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In this paper, we tackle the problem of enhancing the interpretability of the results of Cluster Analy-
sis. Our goal is to find an explanation for each cluster, such that clusters are characterized as precisely
and distinctively as possible, i.e., the explanation is fulfilled by as many as possible individuals of the
corresponding cluster, true positive cases, and by as few as possible individuals in the remaining clus-
ters, false positive cases. We assume that a dissimilarity between the individuals is given, and propose

Keywords:

M:chine Learning distance-based explanations, namely those defined by individuals that are close to its so-called proto-
Interpretability type. To find the set of prototypes, we address the biobjective optimization problem that maximizes the
Cluster Analysis total number of true positive cases across all clusters and minimizes the total number of false positive
Prototypes cases, while controlling the true positive rate as well as the false positive rate in each cluster. We develop

Mixed-Integer Programming two mathematical optimization models, inspired by classic Location Analysis problems, that differ in the

way individuals are allocated to prototypes. We illustrate the explanations provided by these models and

their accuracy in both real-life data as well as simulated data.

© 2021 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

With the growing popularity of machine learning methods in
data driven decision making, their complexity is increasing too.
This may harm interpretability, a desirable property that is sought
in many domains, e.g., credit scoring, medical diagnosis, and reg-
ulatory benchmarking [1-7], but also imposed in the European
Union's new General Data Protection Regulation (GDPR) [8] when
citizens are subject to algorithmic decision making. There have
been some attempts to enhance the interpretability of Supervised
Learning methods [9,10], e.g., an interpretable version of random
forest [11], support vector machines [12], and deep learning [13].
This paper is devoted to the interpretability of one of the most
popular Unsupervised Learning methods, namely, Cluster Analysis
[14]. The need of interpretability in Cluster Analysis arises in many
applications, such as security [15], internet traffic [16], finance [17],
sales profiling [18], and astronomy [19].

* Area: Data-Driven Analytics. This manuscript was processed by Associate Editor
Joe Zhu.
* Corresponding author.
E-mail addresses: ecarrizosa@us.es (E. Carrizosa), kk.eco@cbs.dk (K. Kur-
ishchenko), amarin@ume.es (A. Marin), drm.eco@cbs.dk (D. Romero Morales).
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There are two ways of enhancing interpretability in Cluster
Analysis: intrinsic models and post-hoc models. Intrinsic models
build simultaneously clusters and their explanations [20,21], while
post-approaches are needed to interpret existing clusters, that have
been built in the past, and for which we only have a label for each
individual. Throughout this section, we will use a running exam-
ple with clusters given, namely the real-world dataset containing
12 countries about the opinions of political science students, see
Table 1. In [22], three clusters are given for this dataset, cluster
1 composed by Belgium, Egypt, France, Israel, and USA; cluster 2
with Brasil, India, and Zaire; and cluster 3 with China, Cuba, USSR,
and Yugoslavia.

There are some works in the literature on post-hoc approaches.
In [23], the authors assume that the individuals have been eval-
uated on a set of features and propose rule-based explanations.
There are also ad-hoc approaches as those in, e.g., [24-26], for spe-
cific types of data. In this paper, we propose a post-hoc approach
for interpreting clusters via means of prototypes.

Our starting point is the predefined clusters in C, which have
been obtained applying a clustering procedure to the set of in-
dividuals N [27-33]. We propose a methodology to improve the
interpretability of the results of Cluster Analysis, by giving an ex-
planation to each cluster ¢ € C that characterizes as precisely and
distinctively as possible c. In other words, the explanation is to be

0305-0483/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Dissimilarities on opinions of political science students between the 12 countries in our running example, [22].

Country Dissimilarities to other countries
Belgium Brasil China Cuba  Egypt  France India Israel  USA USSR Yugoslavia
Brasil 5.58
China 7.00 6.50
Cuba 7.08 7.00 3.83
Egypt 4.83 5.08 8.17 5.83
France 217 5.75 6.67 6.92 492
India 6.42 5.00 5.58 6.00 467 6.42
Israel 342 5.50 6.42 6.42 5.00 3.92 6.17
USA 250 492 6.25 7.33 4.50 225 6.33 275
USSR 6.08 6.67 4.25 2.67 6.00 6.17 6.17 6.92 6.17
Yugoslavia ~ 5.25 6.83 4.50 3.75 575 5.42 6.08 5.83 6.67  3.67
Zaire 475 3.00 6.08 6.67 5.00 5.58 4.83 6.17 567 6.50 6.92

fulfilled by as many as possible individuals of ¢ (and these will be
referred to as true positive cases) and by as few as possible indi-
viduals in the remaining clusters (which will be referred to as false
positive cases).

Our explanations are distance-based, as in clustering procedures
attempting to partition the set of individuals such that individu-
als that are close to each other are allocated to the same cluster,
whereas individuals that are far from each other are expected to be
in different clusters. It is then natural to explain cluster ¢ following
a distance-based explanation such as

c is the set of individuals of N that are close to
a given individual i.

To define distance-based explanations, we assume we are given
a dissimilarity § to measure the closeness between individuals
[34]. The dissimilarity between the 12 countries in our running ex-
ample is given in Table 1. Note that, in general, § does not need to
be the dissimilarity used to construct the clusters in C. Actually,
that dissimilarity may not be available to us.

How well this explains cluster ¢ depends on the choice of indi-
vidual i to which we will refer as the prototype of cluster ¢ [35,36],
in other words, the “face” chosen for the cluster. Our aim is to se-
lect the set of prototypes that maximizes the total number of true
positive cases across all clusters and minimizes the total number
of false positive cases while controlling the true positive rate as
well as the false positive rate in each cluster. With the methodol-
ogy proposed in this paper, the chosen prototypes for our exam-
ple are: France for cluster 1, Brasil for cluster 2, and Yugoslavia for
cluster 3. For cluster 1, all 5 countries are true positive cases, while
none of the 7 countries in the other two clusters are false positive
cases, yielding to the ideal quality of the explanation, namely 100%
true positive rate and 0% false positive rate. The same holds for the
other two clusters.

In general, one cannot expect to find perfect explanations. In
Fig. 1, we can see that by trying to improve the number of true
positive cases of an explanation we may harm the number of false
positive cases. There we have two clusters, cluster 1 with 5 individ-
uals represented by a red star and cluster 2 with 4 individuals rep-
resented by a blue star. If we look at the explanation in Fig. 1a for
cluster 1, the circle in red containing 4 of the individuals from clus-
ter 1 and none from cluster 2, we see that there are 4 true positive
cases (or, equivalently, an 80% true positive rate) and 0 false pos-
itive cases (or, equivalently, a 0% false positive rate), while for the
alternative explanation for cluster 1 in Fig. 1b, the number of true
positive cases has increased to 5 (achieving a 100% true positive
rate) but the number of false positive cases has gone up to 1 (25%
false positive rate).

To find the set of prototypes, we propose two mathematical
optimization models, the covering and the partitioning ones, in-
spired by classic Location Analysis problems, namely the covering

[37] and the p-median problems [38,39]. In the covering model, a
cluster is explained as the individuals whose distance to its pro-
totype is below a threshold value, i.e., the explanation of cluster
¢ can be visualized as the ball in the distance § centered at its
prototype and radius equal to the corresponding threshold value.
Instead, in the set-partitioning model, cluster c is explained as the
individuals that are the closest to the prototype of ¢ than to the
prototypes of the other clusters. In this case, the explanations can
be visualized as Voronoi diagrams. For both models, we provide
a Mixed Integer Linear Programming (MILP) formulation, where in
the covering one, in addition to the prototypes, we need to decide
the size of the radii.

The remainder of the paper is organized as follows.
Section 2 presents the covering model, while Section 3 the
partitioning model. Section 4 provides numerical results for real-
life data as well as simulated data. Section 5 summarizes the
paper and proposes future lines of research.

2. The covering model

In this model, given a cluster ¢, a prototype i, an individual will
be considered covered by cluster c if it is close enough to i. By
close enough we mean that their dissimilarity is below a threshold
value r¢, which is the coverage radius. Our aim is thus to find the
prototypes and the cluster radii. Observe that, with this approach,
an individual could be covered by more than one cluster if some
of the radii are large, while some individuals may not be covered
by any cluster when the radii are small. We obtain an MILP for-
mulation for this problem, which is separable on the clusters. We
show how the radii can only take on a discrete amount of values,
and give an alternative Integer Programming (IP) formulation for
a fixed radius. We focus on the most interpretable case in which
only one prototype per cluster is to be selected. The extension to
more than one prototype is straightforward.

Let us introduce the problem more formally. We are given a
clustering C obtained from splitting the individuals in N, N =
UcecNe. The prototype of cluster ¢ is chosen from set 7. € N, with
T = Ueee Ze. We are also given the dissimilarity between prototype
i and individual n, §j,, for every i € Z and n € N. This dissimilarity
does not need to be the one that was used to construct the clus-
ters. As pointed out in the introduction, we may have been given
only clusters, and neither the method nor the dissimilarity used to
build them.

Let rc be the radius of the explanation chosen for cluster c. For
i €I, let mj, be the binary decision variable which takes on the
value 1 if n € A lies in the ball of radius r; centered at prototype
i €7, and 0 otherwise. Moreover, let z; be the binary decision vari-
able which takes on the value 1 if i is chosen as prototype and 0
otherwise. Throughout the paper, we use bold typesetting to de-
note the vectors, e.g., I = (I'¢)cec-
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Fig. 1. [llustration of the trade-off between true positive and false positive cases.

With these variables, the number of true positive cases in cluster
c is equal to Y iy > pop; TinZi and the True Positive Rate (TPR¢)

1S
Z Z TinZi
TPR, — [feihe 1
= 1

while the number of false positive cases in cluster ¢ is equal to
Y ieT. 2nea'\W; TinZi and the False Positive Rate (FPR) is

2. 2 Tua

ieTe neAN\N;
IMANe

The covering model reads as follows:

FPR. =

max

zar Z Z Z Tini — Z Z Z TinZi (3)

ceC jeI, neN; ceC iel, neN\N,

s.t. Zzi =1,VcecC (4)
[

Te = 8inTlin, Y(i,n) € Te x N, Ve e € (5)

re < 8in + (10 — 8iy) Ty, V(i.n) e T x N\ N YVceC (6)

33 Az = [l Nel]. Ve e 7)

ieZ. neN;

Z Z TinZi < [HelN\ Ne|], Ve e (8)

i€l neN\N;

rmin < ro < M Ve e (9)

z;e{0,1}, VieI. YceC (10)

T €{0,1}, V(i,n) € Ze x N, Vc eC. (11)

The objective function is equal to the total number of true posi-
tive cases across all clusters minus the total number of false posi-
tive cases weighted by the trade-off parameter # > 0. Constraints
(4) ensure that one single prototype is chosen for each cluster.
Constraints (5) and (6) ensure that the decision variables m;, are
well defined. Note that because of the shape of the objective
function, for n € A, we only need to ensure that if r. < §;, then
7Tin = 0, which is done by constraint (5). For n e N'\ A, we only

need to ensure that if r. > §;, then m;, = 1, which is done by con-
straints (6). Note that if r. =d;, then m;, =1 for individuals in-
side the cluster ¢ and m;;, =0 for individuals outside the cluster
c. It is easy to see that constraints (7) control the true positive
rate in cluster ¢, TPR,, via the parameter A € [0, 1]. Similarly, con-
straints (8) control the false positive rate in cluster ¢, FPR,, via the
parameter [t € [0, 1]. Finally, constraints (9)-(11) define the na-
ture of the decision variables. The radius of cluster ¢ is bounded
from below and above by i'f‘C“'ln and r¥¥, respectively. Straightfor-
ward values for these parameters are rmin = MiN pye7, Nz in Oin
and r"* = mMax nyez, o Oin-

Note that the objective function contains the total number of
true and false positive cases across all clusters, while constraints
(7)-(8) allow us to control these two criteria in each cluster. These
constraints can be useful when we want to prioritize how well we
explain certain clusters, or when the clusters are of very different
size and we want to ensure a good performance independently of
their size, as we do in the numerical section for the real-world
dataset.

In formulation (3)-(11), we have the product of two decision
variables, i.e., mj, and z;, which makes the problem bi-linear. We
can obtain an equivalent MILP formulation, by applying the Fortet
transformation [40]. Let us introduce the new decision variable
Yin =7,z and the following constraints to ensure y;, is well-
defined:

Yin =i, Y(i,n) e Ic x N, VceC (12)
Yin=zi, YV(i,n) el x N,VceC (13)
Yin =2 Tin+zi—1,¥Y(@i,n)eZ. x N,¥YceC (14)
yin € {0,1}, V(i,n) € I, x N, ¥c e C. (15)

The covering model (3)-(15) has been formulated as an MILP with
2|Z| x |N| + |Z| binary and |C| continuous decision variables, and
4|Z| x |N| +4]|C| linear constraints. Note that this MILP formula-
tion is separable on the clusters. Indeed, the objective function
consists of a summation across the clusters of the number of true
positive cases minus the number of false positive cases weighted
by 6. Similarly, the constraints relevant to ¢ only involve decision
variables relating to c.

We have modeled the radius of cluster ¢, re, as a continuous
variable. However, it is easy to show that we only need to consider
a discrete amount of values, namely, 1. € {8;,, Y(i,n) € Tc x N¢}.
Suppose that we solve the covering model for one of these val-
ues. Since the radius is fixed, the values of 7;, are known and can
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—— St Johns —— Churchill
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200
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Fig. 2. The Canadian weather data grouped into four clusters by climate’s type: Atlantic - blue, Continental - pink, Pacific - red, Arctic - green. Days are along the horizontal
axis, temperatures are along the vertical axis. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

be calculated in a preprocessing step, as well as the true positive
cases and false positive cases associated with i if i is chosen as a

prototype.
Let us denote by 7] the value of 7;, when the radius of cluster
C, I'c, is fixed to r. Let us define

r7§: r
ic — Tins

neN:
ro__ r
ic — Z ‘Trin'
neN\WN,

With this, the covering model for cluster ¢ and radius r. = r can be
formulated as follows:

max Y Prz—0) Ylz (16)
‘ iele iel.
st Y z=1 (17)
ieT,

> iz = [he| N[, (18)
iel,

Y Wiz = LN\ N (19)
ielc

zie{0,1}. Vie L. (20)

Note that the set of candidates to prototype for cluster ¢, Z,, can
be reduced to I/ c Z.. Some candidates can be removed because
¢! < [Ae|Ne|T and others because ¥ > | ic| N\ Ne|]. After reduc-
ing the set of candidates from 7. to 7/, we can eliminate con-
straints (18) and (19), and the problem is equivalent to choosing
the prototype from Iy with the largest ¢!, — 0.

To tackle large instances of the problem, i.e., with many indi-
viduals, we can combine our covering model with a sampling pro-
cedure from the set of individuals and/or the set of candidates to
prototype. Indeed, we can sample from the set of candidates to
prototype for cluster ¢, yielding Zc ¢ Z, for all ¢, and/or sample
from the set of individuals from cluster ¢, yielding Nz c Ae, and
solve the reduced covering model. Let z8 and r¥, ie Z; and c ¢,
be the chosen prototypes and the chosen radii of the reduced prob-
lem if this is feasible. We can use this partial solution to find a
feasible solution to the original problem, (z°, w9, 1°) with z0 =zR

2.75 A

2.50

2.25 A

2.00 +

1.75 A

1.50 A

1.25 +

1.00 A

1.0 1.5 2.0

Fig. 3. Simulared data in R2 with three clusters,

and r9 = R, satisfying constraints (7), imposing a lower bound on
TPR., and constraints (8), imposing an upper bound on FPR.. Need-
less to say that this approach may not yield a feasible solution to
the original problem, and we may need to sample more or make
the values of A. and jt. less restrictive.

3. The partitioning model

An alternative way of explaining clusters by means of proto-
types is the partitioning model. In this case, each individual is as-
signed to exactly one prototype, namely the closest one. To do this,
in addition to the z; variables defined as before, we also need the
binary variables p;, that allocate individuals to prototypes. Let pj,
take on the value 1 if prototype i is the closest one to individ-
ual n from the chosen ones, and 0 otherwise. With these vari-
ables, the number of true positive cases in cluster ¢ is equal to

25T 2onene Pin and

Z Z Pin
TPR, — ieZ. neNg )

21
T (21)
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Fig. 4. For each cluster of the Canadian weather data, the true positive ratio and
false positive ratio given by the covering model when A and ¢ vary on a grid in
[0.1] % [0,1].

(h) FPRArctic

while the number of false positive cases in cluster ¢ is equal to
Yiere Lnea\w; Pin and

Zzpi‘n

o 1€ neN\Ne
FPRC_—lN\Ncl ) (22)

The partitioning model reads as follows:

max > 3D 0D 3 D pi (23)

ceC jeI, neN; ceC icTe neN\N;

s.t. Zz,-: 1, Vcec (24)
iel,
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oo+ Y pp=lVineL xN. Veec (25)

jeTe: Bn<bin JeT: 8jn=Bin

Pin<zi, Vi, n) eI x N (26)
me:],VneN (27)
ieT

Z Z Pin = |—}"C|-A/—C|-|, VececC (28)
iel. neN;

Z Z Pin < [N\ Ne|], Ve eC (29)
i€l neN\N;

ze{0,1).VieT (30)
pin € 40,1}, Y(i,n) e T x N. (31)

The objective function (23) is as in the covering model, as well as
constraints (24) ensuring that we choose exactly one prototype for
cluster ¢ and constraints (28)-(29) controlling TPR. and FPR, for all
¢ € C. Constraints (25) are the closest assignment constraints and
reinforce [41] using the fact that, for each cluster, only one pro-
totype is chosen. These constraints make sure that if individual n
is assigned to a prototype, then there cannot be another proto-
type closer to n. Constraints (26) ensure that individuals are as-
signed to prototypes that have been selected. Constraints (27) im-
pose that the model assigns each individual to a single prototype.
Constraints (30)-(31) define the nature of the decision variables.
Note that the integrality constraint on variable pj, can be relaxed
to pi, = 0 without loss of optimality, while in the objective func-
tion it is enough to maximize 3 .- 3 ;.7 3 ;.\: Pin thanks to con-
straints (27). The partitioning model (23)-(31) has been written as
an MILP problem with |Z| x [N| + |Z| binary decision variables and
2|Z| x [N+ 3]C| + |V linear constraints.

In the model above we have chosen one prototype per cluster.
If we were to choose more than one, we will obviously need to
change the right-hand side of constraints (24), as well as replace
(25) by the original [41] constraints

zi+ Z pin =1, V(i,n) e T x N,VcecC.
JEL:8in<bj

Note that there is a clear difference between the partitioning
model (23)-(31) and the covering model introduced in the previous
section. To define the explanations in the partitioning model, we
need to know the prototypes for all clusters, while with the cover-
ing model, due to its separability on the clusters, we can obtain ex-
planations for one single cluster without knowing prototypes from
other clusters. Nevertheless, to tackle large instances of the prob-
lem with many individuals, we can use a similar approach as in
Section 2, namely, we can reduce the size of the model that finds
the prototypes by sampling in the set of individuals and/or the set
of candidates to prototype.

4. Numerical results

In this section, we illustrate the quality of the cluster expla-
nations provided by the covering and the partitioning models us-
ing both real-life data and simulated data. We measure the good-
ness of cluster explanations by the true positive ratio TPR, and
the false positive ratio FPR. in each of the clusters, defined in
(1) and (2) for the covering problem and in (21) and (22) for
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Fig. 5. The chosen prototypes for the Canadian weather dataset highlighted in boldface, with A = 0.80 and p = 0.20, for the covering model, The lines of the same color as
the cluster denote true positive cases; the lines of color different from the one of the cluster denote false positive cases; the dashed lines of the same color as the cluster

denote false negative cases,

the partitioning problem. The explanations are obtained assuming
that A =2y =...=A and = 1 =... = l)g- This means that
throughout this section, and with loss of generality, we impose the
same requirements on TPR, to all clusters, as well as on FPR,.

We have set the parameter in the objective function of the cov-
ering model, &, which weighs between the total number of true
positive cases and false positive ones, equal to 1. This parameter
does not play a role in the partitioning model as pointed out in
Section 3, where we maximize the total number of true positive
cases subject to the performance constraints on TPR. and FPR.. To
illustrate the tradeoff between TPR. and FPR., we vary the param-
eters A and p on a grid in [0, 1] x [0, 1].

As real-life data, we use functional data relating to Canadian
weather data, see Fig. 2 and Section 4.1, publicly available in the R
package fda [42].

With this data we illustrate that our approach can generate
good explanations, i.e., with high TPR. and with low FPR;, and
that for some of the clusters we even obtain perfect explanations,
i.e., with TPRc =1 and FPR; = 0. Our grid results illustrate how
by increasing the requirements on TPR. through the parameter A,
we have to compromise the FPRc of some clusters. In terms of
simulated data, we use synthetic clusters in R?, see Fig. 3 and

Section 4.2, and illustrate how our approach achieves good expla-
nations in terms of TPR. and FPR, even for large number of indi-
viduals |A].

To solve the mathematical optimization models arising we use
Gurobi [43] with Python [44] on a PC Intel®Core TM i7-8665U,
16GB of RAM. We have imposed a time limit of 300 seconds to
each optimization model. Within this time limit, in our numerical
results below, we have been able to prove optimality or to show
that the problem is infeasible.

4.1. Results for real-life data

The Canadian weather data contains 365 days of tempera-
ture observations for |A| =35 cities grouped into |C| =4 types
of climates: Atlantic (|Magantc| = 15), Continental (|Ncontinentall =
12), Pacific (|Npadfcl =5). and Arctic (|[Namic| = 3). The data are
depicted in Fig. 2, where the clusters are identified by a color,
namely, blue for Atlantic, pink for Continental, red for Pacific,
and green for Arctic. To build the dissimilarity measure, we use
a vectorial representation of each observation with the 365 daily
temperatures. We measure the dissimilarity between n and i
as the Euclidean distance between the corresponding vectors of
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Fig. 6. For each cluster of the Canadian weather data, the true positive ratio and
false positive ratio given by the partitioning model when A and g vary on a grid in
[0,1] = [0,1].

(h) FPRAIctic

temperatures. In both the covering and the partitioning mod-
els, we consider Z =N, ie., all individuals are candidates to
prototype.

To illustrate the tradeoff between TPR: and FPR¢ for each clus-
ter, we vary A and p on a grid in [0, 1] x [0, 1], namely, A, it €
{0.0,0.1,0.2,...,1.0}. Recall that we impose the same require-
ments on TPR. as well as on FPR to all clusters independently
of their size, avoiding thus that our approach is significantly bi-
ased towards those clusters with most individuals. The results for
the covering model can be found in Fig. 4, where we report the
TPR. and the FPR. for each cluster, separately. We use a white
background to denote a combination of (X, p¢) for which the cor-
responding model is infeasible, i.e., no explanation can be found
ensuring a TPR. of at least A and a FPR. of at most &, for each
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of the clusters. In general, the covering model finds good ex-
planations, i.e., explanations that have an attractive tradeoff be-
tween TPR; and FPR; for all the clusters. This is the case for
(A, 1t) = (0.80,0.20), for which TPRayantic = 0-80, TPRcontinental =
0.92, TPRp,cifc = 0.80 and TPRpjc = 1.00, while FPRpyantic = 0.00,
FPRCDntinental = 013, FPRPJCiﬁC =0.03 and FPRAl'tiC = 0.00.

The explanations of the covering model for
(0.80,0.20) are depicted in Fig. 5.

In Fig. 5a we highlight in boldface the selected prototypes for
each of the clusters. Figs. 5b-5e zoom in on each of the proto-
types and the individuals explained by them (true positive and
false positive), as well as the ones that should have been ex-
plained but were not (false negative). To visualize this, we use
lines of the same color as the prototype to denote true positive
cases; the lines with a color different from the one of the pro-
totype denote false positive cases; while the dashed lines of the
same color as the prototype denote false negative cases. For in-
stance, in Fig. 5¢c, we can see that the prototype of the Continen-
tal climate cluster is Uranium City (in boldface pink), Dawson is
a true positive (pink line), Inuvik is a false positive (green line),
while Calgary is a false negative (dashed line in pink). We can
see that the covering model can find more than one explanation
for an individual, e.g., Inuvik is explained by the prototypes from
the Continental and the Arctic clusters, or not explained at all, e.g.,
Calgary.

To end with the covering model we briefly discuss the range
of values of TPR, and FPR. in Fig. 4. By definition, the higher the
value of A, i.e., the stricter we are on the minimum requirement
on TPR. for all clusters, the worse the FPR.. For instance, for p =
0.10, FPRcoptinentar Worsens from 0.04 to 0.09 when increasing A.
Similarly, the lower the value of p, i.e., the stricter we are on the
maximum requirement on FPR. for all clusters, the worse the TPR..
For instance, for A = 0.70, TPRcontinental WOrsens from 0.92 to 0.75
when decreasing /.

We now briefly discuss the results of the partitioning model for
the Canadian weather data in Fig. 6. Note that in this case, the
partitioning model gives for each cluster the same TPR. and the
same FPR; for all combinations of (A, ) in the chosen grid for
which there is a feasible solution, i.e., for A <0.80 and w > 0.10.
More detailed information on this solution can be found in Fig. 7.
There we can see that, as expected, the partitioning model gives a
unique explanation for each individual.

(A ) =

4.2. Simulated data

In this section we consider simulated data in R2. The simulated
data consist of three clusters, see Fig. 3 where cluster 1 is depicted
in blue, cluster 2 in green, and cluster 3 in red. The coordinates of
the individuals in cluster ¢ are randomly drawn from a multivariate
normal distribution, N(#°, £¢), with

B =(14515) B =(18,16) B> =(14.2.0)

w1 _ (001 000} o (002 000
~ o000 o002 ~\ooo o002

53 _ (0.03 o.oo)‘

0.00 0.04
We split the individuals in N roughly equally across the three clus-
ters.

The goal of this experiment is to show that our method-
ology is scalable, i.e.,, it can handle datasets with large num-
ber of individuals and it can obtain good explanations in terms
of TPR;, and FPR; for all the clusters with both the cover-
ing and the partitioning models. For this we consider instances



E. Carrizosa, K. Kurishchenko, A. Marin et al.

Omega 107 (2022) 102543

—

— St Johns Churchill

Chariomvi
Fredericton
Sehetreruil
Avida
Bagattville
Sherbrooke
Montreal
Ottawa
Toronto
Landon
Queber
Thunder Day
Winnipeg
The Paz

— pesolute

(a) The prototypes of the partitioning model for A = 0.80

and g = 0.10

st jonns
Halifax

Charlottvl
Fredericton
Arvitia
Bagottyille
Sherbrocke

[ —

&

150 =0

days.

200 £

TPRAvantic = 0.87, FPRAantic = 0.00

Thunder Bay
Winnipeg
The pac

Uranium City
Calgary
Wnitanorse

— Dawson
Yellowknite

20 %0

(C) rl‘l)l{CUllLillUllt‘dl = 0.92, L“I)I{C\)utluuulal =

0.09

Kamlaaps
Vancouver

— Yamoutn

tempersture

1% 130 B E]

%

20 £

(d) TPRpaciic = 0.80, FPRpacine = 0.03

Fig. 7. The chosen prototypes for the Canadian weather dataset highlighted in boldface,
as the cluster denote true positive cases; the lines of color different from the one of the
denote false negative cases,

with |N] € {10%,10°, 106}, and we vary A and u on a grid
in [0,1] x [0, 1], namely, % < {0.85,0.86,0.87,0.88,0.89,0.90} and
4 e {0.05,0.06,0.07, 0.08, 0.09, 0.10}.

To obtain the explanations, we apply the reduction technique
described in Sections 2 and 3 for the covering and the partitioning
models, respectively. This consists of three steps, namely, (i) defin-
ing the data for the reduced model, (ii) finding the explanations
with this new model, and (iii) evaluating the quality of the expla-
nations in the original data. When performing (i), we select N C
Ne using hierarchical clustering with the Euclidean distance as the
dissimilarity between the individuals in A;. We then choose the
threshold that yields |N¢| groups of individuals. From each of these
groups, we choose a representative randomly, which becomes an
individual of Af. The selected individuals, with weights W, equal
to the size of their group, across the three clusters compose A.
We apply a similar approach to select the individuals in 7. C T,
for each ¢, by using as starting point 7, and then partition it into
|Z:| groups, and select a representative randomly that becomes a
member of Z.. In (ii), we solve the covering and the partitioning
models with individuals in A, weighted by W, and candidates to
prototype in Z. Third, for the obtained explanations, we calculate

Igaiuit
nuvik

—pesolute

— churehin

10

150 0 EQ 0

(e) TPRartic = 1.00, FPRAtic = 0.03

with A = 0.80 and p = 0.10, for the partitioning model, The lines of the same color
cluster denote false positive cases; the dashed lines of the same color as the cluster

TPR. and FPR. on the original dataset A, with |A] € {104, 10°, 106}.
In the numerical results below, we take |N¢| =125 and |Z| = 25,
c=1,2,3.

We now discuss the results for the covering model, see
Figs. 8 and 9. We can see that the explanations obtained with
the reduced problem show a good performance on the original
dataset even when the number of individuals is very large, namely
[N = 10, To illustrate this, let us start with (A, 1) = (0.90, 0.10).
In terms of true positive cases, for [N e {104, 10°, 106}, we have
TPR¢ equal to 0.91, 0.90, 0.90, for c =1, 2, 3. In terms of false pos-
itive cases, for |N| = 104, we have FPR; equal to 0.08, 0.05, 0.05,
for c =1, 2,3, while for || = 10% and 106, FPR; worsens to 0.09.
This means that with the optimal solution of the reduced problem,
we have been able to find explanations to the clusters that satisfy
constraints (7) for A =0.90 and (8) for = 0.10. For other com-
binations of A and g, the quality of the explanations provided by
the reduced problem is also good, with possible minor violations
of constraints (7) or (8).

For the partitioning model, we use a similar procedure and the
results can be found in Figs. 10 and 11. We can see from those
figures that the conclusions are similar.
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(d) V] =10%, TPRe, e =1,2,3.

Fig. 8. For each cluster of the simulated data, the true positive ratio given by the covering model when A and . vary on a grid in [0.85, 0.90] x [0.05, 0.10], for the reduced
problem as well as the original problem with [A] € {104, 10%, 106},
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Fig. 9. For each cluster of the simulated data, the false positive ratio given by the covering model when A and g vary on a grid in [0.85, 0.90] x [0.05, 0.10], for the reduced

problem as well as the original problem with [A] € {104, 10%, 106},
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Fig. 10. For each cluster of the simulated data, the true positive ratio given by the partitioning model when A and g vary on a grid in [0.85,0.90] x [0.05, 0.10], for the
reduced problem as well as the original problem with | € {10, 10°, 10°}.
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Fig. 11. For each cluster of the simulated data, the false positive ratio given by the partitioning model when A and g vary on a grid in [0.85,0.90] x [0.05,0.10], for the
reduced problem as well as the original problem with |~ € {104, 10°, 106},
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5. Conclusions

In this paper, we have proposed a methodology to derive ex-
planations for the clusters obtained from a Cluster Analysis proce-
dure. The explanations are distance-based and defined as the set
of individuals that are close to the so-called prototypes. To find
explanations that are as accurate as possible, we select the proto-
types that maximize the total number of true positive cases across
all clusters and minimize the total number of false positive cases,
while controlling the true positive rate as well as the false posi-
tive rate in each cluster. We have introduced two prototype opti-
mization models, namely, the covering and the partitioning mod-
els. Both models can be formulated as MILPs. We illustrate the ex-
planations provided by these models using both real-life data and
simulated data.

There are two interesting lines of future research. The first one
is to strengthen the mathematical optimization formulations pro-
vided in this paper, while the second one is to study the problem
of building the clusters and explain them simultaneously.
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