regression model. 
 

                                                
27 Note that we utilize MSE as the accuracy metric to compare the predictions of the machine learning models 
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7.5.3 Importance of Input Variables 
Having established the methodology for examining the predictive performance of the machine learning 
models, we proceed by laying out the methodology for analyzing what explanation underpins their 
performance. Machine learning models are renowned for making powerful predictions but also for being 
difficult to interpret. In an attempt to improve interpretability, we investigate which input variables are the 
most important for the predictions of each model. There are several different methods for calculating the 
importance of the input variables. We deploy the commonly utilized method of SHapley Additive exPlanations 
(SHAP), introduced by Lundberg and Lee in 2016. The SHAP method unifies six previous methods28 and 
shows improved computational performance and better consistency with human intuition than previous 
approaches (Lundberg & Lee, 2016). Explaining these six complex methods and how the SHAP method unifies 
them is beyond the scope of this thesis, and thus, we focus on the intuition behind the method in this subsection.  
 
In simple terms, the SHAP method explains which input variables a model relies on when making predictions. 
The SHAP method assigns a “SHAP value” to each input variable that expresses the importance of the variable 
for the predictions of the model. More specifically, the process for assigning the SHAP values to each input 
variable is as follows: As depicted in Figure 7.8, the model starts with some base value, E[f(z)], which is the 
expected predicted value without any known input variables. Then, one input variable, 𝑥i, is incorporated into 
the model which influences the expected predicted value and shifts it to E[f(z)|zi = xi]. The influence of 
incorporating this input variable xi is denoted, ϕi. Then, input variable 𝑥* is incorporated into the model, and 
the expected predicted value is shifted by ϕ* to E[f(z)|zi,* = xi,*]. The process of incorporating individual 
input variables x" continues, until all the known variables M are included (for our case, the eleven momentum 
variables). For the example in Figure 7.8, the total number of input variables is four. Once all the input variables 
have been incorporated into the model, the expected predicted value becomes the final predicted value, f(x). 
 

Figure 7.8: SHAP values of input variables (illustrative) 

 
Figure 7.8 notes: The figure illustrates a simplified example of the input variables’ SHAP values for one prediction made by a machine 
learning model. In this example, variables one, two, and three increase the prediction, while variable four decreases the prediction. 
Variables two and four have the highest importance for the prediction (they have the highest 𝜙). (Source: Own creation). 

 
In general, the mapping from the base value to the prediction of the model, f(x), can be expressed as: 
 

                                                
28 The SHAP method combines six previous methods into one unified approach, namely LIME, DeepLIFT, Quantitative Input 
Influence, Layer-Wise Relevance Propagation, Shapley Regression Value and Shapley Sampling Values 
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The SHAP value of each input variable 𝑥7 is calculated based on the 𝜙7 in the mapping between the base value 
and the final predicted value. However, the order in which the input variables are incorporated into the model 
affects the size of 𝜙7, when the model is non-linear, and the input variables are not independent (due to 
interaction effects between the input variables). Consequently, the SHAP value is calculated by averaging the  
𝜙7 value across all the possible orderings of the input variables. 
 
Note that when we deploy the SHAP method, we compute the SHAP values of the input variables five times 
for each model (recall that we counter randomness in the results by running each of the three machine learning 
models five times). We base the analysis on (five) random subsamples of 5000 predictions, as it is 
computationally infeasible to calculate the importance of the input variables on the entire out-of-sample test 
set. Finally, we construct the relative importance of each input variable by normalizing their values to the 
range of [0:1] in our result, similar to Gu et al. (2019). 
 
In summary, we deploy the R2, Spearman rank correlation, Diebold-Mariano test and SHAP value to evaluate 
the predictive power and underlying drivers of the machine learning models. However, these metrics do not 
contain information on the economic contribution of the machine learning-based strategies and thus, we also 
include metrics that capture this aspect. 
 

8 Evaluation of Stock-Selection Strategies  
This chapter provides an overview of how we evaluate the economic performance of our stock-selection 
strategies. In the first section, we describe four performance metrics utilized for evaluating the performance of 
the stock-selection strategies. In the second section, we outline how we perform an OLS regression of the three 
machine learning-based stock-selection strategies against common risk factors in the literature.  
 

8.1 Performance Metrics 

Building on the insights from the asset pricing models (section 3.3), we use four metrics to evaluate the 
performance of the stock-selection strategies, namely alpha, Sharpe Ratio, Sortino Ratio and Drawdown. This 
enables us to compare the performance of the machine learning-based stock-selection strategies with the 
performance of the conventional momentum strategy. We utilize alpha and the Sharpe ratio, as these are 
common performance metrics in the literature, enabling us to compare our findings to that of similar studies. 
However, as the research of this thesis focuses on periods of market stress, we also investigate performance 
measures that specifically shed light on downside risk, namely the Sortino ratio and drawdown of the returns. 
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Alpha 
Alpha is a measure of the systematic risk-adjusted excess return (Jensen, 1967). Recall that the CAPM dictates 
that alpha is equal to zero for any stock or portfolio. Therefore, if an investment strategy yields a positive 
alpha, it earns higher returns than simple compensation for systematic risk and thus, the strategy defies the 
CAPM (Pedersen, 2015). We estimate alpha as the intercept of the CAPM regression model over the sample 
period:  

 𝑅¢ − 𝑅* = 𝛼¢ + 𝛽¢3𝑅  − 𝑅*4 + e+ (66) 
where 𝑅¢ denotes the portfolio return, 𝑅  is the market return, 𝑅* is the risk-free rate, 

 𝛽¢ is the beta of the portfolio, and 𝑒¢ is the zero-mean residual 

 
Sharpe Ratio 
The Sharpe ratio was proposed by Sharpe (1966) and also relies on the mean-variance theory. In contrast to 
alpha that adjusts excess returns for systematic risk only, the Sharpe ratio adjusts the excess return of a portfolio 
for its total risk. Hence, the Sharpe ratio measures the reward per unit of risk (Pedersen, 2015): 

 

 Sharpe	ratio =
R+ +	−R-

σ+
 (67) 

where 𝜎𝑝 denotes the standard deviation of the portfolio 

 
Using the total risk of the portfolio implies that the Sharpe ratio is only valid for returns that are 
(approximately) normally distributed. In other words, the Sharpe ratio is a useful performance measure when 
the risk of a portfolio can be adequately measured by its standard deviation. In contrast, it may result in 
misleading conclusions when return distributions are skewed (Bernardo & Ledoit, 2000). Daniel and 
Moskowitz (2016) document that the conventional momentum strategy is tempered by negatively skewed 
returns. The infrequent but substantial negative returns entail large losses during market rebounds. 
Consequently, we combine the Sharpe ratio with complementary performance measures concentrating on 
downside risk. 
 
Sortino Ratio 
The Sortino ratio was introduced by Sortino (1994) and is a measure of the excess returns of a portfolio, 
adjusted for the downside risk, rather than the total standard deviation of portfolio returns. As a result, the 
Sortino ratio provides a more accurate result than the Sharpe ratio in periods of highly skewed returns (Sortino 
& Stachell, 2001). We calculate the Sortino ratio as: 

 

 Sortino	ratio =
R+ +	−R-
σ+,a

 (68) 

where σ+,a denotes the downside volatility of the portfolio 

 
Drawdown and Maximum Drawdown 
We extend our analysis of the downside risk by incorporating the drawdown and maximum drawdown metrics. 
These metrics are deployed to investigate the periods with the most substantial losses across our sample period. 
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The drawdown is the cumulative loss from a historical peak (where a loss started) to the current value 
(Pedersen, 2015). We calculate the percentage drawdown since the peak (HWM) as: 
 

 DD0 =
HWM0 − P0
HWM0

 (69) 

where 𝑃9 is the cumulative return at time t 
If the current value < historical peak, the drawdown > 0.  

If the current value >= the historical peak, the drawdown = 0.  

 
The maximum drawdown is an expression of the largest drawdown, i.e., loss, observed from a peak to a trough 
until a new peak is reached (Pedersen 2015): 
 

 MDD0 = max0." DD0 (70) 
 

8.2 Regression against Risk Factors 

This thesis further performs OLS regressions of the machine learning-based stock-selection strategies against 
seven risk factors. This section consists of three subsections: First, we briefly explain how the regression 
analyses are performed. Then, we explain the risk factors included in the regression analyses. Finally, we 
introduce the information ratio which we apply as a performance metric based on the regression analyses. 
 

8.2.1 OLS Regressions 
We perform OLS regressions (spanning tests) for each of the three machine learning-based stock selection 
strategies. We denote the daily excess returns of the seven risk factors as the independent variable and the 
daily excess returns of the machine learning-based stock-selection strategies as the dependent variable. As we 
conduct the OLS regressions on time series data, we implement the variance-covariance estimator proposed 
by Newey and West (1987) to ensure robustness against heteroskedasticity and autocorrelation in the error 
terms of the regression models. By performing such regression analyses, we are able to examine the factor 
loadings of the three strategies. Note that we also report the R2 for the regression models, which is different 
from the R2 utilized to examine the predictive power of the machine learning models (subsection 7.5.1). Rather, 
the R2s for the regression models express to which degree the variance of the excess returns of the machine 
learning-based stock-selection strategies can be explained by the variance of the excess returns of the risk 
factors.  
 

8.2.2 Risk Factors 
Having established how we perform the OLS regressions, we briefly explain the risk factors that we use as 
independent variables in the regressions. While the existence of a variety of different factors has been 
documented during recent years, not all these factors have been replicable post-publication (Harvey, Liu, and 
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Zhu, 2016; Arnott, Harvey, Kalesnik and Linnainmaa, 2019), and many are intertwined with high correlations 
(Jensen, Kelly and Pedersen, 2021). We select some of the most profound risk factors in the literature, 
including the Fama/French five factors (Fama & French, 2015) as well as the betting against beta factor 
(Frazzini & Pedersen, 2014). These six risk factors are all based on the US stock market which closest resemble 
our investment universe. This section describes how we obtain these factors, while the theory underpinning 
them can be found in section 3.3.  
Note that we also include the excess returns from our replicated momentum strategy in the OLS regressions. 
The rationale for including our momentum “factor" is to examine whether the momentum variables utilized as 
inputs for the machine learning models infer a loading on the factor.  
 
The Fama/French five factors 
The five factors are computed via six value-weighted portfolios formed according to size (market equity) and 
book-to-market ratio, six value-weighted portfolios formed according to size and operating profitability, and 
finally, six value-weight portfolios based on size and investment. Thus, the factors rely on 18 portfolios which 
are presented in Table 8.1: 
 

Table 8.1: 18 Fama/French research portfolios 

 
(Source: Own creation based on the Kenneth French Data Library) 

 
The five factors are calculated as follows:  

1) The market factor, (𝑅  − 𝑅*), is formed as the value-weighted return of all the stocks minus the one-
month Treasury bill rate. 

 
2) The SMB factor is calculated as the difference between the average return on the nine small stock 

portfolios and the average return on the nine big stock portfolios. This can be expressed as: 
 

 
SMB

átAå
=
1
3
(Small	Value + Small	Neutral + Small	Growth) −

1
3
(Big	Value

+ Big	Neutral + Big	Growth) 
(71) 

 

Size and Book-to-Market Size and operating profitability Size and investment

Small Value Small Robust Small Conservative

Small Neutral Small Neutral Small Neutral

Small Growth Small Weak Small Aggressive

Big Value Big Robust Big Conservative

Big Neutral Big Neutral Big Neutral

Big Growth Big Weak Big Aggressive
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SMB(ü2) =

1
3
(Small	Robust + Small	Neutral + Small	Weak) −

1
3
(Big	Robust

+ Big	Neutral + Big	Weak) 
(72) 

 

 
SMB(567) =

1
3
(Small	Conservative + Small	Neutral + Small	Aggressive)

−
1
3
(Big	Conservative + Big	Neutral + Big	Aggressive) 

(73) 

 

 SMB =
1
3
SMB

(tA)
+
1
3
SMB(ü2) +

1
3
SMB(567) (74) 

 
3) The HML factor is the difference between the average return on the two value portfolios and the 

average return on the two growth portfolios: 
 

 HML =
1
2
(Small	Value + Big	Value) −

1
2
(Small	Growth + Big	Growth) (75) 

 
4) The RMW factor is the difference between the average return on the two robust operating profitability 

portfolios and the average return on the two weak operating profitability portfolios: 
 

 RMW =
1
2
(Small	Robust + Big	Robust) −

1
2
(Small	Weak + Big	Weak) (76) 

 
5) Finally, CMA is calculated as the difference between the average return on the two conservative 

investment portfolios and the average return on the two aggressive investment portfolios: 
 

 
CMA =

1
2
(Small	Conservative + Big	Conservative) −

1
2
(Small	Aggressive

+ Big	Aggresive) 
(77) 

 
Betting Against Beta 
The Betting Against Beta (BAB) factor is obtained from the website of AQR Capital Management. The factor 
is constructed by taking a long position in portfolios containing low beta securities, and short-selling portfolios 
containing high-beta securities29. The securities are cross-sectionally ranked on the basis of their estimated 
betas and assigned a weight so that the lower-beta securities have larger weights in the low-beta portfolio, 
while higher-beta securities have larger weights in the high-beta portfolio.  
Denote z as the 𝑛𝑥1 vector of beta ranks 𝑧7 = 𝑟𝑎𝑛𝑘(ß79) at portfolio formation, and let 𝑧 ̅ = 1Ô: 	𝑧/𝑛		be the 
average rank where n is the number of securities, and where 1Ô is a nx1 vector of ones. The portfolio weight 
of the two high and low beta portfolios can then be described as: 

                                                
29 Note that Frazzini & Pedersen (2014) use ex-ante betas that rely on estimated volatilities for the stock and the market as well as their 
correlation 
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 w; = k(z − z�)~ (78) 
and 

 wW = k(z − z�)e (79) 
where k is a normalizing constant k = 2/1y: |z − z�| and  

x~ and xe	indicate the positive and negative elements of a vector, x. 

 
The final BAB-factor can be defined as: 

 R0~it<t =
1
β0W
KR0~iW − R-R −

1
β0;

KR0~i; − R-R (80) 

where R0~iW = R0~i: wW,  R0~i; = R0~i: w;, β0W = β0:wW, and β0; = β0:w; 

 
Note that to construct the BAB factor, the long and short portfolios are rescaled to have a beta of one at 
portfolio formation (Frazzini & Pedersen, 2014). 
 

8.2.3 Information Ratio 
Lastly, we introduce the information ratio which we utilize in relation to the regression analyses. The 
information ratio expresses the risk-adjusted abnormal return relative to a given benchmark. For our case, the 
benchmark for the excess returns of the machine learning-based stock-selection strategies is the excess returns 
of the seven risk factors. The information ratio is given by (Pedersen, 2015): 
 

 IR =
α

σ(𝑒)
 (81) 

where 𝜎(𝑒) is the volatility of the error and both 𝜎(𝑒) and 𝛼 are obtained from regressing the excess returns of the  
machine learning-based stock-selection strategies against the excess returns of the seven risk factors 

 
We apply the information ratio in this thesis to test if the risk factors can explain the performance of the 
machine learning-based stock selection strategies (in which case the information ratio should be close to zero).  
 

9 Analysis of the Momentum Strategy and Machine Learning-Based 
Stock-Selection Strategies 

On the basis of the methodology described in chapters 5 to 8, this chapter presents the analysis and results of 
this thesis. We aspire to answer four of our research questions (two to five) throughout the different sections 
in this chapter. Note that this chapter presents the results and offers an interpretation of our findings, while an 
in-depth discussion hereof is conducted in the next chapter.  
We present the analysis and results of the thesis in a six-fold structure. The first section outlines the 
performance of our replicated conventional momentum strategy. The second section investigates the predictive 
power of the machine learning models, individually and pairwise. Subsequently, the third section presents the 
machine learning-based stock-selection strategies and examines their performance relative to the momentum 
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strategy, over time and during periods associated with substantial crash risk. Section four introduces an 
ensemble strategy that combines the three machine learning-based stock-selection strategies with the 
momentum strategy. The fifth section dissects the performance of the machine learning-based stock-selection 
strategies by analyzing the importance of the input variables when the machine learning models make 
predictions. The sixth section adopts a different perspective for investigating the performance of the machine 
learning-based stock-selection strategies, by examining their loadings on seven risk factors. We finalize the 
chapter by synthesizing our findings. 
Henceforth, we refer to the conventional momentum strategy as the “MOM” strategy (and its winner-minus-
loser portfolio as “WML”). For simplicity, we refer to the machine learning-based stock-selection strategies 
as “MLS” strategies. Further, we refer to the individual MLS strategies, Random Forest, Multilayer Perceptron, 
and Recurrent Neural Network with Long Short-Term Memory architecture as the “RAF”, “MLP” and “RNN” 
strategy, respectively. The linear regression model applied as a baseline model is denoted “LR”.  
 

9.1 Replicating the Conventional Momentum Strategy  

As previously established, a variety of scholars have documented a momentum effect in the US market. We 
initiate this section by replicating the conventional 2-12 months MOM strategy to ensure that the renowned 
momentum premium, as well as the crash risk inherent to the strategy, are also evident in our sample, which 
differs from those in the literature. Thus, this section seeks to answer research question two, related to the 
performance of the MOM strategy over time and during periods of market stress. First, we explore the 
performance of the MOM strategy for the total sample period from January 1931 to December 2020. 
Subsequently, we zoom in on sub-periods and examine the crashes of the MOM strategy. We note that while 
we provide an overview of various descriptive statistics of the MOM strategy, we only comment on the most 
relevant statistics for the research of this thesis. 
 

Table 9.1: Performance of the conventional momentum strategy for the total sample period 

 
Table 9.1 notes: This table provides descriptive statistics of the excess returns of the winner, loser, and WML momentum portfolios. 
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For each portfolio, we report the following metrics: The annualized return in excess of the risk-free rate, volatility, and alpha, in percent; 
the market beta; the annualized Sharpe ratio and Sortino ratio; and the maximum drawdown in percent. The t-statistics are reported in 
parenthesis and are for the null hypothesis of the metrics being equal to zero. The sample period spans January 1931 to December 
2020. Portfolios are equal-weighted and reformed monthly. (Source: Own creation). 

 
Table 9.1 reports a significant excess return of 7.72% for the WML portfolio, as a result of a significantly 
higher excess return of the winner portfolio relative to the loser portfolio (t-stat = 6.97). The beta of the WML 
is negative (-0.06), providing the portfolio a significant CAPM annualized alpha of 10.39%, and thus, 
confirming a significant momentum premium relative to the market. 
 

Figure 9.1: Cumulative returns of the WML portfolio for the total sample period and momentum crashes 

 
Figure 9.1 notes: The figure depicts the cumulative total return (including the risk-free rate) of the WML portfolio. Panel A shows the 
cumulative return for the total sample period, January 1931 to December 2020 on a log scale. Panel B and C provide the reindexed 
portfolio value for two sub-periods, January 1931 to January 1934, and January 2008 to January 2011. (Source: Own creation). 

 
Panel A in Figure 9.1 presents the cumulative returns of the MOM strategy in the total sample period from 
January 1931 until December 2020. Three observations are made from this panel. First, the cumulative returns 
of the MOM strategy have shown a strong positive trend with the strategy obtaining a cumulative return of 
19,133 for the total period. Specifically, the strategy has been highly profitable during the period from 
approximately 1940 until 2000. Second, the profitability of the MOM strategy appears less persistent for the 
more recent time-period spanning from 2000 to 2020, which has also been documented in recent literature 
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(Novy-Marx, 2012). Third, we confirm the findings of the existing literature on momentum crashes. Two 
major drawdowns in returns during 1932 and 2009 are evident in our sample (see Figure 9.1, panel B and C, 
respectively). The latter observation is emphasized, as this constitutes the foundation for answering the 
problem statement of this thesis. Consequently, we zero in on the momentum crashes below.  
 

Table 9.2: The worst performing five months of the WML portfolio during the total sample period 

 
Table 9.2 notes: The table reports the worst five months in terms of one-month (non-excess) returns observed for the WML portfolio. 
Further, the table provides a bear market indicator, dictating that a bear market is present when the two-year cumulative market returns, 
leading up to the portfolio formation date, is negative. The table also presents the contemporaneous market return. The returns are 
reported in percent and are ranked according to the size of the portfolio loss for a given month. The sample skewness is computed as 
the realized Fisher-Pearson skewness of the daily log returns. The total sample period spans January 1931 to December 2020. (Source: 
Own creation). 

 
Table 9.2 presents the five worst one-month returns for the WML portfolio of our sample which coincide with 
the worst-performing months documented by Daniel & Moskowitz (2016). The worst months follow bear 
markets that suddenly rebound, with the exception of January 2001 during the dot-com bubble. The two worst 
performing months occurred during the Great Depression, with one-month returns of -45.16% (August 1932) 
and -39.76% (July 1932), respectively. The WML further experienced a large negative one-month return of  
-30.57% during the global financial crisis (April 2009). Thereby, we confirm the findings of Daniel and 
Moskowitz (2016), i.e., that the MOM strategy crashes. 
 
Table 9.2 further outlines the skewness of the daily returns30. As a result of the large negative returns earned 
by the MOM strategy during the crash periods, the strategy exhibits a negative daily skewness of -1.65 (Table 
9.2). Moreover, Figure 9.2 shows the drawdowns of the WML portfolio during the total sample period in both 
tabular and graphical format: 

 

                                                
30 In addition, the return distribution of the MOM strategy can be found in appendix A.10. 
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Figure 9.2: Drawdowns of the WML portfolio for the total sample period 

 
Figure 9.2 notes: The figure reports the worst three drawdowns in tabular format and all drawdowns graphically for the WML 
portfolio. The drawdowns are computed based on daily returns. The figure reports the drawdown of the period in percent, the peak date 
before the loss occurs, the valley date (the date where the most negative value occurs), the date of recovery, and the total duration of 
the drawdown period (in days). If the drawdown has not yet recovered, the recovery date and duration are left blank. The figure further 
plots the drawdowns of the WML portfolio in percent. The out-of-sample period spans January 1976 to December 2020. (Source: Own 
creation). 
 

We observe that the WML portfolio has experienced the worst drawdown periods following the Great 
Depression, the 2008-2009 financial crisis, and the dot-com bubble. The MOM strategy crashed substantially 
following May 1932, leading to a drawdown of 75.14%. The MOM strategy did not recover until April 1950, 
i.e., after 19 years. In addition, the MOM strategy has still not recovered since its drawdown of 74.34% in 
September 2009. Thus, we document that the crash risk inherent to the MOM strategy results in substantial 
losses that take many years to recover from.  
 

In summary, this subsection confirms that two findings documented in the literature are present in our sample. 
First, we observe a strong momentum premium over the last century in our sample as a result of returns to the 
winner portfolio that significantly differs from the returns to the loser portfolio. This indicates that the 
momentum effect is indeed present in our data sample. Second, we confirm the crashes of the MOM strategy 
following market declines when market volatility is high, and the market rebounds contemporaneously. Having 
established that our sample is a valid representation of the findings in the literature, we proceed with the 
analysis of our machine learning models. 
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9.2 Machine Learning Models as Predictors of Excess Stock Returns 

Before we initiate the analysis on the MLS strategies, we commence by evaluating the predictive power of the 
machine learning models. We conduct this analysis through three evaluation metrics. The first metric is the 
predictive R2 which assesses the ability of the models to predict monthly excess stock returns. The second 
metric is the Diebold Mariano-test which compares the monthly prediction performance of the models. The 
last metric is the Spearman rank correlation coefficient which expresses the ability of the models to predict the 
monthly excess stock returns in the cross-section.  
 
Table 9.3 presents the monthly predictive performance (R2) of the baseline model and the three machine 
learning models for the out-of-sample period. Note that there is considerable noise in monthly returns which 
enables only a slightly positive R2 (we elaborate on this in section 10.1). 
 

Table 9.3: Predictive R2 of the machine learning models for the out-of-sample period 

 
Table 9.3 notes: For each of the four models, the table reports the predictive out-of-sample R2 for the predicted excess returns versus 
the target excess returns. The out-of-sample period spans January 1976 to December 2020. (Source: Own creation). 
 
As the only model, the baseline model generates a negative R2 of -6.67%, indicating that the predictions of the 
model are more inaccurate than the average value of the excess returns for the out-of-sample period. The 
inferior performance of the baseline model relative to the other machine learning models is not surprising, as 
this model has no hyperparameters to optimize, and thus lacks regularization. Consequently, the baseline 
model is highly susceptible to in-sample overfitting which is also evident in our case (for the training set R2 is 
9.9%, see appendix A.11). 
 
In contrast, the R2 of the three more complex machine learning models are all positive with values of 0.66%, 
0.75%, and 0.59% for RAF, MLP, and RNN, respectively. The positive R2s point to the value of incorporating 
complexity and nonlinear relationships into the predictions, which are embedded in tree and neural network 
models but are missed by a simple OLS regression. In this regard, we also note that the three machine learning 
models do not overfit the in-sample data to the same extent as the baseline model (appendix A.11). The limited 
overfitting of these models is not surprising, as we have deployed extensive regularization techniques to 
counter overfitting.  
 
While Table 9.3 offers an overview of the individual predictive performance of the four models, we further 
conduct a Diebold-Mariano test for a pairwise comparison of the predictive performance of the models in 
Table 9.4: 
  

OLS (baseline) RAF MLP RNN

R -6.67 0.66 0.75 0.59	!
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Table 9.4: Diebold-Mariano test of the machine learning models for the out-of-sample period 

 
Table 9.4 notes: The table reports the Diebold-Mariano test statistics that compare the out-of-sample stock-level prediction 
performance of the three machine learning models and the baseline model. A positive number indicates that the column model 
outperforms the row model. The test statistics are marked in bold if the difference in the prediction accuracy between two models is 
statistically significant at a 5% level. The out-of-sample period spans January 1976 to December 2020. (Source: Own creation). 

 
Table 9.4 outlines the statistical significance of the models’ predictive performance when compared pairwise. 
Bold values indicate significance at the 5% level, and a positive test statistic implies that the column model 
outperforms the row model. The Diebold-Mariano test statistics support our findings based on the predictive 
R2. All three machine learning models have significant and positive test statistics when compared to the 
baseline model. Hence, the three machine learning models exhibit superior predictive performance relative to 
the baseline model. There is no statistical evidence to support a difference in the predictive performance 
between the three machine learning models. The RNN model is marginally inferior with test statistics of -0.23 
and -0.56 compared to RAF and MLP model, respectively. This may seem surprising as the two latter models 
carry less information than the RNN model which embodies the temporal dimension and thus, incorporates a 
memory of variables in past months. While the difference is too small to draw any conclusions, this could 
serve as an indicator of complexity bias in our thesis (i.e., the tendency to prefer complicated models over 
simple models). We examine if this is the case when analyzing and comparing the performance of the strategies 
in the following sections.  
 
At this point, the baseline model has already served its purpose. Having established its relative inferior 
performance to the more complex models as well as its negative R2, we document highly unstable out-of-
sample predictions of the model. The negative R2 implies that the model is unfit for a stock-selection strategy. 
Thus, we follow the approach of Gu et al. (2019) and exclude the OLS regression from our further analysis31, 
when we examine the ability of the models to rank stocks in the cross-section and deploy their predictions for 
stock-selection strategies.  
 
Table 9.5 reports the Spearman rank correlation and the corresponding t-statistics of the three machine learning 
models: 
 

                                                
31 Note that Gu et al. 2019 obtain a positive R2 for an OLS regression with the use of Huber loss, and thus this model is included in 
their further research. We refer to the exclusion of their simple OLS regression model which is similar to the one we deploy 

RAF MLP RNN

OLS (baseline) (4.59) (4.66) (4.63)

RAF (0.72) (-0.23)

MLP (-0.56)
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Table 9.5: Spearman rank correlation coefficient of the machine learning models for the out-of-sample 
period 

 
Table 9.5 notes: The table reports the out-of-sample Spearman rank correlation coefficients in percent between the monthly target 
excess returns and the monthly excess returns predicted by each of the three machine learning models, respectively. The t-statistics are 
reported in parenthesis and are for the null hypothesis that the Spearman rank correlation coefficient is equal to zero. The t-statistics 
are marked in bold if statistically significant at a 5% level. The out-of-sample period spans January 1976 to December 2020. (Source: 
Own creation). 
 

The machine learning models report a positive and significant Spearman rank correlation coefficient of 2.52, 
2.26, and 2.72 for the RAF, MLP, and RNN model, respectively. Hence, the ranks of predicted excess returns 
are positively correlated with the ranks of target excess returns, implying that all models are able to predict 
excess stock returns in the cross-section. The ability of the models to understand the cross-section of excess 
returns constitutes the foundation for utilizing the predictions for stock-selection strategies that rely on stock 
rankings. 
 
The RNN and RAF have the highest Spearman rank correlations but smaller t-statistics than the MLP, as a 
result of higher volatility in the Spearman rank correlation coefficients relative to the MLP. The volatility 
implies that the RAF and RNN are superior in ranking stocks in some months relative to the MLP, but less so 
in other months. Thus, we expect the RAF and RNN strategies to be more volatile than the MLP strategy. 
Furthermore, appendix A.12 presents the Spearman rank correlation over time for each of the three machine 
learning models, visualizing the less volatile Spearman rank correlation of the MLP strategy. 
 

9.3 Performance of the Momentum and Machine Learning-Based Strategies 

Up to this point, our assessment of the predictive performance of the machine learning models has been entirely 
statistical, relying on predictive R2, Diebold-Mariano tests, and Spearman rank correlation. We proceed by 
examining how predictability translates into economic gains in the form of a stock-selection strategy. Thus, 
this section aspires to answer research question three. Specifically, this section investigates the performance 
of the three constructed MLS strategies and relates it to the performance of the MOM strategy. First, we 
examine the performance of the strategies during the total out-of-sample period32. Second, we focus on sub-
periods in which the MOM strategy crashes, to examine if the MLS strategies exhibit superior performance 
during these periods.  
 

                                                
32 Note that the sample period which we examine differs from the one presented in section 9.1, as we focus on the out-
of-sample period spanning January 1976 to December 2020. 
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9.3.1 Total Out-of-Sample Period 
We commence by presenting the cumulative returns of the MOM strategy and the three MLS strategies in 
Figure 9.3 for the total out-of-sample period: 
 

Figure 9.3: Cumulative returns of the four stock-selection strategies for the out-of-sample period 

 
Figure 9.3 notes: The figure depicts the total cumulative return (including the risk-free rate) of the conventional MOM strategy and 
the three MLS strategies, on a log scale. The out-of-sample period spans January 1976 to December 2020. (Source: Own creation). 
 
Figure 9.3 depicts a positive trend in the cumulative returns of all four strategies over the out-of-sample period. 
Of particular interest to this thesis, all three MLS strategies seem to exhibit less crash risk than the MOM 
strategy which encounters two major crashes in the out-of-sample period, namely following the dot-com 
bubble and during the global financial crises. Similar to the MOM strategy, the cumulative returns of the RAF 
strategy decrease in these two periods, though to a smaller extent. In contrast, the RNN and MLP strategies 
exhibit more stable returns in the two periods. We dissect the performance of the three strategies when zeroing 
in on the periods where the MOM strategy crashes in the following subsection (9.3.2). 
 
Table 9.6 presents the correlation between the MOM strategy and the three MLS strategies for the whole out-
of-sample period: 

 
Table 9.6: Pearson correlation coefficients between the MLS strategies and the MOM strategy 

 

103
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Table 9.6 notes: The table reports the Pearson correlation between each of the MLS strategies and the replicated MOM strategy based 
on daily and monthly returns, respectively. Bold numbers mark statistical significance of the correlation at the 5%-level. The out-of-
sample period spans January 1976 to December 2020. (Source: Own creation). 
 
We observe from Table 9.6 that the daily returns of all three MLS strategies are significantly and positively 
correlated with the MOM strategy with coefficients of 0.38, 0.05, 0.39 for the RAF, MLP, and RNN strategy, 
respectively. However, the interdependence between the daily returns of the MLP and MOM strategy is less 
prominent. In fact, the monthly returns of the MLP strategy do not appear to be correlated with the monthly 
returns of the MOM strategy, as revealed by the insignificant correlation coefficient (-0.03). In contrast, the 
interdependencies between the monthly returns of the MOM strategy and the two other MLS strategies (RAF 
and RNN) are similar to the interdependencies when using daily returns. 
 
Performance Metrics of the Machine Learning-Based Strategies Versus the Momentum Strategy 
Table 9.7 presents the descriptive statistics of the MOM strategy along with the three MLS strategies for the 
out-of-sample period. We observe statistically significant alphas for both the MOM strategy and the MLS 
strategies when adjusting for market risk. The MOM strategy yields a higher alpha than the MLS strategies, 
as a result of its negative market loading. However, the alpha of the MOM strategy is less significant than the 
alpha of the MLS strategies due to higher volatility in the returns of the strategy. From Table 9.7 we further 
observe that the volatilities of the MLS strategies’ excess returns all lie in the range from 11% to 17%. Thus, 
they are associated with substantially lower volatility relative to the volatility of the MOM strategy (22.59%). 
 
Table 9.7: Performance of the MOM strategy versus the three MLS strategies for the out-of-sample period 

 
Table 9.7 notes: This table provides descriptive statistics of the excess returns of the MOM strategy and MLS strategies. For each 
portfolio, we report the following metrics: The annualized return in excess of the risk-free rate, volatility, and alpha, in percent; the 
market beta; the annualized Sharpe ratio and Sortino ratio; and the maximum drawdown in percent. The sample skewness is computed 
as the realized Fisher-Pearson skewness of the daily log returns. The t-statistics are reported in parenthesis and are for the null 
hypothesis of the metrics being equal to zero. The out-of-sample period spans January 1976 to December 2020. (Source: Own creation). 
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An important observation for answering research question three is the superior Sharpe ratios of the three MLS 
strategies relative to the MOM strategy. More specifically, the RAF, MLP, and RNN strategies generate Sharpe 
ratios of 0.66, 0.59, and 0.69, respectively. To support the notion that the MLS strategies are superior to the 
MOM strategy, we point to the relative performance of the four strategies in Table 9.8. The table presents the 
alphas of the MLS strategies over the MOM strategy (rather than the market). All three MLS strategies 
demonstrate significant and positive alphas of 8.58%, 6.49%, and 9.04% for the RAF, MLP, and RNN 
strategies, respectively. The positive alpha over the MOM strategy of the MLP strategy might appear puzzling 
since the MOM strategy yields a higher excess return than the MLP strategy. However, the explanation is 
nested in the low correlation between the two strategies, causing a low loading of the MLP strategy on the 
MOM strategy (i.e., a low beta coefficient). Moreover, the alpha of the MLP strategy is highly significant due 
to the low volatility that the returns of the strategy exhibit. 
 

Table 9.8: Alpha over the MOM strategy for the out-of-sample period 

 
Table 9.8 notes: The table reports the alpha and beta for the three MLS strategies over the MOM strategy. The t-statistics are reported 
in parenthesis and are for the null hypothesis that alpha is equal to zero. The t-statistics are marked in bold if statistically significant at 
a 5% level. The out-of-sample period spans January 1976 to December 2020. (Source: Own creation). 
 
Downside risk of the MLS strategies versus the MOM strategy 
Furthermore, the downside risk of the strategies is relevant in light of the research of this thesis. Figure 9.4 
depicts the drawdowns of the four strategies during the out-of-sample period. We observe that the MOM 
strategy crashes more severely and over longer time periods relative to the MLS strategies. In fact, where the 
MOM strategy experienced a maximum drawdown of as much as 74.34% during the out-of-sample period, the 
maximum drawdowns of the MLS strategies are all less than 50% (see also Table 9.7). In addition, all the MLS 
strategies report less negative skewness compared to the MOM strategy. As evident by the drawdowns and the 
skewness of the strategies, the downside risk of the MLS strategies are less prevalent relative to the MOM 
strategy. This is also evident by the Sortino ratios of the four strategies. Pointing back to Table 9.7, the Sortino 
ratios of the three MLS strategies all lie in the range of 0.9-0.97 which is substantially higher than the ratio of 
0.57 generated by the MOM strategy. 
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Figure 9.4: Drawdowns of the four strategies for the out-of-sample period 

 
Figure 9.4 notes: The figure illustrates the drawdowns of the MOM strategy and the three MLS strategies. The drawdowns are 
calculated based on daily returns. The out-of-sample period spans January 1976 to December 2020. (Source: Own creation). 

 
Relative Performance of the Machine Learning-Based Strategies 
Having established that the MLS strategies are superior to the MOM strategy for the out-of-sample period, we 
briefly compare the performance of the three MLS strategies. We observe notable differences among the three 
strategies in Table 9.7. In line with the findings from the Spearman correlation, we find that the MLP strategy 
is associated with less volatility in returns than the RAF and RNN strategies. The MLP strategy generates a 
lower annual excess return than the two other MLS strategies but also exhibits less downside risk. More 
specifically, the maximum drawdown of the MLP strategy is only (approximately) half the size of the 
maximum drawdown for the RAF and RNN strategy. Further, the returns of the MLP strategy are positively 
skewed, in contrast to the negative skewness associated with the returns of the RAF and RNN strategy. Thus, 
we expect the MLP to perform particularly well, relative to the two other MLS strategies, during the periods 
associated with momentum crashes.  
 
In summary, we document a superior performance of the MLS strategies relative to the MOM strategy for our 
investment universe during the out-of-sample. Most importantly, we demonstrate a higher Sharpe Ratio and a 
significantly positive alpha over the MOM strategy. However, in aspiration to answer our problem statement, 
we further test the robustness of our results across two sub-periods. Specifically, we zero in on the dot-com 
bubble and the global financial crisis in which the MOM strategy exhibits considerable crash risk.  
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9.3.2 Sub-periods 
Recall that crash periods are only loosely defined in the literature (section 3.4.2). Thus, to divide the total out-
of-sample period into sub-periods characterized by the largest crashes of the MOM strategy, we define specific 
criteria for the beginning and end date of a crash period: We initiate each of our two sub-periods on the peak 
date before the crash of the MOM strategy. We end each of our two sub-periods on the first date following the 
peak date, where the two-year cumulative MOM return becomes positive. Based on these criteria, the following 
sub-periods are defined: the sub-period related to the dot-com bubble spans 9 March 2000 to 1 April 2002, and 
the sub-period related to the global financial crisis spans 14 July 2008 until 1 July 2011. For simplicity, we 
refer to these sub-periods as the dot-com bubble and the global financial crisis. Also, note that we only present 
and comment on the most important performance metrics for the four strategies during each of the two sub-
periods.  
 
We initiate the analysis by depicting the cumulative returns of the four strategies during each of the two sub-
periods: 
 

Figure 9.5: Cumulative returns and correlations of the four strategies for the two sub-periods 

 
Figure 9.5 notes: The figures depict the total cumulative returns (including the risk-free rate) of the conventional MOM strategy and 
the three MLS strategies. Panel A and B show the sub-periods 9 March 2000 until 1 April 2002, and 14 July 2008 until 1 July 2011, 
respectively. The figure further reports the Pearson correlation between each of the three strategies and the MOM strategy, calculated 
on a daily basis. (Source: Own creation). 

 
In general, two conspicuous observations can be made from Figure 9.5. First, the cumulative returns of the 
MLP and RNN strategies substantially surpass the MOM strategy during both sub-periods. Second, the 
superior performance of these strategies relative to the MOM strategy is most prominent during the global 
financial crisis (Figure 9.5, panel B), where the RAF strategy also outperforms the MOM strategy. 
 
 

Panel A: Dot-Com Bubble Panel B: Global Financial Crisis

RAF
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Zooming in on the dot-com bubble (Figure 9.5, panel A), all MLS strategies are positively correlated with the 
MOM strategy. However, the MLS strategies are associated with less negative returns from March to June 
2000. Notably, the MLP strategy exhibits a relatively stable performance compared to the other strategies. 
While the RAF and RNN strategies do experience decreases in their cumulative returns, their performance 
remain superior to the MOM strategy.  
 
Examining the global financial crisis (Figure 9.5, panel B), all three MLS strategies outperform the MOM 
strategy. The respective correlations between the MLS strategies and the MOM strategy are lower than for the 
dot-com bubble. In fact, the MLP and RNN strategy are negatively correlated with the MOM strategy. The 
negative correlation is especially prominent in the period from April until July 2009 where the returns of the 
MLP and RNN strategy dramatically increase, as opposed to the MOM strategy that crashes. Notably, the MLP 
strategy demonstrates the strongest performance out of all three MLS strategies with a considerable upswing 
in the cumulative returns when the MOM strategy crashes.  
 

Table 9.9: Performance of the four strategies for the two sub-periods 

 
Table 9.9 notes: The table reports the worst five months in terms of one-month (non-excess) returns observed for the WML portfolio 
during the total sample period spanning January 1931 to December 2020. Further, the table provides a bear market indicator, dictating 
that a bear market is present when the two-year cumulative market returns, leading up to the portfolio formation date, is negative. The 
table also presents the contemporaneous market return. The returns are reported in percent and are ranked according to the size of the 
portfolio loss for a given month. The sample skewness is computed as the realized Fisher-Pearson skewness of the daily log returns. 
(Source: Own creation). 
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Table 9.9 presents the descriptive statistics of the MOM strategy along with the three MLS strategies for the 
two sub-periods. In general, we document a superior performance of all three MLS strategies relative to the 
MOM strategy, with a positive Sharpe and Sortino ratio for the MLP and RNN strategies during both crash 
periods. Supporting the findings from Figure 9.5, the RAF strategy exhibits inferior performance relative to 
the two other MLS strategies. Note that the RAF strategy outperforms the MOM strategy despite its more 
negative Sharpe and Sortino ratio during the dot-com bubble, in terms of less negative excess returns and lower 
realized volatility.  
 
Due to the high volatility of returns and the limited number of observations in our two sub-periods, we do not 
find statistical evidence for the difference in the relative performance when examining the alpha of the MLS 
strategies over the MOM strategy.  
 
To obtain a more in-depth understanding of the performance of the strategies relative to the MOM strategy 
during these two sub-periods, we illustrate the five worst one-month returns of the MOM strategy and the 
respective one-month returns of the three MLS strategies in Figure 9.6. The five months are ranked according 
to the size of the negative returns of the MOM strategy. Recall that the MOM strategy crashes following bear 
markets that suddenly rebound (Daniel & Moskowitz, 2016). Thus, we further depict a bear market indicator 
(based on the two years cumulative market returns leading up to the formation date) as well as an asterisk 
denoting market rebounds (based on the sign convention of the contemporaneous one-month market return). 
This further enables us to explore how the market state impacts the performance of the MLS strategies. 
 

Figure 9.6: The five worst one-month returns of the MOM strategy, and the respective performance of the 
MLS strategies for the out-of-sample period33 

 

                                                
33 We note that four out of the five worst one-month returns for the MOM strategy occur during the dot-com bubble, whereas only one 
of the worst returns occurs during the global financial crisis. This might seem puzzling, as the crash of the momentum strategy during 
the global financial crisis was much more pronounced than the crash during the dot-com bubble. The explanation is nested in the length 
of the crash periods, as the dot-com bubble crash was more abrupt relative to the crash during the financial crisis (recall Figure 9.4) 
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Figure 9.6 notes: The figure illustrates the worst five one-month returns observed for the MOM strategy. The one-month returns are 
ranked according to the size of the negative return and are in percent. The figure further depicts the corresponding returns of the MLS 
strategies at the same months. In addition, the figure shows the cumulative two-year market returns which function as a bear market 
indicator, following Daniel and Moskowitz (2016). Lastly, the bear market indicator is marked with an asterisk if the contemporaneous 
market return is positive, indicating a market rebound. The out-of-sample period spans January 1976 to December 2020. (Source: Own 
creation). 

 
A glance at Figure 9.6 reveals that the three MLS strategies generally outperform the MOM strategy for the 
five months in terms of one-month returns. Not including January 2001, the RAF strategy yields returns with 
a similar sign convention as the MOM strategy but with smaller fluctuations in the returns. The MLP and RNN 
strategies exhibit superior one-month returns relative to the MOM strategy for all months. While no clear-cut 
pattern can be derived from the five months, the MLP strategy appears to exhibit low volatility in the one-
month returns relative to both the MOM strategy and the other MLS strategies, supporting our findings from 
Figure 9.5. In contrast, the RNN strategy exhibits a more volatile performance with a highly negative return 
in January 2001 and a highly positive return in April 2009. The more volatile returns in these five months of 
the RNN strategy are also in line with our initial findings in Figure 9.5.  
 
Resonating Daniel and Moskowitz (2016), the worst momentum crashes occur following bear markets that 
suddenly rebound. These observations do not hold true for the worst one-month returns for our out-of-sample 
period: Only the worst one-month return during the global financial crisis follows a bear market that suddenly 
rebounds. The MLP and RNN strategy perform particularly well in this single month. Following the logic of 
Daniel & Moskowitz (2016) a possible explanation for the superior performance of the MLP and RNN strategy 
is the ability of the strategies to time market rebounds, following bear markets. In a modest attempt to test this 
notion, appendix A.13 expands the worst one-month return analysis to the worst 15 months for the MOM 
strategy, documenting that the RNN strategy generates positive returns in all months following a bear market 
that suddenly rebounds. Thus, one possible explanation of the superior performance of the RNN strategy is its 
ability to time market that follow bear markets. In contrast, such a pattern is not as clear-cut for the MLP 
strategy.  
 
To ensure that the MLS strategies do not crash during different periods than the MOM strategy, we further 
present the rolling six-month volatility of all four strategies in Figure 9.7. In addition, we provide a full 
overview of the one-month returns for each of the four strategies for the total out-of-sample period in appendix 
A.14. Figure 9.7 as well as appendix A.14 support our findings, as we observe peaking volatility in returns for 
all three MLS strategies concurrent with the MOM strategy, namely during the two crash periods. 
Nevertheless, comparing the performance of the MLS strategies to the MOM strategy, the three strategies are 
all associated with less volatility during these crash periods. Especially the MLP and RNN strategy capture 
more upside volatility during the two crash periods, as evident by their superior Sortino ratio in Table 9.9. The 
MLP and RNN strategy obtain Sharpe ratios of 0.59 and 0.44, respectively, relative to the -0.35 of the MOM 
strategy during the dot-com bubble. Similarly, during the global financial crisis, the MLP and RNN strategy 
obtain Sortino ratios of 1.56 and 0.42, respectively, relative to -1.09 of the MOM strategy. Hence, we document 
that the MLP and RNN strategy, in particular, are associated with less downside risk. 
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Figure 9.7: Rolling six-month volatility of the four strategies for the out-of-sample period 

 
Figure 9.7 notes: The figure depicts the six-month rolling volatility of returns for each of the four strategies. The dashed lines indicate 
the mean of the volatility, calculated based on the six-month rolling volatility. The out-of-sample period spans January 1976 to 
December 2020. (Source: Own creation). 

 
In summary, the overall findings of this subsection support the observations from the total out-of-sample period 
with all MLS strategies outperforming the MOM strategy. We document a superior performance of the MLP 
and RNN strategy relative to the MOM strategy in terms of both Sharpe and Sortino ratios for both sub-periods. 
The performance of the MLP strategy is more stable relative to the other strategies during both sub-periods. 
Notably, the RNN strategy appears able to time market upswings that follow bear markets. The superiority of 
the RAF strategy is less conspicuous when compared to the MLP and RNN strategy, evident by its negative 
Sharpe and Sortino ratios in both crash periods. 
 

9.4 Ensemble Strategy 

Having established the superior performance of the MLS strategies relative to the MOM strategy based on 
both the total out-of-sample period and during crash periods, this section discusses the possible implications 
of combining the three MLS strategies with the MOM strategy. Thus, we provide an answer to the fourth 
research question in this section. 
 
Recall that an ensemble model relies on the “wisdom of the crowd” in which multiple models protect each 
other from their individual weaknesses (Suthaharan, 2016). As long as the individual models are diverse and 

$

RAF
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independent, the prediction errors will decrease as a result of applying the ensemble approach. Hence, we 
coalescence all four strategies into one ensemble strategy despite the divergence in their individual 
performance. Specifically, we aspire to construct an enhanced MOM strategy that exhibits less crash risk when 
combined with the MLS strategies. We construct a simple ensemble strategy that equally weighs the returns 
of each of the four strategies: 
 

 R\y§\(°=\ 	= ¼	RAüA 	+ 	¼	R«<? 	+ 	¼	RAW2 +¼	R«66 (82) 
 
Having documented that the MLS strategies are not perfectly correlated with the MOM strategy, we expect the 
strategies to perform particularly well in an ensemble strategy, insofar they are not perfectly correlated with 
each other. Table 9.10 provides an overview of the Pearson correlation between the four strategies.  
 

Table 9.10: Pearson correlation coefficients between the four strategies for the out-of-sample period 

 
Table 9.10 notes: The table reports the pairwise Pearson correlation between each of the four stock-selection strategies, calculated 
based on daily returns. The out-of-sample period spans January 1976 to December 2020. (Source: Own creation). 

 
We document a low correlation between all MLS strategies, with the RNN and MLP strategy exhibiting a 
particularly low correlation of 0.12. This implies that the strategies can advantageously be combined into an 
ensemble model in order to reduce their individual prediction errors. Figure 9.8 illustrates the cumulative return 
of the ensemble model for the out-of-sample period. 
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Figure 9.8: Cumulative returns and drawdowns of the ensemble strategy for the out-of-sample period 

 
Figure 9.8 notes: The figure depicts the total cumulative returns (including the risk-free rate) of the ensemble model that equally 
weighs the MOM strategy and the three MLS strategies. The cumulative returns of the four individual strategies are shaded. The 
cumulative returns are shown on a log scale. Furthermore, the figure illustrates the corresponding drawdowns of the ensemble strategy 
in percent. The out-of-sample period spans January 1976 to December 2020. (Source: Own creation). 

 
As depicted in Figure 9.8, the ensemble strategy demonstrates a more stable performance relative to the 
strategies individually (with the exception of the MLP strategy) over the out-of-sample period. The ensemble 
strategy exhibits little downside risk compared to the MOM strategy during the global financial crisis, where 
the most substantial momentum crash occurred. This is a result of the low (or even negative) correlation 
between the three MLS strategies and the MOM strategy during this sub-period, as documented in subsection 
9.3.2. In contrast, the ensemble strategy exhibits the worst drawdown during the dot-com bubble, due to a 
higher correlation between the MLS strategies and the MOM strategy in this period. Pointing to appendix A.15 
which depicts the rolling six-month volatility of the ensemble strategy, we confirm that the dot-com-bubble is 
also the most volatile period for the strategy. Moreover, the maximum drawdown of the strategy occurs during 
this period. However, as evident in Table 9.11, the maximum drawdown of the ensemble strategy is much 
smaller than the maximum drawdown for all the individual strategies, except the MLP strategy. Having 
established that the MLP strategy is substantially less volatile than the other three strategies, it is not surprising 
that the maximum drawdown of the ensemble strategy is larger than that of the MLP strategy. 
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Table 9.11: Performance of the ensemble strategy relative to the four individual strategies for the out-of-
sample period 

 
Table 9.11 notes: This table provides descriptive statistics of the excess returns of the ensemble models. We report the following 
metrics: The annualized return in excess of the risk-free rate, volatility, and alpha, in percent; the market beta; the annualized Sharpe 
ratio and Sortino ratio; and the maximum drawdown in percent. The sample skewness is computed as the realized Fisher-Pearson 
skewness of the daily log returns. The t-statistics are reported in parenthesis and are for the null hypothesis of the metrics being equal 
to zero. The out-of-sample period spans January 1976 to December 2020. (Source: Own creation). 

 
Finally, the ensemble strategy outperforms all four individual strategies with an annualized Sortino and Sharpe 
ratio of 1.16 and 0.83, respectively, confirming the considerable potential of combining several strategies into 
one. 
 
This thesis does not conduct an in-depth analysis of the ensemble strategy during the two sub-periods that we 
defined in subsection 9.3.2. However, we note that the superior performance of the ensemble relative to the 
MOM strategy remains robust when zooming in on the dot-com bubble and the global financial crisis (see 
appendix A.16). This is an important observation in the attempt to construct an enhanced momentum strategy 
that exhibits less crash risk. 
 
Recapitulating the findings of this section, the possible coalescence of the MLS strategies with the MOM 
strategy offers an opportunity to enhance the profitability of the four individual strategies. Particularly relevant 
for this thesis, the ensemble strategy offers a novel way to enhance the performance of the MOM strategy and 
counter its crash risk. The superior performance of the ensemble strategy relative to the four individual 
strategies emerges as the MLS strategies are not perfectly correlated with neither the MOM strategy nor each 
other. 
 
Based on the above sections, we have documented several analyses that point to the superiority of the MLS 
strategies. Recall that the MOM strategy does not incorporate any information besides the 2-12 months past 
returns. Hence, the superior performance of the MLS strategies and the ensemble strategy is likely nested in 
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the additional information that the machine learning models rely on. Against this background, we zero in on 
research question five in which we seek to uncover explanations for the superior performance of the MLS 
strategies.  
 

9.5 Importance of Input Variables 

As machine learning models suffer from opacity, the underlying drivers of the MLS strategy’s performance 
are highly challenging to extract and interpret. We attempt to peek inside the black box of the machine learning 
models by analyzing the importance of each input variable (SHAP value) when the three machine learning 
models predict excess returns. We aspire to uncover if one or multiple of the input variables are associated 
with high importance for all models, composing a common denominator for the superior performance of the 
MLS strategies. In this way, we might be able to link the superior performance of the MLS strategies to patterns 
in the information passed to the machine learning models. 
 
We commence by providing an overview of the importance assigned to each input variable for the three 
machine learning models in Figure 9.9. To obtain the relative importance of the input variables, we normalize 
the variables into a [0:1] interval. Recall that the inputs of the machine learning models consist of our eleven 
momentum variables, of which three are market variables and eight are stock-specific variables. From Figure 
9.9, we observe that all the machine learning models accentuate market variables when making predictions, 
relative to the stock-specific variables.  
 
Figure 9.9: Relative importance of all input variables for the three machine learning models for the out-of-

sample period  

 
Figure 9.9 notes: The variable importance within each model is normalized to sum to one, allowing for interpretation of the relative 
importance for a given model. The variable importance is based on an average of five subsamples of 5000 observations for the out-of-
sample period. (Source: Own creation). 

 
The emphasis on the market variables across the three models is likely a result of how we design our machine 
learning problem: Recall that for a given month, the market variables are identical for all 500 stocks. Thus, it 
seems that the machine learning models apply the market variables to determine an overall return level (e.g., 
an average) for all stocks in one given month. While this is an important aspect for the machine learning 
models in order to minimize MSE (and thus, obtain a higher R2), it provides no information about the cross-
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section of the excess stock returns for a given month. The latter point is essential in the context of a stock-
selection strategy, as the excess returns in the cross-section constitute the foundation for sorting stocks into 
portfolios. In predicting excess stock returns, the cross-sectional aspect is derived from the stock-specific 
variables. Hence, we follow the approach of Gu et al. (2019) and separate the market variables from the stock-
specific variables in order to pinpoint the importance of the latter. Note that we renormalize the stock-specific 
variables to a [0:1] interval to investigate the relative importance of these variables, exclusively. 
 
Figure 9.10: Relative importance of the stock-specific input variables for the three machine learning models 

for the out-of-sample period  

 

Figure 9.10 notes: The variable importance within each model are normalized to sum to one, allowing for interpretation of the relative 
importance for a given model. The variable importance is based on an average of five subsamples of 5000 observations for the out-of-
sample period. (Source: Own creation). 

 
Figure 9.10 depicts the relative importance of the stock-specific variables for each of the three machine 
learning models. All models draw predictive information from a broad set of input variables rather than relying 
on one or a few inputs. In general, the models are not in agreement regarding the most influential stock-level 
variables, indicating that no single input variable underlies the superior performance of the machine learning 
models. In fact, the RNN places great emphasis on exactly those input variables that are ascribed the least 
importance by the RAF model. More specifically, the RAF model relies mostly on the standard deviation of 
the stocks, the cumulative alpha, and beta when making predictions. In contrast, the RNN relies mostly on 
stock returns, cumulative stock returns, and idiosyncratic returns when making predictions. Finally, the MLP 
model appears to place similar emphasis on all stock-specific variables.  
 
Broadly speaking, we observe an inconsistent pattern in the importance associated with the stock-specific 
variables for the machine learning models. The differences in the importance ascribed to the input variables 
are not surprising considering the low correlation observed among the models. However, why they diverge in 
the assigned importance remains unanswered. Thus, the importance of the input variables for the machine 
learning models offers limited clarity on what drives the superior performance of the MLS strategies. Rather, 
our findings imply that the explanation for the superior performance of the three strategies is elsewhere to be 
found. In this regard, we highlight the possibility of potential interaction effects between the input variables 
which is captured by the SHAP value. In fact, while the market variables in themselves do not contribute to 
the cross-sectional ranking of the stocks, interdependencies among the market variables and the stock-specific 
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variables serve as a potential explanation for the superior performance. For instance, interaction effects 
between the stock-specific variables and the market variables might explain the RNN strategy timing market 
rebounds. However, a detailed examination of the interaction effects amongst the input variables is beyond the 
scope of this thesis.  
 

In summary, all our models ascribe high predictive power to the market variables. However, more importantly, 
they disagree on the importance of the stock-specific variables when predicting the cross-section of excess 
stock returns. Consequently, we are unable to identify a common denominator driving the superior 
performance of the MLS strategies. We discuss the implication of these findings in section 10.1.  
 

9.6 Factor Analysis 

In this section, we conduct a factor analysis, as often done in the financial literature, in another attempt to 
unfold the superior performance of the MLS strategies (e.g., Blitz et al., 2001, 2020; Daniel & Moskowitz, 
2016). While both the input variable importance analysis and the factor analysis attempt to dissect the 
performance of the MLS strategies, a clear distinction should be made between the two analyses. The former 
analysis investigated which of the input variables are important for the machine learning models when making 
predictions. In contrast, this section explores whether additional risk factors besides the market are able to 
explain the profitability of the MLS strategies. Thus, we do not examine the predictive ability of the risk 
factors. 
We conduct spanning tests in which we regress the daily excess returns of each of the three MLS strategies 
against the daily excess returns of the five Fama/French factors (Fama & French, 2015), the betting against 
beta factor (Frazzini & Pedersen, 2014) and our replicated momentum factor. Table 9.12 presents the results 
of the three OLS regressions over the out-of-sample period. 
 

Table 9.12: Spanning tests of the three MLS strategies for the out-of-sample period 

 

Coefficient Standard error t-stat Coefficient Standard error t-stat Coefficient Standard error t-stat

⍺ 11.82 0.00 (6.78) ⍺ 6.53 0.00 (3.81) ⍺ 5.51 0.00 (2.29)

Mkt-RF 0.33 0.01 (23.38) Mkt-RF 0.10 0.02 (6.76) Mkt-RF 0.23 0.02 (13.76)

SMB 0.16 0.02 (7.13) SMB 0.05 0.02 (2.03) SMB 0.08 0.03 (2.53)

HML 0.08 0.03 (2.52) HML 0.15 0.03 (4.53) HML 0.45 0.05 (9.08)

RMW -0.44 0.03 (-13.06) RMW -0.06 0.04 (-1.69) RMW -0.01 0.06 (-0.14)

CMA -0.56 0.05 (-12.31) CMA -0.08 0.05 (-1.66) CMA 0.11 0.08 (1.38)

BAB -0.36 0.03 (-12.24) BAB -0.14 0.03 (-5.19) BAB -0.12 0.04 (-3.53)

MOM 0.31 0.01 (25.60) MOM 0.06 0.01 (4.86) MOM 0.38 0.02 (16.77)

R2 R2 R2

58.53 8.69 27.27

Panel A: RAF Panel B: MLP Panel C: RNN

Information ratio

1.09

Information ratio

0.62 0.40

Information ratio

Durbin-WatsonDurbin-Watson

1.9

Durbin-Watson

1.91 1.8
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Table 9.12 notes: The table displays OLS regression outputs for the three MLS strategies when applying the Newey-West error 
estimations, for the out-of-sample period. The alpha coefficients of the regressions are annualized and are in percent. The R2 is also 
reported in percent. The three panels present the results of regressing the daily excess returns of each of the MLS strategies against the 
daily excess returns of the five Fama/French factors, betting against beta and our replicated momentum factor. Bold values are 
statistically significant at a 5% level. Note that the Durbin-Watson test statistic has a value near 2.0, implying that the Newey-West 
estimation was able to reduce the autocorrelation in the error terms of the models. Finally, the table reports the annualized information 
ratios for each of the three MLS strategies. (Source: Own creation). 
 

Table 9.12 reports the results of the spanning tests. We first observe an R2 of 58.53%, 8.69%, and 27.27%, for 
the RAF, MLP, and RNN strategy, respectively. Hence, the variations in the seven risk factors explain as much 
as 58% of the variations in the RAF strategy, but only 8.69% and 27.27% of the variations in the MLP and 
RNN strategies. 
 
The spanning tests show highly significant annualized alphas of 11.82%, 6.53%, and 5.51% for the RAF, MLP, 
and RNN strategy, respectively, indicating that the excess returns of the strategies are not fully captured by the 
market factor and the additional six risk factors. In fact, the alphas of the RAF and MLP strategy increase 
when we adjust for the additional factors besides the market. The increase in alpha is caused by the two 
strategies’ negative loadings on three of the additional factors (RMW, CMA, and BAB). In contrast, the alpha 
of the RNN strategy decreases when adjusting for additional factors besides the market, implying that the 
additional factors have driven part of the alpha for the RNN strategy. The high alpha of the RAF strategy is 
also reflected in its superior information ratio of 1.09 relative to the MLP and RNN strategy with information 
ratios of 0.62 and 0.4, respectively. For comparison, the RAF strategy obtained a Sharpe ratio of only 0.66 
before adjusting for the risk factors. 
 
Examining the beta coefficients of the MLS strategies, we document that all our strategies are positively and 
significantly loaded on the market and momentum factor while negatively loaded on the BAB factor. This is 
not surprising, as the input variables passed to the machine learning models contain market variables and 
momentum-related variables. However, the loading on the MOM factor for the MLP strategy is less profound 
compared to the other MLS strategies (though still significant). This observation is consistent with the low 
correlation we document between MLP and MOM.  
Moreover, we observe that the MLS strategies load significantly and positively on the SMB and HML factors. 
In contrast, the strategies load negatively or insignificantly on the RMW and CMA factors. Notably, the RAF 
strategy has a highly significant negative loading on the two latter factors (-0.44 and -0.56, respectively).  
The SMB, HML, RMW, and CMA factors are not closely linked to the momentum variables utilized for our 
machine learning models. Thus, we cannot explain why the MLS strategies agree on the sign convention of 
these factor loadings. 
 
While an in-depth analysis of alpha and the loadings of the MLS strategies on the seven factors are beyond the 
scope of this thesis, we point to appendix A.17 for an overview of the 12-month rolling alphas and factor 
loadings. Non-surprisingly the 12-month rolling alpha of the MLP strategy is lower but less volatile relative 
to the other MLS strategies.  
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Summarizing this section, the expanded factor analysis offers supportive evidence for the profitability of the 
MLS strategies, however, it does not provide any further clarity on their superior performance. Thus, we 
remain limited in our understanding of the success of the MLS strategies.  
 

9.7 Concluding Remarks on the Analysis of Momentum and Machines  

We finalize this chapter by synthesizing the results of our research. First, when replicating the conventional 
MOM strategy, we document a momentum premium as a result of the winner portfolio significantly 
outperforming the loser portfolio during the total sample period. In addition, we confirm that the MOM strategy 
crashes following a bear market that rebounds abruptly. These findings on the conventional MOM strategy are 
in line with the momentum literature. Hence, we argue that our data sample constitutes a valid representation 
of the findings in the literature. 
 
Against this background, we examine the predictive ability of three machine learning models that utilize 
momentum variables as inputs. We document a positive predictive R2 for all the machine learning models with 
the MLP model exhibiting the best R2 score of 0.75%. The predictive R2s of all machine learning models are 
significantly higher than the R2 of the baseline model. The inferior predictive performance of the baseline 
model is a result of it being highly susceptible to in-sample overfitting. Hence, the positive and improved 
predictive R2s for the three machine learning models point to the value of incorporating complex predictor 
interactions, which are embedded in tree and neural networks but missed by a simple OLS regression (baseline) 
model. Moreover, we document that the predicted excess returns of the machine learning models exhibit 
significant positive Spearman rank correlations with the target excess return. The positive and significant 
Spearman rank correlations imply that the models understand the cross-section of excess stock returns which 
constitutes the foundation for utilizing the predictions for stock-selection strategies. Thus, we form three stock-
selection strategies based on the predictions made by the machine learning models. We document a superior 
performance of the MLS strategies relative to the MOM strategy for the total out-of-sample period spanning 
January 1976 to December 2020 with a higher Sharpe Ratio, Sortino Ratio, and significant positive alpha over 
the MOM strategy.  
We further zero in on two sub-periods in which the MOM strategy crashes to examine the performance of the 
three MLS strategies. We demonstrate that the superior performance of all the MLS strategies relative to the 
MOM strategy remains robust across both sub-periods. The MLP and RNN strategy emerge as the best 
performing strategies during the sub-periods. Notably, we find observations that point to the possibility of the 
RNN strategy timing market rebounds. 
 
With no strategies being perfectly correlated, our findings accentuate the opportunity to counter the crash risk 
inherent to the MOM strategy by constructing an ensemble strategy. We form an ensemble strategy that equally 
weighs the excess returns of the MOM strategy and the three MLS strategies. We demonstrate that this strategy 
outperforms all four individual strategies with a Sharpe ratio of 0.83 and a Sortino ratio of 1.16. The superior 
performance of the ensemble strategy relative to the conventional MOM strategy remains robust across the 
two sub-periods. 
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In a modest attempt to understand what drives the superior performance of the three MLS strategies (and the 
ensemble strategy, implicitly), we conduct two distinct analyses. First, we analyze the importance of the input 
variables for our machine learning models when making predictions. We observe an inconsistent pattern in the 
importance ascribed to the stock-specific variables by the machine learning models. Hence, the analysis of the 
stock-specific variables offers limited interpretability on what drives the superior performance of the MLS 
strategies. Second, we examine if the profitability of the MLS strategies is explained by seven risk factors. We 
find that the performance of the MLS strategies cannot be fully captured by the risk factors, evident by their 
positive and significant alphas. In fact, the performance of the RAF strategy when adjusting for the seven risk 
factors, is substantially higher than its performance, when adjusting for the exposure to the market only. Hence, 
the expanded factor analysis underlines the profitability of the MLS strategies, however, it does not provide 
any further explanation of their superior performance. Our findings suggest that the complex nature of machine 
learning models fosters high accuracy of predictions but comes at a price of limited interpretability.  
 

10 Discussion  
This chapter discusses the results of our research. We initiate this chapter by discussing the comparability of 
the magnitude and direction of our findings to the extant literature. Subsequently, we explore the implications 
of our findings for academia as well as for practitioners. As the scope of this thesis is limited, several areas 
remain unexplored. Thus, the final section outlines the most relevant areas for further research. 
 

10.1 Comparison of Findings to Extant Literature 

The Conventional Momentum Strategy 
We commence by exploring how the results of our replicated conventional momentum strategy compare to the 
findings of similar studies in the literature. We document that our replicated momentum strategy is subject to 
negative returns following a bear market that quickly rebounds i.e., momentum crashes. The presence of 
momentum crashes for the replicated momentum strategy is highly comparable to the findings of Daniel & 
Moskowitz (2016) (see also Cooper et al., 2004; Stivers & Sun, 2010). In fact, the five months with the worst 
returns of the replicated momentum strategy are identical to those identified by Daniel and Moskowitz (2016). 
However, the magnitude of our findings on momentum crashes differs, as the momentum crashes observed for 
our sample are smaller. For instance, the worst one-month return for our replicated momentum strategy is -
45.16%, substantially smaller than the worst one-month return of -74.36%, documented by Daniel and 
Moskowitz (2016). The divergence in the magnitude of our findings is likely a result of our choice of data 
sample. Recall that our investment universe exclusively consists of the largest 500 stocks trading on NYSE, 
AMEX, and NASDAQ for a given month. Minding our data sample, it is not surprising that our findings vary 
from the literature that most commonly utilizes a data sample consisting of all stocks listed on the US stock 
market - including microcaps (Daniel & Moskowitz, 2016). 
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Machine Learning for Stock-Selection Strategies  
The three machine learning models obtain predictive R2s in the range between 0.59% to 0.75% when predicting 
excess returns. While these R2s are unimpressive from a statistical standpoint solely, the R2s are in line with 
the standards in the financial literature. The explanation for the low standards of R2 within this field is nested 
in the low predictability of (excess) stock returns. Two fundamental properties of stock markets render stock 
prediction a difficult science. First, drastic and unexpected fluctuations are inevitable in stock prices due to the 
impact of unanticipated news that per definition is random. The noise in stock returns is consistent with the 
efficient market hypothesis, dictating that stock returns cannot be predicted. Second, even with stock market 
inefficiencies, the predictable signal of (excess) stock returns is small, as traders constantly seek to exploit 
such inefficiencies. Hence, the science of return predictions revolves around a very low signal-to-noise ratio 
which makes it difficult to document statistical findings with the same significance as in other disciplines that 
have astronomical datasets with much stronger predictive signals (Israel et al., 2020).  
Thus, our findings of predictive R2 must be seen in the light of the comparable literature within stock return 
prediction. In this regard, we note once again that little methodical research exists on the application of 
machine learning models for stock prediction - especially in the context of stock-selection strategies. Thus, no 
studies in the current literature are fully comparable with our findings. Our data sample differs from the data 
samples in the literature, and the momentum variables that we apply as inputs for the machine learning models 
have not formerly been applied in the literature. With this in mind, our results on R2 are at most comparable 
with the findings of Gu et al. (2019) who (amongst other algorithms) deploy Random Forest and neural 
networks when predicting excess stock returns for their out-of-sample period (1987-2016). When limiting their 
universe to the top 1000 stocks in the US stock market, their best performing neural network obtains an R2 of 
up to 0.7%, while Random Forest obtains 0.63%. These results are generated on the basis of a shorter time 
period relative to our data sample (30 versus 45 years, respectively) and with many more input variables 
relative to our study (900+ versus 108, respectively). However, the R2s they obtain for the two models are 
remarkably similar to those documented in this thesis.  
 
Having established the R2 of our machine learning models to be broadly consistent with the literature, we point 
to the economic gains that an MLS strategy should also be associated with. Once again, the literature offers 
limited comparable results of the profitability of MLS strategies. Freyberger et al. (2020) apply adaptive group 
LASSO to approximate a nonlinear function for expected returns and demonstrate its superiority relative to a 
linear model. For their out-of-sample period (1991-2014), their long-short portfolio yields a Sharpe ratio of 
1.3334. Gu et al. (2019) also document economic gains from their machine learning predictions35. The long-
short portfolio based on their best model (a neural network) yields a Sharpe ratio of 1.69. 
Our smaller stock universe and different sample period lead to limited comparability with the magnitude of 
their findings, as we document the highest Sharpe ratio of 0.67 for the RNN strategy, substantially lower than 
the Sharpe ratios demonstrated by Freyberger et al. (2020) and Gu et al. (2019). Still, the direction of our 
findings supports the documentation made in the literature on the economic gains of MLS strategies. 

                                                
34 For the equally weighted long-short portfolio based on a stock universe that excludes stocks below the 10th percentile on NYSE 
market capitalization as this is the most comparable portfolio to this thesis  
35 For the equally weighted long-short portfolio formed on the basis of a stock universe that excludes stocks below the 20th percentile 
on NYSE market capitalization as this is the most comparable portfolio to this thesis 
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In this regard, we note that several scholars document that economic gains are more prominent for a trading 
strategy that relies on an ensemble model rather than individual models (e.g., Krauss et al., 2017; Bao et al, 
2017; Gu et al., 2019). We also confirm the potential of combining models into one ensemble, as our ensemble 
strategy outperforms all our individual stock-selection strategies in terms of both Sharpe and Sortino ratios.  
 
Predictive Power of Input Variables 
The superior performance of the MLS strategies is likely nested in the additional information that the strategies 
rely on. While the momentum strategy does not incorporate any information besides the 2-12 months 
cumulative returns, we provide additional stock-specific and market variables to the machine learning models. 
This enables them to leverage further insights when making predictions which comprise the foundation of the 
MLS strategies.  
 
As machine learning models suffer from opacity, the drivers underlying the performance of the MLS strategies 
are highly challenging to extract and interpret. In a modest attempt to understand these drivers, we analyze the 
importance of each input variable when the three machine learning models make predictions. Our analysis 
shows that the three models ascribe some predictive power to all the stock-specific variables, however, they 
vary in terms of how much predictive power is ascribed to each of these variables. 
Relating the results of our analysis to the literature, the findings of Gu et al. (2019) offer a potential explanation 
for why our machine learning models assign predictive power to all stock-specific variables. They document 
that the variables related to recent price trends are the most important for all their models (five out of the seven 
most influential stock-specific variables). In a similar manner, Fisher and Krauss (2018) document the high 
predictive power of past returns. As our stock-specific variables are related to price trends, one explanation for 
the machine learning models emphasizing all variables might simply be that all variables are important for the 
predictions made by the models. However, this does not explain why the models assign different importance 
to each of these variables. 
A potential explanation for the differences is nested in the interdependencies amongst the variables: Note that 
Random Forest and neural networks are able to capture potentially complex interactions among the variables 
(Hastie et al., 2009; Moritz & Zimmermann, 2016; Israel et al., 2020). However, the three machine learning 
models vary in terms of architecture, and thus one model might be able to capture interdependencies amongst 
variables that the others cannot. For instance, recall that the RNN is able to memorize long and short-term 
dependencies, as opposed to the RAF and MLP models. As the interaction effects between the variables are 
incorporated into the SHAP value of a variable, this could explain why the values differ across models. While 
investigating interdependencies among the input variables are of substantial relevance, such an analysis lies 
beyond the scope of our research. 
 
Regardless of whether one of the above justifications - or one not addressed in this section - can explain the 
difference in the predictive power ascribed to the stock-specific variables, we remain limited in our ability to 
interpret what drives the superior performance of the MLS strategies.  
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10.2 Implications of Findings 

In bridging the chasm between two previously separated bodies of research; momentum strategies and machine 
learning, the implications of our findings carry relevance for a broad area of research. The following section 
discusses the most predominant implications of this thesis for academia and practitioners and thus, answers 
our final research question (six).  
 
Academic Implications of Our Research 
We first point out the implications of our research in relation to the literature that enhances the conventional 
momentum strategy (Barroso & Santa-Clara, 2015; Daniel & Moskowitz, 2016; Blitz et al., 2011, 2020; Hühn 
& Scholz, 2018). For our out-of-sample period, the ensemble strategy, which equally weights the predictions 
of the three MLS strategies and the replicated momentum strategy, approximately doubles the Sharpe ratio 
and Sortino ratio of the conventional momentum strategy. Moreover, this strategy exhibits much less crash 
risk with a maximum drawdown of 36.48%. The superior performance of the ensemble strategy relative to the 
conventional momentum strategy remains robust across the two sub-periods, namely the dot-com-bubble and 
the global financial crisis. Thus, placing the contribution of this thesis in its academic context, we document 
novel research that utilizes machine learning to enhance the performance of and mitigate the crash risk inherent 
to the conventional momentum strategy. 
 
Our research further points to the benefits of combining insights from multiple studies. The three machine 
learning models deployed in our thesis rely on several findings that have each been documented individually 
in the enhanced momentum literature. Capitalizing on these combined insights, our machine learning models 
exhibit predictive abilities that can be successfully deployed for stock-selection strategies. Thus, our research 
points to the ability of machine learning models to extract formerly undiscovered patterns across the findings 
of the enhanced momentum literature. 
 
In a broader academic context, our research contributes to the current debate on the potential of machine 
learning for investment management - more specifically for stock return prediction. We find evidence that 
supports the argument put forth by Arnott et al. (2019), namely that machine learning holds considerable 
promise for the development of successful trading strategies.  
By documenting a superior predictive performance of our three machine learning models relative to a simple 
OLS regression, we further confirm the findings of Gu et al. (2019), who demonstrate that the superiority of 
tree-based models and neural networks rely on their ability to comprehend complex and nonlinear interactions 
between the input variables and excess stock returns.  
 
Recapitulating the key academic implications of this thesis, we present a novel way to enhance the 
conventional momentum strategy and find evidence that helps justify the increasing role of machine learning 
in investment management. 
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Practical Implications of Our Research 
The aforementioned complexity that lies at the heart of our machine learning models leads us to the practical 
implications of our research. Machine learning is frequently referred to as a black box; inputs are passed to the 
model and a prediction comes out, but the processes in between are opaque. Resonating Ghorbani, Abid & 
Zou (2019), it can be extremely challenging to draw meaningful interpretations of the underlying mechanisms 
of machine learning models. This challenge is amplified when the complexity of the models increases. The 
field of machine learning universally agrees on interpretability being the cornerstone for user trust in machine 
learning models (Ribeiro, Sing & Guestrin, 2016). The inability to correctly interpret the predictions of a model 
hinders insights into how the model may be improved as well as an understanding of the process being 
modeled. In contrast, the reasoning process of more simple predictive models is more understandable to 
humans. Hence, in some applications, simple models (e.g., linear models) are preferred for their ease of 
interpretation, even if they may be less accurate than complex ones (Lundberg & Lee, 2016). 
 
The ability to understand the inner workings of an applied model is no different for investment managers and 
traders who seek to exploit inefficiencies in stock markets. While any trader or investment manager prefers a 
successful predictive model (inter alia), they can be averse to deploying historically reliable models that they 
cannot decipher (Israel et al., 2020). For instance, for an investment manager, the interpretability of a model 
is essential when clients or other major stakeholders demand an explanation of the predictive models. Thus, 
while investment managers prefer a model with more predictability to less, their fiduciary duty of 
comprehending and communicating the risks in their clients' portfolios also induces them to prefer more 
interpretable models. Israel et al. (2020) refer to this as a second “risk-return tradeoff” that any investment 
manager aspires to solve in the new era of machine learning and finance.  
 
Against this background, we reach the crescendo of our discussion and place the research of this thesis in a 
practical setting: While we document the great potential of our machine learning models for creating profitable 
trading strategies, the difficulty of interpreting their inner workings hinder the practical implementation of our 
findings. Our unsuccessful attempt to unfold the underlying drivers of our models renders them inscrutable 
and confirms the notion of machine learning models being black boxes, as documented in the literature. Hence, 
our research directly taps into the newly identified “risk-return trade-off” that lies at the intersection of machine 
learning and finance. In this regard, we note that the trade-off between predictability and interpretability is not 
very different from the mean-variance trade-off already faced by investment managers: In the end, selecting a 
point on the “predictability/interpretability frontier” is ultimately a decision of the investment manager. 
 

10.3 Further Research 

Our research points to new ventures that may be of interest for further research. Many areas are relevant for 
further research, such as testing the robustness of our findings across geographies and asset classes, 
incorporating transaction costs, deploying other machine learning models, or including additional input 
variables (e.g., fundamental variables). However, this section highlights the three areas that we consider to be 
the most relevant. 
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First, the performance of the enhanced momentum strategies documented in the literature could be tested on 
our specific sample. As previously established, our research relies on the insights from studies that develop 
enhanced momentum strategies (Blitz et al. 2011, 2020; Barroso & Santa-Clara, 2015; Daniel & Moskowitz, 
2016; Hühn & Scholz, 2018) for the construction of the momentum variables that are passed to our machine 
learning models. However, we have not tested the performance of, for instance, idiosyncratic and alpha 
momentum strategies on our data sample. We document both a strong momentum premium as well as the 
crashes of the momentum strategy in our sample, consistent with the momentum literature. Therefore, we 
assume that the findings on how to enhance momentum strategies (that rely on the entire US stock market) 
hold true for our smaller sample as well. However, we consider testing the performance of the enhanced 
momentum strategies on our sample a relevant topic for further research. 
 
Second, we point to the notion put forth by Israel et al. (2020), namely that machine learning models need not 
be a black box. Thus, further research should address how to improve the interpretability of the predictions 
made by the machine learning models. Improving the interpretability should be considered at both a specific 
level for our research and on a more general level, emphasized in the literature:  
For our specific research, one option to improve the interpretability of the machine learning models is to 
explore interaction effects between the input variables (Chen et al., 2020). As previously established, the 
superior performance of machine learning models is embedded in their ability to comprehend complex and 
nonlinear interactions between the variables. While we do not investigate such interaction effects in this thesis, 
exploring the interdependencies between the variables can offer insights on what drives the superior 
performance of the MLS strategies and thus, the ability to better interpret the predictions of the machine 
learning models. 
The interpretability of machine learning models can also be improved on a more general level. For instance, 
researchers are progressing in the field of “explainable artificial intelligence” that focuses on improving the 
opacity of machine learning models to enable users to draw more meaningful and intuitive conclusions from 
the predictions made by the models (Zhang et al., 2018; Horel & Giesecke, 2019). Alternatively, machine 
learning methods can be incorporated into smaller sub-components of regular modeling approaches that are 
more interpretable (Israel et al., 2020).  
The two examples (on a specific and general level) offer the potential to improve the interpretability of machine 
learning models and thus constitute tangible starting points for further research. 
 
Finally, the regression problem which comprises the foundation of our research could be designed as a 
classification problem instead. The rationale for designing our machine learning problem as a regression 
problem is to ensure comparability of our results, by following the approach of the most profound literature 
that combines machine learning and finance (Gu et al., 2019). Reiterating section 4.1.2, machine learning 
models that solve regression problems aim to minimize the error between the predicted output and the observed 
output (MSE). For our specific regression problem, two components minimize MSE: Predicting the correct 
return level for all stocks and predicting the correct cross-section of stock returns for a given month. However, 
stock-selection strategies rely on the cross-section of stock returns, exclusively (i.e., not on the return level). 
We document that the machine learning models deployed in our thesis are able to predict the cross-section of 
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stock returns (at least to some degree), evident by positive and significant Spearman rank correlations. Recall 
that when we construct an MLS strategy, we predict excess stock returns for a given month, rank stocks based 
on these predictions, and subsequently place them into decile portfolios. An alternative method for creating an 
MLS strategy is to design the problem as a classification problem, where the machine learning models directly 
predict which decile portfolio a stock belongs to. Yet, such a classification problem would lead to lower 
interpretability, as predictions can solely be observed on a decile portfolio level, rather than on an individual 
stock level. Still, we consider the performance of a stock-selection strategy, based on predictions that solely 
concentrate on the cross-section of stock returns, as an interesting area for further research.  
 

11 Conclusion 
The benefits of applying machine learning in a variety of fields have spurred the interest in machine learning 
for investment management. The data-driven approach of machine learning offers traders and investment 
managers unprecedented opportunities to exploit contextual and nonlinear relationships in stock markets.  
 
While this thesis finds that the field of machine learning for return prediction is still in its infancy, we document 
that the ability of machine learning to identify patterns in complex data constitutes a promising foundation for 
investment management. With the conventional momentum strategy calling for improvement, and a large body 
of research documenting various methods to improve the strategy, this thesis establishes that the momentum 
strategy poses an interesting case for reformation through machine learning. Against this background, we 
examine the potential of combining three machine learning models with the momentum strategy and, as such, 
bridge the chasm between two previously separated bodies of research. Specifically, we deploy Random 
Forest, the Multilayer Perceptron, and a Recurrent Neural Network with Long-Short-Term Memory cells. 
 
For the out-of-sample period spanning January 1976 to December 2020, we backtest a conventional 
momentum strategy and three machine learning-based stock-selection strategies that rely on eleven momentum 
variables. First and foremost, we document a strong momentum premium during the last century and confirm 
the findings of Daniel and Moskowitz (2016), namely that the momentum strategy crashes following a bear 
market that rebounds abruptly. Thus, our data sample constitutes a valid representation of the findings 
documented by the momentum literature.  
 
In light of these findings, we construct stock-selection strategies based on the predictions made by the three 
machine learning models. The stock-selection strategies exhibit superior performance relative to the 
momentum strategy for the out-of-sample period with a higher Sharpe Ratio, Sortino Ratio, and significant 
positive alpha over the momentum strategy. Our results remain robust when zeroing in on two sub-periods in 
which the momentum strategy crashes, namely the dot-com bubble and the global financial crisis. Our 
ensemble strategy that equally weighs the four stock-selection strategies outshines all individual strategies 
with a Sharpe ratio of 0.83 and a Sortino ratio of 1.16. Thus, we contribute to academia by documenting a 
novel method for enhancing the performance of the conventional momentum strategy through machine 
learning. 
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We investigate possible explanations for the superior performance of the machine learning-based stock-
selection strategies (and the ensemble strategy, implicitly). When analyzing the importance of the input 
variables for the machine learning models we are unable to identify a common denominator that drives the 
superior performance of the strategies. An expanded factor analysis does not provide any further clarification. 
In fact, all machine learning-based stock-selection strategies exhibit significant and positive alphas after 
adjusting for seven risk factors.  
 
Our research suggests that the complexity of machine learning models fosters high accuracy of predictions, 
and thus profitable stock-selection strategies, but comes at a price of limited interpretability. We find evidence 
that supports the notion of machine learning models being black boxes, as often referred to in the literature. 
The difficulty of interpreting the underlying mechanisms of our machine learning models hinders the practical 
implementation of our findings. If traders or investment managers are unable to understand the inner workings 
of machine learning models, they will likely be hesitant towards pursuing a machine learning-based stock-
selection strategy, even if it exhibits superior performance. Thus, our research relates directly to the newly 
identified “predictability-interpretability trade-off” that lies at the junction of machine learning and investment 
management (Israel et al., 2020). 
 
Concluding, while machine learning offers unprecedented opportunities for traders and investment managers, 
it carries difficulties of its own, that must be resolved in order to realize its full potential: The contribution of 
machine learning to investment management is not revolutionary - rather evolutionary. 
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