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Abstract

We look at the spatial angle of economic growth. Specifically, we assess whether areas where people

live closer together experience faster growth. Traditional measures like population density or urbanization

are not optimal, as they are affected by large uninhabited areas or capped, respectively. We thus introduce

a new measure Spatial Population Concentration (SPC) that captures how many people live on average

within a given radius of every person within a geographic area. This measure allows for a more accurate

measurement of the population concentration than traditional measures, as it does not share some of their

short comings. Next, we show for U.S. counties that areas with a high spatial population concentration

experience faster growth. We find that counties with a low value of SPC measure in 1990 experienced

substantially lower GDP growth over the next 25 years.
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1 Introduction

What drives growth is one of the most important questions in economics. Traditional growth models following

Solow (1956); Mankiw et al. (1992) or endogenous growth models Romer (1990, 1994) assume that either all

economic activity happens at the same location, or that the locations is irrelevant. However, as the extensive

literature on the geography of growth shows, these assumptions are not very accurate.1

We are motivated by two channels through which location might matter for growth. Both channels are

closely related to the endogenous growth literature (e.g. Jones (1995), Gong et al. (2004), Aghion and Howitt

(1992), Grossman and Helpman (1991), Zeira (2011) or Bloom et al. (2017)) and hence assume that growth is

driven by ideas getting implemented. While we focus on the empirical side in this paper, we outlined a model

of how the channels could work in the appendix (A. Model). The first assumes that idea implementation

requires high skilled workers that in turn need to commute and are compensated for the commute. The

further this commute, the more expensive the commute and the more profitable an idea must be to be worth

implementing. In turn, a higher implementation cost due to the geographic spread causes fewer ideas to be

implemented and hence slower economic growth. The second channel for how location matters for growth

is based on Desmet et al. (2020) and assumes that the final goods need to be distributed to consumers.

The more spread out consumers live, the more expensive it becomes to distribute the goods (or the smaller

the potential market) and hence implementing ideas might not be worthwhile for sparsely populated areas

leading to slower growth there.

Another focus in the geography of growth literature is the roles of cities (e.g. Altunbas et al. (2013);

Carlino (2001); Charlot and Duranton (2003); Davis and Dingel (2019); de Groot et al. (2007); Perumal

(2017); Glaeser et al. (2009)). Cities are places, where people live closely together and have historically been

the drivers of economic growth (e.g. Chen et al. (2014); Gollin et al. (2016); Jedwab and Vollrath (2015);

Jedwab et al. (2017)). Our empirical findings are in line with this literature. There should be faster growth

in densely populated cities than other parts of a country.

In order to empirically estimate the impact of the spatial distribution, we introduce a new measure called

the “Spatial Population Concentration” (SPC). This measure calculates how many people live on average

1For example, Le Van et al. (2002); Rivera-Batiz and Romer (2008); Bottazzi and Peri (2003); Blazek and Sickles (2010);
Desmet et al. (2018)
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within a given radius of every person in a geographic area. There are several existing measures of how close

people live together, two of the most well-known being population density and the urbanization rate. While

they both capture how close people live together, they each have important shortcomings relative to our

new measure. Population density has the shortcoming that it can be very strongly affected by large areas

that are sparsely populated. For instance, Nevada (U.S.) has a very low population density even though

people concentrate in the cities due to the surrounding desert. The urbanization rate is more flexible in this

regard, as it measures the fraction of people living in cities or otherwise densely populated areas. However,

the measure does not differentiate more or less densely populated areas within urban (or rural) areas.2 In

addition to differentiating more or less densely populated urban areas, our measure can be used to construct

alternative urbanization rates where a person is deemed to live in an urban area if a threshold number of

people live within a particular radius of that person. While we use this measure to estimate whether areas

where people live close together coincide with faster growth, there are many other potential applications for

this new measure. Specifically, the new measure is relevant for almost any application where it matters how

close people live together, be it the spread of disease, pollution or infrastructure. As SPC is a more accurate

reflection of how close people live together than many other measures, it allows for a more precise analysis

and accurate conclusions of potential applications.

Our paper also has several important policy implications. Our results show that innovation and growth

is faster in areas where people live closely together. Policymakers that want to accelerate economic growth

should thus strive to increase the population concentration and avoid too much city sprawling. Given that

our results imply the biggest gain for areas with a radius of 20-25km, having several very densely populated

hubs should be preferable over a large area of intermediate density population. At the same time, our results

suggest that transportation and communication infrastructure also contribute to growth. The peak distance

for the growth impact of the interaction of our SPC measure and the infrastructure measures is closer to

a radius of 50km. This suggests that the effect we identified can be extended over larger areas, if there is

sufficient infrastructure in place. This suggests that improving the infrastructure has the largest impact for

areas that are not too far from the center itself. We also find that education plays a key role and has the

highest growth impact in the densely populated areas.

2In addition, it is also not standardized across countries.
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In the remainder of the paper, we discuss our new measure in section 2. We introduce the empirical

strategy in section 3 followed by the discussion on data in section 4. After that, sections 5 and 6 present the

results and robustness checks. The final section concludes the paper with a discussion on the contribution of

our central findings and avenues for future research.

2 A New Measure For How Close People Live Together

We are interested in how the spatial concentration of people impacts GDP growth. In order to test this,

we first need to have a good measure of spatial concentration. Two common measures for the population

distribution are population density and the share of urban population. While these measures are easy to

calculate and readily available, they have some distinct shortcomings. Population density is affected by large

uninhabited areas like deserts or lakes and the share of urban population does not account for different degrees

of urbanization. For example, lower Manhattan and Louisville, KY have the same urbanization rate of 100

percent, but lower Manhattan is much more densely populated. In order to overcome these shortcomings, we

introduce a new measure; the Spatial Population Concentration (SPC). The SPC intuitively captures how

many people live within a radius d of every person within a given area, averaged across all people living

within that area. More formally:

SPCd =

∑N
i=1 popi ∗ ndi∑N

i=1 popi
− 1 (1)

where SPCd is the distribution measure for Euclidean distance d, measuring how many people live on average

within distance or radius d of every person in the area of interest. popi is the number of people at position i

and ndi is the number of people within distance d of position i. When calculating this measure, we ignore area

boundaries and include people living outside the specific area of interest, provided they live within distance d.

This means that for some counties, our measure is affected by where people are living across the U.S. border

in Canada and Mexico. Two counties with similar population density are shown in Figure 2. Clark County,

NV (Las Vegas) includes a substantial desert area around the city which reduces the population density. This
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causes it to have a similar density to Berrien County, MI, which does not include a major city. Due to not

including a major city however, Berrien County has a much lower SPC measure than Clark County. We use

George Washington Colonial One High Performance Computing System for our SPC calculations.3 For the

distance d, we use 10km as our baseline results but we also estimated the data for various other distances up

to 200km. For higher thresholds, there is little evidence that there are links between geography and growth

(e.g. Bottazzi and Peri (2003)). The larger distances also address concerns that our 1km by 1km resolution

maps might not be perfectly accurate and averaging across larger distances counteracts this. In addition,

the 10km reference distance is largely preferred in the literature focusing on the scope of knowledge flows to

capture the local effects (Bakhtiari and Breunig, 2018; Barrios et al., 2007; Baldwin et al., 2008; Holl et al.,

2020). We then follow up by using radii of 15, 20, 25, 50, 75, 100, and 200km to estimate if the results are

affected. As we focus on a county level analysis, the radii are also closely related to the county area. With

a median county area of 1610 square kilometers, this is roughly equivalent to a radius of 23km, meaning

that the determinants of the SPC measure at the 100km and 200km radii mainly reflect the population

concentration outside the county.4

Our SPC measure might look similar to the “population weighted density” measure by the U.S. Census

Bureau if the radius (d) in the equation 1 is set to zero. However, at radius 0, our measure simplifies to

the population in the cell. The correlation between SPC at 5km distance and population weighted density

at the county level is 0.54 and decreases with higher distances. It is also important to note that weighted

population density ignores the surrounding area of a county whereas SPC measure accounts for it. In order

to obtain SPC measures for combined areas (e.g. to get from the county level SPC measure to a state level

one), one weights the individual SPC measures according to the population share they have in the combined

area.5

3https://colonialone.gwu.edu/
4There are 66 counties out of over 3000 that have an area smaller than the one implied by the 10km radius (314km2) and

most of them are in Virginia. Our results are robust to excluding them from the analysis.
5For example, assume two areas with SPC measures of 3 and 4 and populations of 2 and 1 respectively. Then the combined

area will have an SPC measure of (3*2+4*1)/3=10/3.
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3 Empirical Strategy

We rely on cross-sectional long-difference regressions as used for example in Jedwab and Vollrath (2015) as

a baseline specification. For our sample of 3,119 U.S. counties we estimate the following equation:

∆LIncc,90−15 = β0 + β1LSPCdc,90 + γ1X1c + γ2X2c + µs + εc,90−15 (2)

where ∆LIncc,90−15 is the log difference in Income per capita between 1990 and 2015 for county c. LSPPdc,90

is our variable of interest, the natural log of the SPC measure for the specific distance d in 1990 as defined in

equation 1. X1c includes our control variables related to the population distribution and output, namely log

population in 1990, log Income per capita in 1990 and log area of each county. X2c is our vector of additional

infrastructure- and education-related control variables (see Table 6) to ensure that our results are robust and

our estimation does not solely capture better infrastructure that might be highly correlated with population

density. We also include state dummies µs to control for any differences across states. While we mainly focus

on the SPC measure to test whether the geography matters for growth, the suggested channels also have clear

implications for infrastructure and education. The better the infrastructure, the lower the transportation

cost and the higher the education, the more high skilled workers there are, reducing the implementation cost

also.

4 Data

The data used to calculate the SPC measure come from the Global Human Settlement database.6 These data

provide spatial information on the number of people living with 1 km resolution for the entire world (1 x 1 km

≈ 20,004 x 40,004 cells) for the four distinct years: 1975, 1990, 2000 and 2015. The two alternative population

distribution measures (population density and urban population) are obtained from the U.S. Census Bureau.7

We do not explicitly include population density in our regression, but rather include both the population

and the area of each geographic area to allow for more flexibility. As all variables are included in logs, this

is equivalent to controlling for population density separately. While we can construct our measure at the

6https://ghsl.jrc.ec.europa.eu/
7Urban population is defined as people living in urbanized areas and urban clusters; https://www.census.gov/
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global level, we restrict our estimation to U.S. counties. This is because U.S. counties are in many ways more

homogeneous than the countries of the world, data availability for control variables and state level dummies

are available to capture many of the particularities in the U.S.

While we are able to obtain the SPC data back to 1975, GDP at the county level is only available from

2001 onwards from the Bureau of Economic Analysis. However, personal income is available back to 1969.

As a result, we run our regressions with personal income data and use long differences between various pairs

of years.

In addition to these geographic data, we also include data on infrastructure and education at the county

level. The data sources are described in Table 6 and are mostly compiled by the USDA.8 Specifically,

access to a good transportation infrastructure can make travelling faster and more comfortable, reducing

the implementation cost c. In order to measure this transportation infrastructure, we include the average

distance of the county population center to the next airport as well as the miles of railroad and highways in

a county. Since these data are not available as time-series at the county level, we use the year available to

us (usually in the range 2015-2019). Since 2000, communication technology also made large jumps with the

advance of video-chat and mobile data that proved particularly useful during the COVID-19 pandemic (after

our sample period). Being able to make video-calls might mitigate the need to meet in person to some extent

and hence reduce the cost associated with the implementation cost. We control for this using the number of

cell towers in each county as well as the broadband coverage in each county in percent.

As one channel requires high skilled workers to implement ideas. We want to control for this by including

the education level in each county. Specifically, we control for the percentage of the population that has a

college degree in each county. An additional factor regarding the implementation cost is the ease of starting

and maintaining businesses. We proxy this by including the number of business establishments into our

regression.

8https://www.ers.usda.gov/data-products/county-level-data-sets/
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5 Main Results

Table 1 contains the first set of regressions based on equation 2. The first column only includes geographic

variables and the coefficient of 22.76 for the SPC measure implies that an additional 1% of people within

a 10km radius of every person increases the growth over 25 years by 0.02%. In other words, doubling the

population within a radius 10 km of every person increases the growth over 25 years by 2%. Given the wide

range of values the SPC measure can take (e.g. see Figure 3), this is economically meaningful. Once additional

controls like infrastructure measures are added, the coefficient drops to about half its size to around 14, but

remains significant at the 10% level. Interestingly, while the area of a county has a statistically significant

impact on output, the urbanization does not seem to have any impact, once SPC is included. This suggests

that the SPC measure captures the population distribution better than urbanization.

Next, we compare the results across several distances as shown in Table 2. We find that the 25km radius

has the largest effect, and the coefficient becomes insignificant for higher radii of 100km and has a negative

and significant effect at the 10% level for 200km. At larger distances, it is also likely that the infrastructure

and the other controls play a larger role. For example, a 10km radius is traversed within a quite reasonable

time, while 100km might be just a 1h highway commute, but could also be substantially longer. For example,

there might not be a highway available or there could be a mountain range in between, making the most

direct route impossible and requiring a substantial detour. In addition, the 10km radius roughly corresponds

to the median land area (around 320 square km) of the 150 largest U.S. cities.

For illustrative purposes, we standardize the indicators by dividing the SPC measure by 1000 and multi-

plying the population density by 1 million. Indeed SPC has a different distribution than population density

(Figure 3) and urbanization (Figure 4). To compare the economic impact of SPC for different distances

with the magnitude of alternative measures, we multiply the coefficient by the standard deviation of the

underlying variable. Table 8 presents the impacts. A one standard deviation increase in the SPC measure

for 10km increases the growth by 2.03% over the period 1990 - 2015 while a one standard deviation increase

in population, area, and urban population changes the growth by -29.88%, 1.39%, and -1.30% in order. The

economic impact of the SPC is largest at 25km distance (7.57%), decreases with additional distance, and has

a negative impact on growth at 200km (-1.04%). The average impact of the SPC measure for distances less
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than 100km is in the range between 0.07% (75km) and 0.30% (25km).

6 Robustness

6.1 Interaction Effects

SPC and Education. So far, it was assumed that the SPC measure has an effect independent from other

variables. In order to distinguish whether the location of high skilled workers matters more for growth or the

location of potential consumers, we interact our SPC measure with the share of college educated population

in the counties. If the interaction effect is very large, this would be more in line with the former channel,

while an insignificant interaction effect is more in line with the latter.

Table 3 shows that the interaction effect is significant at all distances except for 200km. This implies

that the effect of how closely people live together is stronger if a larger share of a county’s population is high

skilled. This result also strengthens the argument of the commute for skilled workers as an important spatial

component of growth rather than the location of consumers. While experts typically have a higher education

than other people in the population a higher density of them should increase innovation. This argument is

more difficult to make with regards to the potential market for a new product. While for some products it

might be the case that the potential market is larger due to more educated people, it is more difficult to

make the case that this is generally the case.

SPC and Transport Measures. People living closer reduces the transportation cost. However, the

transportation cost is also reduced if there are means of transportation available that allow for faster move-

ment. Indeed, a lower cost of transportation has been found to contributes to economic growth as it allows

knowledge transfer over larger distances (Campante and Yanagizawa-Drott, 2016; Dehghan Shabani and

Safaie, 2018; Tamura, 2017). Therefore, even if people live in sparsely populated areas but can connect with

people through a rapid transportation network, the transportation cost is low. This is the next variable

whose interaction with SPC we analyze. Specifically, we use the distance to the closest airport (in km), total

miles of highway and railroad in interaction with SPC.

Table 3 reports the interaction effects between SPC and the transport measures. The coefficients show
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a clear positive and significant effect with both channels. Total highway and railway lengths have positive

spatial effect on growth. In addition, living in both populous areas that are close to airport contributes to

growth positively. The interaction term is the largest for a distance around 50km which is higher than the

individual effect of SPC (20-25km). This suggests that infrastructure helps the most if it connects people in

that intermediate range, rather than at the very close range or the very long range. This is in line with both

channels.

SPC and Digital Measures. Some of the recent literature on growth has concentrated on the role of

digital technologies as one important carrier of knowledge spillovers and the importance of digitalization for

the economic growth of regions and countries (Batabyal and Nijkamp, 2016; Liu and San, 2006; Vinciguerra

et al., 2011). In addition to transport networks such as airline routes and high speed railways, people are well

connected to each other through the mobile network and the internet. Hence, we look at the impact of both

the total number of cell towers (3G and 4G) in a county and the percentage of broad band coverage in Table

3. While the interaction is positive and significant for cell towers for all distances, it is only significant at

distances 25 - 50km for broadband. One potential explanation for why the former one has a lower magnitude

could be that cell phone coverage is more flexible. It can be used to substitute broadband access with the

added benefit that the area covered by a cell tower is likely larger than the area covered by one broadband

outlet. The distance with the most impact is the same as the one for the transportation infrastructure

(50km). This is in line with the assumption that technologies like video call can somewhat substitute the

need to travel over distances. This result could both be in line with the commute of workers or the potential

market. Particularly since COVID, many high skilled jobs have moved online. This means that good digital

infrastructure allows to perform some work remotely, removing the need to a commute. Similarly, certain

services can be performed over the internet and a good infrastructure might be able to substitute some of

the need to physically deliver the service.

SPC and Other Measures. There can be other factors that might potentially impacting the relationship

between SPC and growth. For instance, having more businesses located in counties can facilitate the rapid

exchange of ideas and increase the size of a potential market. Therefore, we also consider the interaction

between SPC and the number of business establishments that we use as a proxy decreasing the implementation
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cost of an idea. As reported in Table 3 having more businesses in populous counties have a positive and

significant impact on GDP for all distances, 10 -200km.

6.2 Spatial Dependency

One effect ignored so far is that there might be growth spillovers. For example, Le Van et al. (2002); Rivera-

Batiz and Romer (2008); Bottazzi and Peri (2003); Blazek and Sickles (2010); Desmet et al. (2018) show that

areas which act as innovation growth engines will lead to faster growth in the surrounding area as well. The

areas of fast growth might attract people and hence become areas with a high population concentration. One

could argue that our SPC measure is merely capturing this phenomenon, rather than independent growth.

In order to test this, we run Spatial Auto-Regressive models (SAR) that take the growth of nearby counties

into account. For our spatial weighting matrix, we use the inverse of the distances between the geographic

centers of counties. To check the spatial dependency, we first calculate Moran’s I statistic (Moran, 1950),

confirming that the growth rate (and GDP level) is indeed similar in counties that are located close to each

other. Table 7 reports the results for this test. Moran’s I is 0.409 and statistically significant at 1% level.

Then, we re-run our estimations including the SAR term to test the assumption of spatial independence of

growth rates. The estimated coefficient captures the local marginal effect of SPC on growth rates, conditional

on observed exogenous variation across counties. We assume that all explanatory variables are exogenous to

quantify this effect. Our regression results based on the SAR model can be found in Table 4. We find that

the spatial lag is significant (except for the period 1975 - 2015) as also shown from Moran’s I above. Our SPC

measure remains significant throughout and including the spatial auto-correlation has a very limited impact

(if any) on the estimates. This provides us with confidence that the SPC measure is not merely capturing

economic spillovers.

In addition, our sampling level is the county. This leads to a variety of different data points, like Clarke

county containing the entirety of Las Vegas or NY county containing just lower Manhattan of New York.

This could lead to the issue that much of the SAR effects are already contained within the counties and

thus captured by the SPC measure instead. However, counties that contain entire (large) cities are more the

exception rather than the rule with a median population around 25k. As a result, the misspecification of the
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SAR model should be rather limited.

To show this we perform an additional robustness check by estimating SAR based on a sub-sample

excluding most populous counties (the ones with a population that is less than 95% of the mean of the

sample). Table 4.A shows that excluding these counties qualitatively do not differ.

6.3 Panel Estimation

Aside from the cross-section estimations, we repeat the above analysis in a panel including the years 1975,

1990, 2000, and 2015 where we calculate the SPC measure. As our measure is not just the population divided

by a fixed land mass, unlike the population density, we can include our variable into a panel regression. Then

we run a panel for the four years according to the equation:

∆LIncc,t = β′0 + β′1L∆LSPCdc,t + β′2∆Lpopc,t + θc + ηt + µc,t (3)

Our cross-section results suggest that a high SPC measure today leads to faster growth over the next

10-15 years. This means that there is a lead-lag relationship between SPC and income which needs to be

reflected in the panel regression as well. We thus include the lagged term for the SPC measure into our

regression and run the panel in log differences. Table 5 presents the estimated coefficients for the spatial

population concentration measures. Our panel estimation results suggest that how close people live together

is closely related to subsequent growth. Similar to the cross-section results, we find very strong significance

at the 10km radius. At longer radii, the relationship becomes weaker and at the 200km radius it becomes

negative and significant. As mentioned for the cross-section results, the negative coefficient might be due to

the area surrounding the county driving our results, rather than the county itself.

7 Conclusion

The geographic distribution of people matters for the knowledge creation hence for the economic growth. In

this paper, we consider two channels how the spatial distribution can contribute to economic growth. The first
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channel assumes a transportation cost for high skilled labor and the second one assumes that the goods need

to be transported to consumers. Both of which impact the decision of firms whether to implement an idea or

not and are linked to geographic closeness of people. In other words, when people live together, the number of

implemented ideas is larger. Therefore, these areas experience faster economic growth. Then we empirically

show that areas in which people live close together grow faster by introducing a new measure, Spatial

Population Concentration, to rigorously capture the geographic closeness of people. The estimation results

indicate that SPC measure is statistically significant in explaining growth across U.S. counties. Specifically,

our results indicate that counties with a low value of the SPC measure in 1990 experienced substantially

lower GDP growth over the next 25 years. The impact of the SPC measure decreases with distance and

becomes statistically insignificant for the U.S. county estimation when the distance is defined as 100km, and

negative when the distance is 200km. These findings are consistent with highly localized knowledge flows.

The SPC measure also seems to be advantageous to alternative measures; population density and urban-

ization rate, since (i) has an higher economic impact on average (compared to urbanization), (ii) it ignores

uninhabited places for the calculation which is not the case for population density, (iii) it captures the im-

pact of urbanization considering alternative distances and (iv) it can be tracked over time: ideal for panel

regressions.

Based on several interaction terms included into our growth regressions, we find that factors like the

quality of physical and digital infrastructure are in line with both of our suggested channels. However, the

interaction with the skill level suggests that the commuting cost of high skilled workers might matter more

for growth than the potential market.

Our findings are also important for policy makers. Our results show that innovation and growth is faster

in areas where people live closely together. Policymakers that want to accelerate economic growth should

thus strive to increase the population density and avoid too much city sprawling. Given that our results

imply the biggest gain for areas with a radius of 20-25km, having several very densely populated hubs should

be preferable over a large area of intermediate density population. At the same time, our results suggest

that transportation and communication infrastructure also contribute to growth. The peak distance for the

growth impact of the interaction of our SPC measure and the infrastructure measures is closer to a radius
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of 50km. This suggests that the effect we identified can be extended over larger areas, if there is sufficient

infrastructure in place. At the same time, this suggests that improving the infrastructure has the largest

impact for areas that are not too far from the center itself. We also find that education plays a key role and

has the highest growth impact in the densely populated areas and should be a priority there.

Findings in this study give avenues for future work. The current estimates of the Spatial Population

Concentration measure capture the average effect for the U.S. However, one might be interested to repeat

the analysis at a world level. This requires to control for additional variables such as internal wars and ethnic

or religious segregation at the country or subnational level which impact the knowledge creation and GDP

growth in those regions. While there is no such concern for the U.S. during the study period, the barriers

that can potentially hinder people exchanging ideas can be considered in different settings.

The U.S. and many other countries have experienced the great economic and industrial divergence

throughout the time. Since the value-added data at the county level is available for the period 2000-2015,

our study period is too short to control for sectoral shifts from manufacturing to high technology services.

Yet depending on the availability of granular data, doing the analysis for different time periods would be

another possible research topic.
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A Model

Our model is a mix between the growth model proposed by Romer (1990) and creative destruction models

as described for example in Aghion and Howitt (1992) but with a more extensive labor market. We assume

that there is a continuum of agents i with n+1 types. The first n are experts in field k and the last type is an

agent without expertise in any field. In each period t, every agent has an idea in the field xit from the same

n possible fields every period. It is assumed that there is no relation between the field of an expert and the

field of the idea and there is no ex ante difference in the properties of the ideas experts have and the ones of

regular agents. The agent can choose to either become an entrepreneur and implement her idea, or to become

a wage worker. If an agent chooses not to become an entrepreneur, the agent earns the competitive wage wlt

as a regular worker and the wage wkt as an expert. If there are more experts in a field k than are needed

to implement the equilibrium number of ideas, wkt = wlt and the excess number of experts become regular

workers. Agents that choose to become an entrepreneurs will implement their idea by starting a company in

their current location and produce an output variety. They earn the profits of this company which are given

by

πit = Ait(xit)l
α
it − wltlit − cit − zitAit(xit)lαit (4)

The productivity term Ait is stochastic and reflects the profitability of the idea. lit is the number of workers

employed at the market wage wlt. α < 1 ensures that the company has decreasing returns to scale, cit is

the implementation cost of the idea due to an expert having to commute or move and zit ∈ [0, 1) is the

implementation cost due to the goods having to be transported to the consumers. Entrepreneurs chose the

number of workers for a given wage to maximize profits

wlt = αAit(xit)l
α−1
it (1− zit) (5)

The choice between becoming a worker and becoming an entrepreneur is determined by the profit they would

make if a company was started. If the profit is less than the market wage (πit < wlt), a regular agent does

not become an entrepreneur. If the expert wage with field k is larger than the profit of the potential company

(πit < wkt), the expert does not become an entrepreneur. Both wages are endogenously determined by the
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labor demand and supply. It is assumed that a percentage pkt of agents are experts in field k that can help

implement ideas that match this field. In order to implement an idea, an entrepreneur requires a matching

expert. For example, if the idea is a new component for a car, an automobile engineer might be the expert

needed.

A.1 Movement Cost c

While the production of output variety using the production function

yit = Ait(xit)l
α
it (6)

can use any other agent as a worker, it is necessary to get one expert with field k to implement the idea and

pay him the market wage wkt. It is assumed that experts need to physically move to the entrepreneur in

order to implement an idea, the cost of which is paid by the entrepreneur. Depending on how close the expert

is to this entrepreneur, the cost for moving is higher or lower. The movement cost can either be interpreted

as a commuting cost for small distances or as a relocation cost for long distances. The movement cost does

not only include the wage wkt and the transportation cost but also the opportunity cost. For example, a

worker relocating might live further from relatives, making visits to them more expensive. We cap the cost

of moving the expert at the market wage wlt. This implies that in the worst case, an entrepreneur needs to

pay a cost cit = wlt +wkt to implement an idea and in the best case pays cit = wkt. For most entrepreneurs,

the cost is somewhere inbetween and depends directly on the distance between agents at the aggregate level.

If the entire population of a county lives in the same place, the cost is the going wage wkt. There are several

distributional aspects that can affect the cost cit. Specifically, this cost for implementing an idea can depend

on the percentage of experts for the specific idea in the population (the more, the lower the cost), how

concentrated they are (the less concentrated, the lower the cost), and how many people live within a certain

radius dt of every agent (the more people, the lower the cost).9

9In order to simulate this economy, one might make further assumptions about the model for tractability like that productivity
Ait is geographically independently distributed from the implementation cost cit. Also, one might restrict that only non-experts
can have ideas that can potentially be implemented and that the number of ideas is equal to the number of experts.
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A.2 Potential Market Cost z

Each output

yit = Ait(xit)l
α
it (7)

that has been produced, needs to be distributed to consumers. The further away the potential consumer

lives, the more expensive the distribution. If the consumer lives far enough, it might not be worthwhile to

produce for this consumer. As a result, the closer people live together, the more potential consumers there

are and the more profitable it is to implement an idea. This is very similar to the model in Desmet et al.

(2020) which has a potential market for each good produced that depends on the population distribution.

The cost zit for implementing an idea can depend on the percentage of consumers for the specific good in

the population (the more, the lower the cost), how concentrated they are (the less concentrated, the lower

the cost), and how many people live within a certain radius dt of every agent (the more people, the lower

the cost). This is very similar to the cost of moving labor cit. Indeed, both costs depend on the spatial

population concentration and a higher concentration results in more ideas being implemented.

One can simplify the model by only including one of the two sources for the spatial distribution of the

population to matter and setting the other equal to zero, or one can include both.

A.3 Growth

So far, the model can compare of how developed regions are, depending on the geographic distribution of

their population. This leads to different wage and migration patterns as well. To obtain the impact of growth

over time, it is necessary to specify how growth enters this model. In line with the literature endogenous

growth (e.g. Romer (1990)), we choose that research and development increases the productivity of firms. In

our model, the closest to this is the implementation cost c. We assume that only the wage of the specialist

is an expense in research and development rather than the movement cost. This way, two counties with the

same number of ideas implemented but different movement costs experience the same productivity growth. If

the movement cost was instead included, the county with the higher movement cost would experience faster

productivity growth. As a result, we assume that the expected value of productivity E(At) evolves as follows:
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E(At+1)− E(At) = f (Wkt) (8)

where Wkt is the sum of all wages wkt paid to experts as part of the implementation cost c and f(·) is some

positive and increasing function. This setup ensures that the more ideas are implemented, the faster growth

is achieved. Because more ideas implemented means more experts are hired by companies, the expenditure

is directly related to the number of people working in research and development, which is endogenously

determined in the model. Specifically, the growth depends on the distribution of Ait(xit) as well as the

distribution of experts and consumers (cit and zit) and together, they determine the wage wt as well as the

number of ideas implemented ht.

Figures and Tables

Figure 1: Distribution of SPC measure for 10km distance in 1990

Note: This map shows the SPC measure for 10 km distance in 1990. It is drawn based on quantiles. The counties shown in blue
color are the ones people more spread out compared to the countries shown in red where people concentrate (due to geographic
or some other factors).
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Figure 2: Comparison of Spatial Population Concentration and Population Density

Note:This figure shows the comparison of SPC measure for 10km and the population density in two counties. As shown in the
maps light yellow areas are uninhabited whereas red color represents the most populous places. In Berrien, Michigan people are
spread out across the county. On the other hand, in Clark county, Nevada people mostly concentrated.
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Figure 3: Comparison of Spatial Population Concentration and Population Density across U.S. counties

Note: This figure shows the comparison of SPC and Population density measures. SPC measure captures the spatial population
concentration in 1990 for 10km (baseline distance). SPC measure is less skewed whereas population density increases quickly.
This implies that mean of SPC is better for where the average country is.
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Figure 4: Comparison of Spatial Population Concentration and Urban Population across U.S. counties

Note: This figure shows the comparison of SPC and Population density measures. SPC measure captures the spatial population
concentration in 1990 for 10km (baseline distance).
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Table 1: Effect of Spatial Population Concentration on Income in the U.S.: Cross-Section

Dependent variable: log change in income per capita

Periods: 1990-2015 1990-2015 2000-2015 1975-2015 1975-2000

log SPC: 10km 22.76*** 13.89* 11.42 28.64*** 10.10*
(7.10) (7.99) (7.20) (7.44) (6.09)

log ∆ Population 0.01 -0.14*** -0.15*** -0.26*** -0.18***
(0.01) (0.02) (0.02) (0.01) (0.02)

log Population -0.04*** -0.21*** -0.18*** -0.34*** -0.18***
(0.01) (0.02) (0.02) (0.02) (0.01)

log Income -0.12*** -0.37*** -0.29*** -0.67*** -0.58***
(0.03) (0.03) (0.03) (0.03) (0.02)

log Area 12.96** 9.19 16.99*** -9.71 -36.30***
(6.33) (6.07) (5.63) (6.72) (5.77)

log Rail 0.74 2.53 -0.55 -2.52
(2.21) (1.94) (2.41) (1.90)

log Dist.Airport 1.83 2.78 4.81 2.89
(3.22) (2.88) (3.59) (3.09)

log N.Businesses 0.15*** 0.11*** 0.28*** 0.20***
(0.02) (0.01) (0.01) (0.01)

log Highway -0.82 -0.36 -0.37 -0.05
(0.55) (0.51) (0.61) (0.50)

log Cell Towers 0.02*** 0.02*** 0.03*** 0.01**
(0.01) (0.00) (0.01) (0.01)

Broadband Coverage 0.13*** 0.13*** 0.19*** 0.08***
(0.03) (0.03) (0.03) (0.02)

Education 4.19*** 3.20*** 4.70*** 5.28***
(0.69) (0.62) (1.20) (1.06)

log Urban Population -2.28** -3.53*** -1.74* -6.00*** -4.93***
(1.02) (0.95) (0.91) (1.05) (0.83)

Observations 3,078 3,072 3,075 3,057 3,057
R-squared 0.32 0.43 0.52 0.54 0.65
State FE Yes Yes Yes Yes Yes

This table shows the long-difference cross-section estimation results for the impact of Spatial Population Concentration (SPC)
on the change in income per capita for various periods for the U.S. counties. Each column is a separate regression for different
time period. Columns (1) is the baseline results. In columns (2) - (5) we add control variables. Robust standard errors are
shown in parentheses. The details on control variables are presented in Table 6.
*** p<0.01, ** p<0.05, * p<0.1
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Table 2: Effect of Spatial Population Concentration on Growth in the U.S.: Various Distances

This table shows long-difference cross-section estimation results for the U.S. counties for various distances. Each column is a
separate regression where the impact of Spatial Population Concentration (SPC) on the change in personal income per capita for
the period 1990-2015 is estimated. Table reports the coefficients of the variables in baseline estimation. All regressions include
control variables presented in Table 6.
*** p<0.01, ** p<0.05, * p<0.1
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Table 3: Effect of Spatial Population Concentration on Growth in the U.S.: Interactions

Dependent variable: log change in income per capita (1990 - 2015)

SPC Distance (d): (10 km) (25 km) (50 km) (75 km) (100 km) (200 km)

SPC x Education 1308*** 1315*** 1280*** 1248*** 1263*** 953*
(356.65) (341.20) (393.18) (432.78) (488.70) (568.26)

Observations 3,072 3,072 3,072 3,072 3,072 3,072
R-squared 0.42 0.44 0.43 0.42 0.42 0.42

SPC x N.Businesses 6.98*** 7.22*** 7.45*** 7.50*** 7.47*** 6.18***
(1.44) (1.28) (1.33) (1.49) (1.68) (2.05)

Observations 3,072 3,072 3,072 3,072 3,072 3,072
R-squared 0.44 0.46 0.45 0.44 0.44 0.43

SPC and Digital Measures

SPC x Cell Towers 5.84*** 6.35*** 6.58*** 6.11*** 5.87*** 3.97**
(1.33) (1.21) (1.25) (1.38) (1.51) (1.72)

Observations 3,072 3,072 3,072 3,072 3,072 3,072
R-squared 0.44 0.46 0.45 0.44 0.44 0.44

SPC x Broad. Cover. 14.81 30.56** 36.61** 28.42* 18.47 -2.41
(17.20) (15.20) (14.60) (14.83) (15.72) (17.44)

Observations 3,072 3,072 3,072 3,072 3,072 3,072
R-squared 0.43 0.46 0.45 0.44 0.43 0.43

SPC and Transport Measures

SPC x Highway 1002* 1462*** 1619*** 1235*** 1174** 1076**
(558) (489) (461) (460) (470) (543)

Observations 3,072 3,072 3,072 3,072 3,072 3,072
R-squared 0.44 0.46 0.45 0.44 0.43 0.43

SPC x D.Airport 8295*** 9110*** 11479*** 11324*** 9837*** 6629***
(2275) (2307) (2442) (2548) (2642) (2909)

Observations 3,072 3,072 3,072 3,072 3,072 3,072
R-squared 0.44 0.46 0.45 0.44 0.44 0.44

SPC x Railway 3047* 3608** 3013** 2309* 2653* 1919
(1694) (1410) (1317) (1342) (1432) (1676)

Observations 3,072 3,072 3,072 3,072 3,072 3,072
R-squared 0.44 0.46 0.45 0.44 0.43 0.43
This table shows the interaction effect of SPC measure with different interactions for the U.S. counties for various

distances. Each panel and column is a separate regression. Robust standard errors are shown in parentheses. The

details on control variables are presented in Table 6. *** p<0.01, ** p<0.05, * p<0.1
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Table 4: Effect of Spatial Population Concentration on Income per capita in the U.S.: Spatial Autoregressive
Model (SAR)

Dependent variable: log change in income per capita

Periods: 1990-2015 1990-2015 2000-2015 1975-2015 1975-2000

log SPC: 10km 17.31*** 11.55** 8.16 27.69*** 13.73***
(6.10) (5.70) (5.26) (6.31) (5.04)

Spatial Lag -0.23*** -0.12*** -0.34*** -0.02 0.11***
(0.03) (0.03) (0.05) (0.01) (0.01)

Observations 3,078 3,072 3,075 3,057 3,057
Wald χ2 (p) 42.57 (0.00) 13.49 (0.00) 34.77 (0.00) 1.71 (0.19) 34.43 (0.00)
State FE Yes Yes Yes Yes Yes
Control Variables Spatial only All All All All

This table shows the long-difference cross-section estimation results for the impact of Spatial Population Concentration (SPC)
on the change in income per capita for various periods for the U.S. counties. Each column is a separate regression for different
time period. Columns (1) is the baseline results. In columns (2) - (5) we add control variables. Robust standard errors are
shown in parentheses. The details on control variables are presented in Table 6. *** p<0.01, ** p<0.05, * p<0.1

Table 4.A: Effect of Spatial Population Concentration on Income per capita in the U.S.: Spatial Autoregressive
Model (SAR) - excluding populous counties

Dependent variable: log change in income per capita

Periods: 1990-2015 1990-2015 2000-2015 1975-2015 1975-2000

log SPC: 10km 21.54*** 13.98** 8.24 31.62*** 18.63***
(6.24) (5.84) (5.44) (6.36) (5.02)

Spatial Lag -0.20*** -0.10*** -0.30*** -0.02 0.09***
(0.03) (0.03) (0.05) (0.01) (0.01)

Observations 2,922 2,917 2,920 2,902 2,902
Wald χ2 (p) 34.36 (0.00) 10.36 (0.00) 26.94 (0.00) 2.04 (0.15) 30.26 (0.00)
State FE Yes Yes Yes Yes Yes
Control Variables Spatial only All All All All

This table shows the long-difference cross-section estimation results for the impact of Spatial Population Concentration (SPC)
on the change in income per capita for various periods for the U.S. counties. Each column is a separate regression for different
time period. Columns (1) is the baseline results. In columns (2) - (5) we add control variables. Robust standard errors are
shown in parentheses. The details on control variables are presented in Table 6. *** p<0.01, ** p<0.05, * p<0.1
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Table 5: Effect of Spatial Population Concentration on Income per capita in the U.S.: Panel

Dependent variable: log change in income per capita

SPC Distance (d): (10 km) (25 km) (50 km) (75 km) (100 km) (200 km)

log SPC 850.98*** 10.23** 506.42*** 208.13 33.72 -644.28***
(118.96) (4.90) (170.06) (154.35) (154.52) (189.28)

log Population -0.12 -0.74*** -0.53*** -0.68*** -0.74*** -0.87***
(0.12) (0.08) (0.11) (0.10) (0.10) (0.09)

Education -0.50 -0.03 -0.10 -0.07 -0.00 0.49
(1.82) (1.88) (1.86) (1.87) (1.88) (1.89)

Observations 6,163 6,158 6,163 6,163 6,163 6,163
R-squared 0.25 0.23 0.24 0.23 0.23 0.24
County & Year FE Yes Yes Yes Yes Yes Yes
This table shows panel estimation results for the U.S. counties for various distances. Each column is a separate regression

where the impact of Spatial Population Concentration (SPC) on the change in personal income per capita for the period

1990-2015 is estimated. Table reports the coefficients of the variables in baseline estimation. All regressions include control

variables presented in Table 6. *** p<0.01, ** p<0.05, * p<0.1

Table 6: List of Variables

U.S. County Data
Variables Explanation-Source

Spatial Population Concentration (SPC) Authors’ calculation based on Global Human Settle-
ment (GHS) data

GDP Bureau of Economic Analysis

Population Authors’ calculation based on GHS data

Area Authors’ calculation based on U.S. county shapefile
from U.S. Census Bureau

Rail Total miles of railroad based on Bureau of Trans-
portation Statistics

Highway Total miles of highway, authors’ calculation based on
GRIP (Global Roads Inventory Project)

Distance to Airport Distance to nearest airport in km from the popula-
tion center of each county, Authors’ calculation based
on Global Airport Database

Number of Businesses Establishments Bureau of Transportation Statistics

Cell Towers 3G and 4G cell phone towers per county; calculated
by the authors’ based on Opencellid.org

Broadband Coverage Percentage of Internet use in U.S. counties based on
Tolbert & Mossberger (2020)

Education Percent of adults with a bachelor’s degree or higher
from USDA

Urban Population Log total population of the county represented by
urban population, authors’ calculation based on U.S.
Census Bureau Urban Area Shape files
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Table 7: Spatial Independence: Moran’s I

log change in Income log Income

(1) (2)

Moran’s I 0.420*** 0.654***
(0.020) (0.020)

Observations 3080 3,135

This table shows the Moran’s I results for the spatial independence test of growth. The exponential spatial weight matrix
is calculated based on the centroid of each county. Standard errors are shown in parentheses. Results stay robust when we
calculate Moran’s I using power function type spatial weight matrix.
*** p<0.01, ** p<0.05, * p<0.1

Table 8: Economic impact of SPC relative to other population measures

Measure Coefficient Standard Deviation Impact (%)

1990 - 2015

SPC, 10 km 13.89* 0.001 2.03

SPC, 15 km 24.35*** 0.001 3.65

SPC, 20 km 36.30*** 0.002 5.86

SPC, 25 km 50.06*** 0.002 7.57

SPC, 50 km 28.77*** 0.001 4.15

SPC, 75 km 13.17*** 0.001 1.81

SPC, 100 km 4.68 0.001 0.61

SPC, 200 km -9.12* 0.001 -1.04

Population -0.22*** 1.374 -29.88

Area 15.36 0.001 1.39

Urban Population -2.96*** 0.004 -1.30

This table shows the economic impact of the Spatial Population Concentration (SPC) coefficient

on explaining the income growth considering alternative distances as well as alternative measures.

The coefficients of population, area, and log population area the average of estimated coefficients

in Tables 1 and 2. The Statistical significance of area changes across estimations. The impact

is calculated by multiplying each coefficient with its standard deviation. *** p<0.01, ** p<0.05,

*p<0.1
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