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Abstract

Background: Artificial intelligence (AI) holds the promise of supporting nurses’ clinical decision-making in complex care
situations or conducting tasks that are remote from direct patient interaction, such as documentation processes. There has been
an increase in the research and development of AI applications for nursing care, but there is a persistent lack of an extensive
overview covering the evidence base for promising application scenarios.

Objective: This study synthesizes literature on application scenarios for AI in nursing care settings as well as highlights adjacent
aspects in the ethical, legal, and social discourse surrounding the application of AI in nursing care.

Methods: Following a rapid review design, PubMed, CINAHL, Association for Computing Machinery Digital Library, Institute
of Electrical and Electronics Engineers Xplore, Digital Bibliography & Library Project, and Association for Information Systems
Library, as well as the libraries of leading AI conferences, were searched in June 2020. Publications of original quantitative and
qualitative research, systematic reviews, discussion papers, and essays on the ethical, legal, and social implications published in
English were included. Eligible studies were analyzed on the basis of predetermined selection criteria.

Results: The titles and abstracts of 7016 publications and 704 full texts were screened, and 292 publications were included.
Hospitals were the most prominent study setting, followed by independent living at home; fewer application scenarios were
identified for nursing homes or home care. Most studies used machine learning algorithms, whereas expert or hybrid systems
were entailed in less than every 10th publication. The application context of focusing on image and signal processing with tracking,
monitoring, or the classification of activity and health followed by care coordination and communication, as well as fall detection,
was the main purpose of AI applications. Few studies have reported the effects of AI applications on clinical or organizational
outcomes, lacking particularly in data gathered outside laboratory conditions. In addition to technological requirements, the
reporting and inclusion of certain requirements capture more overarching topics, such as data privacy, safety, and technology
acceptance. Ethical, legal, and social implications reflect the discourse on technology use in health care but have mostly not been
discussed in meaningful and potentially encompassing detail.

Conclusions: The results highlight the potential for the application of AI systems in different nursing care settings. Considering
the lack of findings on the effectiveness and application of AI systems in real-world scenarios, future research should reflect on
a more nursing care–specific perspective toward objectives, outcomes, and benefits. We identify that, crucially, an advancement
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in technological-societal discourse that surrounds the ethical and legal implications of AI applications in nursing care is a necessary
next step. Further, we outline the need for greater participation among all of the stakeholders involved.

(J Med Internet Res 2021;23(11):e26522) doi: 10.2196/26522
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Introduction

Background
Despite a surge in funded research in the application of digital
technologies toward a higher assurance of quality nursing care,
in times of aging societies and skill shortages [1], the application
of artificial intelligence (AI) in nursing practice is still scarce.
In this context, AI can be defined as algorithms that enable
learning from data sets to achieve intelligent, goal-oriented
action.

Recent systematic and scoping reviews on the application of
AI in nursing research (as well as in practice and emerging
trends), covering original research published until October 2019,
identified papers listed in medical and multidisciplinary
databases. These included studies focused on machine learning
(ML) methods, such as deep learning [2], or on health
technologies that incorporate AI approaches themselves, such
as robots or clinical decision support systems [3]. Various
application scenarios have been identified, including clinical
or organizational outcomes (eg, falls), admission decisions in
emergency medicine, high-definition image recognition, as well
as socially assistive robots or health care assistant chatbots [2,3].
In addition, recent years have seen an increase in research
highlighting possibilities for the future development of AI in
nursing care while underscoring the importance of collaborative,
interdisciplinary research, and representative, robust data sets
[2].

However, as of today, a universally accepted classification of
AI subfields relevant to health, which could act as a vantage
point for AI in nursing practice, is missing [4]. Prominent AI
approaches include ML, expert, and hybrid systems. ML, as a
method of data analysis guided by algorithms, identifies patterns
in data and learns from them using different approaches [4].
This is utilized in medical diagnostics, for example [5]. Expert
systems build on a knowledge base and a rule-based reasoning
engine [4], which, in combination, mimic the reasoning of a
human expert who would solve a complex problem by applying
predefined if-then rules drawing on a specific knowledge base
[6]. These systems can be found in tools that support clinical
decision-making and case-based reasoning [7,8]. Hybrid systems
combine different AI capabilities by integrating ML with expert
systems [9-11]. AI applications aimed at determining the
meaning of texts, such as clinical notes, can be found in the AI
subfield of natural language processing (NLP) [4,12]. AI
applications for automated planning and scheduling can be used
to improve the efficiency of human procedures [4], such as
generating nursing staff rosters or care-related scheduling
decisions [13,14]. Applications that target image and signal
processing use algorithms that typically include signal feature
analysis and data classification to analyze images or data

produced by movement or sound [4]. These can, for example,
aim at activity and health monitoring, wound detection, or
pressure injury and fall prediction or prevention [15-19].

Opportunities and Challenges for AI in Nursing Care
Turning our attention specifically to nursing care settings, the
primary opportunities for applying AI include application
scenarios such as decision support in complex care situations
[3,18,20,21]. AI also holds great promise for supporting nurses
in tasks considered to take place remotely from direct patient
interactions [3,21]. High expenditures of nurses’working hours
are frequently reported as being used for the documentation of
care processes, with some care facilities reporting up to almost
a third of daily working hours being expended for documentation
processes [3]. This represents one of the many starting points
from which to develop AI solutions to consistently improve
nursing care processes and support nurses efficiently in their
daily tasks. AI applications for the direct support of
care-dependent persons and their informal caregivers are another
starting point, as studies with AI approaches in different
community and home care settings have shown [4-6]. This is
of particular need, given that most long-term care recipients in
Germany are being cared for in their own homes [22]. Until
now, little knowledge on the practical relevance and applicability
of AI systems with setting-specific requirements in nursing care,
for example, when introduced in care processes involving
persons with limited cognitive abilities, exists thus far.

Furthermore, the transformative effect of AI, resulting from its
ability to change the intrinsic nature of health care delivery, is
accompanied by ethical risks, namely, concerning the validity
of evidence, the fairness of outcomes, and the traceability of
harm caused by algorithmic activity [23]. Furthermore, although
consensus on the potential of health technologies powered by
AI to enhance nursing practice has been reported [3], the critical
ideological and ethical nature of nursing practice still needs to
be considered, and the role of decision-making, enhanced and
burdened by an amplified understanding of opportunities granted
by AI applications remains uncertain in the context of providing
ethical and transparent nursing care [21]. To our knowledge,
an extensive overview of the evidence base and status quo of
research on AI for application in nursing practice, including
evidence from medical and computer science databases, is
missing. By identifying promising application scenarios for AI
in nursing practice, such an overview contributes to the
systematic enhancement of research and development for AI in
nursing practice.

Objectives
This rapid review aims to synthesize the evidence base of
application scenarios for AI in nursing care settings, namely,
ambulatory and stationary (long-term) care, acute hospital care,
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and nursing education. We also address prominent adjacent
aspects within the ethical, legal, and social discourse concerning
AI in nursing care by addressing the following review questions:

1. Which application scenarios for AI systems in nursing
practice are reported, considering that different care settings
are described in the literature?

2. What kinds of AI approaches have been researched, or are
being discussed in the literature, and for which kinds of
care settings?

3. What requirements or barriers have been reported for the
application of AI in nursing practice?

4. Which ethical, legal, and social aspects—concerning AI
and nursing—are discussed in the national and international
literature?

Although our approach is broader than those of similar reviews
that have focused exclusively on ML algorithms [24], it is also
more broadly scoped in that it considers the ethical and
regulatory context of the AI system deployed but does not focus
exclusively on these aspects as other reviews have done [25].

Methods

Criteria for Considering Publications for This Review
We conducted a rapid review to identify and synthesize
publications promptly [26]. A protocol describing the rationale
and methods of this review was published in May 2020 [27].
This paper follows the guidelines outlined in the PRISMA
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) Statement [28].

We included all designs of quantitative and qualitative original
research, systematic reviews, and discussion papers or essays
on ethical, legal, and social aspects that address the application
of AI, specifically in:

1. The support of decision or work processes in direct nursing
care or,

2. The organization of nursing care processes,
3. The support of knowledge and competencies in nurses’

(further) education or,
4. The support of persons in need of care (explicitly referred

to as needing care) or,
5. Persons of all ages in need of support in their activities of

daily living.

We included publications in the English language from 2005
onward, as we expect publications on AI to become quickly
outdated and updated. Publications focusing on improving the
functionality of medical diagnostic or therapeutic technologies,
without clearly describing nurses as a relevant target group
being affected by the application of the AI system or being
directly involved in the application process, were excluded.

Types of Participants, Settings, and AI Systems
Publications had to either designate at least 1 of the following
groups of persons as main users or as benefactors of an AI
application:

1. Nurses or nursing students

2. Care-dependent persons or their informal caregivers (either
explicitly referred to as needing care or being referred to
as needing, or benefiting from physical, cognitive, or mental
support).

Publications using inconclusive terms, such as the elderly or
health care professionals, without further information on target
groups of users or benefactors, were also assessed for inclusion.

Care settings encompassed ambulatory and stationary long-term
as well as acute outpatient and hospital care (including
rehabilitation facilities) and nursing education settings. Studies
assessing care in community settings or assessing the
populations mentioned above, but in a laboratory setting, were
also included.

As there is no conclusive definition of specific AI abilities or
subfields that are relevant for health [4] or nursing care as of
yet, all types of AI systems or approaches, ranging from clearly
stated types (ML, expert system, hybrid system), to any type of
approach combining ML and an expert system and algorithms,
across to rather vague descriptions, such as smart system or AI
in health care, were deemed as eligible.

Search Methods for Identification of Studies
We searched the following databases in June 2020: PubMed,
CINAHL (including Embase), Association for Computing
Machinery Digital Library, Institute of Electrical and Electronics
Engineers Xplore, Digital Bibliography & Library Project,
computer science bibliography, and Association for Information
Systems Library. In addition, we searched digital libraries of
leading conferences identified through expert consensus within
the study team. These conferences were specifically the
Association for the Advancement of AI conference, the
Association for Computational Linguistics Conference, the
Conference on Computer Vision and Pattern Recognition, the
International Conference on Machine Learning, the International
Joint Conferences on AI Organization, the conference of the
Association for Computing Machinery’s Special Interest Group
on Knowledge Discovery and Data Mining, the Conference on
Neural Information Processing Systems, the International
Conference on Principles of Knowledge Representation and
Reasoning, the Conference on Uncertainty in AI, the
International Conference on Autonomous Agents and Multiagent
Systems, and the European Conference on AI. The search
strategy based on the block-building approach [29], combined
terms for nursing and artificial intelligence and their respective
synonyms. If applicable, we searched the titles, abstracts, and
all fields of publication. In the first step, single terms for each
block were searched. Second, all terms of a single block were
combined using the Boolean operator OR. We initially deemed
publications in German or English to be eligible. As no
publications in the German language fulfilled the inclusion
criteria, we focused only on the English. Finally, the results
from the second step were combined for the 2 blocks using the
Boolean operator AND. The hits were recorded for each step.
To circumvent imprecisions between concepts described in the
titles or abstracts, regarding the components of the search
strategy, and to identify a large number of potentially eligible
publications, we developed a preferably sensitive search
strategy. Multimedia Appendix 1 contains the search strategy,
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search terms, and the number of hits for all databases and
conference libraries.

Data Collection and Analysis

Selection of Publications, Data Management, and
Extraction
Two review authors independently screened all the titles and
abstracts. Full texts were screened by a single person.
Discrepancies were resolved through discussion or by referral
to a third review author. Citations identified by the third search
step described above were exported to an EndNote library after
excluding duplicates. Titles and abstracts were screened using
the web-based resource, Rayyan [30]. Full text screening was
conducted in EndNote and documented using a spreadsheet
program. Data extraction was conducted by a single reviewer
and included the following data for all publications:

1. Author, year, country of origin
2. Setting
3. Target group of users or benefactors
4. Methods used or addressed
5. Purpose of the AI application

Furthermore, we extracted information on study design, type
of data sets used, number of participants, outcomes assessed,
results, and reported requirements or barriers for the application
of AI for a subsample of studies that we considered as studies
that incorporated real-world settings. For studies focusing on

research of a more basic nature and describing laboratory
scenarios or which used pre-existing data sets, either without
transfer of results to real-world nursing scenarios or without
evaluation of real-world outcomes, or focused on algorithm
qualities or proof-of-concept studies, no information on results
were extracted.

Assessment of Risk of Bias and Level of Evidence
As the rating of the effectiveness of AI applications in nursing
care was not a primary research interest of this review, we did
not assess the risk of bias of the results within the original
research studies. To map the advancement of research regarding
reliability, external validity, and generalization of results, a level
of evidence (LOE) was assigned to each publication. We used
established evidence-based nursing and evidence-based medicine
hierarchies [31,32] and ranked LOEs from level I (highest
evidence) to level VII (lowest evidence), as shown in Textbox
1. As we did not assess the risk of bias, the characteristic well
designed in the LOE description is enclosed in brackets. Studies
using a nonrandomized control group design, in which one
group of participants did not receive an AI-supported
intervention, or where a before-and-after design was
implemented, were assigned to level III. Publications providing
an overview without using a systematic review design were
assigned to level VII. Publications not reporting results obtained
by a specific research design were then labeled as concept only
and were not assigned an LOE.

Textbox 1. Level of evidence rating categories.

Level of evidence

• Level I

• Evidence from a systematic review or meta-analysis of all relevant randomized controlled trials (RCTs) or evidence-based clinical practice
guidelines, based on systematic reviews of RCTs, or of 3 or more RCTs of good quality that have similar results

• Level II

• Evidence obtained from at least 1 (well-designed) RCT

• Level III

• Evidence obtained from (well-designed) controlled trials without randomization (eg, quasi-experimental)

• Level IV

• Evidence from (well-designed) case-control or cohort studies

• Level V

• Evidence from systematic reviews of descriptive and qualitative studies (metasynthesis)

• Level VI

• Evidence from a single descriptive or qualitative study

• Level VII

• Evidence from the opinion of authorities or reports of expert committees

• No applicable level

• Concept only
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Analysis and Synthesis
Publications were grouped into basic research studies (category
basic or experimental) or those incorporating real-world
scenarios. The country of origin was coded into a country code,
as defined in ISO 3166-1; it refers to the country in which the
analyzed data were generated. We classified studies as either
directly addressing nurses, care dependents, patients, or informal
caregivers as being the main users or benefactors of the AI
system. An AI system can solve complex problems that have
been previously reserved for humans. This is done by breaking
these problems into a number of simple prediction tasks [33].
We coded the types of AI systems and application contexts for
each publication on the basis of the categories given in Wahl
et al [4], which we expanded after determining the final sample
of publications to be included. The category Type of AI
Approach comprises the codes machine learning and expert
system, as defined above. In addition, we also considered hybrid
systems, defined as a combination of expert systems with ML
[9-11]. Studies using deep learning approaches have been
included in ML. AI systems can be defined as self-training
structures of ML predictors, which automate and accelerate
human tasks, and consist of domain structure, data generation,
and a general purpose prediction algorithm [33]; information
on the domain structure, which needs to be attributable to the
nursing care context, was mandatory for inclusion. Studies
lacking information on the data generation, as well as the
prediction algorithm dimension, using rather generalized terms,
were categorized as not specified in the category Type of AI
Approach.

The application context category is also derived from Wahl et
al [4] and comprises automated planning and scheduling, image
and signal processing, and NLP. Both categories also entail
codes for unclear and nonspecific information or restricted
applicability. Originating from the data extracted for the purpose
of the AI application, we inductively developed codes for the
setting category and 22 codes for the purpose category that
summarize the domain of health or nursing activity affected by
the AI system (eg, nurse rostering and scheduling, tracking or
monitoring of activity and health tracking, falls or quality of
life, and well-being of caregivers). In addition, we inductively
derived 7 codes for a more generalized application scenario
(support of direct nursing care, support of the care organization,

support of independent living care-dependent people, health of
the caretaker, formal and informal education, risk estimation
and prevention, etc). Systematic reviews and other types of
publications were coded as described above if possible, or rated
as not applicable for some categories.

Study characteristics and target groups of users or benefactors
are descriptively summarized and displayed in tables and figures.
To answer the first and second research questions, we
descriptively summarized the categories purpose, application
scenario, type of AI approach, and application context in relation
to the setting category. The results will be summarized, as well
as differentiated, for studies considered to be of a more basic
nature, such as laboratory experiments or proof-of-concept
papers (category basic or experimental) and real-world scenario
studies (category real-world setting) and displayed in tables or
figures. To answer the third research question, we narratively
summarized the requirements and barriers reported in real-world
scenario studies, as well as systematic reviews or publications
focusing on the ethical, legal, and social implications (ELSIs)
of AI in nursing care. The latter also provides the basis for
answering the fourth research question in the form of narrative
synthesis.

Results

Included Publications

Overview
Searches performed in databases for nursing and health sciences
yielded 6867 matches. Databases containing publications from
computer science publications added an additional 1635
matches. The handling of the included publications and the
numbers of included and excluded records are depicted in Figure
1. In the first step, we eliminated duplicate records (n=1486),
resulting in 7016 publications proceeding into the screening of
their titles and abstracts, which led to the further exclusion of
6266 publications. For the remaining 704 available publications,
the full texts were screened, and a further 412 publications were
excluded in this step, leaving 292 publications to be incorporated
in this review (Multimedia Appendix 2 [7-13,15-19,21,34-310]
describes an overview of all 292 references and the selected
characteristics for these included publications).
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) [34] flowchart of the publication screening process and
study selection. AI: artificial intelligence.

Characteristics of Included Studies

Publication Date, Country, and Publication Language

Of the 292 studies, 155 (53.1%) were published between 2016
and June 2020, with the remaining 137 (46.9%) originating
from 2005 to 2015. The included studies used data generated
in 39 countries, which in most cases corresponded with the
country affiliation of the first author. The 10 countries with the
most publications were the United States (n=72), Japan (n=45),
Canada (n=23), China (n=16), Taiwan (n=15), the United
Kingdom (n=11), Australia (n=10), India (n=9), Spain (n=9),
South Korea (n=8), and Germany (n=8). All studies were
published in English.

Research Setting

We classified 83.2% (243/292) of studies as basic or
experimental and 11.6% (34/292) as studies in real-world
settings. In addition, 8 scoping or systematic reviews, 6
publications on ethical, legal, and social aspects, and 1 survey
on AI in nursing practice were included.

Level of Evidence
The LOE assigned most often was level VI (evidence from a
single descriptive or qualitative study), which applied to 77.1%
(225/292) of studies. An evidence level of III (evidence obtained
from well-designed controlled trials without randomization) or
higher was assigned to 2.1% (6/292) of studies. Table 1 shows
the number of studies assigned to each level of the evidence
category.
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Table 1. Numbers of publications by level of evidence and research setting (N=292).

Total (N=292), n (%)Other (n=15), n (%)Real-world setting (n=34),
n (%)

Basic or experimental (n=243), n
(%)

Level of evidence

1 (0.3)1 (6.7)0 (0)0 (0)Level I

1 (0.3)0 (0)1 (2.9)0 (0)Level II

4 (1.4)0 (0)4 (11.8)0 (0)Level III

14 (4.8)0 (0)7 (20.6)7 (2.9)Level IV

7 (2.4)7 (46.7)0 (0)0 (0)Level V

225 (77.1)5 (33.3)21 (61.8)199 (81.9)Level VI

6 (2.1)2 (13.3)0 (0)4 (1.6)Level VII

34 (11.6)0 (0)1 (2.9)33 (13.6)No applicable level

Beneficiaries and Setting
We found that 46.2% (135/292) of publications specifically
addressed care-dependent persons as the target group of the
proposed or examined AI solutions, 39.4% (115/292) targeting
nurses, and 9.6% (28/292) stating informal caregivers as the
target group. Two or more of the aforementioned groups were
addressed in 49 studies, and all of them in 6 publications. In
addition, 23.3% (68/292) of the publications did not state either
of the 3 groups as their primary target group. These studies
frequently proposed AI approaches with nurses targeted as
potential beneficiaries among other health care professionals.

Hospitals are the most prominent research setting, followed by
independent living at home, with nursing homes, ambulatory
long-term care, and outpatient health care being less frequently
addressed (Table 2). Other settings, including the community,
rehabilitation, daycare, and education facilities have been the
subject of only a few studies. Multiple settings were the subject
of 10.6% (31/292) of the publications, and 11.3% (33/292) did
not state any setting. Studies employing a real-world setting
also predominantly focused on hospitals. Other settings were
only referred to infrequently.

Table 2. Numbers of publications by application and research setting (N=292).

Total (N=292), n (%)Other (n=15), n (%)Real-world setting (n=34),
n (%)

Basic or experimental (n=243), n
(%)

Setting

86 (29.8)4 (26.7)13 (38.2)70 (28.8)Hospital

66 (22.6)2 (13.3)0 (0)64 (26.3)Independent living

32 (11.3)0 (0)12 (35.3)21 (8.6)Nursing home

18 (5.8)0 (0)6 (17.6)11 (4.1)Ambulatory long-term care

10 (3.4)0 (0)0 (0)10 (4.1)Outpatient health care

9 (2.7)1 (6.7)1 (2.9)6 (2.5)Community

2 (0.7)0 (0)0 (0)2 (0.8)Rehabilitation

1 (0.3)0 (0)1 (2.9)0 (0)Daycare

1 (0.3)0 (0)1 (2.9)0 (0)Education facility

31 (10.6)5 (33.3)0 (0)26 (10.7)Multiple

3 (1)0 (0)0 (0)3 (1.2)N/Aa

33 (11.3)3 (20)0 (0)30 (12.3)Not stated

aN/A: not applicable.

Type and Subtype of AI Approaches
Considering the type of AI approach, we found the vast majority
(228/292, 78.1%) of studies employing ML approaches.
Rule-based expert systems were used in 11.6% (34/292) of the
publications, whereas hybrid systems were used in only 3
studies. For the remainder of the publications, the specific AI
approach used was either not identifiable or this attribute was
not applicable, mostly because of publications not employing
specific AI approaches in basic or applied research. Studies

incorporating real-world settings made use of ML approaches
comparably in 71% (24/34) of cases, whereas expert systems
were only covered in 2 studies and hybrid systems not at all
(Table 3).

Most AI approaches have been described as solutions for image
and signal processing (178/292, 60.9%), that is, the processing
of large amounts of signals, such as audio and video data, for
feature analysis and data classification [4]. AI approaches have
been used for automated planning and scheduling. This category
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entails approaches used to organize and prioritize activities and
that “can be used to improve the efficiency of human
procedures” [4]. Studies have focused less often on the
processing of human language (NLP). Image and signal

processing were also performed in most studies conducted in a
real-world setting with automated planning and scheduling, and
research on NLP has been less frequently reported (Table 4).

Table 3. Numbers of publications by type of artificial intelligence (AI) system and research setting (N=292).

Total (n=292), n (%)Other (n=15), n (%)Real-world setting (n=34), n (%)Basic or experimental (n=243), n (%)Type of AI system

228 (78.1)7 (46.7)24 (70.6)197 (81.1)Machine learning

34 (11.6)1 (6.7)4 (11.8)29 (11.9)Expert system

25 (8.6)7 (46.7)6 (17.6)12 (4.9)Not specified

5 (1.7)0 (0)0 (0)5 (2.1)Hybrid system

Table 4. Numbers of publications by subfield of artificial intelligence (AI) and research setting (N=292).

Total (N=292), n
(%)

Other (n=15), n (%)Real-world setting (n=34), n
(%)

Basic or experimental (n=243), n
(%)

Subfield of AI

178 (61)4 (26.7)19 (55.9)155 (63.8)Image and signal processing

74 (25.3)1 (6.7)14 (41.2)59 (24.3)Automated planning and scheduling

27 (9.2)0 (0)1 (2.9)26 (10.7)Natural language processing

13 (4.5)10 (66.7)0 (0)3 (1.2)Not specified

Purpose of AI Application
The areas of support for nursing care targeted by the AI
approaches are shown in Table 5. With regard to the intended
effects from the described AI approaches, 47.6% (139/292) of
the studies focused on the support of the direct, immediate
process of care. The support of the organization of care services
and the support of care-dependent people themselves, as well
as risk estimation and prevention, are further prominent
purposes. Risk estimation and prevention potentially pose a

cross-sectional topic, where the type of support manifests at
multiple levels. The health of the caregiver and education were
addressed in only a few cases. For studies in real-world settings,
risk estimation or prevention, support of direct care, and support
of care organization were each a focus of 29% (10/34) of the
studies, whereas the support of care-dependent people and
education did not play a prominent role, and no research
conducted in a real-world setting focused on the health of
caregivers.

Table 5. Numbers of publications by area of support and research setting (N=292).

Total (N=292), n
(%)

Other (n=15),
n (%)

Real-world setting (n=34),
n (%)

Basic or experimental
(n=243), n (%)

Area of support

139 (47.6)4 (26.7)10 (29.4)125 (51.4)Support of direct care

52 (17.8)0 (0)10 (29.4)42 (17.3)Support of care organization

42 (14.4)0 (0)10 (29.4)32 (13.2)Risk estimation or prevention

39 (13.4)3 (20)3 (8.8)33 (13.6)Support of care-dependent people

11 (3.8)6 (40)0 (0)5 (2.1)N/Aa

4 (1.4)0 (0)0 (0)4 (1.6)Health of caretaker

3 (1)2 (13.3)0 (0)1 (0.4)Various

2 (0.7)01 (2.9)1 (0.4)Education

aN/A: not applicable.

A more detailed summary of the purpose of the AI approaches
is presented in Table 6. The most prominent purpose was activity
and health tracking (monitoring or classification) in 30.1%
(88/292) studies. Care coordination and communication are
frequent topics, which, among others, include AI approaches
classifying information in nursing documentation, supporting
decision-making, and yielding information for coordination and
continuity of care. Fall detection, fall prevention, and fall risk

classification are also frequently mentioned purposes for topics
in AI. In contrast to falls, other mobility-related aspects were
of lesser interest and were mentioned in only a few studies.
Further purposes with a high degree of specificity are the
recognition, classification, reduction of alarms, and risk
prediction and classification of pressure ulcers. Addressing
nurse rostering or scheduling problems was the purpose of an
AI solution in 4.1% (12/292) studies.
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Table 6. Frequencies of stated purposes (monitoring, tracking, classification, prediction, and support) of artificial intelligence solutions (N=292).

Frequency, n (%)Purpose

88 (30.1)Activity and health

53 (18.2)Care coordination and communication

36 (12.3)Falls

21 (7.2)Nursing assessment or care needs assessment

14 (4.8)Alarms

12 (4.1)Nurse rostering or scheduling

11 (3.8)Pressure ulcers

10 (3.4)Social integration and participation

7 (2.4)Parenteral or enteral nutrition and fluid intake

6 (2.1)Quality of life and well-being of caregivers

5 (1.7)Mobility, other

5 (1.7)Speech

3 (1)Distribution of medication

3 (1)Wound management (excluding pressure ulcers)

2 (0.7)Bladder control

2 (0.7)Infection control

2 (0.7)Respiratory care or weaning

1 (0.3)Clinical education

1 (0.3)COPDa care

1 (0.3)Digestion management

1 (0.3)Pain assessment or management

8 (2.7)N/Ab

aCOPD: chronic obstructive pulmonary disease.
bN/A: not applicable.

Subsample of Studies in Real-world Settings

Overview
We classified 34 publications as studies that employed
real-world settings. Multimedia Appendix 3
[13,18,19,34-58,63,69,82,95,100,310,312] summarizes the
characteristics of these publications. The data used originated
from the United States in 12 studies, from Canada in 5 studies,
and from Spain in 3 studies. Australia, Germany, and Japan
contributed 2 studies each to the subsample, and the remaining
single studies used data from Brazil, Finland, Greece, Hong
Kong, Ireland, Italy, and Singapore. A Saudi Arabian survey
on health care employees’ perceptions of the use of AI
applications that involved 121 nurses as participants [34] was
also included in the subsample. In the 27 studies that reported
on the number of participants, sample sizes ranged from small
samples including <10 people [35,36] to large data sets holding
information from >200,000 individuals [13,37]. Of the 31 studies
reporting more details on participant characteristics, data from
patients in hospitals were analyzed in 13 studies, of which 5
focused on pediatric or adult intensive care unit (ICU) patients
[13,38-40,312]. Residents of long-term care institutions were
included in 12 studies that sometimes also included caregivers

and other health professionals [35,41-44]. People with dementia
or cognitive impairment were included in 3 studies [36,42,45].
Home care clients or community-dwelling elderly were included
in 6 studies [46-51,313], 3 studies specifically focused on nurses
or nursing students [34,52,53], and 1 study targeted elderly
people at a daycare facility [54]. The more or less detailed
reporting of heterogeneous study designs included experimental
designs, field experiments [54], real-life use-cases [55], case
studies with a single subject design [36], cross-sectional and
longitudinal observational designs as well as comparative
designs, and an economic evaluation nested within a
cluster-randomized controlled trial [18,45], and different mixed
methods designs (such as the studies by Amato et al [35],
Ala-Kitula et al [46], and Alwan et al [47]). However, some
studies did not state a specific design. In that case, they were
classified according to the nature of the reported results (such
as observational data).

Reported Effects Referring to Clinical or Organizational
Outcomes
Of the studies in the subsample reporting results in varying
degrees of detail, 22 studies reported effects in terms of
algorithm eligibility or technological functionality. For example,
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Chen et al [42] developed a detector for elopement behavior in
dementia care units on the basis of a hidden Markov model and
concluded that the system may reduce the risk of actual
unwitnessed elopement, thus preventing negative consequences
of elopement, but did not report on the longitudinal
implementation of the detector or changes in elopement rates
or nursing work processes. In contrast, no additional benefit by
applying AI technology for a use-case aimed at gathering
personal health data from home monitoring sensors, activity
trackers, national electronic health records, and previous home
care reports to evaluate the home care need and its availability
in real time was reported by Ala-Kitula et al [46]. Results for
outcomes that we considered to be of a more clinical or
organizational nature are reported in 12 studies and highlight
the real-world effect of the contribution of AI approaches to
nursing care. Of those studies, 7 were conducted in long-term
care facilities, 3 in the hospital setting, and 1 study in a daycare
facility or an educational setting. Outcomes mainly target some
form of physical activity, movement, or response but also,
among others, length of stay (LOS), mortality, pressure ulcers,
and handwashing skills.

Bajo et al [52] tested the ability of a multiagent architecture for
geriatric residences to provide efficient working schedules by
utilizing ML in a case-based reasoning approach. In a sample
of 10 nurses, the time spent on supervision and control tasks as
well as the time spent on attending to false alarms was reduced,
whereas the time for direct patient care increased during the
observation period of 6 months [52]. Another multiagent system
to enhance assistance and health care for patients with dementia
living in geriatric residences with reasoning and planning
mechanisms was introduced by Tapia et al [56]. The application
of the system led to a reduction in the average number of
minutes spent by nurses on the monitoring of residents from
more than 150 daily minutes (before implementation) to
approximately 90 daily minutes (after implementation). In
addition, the number of nurses working simultaneously before
and after the implementation of the system reduced, and
unauthorized access to restricted zones of the residence was
detected almost twice as often after implementation [56]. Tang
et al [43] developed a cloud-based nursing care planning system
and applied case-based reasoning and text mining to facilitate
decision-making of nurses responsible for admissions in a
nursing home. In an observational study lasting 6 months, the
efficiency of nursing care plan formulation and the response
time in handling new applications increased, whereas the number
of revisions of the care plan decreased. The time waiting for
supporting documents reduced from 24 hours before the
implementation of the system to 6.75 hours after the
implementation, and the time spent searching for health care
information reduced from 90 to 20 minutes, whereas the
adoption of traditional health care services increased, and the
residents’ complaint rate decreased [43]. Xiong et al [44]
examined the use of a scalable AI-enabled camera monitoring
system to detect and record falls and notify nurses to perform
video review of the incident immediately after each fall of
residents with dementia in residential care facilities. Compared
with a control group of residents who also experienced falls but
were not monitored by the system, relative reductions of
emergency medical team visits and emergency department visits

of 75% (emergency medical team visits: P=.001) and 80%
(emergency department visits: P=.003), respectively, were
observed. [44]. Cho et al [18] developed a decision support
intervention using a Bayesian network model to predict
hospital-acquired pressure ulcers and assessed its effectiveness
on the prevalence of ulcers and ICU LOS as well as on the user
adoption rate and attitudes in a controlled trial. Patients in the
intervention group had a decreased risk of developing
hospital-acquired pressure ulcers (odds ratio 0.1; P=<.001) and
a shorter ICU LOS (odds ratio 0.67; P=<.001), whereas nurses
expressed favorable attitudes toward using the system [18].
Evans et al [57] developed an expert system to identify early
signs of physiological deterioration in hospital patients and
conducted a longitudinal evaluation of its impact on ICU transfer
rates, medical emergency team calls, and mortality. During the
1-year intervention, ICU transfers and medical emergency team
calls increased significantly and mortality decreased
significantly when compared with the preintervention year for
patients on a medical and oncology floor, whereas no significant
increase was found for patients on a non-ICU surgical trauma
floor that were younger and had fewer comorbidities than
patients on the medical and oncology floor [57]. Yamamoto et
al [53] used ML to evaluate handwashing skills in nursing
students and reported that, when comparing students 3 months
after their last training and beginners in handwashing,
handwashing skills were almost identical, indicating the need
to update practice handwashing beyond initial training.
Viswanathan et al [36] observed residents of a long-term care
facility with mild-to-moderate cognitive impairment while using
an intelligent wheelchair and reported lower mean frontal
collision with objects compared with using the wheelchair
without the avoidance module preventing wheelchair motion
toward nearby obstacles being activated while observing large
differences in the users’ collision avoidance ability. Zampieri
et al [38] used ML to assess whether ICU staffing features are
associated with improved hospital mortality, ICU LOS, and
duration of mechanical ventilation and identified 3 clusters with,
for example, the extent of nurse autonomy as a distinguishing
feature and the cluster with the highest nurse autonomy exhibited
the best outcomes, with lower adjusted hospital mortality and
shorter ICU LOS for patients surviving to ICU discharge and
shorter durations of mechanical ventilation. For studies including
robotic systems, Mervin et al [45] found marginally greater
values in terms of incremental cost per Cohen-Mansfield
Agitation Inventory Short Form point averted from a provider’s
perspective for a plush-toy alternative than an emotional robot
seal, but deemed the robot seal a cost-effective psychosocial
treatment option for reducing agitation in people with dementia
in long-term care as well, as costs are much lower than those
estimated for psychosocial group activities and sensory
interventions. Matsuyama et al [54] introduced a communication
robot to activate and improve group communication and
observed an increase in participation in terms of the frequency
of smiles and answers in response to the robot system. Carros
et al [41] explored, among other outcomes, stakeholders’
attitudes, social and organizational practices, and expectations
of the Pepper robot in individual and group-based performances
and revealed the potential for humanoid robots working in
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nursing homes, as well as the necessity of a person in control
of the robot acting as a moderator.

Requirements and Barriers
Requirements or challenges and barriers for the application of
AI in nursing care outside of technological infrastructure or
reliability, precision, and validation of data have been reported
in 6 studies, including real-world scenarios [18,35,37,41,58,314]
and 4 reviews [59-62]. Requirements included compliance with
the EU General Data Protection Regulation and preferences of
target users concerning usability and complexity, and also
requirements stemming from implementation in specific care
settings [35,60]. Furthermore, providers need to concern
themselves with their capacity, ability, and willingness to
generate data inputs required to achieve high accuracy, in
contrast to the clinical burden of false positive or negative results
[58]. In addition, the quality of administrative databases should
not be affected by AI implementation in the care context [58].
Inclusion of caregivers, user engagement, and commitment to
further the participation of older adults in the development and
testing of AI systems as well as successful implementation are
required [18,41]. Reported challenges and barriers target
accuracy of recognition, integration with sensor networks,
privacy, security, human–machine interaction, and cognition
impairment of users, acceptance, and costs [59,61]. The physical
appearance and programmed behavior of hardware hosting AI
systems when presented in a humanoid form may seem
confusing, unpredictable, or frightening and limit the
interpretability of the system’s action for nursing home residents
[41]. In addition, the appearance of sensors when they are
nondisposable and bulky may pose a burden to caregivers [63].
Underreporting of relevant events and scarce public availability
of databases holding sufficient data and information to compare
one’s results, as well as limitations to data sets due to regional
data protection laws, constitute barriers to the accuracy of
algorithms and the external validity of results [37,62].

Ethical, Legal, and Social Aspects
We identified 6 publications [7,21,64-67], specifically focusing
on the ethical, legal, and social aspects of AI in nursing care.
In addition, 7 publications [35,41,57,59,60,68,69], which were
either reviews or studies including real-world settings, addressed
selected ELSI aspects when discussing results or limitations of
their work. Recurring aspects were consent (of care dependents
or nurses), data privacy and safety, acceptance and implications
for work processes and workforce, such as lack of human
interaction and communication skills or the fear of replacement
of nurses by technology and the implications arising from
choosing humanoid designs for hardware hosting intelligent
technologies [41,67]. Peirce et al [21] focused on relevant
ethical, legal, and social aspects of nursing as a profession and
highlighted implications arising from the type of data used, such
as possible sampling bias, correlational false positives, and
hidden discrimination, as well as the values and interests of
companies building huge data sets that should be kept in mind.
They pointed out the importance of nurses’ understanding of
the underlying motivations and goals for creating algorithms
as well as the learning mechanisms and potential to mediate, as
AI-generated knowledge should not be regarded as universally

valid and the potential of algorithms to limit nursing actions
and cause the loss of human dignity should be regarded of
utmost importance within the discourse on AI in nursing [21].

Discussion

Principal Findings
The results of this rapid review explicate the application
scenarios for AI systems in nursing care. Hospitals, followed
by independent living at home, were the most frequently
investigated settings, whereas nursing homes and ambulatory
long-term care were less often examined. The vast majority of
studies applied ML, whereas expert and hybrid systems were
used only in about every 10th publication. This implies that the
current instance of AI is mainly ML driven. For instance, Taddy
[33] described the evolution of ML toward status as a general
purpose technology and, consequently, as the main driver of
the current rise in AI. More than half of the publications focused
on image and signal processing and one-third on automated
planning and scheduling, whereas NLP appeared in less than 1
in 10 publications.

In the context of direct nursing care, AI is used to organize care
processes and support care-dependent people or family
caregivers through tracking, monitoring, or classifying activities
and health data. This was followed by applications to support
care coordination or communication, as well as nurse rostering
and scheduling. Detecting, classifying, and preventing falls, as
well as recognizing, classifying, and reducing alarms, and
predicting and classifying pressure ulcers were further purposes
of introducing AI to nursing care. Only a few publications went
beyond proof-of-concept studies or laboratory experiments and
applied AI in real-world scenarios. Few studies have assessed
the effects of AI on clinical and organizational outcomes. In
addition to technical or computational requirements, further
requirements concerning the specific context of nursing care
are scarce and mainly tackle overarching topics, such as data
privacy, safety, and acceptance. The same holds for ELSIs,
which, for instance, have not been reflected or discussed in most
studies using real-world scenarios.

Most studies describe AI applications in hospital settings,
particularly ICUs. This may be attributed to the availability of
such data. Besides electronic medical, nursing, or health record
data, real-time sensor data on vital parameters are more
frequently available from ICUs than from regular wards,
facilitating a multidimensional approach, which is, for instance,
being used to classify risks or identify care needs. This finding
is in line with a previously reported increase in the publication
rate of studies using ML to analyze routinely collected ICU data
[70]. The availability, quality, and quantity of data might also
be limited due to differences in digitalization activities in
specific care settings, as well as the sufficient inclusion of study
participants and duration observation periods to generate large
data sets from sensor data. Furthermore, the heterogeneity of
different data sets complicates the use of data for AI
development.

Considering the development of digital technologies in general,
nurses themselves have reported that they feel that regular
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hospital wards or long-term care settings are being considered
too little [315], which is consistent with our results. It should
be noted that some of the included application scenarios cannot
be attributed unambiguously to the nursing domain. Although
an impact on nurses and patient care is evident when trying to
reduce false alarm rates in monitoring [71,316] or to improve
mechanical ventilation and sedative dosing processes [72], there
is a blurred line between AI systems to support medical
diagnostics and therapy, and AI systems to support nursing care.
Considering the variety of applications for tracking, monitoring,
and classifying health and activity, nurse rostering and
scheduling, or detecting falls or fall risks, it is remarkable that
so few studies went beyond testing the efficacy of AI
approaches. This points to a gap in the existing evidence
regarding the effectiveness of AI in real-world scenarios. This
is also reflected in the results of the LOE ranking, with only a
few studies using designs that could test effects on real-world
nursing or on patient outcomes.

In addition, the explicit operationalization of nursing tasks or
care processes, and desired clinical, psychosocial, or
organizational outcomes, has not been addressed in most of the
included studies. On the one hand, this might point to
undiscovered possibilities for AI support in nursing care. On
the other hand, it might limit the perceived benefit of AI in
nursing care and, subsequently, the participation of providers,
nurses, care dependents, and family caregivers in developing
(as well as sustainably integrating) AI in care processes and
everyday activities. Integration of AI in nursing care might also
be limited by the lack of a sound description of outcomes,
benefits, or values, which will influence the adoption or
nonadoption of technologies in nursing care [315,317]. Our
review points to a gap in published research on possible
application scenarios for AI in nursing care on the one hand,
and on the availability of evaluation results regarding already
implemented AI systems on the other. This raises the
presumption that such evaluations have so far been of less
interest. This is particularly troublesome because some studies
suggest little or no extra benefit of using AI when compared
with alternative or existing solutions [45]. Concerning nurses’
need for technologies providing enhanced technological support
of direct nursing care tasks to reduce physical burdens and
mental stressors [315], there seems to be room for research on
AI-sensitive outcomes in nursing care.

Concerning the requirements and barriers for AI in nursing care,
we expected to find topics such as data quality and access, as
well as factors associated with measuring primary data and
obtaining and sharing routine data, more frequently reflected
in the included publications. However, only a few studies have
addressed these concerns. Most requirements and barriers
mirrored topics that are not only relevant for AI systems, but
also for digital technologies in nursing and health care in
general, such as data privacy, safety, and user acceptance [318].
On the one hand, this could indicate that there are few
nursing-specific requirements or barriers to consider. However,
this seems unlikely given the heterogeneous origins of the
included studies, which have been conducted in different societal
and health systems, including, for instance, different regulations
on data protection or storage. In contrast, the lack of data and

access-related factors could be attributed to the fact that the
descriptive or conceptual nature of most studies led to authors
addressing requirements or barriers less frequently.

The ELSIs discussed in the included publications addressed
prominent topics in the discourse on the use of technology in
health care, such as data privacy and protection, consent,
acceptance, and implications for communication [20,25]. These
aspects were not addressed in most studies in the subsample of
studies, including real-world settings. Only one publication
focused specifically on the ethical implications arising from the
knowledge generated by AI systems in the context of nursing
care. Other ethical principles incorporated in existing AI
guidelines, such as trust, sustainability, justice, and fairness
[25], are covered superficially if at all. Even though the limited
uptake of ELSI aspects in published research might be biased
by the fact that the remaining publications were not screened
for ELSI aspects, there seems to be room for researchers to
incorporate the discussion of ELSI aspects in their work,
contributing to building trustworthy and trusted AI solutions
[319]. Furthermore, publications describing stakeholder
processes, surveys, interviews, or focus groups involving care
dependents or nurses and accessing their perspective on AI,
were underrepresented in our sample. This indicates that there
is room for implementing and facilitating the concept of
participatory development and testing, which contribute to the
demand orientation and acceptance of AI systems.

Strengths and Limitations
A major strength of this review is the sensitive design of the
search strategy, which led to the inclusion of a large sample of
study designs and publication types, giving an extensive
overview of published works on applications of AI systems in
nursing care, as well as considering publications from medical-
and informatics-databases and conference archives, which to
our knowledge is the first of its kind.

The decision to focus on published works limits the results, as
our strategy did not include AI systems already in use for which
scientific empirical evidence has not been published and which
might be directly introduced to clinical practice by developers.
Another notable limitation is our decision to use a rather broad
definition of nursing care, care recipients, and care settings,
which also included independent living of elderly people. As
some of the included publications did not define nursing care
as the primary application context, and often included nurses
or nursing care facilities as possible users among others,
publications dealing with borderline examples of AI application
scenarios that might or might not be attributed to the domain
of nursing depending on the originating context of the
publication, such as medical diagnostics, were not included.

As we used the criterion of conducting field experiments or
using real-world data to group studies into basic, experimental,
or real-world scenarios, studies in the basic or experimental
subsample tested applications that may be considered extending
well beyond basic research topics when using other criteria to
classify studies. We chose this classification primarily to show
the extent of the AI solutions applied in real-world practice. It
also needs to be noted that we chose, primarily, absolute and
relative numbers of studies and categories to map the existing
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literature; however, this provides an overview of prominent
research topics and points to gaps in the existing literature;
however, this does not allow for an assessment of the
sophistication of research on AI approaches done in the context
of nursing care. Although an assessment of scientific impact,
quality of content, originality, and clarity, as it had been done
in the field of sensors, signals, and imaging informatics to
identify research works that exemplify recent developments
[320] was not part of this review, a number of papers have
demonstrated useful techniques to improve the generalizability,
interpretability, and reproducibility of increasingly sophisticated
models. As we only included publications in English, language
bias must be noted. The same holds for the decision to limit the
publication range to 2005, and to the selection of the searched
databases and conferences, which restrict the sensitivity of the
search strategy. However, the increase in publications during
the last 5 years indicates that our search managed to cover a
relevant period of research and development in AI for nursing
care.

Comparison With Previous Work
To our knowledge, this is the first review of its kind to
systematize a broad literature base on AI in nursing care, and
previous relevant work on this topic is scarce. A direct
comparison with the application of AI approaches in other
related domains, such as medicine or global health, is difficult,
owing to, among other things, reported heterogeneity in AI
reporting and the lack of a standardized benchmark [321], which
was also present in our sample of studies. Even though
disciplines such as biomedicine seem to be more active than
nursing in terms of publications targeting AI applications [322],
overlapping areas and specific aspects to study such as ethical
aspects as well as the impact of digital health interventions and
the changes and requirements for the professional role can be
noted, for example, in the medicine domain [323]. In relation
to the nursing domain, Kikuchi [2] reviewed studies on AI
technologies in nursing research that focused on clinical
outcomes, such as fall prediction, surgery-related injury, nausea,
depression, and survival of patients, as well as on managerial
themes addressing bed allocation, decision support,
communication risks, nurse burnout, nurses’ intention to quit,
nursing diagnostics, and knowledge acquisition for nurses.
Without including publications outside of medical databases,
similar to most studies included in our review, the results
indicate a focus on the performance capability of AI algorithms
compared with standard statistical methods, underlining the
assumption of a lack of evaluation studies on existing AI
solutions. Buchanan et al [3] conducted a scoping review on
emerging trends in AI-powered health technologies and their
implications for domains of nursing, such as administration,
clinical practice, policy, and research. In contrast to our current
review, specific types of AI approaches were not reported. The
described emerging trends are parallel to the application
scenarios in this review and entail predictive analytics, clinical
decision support systems, smart homes, and health care assistant
chatbots, but lay a focus on robot applications [3], which were
only sparsely included in this review, as most studies on robots
included in the screening process did not meet the inclusion
criteria for full text review. The potential of AI to enhance

nursing practice, as well as the need for nurses to take on the
shared responsibility to influence and take part in the way AI
is integrated into the health system, are highlighted by the results
[3], contributing to the importance of engaging in the discussion
from the perspective of clinical practice and nursing science.
Congruent with Shillan et al [70], who reviewed the use of ML
approaches in the ICU context, a lack of methodological
reporting guidelines for AI approaches using health care data
or being conducted in a health care or nursing setting impedes
the identification of relevant studies, as well as with the
evaluation and rating of real-world relevance, confidence in
reported findings, and translation into clinical practice.

Conclusions

Implications for Practice
The aim of this paper was, first, to describe which application
scenarios for AI systems in nursing practice were considered
in the existing literature. Second, we aimed to show the kinds
of AI approaches that have been researched, or are being
discussed in the literature and the kinds of care settings involved.
Third, we investigated the requirements for the application of
AI in nursing practice. Finally, we investigated the ethical, legal,
and social aspects of AI and nursing, which are being discussed
in the national and international literature.

The results show a broad spectrum of possible application
scenarios and facilitate the participation and piloting of existing
AI solutions. Because empirical evidence generated in
real-world settings is limited, more knowledge on the benefits
and advantages of AI approaches, compared with alternative
solutions or usual care, is of great need. To date, little is known
about the perspectives and experiences of nurses, care
dependents, and informal caregivers, who should seek to take
an active role in the scientific and societal discourse on AI in
nursing care. By educating themselves on the potential harms
and benefits of AI applications, they can empower themselves
to influence how AI systems will be integrated into their daily
lives and practices. Care facilities can contribute to AI
development and research by promoting digitalization and
ensuring data quality and availability, as successful research
and application of AI depends on access, quality, and quantity
of data.

Implications for Research
Our results provide an overview of application scenarios for
which empirical evidence on algorithm accuracy has been
published within the last 15 years. Considering the lack of
findings on the effectiveness and application of AI approaches
in real-world scenarios, future research should reflect on a more
nursing care-specific perspective in their objectives, outcomes,
and potential benefits. Aside from clinical, organizational, and
managerial outcomes, which can be operationalized from care
facility perspectives, our results provide new insights for
research activities. Furthermore, discourse on the ethical, legal,
and societal implications of AI applications in nursing care, as
well as on the participation of stakeholders, needs to be
advanced.
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Implications for Policy Makers
Half of the publications in our sample have been published
during the last 4 years, indicating an increase in research and
funding, specifically concerning the application of AI systems
in nursing care, with a large uptick of published experimental
research. Policy makers and funding bodies might want to reflect
on particular priorities for their future grants and programs,
against the background of limited empirical evidence of
effectiveness and longitudinal evaluation of AI systems.

Advanced dissemination of nursing practice with AI
technologies also calls for modified qualification, education,
and informing of nurses, care dependents, and caregivers. Basic
knowledge of AI abilities, opportunities, and limitations, as well
as limitations concerning data and AI-generated predictions,
could become the subject matter for basic nursing education,
as well as practice guidelines and information campaigns to
enable nurses to take on a mediating role when implementing
AI systems in nursing practice.
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ELSI: ethical, legal, and social implication
ICU: intensive care unit
LOE: level of evidence
LOS: length of stay
ML: machine learning
NLP: natural language processing
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses
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