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Since the seminal paper by Bates and Granger in 1969, a vast number of ensemble methods that combine
different base regressors to generate a unique one have been proposed in the literature. The so-obtained
regressor method may have better accuracy than its components, but at the same time it may overfit,
it may be distorted by base regressors with low accuracy, and it may be too complex to understand
and explain. This paper proposes and studies a novel Mathematical Optimization model to build a sparse
ensemble, which trades off the accuracy of the ensemble and the number of base regressors used. The
latter is controlled by means of a regularization term that penalizes regressors with a poor individual
performance. Our approach is flexible to incorporate desirable properties one may have on the ensemble,
such as controlling the performance of the ensemble in critical groups of records, or the costs associated
with the base regressors involved in the ensemble. We illustrate our approach with real data sets arising
in the COVID-19 context.
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1. Introduction

A plethora of methodologies of very different nature is cur-
rently available for predicting a continuous response variable, as
it is the case in regression as well as in time series forecast-
ing. Those methodologies come mainly from Machine Learning,
such as Support Vector Machines (Carrizosa & Romero Morales,
2013; Vapnik, 1995), Random Forests (Breiman, 2001), Optimal
Trees (Bertsimas & Dunn, 2017; Blanquero, Carrizosa, Molero-Rio, &
Romero Morales, 2021; Carrizosa, Molero-Rio, & Romero Morales,
2021), Deep Learning (Gambella, Ghaddar, & Naoum-Sawaya,
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2021); or from Statistics, such as Generalized Linear Models
(Hastie, Tibshirani, & Wainwright, 2015), Semi- and Nonpara-
metric approaches to regression (such as smoothing techniques)
(Hardle, 1990), Regression models for time series analysis (Kedem
& Fokianos, 2005), or Random Effects models (Lee, Nelder, & Paw-
itan, 2018). Some of these techniques have shown a relatively high
degree of success in COVID-19 time series forecasting (Benitez-
Pena et al., 2020b; Nikolopoulos, Punia, Schéafers, Tsinopoulos, &
Vasilakis, 2021), which is the application that has inspired this
work.

In this way, the user has at hand a long list of fitted regression
models, referred to in what follows as base regressors, and faces
the problem of deciding which one to choose, or alternatively, how
to combine (some of) the competing approaches, that is, how to
build an ensemble. While a thorough computational study of the
different models may help the user to identify the most conve-
nient one, such an approach becomes unworkable when predicting

0377-2217/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommeons.org/licenses/by-nc-nd/4.0/)
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new phenomena in real-time, like the evolution of the COVID-19
counts (confirmed cases, hospitalized patients, ICU patients, recov-
ered patients, and fatalities). Here, the most accurate method will
probably change over time since we are dealing with a dynamic
setting, but also because of the non-stationarity of the data caused,
for instance, by the different interventions of authorities to flatten
the curve.

Hence, it may be more convenient to build an ensemble where
some accuracy measure, such as a (cross-validation) estimate of
the expected squared error or of the absolute error (Ando & Li,
2014; Bates & Granger, 1969), is optimized at each forecast ori-
gin. With this approach other relevant issues can be modeled, such
as sparsity in the feature space (Bertsimas, King, & Mazumder,
2016; Carrizosa, Mortensen, Romero Morales, & Sillero-Denamiel,
2020a; Carrizosa, Olivares-Nadal, & Ramirez-Cobo, 2017b; Foun-
toulakis & Gondzio, 2016), interpretability (Carrizosa, Nogales-
Gomez, & Romero Morales, 2016; 2017a; Carrizosa, Olivares-
Nadal, & Ramirez-Cobo, 2020b; Martin-Barragan, Lillo, & Romo,
2014), critical values of features (Carrizosa, Martin-Barragan, &
Romero Morales, 2010; 2011), measurement costs (Carrizosa,
Martin-Barragan, & Romero Morales, 2008), or cost-sensitive
performance constraints (Benitez-Pefia, Blanquero, Carrizosa, &
Ramirez-Cobo, 2019a; 2020a; Blanquero, Carrizosa, Ramirez-Cobo,
& Sillero-Denamiel, 2020). See (Friese, Bartz-Beielstein, & Em-
merich, 2016; Mendes-Moreira, Soares, Jorge, & Sousa, 2012; Ren,
Zhang, & Suganthan, 2016) and references therein for the role
of mathematical optimization when constructing ensembles and
(Friese, Bartz-Beielstein, Back, Naujoks, & Emmerich, 2019) for the
use of ensembles to enhance the optimization of black-box expen-
sive functions.

In this paper, we propose an optimization approach to build
a sparse ensemble. In contrast to existing proposals in the litera-
ture, our paper focuses on an innovative definition of sparsity, the
so-called selective sparsity. Our goal is to build a sparse ensemble,
which takes into account the individual performance of each base
regressor, in such a way that only good base regressors are allowed
to take part in the ensemble. This is done with the aim to adapt to
dynamic settings, such as in COVID-19 counts, where the composi-
tion of the ensemble may change over time, but also to avoid that
the ensemble is distorted by base regressors with low accuracy or
may be too complex to understand and explain. Ours can be seen
as a sort of what (Mendes-Moreira et al., 2012) calls an ensemble
pruning, where the ensemble is constructed by using a subset of
all available base regressors. The novelty of our approach resides
in the fact that the selection of the subset and the weights in the
ensemble are simultaneously optimized.

We propose a Mathematical Optimization model that trades off
the accuracy of the ensemble and the number of base regressors
used. The latter is controlled by means of a regularization term
that penalizes regressors with a poor individual performance. Our
approach is flexible to incorporate desirable properties one may
have on the ensemble, such as controlling the performance of the
ensemble in critical groups of records, or the costs associated with
the base regressors involved in the ensemble. Our data-driven ap-
proach is applied to short-term predictions of the evolution of
COVID-19, as an alternative to model-based prediction algorithms
as in Achterberg et al. (2020) and references therein.

The remainder of the paper is structured as follows.
Section 2 formulates the Mathematical Optimization problem to
construct the sparse ensemble. Theoretical properties of the opti-
mal solution are studied, and how to accommodate some desirable
properties on the ensemble is also discussed. Section 3 illustrates
our approach with real data sets arising in the COVID-19 context,
where one can see how the ensemble composition changes over
time. The paper ends with some concluding remarks and lines for
future research in Section 4.
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2. The optimization model

This section presents the new ensemble approach.
Section 2.1 describes the formulation of the model in terms
of an optimization problem with linear constraints. Section 2.2 es-
tablishes the connection of the approach with the constrained
Lasso (Blanquero et al., 2020; Gaines, Kim, & Zhou, 2018) and
some theoretical results of the solution are derived. Finally,
Section 2.3 considers some extensions of the model concern-
ing the control of the set of base regressors or control of the
performance in critical groups.

2.1. The formulation

Let F be a finite set of base regressors for the response
variable y. No restriction is imposed on the collection of base
regressors. It may include a variety of state-of-the-art models
and methodologies for setting their parameters and hyperparam-
eters. It may even use alternative samples for training, for ex-
ample where individuals are characterized by different sets of
features. By taking convex combinations of the base regressors
in F, we obtain a broader class of regressors, namely, co(F) =
{F: Yperpft Ypepap=105>0, erf]. Throughout this
section, vectors will be denoted with bold typesetting, e.g., & =
(etf) e

The selection of one combined regressor from co(F) will be
made by optimizing a function which takes into account two cri-
teria. The first and fundamental criterion is the overall accuracy of
the combined regressor, measured through a loss function £, de-
fined on co(F),

L:co(F)—R
F — L(F).

For each base regressor f e F we assume its individual loss £y is
given. This may be simply defined as £; = £(f), but other options
are possible too, in which, for instance, £ and £ are both empiri-
cal losses, as in Section 2.2, but use different training samples.

With the second criterion, a selective sparsity is pursued to
make the method more reluctant to choose base regressors f € F
with lower reliability, i.e., with higher individual loss £, reduc-
ing thus overfitting. To achieve this, we add a regularization term
in which the weight of base regressor f, say «y, is multiplied by
its individual loss L. The selective sparse ensemble is obtained
by solving the following Mathematical Optimization problem with
linear constraints:

[£ > apf +k2afﬁf},

fer feF

min (1)
oS

where & is the unit simplex in RI71,

S= oteR'H:Zaf:],asz, VieF!,

feF

and A >0 is a regularization parameter, which trades off the im-
portance given to the loss of the ensemble regressor and to the
selective sparsity of the base regressors used.

2.2. Theoretical results

In general, Problem (1) has a nonlinear objective function and
linear constraints. For loss functions commonly used in the litera-
ture, we can rewrite its objective as a linear or a convex quadratic
function while the constraints remain linear. Therefore, for these
loss functions, Problem (1) is easily tractable with commercial
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solvers. In addition, and under some mild assumptions, we char-
acterize the behavior of the optimal solution with respect to the
parameter A.

First, we will rewrite the second term in the objective function,
so that the proposed model can be seen as a particular case of
the constrained Lasso. As for Lasso models and extensions of them,
having a sparse model reduces the danger of overfitting.

Remark 1. The so-called selective ¢4 norm || [|5¢ in RI¥T is de-

fined as
leell3 =" £¢logl.
feF

The objective function in Problem (1) can be written as
L(Eferayf) + xlell§. With this, and for well-known losses
L, Problem (1) can be seen as a constrained Lasso problem,
(Blanquero et al., 2020; Gaines, Kim, & Zhou, 2018), in which a se-
lective sparsity is sought, as opposed to a plain sparsity with as
few nonzero coefficients «¢ as possible. O

Remark 2. Let 7 be a training sample, in which each individual
i € T is characterized by its feature vector X; € RP and its response
V;- Let £ be the empirical loss of quantile regression, (Koenker &
Hallock, 2001), for Z,

Doapf = pe|vi— D apfx) | (2)

feF ieT fer
where

(s) = ifs=0
Pr (14)3 if s <0,

for some t € (0, 1). Then, as in e.g. Koenker and Ng (2005), Prob-
lem (1) can be expressed as a linear program and thus efficiently
solved with Linear Programming solvers. [0

Remark 3. Let 7 be a training sample, in which each individual
i € T is characterized by its feature vector X; € RP and its response
yi. Let £ be the empirical loss of Ordinary Least Squares (OLS) re-
gression for 7, i.e.,

2

Doaif ) => (vi— D afx)

feF ieT feF

(3)

Hence, Problem (1) is a convex quadratic problem with linear con-
straints, which, by Remark 1, can be seen as a constrained Lasso. In
particular, the results in Gaines, Kim, and Zhou, (2018) apply, and
thus, we can assert that, if the design matrix (f(X;));cz s-r has full
rank, then,

1. For any A > 0, Problem (1) has unique optimal solution e*.
2. The path of optimal solutions e* is piecewise linear in A. O

Under mild conditions on £, applicable in particular for the
quantile and OLS empirical loss functions, we characterize the op-
timal solution of Problem (1) for large values of the parameter A.
Intuitively speaking, for A growing to infinity, the first term in the
objective function becomes negligible, and thus we only need to
solve the Linear Programming problem of minimizing Zfefocfﬁf
in the simplex S. This problem attains its optimum at one of the
extreme points of the feasible region, i.e., at some f* € F, namely,
one for which Lp < Ly, Vf. We formalize this intuition in the fol-
lowing proposition, where under the assumption of convexity of £,
we show that a finite value of X exists for which such sparse so-
lution is optimal. Before stating it, notice that, since the set F is
given, we can define
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L: 2+—R

Wr— L(w)="L

2wif

feF
for some Q € RIFI, such that Q 2 S

Proposition 1. Assume that L is convex in an open convex set 2 2 S.
Furthermore, assume that there exists a base regressor f° such that
Lo < Ly forall feF, f#f°. Then, there exists A° < +oo such that,
for any A = A°, f° is an optimal solution to Problem (1).

Proof. Let f° be as in the statement of the proposition, and let
o € § denote the vector with 1 in its component corresponding to
f° and 0 otherwise. Since L is defined in the open set 2 = «°, the
subdifferential dL(ee®) of the convex function L at «° is not empty.

Let p € dL(x°), and let A'(«°) denote the normal cone of S at a®.
Then,
Dep+/\(Lf) +N(e) iff pp.+ALp < pp+ ALy VYfe T,
(4)
which is satisfied iff
Py — Dby
A > max 7 cfeF fES (5)
=

Setting A° equa] to the value on the right-hand side of (5), and
taking into account that the condition on the left-hand side of
(4) is necessary and sufficient for the optimality of «°, the result
follows. O

2.3. Extensions

Problem (1) can be enriched to address some desirable proper-
ties one may seek for the ensemble. Three of them are discussed
in what follows. The first two properties relate to the transparency
and interpretability of the ensemble, Deng (2019) and Florez-Lopez
and Ramon-Jeronimo (2015), while the third one relates to the per-
formance of the ensemble in critical groups.

As mentioned in the introduction, the ensemble may contain
base regressors built with several methodologies of very diverse
nature. Therefore, one may want to control the number of method-
ologies used in the final ensemble. For instance, in the application
described in Section 3, we consider four methodologies, namely,
Support Vector Regression, Random Forests, Optimal Trees, and Lo-
gistic Regression. Let F = Uy Fi®S, where FP¢ is the set of
base regressors using methodology m € M, and let a3¥P¢ be the
corresponding subvector of &, namely, the one containing the com-
ponents in « referring to methodology m € M. With this, we can
extend the objective function of Problem (1) to

Doapfl+AY apLp+ A% Y flan™ |l

feF feF mem

(6)

In a similar fashion, one may want to control the set of features
used by the ensemble. Let ]-'er“ C F be the set of base regressors
using feature j e {1,..., p}, and let fxﬁ?a be the corresponding sub-
vector of &, namely, the one containing the components in e« re-
ferring to feature j e {1,..., p}. With this, we can extend the ob-
jective function of Problem (1) to

P
S f) £ ey + A2 Y ..

feF fer =1

(7)

In both cases, the ¢, terms can be rewritten using new deci-
sion variables and linear constraints, and thus the structure of the
problem is not changed. This way, if £ is the quantile regression
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Fig. 1. Cumulative number of hospitalized patients in Andalusia (Spain) for COVID-19 in the period 10/03/2020-20/05/2020.

(respectively, the Ordinary Least Squares) empirical loss, the op-
timization problem with objective as in (6) is written as a linear
problem (respectively, as a convex quadratic problem with linear
constraints). The same holds for the optimization problem with ob-
jective as in (7).

In addition, our approach can easily incorporate cost-sensitive
performance constraints to ensure that we control not only the
overall accuracy of the regressor, but also the accuracy on a num-
ber of critical groups, as in Benitez-Pefia et al. (2019a), Benitez-
Pena, Blanquero, Carrizosa, and Ramirez-Cobo (2019b), Blanquero
et al. (2020) and Datta and Das (2015). With this, if % > 0 denotes
the threshold on the loss £& for group g€ G, we can add to the
feasible region of Problem (1) constraints

L5 Y o f] <65 Vgeg.

ferF

(8)

For the quantile and Ordinary Least Squares empirical loss func-
tions, these constraints are linear or convex quadratic, respectively,
and thus the optimization problems can be addressed with the
very same numerical tools as before.

3. Short-term predictions of the evolution of COVID-19

The purpose of this section is to illustrate how, thanks to the
selective sparsity term in Problem (1), we can provide good en-
sembles in terms of accuracy. For this, we use data sets arising in
the context of COVID-19.

3.1. The data

COVID-19 was first identified in China in December 2019 and,
subsequently, started to spread broadly. Quickly after this, data
started to be collected daily by the different countries. Several vari-
ables of interest, such as confirmed cases, hospitalized patients,
ICU patients, recovered patients, and fatalities, among others, were
considered. Different initiatives around the world emerged in order
to get to know this new scenario.

In this section, we focus on the evolution of the pandemic in
Spain and Denmark. The first cases were confirmed in Spain and
Denmark in late February 2020 and early March 2020, respectively.
In this paper, the considered variable of interest is the cumula-
tive number of hospitalized patients in the regions of Andalusia
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(Spain) and Sjelland (Denmark). Figs. 1 and 2 display the data in
the periods 10/03/2020-20/05/2020 for Andalusia and 06/03/2020-
20/05/2020 for Sjelland, which can be found at the repositories in
Fernandez-Casal (2020) and Statens Serum Institut (2020), respec-
tively.

The univariate time series {X;, t =1,..., T}, with X; represent-
ing the cumulative number of hospitalized patients in the region
under consideration in day t, is converted into a multivariate se-
ries using seven lags. In other words, the data fed to the base re-
gressors is not the time series itself, but the vectors of covariates
and responses in Fig. 3. This training set is just one of the different
options we have considered to create base regressors. In the next
section, we discuss other data choices, which we will refer to as
Country, Transformation and Differences.

3.2. Options for feeding the data

We first discuss the Country data choice. Let R be the number
of regions of the country under consideration, and, without loss of
generalization, let us assume that the first one is the region un-
der consideration. The time series {X{ t= 1,...,T}, for regions
r=2,...,R, were also available. Such times series are correlated
with the one under consideration. We had to decide whether to
incorporate these additional time series in our forecasting model.
If we do so, the feeding data contains the 7-uples in Fig. 3 from
the region under consideration, as well as the ones from the other
R — 1 regions, see Fig. 4. We now move to the Transformation
choice. For the two choices in Figs. 3 and 4, either the crude data
X are used or they are transformed using some standard Box-Cox
transformations, Hastie, Tibshirani and Wainwright (2015), namely,
X? and log (X +1). Finally, with respect to the Differences
choice, we have also considered whether information about the
monotonicity (first difference, AX; := X; —X;_1) and the curvature
(second difference, A2X; := AX; — AX;_1) is added to the feeding
data as predictors, thus yielding 6 and 5 new predictors because
of monotonicity and curvature, respectively.

To end this section, observe that the time series
{Xt. t=1,....T} of cumulative number of hospitalized patients
in the region under consideration is, by nature, nondecreasing.
However, some of the methodologies in the next section used to
build base regressors do not guarantee such monotonicity. To en-
sure that the predictions show the monotonicity property present
in the data, we use as response variable log(1 + AX;). instead of
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Fig. 2. Cumulative number of hospitalized patients in Sjelland (Denmark) for COVID-19 in the period 06/03/2020-20/05/2020.

(X1, X, X7)  Xg

(X7, X746 Xpo1) Xop

Fig. 3. Covariates (in parentheses) and response variable for the cumulative number
of hospitalized patients in the region under consideration,

(X1,  Xa, X7) X
(Xr—7r, Xr_6, Xr1) Xrp
(xf, X3, ... X)) Xi
(X3_y, XF_g Xi) X%
(X, X3 XH  Xg
(X?';Tv X:ﬁfsa X%S—l) X:Pﬁ

Fig. 4. Covariates (in parentheses) and response variable for the cumulative number
of hospitalized patients in each of the R regions of the country.

X;. Once the procedure is completed, we undo this transformation
to predict the original response variable X;. Figs. 5 and 6 display
log(1 + AX;) for Andalusia and Sjelland, respectively, where ¢ is
as in Figs. 1 and 2.

3.3. The base regressors

We consider four base methodologies to build the set of base
regressors JF. This includes three state-of-the-art Machine Learn-
ing tools, namely Support Vector Regression (SVR) (Carrizosa &
Romero Morales, 2013), Random Forest (RF) (Breiman, 2001), and
Sparse Optimal Randomized Regression Trees (S-ORRT) (Blanquero,
Carrizosa, Molero-Rio, & Romero Morales, 2020a), as well as the
classic Linear Regression (LR). Each of them is fed each time with
one of the data choices described in Section 3.1. See Table 1 for
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a description of the elements of F = Fsyg U Frr U Fir U FS_ORRT =
{fj :j=1,...,36} according to their methodology and the data
choices. These methodologies have some parameters which must
be tuned, and we explain below the tuning we have performed to-
gether with other computational details.

To tune the parameters, the different base regressors are trained
using all the available data, except for the last four days, i.e., these
models are trained on t € {1,...,T —4}. The e1071 (Meyer, Dim-
itriadou, Hornik, Weingessel, & Leisch, 2019) and randomForest
(Liaw & Wiener, 2002) R packages have been used for training SVR
and RF, respectively, while the 1m routine in R is used for LR. The
computational details for training S-ORRT are those in Blanquero
et al. (2020a). For SVR, we use the RBF kernel and perform a
grid search in {2¢ : ¢ = —10, ..., 10} for both parameters, cost and
gamma. For RF, we set ntree = 500 and for mtry we try out five
random values. If only information from the region under consid-
eration is included (‘Country No’ data option in Table 1), eight
fold cross-validation is used. However, when information from all
regions in the country is included, we limit this to five fold cross-
validation, due to the small amount of data and the lack of obser-
vations in some regions. Such cross-validation estimates are used
to select the best values of the parameters. With those best values,
for each combination of feeding data and methodology, the base
regressors f e F are built using information from t € {1,..., T — 4},
see Fig. 7.

3.4. The pseudocode of the complete procedure

The complete procedure for making short-term predictions
with our selective sparse ensemble methodology is summarized
in Algorithm 1 and can be visualized in Fig. 7. The considered
grid of values for the tradeoff parameter A in Problem (1) is
{0,2‘10,2‘9,...,23}. For the tests considered in this section, this
grid is wide enough. On one extreme, we have included the trivial
value A =0, for which the selective sparsity term does not play a
role. On the other extreme, with this grid we ensure that A = A°
is reached, for which, by Proposition 1, the ensemble shows the
highest level of sparsity.

We start by training the base regressors F in Table 1, with tun-
ing parameters as in Section 3.3, using the data available up to day
T —4. We then move to solve Problem (1) for the different val-
ues of A in the grid. For this, we have chosen the loss £ as in (3),
where T consists of the data in the four days left out when tuning
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ig. 6. Representation of the function log(1+ . where X, denote the cumulative number of hospitalized patients in Sj@lland for -19 in the perio 3/2020-
ig. 6. Rep ion of the function log(1 + AX,), where X, d h Jati ber of hospitalized patients in Sjzlland for COVID-19 in the period 06/03/2020
Fir

20/05/2020.
Transformation log(X +1)

Transformation X?

Transformation log(X +1)
Differences Yes

Transformation X
Transformation X?
Differences Yes
Transformation X

Differences No
Differences No

Country Yes
Country No
Country Yes

Description of the chosen base regressors according to the data choices on Country, Transformation and Differences and the four methodologies used, with tuning
Country No

parameters as in Section 3.3,

Table 1
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Fig. 7. The timeline of building the base regressors in F, solving Problem (1) to obtain the sparse ensemble for a given value of A, and making the out-of-sample predictions.

Algorithm 1: Pseudocode for the complete procedure.

tInput: {X;, t=1,.... T}, {X[. t=1..... T}, r=2,....R and
F as in Table 1

2 Set £ equal to the loss defined in (3)

3 Train the base regressors in F int e {1,...

4 for 5 in {0,2710,279, . 23} do

5 | Solve Problem (1) for A inte{T —3,...

optimal solution, o

6 end

7 Train the base regressors in Fint e {1,...

s for 2 in {0,2-10,2-9, ..., 23} do

9 Build the final ensemble regressor with weights o = o*

10 Compute the predictions given by the final ensemble

regressor with weights @ =a* int ¢ {T+1,..., T + 14}

1 end

12 Output: For each 4, the fourteen-days-ahead out-of-sample
predictions of the final ensemble regressor with weights
o= o

,T—4}

,T} and obtain an

T}

the base regressors, namely, T —3,T -2, T — 1, T, while the indi-
vidual losses are taken as £y = L(f). For each value of A, we ob-
tain the optimal weights o* returned by Problem (1). With these
weights, the final ensemble regressor is built using all the data
up to day T, and this final ensemble regressor is used to make
fourteen-day-ahead predictions in t € {T+1,..., T + 14}.

The commercial optimization package Gurobi (Gurobi Optimiza-
tion, 2018) has been used to solve the convex quadratic problems
with linear constraints arising when solving Problem (1) with the
loss in (3). Our experiments have been conducted on a PC, with
an Intel ®Core™ i7-8550U CPU 1.80GHz processor and 8 GB RAM.
The operating system is 64 bits.

3.5. The numerical results

The out-of-sample prediction performance of our approach is
illustrated in three training and testing splits, with all training
periods starting on 10/03/2020 for Andalusia and on 06/03/2020
for Sjelland, and all testing periods containing 14 days. For An-
dalusia, we have 10/03/2020-03/04/2020 (Training Period 1) and
04/04/2020-17/04/2020 (Testing Period 1), 10/03/2020-14/04/2020
(Training Period 2) and 15/04/2020-28/04/2020 (Testing Period
2), and 10/03/2020-06/05/2020 (Training Period 3) 07/05/2020-
20/05/2020 (Testing Period 3). Similar periods are chosen for Sjal-
land, where all training periods start on 06/03/2020.

654

For each value of A in the considered grid, the fourteen-days-
ahead predictions made by the ensemble together with the real-
ized values of the variable can be found in Tables 2-7 for each
period and region, while Tables 8 and 9 report the Mean Squared
Error (MSE) and the Mean Absolute Error (MAE) over the fourteen
days. In Tables 8 and 9, we highlight in bold the best MSE per-
formance of the ensemble across all the values of A considered,
and denote by APest the value of the parameter where the mini-
mum MSE is achieved. Note that in this case, for each period and
region combination, the best MAE is also achieved at A = Abest,
Figs. 14 and 15 present the weights of the base regressors in the
ensembles as a function of A by means of heatmaps. The color bar
of each heatmap transitions from white to black, where the darker
means a higher weight.

Figs. 8-13 depict the realized values of the variable at hand, cu-
mulative number of hospitalized patients in the respective region
(in red), as well as the fourteen-days-ahead predictions for three
different ensembles. In the first ensemble, with A =0, the selec-
tive sparsity term does not play a role by construction (blue line).
In the second ensemble, A = AP%t. the ensemble is the one that
performs the best in terms of MSE among all values of A consid-
ered (black line). Finally, in the third ensemble, with A = A°, the
ensemble is the one showing the highest level of sparsity (green
line).

We start by discussing the results obtained for Period 1 in An-
dalusia. In Fig. 8, we can see that it is possible to improve the
out-of-sample prediction performance by taking a strictly posi-
tive value of A. As pointed in the introduction, this is one of
the advantages of our approach, namely, when seeking selective
sparsity one may obtain also improvements on the out-of-sample
prediction performance. A great benefit is observed with the en-
semble that performs the best (black line), which is rather close
to the actual values (red line). While the ensemble with A =0
presents a MAE of 532.71, for abest — 9-6 the MAE is reduced to
40.50. This ensemble consists of the base regressors f, € Fgyg and
fa1, fo3 € Fig, with respective weights 0.71, 0.14 and 0.15. In Fig. 9,
we plot the out-of-sample information for Andalusia and Period
2. Similar conclusions hold. In addition, the best ensemble is the
one with APt —=2-5 and consists of fs, fi; € Fsyr, with respec-
tive weights 0.25 and 0.75. This means that the ensemble compo-
sition has changed over time, which can be explained by the non-
stationarity of the data. If after having built the best ensemble for
Training Period 1 one would have discarded these two base regres-
sors because they were not selected, we would have lost the best
combination for Training Period 2. This illustrates another advan-
tage of our approach, namely, its adaptability. The ensemble com-
position changes again in Training Period 3 in Andalusia, where
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Table 2
For each value of A, fourteen-day-ahead predictions of the ensemble for the cumulative number of hospitalized patients in Andalusia for COVID-19 in Testing Period 1. Last
row shows the actual values.

A 04/04 05/04 06/04 07/04 08/04 09/04 10/04 11/04 12/04 13/04 14/04 15/04 16/04 17/04
0 4132 4337 4536 4713 4871 5020 5162 5297 5427 5554 5677 5799 5919 6038
210 4073 4233 4386 4527 4655 4776 4892 5005 5115 5225 5333 5442 5552 5662
29 3985 4067 4146 4220 4290 4356 4419 4481 4541 4601 4659 4717 4775 4833
28 3961 4021 4079 4132 4183 4231 4277 4321 4365 4407 4447 4488 4528 4568
27 3960 4021 4078 4132 4183 4230 4277 4321 4364 4407 4447 4488 4527 4567
26 3980 4064 4148 4228 4307 4385 4462 4537 4613 4688 4761 4835 4908 4981
25 4014 4138 4265 4391 4518 4646 4776 4905 5035 5166 5295 5425 5555 5685
24 4066 4246 4434 4628 4829 5037 5250 5468 5689 5911 6132 6351 6564 6772
23 4121 4341 4579 4813 5040 5280 5514 5759 6001 6239 6482 6718 6957 7195
22 4102 4302 4515 4722 4920 5127 5326 5534 5739 5938 6144 6343 6548 6754
21 4106 4308 4524 4734 4935 5145 5348 5559 5767 5969 6178 6380 6588 6797
20 4112 4320 4543 4760 4966 5183 5391 5609 5822 6030 6245 6453 6668 6883
21 4125 4344 4581 4810 5028 5257 5477 5707 5934 6153 6381 6600 6827 7055
22 4149 4390 4654 4908 5147 5401 5643 5898 6148 6390 6641 6383 7134 7386
23 4149 4390 4654 4908 5147 5401 5643 5898 6148 6390 6641 6383 7134 7386
Actual 4107 4227 4335 4463 4599 4715 4808 4950 4993 5054 5147 5226 5298 5341
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Fig. 11. Fourteen-day-ahead predictions for the cumulative number of hospitalized patients in Sjelland for COVID-19 in Testing Period 1 for three values of the tradeoff
parameter A, together with the actual values of the variable. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Table 3
For each value of A, fourteen-day-ahead predictions of the ensemble for the cumulative number of hospitalized patients in Andalusia for COVID-19 in Testing Period 2. Last
row shows the actual values.

A 15/04 16/04 17/04 18/04 19/04 20/04 21/04 22/04 23/04 24/04 25/04 26/04 27/04 28/04
0 5415 5602 5729 5849 5949 6031 6115 6186 6252 6321 6389 6457 6532 6610
210 5412 5598 5724 5843 5943 6025 6109 6179 6246 6315 6383 6451 6525 6603
2-9 5411 5596 5722 5840 5939 6021 6105 6175 6241 6310 6378 6446 6520 6598
28 5407 5590 5715 5832 5930 6011 6095 6165 6231 6300 6368 6436 6510 6587
27 5346 5491 5597 5699 5787 5862 5939 6006 6070 6136 6201 6265 6334 6405
2-6 5221 5204 5360 5420 5478 5534 5590 5644 5698 5751 5804 5856 5909 5961
25 5219 5290 5359 5425 5490 5553 5616 5677 5738 5798 5857 5916 5975 6033
2-4 5220 5290 5358 5424 5489 5551 5614 5675 5735 5794 5853 5911 5969 6024
23 5220 5292 5361 5429 5495 5560 5624 5686 5749 5809 5870 5929 5989 6046
2-2 5221 5203 5363 5431 5498 5563 5628 5601 5754 5815 5876 5936 5996 6054
21 5221 5293 5363 5431 5498 5563 5628 5691 5754 5815 5876 5936 5996 6054
20 5221 5293 5363 5431 5498 5563 5628 5601 5754 5815 5876 5936 5996 6054
2! 5221 5293 5363 5431 5498 5563 5628 5601 5754 5815 5876 5936 5996 6054
Actual 5226 5298 5341 5424 5473 5509 5565 5615 5675 5715 5747 5767 5792 5831
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Fig. 12. Fourteen-day-ahead predictions for the cumulative number of hospitalized patients in Sjelland for COVID-19 in Testing Period 2 for three values of the tradeoff
parameter A, together with the actual values of the variable. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 13. Fourteen-day-ahead predictions for the cumulative number of hospitalized patients in Sjelland for COVID-19 in Testing Period 3 for three values of the tradeoff
parameter A, together with the actual values of the variable, (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Table 4
For each value of A, fourteen-day-ahead predictions of the ensemble for the cumulative number of hospitalized patients in Andalusia for COVID-19 in Testing Period 3. Last
row shows the actual values.

A 07/05 08/05 09/05 10/05 11/05 12/05 13/05 14/05 15/05 16/05 17/05 18/05 19/05 20/05
0 6046 6059 6073 6090 6104 6117 6129 6139 6147 6156 6163 6169 6174 6179
210 6043 6054 6062 6067 6069 6069 6068 6063 6057 6047 6035 6020 6002 5082
29 6043 6054 6062 6067 6069 6069 6068 6064 6057 6048 6035 6020 6003 5083
28 6047 6063 6077 6089 6100 6110 6120 6128 6136 6142 6148 6152 6156 6159
27 6039 6048 6055 6062 6069 6075 6082 6088 6094 6099 6104 6108 6112 6116
26 6043 6054 6065 6074 6084 6092 6099 6106 6113 6120 6126 6131 6136 6141
25 6045 6055 6066 6080 6098 6110 116 6122 6131 6141 6151 6155 6159 6168
24 6050 6056 6071 6091 6124 6144 6147 6151 6164 6180 6197 6199 6202 6218
23 6049 6056 6070 6091 6125 6145 6148 6152 6165 6182 6199 6201 6204 6220
272 6050 6056 6071 6093 6128 6148 6152 6156 6169 6187 6204 6207 6209 6226
21 6050 6056 6071 6093 6129 6150 6153 6157 6170 6188 6206 6200 6211 6228
20 6050 6056 6071 6094 6131 6153 6156 6159 6173 6192 6210 6212 6214 6232
2! 6051 6055 6071 6095 6135 6158 6161 6164 6178 6198 6218 6219 6221 6240
22 6051 6054 6070 6098 6144 6170 6171 6172 6188 6210 6233 6234 6235 6256
23 6052 6053 6070 6100 6152 6181 6181 6181 6198 6223 6248 6248 6248 6272
Actual 6038 6069 6030 6092 6101 6114 6128 6146 6161 6174 6178 6182 6196 6210
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For each value of A, fourteen-day-ahead predictions of the ensemble for the cumulative number of hospitalized patients in Sjelland for COVID-19 in Testing Period 1. Last

row shows the actual values.

A 04/04 05/04 06/04 07/04 08/04 09/04 10/04 11/04 12/04 13/04 14/04 15/04 16/04 17/04
0 257 263 268 274 279 285 289 294 299 304 309 313 318 323
2-10 259 266 272 279 285 290 295 299 304 307 311 314 317 319
20 259 266 273 279 285 291 296 301 305 308 312 316 318 321
2-8 259 267 274 281 287 293 298 303 307 311 315 319 322 325
27 260 266 274 279 285 290 205 300 304 308 312 316 319 322
26 261 271 281 280 297 305 313 321 327 334 340 347 353 358
2-° 262 271 282 290 298 307 315 323 329 336 343 350 356 362
2+ 262 272 283 291 300 309 318 326 333 340 347 354 360 367
2-3 262 272 284 292 300 309 318 326 333 340 347 354 361 367
272 262 272 284 292 301 310 319 327 334 341 348 355 361 367
2-1 263 273 285 293 302 311 320 328 335 342 349 356 362 368
20 263 273 285 293 302 311 320 328 335 342 349 356 362 368
21 263 273 285 293 302 311 320 328 335 342 349 356 362 368
22 263 273 285 293 302 311 320 328 335 342 349 356 362 368
23 263 273 285 293 302 311 320 328 335 342 349 356 362 368
Actual 257 262 272 280 285 292 299 304 309 316 324 335 341 351
Table 6

For each value of A, fourteen-day-ahead predictions of the ensemble for the cumulative number of hospitalized patients in Sjelland for COVID-19 in Testing Period 2, Last

row shows the actual values.

A 15/04 16/04 17/04 18/04 19/04 20/04 21/04 22/04 23/04 24/04 25/04 26/04 27/04 28/04
0 335 346 356 367 378 392 405 417 430 444 459 471 481 493
2-10 334 345 355 365 376 389 401 413 424 438 452 463 473 484
2-9 333 343 352 361 371 382 393 403 413 425 437 447 457 466
28 331 339 346 353 361 369 376 384 391 400 408 416 424 431
2-7 330 336 342 348 353 359 364 369 375 381 386 392 398 405
26 330 336 342 347 353 359 365 370 376 382 388 393 399 405
2-3 330 337 343 350 356 363 369 376 382 389 395 401 408 414
2+ 330 337 343 349 356 362 369 375 382 388 395 400 407 414
2-3 330 336 343 349 355 362 368 374 381 387 394 399 405 412
22 330 336 342 348 355 361 367 373 379 385 391 396 403 409
2-1 330 336 342 348 354 360 366 372 378 384 390 395 401 407
20 330 336 342 348 354 360 366 372 378 384 390 395 401 407
21 330 336 342 348 354 360 366 372 378 384 390 395 401 407
Actual 335 341 351 360 369 380 393 402 413 423 430 432 443 445
Table 7

For each value of A, fourteen-day-ahead predictions of the ensemble for the cumulative number of hospitalized patients in Sjelland for COVID-19 in Testing Period 3. Last

row shows the actual values.

A 07/05 08/05 09/05 10/05 11/05 12/05 13/05 14/05 15/05 16/05 1705 18/05 19/05 20/05
0 505 528 553 574 593 610 623 637 650 664 677 690 704 715
210 504 526 550 571 589 607 619 633 646 659 673 685 698 710
2-9 503 525 548 568 586 603 616 629 642 655 668 680 693 704
28 501 522 544 563 580 596 608 621 634 646 659 671 683 694
27 495 516 539 557 573 588 602 616 629 643 657 671 684 697
2-6 491 510 535 550 565 579 592 605 617 631 645 659 672 686
25 488 503 523 535 547 558 568 579 588 600 611 623 634 645
24 483 490 500 505 511 517 522 527 533 539 545 551 557 563
23 483 487 491 494 498 501 505 508 511 515 518 522 525 528
2-2 483 487 491 494 498 501 505 508 511 515 518 521 524 527
21 483 487 490 494 498 501 504 508 511 514 518 521 524 527
20 483 487 490 494 498 501 504 508 511 514 518 521 524 527
2! 483 487 490 494 498 501 504 508 511 514 518 521 524 527
22 483 487 490 494 408 501 504 508 511 514 518 521 524 527
2 483 487 490 494 498 501 504 508 511 514 518 521 524 527
Actual 483 485 488 490 491 491 493 495 502 503 503 505 507 510

f12 € Fsvr. f1s, fig € Fre and fy; € Fig compose the best ensemble,
see Fig. 10. Note that, for this particular period, AP®t=0, although
this is not in general the case.

Regarding Sjelland, similar conclusions are obtained, see
Table 9 and Figs. 11-13. The best ensembles are achieved for
strictly positive values of A, namely, APt =2-9 for Testing Pe-
riod 1, APest = 2-8 for Testing Period 2 and APest = 2-1 for Test-
ing Period 3. Their compositions also differ across the three peri-
ods, f4, f11 € Fsvr, fo4 € Fir and fo5 € Fs_orgt for Training Period
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1, fo € Fsyr. fo3 € Fir and f3g, f3g4 € Fs_orgr in Training Period 2,
and fg, fig € Fsyr in Training Period 3. This again illustrates the
advantage of our approach in terms of adaptability.

We end the section with a few words about the set of base
regressors. In their last row, Tables 8 and 9 report the MSE and
MAE of a persistence model in which the increase in the variable
is kept constant throughout the testing period and equal to the last
increase in the training period. As for any forecasting model, the
persistence model might yield good results in some cases, such as
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For each value of A, Mean Squared Error (MSE) and Mean Absolute Error (MAE) of the ensemble for Testing Period 1, 2 and 3 in Andalusia. For each period, the best
performance is highlighted in bold. Last row contains the MSE and MAE of the persistence model tested.

Testing Period 1

Testing Period 2

Testing Period 3

(04/04/2020-17/04/2020)

(15/04/2020-28/04/2020)

(07/05/2020-20/05/2020)

A MSE MAE MSE MAE MSE MAE

0 309188.29 532.71 174813.93 372.79 188.86 11.00
2-10 302755.21 526.93 22697.21 120.07 12713.93 88.64
2-9 20832021 523.07 15494493 369.50 12623.93 88.36
28 288510.14 514.14 311559.21 518.21 585.00 18.57
2-7 151329.79 368.50 31199636 518.64 3353.57 51.43
2-6 3290.07 40.50 105662.43 311.86 1635.64 35.36
270 9174.07 7121 21515.93 118.07 565.00 20.43
24 8477.29 68.29 554612.29 585.43 214.64 12.21
273 10905.86 78.86 1034287.57 841.14 243.57 13.29
22 11893.29 82.86 580431.07 625.79 351.07 16.50
2-1 11893.29 82.86 620786.79 648.36 397.14 17.57
20 11893.29 82.86 705260.29 694.43 498.00 19.86
21 11893.29 82.86 890921.71 786.86 737.07 24.36
22 11893.29 82.86 1310319.64 964.93 1387.93 33.36
23 11893.29 82.86 1310319.64 964.93 2236.71 42.14
Persistence 3243399,00 1429.89 183250.60 34738 228.52 10.98

Table 9

For each value of A, Mean Squared Error (MSE) and Mean Absolute Error (MAE) of the ensemble for Testing Period 1, 2 and 3 in Sj@lland. For each period, the best
performance is highlighted in bold. Last row contains the MSE and MAE of the persistence model tested.

Testing Period 1

Testing Period 2

Testing Period 3

(04/04/2020-17/04/2020)

(15/04/2020-28/04/2020)

(07/05/2020-20/05/2020)

A MSE MAE MSE MAE MSE MAE

0 538.07 18.36 186.00 11.00 19171.64 126.93
2-10 32750 14.07 170.14 8.71 18097.14 123.14
28 66.71 5.00 146.79 7.93 17080.29 119.57
28 228.71 13.43 103.14 6.57 15200.14 112.57
27 947.93 27.07 141.79 8.21 14582.07 108.64
2-6 905.43 26.57 164.14 12.14 12379.21 99.36
25 600.29 21.71 217.79 14.07 7189.43 75.43
2-4 62257 22.14 313.21 16.79 1055.79 28.36
273 671.57 23.00 319.29 17.00 134.14 10.00
272 761.57 2443 343.14 17.57 126.79 9.79
21 818.00 25.29 379.29 18.57 123.14 9.57
20 818.00 25.29 379.29 18.57 123.14 9.57
21 818.00 25.29 379.29 18.57 123.14 9.57
22 818.00 2529 379.29 18.57 123.14 9.57
23 818.00 25.29 379.29 18.57 123.14 9.57
Persistence 503.83 19.88 36.38 492 5.15 1.91

in Testing Period 2 and 3 in Sjlland, but very poor ones in other
situations, such as in Testing Period 1 and 2 in Andalusia. We could
have easily embedded this persistence model, or any other one, by
enlarging the set of base regressors. Again, because of the adapt-
ability of our approach, the persistence model would have been
chosen or not to be part of the sparse ensemble, depending on the
period and the region being considered.

4. Conclusions

In this paper we have addressed the problem of building en-
sembles with selective sparsity of regression methods, which is
suitable in changing circumstances such as those related to the
COVID-19 pandemic. The construction of the ensemble amounts to
solving an optimization problem, which is quadratic convex under
linear constraints for the empirical Ordinary Least Squares regres-
sion loss and it can be written as a linear problem for empirical
loss of quantile regression. Under convexity assumptions on the
loss £, we show that, by varying the parameter A in the inter-
val [0, A°] we move from the ensemble minimizing the overall loss
L to the ensemble with one single base regressor f, namely, the
one with lowest individual loss Ly. Moreover, different types of
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desirable properties of the ensemble can be easily accommodated
by modifying the penalty term or the constraints. The application
to data on hospitalized patients in Andalusia (Spain) and Sj®lland
(Denmark) shows the advantage of using an ensemble with selec-
tive sparsity instead of a rough ensemble or one single base re-
Gressor.

The computational experience reported is limited to the prob-
lem motivating this work. For other types of problems, it may be
interesting to combine the selective sparsity suggested in this pa-
per (number of regressors used) with the feature sparsity (number
of features used), by adding ¢,, penalties as in Section 2.3 and in
Blanquero et al. (2020a) and Blanquero, Carrizosa, Molero-Rio, and
Romero Morales (2020b). It may also be attractive to use differ-
ent measures for the individual losses £y and the overall loss L.
For instance, one can build the ensemble with lowest least squares
errors, but being reluctant to use base regressors with high least
absolute deviations, or more generally, quantile errors.

Even if we knew the probabilistic mechanism generating the
data, sound probability assessments are rather difficult in the set-
ting considered in this paper. Those probability assessments are
what Efron (2020) calls “attributions”. As recognized in that pa-
per, prediction is much easier than attribution. The use of an ad-
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black, and A = A° in green. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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equate bootstrap procedure (see Bihlmann, 2002, for a review of
bootstraps for time series) could yield probability attributes. The
consistency of the bootstrap for Support Vector Machines when
the data can be assumed to be independent and identically dis-
tributed, has been shown in Christmann and Hable (2013). To the
best of our knowledge, an analogous result for time series in a gen-
eral setting as the one considered here has not been stated yet, and
it certainly constitutes a field for future research.

Another challenging line of research is the construction of
sparse ensembles (sparse both in base regressors and in features)
for classification problems. Although some attempts have been
made to address this problem using Linear Programming, Zhang
and Zhou (2011), natural losses yield versions of Problem (1) with
(many) binary variables, and thus new strategies are to be defined
to cope with data sets of realistic size. This challenging problem is
now under study.
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