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Resumé

Form̊alet med denne kandidatafhandling er at undersøge dynamikken for tid-

safhængige risikoneutrale spring i afkastet p̊a finansielle produkter gennem min-

imale antagelser om strukturen i disse spring. Fokuset er p̊a haleelementet af

intensiteten for spring under Q.

Først er der en introduktion til Lévy processer og nogle af deres vigtigste

egenskaber, samt hvordan de kan karakteriseres. Fokus er p̊a at forst̊a Lévy-

Itôs berømte sætning og især hvilke dynamikker, der bliver udvist af de to

uafhængige dele med spring. Som led i dette bliver sammenhængen mellem

stokastiske Poisson m̊al og Lévy m̊al forklaret, hvilket er essentielt, da det an-

tages, at dynamikkerne for halerne bliver fuldt karakteriseret af et Lévy m̊al.

Efterfølgende er der en gennemgang af den model, der vil blive anvendt i

denne afhandling. Først gennemg̊as hvilke parametre, der vil blive anvendt til

at vurdere halen for intensiteten af spring. Desuden vises, at netop variation i

den venstre hale kan bruges som en proxy for den frygt, der er i markedet p̊a

et givent tidspunkt. Herefter følger en gennemgang af hvilke egenskaber, der

er ønskelige for de parametre, der karaktiserer dynamikken i den risiko-neutrale

hale samt et teoretisk fokus p̊a hvorfor, det er essentielt, at halerne udviser

tidsafhængig dynamik. Derp̊a gennemg̊as det, hvordan estimatorerne for de

førnævnte parametre opn̊as ud fra data p̊a optioner. Gennemgangen af estima-

torerne starter med tilfældet, hvor det antages, at halerne ikke er tidsafhængige,

hvorefter der generaliseres til tilfældet med tidsafhængige haler, som vil blive

benyttet i resten af afhandlingen.

Dette leder til en gennemgang af de empiriske resultater baseret p̊a tidspe-

rioden januar 1996 til og med december 2020, hvorunder især haleformen er et

omdrejningspunkt, da det vises, at denne indeholder størstedelen af informa-

tionen. Ved hjælp af metodik fra tidsserier modelleres dynamikken for halens

form. I denne process er der fokus p̊a at fjerne periodicitet og trend i estimatet

for derefter at modellere middelværdien med en ARIMA model og variansen

med en GARCH model, s̊a den kombinerede model er stationær.

Afslutningsvis gennemg̊as det, hvordan formen p̊a halen, variansen p̊a ven-

strespring og VIX indekset kan bruges til prædiktion af fremtidige afkast ved

hjælp af univariat og multivariat regression. Dette undersøges b̊ade for den

aggregerede markedsportefølje og for yderligere fem porteføljer, der er sorteret

henholdsvis efter Fama-French tre-faktor model, momentum, betting-against-

beta og quality-minus-junk. Ved at sammenligne regressionerne fra VIX og

variansen p̊a venstrespring, fremg̊ar det, at markedet behandler variansen p̊a

store negative spring særligt.
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1 Introduction

The return of financial assets has always been at the very core of economic

history, where it has undergone significant development from a case-by-case

comparison to modern stochastic models. Perhaps the biggest steppingstone in

this development was the famous Black-Scholes-Merton model for the pricing

of European options. Firstly, published by Fischer Black and Myron Scholes in

Black & Scholes (1973), where Robert C. Merton expanded upon it with Merton

(1973). With a couple of somewhat reasonable assumptions, the model could

price options consistently most of the time.

Nonetheless, the application of inappropriate assumptions about the market

and the dynamics of assets can be detrimental to pricing and risk management.

One of the most classic examples was the collapse of Long-Term Capital Man-

agement, see Edward (1999), where one of the most prominent hedge funds,

with partners such as Robert C. Merton and Myron Scholes, collapsed under

the effects of the 1998 Russian financial crisis partly due to high leverage, which

helps to show the great importance of tail risk management.

However, the Black-Scholes-Merton model’s assumption had proved itself

faulty earlier than the collapse of Long-Term Capital management. Under the

market crash in 1987 and with the appearance of volatility smiles, it became ev-

ident that the assumption of constant volatility was detrimental. These volatil-

ity smiles are very pronounced for short maturity options, which leads to the

fact that financial asset returns are not conditionally normally distributed, but

instead exhibit decaying tails, which are fatter than expected from a normal dis-

tribution. These are attributable to infrequent significant price changes, which

will be modelled through Lévy Processes, and are very clear in periods with

financial distress such as the financial crisis and the Covid-19 crisis, where the

latter will be a focal point in this dissertation.

The choice of dynamics of asset prices is of great importance, and the most

common process used in modelling in finance is the Brownian motion, which

was also one of the first proposed uses of the Brownian motion. A Danish

astronomer first described the mathematics of the Brownian motion in Thiele

(1880). However, he is commonly not credited for being the first person to

model the stochastic process, which instead goes to Bachelier (1900), where he

employed it to value stock options and was the most advanced use of mathemat-

ics in finance at that time. His work builds upon the hypotheses in Regnault

(1863), which is often credited as being the first paper to use a random walk

model to model price changes, where Regnault observed that the standard de-

viation of a price change over a time interval scaled with the square root of the
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1.1 Thesis statement

length of the interval. The Brownian motion has proven itself extremely use-

ful at describing the continuous part of price changes, but empirical data has

proven that the tails of a normal distribution are not thick enough to describe

the return of assets, which is where Lévy processes came into use. The foun-

dation of Lévy processes can be found in the foundational works of Bachelier

(1900) & Bachelier (1901), concerning the use of Brownian motion in financial

mathematics, and Lundberg (1903), concerning the use of the Poisson process

within the context of insurance mathematics. By combining continuous and

jump processes under a common process, Lévy processes have become crucial

in risk management, which fittingly is the core of financial mathematics and

insurance mathematics.

As tails by definition are related to infrequent episodes, it is natural to use

the tail distribution to construct a proxy for market fear. A method for this was

proposed in Bollerslev et al. (2015), and I will review how this fear component

developed during 2020 and how quickly it reacted to macro- and fiscal policy

changes.

In the discussion of market fear, it is natural to include the VIX. The

VIX is representing the market’s expectations for volatility over the coming 30

days. It is also naturally related to the method used in this paper as both the

VIX and the method used here are based on the price of SPX options close to

expiration. However, a significant difference is that I will only focus on deep

out-of-the-money options and discard options that are at-the-money or close by.

This limit will vary over time, related to the implied volatility in the market and

will be described in detail in Section 4. A comparison of the predictability of

returns on the aggregate market portfolio between left jump tail variation and

the V IX shows that the left jump tail variation has a stronger predictability

and is a cleaner proxy for fear.

1.1 Thesis statement

The field of investigation for this thesis is partly arguing the need for time-

dependent jump tails and partly showing that the left risk-neutral jump tail

variation helps predict future market returns, indicating that investors demand

special compensation for bearing jump tail risk. This leads to the following

thesis statement:

How can one model time-dependent jump tails, both from a theoretical

standpoint and through a time series model for the tail shape, and how can the

estimates be used to show that the market has a special treatment for bearing
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1.2 Methodology

the risk of large jumps. Reviewed on the index S&P 500 and the U.S. aggregate

market portfolio.

To answer the thesis statement, the focal point is to answer the following sub-

questions:

• Define a Lévy process and which main attributes they possess.

• Describe the main differences between the two elements in the Lévy-Itô

decomposition that concern minor and large jumps.

• Derive that the left jump variation measure can be used as a proxy for

fear.

• Assess the implications of the limit for what constitutes a significant jump.

• Assess the need for time-variant tail shapes from a theoretical and empir-

ical standpoint.

• Derive an ARIMA/GARCH model for the time-variant tail shapes.

• Discuss whether the left jump variation or the VIX is a stronger predictor

for market returns, and examine the implications on the fear proxy.

1.2 Methodology

In order to investigate the specified thesis statement, the thesis has a dual

construction consisting of a theoretical and empirical part, respectively. The

theoretical part is concerned with the underlying theory about Lévy measures

and jumps and how these can be applied to construct our estimators. The

empirical part is concerned with estimation and performing predictive analysis

on the estimates.

The dominant methodology throughout the thesis is logical positivism with

its core idea that reality exists independent from our realisation and the idea

that scientific work is centred around verifying and confirming theories from an

empirical basis. Being a realistic ontology, it is a natural choice, as this thesis

attempts to map and model theories based on observable data in reality. Natu-

rally, it is assumed that the data set employed is complete and representative of

the U.S. market. If this assumption proves faulty, then the conclusions herein

should be reconsidered. The evaluation of the fear proxies included in this the-

sis is based on how well each model predicts future returns. The evaluation is

based solely on objective values observable in the market, a classical positivist

trait in order that it remains free of subjective values.
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2 Introduction to Lévy processes

In preparation for estimating the relevant jump risk premia and tail risk pre-

mia, it is crucial to describe the theory used in constructing the models before

advancing to the estimation of these. This chapter will give an introduction

to certain core Lévy processes and their use in this case. The following section

has been based around Kyprianou (2014), Papapantoleon (2008), private lecture

notes for the course ST426: Applied Stochastic Processes at London School of

Economics, and own results.

2.1 Introduction to Lévy processes and definition

Lévy processes are now playing a central role in several fields of science that

are of importance in this article, from the use in continuous time-series models

in economics; for the calculation of insurance and re-insurance risk in actuarial

science; and, of course, in mathematical finance.

For the definition of the Lévy process, it is natural to start with two familiar

processes, which are both special cases of a Lévy process, a Brownian motion

and a Poisson process. Let (Ω,F ,F,P) denote a stochastic basis with filtration

F = (Ft)t≥0.

Then a real-valued process, B = {Bt : t ≥ 0}, defined on said probability

space (Ω,F ,P) is said to be a Brownian motion if the following hold:

i. The paths of B are P-almost surely continuous.

ii. P(B0 = 0) = 1.

iii. For 0 ≤ s ≤ t, Bt −Bs is equal in distribution to Bt−s.

iv. For 0 ≤ s ≤ t, Bt −Bs is independent of {Bu : u ≤ s}.

v. For each t > 0, Bt is equal in distribution to a normal random variable

with zero mean and variance t.

Where the third requirement is known as stationary increments and the fourth

requirement is known as independent increments, which both are two of the

requirements for a Lévy process.

The other side of Lévy processes are their jump part, and as such it is

natural to start with the Poisson process.
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2.2 Infinitely divisible distributions and the Lévy-Khintchine formula

A process valued on the non-negative integers, N = {Nt : t ≥ 0}, defined

on a probability space (Ω,F ,P), is said to be a Poisson process with intensity

λ > 0 if the following hold:

i. The paths of N are P-almost surely right-continuous with left limits.

ii. P(B0 = 0) = 1.

iii. For 0 ≤ s ≤ t,Nt −Ns is equal in distribution to Nt−s.

iv. For 0 ≤ s ≤ t,Nt −Ns is independent of {Nu : u ≤ s}.

v. For each t > 0, Nt is equal in distribution to a Poisson random variable

with parameter λt.

It is evident that despite their substantial differences, after all, one process is

continuous with unbounded variation over finite time horizons, and the other is

a non-decreasing jump process with bounded variation over finite time horizons;

there are many similarities in their definitions. Using these common properties,

it is possible to define a general class of one-dimensional stochastic processes

called Lévy processes.

Definition 2.1 (Lévy Process). A process X = {Xt : t ≥ 0} defined on a

probability space (Ω,F ,P), is said to be a Lévy process if it posses the following

properties:

i. The paths of X are P-almost surely right-continuous with left limits. This

is also known as càdlàg paths.

ii. P(X0 = 0) = 1.

iii. For 0 ≤ s ≤ t,Xt −Xs is equal in distribution to Xt−s.

iv. For 0 ≤ s ≤ t,Xt −Xs is independent of {Xu : u ≤ s}.

2.2 Infinitely divisible distributions and the Lévy-Khintchine

formula

However, the simplicity of Definition 2.1 can be deceiving in showing just how

rich the class of Lévy processes is. The mathematician de Finetti (1929) intro-

duced the concept of infinitely divisible distributions and showed their relation-

ship to Lévy processes.
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2.2 Infinitely divisible distributions and the Lévy-Khintchine formula

Definition 2.2 (Infinite Divisibility). A random variable X is infinitly divisible

if, for all n ∈ N, there exist i.i.d. random variables X
(n)
1 , ..., X

(n)
n such that

X
d
= X

(n)
1 + ...+X(n)

n

Which can also be generalised to the probability measure

Definition 2.3. A probability measure ρ is infinitely divisible if, for all n ∈ N,
there exists another probability measure ρn such that

ρ = ρn ∗ ... ∗ ρn

To understand the deep connection between infinitely divisible distributions

and Lévy processes, it is natural to prove that all Lévy processes have infinitely

divisible laws.

Lemma 2.1. Let X = (Xt)t≥0 be a Lévy process. Then the random variable

Xt, t ≥ 0, are infinitely divisible.

Proof. Let X = (Xt)t≥0 be a Lévy process. For any n ∈ N and any t > 0 Xt

can be rewritten as

Xt = X t
n

+
(
X 2t

n
−X t

n

)
+ ...+

(
Xt −X (n−1)t

n

)
(1)

as all the terms cancel out except from Xt. By recalling Definition 2.1 it is

given that increments of a Lévy process are stationary. By using this definition

it gives

X tk
n
−X (k−1)t

n

d
= X t

n

for any k ≥ 1. From the independence of the increments it yields that the

random variable X tk
n
−X (k−1)t

n
, k ≥ 1 are independent of each other. From this

it gives that each parentheses in (1),
(
X tk

n
−X (k−1)t

n

)
k≥1

is an i.i.d. sequence of

random variables, and by Definition 2.2 it can be concluded that Xt is infinitely

divisible, therefore a general Lévy process is infinitely divisible.

Before progressing on to the Lévy-Khintchine theorem, the notation of

characteristic functions and characteristic exponents used in this thesis will be

denoted to sort out the ambiguity regarding the negative exponent present in

the literature. Denote the characterising function by ϕ, its law by PX , and its

moment generating function by MX , hence

ϕX(u) =

∫
R
eiuxPX(dx) = MX(iu).
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2.2 Infinitely divisible distributions and the Lévy-Khintchine formula

The characteristic exponent ψ for a real-valued random variable is given by∫
R
eiuxPX(dx) = eψ(u).

Lemma 2.2. Let Xt be a random variable with infinitely divisible law. Then it

holds true that ψt(u) = tψ1(u).

Proof. Let Xt be a random variable with infinitely divisible law, and as such, it

is a Lévy process. Then by (1) characteristic function can be expanded to the

characteristic function of the divisible form. By assuming that m,n are any two

positive integers, it is given that:

ψm(u) = logE(eiuXm)

= logE

[
e
iu

(
Xm
n

+
(
X 2m

n
−Xm

n

)
+...+

(
Xm−X (n−1)m

n

))]

= log

(
E
[
e
iuXm

n

]
E

[
e
iu
(
X 2m

n
−Xm

n

)]
...E

[
e
iu
(
Xm−X (n−1)m

n

)])
= log

(
E
[
e
iuXm

n

]
...E

[
e
iuXm

n

])
= nψm

n
(u) = mψ1(u)

Where the second equals come from inserting the divided form, the third and

fourth comes from the fact that each parenthesis is i.i.d. random variables, and

the last equals come from assuming that n = m.

As such it holds for any rational t > 0,

ψt(u) = tψ1(u). (2)

If, however, t is not rational then m,n cannot be selected to construct t. In this

case a decreasing sequence of rationals {tn : n ≥ 1} such that tn ↓ t as n→∞.

As it is obviously dominated by the initial t1, as it is a decreasing se-

quence, the dominated convergence theorem gives that the almost sure right-

continuity of X, which is given by càdlàg paths in the Definition 2.1, implies

right-continuity of eψt(u) and hence (2) holds true for all t ≥ 0.

The following result provides a complete characterization of infinitely di-

visible distributions and links them to the concept of Lévy triplets. Paul Lévy

and Aleksandr Khinchin both proved the result independently, and as such, the

theorem is named the Lévyy–Khintchine theorem. Nevertheless, first, the Lévy
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2.3 The Lévy-Itô Decomposition

measure will be described, as it is the function that describes the jump process,

and it plays a crucial role in this thesis. Intuitively, the Lévy measure describes

the expected number of jumps of a certain height in a time interval of length 1.

As such, a large Lévy measure is expected in times of financial distress, when a

Brownian motion cannot explain the market movements.

Definition 2.4 (Lévy measure). Let ν be a measure on R. ν is called a Lévy

measure if it satisfies

ν({0}) = 0 and

∫
R
(|x|2 ∧ 1)ν(dx) <∞

The Lévy measure has no mass at the origin, as this would indicate an

expected number of jumps with size zero, and the mass away from the origin is

finite. Thus only a finite number of large jumps can occur. Singularities can,

nevertheless, occur around the origin.

And as such the theorem is stated:.

Theorem 2.1. The law PX of a random variable X is infinitely divisible iff

there exists a triplet (b, c, ν), also known as the Lévy or characteristic triplet,

with b ∈ R, c ∈ R+ and the measure ν, such that

E
[
eiuX

]
= exp

[
ibu− u2c

2
+

∫
R
(eiux − 1− iux1{|x|<1})ν(dx)

]
b is notated as the drift characteristic and c the Gaussian or diffusion charac-

teristic.

The proof of this theorem is outside the scope of this paper, but the struc-

ture of the formula gives much intuition about the structure of Lévy processes,

as it splits it up into a drift component, a Brownian component, and lastly, a

jump component, which is again split up into smaller and larger jumps.

From Lemma 2.2 one can conclude the next results follows

Corollary 2.1. The infinitely divisible random variable Xt has the Lévy triplet

(bt, ct, νt).

On this basis I will now continue on the Lévy-Itô decomposition.

2.3 The Lévy-Itô Decomposition

Where the previous subsection was concerned with constructing the Lévy triplet

(bt, ct, νt) for an infinitely divisible random variable Xt this section will be focus-
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2.3 The Lévy-Itô Decomposition

ing on the reverse path. Starting from a Lévy triplet (b, c, ν) one can construct

a Lévy process X = (Xt)t≥0. The Lévy-Itô decomposition accomplishes this by

describing the structure of a general Lévy process in terms of four independent

Lévy processes with their unique path behaviours. This leads to the theorem

Theorem 2.2. Let ρ be an infinitely divisible distribution with Lévy triplet

(b, c, ν), where b ∈ R, c ∈ R+ and ν is a Lévy measure satisfying Definition 2.4.

Then, there exists a probability space (Ω,F ,P) on which four independent Lévy

processes exist, X(1), ..., X(4), where X(1) is a constant drift, X(2) is a Brownian

motion, X(3) is a compound Poisson process and X(4) is a square integrable pure

jump martingale with a almost surely countable number of jumps of magnitude

less than 1 on each finite time interval. Setting X = X(1) + ...+X(4) then that

there exists a probability space on which a Lévy process X = (Xt)t≥0 is defined,

with characteristic exponent

ψ(u) = iub− u2c

2
+

∫
R

(
eiux − 1− iux1{|x|<1}

)
ν(dx)

for all u ∈ R, and path, or Lévy-Itô, decomposition

Xt = bt+
√
cWt +

∫ t

0

∫
|x|≥1

xµX(ds, dx) +

∫ t

0

∫
|x|<1

x(µX − νX)(ds, dx)

where νX(ds, dx) = ν(dx)ds and µ is the Poisson random measure and
∫ t

0

∫
|x|≥1

xµX(ds, dx)

is a compound Poisson random variable with intensity tν(R \ (−1, 1)).

A random measure is a convenient tool at pooling sources of randomness

into a single one. Consider a set A ∈ B(R \ {0}) such that 0 /∈ Ā and let

0 ≤ t ≤ T ; define the random measure of the jumps of the process X by

µX(ω; t, A) = #{0 ≤ s ≤ t; ∆Xs(ω) ∈ A}

=
∑
s≤t

1A(∆Xs(ω))

Hence the measure µX(ω; t, A) counts the jumps of the process X of size in A

up to time t. It satisfies the following properties.

µX(t, A)− µX(s,A) ∈ σ({Xu −Xv|s ≤ v ≤ u ≤ t})

hence µX(t, A) − µX(s,A) is independent of F and as such has independent

increments. It is also clear that µX(t, A) − µX(s,A) equals the number of

jumps in Xs+u − Xs in A for 0 ≤ u ≤ t − s; hence it can be conculded that

the µX(·, A) has stationary increments. Therefore, µX(·, A) is a Poisson process

12



2.3 The Lévy-Itô Decomposition

with intensity ν(A) = E[µX(1, A)] and µX is a Poisson random measure.

The full proof is outside the scope of this thesis, but an outline will be given

with a focus on path variation. By splitting up the characteristic exponent into

ψ(1)(u) = iub (3)

ψ(2)(u) = −u
2c

2
(4)

ψ(3)(u) =

∫
|x|≥1

(eiux − 1)ν(dx) (5)

ψ(4)(u) =

∫
|x|<1

(eiux − 1− iux)ν(dx) (6)

it can be controlled which known process they relate to by calculating the char-

acteristic exponents. Let X = bt. Then the characteristic exponent is as follows

etψ(u) = E[eiuXt ] = E[eiubt] = eiubt = etψ(u), where ψ(u) = iub. As such, the

first part corresponds to a deterministic drift with parameter b.

Then let X =
√
cWt, where Wt is a standard Brownian Motion. E[eiuXt ] =

E[eiu
√
cWt ] = e−

1
2 cu

2t = etψ(u), where ψ(u) = −u
2c
2 , where it was used that

Wt ∼ N(0, t). Therefore, the second corresponds to a Brownian motion with

coefficient
√
c.

For the third term, let Xt be a compound Poisson process. Instead of

finding this directly, the characteristic function of a compensated compound

Poisson process will be found, as the characteristic function for the compound

Poisson process will be found in the process, and the compensated compound

Poisson process will be helpful for the fourth term. Let Xt =
∑Nt
k=1 Jk − tλκ,

where N is a Poisson process with parameter λ, so E[Nt] = λt, J is an i.i.d.

sequence of random variables with probability F , and E[J ] = κ <∞. Clearly, F

describes with distribution of the jumps, which arrive according to the Poisson

process.

E
[
eiuXt

]
= E

[
exp

(
iu

(
Nt∑
k=1

Jk − tλκ

))]

= E

[
exp

(
iu

Nt∑
k=1

Jk − iutλκ

)]
(7)

To find the characteristic function of the compensated compound Process, I

start with the compound Process. The characteristic function of the compound

Poisson process can be found by conditioning on the number of jumps at a

given time, using the tower rule, using independence and the moment generating
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2.3 The Lévy-Itô Decomposition

function of a Poisson random variable.

E

[
exp

(
iu

Nt∑
k=1

Jk

)]
= E

[
E

[
exp

(
iu

Nt∑
k=1

Jk

)∣∣∣∣Nt = N1

]]
= E

[
E [exp (iuJ1)]

N1

]
= E[ϕJ(u)N1 ], ϕJ(u) = E [exp (iuJ1)]

= E
[
elogϕJ (u)N1

]
= E

[
eN1 logϕJ (u)

]
= MN1

[logϕJ(u)],MN1
(t) = E[etN1 ] = exp(λt(et − 1))

= exp
(
λt(elogE[exp(iuJ1)] − 1]

)
= exp (λt(E [exp (iuJ1)− 1]) (8)

= exp

(
λt

∫
R
(eiux − 1)F (dx)

)
(9)

The characteristic function of the compound Poisson process is now (9) and the

compensated compound Poisson process can now be found by inserting (8) into

(7), and by using E[J1] = κ.

E
[
eiuXt

]
= E

[
exp

(
iu

Nt∑
k=1

Jk − iutλκ

)]
= exp (λt(E [exp (iuJ1)− 1− iuJ ]))

= exp

(
λt

∫
R
(eiux − 1− iux)F (dx)

)
(10)

where the final step used that the distribution of J is F .

By setting the arrival rate in (9) equal to λ := ν(R \ (−1, 1)) and the jump

magnitude F (dx) := ν(dx)
ν(R\(−1,1))1{|x|≥1} it becomes evident that this is equal to

(5).

It seems that a natural choice for the process for ψ(4)(u) would be the

compensated compound Poisson process. However, from Definition 2.4 it follows

that ∫
R

min(1, x2)ν(dx) <∞⇒ ν(R \ [−1, 1]) =

∫
R\[−1,1]

ν(dx) <∞

this indicates that ν([−1, 1]) can be ∞, which is not allowed for a compound

Poisson process. As such, there is a process that resembles a compensated
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2.3 The Lévy-Itô Decomposition

compound Poisson process, but it is not precisely so. To get a deeper insight

into the field of interest, one can split up

[−1, 1] \ {0} =

[
−1,−1

2

)
∪
[
−1

2
,−1

4

)
∪ ... ∪

(
1

4
,

1

2

]
∪
(

1

2
, 1

]
such that [−1, 1] \ {0} =

⋃∞
k=0Ak, Ak = {x : 2−(k+1) < x ≤ 2−k}. This result

will be used in the characteristic function from (6)

exp

(∫
[−1,1]

(eiux − 1− iux)ν(dx))

)
= exp

( ∞∑
k=0

∫
Ak

(eiux − 1− iux)ν(dx))

)
.

For this to hold it is important to claim, and show, that ν(Ak) is finite, otherwise

this has not solved the previous issue.

Lemma 2.3. For the set [−1, 1]\{0} =
⋃∞
k=0Ak, Ak = {x : 2−(k+1) < x ≤ 2−k}

it holds true that ν(Ak) is finite for any {ν :
∫

R min(1, x2)ν(dx) <∞}.

Proof. For any 0 < ε < 1 : ν((ε,∞)) <∞ because ν([1,∞]) <∞ and

ν((ε, 1)) =

∫ 1

ε

ν(dx) =
1

ε2

∫ 1

ε

ε2ν(dx) ≤ 1

ε2

∫ 1

ε

x2ν(dx) <∞

A corresponding argument can be made for ν((−∞, ε)). Since Ak is a positive

distance away from 0 for all k, it holds true that ν(Ak) <∞∀k.

Since ν(Ak) is finite, X
(4)
t can be considered as an infinite sum of compen-

sated compound Poisson processes, which can be shown to converge uniformly.

This presents an issue as there are infinite sources of randomness, where the

Poisson random measure comes in. In order to convert this informal result

into a precise mathematical statement, it requires results on Poisson random

measures and square integrable martingales, which are outside the scope of this

thesis, but the main ideas of the proof are captured here. For a full result of

the proof, the reader is referred to Kyprianou (2014).
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3 Setup and model assumptions

The continuous-time dynamic no-arbitrage framework underlying the following

empirical investigation is based on a minimal amount of assumptions about the

structure and dynamics.

3.1 Notation and variance risk premium

The underlying asset price Xt is defined on the filtered probability space

(Ω,F ,P), where (Ft)t≥0 denotes the standard filtration. The instantaneous

arithmetic return of X is assumed to have the following continuous representa-

tion

dXt

Xt−
= αtdt+ σtdWt +

∫
R
(ex − 1)µ̃P(dt, dx) (11)

where Wt is a Brownian motion, µ is a counting measure, as described in the

previous section, for the jumps in X with compensator dt ⊗ νt(dx), so that

µ̃P(dt, dx) = µ(dt, dx)−dtνP
t (dx) denotes the corresponding martingale measure

under P. Recall that µ([0, t], A) =
∑
s≤t 1{log(∆Xs)∈A} for any measurable A ∈

R \ {0}. It is assumed that the drift and volatility processes, αt and σt, follows

càdlàg paths, as described in Definition 2.1. The quadratic variation is found

by splitting the function up into the continuous part and the pure jump part.

[X,X][t,t+τ ] =

∫ t+τ

t

σ2
sds+

∑
s≤t+τ

∆X2
t

=

∫ t+τ

t

σ2
sds+

∫ t+τ

t

∫
R
x2µ(ds, dx) (12)

Where the volatility of the diffusive price increments, represented by the first

term, is the variation due to small price moves. The second term measures the

variation of the jumps through the measure µ that captures the amount of jumps

in the process. Even though both terms contribute to the quadratic variation,

they do so in drastically different ways. Diffusive risks can be hedged by a

dynamic portfolio continuously controlling the exposure, and the same thing

cannot be done to hedge the risk of jumps as they are in nature unpredictable.

I will assume that the risk-neutral probability measure Q exists, and that

X takes the following dynamic under Q,

dXt

Xt−
= (rf,t − δt)dt+ σtdW

Q
t +

∫
R
(ex − 1)µ̃Q(dt, dx), (13)
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3.1 Notation and variance risk premium

where rf,t and δt refer to the instantaneous risk-free rate, assumed to be the

one month treasury bill rate, and the dividend yield of Xt. W
Q
t is a Brownian

motion under Q and µ̃Q(dt, dx) = µ(dt, dx)− dtνQ
t (dx) where again dt⊗ νQ

t (dx)

is the compensator of the jumps, this time under Q.

The fact that a Lévy process drives the price process makes the market, in

general, incomplete. As such, there exists a large set of equivalent martingale

measures, but this will not be an issue in this thesis, as it is still possible to

identify the tail uniquely.

For the jump compensator to be a valid jump compensator, or Lévy mea-

sure, νQ
t (dx) must satisfy Definition 2.4,

ν({0}) = 0 and

∫
R
(x2 ∧ 1)ν(dx) <∞∀t ∈ R+.

A deeper decomposition of the variance risk premium (VRP) will now fol-

low. The following definition will mirror the definition used in Bollerslev &

Todorov (2011b). The variance risk premium on X is defined by,

V RPt,τ =
1

τ

(
EP
t (QV[t,t+τ ])− EQ

t (QV[t,t+τ ])
)
, (14)

which correspond to the expected payoff on a (long) variance swap on the market

portfolio, and historically it has been negative on average.

As the area of interest in this thesis is on jump and tail risk, it is possible

to decompose the variance risk premium further into a continuous and jump

part, as is shown in Bollerslev et al. (2015). The total continuous variation over

[t, t+ τ ] was shown to be

CV[t,t+τ ] =

∫ t+τ

t

σ2
sds,

which corresponds to the continuous part of (12). In the calculation of the

total predictable jump variation under the P and Q probability measure it is

important to recall that ν(A) = E[µ(1, A)] as defined in Section 2.3. As such,

JV P
[t,t+τ ] =

∫ t+τ

t

∫
R
x2vP

s (dx)ds, JV Q
[t,t+τ ] =

∫ t+τ

t

∫
R
x2vQ

s (dx)ds. (15)

By inserting these three terms into the variance risk premium it may be

17



3.2 Premium for tail risk

decomposed as,

V RPt,τ =
1

τ

(
EP
t (CV[t,t+τ ] + JV P

[t,t+τ ])− E
Q
t (CV[t,t+τ ] + JV Q

[t,t+τ ])
)

=
1

τ

[(
EP
t (CV[t,t+τ ])− EQ

t (CV[t,t+τ ])
)

+
(
EP
t (JV P

[t,t+τ ])− E
Q
t (JV P

[t,t+τ ])
)]

+
1

τ

(
EQ
t (JV P

[t,t+τ ])− E
Q
t (JV Q

[t,t+τ ])
)
. (16)

It might seem irrelevant to add and subtract the EQ
t (JV P

[t,t+τ ]) term, but it

allows for a nice intuitive interpretation. The variance risk premium consists

of the difference between the P and Q expectations of the continuous variation,

the difference between the P and Q expectations of the same P jump variation,

and the last is the difference between the P and Q jump variations under the

same risk-neutral measure Q.

As such, the first two terms is the variance risk premium accounts for the

temporal variation of the jump intensity process, under the physical measure,

and for the diffusive risk σ2
t . For the market portfolio, this premium is caused

by investors’ willingness to hedge against changes in the investment opportunity

set.

The last term is, however, different from this. It includes the difference be-

tween the P and Q jump variation measures under the same probability measure

Q and stems from the fact that jumps may occur, and therefore it does not have

a direct analogue for the diffusive price component. Moreover, as seen in Section

2.3 the jump measure includes both small and big jumps, which are inherently

different. The inclusion of both small and big jumps poses an issue empirically,

as our data is sampled discretely, and therefore one cannot distinguish between

a minor jump or a continuous price change, and a time-variable limit will have

to be placed for what is a small jump, and deemed a continuous change, and

what is a significant jump.

3.2 Premium for tail risk

In the following part a focus will be placed on the premium related to tail

risk and the methodology will follow Bollerslev et al. (2015). Apart from the

separation of continuous variation and jump variation in the previous section, it

is intuitive to also separate the jumps into negative and positive jumps, with the

result that ν
(Q,+)
t ((−∞, 0)) = 0, ν

(Q,−)
t ((0,∞)) = 0, and νQ

t = ν
(Q,+)
t + ν

(Q,−)
t .
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3.2 Premium for tail risk

Then the jump tail variation in (15) can also be separated into left tail jump

variation and right tail jump variation over the interval [t, t+ τ ] by,

LJV Q
[t,t+τ ] =

∫ t+τ

t

∫
x<−kt

x2νQ
s (dx)ds

RJV Q
[t,t+τ ] =

∫ t+τ

t

∫
x>kt

x2νQ
s (dx)ds. (17)

As mentioned previously, it becomes impossible to distinguish between change

caused by a Brownian motion and a change caused by a jump on a discrete scale,

and as such kt is used as a time-varying cutoff that is related to the log-jump

size and the Black-Scholes at-the-money implied volatility at time t.

Following the definition of the variance risk premium, based on the quadratic

variation, in (14), it is natural that the left and right jump tail risk premia are

defined in the same pattern by,

LJPt,τ =
1

τ

(
EP
t (LJV P

[t,t+τ ])− E
Q
t (LJV Q

[t,t+τ ])
)

RJPt,τ =
1

τ

(
EP
t (RJV P

[t,t+τ ])− E
Q
t (RJV Q

[t,t+τ ])
)

(18)

By subtracting this from the variance risk premium in (16) it should remove all

premium related to jumps, and as such, can be interpreted as the part of the

VRP attributable to continuous variation, or empirically to changes in [−kt, kt].
This can easily be checked by,

V RPt,τ − (LJPt,τ +RJPt,τ ) =
1

τ

(
EQ
t (JV P

[t,t+τ ])− E
Q
t (JV Q

[t,t+τ ])
)

+
1

τ

[(
EP
t (CV[t,t+τ ])− EQ

t (CV[t,t+τ ])
)

+
(
EP
t (JV P

[t,t+τ ])− E
Q
t (JV P

[t,t+τ ])
)]

− 1

τ

[(
EP
t (LJV P

[t,t+τ ])− E
Q
t (LJV Q

[t,t+τ ])
)

+
(

(EP
t (RJV P

[t,t+τ ])− E
Q
t (RJV Q

[t,t+τ ])
)]

=
1

τ

(
EQ
t (JV Q

[t,t+τ ]) + EP
t (CV[t,t+τ ])− EQ

t (CV[t,t+τ ])− EQ
t (JV Q

[t,t+τ ])
)

=
1

τ

(
EP
t (CV[t,t+τ ])− EQ

t (CV[t,t+τ ])
)
,

and the results are as expected. Again, by mimicking the work done on the vari-

ance risk premium in (16), the left and right tail premium may be decomposed

further into terms of the physical and risk-neutral measure,
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3.2 Premium for tail risk

LJPt,τ =
1

τ

[
EP
t (LJV P

[t,t+τ ])− E
Q
t (LJV P

[t,t+τ ])
]

+
1

τ

[
EQ
t (LJV P

[t,t+τ ])− E
Q
t (LJV Q

[t,t+τ ])
]
, (19)

and correspondingly,

RJPt,τ =
1

τ

[
EP
t (RJV P

[t,t+τ ])− E
Q
t (RJV P

[t,t+τ ])
]

+
1

τ

[
EQ
t (RJV P

[t,t+τ ])− E
Q
t (RJV Q

[t,t+τ ])
]
. (20)

Again, as with (16), the first term in both the LJP and RJP involves the dif-

ference between the physical and risk-neutral expectation of the same measure.

This can be seen as a mirror to the first term in (16), where it was the differ-

ence between the physical and risk-neutral expectation of the future diffusive

risk CV[t,t+τ ].

However, the second term is of more interest as it involves the difference between

the risk-neutral expected values of the P and Q jump tail variation measures,

which reflects the special treatment of jump tail risk.

In order to model the time-variant proxy for investors fears, proposed in

Bollerslev & Todorov (2011b), LJPt,τ −RJPt,τ , it is helpful to assume that the

distribution of large jumps are roughly symmetric under the P jump intensity

process, such that LJV P
[t,t+τ ] ≈ RJV P

[t,t+τ ]. Note that it is not assumed that

LJV Q
[t,t+τ ] ≈ RJV Q

[t,t+τ ] holds true, as the market reacts differently to positive

and negative jumps. Then the fear index approximately becomes,

LJPt,τ −RJPt,τ =
1

τ

[
EP
t (LJV P

[t,t+τ ])− E
Q
t (LJV P

[t,t+τ ])
]

+
1

τ

[
EQ
t (LJV P

[t,t+τ ])− E
Q
t (LJV Q

[t,t+τ ])
]

−
(

1

τ

[
EP
t (RJV P

[t,t+τ ])− E
Q
t (RJV P

[t,t+τ ])
]

+
1

τ

[
EQ
t (RJV P

[t,t+τ ])− E
Q
t (RJV Q

[t,t+τ ])
])

≈ 1

τ

[
EQ
t (LJV P

[t,t+τ ])− E
Q
t (LJV Q

[t,t+τ ])
]

− 1

τ

[
EQ
t (RJV P

[t,t+τ ])− E
Q
t (RJV Q

[t,t+τ ])
]

≈ 1

τ

(
EQ
t (RJV Q

[t,t+τ ])− E
Q
t (LJV Q

[t,t+τ ])
)
,
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3.2 Premium for tail risk

where the four lines after the first equal sign are just the definition, after the

first approximation it is the difference between the expectations of the P and Q
jump tail variation measures under Q, which correlated to the special treatment

of jump tail risk. The last part expresses the fear component of the tail risk

premia as a function of the risk-neutral measure alone, both in the jump tail

measure and in the expectation.

This fits neatly into standard asset pricing in finance because it is only

dependent on Q. In the following sections with a focus on estimation, this

also poses a significant advantage over the functions in (19) and (20), as this

avoids any tail estimation under P. As with all extreme value theory, this is

vulnerable in sampling, especially on a short time horizon where there might

be a complete lack of large jumps, which would lead to a physical estimate of

νP
t ((−∞,∞)) = 0, which is not correct.

As mentioned before it will be shown that LJPt,τ is orders of magnitude

larger than RJPt,τ . Therefore, it will be assumed that empirically it holds that

RJPt,τ ≈ 0, such that the fear proxy, LJPt,τ − RJPt,τ is approximately equal

to the risk-neutral expectation of the negative left jump variation only,

LJPt,τ −RJPt,τ ≈ −
1

τ
EQ
t (LJV Q

[t,t+τ ]), (21)

which leaves a simple expression for the fear component. Intuitively it also

makes sense that the fear component is located mainly around negative jumps

for the aggregate market portfolio; this is the primary source of fear for investors.

If the focus is on a subset of the market portfolio, e.g. hedge funds or

especially short funds, this assumption will likely be in contrast with reality as

a significant positive jump can be detrimental to a short position, especially in

a margin situation.

At the core of asset pricing is the idea that investors require a positive

long-term return for holding investments that are not risk-free. In contrast, it is

natural to expect that investors should accept a low return for risk-free invest-

ments, such as the one-month Treasury bill for dollar-denominated investors,

or even negative long-term returns for products that deliver positive returns in

the worst times, just as everyone is used to paying a premium on insurance.

This is an intuitive concept and was confirmed in Ilmanen (2012), where it was

shown that buying catastrophe insurance delivered poor long-run rewards. This

is also in line with Goetzmann et al. (2016) where a survey of individual and

institutional investors assessed the probability of a severe single-day stock mar-

ket crash to be much higher than the historical rate. As such, I expect to find
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3.3 The need for time-varying jump tails

a negative premium on the tail risk.

3.3 The need for time-varying jump tails

As stated in Bollerslev & Todorov (2014), most of the early literature on as-

set pricing assumed that the distribution of jumps was invariant, which seems

unlikely given the clustering of jumps and the fact that they are distributed

according to an extreme value distribution. When they were not assumed to be

invariant, the dynamics of the risk-neutral tail were often assumed to be in the

form of a predictable scaling process φ±t and a Lévy measure λ± that satisfies

Definition 2.4, such that it is on the form of,

vQ
t (dx) = φ+

t × λ+(dx)1{x>0} + φ−t × λ−(dx)1{x<0}, (22)

which also satisfies Definition 2.4 for any φ±t that is finite on R \ [−1, 1]. As an

example of this, one can see Bollerslev & Todorov (2011b) in section II.A, where

it is claimed to be a very weak assumption.

A common assumption is that the jump distribution changes symmetrically

for positive and negative jumps, though they might have different intensities,

such that φ+
t = φ−t .

In advance of the following analysis, it is convenient to review some addi-

tional notation.

Let ψ+(x) and ψ−(x) be the functions that transform jumps in the log-price

into jumps in the price level, such that

ψ+(x) =

{
ex, x > 0

0, x ≤ 0
, ψ−(x) =

{
e−x, x < 0

0, x ≥ 0,
(23)

which obviously leads to a change in the set, as x > 0 ⇒ ψ+(x) > 1 and

x < 0 ⇒ ψ−(x) > 1. By using this transformation on the continuous relative

price change on Xt it yields,

∆Xt

Xt−
+ 1 = ψ+(∆ log(Xt))1{∆ log(Xt)>0} + [ψ+(∆ log(Xt))]

−11{∆ log(Xt)>0}.

As usual, ∆Xt = Xt −Xt− and ∆ log(Xt) = log(Xt) − log(Xt−). The images

of the measure νQ
t under the mappings x → ψ+(x) and x → ψ−(x) may be
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3.3 The need for time-varying jump tails

expressed as,

νQ,+
t,ψ (x) =

νQ
t (log(x))

x

νQ,−
t,ψ (x) =

νQ
t (− log(x))

x
,∀x > 1. (24)

Lastly, let the tail integral of a given measure η on R be given as

η̄+(x) =

∫ ∞
x

η(du),∀x > 0

η̄−(x) =

∫ x

∞
η(du),∀x < 0. (25)

Even though it might seem convenient to scale a time-invariant Lévy measure

with a time-variant process there is one significant issue with it, which can be

seen in the following:

Let,

ν̄Q,+
t (x) = φ+

t ×
∫ ∞
x

λ+(du) = φ+
t × λ̄+(x),∀x > 0

ν̄Q,−
t (x) = φ−t ×

∫ x

−∞
λ−(du) = φ−t × λ̄−(x),∀x < 0

This leads to,

ν̄Q,+
t (x)

ν̄Q,+
t (y)

=
φ+
t × λ̄+(x)

φ+
t × λ̄+(y)

=
λ̄+(x)

λ̄+(y)
,∀x > y > 0,

ν̄Q,−
t (x)

ν̄Q,−
t (y)

=
φ−t × λ̄−(x)

φ−t × λ̄−(y)
=
λ̄−(x)

λ̄−(y)
,∀x < y < 0,

ν̄Q,+
t (x)

ν̄Q,−
t (y)

=
φ+
t × λ̄+(x)

φ−t × λ̄−(y)
,∀x > 0 and ∀y < 0. (26)

Then the relative difference between the jump measure for different sized jumps

in the same direction becomes time-invariant. As such, there cannot be periods

with a high (low) intensity for large jumps without also increasing (decreasing)

the intensity for small jumps. There can, however, be different intensities for

positive and negative jumps. If the additional assumption φ = φ+ = φ− is

made, then this optionality is also lost,

ν̄Q,+
t (x)

ν̄Q,−
t (y)

=
φt × λ̄+(x)

φt × λ̄−(y)
=
λ̄+(x)

λ̄−(y)
,∀x > y > 0, (27)
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3.3 The need for time-varying jump tails

which clearly is in violation with the behavior in the market.

The modelling scheme in (22), therefore implies that the distribution of tails

depends exclusively on the tail behaviour of the time-invariant Lévy measure

λ, where singularities may occur around the origin, as mentioned in Section

2.1. However, on the set limited to the real numbers outside of zero, it behaves

like a probability measure. These facts combined shows that there is a need

for an alternative to (22), and it will be found around the assumptions on λ̄±ψ .

Following part one of Assumption A2 in Bollerslev & Todorov (2011a),

Assumption 3.1.

λ̄±ψ (x) are regularly varying at infinity functions, i.e.,

λ̄±ψ (x) = x−α
±
L±(x), α± > 0, (28)

and L±(x) are slowly varying at infinity, i.e., lim
x→∞

L(ux)
L(x) = 1∀u > 0.

This assumption is key in both Bollerslev & Todorov (2011a) and Boller-

slev & Todorov (2014). Therefore it is also key for the foundation of this pa-

per. For large numerical jumps, the ratio between jumps will exhibit a linear

behaviour, as seen in the following. Assume that x is near to ∞, such that

L±(x+ u)/L±(x) = 1,∀x > ξ where ξ is such a ”large” enough value.

Then the limit of the ratio is,

lim
x→∞

λ̄+
ψ (x+ u)

λ̄+
ψ (x)

=

(
x+ u

x

)−α±

, x > 0, u > 0, (29)

which has the first order derivative

∂

∂x

(
x+ u

x

)−α±

= −α±
(

1

x
− x+ u

x2

)(
x+ u

x

)−α±−1

.

The limit of the first-order derivative, lim
x→∞

∂
∂x

(
x+u
x

)−α±

= 0, indicating the

measure displays linear behavior as the jump size goes to infinity. In line with

Bollerslev & Todorov (2011a) it rules out Lévy measures with light tails, which

are not in the area of interest here, and instead, restricts to the Fréchet distri-

bution that has an infinite right endpoint, and as such, it allows for extreme

jumps. It is a special case of the generalized extreme value distribution.
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3.3 The need for time-varying jump tails

Definition 3.1. The CDF of the generalized extreme value distribution satisfies

Hξ(x) =

{
e−(1+x/ξ)−ξ , ξ 6= 0

e−e
−x
, ξ = 0

, (30)

where 1 + ξx > 0.

The Fréchet distribution is the special case where ξ > 0.

By inserting this Lévy measure into (22) it follows that,

ν̄Q,±
t (x)

ν̄Q,±
t (y)

=
φ±t × λ̄±(x)

φ±t × λ̄±(y)
≈
(
x

y

)−α±

,∀x > y > 1, (31)

where the right hand side holds true in the limit. It is evident that the ratio is

still time-invariant with a power law decay determined by the maximum domain

of attraction of λ̄±, which is dependent on L±(x), as long as it is restricted to

the Fréchet distribution.

Even though the maximum domain of attraction (MDA) here is rich, it can

be helpful to use the following theorem in showing just how general it is.

Theorem 3.1. For ξ > 0,

F ∈MDA(Hξ)⇔ F̄ (x) = x−ξL(x)

for some function, L, that is slowly varying at ∞ and where F̄ (x) = 1− F (x).

By this theorem it follows easily that e.g. the double-exponential jump

model from Kou (2002) belongs to this,

λ+(x) = c+e−α
+x1{x>0}

λ−(x) = c−eα
−x1{x<0}, α

± > 0, c± ≥ 0. (32)

By applying the transformation in (24) and taking the tail integral it yields,

λ+
ψ (x) =

λ+(log(x))

x
=
c+

x
e−α

+ log(x)1{x>0} =
c+

x
x−α

+

,∀x > 1,

λ−ψ (x) =
λ−(− log(x))

x
=
c−

x
eα

− log(x)1{x<0} =
c−

x
x−α

−
,∀x > 1,

λ̄+
ψ (x) =

∫ ∞
x

c+

u
u−α

+

du =
c+

α+
x−α

+

,∀x > 1,

λ̄−ψ (x) =

∫ ∞
x

c−

u
u−α

−
du =

c−

α−
x−α

−
,∀x > 1. (33)
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3.3 The need for time-varying jump tails

As such, by Theorem 3.1 it is given that the CDF of the double-exponential

model is in the maximum domain of attraction of Fréchet, with ξ = α± and

L±(x) = c±

α± .

Despite the seeming richness of this setup and its ability to accommodate

a range of the most popular models applied in empirical finance and risk man-

agement, it still has a significant problem with its ability to manage temporal

variation in jump tails. The assumption of constant shape tails, just like the

assumption of constant volatility in the Black-Scholes-Merton setup, is in clear

violation of how tails behave during times of financial calm and times of finan-

cial crisis. Therefore, (22) will be used as a basis for the model, but where the

Lévy measure is replaced with a time variable process inspired by the shape in

Assumption 3.1,

νQ
t (dx) =

(
φ+
t × e−α

+
t x1{x>0} + φ−t × e−α

−
t |x|1{x<0}

)
dx (34)

Instead of having one source of time variance, there is a time-variant in-

tensity shift across all jump levels, as seen in φ±t . The advantage compared to

before is the rate of decay of the tails governed by α±t , which is both time-variant

but also varies across jump sizes and, as such, allows for periods with adjusting

intensity for large jumps without changing the intensity for small jumps. It is

also evident that the tail measure λ̄±t,ψ is now time-variant and proportional to

the rate of decay in the tail, such that

λ̄±t,ψ(x) ∝ x−α
±
t , α±t > 0, x→∞. (35)

This makes it evident that the ratio in (31) is also time variant,

ν̄Q,±
t (x)

ν̄Q,±
t (y)

=
φ±t × λ̄±t (x)

φ±t × λ̄±t (y)
≈
(
x

y

)−α±
t

,∀x > y > 0, (36)

where it is evident that the expression in (34) fulfils the wishes for a jump

measure that is time-variant across both level shifts and the cross-section of

jumps.

Following this, there will now be a review of the main data employed in

this thesis and some of its main features. An extensive and relatively computer-

intensive cleaning procedure is also employed, which will be covered in its main

steps.
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4 Data

The estimation is based on the case of S&P500, or the Standard & Poor’s 500

Index, which is a market-capitalization-weighted index that primarily includes

500 of the largest U.S. companies by market capitalization and as of the end of

2018, it covered 83.3% of the market capitalization of U.S. Equities.

Inclusion into the S&P 500 index have historically had a positive effect on the

stock price, but as covered in Bennett et al. (2020) the positive announcement

effect on the stock price of index inclusion has disappeared, and the long-run

impact of index inclusion has become negative, which seems surprising consid-

ering the added demand for the stock from passive investment funds that track

the S&P 500.

The data used here are primarily option data traded on the Chicago Board

of Options Exchange (CBOE) on the S&P 500 Index ranging from 1996-01-04 to

2020-12-31 for a total of 6293 dates. The data is obtained from OptionMetrics

through WRDS and includes the future price, and the Black-Scholes implied

volatility as calculated by OptionMetrics. The period includes both the financial

crisis of 2007-2008 and the impact of COVID-19 on the S&P 500 in the year

2020.

As described in Section 5, the estimates for the jump tail parameters in

(48) and (51) are reliant on either an increasing number of out-of-the-money

options or an increasing time horizon to eliminate the impact of the diffusive

price component, which is not of interest. The modelling scheme is employed

to hopefully only model price change due to jumps, which is more likely for a

short time-to-maturity.

As such, the analysis is restricted to options with no more than 45 days until

expiration. Super short-lived options pose an issue with market microstructure

complications, which are not of interest either, and as such, a minimum time-

to-expiry of 8 days is also imposed. Some diffusive risk will always be present,

but this issue will be handled in Section 6

As is evident from Figure 1, there has been tremendous growth in the cross-

section of option starting in around 2014 and seemingly plateauing around 2019-

20. As several of the methods used in the estimation in the previous section

were dependent on the number of options going to infinity, this is a significant

difference compared to the previous papers, such as Bollerslev & Todorov (2014)

and Bollerslev et al. (2015), where the data were far more limited.

It is important to note that the number of options in Figure 1 are based on

the entire cross-section and before any cleaning has been done, and as such, the

number of options employed in this thesis is far more limited.
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4.1 Cleaning procedure

Figure 1: Left: Number of outstanding puts.
Right: Number of outstanding calls.

Apart from the closing bid and ask quotes for all S&P 500 options traded

on the CBOE, the analysis directly employs the implied volatilities provided by

OptionMetrics, as recommended in Carr & Wu (2009), and the relevant future

prices.

The aggregate market return predictability regressions are based on a broad

value-weighted portfolio of all Center for Research in Security Prices (CRSP),

and the relevant time-series of daily and monthly returns are obtained from the

AQR data library. The AQR data library is also the source for the Fama-French

factor portfolios, the quality-minus-junk portfolio, and the betting-against-beta

portfolio. The Fama-French daily factors data source in WRDS is the source

for the risk-free rate.

4.1 Cleaning procedure

To avoid any obvious errors in the data, the cleaning procedure has been inspired

by Carr & Wu (2003), and as such it follows,

i. The time to maturity is greater than 8 days,

ii. The time to maturity is less than 45 days,

iii. The bid option price is strictly positive,

iv. The implied volatility is valid,

v. The option is out-of-the-money,

vi. The ask price is no less than the bid price.
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4.1 Cleaning procedure

Apart from this, I have also applied a method to rule out arbitrage. Starting by

sorting the options by date, time to expiration, and strike price. Then, for each

pair of date and time to expiration, I begin with the closest at-the-money options

and only keep the subsequent out-of-the-money options where the midquote is

lower than the previous. If this condition is violated for a given pair of options,

then the option with the highest volume at that date is retained. If the volume

is identical, this often happened for a volume of zero, for a specific option on a

given day, then the option that is closest to being at-the-money is retained.

If several options on a given date have the same strike and time to expiry, then

they are merged by taking the midquote as an average.

Before the cleaning procedure, there were roughly 2.9 million data points on

puts where they were out-of-the-money compared to the matching future. After

the cleaning procedure, roughly 1.8 million data points were left. Approximately

half of the removed options were due to the bid option price not being strictly

positive. This leaves the following plot over the puts, where it seems to have

Figure 2: Number of outstanding puts after cleaning.

stabilized around 1300-1400 of outstanding puts at each date. In order to sustain

such a significant increase in the number of outstanding puts, it would either

indicate an increase in the width of expiry dates or an increase in how far out-

of-the-money.

Below is a plot over the ”depth” of the cross-section of the puts, where

for each pair of date and expiration date, I have found the greatest difference

between the strike price and the corresponding forward price. For each date, I

have found the maximum and minimum depth over the corresponding expiration

dates.

Figure 3 reveals an interesting picture. It seems reasonable that the max-

imum value of the depth is highly correlated with the number of outstanding

puts at each date, as more outstanding options will typically indicate a broader
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4.1 Cleaning procedure

Figure 3: Blue: The maximum depth for each date.
Red: The minimum depth for each date.

range of expiration dates and especially an increase in the maximum of time to

expiration. Options with a longer time to expiration will naturally have higher

bids than a put with the identical strike but a shorter time to expiry.

It is, however, crucial to keep in mind that the options included here are

limited to 45 days to expiry. Especially in the earlier years with a low number

of outstanding puts, this limit was rarely reached where on the other hand it

was reached. This can also be seen in the average maximum time to expiry at

each date. Before 2015 this value is at 32.2, and after 2015 the value is at 42.8.

After 2015 this value is relatively stable and does not explain the trend seen in

Figure 3. As such, there must be an increasing demand for far out-of-the-money

puts, perhaps in order to hedge tail risk.

The minimum depth for each date reinforces this theory. With the mini-

mum time to expiry limit of 8 days, one could expect a decreasing trend in the

red line in Figure 3, perhaps causing the slightly decreasing trend from 2000

to 2004, as more and more puts with different expiration dates are available

over the time. The average minimum time to expiration at each date before

2015 is at 19.5 and at 9.1 after 2015, showing that the range of expiration dates

becomes far more detailed over time.

Nonetheless, this is in dire contrast to the trend line after 2015, but especially

after 2018, where the minimum depth has been increasing quite drastically and

thereby showing the need for deep out-of-the-money options and why it is such

an exciting area to investigate.
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4.2 Descriptive statistics

4.2 Descriptive statistics

Table 1 shows that the average annualized log return for the period is roughly

7.2% with yearly volatility of nearly 20%. More interesting is that the skew-

ness is −0.42, which is reasonably symmetrical but dominated towards negative

jumps, and with a kurtosis of 13.3, or excess kurtosis of 10.3. The returns are

roughly bell-shaped but with far heavier tails than expected in a normal distri-

bution and longer tails towards the left. This reinforces the idea that there is a

need for jumps and that the focus should be on negative jumps.

Forward return
Mean (annualized) 0.029% (7.216%)
Volatility (annualized) 1.231% (19.546%)
Skewness -0.418
Kurtosis 13.285
Minimum -12.786%
Maximum 10.539%

Table 1: Descriptive statistics for the average log forward price and puts.

Figure 4: Left: Daily log returns for the forward price on S&P500 for the period
of 1996-2020.
Right: Daily ratio of average forward price and average strike price of cleaned
puts.

Figure 4 shows that the ratio of constant jump intensity is in contradiction

with reality, as there are massive jumps both during the financial crisis, the

European debt crisis, and the COVID-19 crisis. It is also evident that the

original assumption of constant volatility in the Black-Scholes-Merton model is

improbable as the most significant drop is more than ten standard deviations

away from the mean. In a model with constant volatility and no jumps, this is

highly unlikely.
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4.2 Descriptive statistics

The right part of Figure 4 is also interesting, as it shows that the ratio

between average forward price on a given day over average strike price on a

given day goes up in times of financial distress, indicating that even though

the Forward Price goes down, the average strike price goes down even further.

This could be the result of market makers offering options further out-of-the-

money than usual, or that there were bids on deep out-of-the-money options,

where they were usually zero-bid options and therefore dropped by the cleaning

algorithm.

Keep in mind that this is a simple average and does not take open interest or

daily volume into account.

A discussion that is always valid in the study of rare events is if 25 years of

data is enough? It would have been preferable to have a more extended period

of data, such as a century, as the number of extreme events is limited. However,

it was not until 1983 that CBOE created options on broad-based stock indices,

and as such, a century remains a dream. Data from 1983 up to 1996 could have

been employed, but this is not included in OptionMetrics, the primary data

source employed. However, over the 25 years, there have been exciting index

options data on extreme events. There were significant market events in 1998,

with the default of Russia and the crash of Long-Term Capital Management,

9/11 in 2001, the financial crisis in 2008, the European/Greek debt crisis around

2010/2011, and recently Covid in 2020.

The following section will cover tail approximations and how the data will

be used in estimation procedures, and what the implications of the tail risk

measures are on LJPt,τ .
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5 Jump tail modelling

The estimation of the Q jump tail measures builds on the models of Bollerslev

& Todorov (2011b) and Bollerslev & Todorov (2014). The use of deep out-of-

the-money puts have been used as Crash Insurance historically, e.g. see Chen

et al. (2019) or Ilmanen (2012) and the references herein, and are therefore a

natural choice to study when the topic is tail risk. As mentioned in Section 3.2

it behaves in many ways like ordinary insurance, in that you pay a premium on

it, and expectations inherent in the cross-section of puts relate directly to the

risk-neutral distribution from a pricing perspective.

Another reason to use deep out-of-the-money options that are close-to-

maturity is that they contain essential information about the risk-neutral jump

measure and facilitates tail estimation without the need for a large number

of crisis events. As mentioned in Section 4.2 the period is limited to just 25

years, and in Figure 4 it is evident that there have been roughly 5-7 periods of

uncertainty, dependent on how the limit for a significant jump is set, which is a

relatively limited amount of data to estimate multi-variable parameters. Here,

the risk-neutral pricing of options allows for the estimation of the risk-neutral

tail measure. Just as in 3.3 the discussion starts with the method concerning

time-invariant jump tails, and then it expands to time-variant jump tails.

5.1 Modelling the time-invariant tail shape

The notation is as follows, let Ot,τ (k) denote the time t price of an out-of-

the-money option on Xt with time to expiration τ and log-moneyness k =

log(K/Ft−,τ ), where Ft,τ refers to the futures price of Xt with the future date

of τ , and K denotes the strike of the option. By Proposition 1 in Bollerslev &

Todorov (2011b) it follows that for the time-invariant jump intensity process in

(22) the model-free risk-neutral jump tail measures can be estimated with,

ert,τOt,τ (k)

Ft−,τ
≈

{∫ t+τ
t

∫
R(ex − ek)+EQ

t (νQ
s (dx))ds, if k > 0∫ t+τ

t

∫
R(ek − ex)+EQ

t (νQ
s (dx))ds, if k < 0,

(37)

where ert,τ = EQ
t (e

∫ t+τ
t

rsds denotes the Q-expected risk-free interest rate over

[t, t + τ ]. It is evident that this approximation on the right-hand side is only

dependent on the jump measure, as the approximation relies on t+ τ → t and

k → ±∞. With τ → 0, the price change due to continuous will also go to zero,

and for the limited period, there will be at most one large jump. As the data

here is limited to a minimum of eight days to expiry, the t + τ → t condition
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5.1 Modelling the time-invariant tail shape

will not be complied with, and therefore, there will be a continuous component

that affects Ot,τ (k). By the definition of large jumps and continuous drift, the

continuous component is minor, and as such, it will be ignored.

Figure 5: Left: Average log-moneyness on S&P500 for the period of 1996-2020.
Right: Minimum (red)/maximum (blue) log-moneyness on each date over each
maturity date.

The data set for the second condition, k → ±∞, has dramatically improved over

the recent years, which can be seen in Figure 5, where it is evident that both

the average log-moneyness has decreased slightly over the period, but especially

that the minimum log-moneyness has decreased drastically for puts in recent

years, as seen in the red plot on the right. The minimum log-moneyness has

gone from around −0.25 to around −1.25 at the end of 2020, which is a drastic

drop.

The approximation error in (37) was researched by Monte Carlo simulation in

Bollerslev & Todorov (2011b) and found to be relatively small for the maturity

and moneyness employed in their paper. The same maturity limits are employed

in this thesis, but as the moneyness is better suited here than in their paper,

the approximation error will be of even less importance. In line with Bollerslev

& Todorov (2014) the approximation error will be ignored in the upcoming

sections.

By using the extreme value approximation for the baseline jump intensity

process in Bollerslev & Todorov (2014) together with (37), it follows that

ert,τOt,τ (k)

τFt−,τ
≈ (φ+

t 1{k>0} + φ−t 1{k<0})Φ(α±, tr, k), (38)

where

Φ(α±, tr, k) =


λ̄+
ψ (tr)

α+−1
(ek)1−α+

tr−α+ , ek ≥ tr > 1,
λ̄−
ψ (tr)

α−+1
(e−k)−1−α−

tr−α− , e−k ≥ tr > 1,
(39)
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5.1 Modelling the time-invariant tail shape

for some threshold tr > 1. Again it is interesting to review the ratio of the

measure under two differently sized jumps at the same time. For simplicity

assume that it is a put, such that |k2| > |k1| and that e−k2 > e−k1 ≥ tr > 1,

ert,τOt,τ (k2)
τFt−,τ

ert,τOt,τ (k1)
τFt−,τ

=
Ot,τ (k2)

Ot,τ (k1)

≈
(φ+
t 1{k>0} + φ−t 1{k<0})Φ(α±, tr, k2)

(φ+
t 1{k>0} + φ−t 1{k<0})Φ(α±, tr, k1)

=
Φ(α±, tr, k2)

Φ(α±, tr, k1)

=

λ̄−
ψ (tr)

α−+1
(e−k2 )−1−α−

tr−α−

λ̄−
ψ (tr)

α−+1
(e−k1 )−1−α−

tr−α−

=
(e−k2)−1−α−

(e−k1)−1−α− , e
−k2 > e−k1 ≥ tr. (40)

This can be simplified even further by taking the logarithm, such that

log

(
Ot,τ (k2)

Ot,τ (k1)

)
= (−1−α−)(−k2)−(−1−α−)(−k1) = (1+α−)(k2−k1), (41)

for e−k2 > e−k1 ≥ tr. This leaves a simple expression for the time-invariant

tail decay parameter, which can be estimated through an increasing number of

short-maturity puts with decreasing strike or an increasing number of puts over

an increasing sample of span T , or both. If just two options are available then

it is clear that a simple estimator of α− would be,

log
(
Ot,τ (k2)
Ot,τ (k1)

)
(k2 − k1)

− 1 = α̂−,

which clearly can be calculated as the entire left hand side is known. For several

options it is desirable to minimize it as a function of the errors or the absolute

deviation. For a single day the target to minimize naturally becomes,

N−∑
i=2

g(α− − α̂−) =

N−∑
i=2

g

α− −
 log

(
Ot,τ (ki)
Ot,τ (ki−1)

)
(ki − ki−1)

− 1

 ,

where the function g : R → R+ such that g(x) = 0 if and only if x = 0.

As each term here is clearly positive by the definition of g then the sum will

be normalized by the number of options minus 1. Then α̂ is the value that

minimizes that, and then the one day estimation becomes,

α̂− = argmin
α−

1

N− − 1

N−∑
i=2

g

α− −
 log

(
Ot,τ (ki)
Ot,τ (ki−1)

)
(ki − ki−1)

− 1

 , (42)
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5.2 Modelling the time-variant tail shape

where N− denotes the total number of puts on the day with log-moneyness

0 < −k1 < −k2 < ... < −kN− . But, as the data set does not consist of a single

day this will have to be modified slightly. The time invariant α̂− follows,

α̂− = argmin
α−

1∑T
t=1(N−t − 1)

T∑
t=1

N−
t∑

i=2

g

α− −
 log

(
Ot,τ (kt,i)
Ot,τ (kt,i−1)

)
(kt,i − kt,i−1)

− 1

 .

(43)

5.2 Modelling the time-variant tail shape

The approximations underlying (43) are based on (22) and as such it assumes

that the tail decay parameter is time invariant. The use of (34) complicates the

situation, even though the outcome resembles the time-invariant case greatly.

The time variant alternative to (37) is as follows,

ert,τOt,τ (kt)

τFt−,τ
≈


φ+
t e

kt(1−α
+
t )

α+
t (α+

t −1)
, if kt > 0

φ−
t e

kt(1+α
−
t )

α−
t (α−

t +1)
, if kt < 0,

(44)

for τ ↓ 0. The approximation steps in proving this are outside the scope of this

thesis, and the reader is referred to Lemma 1 and the proof hereof in Bollerslev

& Todorov (2014).

It does behave in the same manner as in the time-invariant case and as

such the same logic can be applied. A requirement for this should be that (44)

equals (38) for α±s = α±t and φ±s = φ±t for s ∈ [t, t + τ ]. I will show it for the

case of puts, but calls follows in an identical matter. Let the right hand side of

(44) equal the right hand side of (38),

φ−t e
k(1+α−

t )

α−t (α−t + 1)
= φ−t

λ̄−ψ (tr)

α− + 1

(e−k)−1−α−

tr−α
− , k < 0,

⇒ ek(1+α−
t )

α−t
= λ̄−ψ (tr)

ek(1+α−
t )

tr−α
− , k < 0,

⇒ 1

α−t
= λ̄−ψ (tr)

1

tr−α
− , k < 0,

⇒ λ̄−ψ (tr) =
tr−α

−

α−t
= tr−α

−
L−(tr), k < 0, (45)

which is clearly on the form of Assumption 3.1 with L−(tr) = 1
α− being constant.

In the same pattern as before, the estimator is found through the ratio of
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5.3 Modelling the time-variant level shift

the logarithmic prices,

log

(
Ot,τ (kt,2)

Ot,τ (kt,1)

)
= log


(
φ−
t e

kt,2(1+α
−
t )

α−
t (α−

t +1)

)
(
φ−
t e

kt,1(1+α
−
t )

α−
t (α−

t +1)

)
 = (kt,2 − kt,1)(1 + α−t ), kt,i < 0,

(46)

which is identical as before except the tail decay parameter is no longer time-

invariant. As such, the simple estimator follows in the same pattern as (42),

α̂−t = argmin
α−
t

1

N−t − 1

N−
t∑

i=2

g

α−t −
 log

(
Ot,τ (kt,i)
Ot,τ (kt,i−1)

)
(kt,i − kt,i−1)

− 1

 , (47)

estimates α−t for t = 1, 2, .., T when N−t → ∞. In practice, this is flawed as

the number of options available at each date is finite and not infinite. However

it has been growing in later years. As a compromise, for the empirical results

reported below, the results are estimated on a time-varying weekly basis by

summing the right-hand side of (47) over a weekly basis. In practice, there is

also a need to take care of different maturity dates for each date, and as such,

the employed smoothed estimator is,

α̂−t = argmin
α−
t

1∑τ
t=1(N−t − 1)

τ∑
t=1

K∑
k=1

N−
k,t∑
i=2

g

α−t −
 log

(
Ot,τ (kt,i)
Ot,τ (kt,i−1)

)
(kt,i − kt,i−1)

− 1

 ,

(48)

where N−1,t + ...+N−k,t = Nt, K is the number of unique maturity dates at each

date, and τ is the number of days in the smoothing period. In practice, the last

sum is done through vector operations as they are far more efficient.

5.3 Modelling the time-variant level shift

In order to completely characterize the Q jump intensity process, it is necessary

also to model the time-variant level shift, not just the tail decay α±t . It is

important to notice that neither (47) nor (48) puts any restrictions on the

parameter φ±t . As such, φ±t will be modelled through utilizing (44). With the
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5.3 Modelling the time-variant level shift

case of the put and ignoring the approximation error,

ert,τOt,τ (kt)

τFt−,τ
≈ φ−t e

kt(1+α−
t )

α−t (α−t + 1)

⇔ φ̂−t =
ert,τOt,τ (kt)

τFt−,τ

α̂−t (α̂−t + 1)

ekt(1+α̂−
t )

.

In order to stabilize it, the logarithm is taken,

log(φ̂−t ) = log

(
ert,τOt,τ (kt)

τFt−,τ

)
+ log(α̂−t ) + log(α̂−t + 1)− kt(α̂−t + 1). (49)

From this the estimator follows directly,

φ̂−t = argmin
φ−
t

1

N−t

N−
t∑

i=1

g(log(φ̂−t )− log(φ−t ))

= argmin
φ−
t

1

N−t

N−
t∑

i=1

g

(
log

(
ert,τOt,τ (kt)

τFt−,τ

)
+ log(α̂−t ) + log(α̂−t + 1)− kt(α̂−t + 1)− log(φ−t )

)
. (50)

As with tail decay, it is also necessary to adapt it to smooth over a week

instead of daily data and adapt it to handle different maturities. The employed

smooth estimator is,

φ̂−t = argmin
φ−
t

1∑τ
t=1N

−
t

τ∑
t=1

K∑
k=1

N−
k,t∑
i=i

g

(
log

(
ert,τOt,τ (k)

τFt−,τ

)
+ log(α̂−t ) + log(α̂−t + 1)− kt(α̂−t + 1)− log(φ−t )

)
, (51)

where again, in practice, the last sum and
∑τ
t=1N

−
t are solved through vector

operations.

Before proceeding with the empirical modelling of the jump tail, it is crucial

to control that Definition 2.4 holds true such that ν−t (dx) is an actual Lévy

measure. The first part holds true trivially since the jump measure is zero for

jumps of size zero as (34) is defined with sharp inequalities. The second part is
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5.3 Modelling the time-variant level shift

controlled by calculating the integrals,∫
R
(|x|2 ∧ 1)ν(dx) < 0

⇒
∫ −1

−∞
ν(dx) +

∫ 1

−1

|x|2ν(dx) +

∫ ∞
1

ν(dx)

=
φ−t
α−t

e−α
−
t +

φ−t
(α−t )3

e−α
−
t +

φ+
t

(α+
t )3

e−α
+
t +

φ+
t

α+
t

e−α
+
t < 0. (52)

As such, it is a requirement that α±t is strictly positive and φ±t is finite for

νQ
t (dx) being a Lévy measure.

Now the Q jump intensity process is completely characterized, and the focus

can shift to the empirical side.
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6 Empirical jump tail modelling

The estimators for the Q jump intensity process in (48) and (51) are reliant

on short-lived out-of-the-money options in an attempt to assess the jump tail

risk and remove diffusive risk, which is still present. The idea here is that

if there is a fictive future price of $1000 and a strike price of $995, then the

diffusive risk is significant. On the other hand, with a future price of $1000 and

a strike price of $400, as long as the volatility is limited, the diffusive risk is

insignificant. Therefore, instead of just looking at out-of-the-money options, I

am looking specifically at deep-out-of-the-money options, where the threshold of

the moneyness is dependent on the at-the-money Black-Scholes implied volatility

as calculated in OptionMetrics.

6.1 Choice of log-moneyness limit

A lower limit fixed strike could be used instead of a variable strike, but in

times of low volatility, it would be too conservative and filter out too many

options. By using a flexible strike instead of a lower fixed strike, it conserves

more options. In order to decide the limit for the relative log-moneyness, Figure

6 shows the average number of weekly bonds before 2015 and after 2015 as

a function of the log-moneyness. It would not be unreasonable to employ a

stricter limit in recent years if, for example, a focus is on 2020 and Covid. In

Figure 6: Average weekly number of puts above k < −x× σATM
t

√
τ

365

order to accommodate at least a 100 weekly puts on average in the early period,

I have placed the limit at k < −3.5×σATM
t

√
τ

365 , where k is the log-moneyness

defined as k = log(K/Ft−,τ ). This gives an average of 30 puts weekly before

2010, 105 weekly before 2015, 1185 after 2015, 1915 in 2020, and 519 overall.

It is also evident that the recent data can accommodate far stricter limits on

which options to include, and as such, it can remove far more diffusive risk.
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6.2 Is it necessary to model time-variant tail shapes?

Figure 7: Left jump tail index estimates for 1/α−t under the assumption that
the shape of the left jump tails are constant over weekly horizons.
Left: Deep-out-of-the-money defined as k < −3.5× σATM

t

√
τ

365 .

Right: Deep-out-of-the-money defined as k < −5× σATM
t

√
τ

365

In Figure 7 the estimates for 1/α−t are plotted for a weekly horizon for

a more lenient limit of k < −3.5 × σATM
t

√
τ

365 and a stricter limit of k <

−5×σATM
t

√
τ

365 . The rough structure of the two plots are the same, except for

the missing data points under the strict assumption, but 1/α−t is also far more

volatile and spikes out for the crisis periods in 2010-2012, where the lenient

version is far more stable, apart from the financial crisis in 2007-08 and 2020

where it spikes out as expected. Interestingly, the tail decay is much steeper

in 2020 compared to 2007-08. This might be due to an overall increase in all

jumps, both smaller and larger. This will be reviewed in a later section.

6.2 Is it necessary to model time-variant tail shapes?

Whether or not it is necessary to model time-variant tail shapes instead of the

simpler time-invariant shapes will be answered twofold.

I will cover the tail shapes modelled weekly, monthly, quarterly, and annually to

see if the estimation time horizon is of importance and which conclusions stand

out.

Note that plots in 8 are based such that a period is listed over the end time

of the period, e.g. the period 2020-2021 is listed over 2021 in the bottom plot.

The behaviour of the tail shapes resembles those of a mean reverting function

with non-constant volatility Brownian motion and a jump function. Across the

four time horizons, three of them are reasonably close to each other, apart from

the naturally smoother estimates for the annual and quarterly pooling. Even at

low frequencies, there are clear patterns in the estimates with fatter tails around

the dot-com bubble, the financial crisis, and especially 2018 and 2020.
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6.2 Is it necessary to model time-variant tail shapes?

Figure 8: The estimates of 1/α−t under the assumption that the shape of the left
jump tails are constant over weekly (top), monthly (second), quarterly (third),
and the annual (bottom) horizons respectively. The horizontal line is the mean.

The quarterly plot stands out as quite distinct from the other plots as its

sharpest spikes are around the Russian crisis and the crash of Long-Term Capital

Management in 1998 and centred around late 2009 and 2010 and not in 2008-

09, where the financial crisis was at its worst. Allowing the tail parameters

to change at a monthly or weekly frequency further reinforces the temporal

variation in the shapes of the jump tails. The shape of the two are very similar

to each other, but the magnitude of the spikes in the weekly estimates is far

greater than the magnitude in the monthly estimate. The point estimates in the

weekly estimates are noisier, as expected, and are more susceptible to very sharp

spikes. An interesting result is that the quarterly process has the least amount

of temporal dependencies, which can be seen directly through its first-order

autocorrelations, where they are 0.44, 0.34, 0.18, and 0.24 for weekly, monthly,

quarterly, and annually respectively. For all plots, it is indisputable that none of

them is constant, and they all exhibit behaviour that captures different periods

of financial distress as expected, although the relative intensity between periods

is captured differently.

In the next section, I will model the left jump tail index estimates by an

ARIMA/GARCH model to determine the behaviour of the tail. The modelling
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6.3 Notation and underlying time series theory

will be based on the case where it is assumed that the left jump tail index is

constant over a weekly basis as this is the most detailed version. In order to

perform the analysis, it is crucial to understand the structure of the tail shape

distribution. This paper will first cover the necessary definitions and theory for

the time series employed in the analysis.

6.3 Notation and underlying time series theory

The exposition in this subsection largely follows the notes of ST422: Time Series

at the London School of Economics in the year of 2019-2020 held by Professor

Clifford Lam.

When working with discrete time series, there are a couple of definitions that

must be introduced first. It is natural to start the topic of whether or not a

time series is time-variant with the introduction of stationarity.

Definition 6.1 (Strictly stationary). The time series {xt} is defined as being

strictly stationary if for any h and time points t1, ..., tm with m > 0, then

P (xt1 ≤ c1, .., xtm ≤ cm) = P (xt1+h ≤ c1, ..., xt1+h ≤ cm) (53)

holds true for any numbers c1, .., cm.

As such, it means that the probabilistic behaviour of every collection of the

time series is identical to the time shifted set for any shift, and hence all the

xt’s have the same distribution function F , the same marginal density f , if it

exists, and is not time-variant. As it has the same density f , this means that

the mean function exists and is time-invariant, such that µt = µs for any s and

t. As such, it is a constant. It also means that the autocovariance function of

the process depends only on the time difference between t and s but not on the

actual times themselves.

It is a relatively strict constriction to require, and it is often too strong an

assumption to satisfy for actual data. Therefore weak stationarity comes into

play.

Definition 6.2 (Weak stationarity). A weakly/second-order stationary time

series {xt} is such that

i. The mean E(xt) = µ <∞;

ii. The autocovariance function γ(s, t) = cov(xs, xt) = E[(xs − µs)(xt −
µt)] depends on s and t only through their difference |s − t|. Moreover,

Var(xt) <∞
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6.3 Notation and underlying time series theory

Most strictly stationary processes are also weakly stationary process, except

processes with infinite mean and variance. Often this is not a significant issue,

but with extreme value theory, it can play an important part, as the mean of a

Fréchet distributed random variable can be infinite dependent on the choice of

parameters. The work on stationary and weakly stationary stochastic processes

was also developed mainly by the Russian mathematician Khinthcine, just as

with the Lévy-Khintchine Theorem for Lévy processes, in his paper Khintchine

(1934).

When analyzing the stationarity of a time series, it is common to start

with the autocovariance function, the autocovariance sequence (ACVS), and

the autocorrelation function (ACF). Note that hereafter a stationary process

means a weakly stationary process.

Definition 6.3 (Autocovariance function and sequence). The autocovariance

function of a stationary time series is denoted by

γ(h) = cov(xt+h, xt) (54)

for any h. For discrete and equal-spaced time series, the autocovariance sequence

is defined as

sτ = cov(xt+τ , xt) (55)

for any integer τ .

Which immediately leads to the ACF,

Definition 6.4 (Autocorrelation function). The autocorrelation function (ACF)

of a stationary time series is denoted by

ρ(h) =
γ(t+ h, t)√

γ(t+ h, t+ h)γ(t, t)
=
γ(h)

γ(0)
. (56)

The notation ρτ is used to denote the ACF for integer valued τ . Hence,

ρτ =
sτ
s0
. (57)

Based on these two definitions one can define the most basic building block

of complex time series which is the white noise process.

Definition 6.5 (White noise). The time series {xt} is defined as being a white

process iff the following holds true,

i. E(xt) = µ <∞;

44



6.3 Notation and underlying time series theory

ii. sτ = 0 for τ 6= 0.

The shorthand for saying {xt} is a white noise with mean µ and variance

σ2 is

xt ∼WN(µ, σ2).

Hence white noise process is a collection of uncorrelated time series random

variables with constant and finite mean. It is not necessarily a Gaussian white

noise, but it can be a process with much fatter tails.

The two other main time series, the building blocks, are the moving aver-

age process of order q, MA(q), and the autoregressive process of order p, AR(p).

These two functions can be combined both with each other but also with sea-

sonal versions of them. The moving average process is a linear combination of

white noise time series variables called a filtered white noise series.

Definition 6.6 (Moving average process). A process {xt} is called a moving

average process of order q, with shorthand xt ∼MA(q), if it can be written as

xt = µ+ θ0εt + θ1εt−1 + ...+ θqεt−q, (58)

where µ and θj are constants with θq 6= 0, and εt ∼WN(0, σ2
ε).

The autoregressive process is defined as follows,

Definition 6.7 (Autoregressive process). A process {xt} is an autoregressive

process of order p, with shorthand xt ∼ AR(p), if it can be defined as

xt = φ1xt−1 + φ2xt−2 + ...+ φpxt−p + εt, (59)

where the φj ’s are constants with φp 6= 0, and εt ∼WN(0, σ2
ε).

For the classifications of time series into either an AR(p), MA(q), or a

combined model, the use of the ACF and ACVS is very useful. It holds true

that the ACVS and ACF for an MA(q) process cuts of at q, and as such, the

ACF can be used to select the parameter q if the process is a MA process.

Nevertheless, for an AR(p) process, the ACVS and ACF decays exponentially

rather than cut off at a specific value, so the ACF can be used to indicate that

it is a AR process, but not the parameter choice. As such, it would make sense

to have a function that has a cutoff at p for the AR(p) process. The partial

autocorrelation function (PACF) serves this purpose.

Definition 6.8 (The Partial Autocorrelation function). The PACF for a mean
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6.4 Time series analysis of the left jump tail shape

0 stationary process {xt} is defined as

π(1) = corr(x2, x1)

π(2) = corr(x3 − E(x3|x2), x1 − E(x1|x2))

π(3) = corr(x4 − E(x4|x3, x2), x1 − E(x1|x3, x2))

etc...

With this definition the PACF at lag j is the correlation of those portions

of x1, xj+1 which are unexplained by the intermediate variables x2, ..., xj .

Having defined the most central of the definitions and notation, the next

section will be concerned with the actual time series analysis on the shape of

the jump tails.

6.4 Time series analysis of the left jump tail shape

It is usually assumed that an economic time series will follow the additive model

of time series components, such that it is made up of three components, the

trend, the seasonality, and the regular component:

xt = µt + st + yt, (60)

where

µt = Trend component

st = Seasonal/periodic component

yt = Regular/stationary component.

The modelling of a time series to follow an ARMA process is typically done

on the regular and stationary part {yt}, after trends and periodic components

are estimated and removed. Therefore, the trend component of the time series

1/α−t will be investigated now on a weekly basis. To get an idea of the of the

trend, it is natural to investigate the plot.

Figure 9 shows that the time series is not stationary as the mean is fluc-

tuating over time. Note that some of the spikes in the earlier period and late

2010 might be due to a low amount of data in a specific week. The trend could

either be a piecewise linear function or a higher-order polynomial, but as a

high-order polynomial would lead to overfitting, it is not suited for this task.

It is noteworthy that there is a debate about the appropriate choice between
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6.4 Time series analysis of the left jump tail shape

Figure 9: The estimates of 1/α−t on a weekly basis.

differencing and detrending for financial time series as mentioned in Zhao & Wei

(2003) and Bianchi et al. (1999). It is important to note that the dangers of a

parametric approach, such as a polynomial, may cause misleading information

and incorrect inference about the trend curve. For example, a sixth-order poly-

nomial is significant at all estimates for this data, but it would indicate that

the 1/α−t would skyrocket in the coming years due to the elevated levels across

2020. Instead, a first-order differencing has been employed in order to remove

any piecewise linear trend that is present, and the residuals look as following,

Figure 10: Residuals of a first order differencing on the estimates of 1/α−t on a
weekly basis.

It is now clear that any trend in the mean has been removed, and therefore,

it satisfies half of the two conditions required for being called stationary. The

second condition is less clear with differenced time series as the mean is relatively

stable, but the autocovariance sequence might not only depend on the lag, which

was the second requirement for weak stationarity in Definition 6.2. There is no

clear seasonality present in the data, but that does not mean it is non-existent,

and it is familiar with economic data to have a periodic component present. In
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6.4 Time series analysis of the left jump tail shape

order to detect an unknown periodic component, Frequency Domain Analysis

as described in Koopmans (1995) will be used. It is assumed that the model is

of the form

xt − µt = st + yt = β cos(2πft) + γ sin(2πft) + εt, (61)

which is a usual linear regression model with regression parameters β and γ, if

f was known. However, it would not be interesting to perform this analysis as

f is the target of interest. Instead, by following the method in the ST422 notes

and fitting a saturated model, it can be shown that the estimated coefficients

β̂j and γ̂j are essentially measures of covariance between the observations and

a sinusoid oscillating at j cycles in T time points. As such, it can lead to a

single measure for the presence for a frequency of oscillation of j cycles in T

time points,

P (j/T ) = β̂2
j + γ̂2

j =
4

T
I(j/T ),

I(j/T ) =

(
1√
T

T∑
t=1

(st + yt) cos(2πtj/T )

)2

+

(
1√
T

T∑
t=1

(st + yt) sin(2πtj/T )

)2

,

(62)

where the quantity P (j/T ) is called the scaled periodogram, while I(j/T ) is

called the periodogram. The main conclusion from the periodogram is that if it is

relatively ”large” at frequency j/T compared to other frequencies, it means that

the data has a high correlation with a particular oscillation at frequency j/T .

In the application of frequency domain analysis, its similarity to the Fourier

transformation, specifically the fast Fourier transformation as data is discrete,

is applied as both models are equivalent and efficient algorithms for calculating

the Fast Fourier Transformation exists. Figure 11 reveals that certain spike

values stand out, especially the spike in the middle with frequency f = 0.228

corresponding to 1/f = 4.378, which is roughly the number of weeks in a month

which is 4.348.

For economic data collected on a weekly basis, it is relatively common to

have a monthly seasonality. I have circled other choices of spikes that stand out,

but especially for the higher frequency, corresponding to shorter periods, there

is much subjectivity in the choice. The values selected here corresponds to, from

left to the right: The appearance of especially 1/f = 13.3, 1/f = 4.4, 1/f = 2.1

is expected as these represent the biweekly, monthly, and quarterly periods that

are often represented in financial and economic time series. For example, see

Sewell (2011) section on calendar effects for a more in-depth review.
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6.4 Time series analysis of the left jump tail shape

Figure 11: The scaled periodogram of the residual 1/α−t series after a first order
differencing.

f 1/f
0.075 13.255
0.126 7.936
0.153 6.558
0.228 4.387
0.307 3.253
0.489 2.046

Table 2: Frequencies of interesting from Figure 11.

In order to gain a more in-depth understanding of the rough peaks present,

it is of interest to perform kernel smoothing. For the non-parametric kernel

smoothing, it is of interest to choose the span of the kernel such that the band-

width is sufficient to smooth the estimate but such that it does not remove

any essential peaks. The kernels employed here are the modified Daniell kernel,

defined such that for a span of {m : m ∈ N+}, the smoothing is

x̂t =
xt−m + 2xt−(m−1) + ...+ 2xt + ...+ 2xt+(m−1) + xt+m

4m

and the convoluted Daniell kernel. Let I(j/T ) denote the periodogram at fre-

quency j/T . By employing a Daniell kernel with parameter m to smooth a peri-

odogram, the smoothed value Î(j/T ) is a weighted average of the periodogram

values for frequencies in the range (j −m)/T to (j +m)/T .

On the two lower plots in Figure 12 the bandwidth is still too narrow

to uniquely identify frequencies of interest. On the top plot, it is far more

transparent, even though some subjectivity is included. One could discard the

first top, or one could include the top at around f = 0.425. It is also clear that

the smoothing has not removed the significant spikes included in Figure 11,
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6.4 Time series analysis of the left jump tail shape

but one effect of the smoothing is that the dominant peak in the unsmoothed

version, the one that accounted for the monthly seasonality, is now significantly

less distinct, as the height was so sharply defined in the unsmoothed version

relative to its surrounding values.

Figure 12: The smooth scaled periodogram of the residual 1/α−t series after a
first order differencing for three different choices of smoothing kernel.

When comparing 2 and 3 it becomes clear that most of the points of interest

in the unsmoothed version have been preserved, which is a very desired trait,

even if they have been moved slightly. The peak at 1/f = 7.936 has been

dropped, but instead, 1/f = 2.660 and 1/f = 3.731 have been included. These

were also in the range of the unsmoothed periodogram where the volatility

was extremely high, and it was inconvenient to determine which spikes were
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6.4 Time series analysis of the left jump tail shape

f 1/f
0.071 14.045
0.159 6.281
0.233 4.296
0.268 3.731
0.306 3.272
0.376 2.660
0.493 2.029

Table 3: Frequencies of interesting from Figure 12.

relatively high compared to the rest.

It is also possible to make a parametric smoothing of the periodogram. It is

built around the rigorous Spectral Representation Theorem, which is outside the

scope of this thesis. However, it uses the fact that the periodogram is a sample

estimate of the spectral density and that the spectral density of any stationary

and invertible time series can be approximated by the spectral density of an AR

model. The estimation in Figure 13 is based on the R function spec.ar from the

Stats package in R.

f 1/f
0.071 14.056
0.114 8.754
0.154 6.481
0.188 5.309
0.229 4.358
0.269 3.724
0.305 3.283
0.347 2.884
0.381 2.626
0.444 2.253
0.491 2.029

Table 4: Frequencies of interesting from Figure 13.

By comparing 3 and 4 it is clear that the parametric smoothing has included

all the peaks from the non-parametric smoothing, and on top of that, it has also

made several other peaks visible. Now that there are two sets of frequencies of

interest, from Figure 12 and 13, interest can return to the function in Equation

61 and fit it as a usual linear regression model and a model comparison.

An interesting result here is that for the non-parametric smoothing, just

two frequencies are statistically significant at a 5% level which are the two
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6.4 Time series analysis of the left jump tail shape

Figure 13: The estimated smoothed periodogram for the residual of the 1/α−t
series after a first order differencing. Estimated by an AR(27) time series.

frequencies at f = 0.268 and f = 0.306, corresponding to a period of roughly

3.3 weeks and 3.7 weeks. As such, the clear spike at the monthly level in

the unsmoothed is not significant when the frequencies are based on smoothed

periodogram done by a convoluted Daniell kernel smoothing with m = (15, 8).

On the other hand, the parametric smoothing leads to six significant frequencies

at the 5% level. These are the f = 0.154, f = 0.269, f = 0.305, f = 0.347, f =

0.381, and f = 0.491 corresponding to periods of roughly 6.5, 3.7, 3.3, 2.9, 2.6,

and 2.0 weeks, which also does not include the monthly level at 4.4 weeks. The

non-parametric smoothing does not include this value due to the slight shifting

towards the right caused by the upwards trend in the original periodogram or

because the bandwidth is too high to capture the peaks of the unsmoothed
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6.4 Time series analysis of the left jump tail shape

periodogram.

The following set of linear regression models have been constructed to com-

pare and select which frequencies are of interest. Let f1 be the frequencies in

Table 3 and f2 be the frequencies in Table 4. Then,

xi =

Ki∑
k=1

βk,i cos(2πfk,it) + γk,i sin(2πfk,it), i = 1, 2, (63)

where Ki is the total number of frequencies of interest in either periodogram.

As most estimated βk and γk turn out insignificant, four models have also been

based on the significant variables, two based on a 5% level and two based on a

10% level.

x3 = γ4,1 sin(2πf4,1t) + β5,1 cos(2πf5,1t)

x4 = γ4,1 sin(2πf4,1t) + β5,1 cos(2πf5,1t) + γ1,1 sin(2πf1,1t)

x5 = β1,2 cos(2πf1,2) + β8,2 cos(2πf8,2) + γ4,2 sin(2πf4,2t)

+ γ7,2 sin(2πf7,2t) + γ9,2 sin(2πf9,2t) + γ10,2 sin(2πf10,2t)

x6 = β1,2 cos(2πf1,2) + β8,2 cos(2πf8,2) + γ4,2 sin(2πf4,2t)

+ γ7,2 sin(2πf7,2t) + γ9,2 sin(2πf9,2t) + γ10,2 sin(2πf10,2t)

+ γ6,2 sin(2πf6,2t) + β7,2 cos(2πf7,2). (64)

In order to compare which of these six models to use, I’ve employed the Akaike

information criterion (AIC) and the Bayesian information criterion (BIC) to

decide which of the models has the best trade-off between likelihood and number

of parameters. It is noteworthy that even though all the parameters above are

significant, at least at the 10% level, they explain a minimal amount of the

variance in the first order differenced series of 1/α−t . The AIC and BIC turn

out as,

df AIC BIC
x1 16 −2587.114 −2505.084
x2 24 −2588.386 −2465.341
x3 4 −2601.497 −2580.990
x4 5 −2602.426 −2576.791
x5 8 −2610.401 −2569.386
x6 10 −2612.439 −2561.170

Table 5: Model selection criteria for smoothing frequencies.

Sadly, the two selection criteria are not agreeing on which model to use with
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the AIC preferring x6, which is the model based on the parametric smoothing

and all parameters that are significant at the 10% level, and the BIC prefers

x3, which is the most simple model from the non-parametric smoothing. This is

due to the significant difference in degrees of freedom and how the BIC penalises

more variables harder than the AIC.

As neither models include the clear monthly spike in the unsmoothed pe-

riodogram with its dominance in the original periodogram and the economic

interpretation of having a monthly periodicity, I have decided to go forward

with x3 and the frequencies of interest herein, due to it being the simpler model

and as such less prone to overfitting.

Figure 14: Left: The first order differenced 1/α−t series and the estimated peri-
odicity.
Right: The residual after deducting the periodicity from the first order differ-
enced 1/α−t series.

The results of this can be seen in Figure 14 where it is clear that even

though the effect is statistically significant, it is also very minor in times of high

volatility. In calmer periods, such as from 2013-2015 or in 2017, the volatility

of the periodicity matches the volatility of the time series, but from the right

plot, it is evident that it still explains a minor amount of the variance in these

periods. The standard deviation has gone from 0.0854 to 0.0849, showing a

minor drop in variance due to the extra part that is being explained.

It is also clear that the time series is still not a stationary time series

as the volatility is fluctuating over time. It both exhibits volatility clustering,

common with financial data, and greatly varying overall levels of tail decay rate.

To confirm this suspicion, I will use the formal test for the whiteness of a series,

the Ljung-Box-Pierce statistics, which is described in Ljung & Box (1978) &
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6.4 Time series analysis of the left jump tail shape

Box & Pierce (1970), and is defined by

Q∗ = T (T + 2)

k∑
j=1

ρ̂2
j

T − j
,

where ρ̂j ’s are the ACF of the fitted residuals and T is the sample size. It will

be compared with a χ2
k−m where m is the number of parameters estimated in

the fitted model. As such, m = 3 in this case from the parameters γ5,1, β6,1,

and the intercept. It should be tested at a k that is reasonably large compared

to m. It turns out that the choice of {k : k > m} is irrelevant in this case

as the p-value of the Ljung-Box-Pierce test is extremely small, confirming the

non-whiteness of the residuals.

More importantly is that the regular part of the time series, as defined in

(60), is still not a stationary time series after the trend and periodicity have

been removed. This shows a need for time-variant tail shapes, and it cannot be

assumed to follow an ARMA model even with non-Gaussian white noise. An

alternative to this would be to use a periodically correlated ARMA model, also

known as a PARMA model. These are outside the scope of this thesis, but the

reader is referred to Franses et al. (1996) and Franses & Paap (2004), and the

references therein.

An attempt can be made to model 1/αt by an ARIMA model, and it

should be fairly accurate most of the time. To do this, it is common to start

with the ACF and PACF of the differenced and periodically corrected time

series in order to estimate the parameters of p and q. The danger here is that

it assumes stationarity meaning that the ACF is only dependent on the time

lag on not the starting positions. As such, it is necessary to assume stationarity

for this method to work. Then the ACF and PACF are as follows, both for

the start and for the entire period. It is immediately clear from the two top

Figure 15: The ACF and PACF for the residual of the estimated model.
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6.4 Time series analysis of the left jump tail shape

plots in Figure 15 that the assumption is flawed, but it also reveals a fascinating

picture of how the autocorrelation between the initial position and a given lag

decreases dramatically in size at around lag 700, which is in the middle of 2009

and the financial crisis. From the two bottom plots its clear that MA part

of the process has a cutoff a q = 1. The cutoff for PACF is significantly less

explicit, and one could argue that it is exponentially decreasing such that the

process is p = 0. One could also argue that it drops dramatically off for values of

p ∈ {1, 2, 3, 4, 7, 13}. To select which value of p is the most suited, the AIC and

BIC are listed below. From Table 6 there are two possible candidates, either

p AIC BIC
0 −3175.37 −3165.03
1 −3176.64 −3161.13
2 −3178.69 −3158.01
3 −3184.96 −3159.10
4 −3195.16 −3164.13
7 −3189.48 −3142.93
13 −3200.25 −3122.68

Table 6: Model selection criteria values of p for q = 1 and d = 1.

p = 4 or p = 13. Here p = 4 seems like the most reasonable choice given it is

the second-highest in AIC, where p = 13 is the worst model based on BIC due

to its higher penalty to more complex models. As such, the most fitting model

under the assumption of stationarity is an ARIMA(4,1,1).

One can also model an ARIMA model automatically through several func-

tions and packages in R. One example of this is the auto.arima function in

the package Forecast. This method proposes an ARIMA(5,1,0) model with

AIC = −3129.11 and BIC = −3098.08, and as such, it is a significantly worse

fit than what could be deducted from the ACF and PACF plots in 15.

In order to improve this model further, it is possible to model the volatility

through a GARCH model on top of the ARMA model, such that the ARMA

model models the mean and the GARCH model models the volatility. The

ARIMA/GARCH has proven itself useful in a range of fields and can be com-

bined with more advanced versions of GARCH, where Mohammadi & Su (2010)

shows applications in oil price dynamics. This thesis is limited to the standard

GARCH.

GARCH was proposed in Bollerslev (1986) as an improvement to the ARCH

model proposed four years earlier in Engle (1982), which was the first systematic

framework for volatility modelling. There are roughly four known properties of

volatility seen in asset returns:
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6.4 Time series analysis of the left jump tail shape

i. Volatility clustering. Volatility of asset returns tend to be high for a

certain period of time, and low for other periods.

ii. Continuity. Volatility evolves continuously.

iii. Boundedness. Volatility varies within some fixed range. Hence it is usually

stationary.

iv. Leverage effect. Volatility tends to react differently to big price increase

or a big drop.

ARCH was an attempt to model these traits, but the volatility clustering of

financial time series is more persistent than what an ARCH model can capture,

and what can be seen in Figure 14. It was defined as follows,

Definition 6.9 (ARCH). The autoregressive conditional heteroscedastic model

of order p, or ARCH(p), is defined by (shorthand xt ∼ ARCH(p))

xt = σtεt, σ
2
t = α0 + α1x

2
t−1 + ...+ αpx

2
t−p, (65)

where ε ∼ IID(0, 1), with α0 > 0 and αi ≥ 0 for i ≥ 0.

GARCH overcame this issue by making the volatility dependent on its own

lags on top of the lagged values of the underlying process. A significant issue

with the GARCH model is that it did not address the leverage effect problem.

This is not an issue here, as the focus is purely on negative jumps. The GARCH

model is defined as,

Definition 6.10 (GARCH). The generalised ARCH model of order p, q or

GARCH(p, q) is defined by (shorthand xt ∼ GARCH(p, q))

xt = σtεt, σ
2
t = α0 + α1x

2
t−1 + ...+ αpx

2
t−p + β1σ

2
t−1 + ...+ βqσ

2
t−q, (66)

where ε ∼ IID(0, 1), with α0 > 0 and αi ≥ 0, βj ≥ 0 for i > 0 and any j, and∑max(p,q)
i=1 (αi + βi) < 1.

Model selection in the GARCH model is relatively close to model selection

in the ARMA model. Instead of analysing the ACF and PACF of the underlying

time series, one should analyse the ACF and PACF of the squared time series.

These are plotted below. From 16 it is clear that a suitable choice is either

the GARCH(1,1) or GARCH(4,4). Again, the choice is made by comparing

the information criterion statistics under the assumption that the residuals are

Gaussian. The fit is done through garchFit in the package fGarch.
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6.4 Time series analysis of the left jump tail shape

Figure 16: The ACF and PACF for the squared residuals of the estimated model.

(p, q) AIC BIC
(1, 1) −3640.716 −3599.701
(4, 4) −3648.420 −3576.644

Table 7: Information criterion statistics for (p, q).

Again the best model is ambiguous, dependent on whether AIC or BIC is

preferred. There is, however, a significant issue with both models. The Jarque-

Bera test and Shapiro-Wilk test on the standardised residuals are both rejected,

and as such, it is not suited to model it according to a Gaussian distribution. As

the tails are not heavy enough, it seems logical to try modelling the distribution

of εt according to a standard Student’s t with 5 degrees of freedom or a skew-

standard Student’s t with 5 degrees of freedom. This yields the results in Figure

8.

(p, q) Skewed AIC BIC
(1, 1) N −4344.208 −4298.066
(1, 1) Y −4513.052 −4461.783
(4, 4) N −4344.098 −4267.195
(4, 4) Y −4522.584 −4440.554

Table 8: Information criterion statistics for (p, q) and whether ε follows a stan-
dard Student’s t or a skew-standard Student’s t distribution.

For all four models, the Ljung-Box statistics, lowest p-value is 0.85 de-

pendent on lag, and the LM Arch test, with a p-value of 0.99, does not reject

the null hypothesis for uncorrelated standardised residuals. This is a critical

assumption for a GARCH-type model, and as such, it is a must that it is sat-

isfied. The choice between the two models where εt follows a skew-standard

Student’s t is again ambiguous. By analysing the estimated parameters for the

ARMA(4, 1, 1) +GARCH(4, 4), it becomes evident that a majority of the pa-
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6.5 The jump intensity parameter

rameters are insignificant, and several parameters have identical estimates. As

such, the ARMA(4, 1, 1) + GARCH(1, 1) is the most fitting for this data set,

and the final best model is as follows:

xt = y∗∗t + y∗∗t−1

y∗∗t = 1.758 ∗ 10−4 + 6.7 ∗ 10−3 sin(0.268 ∗ 2πt)

−1.107 ∗ 10−2 cos(0.306 ∗ 2πt) + y∗t

y∗t = 1.725 ∗ 10−1y∗t−1 − 5.028 ∗ 10−3y∗t−2 + 1.142 ∗ 10−1y∗t−3

+4.765 ∗ 10−2y∗t−4 + yt − 9.055 ∗ 10−5yt−1

yt = σtεt

σ2
t = 1.407 ∗ 10−4 + 2.570 ∗ 10−1y2

t−1 + 7.828 ∗ 10−1σ2
t−1

εt ∼ T5(3.022, 1.603),

(67)

where Tκ(ν, ξ) is the skew-standard Student’s distribution with shape parameter

ν, skewness parameter ξ, and κ degrees of freedom.

In order to test the accuracy of the ARMA(4, 1, 1)+GARCH(1, 1) estima-

tion above, Figure 17 shows the 1-day rolling forecasts for the entire period and

for 2019-21. The rolling forecast is calculated using ugarchforecast from the

package rugarch.

Figure 17 shows that the ARMA/GARCH model is well suited to capture

the first order differenced series in times of lower volatility. It is also decently

suited at capturing periods of higher volatility, but it lacks in times where there

is a sudden shift, such as a jump. From the bottom plot and especially the top

plot it is apparent that it is noteworthy better at capturing significant negative

shifts than positive jumps, especially during the financial crisis in 2008-09, where

it consistently underestimates the actual values in the most drastic weeks.

With an ARIMA/GARCH model ready for the jump tail shape, the next

section will be concerning the overall jump intensity.

6.5 The jump intensity parameter

Having modelled and reviewed the importance of the tail shape parameter, it is

time to move on to the second parameter in (34), videlicet, the jump intensity

process governed by φt. Instead of just looking at φt alone, it is also of interest

to look at the left jump intensity, as the values of φt are minimal in periods

with few very sharp spikes. It is crucial to remember that the Lévy measure

νQ
t (dx) captures the jump intensity for jumps of size x. Therefore, to look at all
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6.5 The jump intensity parameter

Figure 17: The one-period rolling forecast based on the ARIMA/GARCH model
in (67).

significant jumps, such that x < −|kt| and where kt is a time-variant limit for

what is deemed significant, one should integrate νQ
t (dx) on that range. Since

νQ
t (dx) as described in (34) behaves nicely, the integral can be computed as the

Riemann Integral. Let LJIt describe the left jump intensity for large jumps

implied by the estimates α̂−t and φ̂−t . Then,

LJIt =

∫
x<−|kt|

νQ
t (dx) =

∫
x<−|kt|

φ̂−t e
−α̂−

t |x|dx =
φ̂−t
α̂−t

e−α̂
−
t |kt|. (68)

This calculation necessity a choice for what is a significant jump. The choice

of the cutoff kt is decisive in what constitutes a significant jump and when the

start of the jump tails is. As there are periods with high volatility, it is clear

that kt should relate to Black-Scholes ATM volatility at time t in order to ensure

that it is a relatively large jump instead of an absolute significant jump.

Several choices for the tail cutoff will be tested below to determine which

one to go on with and of how great importance the value is. A natural baseline

value is to use 3.5 times the time-normalized Black-Scholes ATM volatility at

time t, as this was the choice for which puts are included in the analysis as

covered in Section 6.1. The other choices are 6.868, as proposed in Bollerslev
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6.5 The jump intensity parameter

et al. (2015), 1500/925 ∗ 6.868, and log(xt)/ log(925) ∗ 6.868, where xt is the

median strike price for the deepest OTM puts in each weak, 925 is the average

strike price of the deepest OTM puts in the period in Bollerslev et al. (2015),

and 1500 is the average strike price of the deepest OTM puts in the period

in this analysis. The same specific cutoff will also be employed to calculate

the critical measure in (17). Three of the four plots exhibit roughly the same

Figure 18: Plots of the estimated left jump intensities for large jumps beyond
varying thresholds as defined in (68). The two plots are identical apart from
the exclusion of the orange plot in the bottom plot.

dynamics, and it is clear that the jump intensity is monotonic with regard to

the threshold. This is required as,∫
x<−|k(1)

t |
νQ
t (dx) ≤

∫
x<−|k(2)

t |
νQ
t (dx) for k

(2)
2 < k

(1)
2 .

One can think of it as the jump intensity for jumps with sizes in the range [0, 1]

must be lower than the jump intensity for jumps with a range of [0, 2], as the

first is a subset of the second.

Additionally, the orange plot in the top panel displays a drastically different

dynamic and order of magnitude than the others. This plot is based on 3.5 times

the ATM Black-Scholes implied volatility, which was the same limit imposed on
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6.6 The estimated jump tail variation

the data used. The significant difference here is that in the data estimation,

the interest was on removing the continuous component. In this case, it is of

interest to focus only on large jumps, and as such, the limit should be higher

than 3.5, and the orange plot can be discarded.

There is a common issue in the bottom plots with the red and green line

since they both relate to a constant value. Throughout the period, there has

been significant growth in the strike price of the deepest OTM puts, as the price

of S&P 500 has gone up dramatically. This is an apparent reason why the left

jump intensity is at such high levels in more recent years compared to earlier

in the period. Mainly the green plot exhibits very low jump intensities for the

early period because the large jump threshold is relatively higher. This issue is

improved with the blue line, which increases the intensity of the red line in the

earlier years and decreases the intensity in the later years.

As the critical factor in the upcoming regression is the dynamics of LJI and

not the order of magnitude, then all three models could be employed. This is

easily shown by looking at the correlations matrix. Let x1, x2, and x3 denote

the red, green, and blue, respectively. Then the correlations matrix is, All

x1 x2 x3

x1 1 0.86 0.97
x2 0.86 1 0.79
x3 0.97 0.79 1

Table 9: Correlation matrix for varying thresholds for large jumps.

correlations are very high, with x1 and x3 being nearly perfectly correlated,

which is expected since x3 is equal to x1 times a minor adjusting factor. As

such, the threshold for x3 will be employed going forward.

6.6 The estimated jump tail variation

With the tail parameters and the level shift modelled and reviewed, the next

section will be regarding the last step in order to estimate the measure for

the fear component in (21). The left jump variation, LJVt,τ , will be modelled

according to (17). It can be calculated directly from the integral under the

assumptions that the measures φ−t and α−t are constant over the time horizon
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6.6 The estimated jump tail variation

[t, t+ τ ]. Then the integral follows,

LJV Q
[t,t+τ ] =

∫ t+τ

t

∫
x<−kt

x2νQ
s (dx)ds

= φ̂−t

∫ t+τ

t

∫
x<−kt

x2e−α̂
−
t |x|dxds

= φ̂−t

∫ t+τ

t

1

(â−t )3
e−â

−
t |kt|(â−t kt(â

−
t kt + 2) + 2)ds

=
φ̂−t τ

(â−t )3
e−â

−
t |kt|(â−t kt(â

−
t kt + 2) + 2), (69)

where the last equation holds true due to the assumption that the parameters

are constant on the interval [t, t + τ ]. The estimates for the weekly left Q

Figure 19: This figure plots the left jump variation, LJVt, defined in (69). The
middle panel plots the left jump variation LJV ∗t obtained by restricting the
shape parameter α− to be constant, but allowing φ−t to be time-variant. The
bottom panel shows LJV ∗∗t obtained by restricting the level parameter φ− to
be time-invariant, but allowing α−t to be time-varying.

jump variation measure, as implied by (172), is depicted in Figure 19. Starting

with the full time-variant LJVt in the top panel, it is clear that this measure

shares many of the same key dynamics as the estimates for tail shape, displayed
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6.6 The estimated jump tail variation

in Figure 9, which is also why the modelling of the tail shape in Section 6.4

was more detailed than the modelling of the level parameter. One significant

difference between the estimate for 1/α−t and LJVt is that LJVt is less prone

to jumps, such as in 1999 and 2010 in Figure 9. The relative variance in calm

periods is also noticeably lower.

The middle and bottom plot in Figure 19 helps to underscore the great

importance of having time-variant parameters over time-invariant parameters.

The estimates in LJV ∗t are constructed by letting α− = ᾱ−t . This restriction

was fairly common in the earlier literature, but it is clear that it mutes the

temporal variation greatly. The jumps captured in LJV ∗t are also of less eco-

nomic interpretation than in LJVt, apart from the dot-com crash. There is no

significant variation under the financial crisis, and the period following 2014,

corresponding to when the number of outstanding options grew greatly, has

been completely calm.

In contrast to this, it is more reasonable to assume that the level parameter

is constant, such that φ− is the median of φ−t , which is plotted in the bottom

plot. By restricting the temporal variation to be solely driven by the shape of

the jump tails, one gets a measure that is highly correlated with LJVt but with

far more frequent spikes and even more dramatic increases in magnitude. The

increase in magnitude also holds true for LJV ∗t .

Before proceeding to the next section, a final step is to control that (52)

holds true. The minimum value of α−t on a weekly basis is 0.9, which was on the

week ending on 2010-08-30, such that it is strictly positive, and from Figure 18

it is clear that φ−t is finite at all times. Since the focus is on the negative jumps,

it is assumed that φ+
t = 0∀t and therefore (2.4) holds true, and the estimated

left jump measure is a Lévy measure.

The thesis will proceed to the next section, which is focused on the return

predictability of the left jump tail measures across a range of portfolios. The

results will also be compared with the V IX, another common fear proxy.
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7 Return predictability

Table 10-12 reports the summary statistics for weekly returns, estimated jump

tail parameters, and jump tail variation measures. The data is from January

1996 to the end of December 2020. All measures are recorded at the end of

the week based on the Interpolation Scheme in the appendix for the code. The

SMB and HML portfolios are based on the Fama-French factor model in Fama

& French (1993), but for the HML, I have used the HML Devil adjustment as

proposed in Asness & Frazzini (2013). The UMD portfolio is from the adjusted

three-factor model proposed in Carhart (1997), the QMJ is from Asness et al.

(2019), and BAB is from Frazzini & Pedersen (2014). Returns are in weekly

percentage form. All of the variation measures are in annualized percentage

form. The sample correlation between the aggregate market portfolio for the

United States and the different tail shapes and measures are all negative, apart

from α−t , since this has an inverted relationship to the other measures. This

effect confirms that the leverage effect is still present in the U.S. market. The

leverage effect is the main shortcoming of the GARCH model in explaining the

variance for the S&P500.

The contemporaneous in Table 11 between the tail variation measures and

the weekly return on small-minus-big (SMB), high-minus-low, and betting-

against-beta (BAB) are all negative or close to zero, but of a smaller mag-

nitude. The correlations for the up-minus-down, or the so-called momentum

factor (UMD), are all very close to zero but slightly positive. The factor that

stands out the most is the quality-minus-junk factor (QMJ), where the con-

temporaneous correlations are of the same magnitude as the correlations for

the market portfolio but with an opposite sign indicating an inflow into quality

stocks in times of distress.

The picture for the correlations between the jump tail variation measures

and the subsequent week, as reported in Table 12, is quite different. All the

correlations for the aggregate market portfolio are now quite positive, while the

correlations for small-minus-big, high-minus-low, and momentum all fluctuate

around zero. One could expect that quality-minus-junk would have been nega-

tive, such that it mirrored the market portfolio again, but that is not the present

picture. Instead, betting-against-beta is negatively correlated. This effect, es-

pecially on the market portfolio, indicates a volatility feedback effect, where the

market overreacts to the variation measure by an immediate drop in order for

a higher return in the following week as compensation for the higher risk. This

would penalize the betting-against-beta strategy, since it is long stocks with a

low correlation to the systematic risk and short stocks with a high correlation,
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MKT SMB HML UMD QMJ BAB
Mean 0.16 0.03 0.00 0.09 0.09 0.16
Std. dev 2.47 1.19 1.88 2.34 1.28 1.75
Skewness -0.67 -0.02 0.90 -1.15 0.20 -0.49
Kurtosis 8.18 5.52 11.56 11.33 7.53 7.68
Max 12.88 5.26 13.68 13.16 7.38 9.25
Min -18.26 -7.29 -9.35 -16.41 -8.10 -10.82
AR(1) -0.03 0.08 0.04 0.03 0.05 0.07

α−t LJIt LJVt LJV ∗t LJV ∗∗t
Mean 10.16 0.49 0.80 1.46 2.46
Std. dev 4.78 0.29 0.11 0.53 0.76
Skewness 1.45 1.64 6.14 10.06 7.38
Kurtosis 7.02 11.09 64.9 133.51 73.34
Max 38.75 3.27 16.9 91.99 110.3
Min 0.90 0.00 0.01 0.00 0.00
AR(1) 0.43 0.54 0.67 0.14 0.26

Table 10: Univariate statistics.

and especially the high beta stocks should be rewarded in this manner. Nev-

ertheless, it is hard to conclude from sample correlations whether or not the

higher returns are associated with an increase in systematic risk or a change in

attitude towards risk.

MKT SMB HML UMD QMJ BAB α−t LJIt LJVt LJV ∗t LJV ∗∗t
MKT 1.00 0.20 0.13 -0.21 -0.59 -0.38 0.04 -0.08 -0.18 0.00 -0.04
SMB 1.00 0.06 -0.13 -0.39 -0.28 0.02 -0.02 -0.06 0.04 -0.04
HML 1.00 -0.78 -0.30 -0.19 0.00 -0.03 -0.10 -0.02 -0.06
UMD 1.00 0.31 0.43 0.03 0.01 0.02 0.03 0.04
QMJ 1.00 0.42 -0.07 0.01 0.17 -0.02 0.09
BAB 1.00 0.03 0.02 -0.05 0.01 0.00
α−t 1.00 -0.17 -0.47 0.61 -0.39
LJIt 1.00 0.34 -0.05 0.00
LJVt 1.00 -0.12 0.47
LJV ∗t 1.00 -0.08
LJV ∗∗t 1.00

Table 11: Contemporaneous correlations.

Another standard proxy for the fear factor is the V IX2, where the V IX

offers an approximation to the risk-neutral expectation of the total quadratic

variation. Therefore, it is natural to compare our fear proxy to the V IX2

process. In Figure 20, the two plots look fairly symmetrical at first glance.

There are, however, a couple of significant dissimilarities. The LJVt remains

more steady in calmer times, where the jump variance is relatively insignificant.

The V IXt varies more here, as it also captures the continuous variance. This
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α−t LJIt LJVt LJV ∗t LJV ∗∗t
MKT -0.02 0.05 0.11 0.00 0.03
SMB -0.02 -0.01 0.02 -0.01 0.04
HML -0.02 -0.05 0.01 -0.04 -0.01
UMD 0.04 0.02 -0.05 0.03 -0.05
QMJ 0.00 -0.02 -0.02 0.01 -0.01
BAB 0.04 0.02 -0.11 0.00 -0.09

Table 12: One-week-ahead return correlations.

is especially clear up to the start of the financial crisis in 2008-09, where LJVt
jumped straight up to a very elevated level, but the V IX2 was on an increasing

trend since 2007. Another interesting and highly relevant difference is how they

reacted to Covid, where the effect on the LJVt has been far more persistent than

the effect on the V IXt even though the effect on the V IX was more dramatic

initially. Both the V IXt and LJVt are reported on a monthly scale, which will

also be employed in the following section due to it preserving the dynamics of

the weekly estimations but offering a more stable estimation.

Figure 20: The two proxies for the fear component. Both series are plotted at a
monthly frequency, and span the period from January 1996 till end of December
2020. The top panel shows the estimated left jump tail variation measure LJVt
and the second panel shows the CBOE V IX2

t volatility index.
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7.1 US aggregate Market return predictability

The following section will be regarding predictability on the aggregate US

aggregate market return.

7.1 US aggregate Market return predictability

Let the continuously compunded return from time t to t + τ , say r[t,t+τ ] =

logXt+τ − logXt, implied by the formulation in (11) may be expressed as,

r[t,t+τ ] =

∫ t+τ

t

(as + qs)ds+

∫ t+τ

t

σsdWs +

∫ t+τ

t

∫
R
xµ̃P(ds, dx), (70)

where the unit interval corresponds to one month. The return linear regression

may then be expressed as,

r[t,t+τ ] = ah + bhVt + εt,t+h, (71)

where Vt is a vector of the variation measures. The standard Newey-West t-

statistics, with a lag length equal to twice the return horizon, are reported in

the parentheses in Table 13.

Neither of the regressions is making a very good fit at predicting returns,

which is expected. Especially at the three-months and 12-months, none of the

variation measures is significant at the estimation. A Wald test for the 1-month

nested models of Vt = α−∗t vs Vt = (LJV, V IX2∗, α−∗t ) is insignificant with a

p-value of 0.80. The same is not true for the 6-month case comparing Vt = LJVt
with Vt = (LJV, V IX2∗, α−∗t ) or Vt = (LJV, α−∗t ). Both of the nested models

are significant in the Wald test over the simpler model, with Vt = LJVt, with a p-

value of 0.028 and 0.011 correspondingly. Comparing Vt = (LJVt, V IX
2∗, α−∗t )

and Vt = (LJVt, α
−∗
t ) the p-value is 0.402 showing that V IX2∗ is not needed.

The simpler model for the 6-month, where xt = −0.0138+55.769LJVt+0.126α−t
and all estimates are significant at a 5% level, is the most efficient model at

predicting returns the aggregate market.

From Table 11-12 it was clear that there was also some prediction correla-

tion with especially the betting-against-beta and quality-minus-junk portfolios.

Therefore the one- and six-month return predictability regressions for QMJ and

BAB are listed below in Table 14.

The results herein paint an interesting picture reinforcing the importance

of the prediction horizon. For the one-month horizon, both LJVt and V IX∗2t
are significant at the prediction at a 5% level, but V IX∗2t can explain far more

of the variance compared to LJVt. By analyzing the Wald scores for Vt =
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7.1 US aggregate Market return predictability

1-month 3-months
Constant 0.004 -0.001 0.018 0.013 0.005 -0.003 0.003 -0.011

(1.102) (-0.056) (3.700) (1.079) (1.449) (-0.399) (0.439) (-1.277)
LJV 18.767 2.212 8.527 -5.581

(0.702) (0.080) (0.384) (-0.183)
VIX2∗ 0.184 0.099 0.246 0.330

(0.662) (0.343) (1.141) (1.274)
α−∗t -0.105 0.041 0.040 0.050

(-2.744) (-2.474) (0.894) (1.099)
R2 0.566 0.400 1.730 2.015 0.113 0.707 0.242 1.162

6-months 12-months
Constant 0.000 -0.003 0.000 -0.008 0.006 0.004 0.006 0.003

(0.092) (-0.369) (0.023) (-0.936) (1.457) (0.925) (1.774) (0.706)
LJV 43.384 67.662 8.386 10.709

(2.955) (2.966) (0.922) (0.570)
VIX2∗ 0.252 -0.193 0.058 0.000

(1.188) (-0.851) (0.646) (-0.001)
α−∗t 0.067 0.126 0.008 0.018

(2.394) (3.355) (0.222) (0.459)
R2 2.775 0.739 0.688 5.107 0.090 0.036 0.010 0.144

Table 13: The table reports one- to 12-month return predictability regressions
for the aggregate market portfolio.

(LJVt, V IX
2∗, α−∗t ), Vt = (LJVt, V IX

2∗), and Vt = (V IX2∗) it becomes clear

that Vt = (LJVt, V IX
2∗) is the most suited at prediction the one-month leading

returns for the betting-against-beta portfolio with a p-value of 0.045 over Vt =

(V IX2∗), confirming that the additional parameter is significant at 5%, and p-

value of 0.29 for using the additional parameter α−t . On the six-month horizon,

none of the variables are significant at predicting the return.

The importance of the prediction horizon is the opposite for the quality-

minus-junk portfolio. None of the parameters are significant at predicting the

one-month return, and all the R2 are by far the smallest of any prediction

in this thesis. On the other hand, the six-month regressions can explain the

highest amount of variance of any reviewed in this thesis. Both Vt = (LJVt),

Vt = (LJVt, α
−∗
t ), and Vt = (LJVt, V IX

2∗, α−∗t ) are highly significant with

Vt = (LJVt, α
−∗
t ) being the preferred one according to the Wald test, showing

that a significant portion of the return can be explained through six-months

leading left jump variation and jump tail shape. By comparing V IX2
t and LJVt,

it also becomes clear that the market treats the risk of large jumps specially and,

apart from the one-month prediction for BAB, large jump variance measures

are more suited at predicting returns compared to continuous variance measures

and the variance of small jumps.

Nevertheless, the left tail jump variation displays different dynamics in calm
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7.2 Times of distress

1-month BAB 6-months
Constant 0.011 0.031 0.001 0.030 0.008 0.011 0.014 0.019

(3.546) (6.202) (0.159) (4.313) (2.025) (2.316) (2.293) (2.391)
LJV -26.412 21.223 -8.915 -15.758

(-2.200) (1.073) (-0.868) (-0.748)
VIX2∗ -0.586 -0.736 -0.094 -0.034

(-4.174) (-3.360) (-0.654) (-0.136)
α−∗t 0.057 0.037 -0.066 -0.086

(1.800) (1.166) (-1.204) (-1.660)
R2 1.476 5.317 0.678 6.307 0.153 0.134 0.870 1.493

1-month QMJ 6-months
Constant 0.004 0.004 0.003 0.003 0.010 0.016 0.007 0.018

(1.539) (0.666) (0.717) (-0.332) (3.561) (2.448) (1.884) (3.073)
LJV 1.416 4.376 -38.568 -49.463

(0.103) (0.280) (-4.731) (3.073)
VIX2∗ 0.009 -0.022 -0.283 0.043

(0.059) (-0.131) (-1.887) (0.240)
α−∗t 0.012 0.015 -0.032 -0.080

(0.359) (0.409) (-1.150) (-4.441)
R2 0.009 0.003 0.062 0.112 5.996 2.561 0.433 8.382

Table 14: The table reports one- to 12-month return predictability regressions
for the aggregate market portfolio.

times and times of stress on the financial markets. Therefore, the next section

will be concerning the predictability regression in times of distress.

7.2 Times of distress

The two main focuses for the next part will be on the financial crisis in 2007-08

and the Covid crisis in 2020. One could also include the European sovereign

debt crisis and the dot-com crisis, but these are not as distinctive in the left

jump variation as the two other crises.

7.2.1 The Financial Crisis of 2008-09

The focus here will be placed on the period from 2008-08-01 to 2009-08-01 for

a total of 52 weeks in the sample. Due to the shorter period, the predictive

regression will be done on a weekly basis instead of monthly. The regressors are

all plotted in 21. Caution should be taken regarding α−t and LJVt since they

are very clearly not independent by nature, but the variance inflation factors

between the two turn out below two. By comparing the middle and bottom plot,

it is explicit that the V IX2 was on a rising trend before LJV showing an increase

in continuous variance and minor jumps leading up to the financial crisis. The

tail is also fatter and more skewed for the V IX2. An interesting result for the
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7.2 Times of distress

Figure 21: The three regressors. All series are plotted at a weekly frequency, and
span the period from August 2008 till start of August 2009. The top panel shows
the estimated left jump tail shape parameter, the middle plot is the estimated
left jump tail variation measure LJVt, and the bottom panel shows the CBOE
V IX2

t volatility index.

LJVt are the two prominent spikes. They are at the end of the week at 2008-10-

26 and 2008-11-23, both weeks after the main drop at the end of September and

the start of October. The spikes are also trailing two weeks of rebounds where

S&P500 climbed noticeably, indicating that the market feared a downwards

jump following the correction. In the fourth column for each portfolio in Table

15 one can find the multivariate regression with the highest R2 for significant

variables. If none of the multivariate regressions had significant variables, then

the multivariate regression based on all three regressors is listed. The Wald

score is calculated by comparing the portfolio with its nested portfolio, where

the regressor is significant, and R2 was maximized. The regression for quality-

minus-junk and high-minus-low are listed at a 1-week horizon since none of

the variables was significant at a 13-week prediction horizon. The 5% and 1%

significance level for the two-sided t-test are 2.03 and 2.72, respectively.

By comparing Table 15 with Table 13 and 14, it is evident that the sig-

nificance of the variables and the R2 has gone up for most of the regressions.

Beforehand, the maximum R2 for the aggregate market portfolio was at 5.1% at
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7.2 Times of distress

MKT 13-weeks BAB
Constant 0.020 0.025 -0.016 -0.049 -0.005 -0.027 0.013 0.019

(3.121) (1.349) (-1.714) (-0.847) (-0.999) (-4.614) (3.149) (3.978)
LJV -18.525 -13.694 5.940 -4.371

(-4.955) (-3.993) (1.800) (-3.153)
VIX2∗ -0.209 0.448 0.291

(-1.155) (1.062) (5.839)
α−∗t 0.411 0.472 -0.263 -0.307

(5.740) (1.813) (-6.833) (-8.812)
R2 6.200 1.310 11.200 14.650 1.867 7.460 13.400 14.190
Wald 0.6861 0.325

UMD 13-weeks SMB
Constant -0.023 -0.024 -0.005 -0.006 0.003 -0.004 -0.001 -0.024

(-2.017) (-0.885) (-0.433) (-0.108) (0.914) (-0.731) (-0.585) (-2.402)
LJV 14.885 18.536 -0.819 -2.067

(2.132) (3.546) (-0.474) (-1.825)
VIX2∗ 0.129 -0.200 0.070 0.226

(0.532) (-0.496) (1.313) (2.608)
α−∗t -0.134 -0.044 0.055 0.132

(-1.563) (-0.231) (-1.167) (7.230)
R2 3.012 0.374 0.893 3.461 0.194 2.334 3.259 15.830
Wald 0.079 2.540

QMJ 1-week HML
Constant 0.005 -0.023 0.007 -0.037 0.005 0.044 -0.006 0.059

(0.897) (-2.180) (0.966) (-3.057) (0.584) (2.987) (-0.593) (3.523)
LJV -2.365 -21.946 -1.156 23.774

(0.897) (-3.280) (-0.108) (2.218)
VIX2∗ 0.334 0.667 -0.488 -0.849

(2.667) (3.935) (-2.864) (-3.606)
α−∗t -0.061 0.190

(-0.637) (1.824)
R2 0.264 10.160 0.657 22.740 0.026 8.960 2.656 15.050
Wald 7.657 3.369

Table 15: The table reports either 1-week or quarterly return predictability
regressions for varying portfolios, as described in 11, under the financial crisis
of 2008-09.

the 6-months horizon, where LJVt and α−t were significant. For the 3-months

horizon, corresponding to the 13-weeks here, none of the parameters were sig-

nificant for the overall period. The picture is drastically different from the

financial crisis. The left jump tail variation measure was able to explain 6.2%

of the variance of the market returns. In contrast, the jump tail shape was able

to explain 11.2% of the variance, which is drastically higher than for the entire

period showing that a significant part of the variance on returns on the aggre-

gate market portfolio in crisis periods can be explained through the tail shape.

This confirms the importance of distinguishing between the jump intensity for

jumps of different sizes and not just the overall jump intensity.

Comparing the five other sub-portfolios, it is evident that their sensitivity
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7.2 Times of distress

to jumps varies greatly. The left jump variation measure is only significant in

the univariate regressions for the portfolio sorted on momentum. However, it is

significant in the multivariate regressions together with V IX2 for the portfolios

sorted on quality-minus-junk and high-minus-low, where they pull in opposite

directions, indicating that an increase in the left jump variation measure predicts

a negative effect on the return in the following week, where the opposite holds

true for the V IX2, which also includes minor jumps and continuous variance,

reinforcing the idea that the market has a special treatment for large jumps,

just as the Levy-Itô decomposition treats large and small jumps differently.

7.2.2 Covid-19 crisis

The focus in this section will be placed on the year 2020. It would be desirable

to include data for the first part of 2021 to see if LJVt remains at an elevated

level, but this data is not accessible through OptionMetrics as of this date. In

Figure 22 I have inserted vertical lines for important dates. The health dates

are when WHO declared a global health emergency and when former President

Trump declared a national emergency. The black lines are at the dates for when

the Coronavirus Preparedness and Response Supplemental Appropriations Act

of 2020, Families First Coronavirus Response Act of 2020, and the CARES Act

went into law. The green lines were for when the Fed announced quantitative

easing on Treasury securities and government-guaranteed mortgage-backed se-

curities, when they adapted their policy to buying securities “in the amounts

needed to support smooth market functioning and effective transmission of mon-

etary policy to broader financial conditions.” and lastly the Secondary Market

Corporate Credit Facility.

The differences between the V IX2 and LJV in Figure 22 are notable dras-

tic. Whereas the V IX2 has stabilized to a level close to pre-Covid times, the

left jump tail variation measures are still several orders of magnitude larger than

pre-Covid times. The relative standard variation is also far more considerable

for LJV compared to the V IX2 showing that smaller jumps and continuous

variance have fallen to levels closer to pre-Covid times, but the market still

prices in the risk-neutral probability for significant jumps. The second wave

around June/July stands out quite distinctively for LJVt.

One could have expected drops in the fear proxies following the dates where

the fiscal and monetary policies were enacted, but that is not the picture that

stands out on either of the two fear proxies. The opposite has proven itself

to hold true, indicating that the market had either already priced the policy

responses in or the worsening Covid crises dominated the policy responses with

73



7.2 Times of distress

Figure 22: The three regressors. All series are plotted at a weekly frequency,
and span the period from January 2020 till end of December 2020. The top
panel shows the estimated left jump tail shape parameter, the middle plot is
the estimated left jump tail variation measure LJVt, and the bottom panel shows
the CBOE V IX2

t volatility index. The red vertical lines indicate major public
health events, black lines indicate governmental policy changes, and green lines
are changes by the Federal reserve.

regards to the risk-neutral expectation of large negative jumps.

The return predictability for the 13-week horizon for the aggregate market

portfolio dramatically resembles the one for the financial crisis. The left jump

tail variation measure and the left jump tail shape are significant at predicting

the return with approximately identical R2 for both measures. The signs are

also identical across both times of distress. An increase (decrease) in the left

jump tail variation predicts a negative (positive) effect on the 13-week return.

Across the other sorted portfolios, the significance is drastically lower in

2020 compared to the period reviewed in the last section. There are just two

portfolios where any parameter is significant at a 5% level, the betting-against-

beta portfolio, where the multivariate regression for left jump tail variation and

left jump tail shape is significant, and the quality-minus-junk, where the left

jump tail variation is significant. Comparing the betting-against-beta portfolio

to the financial crisis opens for an exciting result. The multivariate regression
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7.2 Times of distress

MKT 13-weeks BAB
Constant 0.029 0.020 -0.005 0.022 0.001 0.001 -0.002 -0.042

(8.694) (2.492) (-0.923) (5.152) (0.117) (0.111) (-0.338) (-2.554)
LJV -29.733 -51.379 6.593 39.299

(-4.906) (-5.470) (0.514) (2.677)
VIX2∗ -0.114 0.307 0.056

(-1.229) (3.101) (0.373)
α−∗t 0.368 0.138 0.525

(3.578) (1.139) (2.583)
R2 9.682 1.217 9.398 13.440 3.367 3.369 0.833 4.968
Wald 1.563 1.768

UMD 13-weeks SMB
Constant -0.013 -0.004 0.008 -0.002 0.007 0.005 0.008 0.020

(-2.267) (-0.354) (1.034) (-0.099) (2.376) (1.328) (1.708) (1.464)
LJV 18.422 37.897 -2.005 -21.447

(1.605) (0.782) (-0.426) (-1.402)
VIX2∗ 0.014 -0.319 0.021 0.108

(0.076) (-0.711) (0.423) (1.263)
α−∗t -0.218 -0.048 -0.048 -0.190

(-1.699) (-0.181) (-0.553) (-1.124)
R2 0.848 0.004 0.751 1.813 0.097 0.094 0.350 2.919
Wald 0.172 0.463

QMJ 1-week HML
Constant -0.012 -0.017 0.002 -0.028 0.006 0.008 -0.006 0.029

(-2.455) (-2.128) (0.512) (-1.723) (0.520) (0.631) (-0.500) (1.233)
LJV 17.060 11.460 -17.851 -29.147

(2.040) (0.602) (-0.108) (-0.551)
VIX2∗ 0.242 0.211 -0.192 -0.069

(1.738) (0.910) (-0.940) (-0.137)
α−∗t -0.103 0.143 0.074 -0.265

(-1.454) (1.010) (0.293) (-0.782)
R2 7.073 11.530 1.664 11.560 1.242 1.171 0.127 1.997
Wald 0.3088 0.1811

Table 16: The table reports either 1-week or quarterly return predictability
regressions for varying portfolios, as described in 11, under Covid-19.

is significant for all estimates in both periods, but the sign has turned to the

opposite under Covid, and the R2 has dropped to nearly a third. The Wald

test comparing the multivariate regression to the nested model of just LJVt
does not reject the null hypothesis. Since the estimate is insignificant in the

univariate regression, one should not place too much weight on the multivariate

regression. There is a barely significant positive estimate for the quality-minus-

junk portfolio but a somewhat limited R2.

For the rest of the sorted portfolios, there was no significant linear pre-

dictability.

75



8 Further research

An issue with comparing the V IX and the LJV is that the V IX also includes

the significant jumps. As such, it would be of interest to have an estimate of

the variance risk premium and then remove the LJVt in order to only proxy

continuous risk premium. As proposed in Bollerslev et al. (2015), the variance

risk premium can be calculated as the difference between the V IX2
t and the

expected integrated variation over the time horizon. As proposed in Bollerslev

& Todorov (2011b) the expected integrated variation can be calculated as a

22-order multivariate auto-regressive time series,

Xt = A0 +A1Xt−1 +A5

5∑
i=1

Xt−i/5 +A22

22∑
i=1

Xt−i/22 + εi (72)

for the four dimensional vector,

Xt ≡ (CVt, RJVt, LJVt, (pt+πt − pt)2)′.

The significant issue with this methodology is that it is based on high-frequency

data in order to distinguish between continuous variation and jump variation.

The variation measures are as follows,

CVt ≡
n−1∑
i=1

(∆n,t
i f)21{|∆n,t

i f |≤α∆ω
n,t}

RJVt ≡
n−1∑
i=1

(∆n,t
i f)21{∆n,t

i f>α∆ω
n,t}

LJVt ≡
n−1∑
i=1

(∆n,t
i f)21{∆n,t

i f<−α∆ω
n,t}

, (73)

where ∆n,t ≡ 1
n and ∆n,t

i f ≡ ft+i∆n,t − ft+(i−1)∆n,t
for i = 1, ..., n− 1.

The choice of truncation level is vital in practice since the variance of futures

are dependent on the time of day, as the market is more active during typical

trading hours. This diurnal pattern can be estimated nonparametrically by a
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time-of-day factor TODi, i = 1, n, ..., n,

TODi

= NOIi

∑N
t=1(ft−1+i∆n,t

− ft−1+(i−1)∆n,t
)21{|ft−1+i∆n,t−ft−1+(i−1)∆n,t

|≤ᾱ∆ω
n}∑N

t=1

∑n−1
i=1 (ft−1+i∆n,t

− ft−1+(i−1)∆n,t
)2

,

NOIi =

∑N
t=1

∑n−1
i=1 1{|ft−1+i∆n,t−ft−1+(i−1)∆n,t

|≤ᾱ∆ω
n}∑N

t=1 1{|ft−1+i∆n,t−ft−1+(i−1)∆n,t
|≤ᾱ∆ω

n}
,

ᾱ = 3

√
π

2√√√√ 1

N

N∑
t=1

n−1∑
i=2

|ft−1+i∆n,t
− ft−1+(i−1)∆n,t

||ft−1+(i−1)∆n,t
− ft−1+(i−2)∆n,t

|,

∆n ≡
1

n
. (74)

The significant issue I faced here was the lack of access to high-frequency

data for the entire period. Through Bloomberg Terminal, it was possible to

access 30-minute high-frequency data for the past year on a running basis, but

higher frequency data was just available for three months. This led to a volatile

time-of-day factor, as shown in Figure 23, which led the methodology above

characterising almost all price changes as either a right or left jump. This is not

a desirable trait, and as such, I have not included the VAR estimates, which

was calculated using the package marima in R, nor the predictability regressions

based on this. It would be beneficial to repeat this review using higher frequency

data for the entire period.

Figure 23: The estimates are based on 30-minute high-frequency S&P 500 fu-
tures data from 13-02-2020 till 13-02-2021.

Another exciting research area would be to compare the left jump variation
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measure across different countries and make a multivariate regression including

other observable economic variables in order to gauge the effect of real economic

shocks or rate changes. This could take a basis in this paper and in the recent

paper Andersen et al. (2021) where the tail risk and return predictability for

the Japanese equity market was reviewed.
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9 Conclusion

In this thesis, the jump intensity process of risk-neutral returns has been ana-

lyzed under the assumption that the tail shape is either time-invariant or time-

variant, where it was shown that both the overall jump intensity and tail shape

was necessary for the risk-neutral jump variation measure. Nevertheless, the

tail shape measure carried the majority of the information included in the jump

variation measure, and as such, there was a focus on modelling the time-variant

tail shape.

One of the few assumptions applied in this thesis is that the dynamics in the

risk-neutral tails can be characterized fully by a Lévy measure. Therefore, to

begin with, the fundamental properties of Lévy processes are considered. Based

on a foundation of the Brownian motion and the Poisson Process, the class

leads to a right-continuous stochastic process with jumps of varying activity.

A strength of Lévy processes is that they can be completely characterized via

their characteristic functions or Lévy triplet, which follows from the celebrated

Lévy-Khintchine representation, and can be decomposed into four independent

parts that yields information about the path properties of one’s process.

Following the theoretical groundwork, a model was built around the idea

that the variance risk premium is decomposed into two fundamentally different

sources of market variance risk, and it is argued why the compensation for left

jump tail risk is a valid proxy for market fear. This led to modelling the tail

shape parameter and a level shift for the jump intensity, where the empirical

estimation is built by using the option surface to get risk-neutral data as the

physical jump estimation would be plagued by a dearth of extreme events.

A rigorous cleaning procedure is employed, and it is reviewed how deep

out-of-the-money options should be in order for them to mimic large jumps and

not smaller jumps and continuous changes. Further, it is shown that there is a

dire need for time-variant tail shapes and that the assumption of constant tail

shapes in earlier literature is problematic. A time series modelling of the tail

shape follows. The time series is first cleaned of trend and seasonality, whereafter

it is modelled by an ARIMA/GARCH in order to secure both stationarity in

the mean and in the variance, and the estimate is controlled by a one-period

rolling forecast that can replicate the majority of the actual tail shape.

Based on the estimated models, it was found that the left jump tail variation

was a significant predictor with the aggregate market, which is consistent with

the idea that jump tail variation is a proxy for fear in the market. By comparing

with the predictive regression of the V IX, which includes both continuous and
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jump variation, it is clear that the explanatory power of return predictability

regressions differs significantly between the V IX and LJV , which is persistent

with the theory that jump risk factors represents state variables that drive the

market risk premium. For the aggregate market portfolio, the predictability

regressions were more substantial for the LJV , confirming a truer proxy for

market fears.

Finally, the same process was repeated for other commonly studied portfolio

sorts under the financial crisis and the Covid-19 crisis. The message conveyed

for the aggregate market portfolio is consistent across the overall period and

the times of distress, with the left jump tail variation measure being significant

while the V IX is insignificant. By comparing the two periods of distress, it

is clear that the explanatory power of return predictability regression is more

substantial across the financial crisis compared to the Covid crisis, but the

message is generally the same. The V IX, thereby continuous variance, shows

stronger predictability on the short horizon for quality-minus-junk and high-

minus-low, but weaker predictability across the other portfolios with the 13-week

horizons.

The procedures mentioned above were implemented in R using both stan-

dard and non-standard packages. A specification of the packages used and the

code can be found in the appendix.
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11 Appendix

All of the calculations have been done in R through the use of several standard and

non-standard packages.

The following packages were employed in the code:

• data.table: Used for converting data.frames to data.tables which are easier to

manipulate and more efficient,

• dplyr: Allows for efficient manipluation,

• ggplot2: Convenient for plotting,

• lubridate: Efficient data manipulation,

• readr: Efficient reading of data tables,

• reshape2: Allows for melting of data which is used for plots,

• rlang: Part of the tidyverse,

• rlist: Used for working with lists,

• stats: Includes a wide range of statistical tools,

• stringr: Used in string manipulation,

• tideselect: Select from strings,

• zoo: Package for working with time series,

• TSA: Package for working with time series,

• astsa: Package for working with time series,

• forecast: Package for forecasting time series,

• tibble: Addition to data.tables,

• gridExtra: Additional control over plots,

• sandwich: Allows for the calculation of Newey-West t-statistics,

• lmtest: Used for Wald test.
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1   #============================================================================
2   #
3   # Script for running thesis calculations
4   #
5   #============================================================================
6   
7   #rm(list=ls())           # Clear the workspace
8   packages <- c("data.table","dplyr","ggplot2","fredr",
9   "jrvFinance", "lubridate","RcppRoll","readr",

10   
"reshape2","rlang","rlist","stats","stringr","tidyselect","zoo","progres
s","minpack.lm",

11   "TSA","astsa","forecast","tibble","gridExtra","sandwich","lmtest")
12   
13   #load library for all packages
14   lapply(X = packages, FUN = library, character.only = TRUE)
15   
16   # Set working directory the folder in which the script is
17   setwd(dirname(rstudioapi::getActiveDocumentContext()$path))
18   
19   # Go up one folder in working directory, so we go from "Term Structure of Funding / 

Code" to the main folder "Term Structure of Funding"
20   setwd("..")
21   
22   # Which henceforth will be the root directory
23   root_dir <- getwd()
24   
25   # Changing working directory to the location of the script
26   work_dir <- file.path(getwd(),"Code")
27   
28   # Directory of data and output files
29   data_dir <- file.path(root_dir,"Data")
30   output_dir <- file.path(root_dir,"Results")
31   
32   #Read CSV files
33   optionprices <- fread(file.path(data_dir,"OptionMetrics.csv"), sep = ",")
34   indexprice <- fread(file.path(data_dir,"SPPrice.csv"), sep = ",")
35   future <- fread(file.path(data_dir,"Future.csv"), sep = ",")
36   FamaFrench <- fread(file.path(data_dir,"FamaFrench.csv"), sep = ",")
37   
38   #Remove observations without implied volatility and mutate dates and strike
39   optionprices <- optionprices %>% filter(!is.na(impl_volatility)) %>%
40   mutate(date = ymd(date),exdate = ymd(exdate)) %>%
41   mutate(strike_price = strike_price/1000)
42   indexprice <- indexprice %>% mutate(date = ymd(date))
43   future <- future %>% mutate(date = ymd(date), expiration = ymd(expiration))
44   FamaFrench <- FamaFrench %>% mutate(date = ymd(date))
45   #Combine the data sets and drop irrelevant columns
46   combined <- merge(optionprices,indexprice,by="date")
47   drop_col <-

c("secid.x","symbol","forward_price","index_flag","class","issuer","secid.y","cusip","
volume.y","shrout","cfret")

48   combined <- combined %>% select(-one_of(drop_col))
49   combined <- combined %>% mutate(comdate = paste(combined$date,combined$exdate))
50   colnames(future)[3] <- "exdate"
51   
52   future <- future %>% mutate(comdate = paste(future$date,future$exdate))
53   future <- future[comdate %in% combined$comdate]
54   future <- future[!duplicated(future$comdate)]
55   combined <- merge(combined,future[,c(4,5,10)],by = "comdate")
56   
57   
58   ### Cleaning procdure ###
59   #Remove any zero-bid options
60   combined <- combined %>% filter(best_bid != 0)
61   
62   #Only keep ATM or OTM points
63   combined <- combined %>% filter(cp_flag=="P" & strike_price<=ForwardPrice |

cp_flag=="C" & strike_price>=ForwardPrice)
64   
65   #Add a mid-quote
66   combined <- combined %>% mutate(midquote = (best_bid+best_offer)/2)
67   combined <- combined[order(date,exdate,cp_flag,strike_price)]



68   
69   #Check for arbitrage trades
70   combined_p <- combined %>% filter(cp_flag=="P") %>% arrange(comdate,-strike_price)
71   combined_p_diff <- NULL
72   k<-1
73   cont <- 1
74   while(k <= length(unique(combined_p$comdate))){
75   print(k)
76   i <- unique(combined_p$comdate)[k]
77   if(cont == 1){
78   combined_p_diff <- rbind(combined_p_diff,combined_p %>% filter(comdate==i) %>%

mutate(diff = c(-1,diff((combined_p %>% filter(comdate==i))$midquote))))
79   combined_p_diff[which(combined_p_diff$diff<0 &

combined_p_diff$diff>-1*10^-5)]$diff=0
80   combined_p_diff[which(combined_p_diff$diff>0 &

combined_p_diff$diff<1*10^-5)]$diff=0
81   }
82   cont <- 1
83   if(any(combined_p_diff$diff>0)){
84   for(p in 1:length(which(combined_p_diff$diff>0))){
85   index <- which(combined_p_diff$diff>0)
86   j <- index[1]
87   if(combined_p_diff[j]$volume.x>combined_p_diff[j-1]$volume.x){
88   combined_p_diff <- combined_p_diff %>% slice(-(j-1))
89   combined_p_diff[j]$diff = -1
90   } else if(combined_p_diff[j]$volume.x<=combined_p_diff[j-1]$volume.x){
91   combined_p_diff <- combined_p_diff %>% slice(-j)
92   }
93   index = index - 1
94   }
95   combined_p_diff[combined_p_diff$comdate==i] <-

combined_p_diff[combined_p_diff$comdate==i] %>% mutate(diff =
c(-1,diff((combined_p_diff[combined_p_diff$comdate==i] %>%
filter(comdate==i))$midquote)))

96   combined_p_diff[combined_p_diff$comdate==i][which(combined_p_diff$diff<0 &
combined_p_diff$diff>-1*10^-5)]$diff=0

97   combined_p_diff[combined_p_diff$comdate==i][which(combined_p_diff$diff>0 &
combined_p_diff$diff<1*10^-5)]$diff=0

98   cont <- 0
99   }

100   if(any(combined_p_diff$diff>=0) & cont == 1){
101   for(p in 1:length(which(combined_p_diff$diff>=0))){
102   index <- which(combined_p_diff$diff>=0)
103   j <- index[1]
104   if(combined_p_diff[j]$volume.x>combined_p_diff[j-1]$volume.x){
105   combined_p_diff <- combined_p_diff %>% slice(-(j-1))
106   combined_p_diff[j-1]$diff = -1
107   } else if(combined_p_diff[j]$volume.x<=combined_p_diff[j-1]$volume.x){
108   combined_p_diff <- combined_p_diff %>% slice(-j)
109   }
110   index = index - 1
111   }
112   }
113   if(cont == 1) k = k + 1
114   }
115   #fwrite(x=combined_p_diff,file.path(data_dir,"PutsCleanedFinal.csv"), sep = ",")
116   combined_final <- fread(file.path(data_dir,"PutsCleanedFinal.csv"))
117   
118   
119   
120   ##Fix issue with multiple bonds with same comdate and same strike
121   list <- NULL
122   k <- 1
123   for(i in unique(Option_P$comdate)[1:length(unique(Option_P$comdate))]){
124   Option_sell <- Option_P %>% filter(comdate==i)
125   if(any(duplicated((Option_sell$strike_price)))){
126   list <- rbind(list,Option_sell)
127   }
128   k = k + 1
129   print(k)
130   }
131   list2 <- NULL
132   for(i in 1:length(unique(list$comdate))){



133   j = unique(list$comdate)[i]
134   Option_sell <- Option_P %>% filter(comdate==j)
135   size <- dim(Option_sell)[1]
136   k = 1
137   while(k<size){
138   if(Option_sell[k,5]==Option_sell[k+1,5]){
139   Option_sell[k,23] <-

mean(c(as.numeric(Option_sell[k,23]),as.numeric(Option_sell[k+1,23])))
140   Option_sell <- Option_sell %>% slice(-(k+1))
141   size = size - 1
142   }
143   k = k + 1
144   }
145   list2 <- rbind(list2, Option_sell)
146   }
147   
148   #Control
149   for(i in unique(Option_P$comdate)){
150   Option_sel <- Option_P %>% filter(comdate==i)
151   if(any(duplicated((Option_sel$strike_price)))) print(i)
152   }
153   
154   
155   ##Find the ATM implied vol for each comdate
156   for(i in unique(Option_P$comdate)[1:length(unique(Option_P$comdate))]){
157   current[1,1] <- i
158   current[1,2] <- as.numeric((Option_P %>% filter(comdate==i))[1]$impl_volatility)
159   atmvol <- rbind(atmvol,current)
160   k=k+1
161   print(k)
162   }
163   #Merge atmvol with Option_P and save it
164   
165   ##Proceeds to next step, including filter. CleanedAndReady.csv is already cleaned 

for filter(cp_flag=="P" & log_moneyness < -5*atmvol)
166   #Cleaned up option table
167   OptionTable <- fread(file.path(data_dir,"CleanedAndReady.csv"), sep = ",")
168   OptionTable <- OptionTable[,1:27]
169   storage.mode(OptionTable$date) <- "integer"
170   storage.mode(OptionTable$exdate) <- "integer"
171   
172   ##The two lines below are needed for the first run
173   #OptionTable <- OptionTable %>% mutate(log_moneyness = 

log(strike_price/ForwardPrice),timetoexp = 
as.integer(exdate-date),atmvol=atmvol*sqrt(timetoexp/365))

174   #OptionTable <- OptionTable %>% filter(cp_flag=="P" & log_moneyness < -5*atmvol)
175   
176   #Write table
177   #fwrite(x=OptionTable,file.path(data_dir,"OptionTable.csv"), sep = ",")
178   OptionTable <- setDT(OptionTable)[,.N, by = c("date","cp_flag")] %>% left_join(x =

OptionTable, y = ., by = c("date","cp_flag"))
179   colnames(OptionTable)[28] <- "N_date"
180   OptionTable <- setDT(OptionTable)[,.N, by = c("comdate","cp_flag")] %>% left_join(x

= OptionTable, y = ., by = c("comdate","cp_flag"))
181   #Construction
182   
183   #Calculation of alpha and phi
184   #Filter for at least two bonds on each day
185   Option_P <- OptionTable %>% filter(cp_flag=="P" & N>2 & N_date >2)
186   Option_P <- Option_P[order(date,exdate,-log_moneyness)]
187   storage.mode(Option_P$date) <- "integer"
188   storage.mode(Option_P$exdate) <- "integer"
189   alpha <- NULL
190   
191   #Select smoothing
192   freq="weekly"
193   if(freq=="weekly"){ interpolation_scheme <- seq(from = min(Option_P$date), to =

max(Option_P$date), length.out = as.numeric(max(Option_P$date)-min(Option_P$date))/7)
194   }else if(freq=="daily"){interpolation_scheme <- seq(from = min(Option_P$date), to

= max(Option_P$date), length.out =
as.numeric(max(Option_P$date)-min(Option_P$date)))

195   }else if(freq=="quarterly"){interpolation_scheme <- seq(from = min(Option_P$date), 
to = max(Option_P$date), length.out =



as.numeric(max(Option_P$date)-min(Option_P$date))/91.3125)
196   }else if(freq=="monthly"){interpolation_scheme <- seq(from = min(Option_P$date), 

to = max(Option_P$date), length.out =
as.numeric(max(Option_P$date)-min(Option_P$date))/30.4375)

197   }else if(freq=="yearly")interpolation_scheme <- seq(from = min(Option_P$date), to
= max(Option_P$date), length.out =
as.numeric(max(Option_P$date)-min(Option_P$date))/364)

198   Option_P <- Option_P[order(date,exdate,-log_moneyness)]
199   Option_P <- Option_P %>% select(-c(28:29))
200   Option_P <- setDT(Option_P)[,.N, by = c("date","cp_flag")] %>% left_join(x =

Option_P, y = ., by = c("date","cp_flag"))
201   
202   ###Smoothing
203   alpha<-NULL
204   for(i in 1:(length(interpolation_scheme)-1)){
205   Option_sel <- Option_P %>%

filter(date>=interpolation_scheme[i]&date<interpolation_scheme[i+1])
206   if(dim(Option_sel)[1]>0){
207   alpha[i] <- optim(par = 10, 

fn=Find_alphaSmooth,method="Brent",lower=0.1,upper=100,Option=Option_sel)$par
208   }
209   print(i)
210   }
211   phi <- NULL
212   for(i in 1:(length(interpolation_scheme)-1)){
213   Option_sel <- Option_P %>%

filter(date>=interpolation_scheme[i]&date<interpolation_scheme[i+1])
214   if(dim(Option_sel)[1]>0){
215   phi[i] <- optim(par = 0.5, 

fn=Find_PsiSmooth,method="Brent",lower=0.000001,upper=200,Option=Option_sel,alpha=
alpha_weekly$alpha[i],riskfree=testdate$rf[i])$par

216   }
217   print(i)
218   }
219   #fwrite(x=alpha1,file.path(data_dir,"Alpha.csv"), sep = ",")
220   
221   #Functions applied above
222   #Non-smoothed
223   Find_alpha2 <- function(Option,par){
224   alpha_minus_sum <- 0
225   for(j in 1:length(unique(Option$exdate))){
226   Option_sell <- Option %>% filter(exdate==unique(Option$exdate)[j])
227   size <- dim(Option_sell)[1]
228   alpha_minus_sum <-

sum(abs(log(Option_sell[2:size,23]/Option_sell[1:(size-1),23])/(Option_sell[2:size
,25]-Option_sell[1:(size-1),25])-(1+par)))

229   }
230   alpha_minus_sum <- alpha_minus_sum/Option[1,28]
231   return(as.numeric(alpha_minus_sum))
232   }
233   
234   #Smoothed
235   Find_alphaSmooth <- function(Option,par){
236   alpha_minus_sum <- 0
237   for(k in 1:length(unique(Option$date))){
238   for(j in 1:length(unique(Option$exdate))){
239   Option_sell <- Option %>% filter(exdate==unique(Option$exdate)[j])
240   size <- dim(Option_sell)[1]
241   alpha_minus_sum <-

sum(abs(log(Option_sell[2:size,23]/Option_sell[1:(size-1),23])/(Option_sell[2:si
ze,26]-Option_sell[1:(size-1),26])-(1+par)))

242   }
243   }
244   alpha_minus_sum <- alpha_minus_sum/(dim(Option)[1])
245   return(as.numeric(alpha_minus_sum))
246   }
247   #Smoothed
248   Find_PsiSmooth <- function(Option,par,alpha,riskfree){
249   psi_minus_sum <- 0
250   for(k in 1:length(unique(Option$date))){
251   Option_sel <- Option %>% filter(date==unique(Option$date)[k])
252   for(j in 1:length(unique(Option_sel$exdate))){
253   Option_sell <- Option_sel %>% filter(exdate==unique(Option_sel$exdate)[j])



254   size <- dim(Option_sell)[1]
255   psi_minus_sum <-

sum(abs(log(exp(riskfree*Option_sell[1:size,27])*Option_sell[1:size,23]/(Option_
sell[1:size,27]*Option_sell[1:size,22]))-(1+alpha)*Option_sell[1:size,26]+log(al
pha+1)+log(alpha)-log(par)))

256   }
257   }
258   psi_minus_sum <- psi_minus_sum/(dim(Option)[1])
259   return(as.numeric(psi_minus_sum))
260   }
261   #Non-smoothed
262   Find_Psi <- function(Option,par,alpha){
263   psi_minus_sum <- 0
264   for(j in 1:length(unique(Option$exdate))){
265   Option_sell <- Option %>% filter(exdate==unique(Option$exdate)[j])
266   size <- dim(Option_sell)[1]
267   psi_minus_sum <-

sum(abs(log(Option_sell[1:size,23]/(Option_sell[1:size,26]*Option_sell[1:size,22])
)-(1+alpha)*Option_sell[1:size,25]+log(alpha+1)+log(alpha)-log(par)))

268   }
269   psi_minus_sum <- psi_minus_sum/Option[1,28]
270   return(as.numeric(psi_minus_sum))
271   }
272   
273   ##Time series analysis
274   #First, test for polynomial trend
275   t = 1:372
276   fit = lm(prodn ~ t + I(t^2))
277   r.fit = fit$resid
278   I=abs(fft(r.fit))^2/372
279   P=(4/372)*I[1:186]
280   f=0:185/372
281   plot(f, P, type="l", xlab="Frequency", ylab = "Scaled Periodogram")
282   
283   
284   ts <- alpha_weekly_3$alpha[which(!is.na(alpha_weekly_3$alpha))]
285   t = 1:length(ts)
286   r.fit = diff(1/alpha_weekly$alpha[which(!is.na(alpha_weekly$alpha))],1)
287   fit = lm(ts~t+I(t^2)+I(t^3)+I(t^4)+I(t^5))
288   r.fit = fit$resid
289   I=abs(fft(r.fit))^2/1246
290   P=(4/1246)*I[1:(1246/2)]
291   f=0:(1246/2-1)/1246
292   plot(f, P, type="l", xlab="Frequency", ylab = "Scaled Periodogram")
293   plot(ts,type="l")
294   points(fit14$fitted,type="l")
295   f1 = 1/ts2[which(ts2$P == max((ts2 %>% filter(f<0.03))$P))]$f
296   f2 = 1/ts2[which(ts2$P == max((ts2 %>% filter(f>=0.03 & f<0.1))$P))]$f
297   f3 = 1/ts2[which(ts2$P == max((ts2 %>% filter(f>=0.1 & f<0.2))$P))]$f
298   f4 = 1/ts2[which(ts2$P == max((ts2 %>% filter(f>=0.2 & f<0.3))$P))]$f
299   
300   c1 = cos(2*pi*t/f4); s1 = sin(2*pi*t/f4)
301   c2 = cos(2*pi*t/f3); s2 = sin(2*pi*t/f3)
302   c3 = cos(2*pi*t/f2); s3 = sin(2*pi*t/f2)
303   c4 = cos(2*pi*t/f1); s4 = sin(2*pi*t/f1)
304   fit2 = lm(ts~t+I(t^2)+I(t^3)+I(t^4)+I(t^5)+c1+s1+c2+s2+c3+s3+c4+s4)
305   plot(t,ts,type="l"); points(t,fit2$fitted, type="l", col="red")
306   
307   
308   
309   
310   #Linear fit
311   ts <- alpha_weekly$alpha[which(!is.na(alpha_weekly$alpha))]
312   t = 1:length(r.fit)
313   fit = lm(1/ts~t)
314   plot(t,1/ts,type="l"); points(t,fit$fitted, type="l", col="red")
315   summary(fit)
316   fit$residuals[2:1246]
317   
318   
319   #First-order differenced, non smoothed
320   r.fit = diff(1/alpha_weekly$alpha[which(!is.na(alpha_weekly$alpha))],1)
321   I=abs(fft(r.fit))^2/1246



322   P=(4/1246)*I[1:(1246/2)]
323   f=0:(1246/2-1)/1246
324   plot(f, P, type="l", xlab="Frequency", ylab = "Scaled Periodogram")
325   ggplot(data=Periodogram, aes(x=f,y=P))+geom_line(color="blue")
326   max1 <- max((Periodogram %>% filter(f<0.2))$P)
327   max2 <- max((Periodogram %>% filter(f<0.1))$P)
328   max3 <- max((Periodogram %>% filter(f<0.35 & f>0.3))$P)
329   max4 <- max((Periodogram %>% filter(f<0.15))$P)
330   max5 <- max((Periodogram %>% filter(f>0.3))$P)
331   ggplot(data=Periodogram, 

aes(x=f,y=P))+geom_line(color="blue")+geom_point(data=Periodogram[Periodogram$P==max(P
eriodogram$P),],pch=21, fill=NA, size=4, colour="red", stroke=1)+

332   geom_point(data=Periodogram[Periodogram$P==max1,],pch=21, fill=NA, size=4, 
colour="red", stroke=1) +

333   geom_point(data=Periodogram[Periodogram$P==max2,],pch=21, fill=NA, size=4, 
colour="red", stroke=1) +

334   geom_point(data=Periodogram[Periodogram$P==max3,],pch=21, fill=NA, size=4, 
colour="red", stroke=1) +

335   geom_point(data=Periodogram[Periodogram$P==max4,],pch=21, fill=NA, size=4, 
colour="red", stroke=1) +

336   geom_point(data=Periodogram[Periodogram$P==max5,],pch=21, fill=NA, size=4, 
colour="red", stroke=1) +

337   labs(x="Frequency",y="Scaled Periodogram")
338   f0 <- 1/Periodogram[Periodogram$P==max(Periodogram$P),]$f
339   f1 <- 1/Periodogram[Periodogram$P==max1,]$f
340   f2 <- 1/Periodogram[Periodogram$P==max2,]$f
341   f3 <- 1/Periodogram[Periodogram$P==max3,]$f
342   f4 <- 1/Periodogram[Periodogram$P==max4,]$f
343   f5 <- 1/Periodogram[Periodogram$P==max5,]$f
344   
345   c1 = cos(2*pi*t/f4); s1 = sin(2*pi*t/f4)
346   c2 = cos(2*pi*t/f3); s2 = sin(2*pi*t/f3)
347   c3 = cos(2*pi*t/f2); s3 = sin(2*pi*t/f2)
348   c4 = cos(2*pi*t/f1); s4 = sin(2*pi*t/f1)
349   c5 = cos(2*pi*t/f0); s5 = sin(2*pi*t/f0)
350   fit2 =

lm(r.fit~c1[2:1246]+s1[2:1246]+c2[2:1246]+s2[2:1246]+c3[2:1246]+s3[2:1246]+c4[2:1246]+
s4[2:1246]+c5[2:1246]+s5[2:1246])

351   fit2 =
lm(r.fit~c1[1:1245]+s1[1:1245]+c2[1:1245]+s2[1:1245]+c3[1:1245]+s3[1:1245]+c4[1:1245]+
s4[1:1245]+c5[1:1245]+s5[1:1245])

352   fit3 = lm(r.fit~s5[1:1245])
353   
354   
355   #First-order differenced, non-parametric smoothing and parametric smoothing
356   m=5
357   l=2*m+1
358   m2=5
359   l2=2*m2+1
360   vals3 <- mvspec(r.fit,spans = c(15*2+1,8*2+1),log="no")
361   vals2 <- mvspec(r.fit,spans = c(15*2+1),log="no")
362   vals1 <- mvspec(r.fit,spans = c(4*2+1),log="no")
363   
364   specvals<- spec.ar(r.fit,log="no")
365   specvals<- setDT(as.data.frame(cbind(specvals$freq,specvals$spec)))
366   plotsmooth <- setDT(as.data.frame(cbind(vals1$freq,vals1$spec,vals2$spec,vals3$spec)))
367   
368   max1 <- max((plotsmooth %>% filter(V1<0.1))$V4)
369   max2 <- max((plotsmooth %>% filter(V1<0.2))$V4)
370   max3 <- max((plotsmooth %>% filter(V1<0.25))$V4)
371   max4 <- max((plotsmooth %>% filter(V1<0.28))$V4)
372   max5 <- max((plotsmooth %>% filter(V1<0.35))$V4)
373   max6 <- max((plotsmooth %>% filter(V1>0.35&V1<0.4))$V4)
374   
375   per_1 <- ggplot(data=plotsmooth, 

aes(x=V1,y=V4))+geom_line(color="blue")+geom_point(data=plotsmooth[plotsmooth$V4==max(
plotsmooth$V4),],pch=21, fill=NA, size=4, colour="red", stroke=1)+

376   geom_point(data=plotsmooth[plotsmooth$V4==max1,],pch=21, fill=NA, size=4, 
colour="red", stroke=1) +

377   geom_point(data=plotsmooth[plotsmooth$V4==max2,],pch=21, fill=NA, size=4, 
colour="red", stroke=1) +

378   geom_point(data=plotsmooth[plotsmooth$V4==max3,],pch=21, fill=NA, size=4, 
colour="red", stroke=1) +



379   geom_point(data=plotsmooth[plotsmooth$V4==max4,],pch=21, fill=NA, size=4, 
colour="red", stroke=1) +

380   geom_point(data=plotsmooth[plotsmooth$V4==max5,],pch=21, fill=NA, size=4, 
colour="red", stroke=1) +

381   geom_point(data=plotsmooth[plotsmooth$V4==max6,],pch=21, fill=NA, size=4, 
colour="red", stroke=1) +

382   labs(x="Frequency / Bandwidth = 0.0292",y="Scaled Periodogram",title="Convoluted 
Daniell kernel smoothing with m=(15,8)")

383   per_2 <- ggplot(data=plotsmooth, aes(x=V1,y=V3))+geom_line(color="blue")+
384   labs(x="Frequency / Bandwidth = 0.0244",y="Scaled Periodogram",title="Daniell 

kernel smoothing with m=15")
385   per_3 <- ggplot(data=plotsmooth, aes(x=V1,y=V2))+geom_line(color="blue")+
386   labs(x="Frequency / Bandwidth = 0.00683",y="Scaled Periodogram",title="Daniell 

kernel smoothing with m=4")
387   
388   png("smoothing.png",width=480*2,height = 480*2)
389   grid.arrange(per_1,per_2,per_3,layout_matrix=(matrix(c(1,1,2,3), 2, 2, byrow = TRUE)))
390   dev.off()
391   
392   
393   f1 <- plotsmooth[plotsmooth$V4==max1,]$V1
394   f2 <- plotsmooth[plotsmooth$V4==max2,]$V1
395   f3 <- plotsmooth[plotsmooth$V4==max3,]$V1
396   f4 <- plotsmooth[plotsmooth$V4==max4,]$V1
397   f5 <- plotsmooth[plotsmooth$V4==max5,]$V1
398   f6 <- plotsmooth[plotsmooth$V4==max6,]$V1
399   f0 <- plotsmooth[plotsmooth$V4==max(plotsmooth$V4),]$V1
400   
401   c6 = cos(2*pi*t*f6); s6 = sin(2*pi*t*f6)
402   c5 = cos(2*pi*t*f5); s5 = sin(2*pi*t*f5)
403   c4 = cos(2*pi*t*f4); s4 = sin(2*pi*t*f4)
404   c3 = cos(2*pi*t*f3); s3 = sin(2*pi*t*f3)
405   c2 = cos(2*pi*t*f2); s2 = sin(2*pi*t*f2)
406   c1 = cos(2*pi*t*f1); s1 = sin(2*pi*t*f1)
407   c0 = cos(2*pi*t*f0); s0 = sin(2*pi*t*f0)
408   
409   fit1 = lm(r.fit~c0+s0+c1+s1+c2+s2+c3+s3+c4+s4+c5+s5+c6+s6)
410   summary(fit1)
411   fit11 = lm(r.fit~s4+c5)
412   fit12 = lm(r.fit~s0+s4+c5)
413   summary(fit11)
414   summary(fit12)
415   
416   
417   
418   max1 <- max((specvals %>% filter(V1<0.1))$V2)
419   max2 <- max((specvals %>% filter(V1<0.13))$V2)
420   max3 <- max((specvals %>% filter(V1<0.2))$V2)
421   max4 <- max((specvals %>% filter(V1<0.2&V1>0.175))$V2)
422   max5 <- max((specvals %>% filter(V1<0.25))$V2)
423   max6 <- max((specvals %>% filter(V1<0.29))$V2)
424   max7 <- max((specvals %>% filter(V1<0.4))$V2)
425   max8 <- max((specvals %>% filter(V1<0.35&V1>0.32))$V2)
426   max9 <- max((specvals %>% filter(V1<0.4&V1>0.35))$V2)
427   max10 <- max((specvals %>% filter(V1<0.45&V1>0.4))$V2)
428   
429   ggplot(data=specvals, 

aes(x=V1,y=V2))+geom_line(color="blue")+geom_point(data=specvals[specvals$V2==max(spec
vals$V2),],pch=21, fill=NA, size=4, colour="red", stroke=1)+

430   geom_point(data=specvals[specvals$V2==max1,],pch=21, fill=NA, size=4, 
colour="red", stroke=1) +

431   geom_point(data=specvals[specvals$V2==max2,],pch=21, fill=NA, size=4, 
colour="red", stroke=1) +

432   geom_point(data=specvals[specvals$V2==max3,],pch=21, fill=NA, size=4, 
colour="red", stroke=1) +

433   geom_point(data=specvals[specvals$V2==max4,],pch=21, fill=NA, size=4, 
colour="red", stroke=1) +

434   geom_point(data=specvals[specvals$V2==max5,],pch=21, fill=NA, size=4, 
colour="red", stroke=1) +

435   geom_point(data=specvals[specvals$V2==max6,],pch=21, fill=NA, size=4, 
colour="red", stroke=1) +

436   geom_point(data=specvals[specvals$V2==max7,],pch=21, fill=NA, size=4, 
colour="red", stroke=1) +



437   geom_point(data=specvals[specvals$V2==max8,],pch=21, fill=NA, size=4, 
colour="red", stroke=1) +

438   geom_point(data=specvals[specvals$V2==max9,],pch=21, fill=NA, size=4, 
colour="red", stroke=1) +

439   geom_point(data=specvals[specvals$V2==max10,],pch=21, fill=NA, size=4, 
colour="red", stroke=1) +

440   labs(x="Frequency",y="Spectrum",title="AR(27) spectrum estimation")
441   png("ARSmoothing.png",width=480)
442   dev.off()
443   
444   f1 <- specvals[specvals$V2==max1,]$V1
445   f2 <- specvals[specvals$V2==max2,]$V1
446   f3 <- specvals[specvals$V2==max3,]$V1
447   f4 <- specvals[specvals$V2==max4,]$V1
448   f5 <- specvals[specvals$V2==max5,]$V1
449   f6 <- specvals[specvals$V2==max6,]$V1
450   f7 <- specvals[specvals$V2==max7,]$V1
451   f8 <- specvals[specvals$V2==max8,]$V1
452   f9 <- specvals[specvals$V2==max9,]$V1
453   f10 <- specvals[specvals$V2==max10,]$V1
454   f0 <- specvals[specvals$V2==max(specvals$V2),]$V1
455   
456   c10 = cos(2*pi*t*f10); s10 = sin(2*pi*t*f10)
457   c9 = cos(2*pi*t*f9); s9 = sin(2*pi*t*f9)
458   c8 = cos(2*pi*t*f8); s8 = sin(2*pi*t*f8)
459   c7 = cos(2*pi*t*f7); s7 = sin(2*pi*t*f7)
460   c6 = cos(2*pi*t*f6); s6 = sin(2*pi*t*f6)
461   c5 = cos(2*pi*t*f5); s5 = sin(2*pi*t*f5)
462   c4 = cos(2*pi*t*f4); s4 = sin(2*pi*t*f4)
463   c3 = cos(2*pi*t*f3); s3 = sin(2*pi*t*f3)
464   c2 = cos(2*pi*t*f2); s2 = sin(2*pi*t*f2)
465   c1 = cos(2*pi*t*f1); s1 = sin(2*pi*t*f1)
466   c0 = cos(2*pi*t*f0); s0 = sin(2*pi*t*f0)
467   
468   fit2 = lm(r.fit~c0+s0+c1+s1+c2+s2+c3+s3+c4+s4+c5+s5+c6+s6+c7+s7+c8+s8+c9+s9+c10+s10)
469   summary(fit2)
470   fit21 = lm(r.fit~c0+s3+s6+c7+s8+s9)
471   fit22 = lm(r.fit~c0+s3+s5+c6+s6+c7+s8+s9)
472   summary(fit21)
473   summary(fit22)
474   
475   AIC(fit11,fit12,fit21,fit22)
476   BIC(fit11,fit12,fit21,fit22)
477   
478   plotperiod <- setDT(as.data.frame(cbind(r.fit,fit11$fitted)))
479   plotperiod <-

cbind(alpha_weekly$V1[which(!is.na(alpha_weekly$alpha))][2:1246],plotperiod)
480   plotperiod <- cbind(plotperiod,fit11$residuals)
481   colnames(plotperiod)[1]="date"
482   ggplot(data=plotperiod,aes(x=date))+geom_line(aes(y=r.fit),color="blue")+geom_line(aes

(y=V2),color="red")
483   
484   
485   
486   #Test for which arima model is most accurate
487   ar1 <- Arima(1/alpha_weekly$alpha_weekly, order=c(3,1,0))
488   ar4 <- Arima(1/alpha_weekly$alpha_weekly, order=c(7,1,0))
489   ar2 <- Arima(1/alpha_weekly$alpha_weekly, order=c(13,1,0))
490   Arima(1/alpha_weekly$alpha_weekly, order=c(13,1,1))
491   Arima(1/alpha_weekly$alpha_weekly, order=c(7,1,1))
492   Arima(1/alpha_weekly$alpha_weekly, order=c(6,1,1))
493   Arima(1/alpha_weekly$alpha_weekly, order=c(5,1,1))
494   Arima(1/alpha_weekly$alpha_weekly, order=c(4,1,1))
495   Arima(1/alpha_weekly$alpha_weekly, order=c(3,1,1))
496   Arima(1/alpha_weekly$alpha_weekly, order=c(0,1,1))
497   ar3 <- Arima(1/alpha_weekly$alpha_weekly, order=c(25,1,0))
498   auto.arima(1/alpha_weekly$alpha_weekly)
499   plot(forecast(ar2,20), include = 40)
500   plot(forecast(auto.arima(1/alpha_weekly$alpha_weekly),20), include = 40)
501   
502   
503   par(mfrow=c(2,2))
504   png("acfpacfplot.png",width=480*3)



505   par(mfrow=c(2,2))
506   acf(fit11$residuals,10000,main="")
507   pacf(fit11$residuals,10000,main="")
508   acf(fit11$residuals,main="")
509   pacf(fit11$residuals,main="")
510   dev.off()
511   par(mfrow=c(1,1))
512   
513   Arima(1/alpha_weekly$alpha_weekly, order=c(0,1,1))
514   Arima(1/alpha_weekly$alpha_weekly, order=c(1,1,1))
515   Arima(1/alpha_weekly$alpha_weekly, order=c(2,1,1))
516   Arima(1/alpha_weekly$alpha_weekly, order=c(3,1,1))
517   Arima(1/alpha_weekly$alpha_weekly, order=c(4,1,1))
518   Arima(1/alpha_weekly$alpha_weekly, order=c(7,1,1))
519   Arima(1/alpha_weekly$alpha_weekly, order=c(13,1,1))
520   
521   #Estimate the values of ARIMA/GARCH model
522   summary(garchFit(formula = ~arma(4,1)+garch(4,4),data=fit11$residuals,cond.dist =

"sstd",trace=FALSE))
523   
524   
525   png("acfpacfplotsquared.png",width=480*3)
526   par(mfrow=c(2,1))
527   acf(x1$resid[which(!is.na((x1$resid)))]^2,main="Squared residuals of the ARMA(4,1,1) 

model")
528   pacf(x1$resid[which(!is.na((x1$resid)))]^2,main="Squared residuals of the 

ARMA(4,1,1) model")
529   dev.off()
530   par(mfrow=c(1,1))
531   
532   
533   ##Summaries for varying ARIMA/GARCH models dependent on parameter values and 

conditional distribution
534   summary(garchFit(formula = ~arma(4,1)+garch(1,1),data=fit11$residuals,cond.dist =

"sstd",trace=FALSE))
535   summary(garchFit(formula = ~arma(3,1)+garch(1,1),data=fit11$residuals,cond.dist =

"sstd",trace=FALSE))
536   summary(garchFit(formula = ~arma(1,1)+garch(1,1),data=fit11$residuals,cond.dist =

"sstd",trace=FALSE))
537   summary(garchFit(formula = ~arma(1,1)+garch(1,1),data=fit11$residuals,cond.dist =

"std",trace=FALSE))
538   summary(garchFit(formula = ~arma(4,1)+garch(1,1),data=fit11$residuals,trace=FALSE))
539   summary(garchFit(formula = ~arma(4,1)+garch(4,4),data=fit11$residuals,trace=FALSE))
540   gf44 <- garchFit(formula = ~arma(4,1)+garch(4,4),data=fit11$residuals,trace=FALSE)
541   gf11 <- garchFit(formula = ~arma(4,1)+garch(1,1),data=fit11$residuals,trace=FALSE)
542   
543   
544   
545   used <- garchFit(formula = ~arma(4,1)+garch(1,1),data=fit11$residuals,cond.dist =

"sstd",trace=FALSE,include.mean = FALSE)
546   simmed <- garchSim(spec = garchSpec(used), n = 100, n.start = 1000, extended = FALSE)
547   
548   
549   ##Rolling forecasts
550   model<-ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1, 1)), 
551   mean.model = list(armaOrder = c(4, 1), include.mean = FALSE), 
552   distribution.model = "sstd")
553   modelfit2<-ugarchfit(spec=model,data=fitres)
554   mydata <- fitres
555   spec = getspec(modelfit);
556   setfixed(spec) <- as.list(coef(modelfit));
557   forecast = ugarchforecast(spec, data = mydata[1:1245,],n.ahead =

1,n.roll=1200,out.sample = 1200)
558   forecast2 = ugarchforecast(spec, data = mydata[1:1245,],n.ahead =

1,n.roll=104,out.sample = 104)
559   forecast3 = ugarchforecast(spec, data = mydata[1:1245,],n.ahead = 50)
560   head(sigma(forecast));
561   resfit <- mydata$V2[45:1245]-fitted(forecast)
562   
563   
564   modelfit11<-ugarchfit(spec=ugarchspec(variance.model = list(model = "sGARCH", 

garchOrder = c(1, 1)), 
565   mean.model = list(armaOrder = c(4, 1), 



include.mean = FALSE), 
566   distribution.model = "sstd"),data=fit11$residuals)
567   
568   ##Calculations of key values
569   2*10-2*likelihood(modelfit)
570   log(1245)*10-2*likelihood(modelfit)
571   model <- ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1, 1)), 
572   mean.model = list(armaOrder = c(4, 1), include.mean = FALSE), 
573   distribution.model = "sstd",fixed.pars =

list(ar1=0.1725075492,ar2=-0.0050270796,ar3=0.1141669267,ar4=0.0476463948,m
a1=-0.9054647368,omega=0.0001406652,alpha1=0.2569652889,beta1=0.7827887869,
skew=1.6032409401,shape=3.0220608649))

574   png("Forecast.png",width = 480*3,height = 480*2)
575   par(mfrow=c(2,1))
576   plot(forecast)
577   2
578   0
579   plot(forecast2)
580   2
581   0
582   dev.off()
583   
584   ##Constructing weekly risk free
585   rf <- fread(file.path(data_dir,"FamaFrench.csv"), sep = ",")
586   rf <- rf %>% mutate(date=ymd(date))
587   testdate <- setDT(as.data.frame(interpolation_scheme))
588   testdate <- testdate %>% add_column(new_col = NA) %>%

mutate(new_col=as.numeric(new_col))
589   colnames(testdate)=c("date","rf")
590   for(i in 1:length(testdate$date)){
591   if(testdate[i,1] %in% rf$date){
592   testdate[i,2] = (rf %>% filter(date %in% testdate[i,1]))$rf
593   }
594   else if(dim((rf %>% filter(date %in% testdate[i-1,1])))[1]>0 & dim((rf %>%

filter(date %in% testdate[i+1,1])))[1]>0){
595   testdate[i,2] <- mean((rf %>% filter(date %in% testdate[i-1,1]))$rf,(rf %>%

filter(date %in% testdate[i+1,1]))$rf)
596   }
597   else if(dim((rf %>% filter(date %in% testdate[i-1,1])))[1]==0 & dim((rf %>%

filter(date %in% testdate[i+1,1])))[1]>0){
598   testdate[i,2] <- (rf %>% filter(date %in% testdate[i+1,1]))$rf
599   }
600   else if(dim((rf %>% filter(date %in% testdate[i-1,1])))[1]>0 & dim((rf %>%

filter(date %in% testdate[i+1,1])))[1]==0){
601   testdate[i,2] <- (rf %>% filter(date %in% testdate[i-1,1]))$rf
602   }
603   
604   else if(dim((rf %>% filter(date %in% (as.Date(testdate[i,]$date)-1))))[1]>0 &

dim((rf %>% filter(date %in% (as.Date(testdate[i,]$date)+1))))[1]>0){
605   testdate[i,2] <- mean((rf %>% filter(date %in%

(as.Date(testdate[i,]$date)-1)))$rf,(rf %>% filter(date %in%
(as.Date(testdate[i,]$date)+1)))$rf)

606   }
607   else if(dim((rf %>% filter(date %in% (as.Date(testdate[i,]$date)-1))))[1]==0 &

dim((rf %>% filter(date %in% (as.Date(testdate[i,]$date)+1))))[1]>0){
608   testdate[i,2] <- (rf %>% filter(date %in% (as.Date(testdate[i,]$date)+1)))$rf
609   }
610   else if(dim((rf %>% filter(date %in% (as.Date(testdate[i,]$date)-1))))[1]>0 &

dim((rf %>% filter(date %in% (as.Date(testdate[i,]$date)+1))))[1]==0){
611   testdate[i,2] <- (rf %>% filter(date %in% (as.Date(testdate[i,]$date)-1)))$rf
612   }
613   
614   
615   else if(dim((rf %>% filter(date %in% (as.Date(testdate[i,]$date)-2))))[1]>0 &

dim((rf %>% filter(date %in% (as.Date(testdate[i,]$date)+2))))[1]>0){
616   testdate[i,2] <- mean((rf %>% filter(date %in%

(as.Date(testdate[i,]$date)-2)))$rf,(rf %>% filter(date %in%
(as.Date(testdate[i,]$date)+2)))$rf)

617   }
618   else if(dim((rf %>% filter(date %in% (as.Date(testdate[i,]$date)-2))))[1]==0 &

dim((rf %>% filter(date %in% (as.Date(testdate[i,]$date)+2))))[1]>0){
619   testdate[i,2] <- (rf %>% filter(date %in% (as.Date(testdate[i,]$date)+2)))$rf
620   }



621   else if(dim((rf %>% filter(date %in% (as.Date(testdate[i,]$date)-2))))[1]>0 &
dim((rf %>% filter(date %in% (as.Date(testdate[i,]$date)+2))))[1]==0){

622   testdate[i,2] <- (rf %>% filter(date %in% (as.Date(testdate[i,]$date)-2)))$rf
623   }
624   
625   else{print(i)}
626   }
627   
628   ##LJI
629   ATM_vol <- NULL
630   for(i in 1:(length(interpolation_scheme)-1)){
631   Option_sel <- Option_P %>%

filter(date>=interpolation_scheme[i]&date<interpolation_scheme[i+1])
632   ATM_vol[i] <- mean(Option_sel$atmvol)
633   print(i)
634   }
635   psi_we2 <- psi$psi
636   for(i in 1:(length(interpolation_scheme)-1)){
637   if(!is.na(psi_we2[i])&psi_we2[i]>10){
638   psi_we2[i]=psi_we2[i-1]
639   }
640   print(i)
641   }
642   for(i in 1:(length(interpolation_scheme)-1)){
643   if(!is.na(LJV3[i])&LJV3[i]>0.025){
644   LJV3[i]=LJV3[i-1]
645   }
646   print(i)
647   }
648   
649   #Determination of limit for big jump
650   kt <- NULL
651   kt1 <- NULL
652   fw <- NULL
653   for(i in 1:(length(interpolation_scheme)-1)){
654   Option_sel <- Option_P %>%

filter(date>=interpolation_scheme[i]&date<interpolation_scheme[i+1])
655   kt1 <- NULL
656   if(dim(Option_sel)[1]>0){
657   for(j in unique(Option_sel$comdate)){
658   Option_sell <- Option_sel %>% filter(comdate==j)
659   kt1<-rbind(kt1,Option_sel[dim(Option_sell)[1]])
660   }
661   kt[i] <- median(kt1$strike)
662   fw[i] <- median(kt1$ForwardPrice)
663   }
664   print(i)
665   }
666   
667   #Different cut-off limit
668   plot(psi$psi*exp(-alpha_we$alpha_weekly*log(kt)/log(925)*6.868*ATM_vol)/alpha_we$alpha

_weekly,type="l")
669   plot(psi$psi*exp(-alpha_we$alpha_weekly*fw/kt*6.868*ATM_vol)/alpha_we$alpha_weekly,typ

e="l")
670   plot(psi$psi*exp(-alpha_we$alpha_weekly*6.868*ATM_vol)/alpha_we$alpha_weekly,type="l")
671   
672   ##Melt for plots
673   shap <- setDT(as.data.frame(alpha_we$V1))
674   shap <- cbind(shap,psi*exp(-alpha_we$alpha_weekly*3.5*ATM_vol)/alpha_we$alpha_weekly,
675   psi*exp(-alpha_we$alpha_weekly*6.868*ATM_vol)/alpha_we$alpha_weekly,
676   

psi*exp(-alpha_we$alpha_weekly*1500/925*6.868*ATM_vol)/alpha_we$alpha_we
ekly,

677   
psi*exp(-alpha_we$alpha_weekly*log(kt)/log(925)*6.868*ATM_vol)/alpha_we$
alpha_weekly)

678   colnames(shap)=c("date","3.5","6.868","1500/925*6.868","log(xt)/log(925)*6.868")
679   dd = melt(shap,id=c("date"))
680   ggplot(dd) + geom_line(aes(x=date, y=value, colour=variable)) +
681   scale_colour_manual(values=c("orange","red","green","blue"))
682   LJI <-

psi*exp(-alpha_we$alpha_weekly*log(kt)/log(925)*6.868*ATM_vol)/alpha_we$alpha_weekly
683   shap2 <- setDT(as.data.frame(interpolation_scheme[2:1304]))



684   shap2 <-
cbind(shap2,psi*exp(-alpha_we$alpha_weekly*6.868*ATM_vol)/alpha_we$alpha_weekly,

685   
psi*exp(-alpha_we$alpha_weekly*1500/925*6.868*ATM_vol)/alpha_we$alpha_w
eekly,

686   
psi*exp(-alpha_we$alpha_weekly*log(kt)/log(925)*6.868*ATM_vol)/alpha_we
$alpha_weekly)

687   colnames(shap2)=c("date","6.868","1500/925*6.868","log(xt)/log(925)*6.868")
688   dd2 = melt(shap2,id=c("date"))
689   ggplot(dd2) + geom_line(aes(x=date, y=value, colour=variable)) +
690   scale_colour_manual(values=c("red","green","blue"))
691   
692   
693   ####LJV
694   cor(shap2[,2:4],use="complete.obs")
695   k <- log(kt)/log(925)*6.868
696   alpha_const <- mean(alpha_we$alpha_weekly,na.rm=TRUE)
697   LJV1<-as.numeric(interpolation_scheme[2:1304]-interpolation_scheme[1:1303])*psi*exp(-a

lpha_we$alpha_weekly*k*ATM_vol)*(alpha_we$alpha_weekly*k*ATM_vol*(alpha_we$alpha_weekl
y*k*ATM_vol+2)+2)/(alpha_we$alpha_weekly^3)

698   LJV2<-as.numeric(interpolation_scheme[2:1304]-interpolation_scheme[1:1303])*psi*exp(-a
lpha_const*k*ATM_vol)*(alpha_const*k*ATM_vol*(alpha_const*k*ATM_vol+2)+2)/(alpha_const
^3)

699   LJV3<-as.numeric(interpolation_scheme[2:1304]-interpolation_scheme[1:1303])*exp(-alpha
_we$alpha_weekly*k*ATM_vol)*(alpha_we$alpha_weekly*k*ATM_vol*(alpha_we$alpha_weekly*k*
ATM_vol+2)+2)/(alpha_we$alpha_weekly^3)

700   plot(x=alpha_we$V1,y=LJV1,type="l")
701   plot(x=alpha_we$V1,y=LJV2,type="l")
702   plot(x=alpha_we$V1,y=LJV3,type="l")
703   LJVplot <- setDT(as.data.frame(alpha_we$V1))
704   LJVplot <- cbind(LJVplot,LJV1,LJV2,LJV3)
705   LJV1p <-

ggplot(data=LJVplot,aes(x=LJVplot$`alpha_we$V1`))+geom_line(aes(y=LJV1),color="blue")
706   LJV2p <-

ggplot(data=LJVplot,aes(x=LJVplot$`alpha_we$V1`))+geom_line(aes(y=LJV2),color="blue")
707   LJV3p <-

ggplot(data=LJVplot,aes(x=LJVplot$`alpha_we$V1`))+geom_line(aes(y=LJV3),color="blue")
708   grid.arrange(LJV1p,LJV2p,LJV3p,nrow=3)
709   
710   
711   
712   ##Prediction regression
713   BAB <- fread(file.path(data_dir,"BAB.csv"), sep = ";")
714   QMJ <- fread(file.path(data_dir,"QMJ.csv"), sep = ";")
715   UMD <- fread(file.path(data_dir,"UMD.csv"), sep = ";")
716   HML <- fread(file.path(data_dir,"HML.csv"), sep = ";")
717   SMB <- fread(file.path(data_dir,"SMB.csv"), sep = ";")
718   MKT <- fread(file.path(data_dir,"MKT.csv"), sep = ";")
719   RF <- fread(file.path(data_dir,"RF.csv"), sep = ";")
720   FAF <- fread(file.path(data_dir,"FFFull.csv"), sep = ",")
721   
722   BAB <- BAB %>%

mutate(DATE=as.Date(DATE,"%d-%m-%Y"),USA=as.numeric(sub("%","",USA))/100) %>%
select(c("DATE","USA"))

723   QMJ <- QMJ %>%
mutate(DATE=as.Date(DATE,"%d-%m-%Y"),USA=as.numeric(sub("%","",USA))/100) %>%
select(c("DATE","USA"))

724   UMD <- UMD %>%
mutate(DATE=as.Date(DATE,"%d-%m-%Y"),USA=as.numeric(sub("%","",USA))/100) %>%
select(c("DATE","USA"))

725   HML <- HML %>%
mutate(DATE=as.Date(DATE,"%d-%m-%Y"),USA=as.numeric(sub("%","",USA))/100) %>%
select(c("DATE","USA"))

726   SMB <- SMB %>%
mutate(DATE=as.Date(DATE,"%d-%m-%Y"),USA=as.numeric(sub("%","",USA))/100) %>%
select(c("DATE","USA"))

727   MKT <- MKT %>%
mutate(DATE=as.Date(DATE,"%d-%m-%Y"),USA=as.numeric(sub("%","",USA))/100) %>%
select(c("DATE","USA"))

728   RF <- RF %>% mutate(DATE=as.Date(RF$DATE,"%d-%m-%Y"),`Risk Free
Rate`=as.numeric(sub("%","",`Risk Free Rate`))/100)

729   FAF <- FAF %>% mutate(Date=ymd(Date))



730   FAF[,2:7] = FAF[,2:7]/100
731   
732   colnames(BAB)[1]="date"
733   colnames(QMJ)[1]="date"
734   colnames(FAF)[1]="date"
735   colnames(UMD)[1]="date"
736   colnames(HML)[1]="date"
737   colnames(SMB)[1]="date"
738   colnames(MKT)[1]="date"
739   colnames(RF)=c("date","rf")
740   
741   BAB <- BAB %>% filter(date>="1996-01-01" & date<="2020-12-31")
742   QMJ <- QMJ %>% filter(date>="1996-01-01" & date<="2020-12-31")
743   FAF <- FAF %>% filter(date>="1996-01-01" & date<="2020-12-31")
744   UMD <- UMD %>% filter(date>="1996-01-01" & date<="2020-12-31")
745   HML <- HML %>% filter(date>="1996-01-01" & date<="2020-12-31")
746   SMB <- SMB %>% filter(date>="1996-01-01" & date<="2020-12-31")
747   MKT <- MKT %>% filter(date>="1996-01-01" & date<="2020-12-31")
748   RF <- RF %>% filter(date>="1996-01-01" & date<="2020-12-31")
749   
750   ##Convert daily data to weekly return
751   BAB_we <- QMJ_we <- UMD_we <- HML_we <- SMB_we <- MKT_we <- RF_we <- NULL
752   for(i in 1:(length(interpolation_scheme)-1)){
753   BAB_sel <- BAB %>%

filter(date>=interpolation_scheme[i]&date<interpolation_scheme[i+1])
754   QMJ_sel <- QMJ %>%

filter(date>=interpolation_scheme[i]&date<interpolation_scheme[i+1])
755   UMD_sel <- UMD %>%

filter(date>=interpolation_scheme[i]&date<interpolation_scheme[i+1])
756   HML_sel <- HML %>%

filter(date>=interpolation_scheme[i]&date<interpolation_scheme[i+1])
757   SMB_sel <- SMB %>%

filter(date>=interpolation_scheme[i]&date<interpolation_scheme[i+1])
758   MKT_sel <- MKT %>%

filter(date>=interpolation_scheme[i]&date<interpolation_scheme[i+1])
759   RF_sel <- RF %>%

filter(date>=interpolation_scheme[i]&date<interpolation_scheme[i+1])
760   return1 <- 1
761   return2 <- 1
762   return3 <- 1
763   return4 <- 1
764   return5 <- 1
765   return6 <- 1
766   return7 <- 1
767   for(j in 1:dim(BAB_sel)[1]){
768   return1 <- return1*(1+BAB_sel[j,2])
769   return2 <- return2*(1+QMJ_sel[j,2])
770   return3 <- return3*(1+RF_sel[j,2])
771   return4 <- return4*(1+UMD_sel[j,2])
772   return5 <- return5*(1+HML_sel[j,2])
773   return6 <- return6*(1+SMB_sel[j,2])
774   return7 <- return7*(1+MKT_sel[j,2])
775   }
776   BAB_we[i] <- as.numeric(return1-1)
777   QMJ_we[i] <- as.numeric(return2-1)
778   RF_we[i] <- as.numeric(return3-1)
779   UMD_we[i] <- as.numeric(return4-1)
780   HML_we[i] <- as.numeric(return5-1)
781   SMB_we[i] <- as.numeric(return6-1)
782   MKT_we[i] <- as.numeric(return7-1)
783   print(i)
784   }
785   
786   ##Summary statistics for key measures and returns
787   Whole <- setDT(as.data.frame(alpha_we$V1))
788   Whole <-

cbind(Whole,MKT_we,SMB_we,HML_we,UMD_we,QMJ_we,BAB_we,alpha_we$alpha_weekly,LJI,LJV1,L
JV2,LJV3)

789   summary(Whole)
790   round(as.numeric(acf(MKT_we*100,lag.max=1,plot=FALSE)$acf),2)
791   round(as.numeric(acf(SMB_we*100,lag.max=1,plot=FALSE)$acf),2)
792   round(as.numeric(acf(HML_we*100,lag.max=1,plot=FALSE)$acf),2)
793   round(as.numeric(acf(UMD_we*100,lag.max=1,plot=FALSE)$acf),2)



794   round(as.numeric(acf(QMJ_we*100,lag.max=1,plot=FALSE)$acf),2)
795   round(as.numeric(acf(BAB_we*100,lag.max=1,plot=FALSE)$acf),2)
796   round(as.numeric(acf(alpha_we[which(!is.na(alpha_we$alpha_weekly))]$alpha_weekly,lag.m

ax=1,plot=FALSE)$acf),2)
797   round(as.numeric(acf(dtLJI[which(!is.na(dtLJI$LJI))]$LJI*52*100,lag.max=1,plot=FALSE)$

acf),2)
798   round(as.numeric(acf(LJVplot[which(!is.na(LJVplot$LJV1))]$LJV1*52*100,lag.max=1,plot=F

ALSE)$acf),2)
799   round(as.numeric(acf(LJVplot[which(!is.na(LJVplot$LJV2))]$LJV2*52*100,lag.max=1,plot=F

ALSE)$acf),2)
800   round(as.numeric(acf(LJVplot[which(!is.na(LJVplot$LJV3))]$LJV3*52*100,lag.max=1,plot=F

ALSE)$acf),2)
801   
802   #One-week lagged
803   Whole2 <- setDT(as.data.frame(alpha_we$V1))
804   Whole2 <-

cbind(Whole2[1:1302],MKT_we[2:1303],SMB_we[2:1303],HML_we[2:1303],UMD_we[2:1303],QMJ_w
e[2:1303],BAB_we[2:1303],alpha_we$alpha_weekly[1:1302],LJI[1:1302],LJV1[1:1302],LJV2[1
:1302],LJV3[1:1302])

805   colnames(Whole2) =
c("date","MKT","SMB","HML","UMD","QMJ","BAB","alp","LJI","LJV1","LJV2","LJV3")

806   round(cor(Whole2[complete.cases(Whole2),2:12]),2)[1:6,7:11]
807   
808   
809   
810   ##Regressions based on a monthly basis
811   BAB_MO <- fread(file.path(data_dir,"BAB_MO.csv"), sep = ";")
812   QMJ_MO <- fread(file.path(data_dir,"QMJ_MO.csv"), sep = ";")
813   MKT_MO <- fread(file.path(data_dir,"MKT_MO.csv"), sep = ";")
814   VIX_MO <- fread(file.path(data_dir,"VIX_MO.csv"), sep = ";")
815   VIX_WE <- fread(file.path(data_dir,"VIX_WE.csv"), sep = ";")
816   
817   BAB_MO <- BAB_MO %>%

mutate(DATE=as.Date(DATE,"%d-%m-%Y"),USA=as.numeric(sub("%","",USA))/100) %>%
select(c("DATE","USA"))

818   QMJ_MO <- QMJ_MO %>%
mutate(DATE=as.Date(DATE,"%d-%m-%Y"),USA=as.numeric(sub("%","",USA))/100) %>%
select(c("DATE","USA"))

819   MKT_MO <- MKT_MO %>%
mutate(DATE=as.Date(DATE,"%d-%m-%Y"),USA=as.numeric(sub("%","",USA))/100) %>%
select(c("DATE","USA"))

820   VIX_MO <- VIX_MO %>% mutate(Date=as.Date(Date,"%d-%m-%Y"))
821   VIX_WE <- VIX_WE %>% mutate(date=as.Date(date,"%d-%m-%Y"))
822   colnames(BAB_MO)[1]="date"
823   colnames(QMJ_MO)[1]="date"
824   colnames(MKT_MO)[1]="date"
825   colnames(VIX_MO)[1]="date"
826   
827   BAB_MO <- BAB_MO %>% filter(date>="1996-01-01" & date<="2020-12-31")
828   QMJ_MO <- QMJ_MO %>% filter(date>="1996-01-01" & date<="2020-12-31")
829   MKT_MO <- MKT_MO %>% filter(date>="1996-01-01" & date<="2020-12-31")
830   #Convert measures to monthly
831   LJV1_MO <- NULL
832   LJV1_MO[1] <- mean((LJVplot %>% filter(LJVplot$`alpha_we$V1`<=BAB_MO[1]$date))$LJV1)
833   for(i in 2:dim(BAB_MO)[1]){
834   LJV_sel <- LJVplot %>% filter(LJVplot$`alpha_we$V1`<=BAB_MO[i]$date &

LJVplot$`alpha_we$V1`>BAB_MO[i-1]$date)
835   LJV1_MO[i] <- mean(LJV_sel$LJV1,na.rm=TRUE)
836   }
837   summary(lm(MKT_MO[5:300]$USA~LJV1_MO[1:296]))
838   
839   
840   first <- lm(MKT_MO[7:300]$USA~LJV1_MO[1:294])
841   summary(lm(MKT_MO[2:300]$USA~VIX_MO$`Adj Close`[1:299]^2))
842   summary(lm(MKT_MO[2:300]$USA~LJV1_MO[1:299]+VIX_MO$`Adj Close`[1:299]^2))
843   
844   lag1=6
845   first <- lm(BAB_MO[(2+lag1):300]$USA~LJV1_MO[2:(300-lag1)])
846   NW <- NeweyWest(first,lag=2*lag1,prewhite = F,adjust=T)
847   round(coeftest(first,vcov=NW),3)
848   summary(first)
849   sec <- lm(QMJ_MO[(1+lag1):300]$USA~VIX_MO2[1:(300-lag1)]$C^2)
850   NW <- NeweyWest(sec,lag=2*lag1,prewhite = F,adjust=T)



851   round(coeftest(sec,vcov=NW),3)
852   summary(sec)
853   third <- lm(QMJ_MO[(2+lag1):300]$USA~alpha_mo2[1:(299-lag1)])
854   NW <- NeweyWest(third,lag=2*lag1,prewhite = F,adjust=T)
855   round(coeftest(third,vcov=NW),3)
856   summary(third)
857   fourth <-

lm(BAB_MO[(2+lag1):300]$USA~LJV1_MO[2:(300-lag1)]+VIX_MO2[2:(300-lag1)]$C^2+alpha_mo2[
1:(299-lag1)])

858   NW <- NeweyWest(fourth,lag=2*lag1,prewhite = F,adjust=T)
859   round(coeftest(fourth,vcov=NW),3)
860   summary(fourth)
861   fifth <- lm(QMJ_MO[(2+lag1):300]$USA~LJV1_MO[2:(300-lag1)]+alpha_mo2[1:(299-lag1)])
862   vif(fifth)
863   waldtest(sec,fourth)
864   
865   
866   alpha3 <- VIX_MO2[1:(300-lag1)]$C^2
867   alpha3[16] <- LJV1_MO[16]
868   alpha3[58] <- LJV1_MO[58]
869   
870   
871   
872   #Times of distress
873   alpha_we <- fread(file.path(data_dir,"alpha_weekly2904.csv"), sep = ",")
874   alpha_we <- cbind(interpolation_scheme[2:1304],alpha_we)
875   alpha_we <- alpha_we[,c(1,3)]
876   alpha_we1 <- alpha_we %>% filter(V1>="2020-01-01" & V1<"2021-01-01")
877   alpha_we2 <- alpha_we1$alpha_weekly/100
878   alpha_we2 <- alpha_we2[2:53]
879   LJV_WE1 <- LJVplot %>% filter(alpha_we$V1>="2020-01-01" & alpha_we$V1<"2021-01-01")
880   VIX_WE <- VIX_WE %>% filter(date>="2020-01-01" & date<"2021-01-01")
881   VIX_WE4 <- VIX_WE4 %>% filter(date>="2020-01-01" & date<"2021-01-01")
882   plot(LJV_WE1$LJV1,type="l")
883   plot(1/alpha_we1$alpha_weekly,type="l")
884   plot(VIX_WE$Close^2,type="l")
885   LJV_WE1 <- LJV_WE1[2:53]
886   #Market returns
887   mkt_return <- setDT(as.data.frame(interpolation_scheme[2:1304]))
888   colnames(mkt_return)="date"
889   mkt_return <- cbind(mkt_return,MKT_we,BAB_we,QMJ_we,UMD_we,SMB_we,HML_we)
890   mkt_return <- mkt_return %>% filter(date>="2020-01-01" & date<"2021-01-01")
891   
892   lag1=13
893   first <- lm(mkt_return[(1+lag1):52]$BAB_we~LJV_WE1[1:(52-lag1)]$LJV1)
894   NW <- NeweyWest(first,lag=2*lag1,prewhite = F,adjust=T)
895   round(coeftest(first,vcov=NW),3)
896   summary(first)
897   sec <- lm(mkt_return[(1+lag1):52]$HML_we~VIX_WE2[1:(52-lag1)]$Close^2)
898   NW <- NeweyWest(sec,lag=2*lag1,prewhite = F,adjust=T)
899   round(coeftest(sec,vcov=NW),3)
900   summary(sec)
901   third <- lm(mkt_return[(1+lag1):52]$HML_we~alpha_we2[1:(52-lag1)])
902   NW <- NeweyWest(third,lag=2*lag1,prewhite = F,adjust=T)
903   round(coeftest(third,vcov=NW),3)
904   summary(third)
905   fourth <-

lm(mkt_return[(1+lag1):52]$HML_we~LJV_WE1[1:(52-lag1)]$LJV1+VIX_WE2[1:(52-lag1)]$Close
^2+alpha_we2[1:(52-lag1)])

906   NW <- NeweyWest(fourth,lag=2*lag1,prewhite = F,adjust=T)
907   round(coeftest(fourth,vcov=NW),3)
908   summary(fourth)
909   fifth <-

lm(mkt_return[(1+lag1):52]$BAB_we~LJV_WE1[1:(52-lag1)]$LJV1+alpha_we2[1:(52-lag1)])
910   NW <- NeweyWest(fifth,lag=2*lag1,prewhite = F,adjust=T)
911   round(coeftest(fifth,vcov=NW),3)
912   summary(fifth)
913   
914   VIX_WE4[11] <-LJV_WE1[11]$LJV1
915   waldtest(fifth,first)
916   
917   
918   



919   ###Attempt at High-Frequency based calculations
920   HFdata <- fread(file.path(data_dir,"HFdata.csv"), sep = ";")
921   HFdata <- HFdata %>%

mutate(Hour=substr(Date,11,16),Date=as.Date(substr(Date,1,10),"%d-%m-%Y"),Price =
as.numeric(gsub(",",".",HFdata$`ES1 Index - Last Price`)))

922   HFdata <- HFdata[,c(1,3,4)]
923   #Split each day into 30 min increments
924   #First the RV
925   RV <- NULL
926   j=1
927   #Remove missing days
928   lf <- NULL
929   j=1
930   for(i in unique(HFdata$Date)){
931   HFdata_sel <- HFdata %>% filter(Date==i)
932   if(dim(HFdata_sel)[1]<46){
933   lf[j]=as.Date(i)
934   }
935   j=j+1
936   }
937   HFdata <- HFdata %>% filter(!(Date %in% as.Date(lf)))
938   for(i in unique(HFdata$Date)){
939   HFdata_sel <- HFdata %>% filter(Date==i)
940   RV[j] <-

sum((HFdata_sel[2:dim(HFdata_sel)[1]]$Price-HFdata_sel[1:(dim(HFdata_sel)[1]-1)]$Pri
ce)^2)

941   j = j + 1
942   }
943   
944   #abar
945   abar <- NULL
946   j=1
947   for(i in unique(HFdata$Date)){
948   HFdata_sel <- HFdata %>% filter(Date==i)
949   abar[j] <-

sum(abs(HFdata_sel[3:(dim(HFdata_sel)[1])]$Price-HFdata_sel[2:(dim(HFdata_sel)[1]-1)
]$Price)*

950   
abs(HFdata_sel[2:(dim(HFdata_sel)[1]-1)]$Price-HFdata_sel[1:(dim(HFda
ta_sel)[1]-2)]$Price))

951   j = j + 1
952   }
953   abar = 3*sqrt(pi/2)*
954   sqrt(1/length(unique(HFdata$Date))*sum(abar))
955   ##NOI
956   NOI <- NULL
957   NOI_t <- 0
958   ##NOI_t
959   for(t in unique(HFdata$Date)){
960   HFdata_sel <- HFdata %>% filter(Date==t)
961   for(i in 2:dim(HFdata_sel)[1]){
962   

if(abs(HFdata_sel$Price[i]-HFdata_sel$Price[i-1])<=abar*((1/dim(HFdata_sel)[1])^0.
49)){

963   NOI_t = NOI_t + 1
964   }
965   }
966   }
967   #NOI_n
968   NOI_n <- rep(0,46)
969   for(i in 2:46){
970   for(t in unique(HFdata$Date)){
971   HFdata_sel <- HFdata %>% filter(Date==t)
972   

if(abs(HFdata_sel$Price[i]-HFdata_sel$Price[i-1])<=abar*((1/dim(HFdata_sel)[1])^0.
49)){

973   NOI_n[i] = NOI_n[i] + 1
974   }
975   }
976   }
977   #NOI
978   NOI = NOI_t/NOI_n
979   



980   
981   
982   #TOD
983   TOD <- TOD_n <- NULL
984   #TOD_t
985   TOD_t <- rep(0,46)
986   for(i in 2:46){
987   for(t in unique(HFdata$Date)){
988   HFdata_sel <- HFdata %>% filter(Date==t)
989   

if(abs(HFdata_sel$Price[i]-HFdata_sel$Price[i-1])<=abar*((1/dim(HFdata_sel)[1])^0.
49)){

990   TOD_t[i] = TOD_t[i] + (HFdata_sel$Price[i]-HFdata_sel$Price[i-1])^2
991   }
992   }
993   }
994   #TOD_n
995   TOD_n <- 0
996   for(i in unique(HFdata$Date)){
997   HFdata_sel <- HFdata %>% filter(Date==i)
998   TOD_n = TOD_n +

sum((HFdata_sel[2:dim(HFdata_sel)[1]]$Price-HFdata_sel[1:(dim(HFdata_sel)[1]-1)]$Pri
ce)^2)

999   }
1000   #TOD
1001   TOD <- NOI*TOD_t/TOD_n
1002   
1003   #Now, back to the estimates
1004   CV <- RJV <- LJV <- CV2 <- RJV2 <- LJV2 <- rep(0,length(unique(HFdata$Date)))
1005   HFdata_sel <- HFdata %>% filter(Date==unique(HFdata$Date)[1])
1006   for(i in 2:dim(HFdata_sel)[1]){
1007   

if(abs(HFdata_sel$Price[i]-HFdata_sel$Price[i-1])<=abar*((1/dim(HFdata_sel)[1])^0.49
)){

1008   CV[1] = CV[1] + (HFdata_sel$Price[i]-HFdata_sel$Price[i-1])^2
1009   }
1010   

if(abs(HFdata_sel$Price[i]-HFdata_sel$Price[i-1])>abar*((1/dim(HFdata_sel)[1])^0.49)
){

1011   RJV[1] = RJV[1] + (HFdata_sel$Price[i]-HFdata_sel$Price[i-1])^2
1012   }
1013   if(HFdata_sel$Price[i]-HFdata_sel$Price[i-1]< -abar*((1/dim(HFdata_sel)[1])^0.49)){
1014   LJV[1] = LJV[1] + (HFdata_sel$Price[i]-HFdata_sel$Price[i-1])^2
1015   }
1016   RJV2[1]=RJV[1]
1017   LJV2[1]=LJV[1]
1018   CV2[1]=CV[1]
1019   }
1020   a <- NULL
1021   for(j in 2:length(unique(HFdata$Date))){
1022   HFdata_sel <- HFdata %>% filter(Date==unique(HFdata$Date)[j])
1023   for(i in 2:dim(HFdata_sel)[1]){
1024   a[i] = 3*sqrt(CV[j-1])*TOD[i]*((1/dim(HFdata_sel)[1])^0.49)
1025   

if(abs(HFdata_sel$Price[i]-HFdata_sel$Price[i-1])<=abar*((1/dim(HFdata_sel)[1])^0.
49)){

1026   CV[j] = CV[j] + (HFdata_sel$Price[i]-HFdata_sel$Price[i-1])^2
1027   }
1028   

if(abs(HFdata_sel$Price[i]-HFdata_sel$Price[i-1])<=a[i]*((1/dim(HFdata_sel)[1])^0.
49)){

1029   CV2[j] = CV2[j] + (HFdata_sel$Price[i]-HFdata_sel$Price[i-1])^2
1030   }
1031   

if(abs(HFdata_sel$Price[i]-HFdata_sel$Price[i-1])>abar*((1/dim(HFdata_sel)[1])^0.4
9)){

1032   RJV[j] = RJV[j] + (HFdata_sel$Price[i]-HFdata_sel$Price[i-1])^2
1033   }
1034   

if(abs(HFdata_sel$Price[i]-HFdata_sel$Price[i-1])>a[i]*((1/dim(HFdata_sel)[1])^0.4
9)){

1035   RJV2[j] = RJV2[j] + (HFdata_sel$Price[i]-HFdata_sel$Price[i-1])^2
1036   }



1037   if(HFdata_sel$Price[i]-HFdata_sel$Price[i-1]<
-abar*((1/dim(HFdata_sel)[1])^0.49)){

1038   LJV[j] = LJV[j] + (HFdata_sel$Price[i]-HFdata_sel$Price[i-1])^2
1039   }
1040   if(HFdata_sel$Price[i]-HFdata_sel$Price[i-1]<

-a[i]*((1/dim(HFdata_sel)[1])^0.49)){
1041   LJV2[j] = LJV2[j] + (HFdata_sel$Price[i]-HFdata_sel$Price[i-1])^2
1042   }
1043   }
1044   }
1045   
1046   
1047   ## MARIMA attempt based on HF-data
1048   TSVAR <- setDT(as.data.frame(cbind(CV,RJV,LJV)))
1049   VARmodel <- define.model(kvar=3,ar=c(1))
1050   short.form(VARmodel$ar.pattern)
1051   Model <- marima(TSVAR,ar.pattern = VARmodel$ar.pattern)
1052   plot(RJV,type="l")
1053   plot(diff(RJV,1),type="l")
1054   plot(diff(RJV,2),type="l")
1055   
1056   TSVAR.dif <- define.dif(TSVAR,difference=c(1,1,1,1,1,1))
1057   TSVAR.dif.analysis <- TSVAR.dif$y.dif
1058   TSVAR.dif.analysis_F <- define.dif(TSVAR[1:93],difference=c(1,1,1,1,1,1))$y.dif
1059   Model2 <- marima(TSVAR.dif.analysis_F,ar.pattern = VARmodel$ar.pattern)
1060   short.form(Model$ar.estimates)
1061   Model5 <- define.model(kvar=3, ar=c(1,5,22), ma=0, rem.var=0, reg.var=0)
1062   Marima5 <- marima(ts(TSVAR[1:90, ]), Model5$ar.pattern, Model5$ma.pattern,
1063   penalty=1)
1064   nstart <- 261
1065   nstep <- 10
1066   Forecasts <- arma.forecast(series=TSVAR, marima=Model,
1067   nstart=nstart, nstep=nstep )
1068   
1069   One.step <- Forecasts$forecasts[, (nstart+1)]
1070   One.step
1071   One.step
1072   Predict <- Forecasts$forecasts[ 2, 91:100]
1073   Predict
1074   stdv<-sqrt(Forecasts$pred.var[2, 2, ])
1075   upper.lim=Predict+stdv*1.645
1076   lower.lim=Predict-stdv*1.645
1077   Out<-rbind(Predict, upper.lim, lower.lim)
1078   print(Out)
1079   # plot results:
1080   plot(x=Forecasts$forecasts[2, ],type="l")
1081   lines(271:280,Predict, type='l')
1082   lines(271:280,upper.lim, type='l')
1083   lines(271:280,lower.lim, type='l')
1084   
1085   
1086   ######
1087   ###### Below are calculations that are of interest in the plots
1088   ######
1089   ###The witdh of the cross section
1090   x<-NULL
1091   Option_p_sort <- Option_P[order(date,strike_price)]
1092   k=0
1093   for(i in unique(Option_P$comdate)){
1094   Option_sel <- Option_P %>% filter(comdate==i)
1095   witdth <-

log(Option_sel[dim(Option_sel)[1]]$strike_price/Option_sel[dim(Option_sel)[1]]$Forwa
rdPrice)

1096   x <- append(x,witdth)
1097   k=k+1
1098   print(k)
1099   }
1100   for(i in unique(x4$date)){
1101   x_sel <- x4 %>% filter(date==i)
1102   x_max <- append(x_max,max(x_sel$x))
1103   x_min <- append(x_min,min(x_sel$x))
1104   }
1105   



1106   Picture_P2 <- setDT(Option_P)[,.N, by = c("date")]
1107   Differenced_data <- cbind((alpha_weekly_3 %>%

select(V1))[2:1303],diff(1/alpha_weekly_3$alpha,1))
1108   
1109   
1110   
1111   #Values for plots
1112   average_forward <- NULL
1113   for(i in unique(future$date)){
1114   future_sel <- future %>% filter(date==i)
1115   average_forward <- append(average_forward,mean(future_sel$ForwardPrice))
1116   }
1117   average_strike <- NULL
1118   k=0
1119   for(i in unique(Option_P$date)){
1120   option_sel <- Option_P %>% filter(date==i)
1121   average_strike <- append(average_strike,mean(option_sel$strike_price))
1122   k=k+1
1123   print(k)
1124   }
1125   
1126   forward_return <-

log(average_forward[2:length(average_forward)]/average_forward[1:(length(average_forwa
rd)-1)])

1127   
1128   ##Average number of weekly options
1129   Option_Smooth <- Option_Smooth %>% mutate(date =

interpolation_scheme[findInterval(Option_Smooth $date,interpolation_scheme)] %>%
floor_date %>% ymd)

1130   Option_Smooth <- Option_Smooth %>% mutate(atmvol=atmvol*sqrt(timetoexp/365))
1131   limit = 10
1132   for(j in 1:1){
1133   limit = limit + 0.1
1134   k=0
1135   for(i in unique(Option_Smooth$date)){
1136   k=k+1
1137   option_sel <- Option_Smooth %>% filter(date==i&log_moneyness < -limit*atmvol)
1138   x[k,j] <- dim(option_sel)[1]
1139   }
1140   print(j)
1141   }
1142   average_early <- averagex %>% filter(date<"2015-01-01")
1143   average_late <- averagex %>% filter(date>="2015-01-01")
1144   average_2020 <- averagex %>% filter(date>="2020-01-01")
1145   average_e <- averagex %>% filter(date<"2010-01-01")
1146   for(j in 1:50){
1147   #av_ea <- append(av_ea,mean(average_early[[paste0("V",j)]]))
1148   #av_la <- append(av_la,mean(average_late[[paste0("V",j)]]))
1149   #av_20 <- append(av_20,mean(average_2020[[paste0("V",j)]]))
1150   #av <- append(av,mean(averagex[[paste0("V",j)]]))
1151   av_e <- append(av_e,mean(average_e[[paste0("V",j)]]))
1152   }
1153   limit <- seq(1.1,6,by=0.1)
1154   colnames(av_comb)[2:5] <- c("Average before 2015", "Average after 2015", "Average 

2020", "Average overall")
1155   dd = melt(av_comb,id=c("limit"))
1156   ggplot(dd) + geom_line(aes(x=limit, y=value, colour=variable)) +
1157   scale_colour_manual(values=c("red","green","blue","pink"))
1158   
1159   
1160   for(i in unique(Option_Smooth$date)){
1161   option_sel <- Option_Smooth %>% filter(date==i&log_moneyness < -6*atmvol)
1162   x <- append(x,dim(option_sel)[1])
1163   }
1164   
1165   ####PLOTS
1166   png("TOD.png",width=480*3)
1167   
1168   a<- ggplot(data=Picture_all,aes(x=date,y=N))+geom_line(color="blue")+
1169   scale_x_date(limits = c(min(Picture_all$date), max(Picture_all$date)),breaks =

scales::pretty_breaks(n = 18))+
1170   labs(x = "Date",y="Number of outstanding options")
1171   b <- ggplot(data=Picture_P,aes(x=date,y=N))+geom_line(color="blue")+



1172   scale_x_date(limits = c(min(Picture_all$date), max(Picture_all$date)),breaks =
scales::pretty_breaks(n = 18))+

1173   labs(x = "Date",y="Number of outstanding puts")
1174   c <- ggplot(data=Picture_C,aes(x=date,y=N))+geom_line(color="blue")+
1175   scale_x_date(limits = c(min(Picture_all$date), max(Picture_all$date)),breaks =

scales::pretty_breaks(n = 18))+
1176   labs(x = "Date",y="Number of outstanding calls")
1177   ggplot(data=Picture_P2,aes(x=date,y=N))+geom_line(color="blue")+
1178   scale_x_date(limits = c(min(Picture_all$date), max(Picture_all$date)),breaks =

scales::pretty_breaks(n = 18))+
1179   labs(x = "Date",y="Number of outstanding puts")
1180   ggplot(data=x3,aes(x=date))+geom_line(aes(y=x_max),colour="blue")+geom_line(aes(y=x_mi

n),colour="red")+
1181   scale_x_date(limits = c(min(Picture_all$date), max(Picture_all$date)),breaks =

scales::pretty_breaks(n = 18))+
1182   labs(x = "Date",y="How out-the-money puts are")
1183   
1184   ratioplot <-

ggplot()+geom_line(aes(x=Picture_all$date,y=average_forward/average_strike),colour="bl
ue")+

1185   scale_x_date(limits = c(min(Picture_all$date), max(Picture_all$date)),breaks =
scales::pretty_breaks(n = 18))+

1186   labs(x = "Date",y="Average Forward Price / Average Strike Price")
1187   log_forward <-

ggplot()+geom_line(aes(x=Picture_all$date[2:length(Picture_all$date)],y=forward_return
),colour="blue")+

1188   scale_x_date(limits = c(min(Picture_all$date), max(Picture_all$date)),breaks =
scales::pretty_breaks(n = 18))+

1189   labs(x = "Date",y="Daily log-returns on Forward Price")
1190   averagelogmon <- ggplot(data =

logmoneyness,aes(x=date,y=V2))+geom_line(color="darkblue")+geom_smooth(method="lm",col
or="red")+

1191   scale_x_date(limits = c(min(Picture_all$date), max(Picture_all$date)),breaks =
scales::pretty_breaks(n = 18))+

1192   labs(x = "Date",y="Average log-moneyness")
1193   maxminlogmon <- ggplot(data = logmoneynessmax

,aes(x=date))+geom_line(color="blue",aes(y=x_max))+geom_line(color="red",aes(y=x_min))
+

1194   
geom_smooth(method="lm",formula=y~x,color="blue",aes(y=x_max))+geom_smooth(method="l
m",formula=y~x,color="red",aes(y=x_min))+

1195   scale_x_date(limits = c(min(Picture_all$date), max(Picture_all$date)),breaks =
scales::pretty_breaks(n = 18))+

1196   labs(x = "Date",y="Log-moneyness")
1197   ggplot(data=av_comb,aes(x=limit))+geom_line(color="darkblue",aes(y=av_ea))+geom_line(c

olor="green",aes(y=av))+
1198   geom_line(color="red",aes(y=av_la))+geom_line(color="pink",aes(y=av_20))+labs(x =

"Ratio",y="Average weekly options")+
1199   theme(legend.position="right")
1200   
1201   ggplot(dd) + geom_line(aes(x=limit, y=value, colour=variable)) +
1202   scale_colour_manual(values=c("red","green","blue","pink"))+labs(x =

"Ratio",y="Average weekly puts")
1203   a <- ggplot(data=alpha_weekly,aes(x=V1,y=1/alpha))+geom_line(color="blue")+
1204   scale_x_date(limits = c(min(Picture_all$date), max(Picture_all$date)),breaks =

scales::pretty_breaks(n = 18))+
1205   labs(x = "Year",y="")
1206   b <- ggplot(data=alpha_6_weekly,aes(x=date,y=1/alpha))+geom_line(color="red")+
1207   scale_x_date(limits = c(min(Picture_all$date), max(Picture_all$date)),breaks =

scales::pretty_breaks(n = 18))+
1208   labs(x = "Year",y="")
1209   c <- ggplot(data=alpha_diff,aes(x=V1,y=V2))+geom_line(color="blue")+
1210   scale_x_date(limits = c(min(Picture_all$date), max(Picture_all$date)),breaks =

scales::pretty_breaks(n = 18))+
1211   labs(x = "Year",y="")
1212   plot1 <-

ggplot(data=plotperiod,aes(x=date))+geom_line(aes(y=r.fit),color="blue")+geom_line(aes
(y=V2),color="red")+

1213   scale_x_date(limits = c(min(Picture_all$date), max(Picture_all$date)),breaks =
scales::pretty_breaks(n = 18))+

1214   labs(x = "Year",y="")
1215   plot2 <- ggplot(data=plotperiod,aes(x=date))+geom_line(aes(y=V3),color="blue")+
1216   scale_x_date(limits = c(min(Picture_all$date), max(Picture_all$date)),breaks =



scales::pretty_breaks(n = 18))+
1217   labs(x = "Year",y="")
1218   
1219   weekly <- ggplot(data=alpha_we,aes(x=V1,y=1/alpha_weekly))+geom_line(color="blue")+
1220   scale_x_date(limits = c(min(alpha_we$V1), max(alpha_we$V1)),breaks =

scales::pretty_breaks(n = 18))+
1221   

geom_hline(yintercept=mean(1/alpha_we[which(!is.na(alpha_we$alpha_weekly))]$alpha_we
ekly),lwd=0.5,color="darkblue")+

1222   labs(x = "Year",y="",title="Weekly")+theme(plot.title=element_text(hjust=0.5))
1223   monthly <- ggplot(data=alpha_mo,aes(x=V1,y=1/alpha))+geom_line(color="blue")+
1224   

geom_hline(yintercept=mean(1/alpha_mo[which(!is.na(alpha_mo$alpha))]$alpha),lwd=0.5,
color="darkblue")+

1225   scale_x_date(limits = c(min(alpha_we$V1), max(alpha_we$V1)),breaks =
scales::pretty_breaks(n = 18))+

1226   labs(x = "Year",y="",title="Monthly")+theme(plot.title=element_text(hjust=0.5))
1227   quarterly <- ggplot(data=alpha_qu,aes(x=V1,y=1/alpha))+geom_line(color="blue")+
1228   geom_hline(yintercept=mean(1/alpha_qu$alpha),lwd=0.5,color="darkblue")+
1229   scale_x_date(limits = c(min(alpha_we$V1), max(alpha_we$V1)),breaks =

scales::pretty_breaks(n = 18))+
1230   labs(x = "Year",y="",title="Quarterly")+theme(plot.title=element_text(hjust=0.5))
1231   annual <- ggplot(data=alpha_an,aes(x=V1,y=1/alpha))+geom_line(color="blue")+
1232   geom_hline(yintercept=mean(1/alpha_an$alpha),lwd=0.5,color="darkblue")+
1233   scale_x_date(limits = c(min(alpha_we$V1), max(alpha_we$V1)),breaks =

scales::pretty_breaks(n = 18))+
1234   labs(x = "Year",y="",title="Annual")+theme(plot.title=element_text(hjust=0.5))
1235   ddplot1 <- ggplot(dd) + geom_line(aes(x=date, y=value, colour=variable)) +
1236   scale_colour_manual(values=c("orange","red","green","blue"))+
1237   scale_x_date(limits = c(min(alpha_we$V1), max(alpha_we$V1)),breaks =

scales::pretty_breaks(n = 18))+
1238   labs(x = "Year",y="")
1239   ddplot2 <- ggplot(dd2) + geom_line(aes(x=date, y=value, colour=variable)) +
1240   scale_colour_manual(values=c("red","green","blue"))+
1241   scale_x_date(limits = c(min(alpha_we$V1), max(alpha_we$V1)),breaks =

scales::pretty_breaks(n = 18))+
1242   labs(x = "Year",y="")
1243   LJV1p <-

ggplot(data=LJVplot,aes(x=LJVplot$`alpha_we$V1`))+geom_line(aes(y=LJV1),color="blue")+
1244   scale_x_date(limits = c(min(alpha_we$V1), max(alpha_we$V1)),breaks =

scales::pretty_breaks(n = 18))+
1245   labs(x = "Year",y="",title="LJV")+theme(plot.title=element_text(hjust=0.5))
1246   LJV2p <-

ggplot(data=LJVplot,aes(x=LJVplot$`alpha_we$V1`))+geom_line(aes(y=LJV2),color="blue")+
1247   scale_x_date(limits = c(min(alpha_we$V1), max(alpha_we$V1)),breaks =

scales::pretty_breaks(n = 18))+
1248   labs(x = "Year",y="",title="LJV*")+theme(plot.title=element_text(hjust=0.5))
1249   LJV3p <-

ggplot(data=LJVplot,aes(x=LJVplot$`alpha_we$V1`))+geom_line(aes(y=LJV3),color="blue")+
1250   scale_x_date(limits = c(min(alpha_we$V1), max(alpha_we$V1)),breaks =

scales::pretty_breaks(n = 18))+
1251   labs(x = "Year",y="",title="LJV**")+theme(plot.title=element_text(hjust=0.5))
1252   
1253   LJV1pmo <- ggplot(data=MKT_MO,aes(x=date))+geom_line(aes(y=LJV1_MO),color="blue")+
1254   scale_x_date(limits = c(min(alpha_we$V1), max(alpha_we$V1)),breaks =

scales::pretty_breaks(n = 18))+
1255   labs(x = "Year",y="",title="LJV Monthly")+theme(plot.title=element_text(hjust=0.5))
1256   VIX2 <- ggplot(data=MKT_MO,aes(x=date))+geom_line(aes(y=VIX_MO$C^2),color="blue")+
1257   scale_x_date(limits = c(min(alpha_we$V1), max(alpha_we$V1)),breaks =

scales::pretty_breaks(n = 18))+
1258   labs(x = "Year",y="",title="VIX Squared")+theme(plot.title=element_text(hjust=0.5))
1259   
1260   aw<- ggplot(data=alpha_we1,aes(x=V1))+geom_line(aes(y=alpha_weekly),color="blue")+
1261   scale_x_date(limits = c(min(alpha_we1$V1), max(alpha_we1$V1)),breaks =

scales::pretty_breaks(n = 18))+
1262   geom_vline(xintercept = as.numeric(key_date),linetype="dotted")+
1263   geom_vline(xintercept = as.numeric(key_date_fiscal),linetype="dotted",col="green4")+
1264   geom_vline(xintercept = as.numeric(key_date_health),linetype="dotted",col="red")+
1265   labs(x = "Month",y="",title="Alpha")+theme(plot.title=element_text(hjust=0.5))+
1266   scale_y_continuous(labels=scales::scientific)
1267   lw <-

ggplot(data=alpha_we1[2:53,],aes(x=V1))+geom_line(aes(y=LJV_WE1$LJV1),color="blue")+
1268   geom_vline(xintercept = as.numeric(key_date),linetype="dotted")+



1269   geom_vline(xintercept = as.numeric(key_date_fiscal),linetype="dotted",col="green4")+
1270   geom_vline(xintercept = as.numeric(key_date_health),linetype="dotted",col="red")+
1271   scale_x_date(limits = c(min(alpha_we1$V1), max(alpha_we1$V1)),breaks =

scales::pretty_breaks(n = 18))+
1272   labs(x = "Month",y="",title="LJV")+theme(plot.title=element_text(hjust=0.5))+
1273   scale_y_continuous(labels=scales::scientific)
1274   vw <-

ggplot(data=alpha_we1[2:53],aes(x=V1))+geom_line(aes(y=VIX_WE3$V2^2),color="blue")+
1275   geom_vline(xintercept = as.numeric(key_date),linetype="dotted")+
1276   geom_vline(xintercept = as.numeric(key_date_fiscal),linetype="dotted",col="green4")+
1277   geom_vline(xintercept = as.numeric(key_date_health),linetype="dotted",col="red")+
1278   scale_x_date(limits = c(min(alpha_we1$V1), max(alpha_we1$V1)),breaks =

scales::pretty_breaks(n = 18))+
1279   labs(x = "Month",y="",title="VIX 

Squared")+theme(plot.title=element_text(hjust=0.5))+
1280   scale_y_continuous(labels=scales::scientific)
1281   
1282   ggplot(data=plotTOD,aes(x=V1,y=TOD))+geom_line(colour="blue")+
1283   scale_x_continuous(limits = c(0,24),breaks = scales::pretty_breaks(n = 12))+
1284   labs(x = "Time ",y="",title="Time-of-day factor 

TOD")+theme(plot.title=element_text(hjust=0.5))
1285   
1286   grid.arrange(aw,lw,vw,nrow=3)
1287   dev.off()
1288   key_date <- as.Date(c("2020-03-06","2020-03-18","2020-03-27"))
1289   key_date_fiscal <- as.Date(c("2020-03-15","2020-03-23","2020-04-09"))
1290   key_date_health <- as.Date(c("2020-01-30","2020-03-13"))
1291   


