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Abstract

This paper proposes a model for discrete-time currency hedging based on continuous-time move-
ments in portfolio and foreign exchange rate returns. The vector of optimal currency exposures is
given by the negative realized regression coefficients from a one-period conditional expectation of
the intra-period quadratic covariation matrix for portfolio and exchange rate returns. Empirical
results from an extensive hedging exercise for equity investments illustrate that currency exposures
exhibit important time variation, leading to substantial volatility reductions when hedging, without
sacrificing returns. A risk-averse investor is willing to pay several hundred annual basis points to
switch from existing hedging methods to the proposed dynamic strategies.
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“Currency hedging is the hottest thing in investing right now.”

Article headline, Business Insider UK, March, 2015.

1 Introduction

The potential benefits from international diversification have been recognized in the academic finance

literature since the seminal work by Grubel (1968) and Levy & Sarnat (1970). Many empirical stud-

ies, however, find little, if any, statistically significant diversification benefits from investments across

developed countries in more recent times, unless carried out using specific investment styles, e.g., by

leveraging size, value, and momentum anomalies.1 A possible explanation for these somewhat discour-

aging results (seen from the perspective of an investor) is the continuing integration of international

financial markets, resulting in higher correlation among international assets and, thereby, reducing the

potential for harvesting diversification benefits, see, e.g., Longin & Solnik (1995), Bekaert, Hodrick &

Zhang (2009), and Christoffersen, Errunza, Jacobs & Langlois (2012).

Most of the aforementioned studies, however, neglect an important component of international

investments: The currency exposure implicit in the international equity portfolio holdings. In other

words, international investments in a given foreign country are exposed to exchange rate movements,

and investors need to decide whether, and how, to hedge this additional source of risk. In practice,

investment professionals often choose to hedge a certain fraction of their currency exposure, popular

choices being the half-hedge and the full hedge. Some studies have analyzed hedging strategies that go

beyond simple rule-of-thumb guides. In particular, Glen & Jorion (1993), de Roon, Nijman & Werker

(2003), Campbell, de Medeiros & Viceira (2010), Schmittmann (2010), Kroencke, Schindler & Schrimpf

(2014), and Opie & Dark (2015) analyze diversification benefits from optimal hedging strategies based

on the theory originally proposed by Anderson & Danthine (1981), albeit with mixed empirical re-

sults.2 Whereas they all reject leaving international investments unhedged, the first two studies find

no significant evidence that a static, optimal, volatility-minimizing hedging strategy provides diver-

sification benefits beyond what can be achieved by fully hedging international equity investments.

However, when implementing a pseudo-dynamic hedging strategy according to which the optimal cur-

rency exposure to a given foreign country depends on the level of its interest rates relative to those

in the domestic country, thus mimicking some form of carry trade, they find significant gains over full

hedging. Campbell et al. (2010) find that a static volatility-minimizing hedging strategy significantly

reduces the risk of international equity investments, compared to the gains from full hedging, and a

similar pseudo-dynamic hedging strategy provides additional diversification benefits. However, the lat-

ter are economically modest, judging by their Sharpe ratios (SRs), and often statistically insignificant.

Furthermore, their subsample analysis suggests that optimal currency exposures are quite sensitive to

1This includes the mean-variance analyses in, among others, Britten-Jones (1999), Errunza, Hogan & Hung (1999), Eun,
Huang & Lai (2008), Eun, Lai, de Roon & Zhang (2010), and Fama & French (2012).

2Optimal in this setting is to be understood in a mean-variance sense, i.e., as the solution to a quadratic optimization
problem for an investor seeking to maximize her risk-return tradeoff.
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the specific sample under consideration. Similar results are obtained by Schmittmann (2010) and Opie

& Dark (2015) from different countries’ perspectives and across various horizons, corroborating the

conclusions. Finally, Kroencke et al. (2014) take a deeper look into the diversification benefits from

using traditional currency investment styles such as carry trade, momentum, and value strategies in

said framework, thus promoting the pseudo-dynamic aspect of the optimal hedging strategies. They

find significant diversification benefits, in particular when including foreign exchange rates for coun-

tries outside of the G10. However, the diversification benefits from their two-step procedure stem from

the speculative asset allocation in the second step, not from the hedging itself, for which their results

resemble those of Campbell et al. (2010). Thus, they reflect the profitability of the three currency

investment styles over the last 30-40 years.

In the present paper, we reconsider the first step, i.e., we focus on enhancing the diversification bene-

fits from volatility-minimizing hedging strategies, conditionally on a given portfolio, not on speculative

currency investments.3 To set the stage, we highlight two important aspects of previous approaches

to currency hedging that demand further attention. First, all aforementioned studies of optimal cur-

rency exposure rely on the theoretical results from Anderson & Danthine (1981), who assume that

asset prices are observed at the same frequency as that at which the investor rebalances her portfo-

lio, that is, the frequency at which hedging decisions are made. This implies, for example, that if

an investor rebalances her portfolio at a monthly frequency, then movements in asset prices occur at

the monthly frequency, as well. Hence, this approach neglects all information from asset price move-

ments occurring at higher frequencies, e.g., daily or intra-daily. Second, the hedging strategies are

often studied in their “static”, or unconditional, form, suggesting that optimal, volatility-minimizing

currency exposures should be constant, often over a time span of 30-40 years, and estimated using

full sample information. When such hedging strategies are given a time-varying flavor, it is by con-

ditioning on variables related to currency investment styles, such as past interest rate differentials.

The latter approach is labelled “pseudo-dynamic” for two reasons: (1) All intertemporal movements

in the optimal currency exposures are determined by slowly varying conditioning variables. Hence, no

traditional time series modeling (ARMA, GARCH, or stochastic volatility) is actually performed. (2)

The implementation of the hedging strategies is often in-sample, i.e., the functional link to the interest

differentials is estimated using full sample information, then used for conditional hedging decisions.4

Hence, neither the static nor the pseudo-dynamic implementation of the optimal hedging strategies is

designed for real-time investment decisions, and they provide inadequate descriptions of the dynamic

properties of optimal currency exposures. The main exception to these caveats is Opie & Dark (2015),

3A related body of work considers optimal hedging of spot exchange rate risk using equivalent currency futures contracts
in conditional frameworks resemblant of that developed by Anderson & Danthine (1981), see, for example, Baillie &
Bollerslev (1989). However, this problem is distinct from the present setting of strategic utilization of currency exposures
to improve the performance of an existing portfolio.

4Note that the implementation of the two-step optimal hedging strategies using currency investment styles in Kroencke
et al. (2014) does not suffer from the caveat in (2), as the conditioning variables for the investment styles are contempo-
raneously available when the investor rebalances her portfolio. However, the caveat in (1) still describes their analysis.
Similar comments apply to the robustness check in Campbell et al. (2010, Section 6).
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who perform an out-of-sample analysis in which they compare rule-of-thumb hedges to a static optimal

hedging strategy and a dynamic strategy based on a multivariate VAR-GARCH model, both imple-

mented with rolling windows to estimate the currency exposures. The models are based on daily data,

and rebalancing occurs if the changes in exposure generate increases in utility. Similarly to Campbell

et al. (2010), they show that the two optimal strategies produce the lowest portfolio volatility, but

also display statistically indistinguishable performance. That is, they find no additional improvements

from actual dynamic modeling. However, despite addressing the second caveat, their framework, as

well as analysis, does not explicitly treat the issue of sampling versus rebalancing frequency, but rather

implicitly via a utility function.

This paper directly addresses both caveats by introducing a new economic model for discrete time

currency hedging that not only allows the assets of interest - the portfolio and foreign currencies -

to exhibit within-period movements, but actively utilizes additional “infill” information to construct

accurate measures of optimal, volatility-minimizing, currency exposures. In particular, the latter are

shown to be the negative realized regression coefficients from a one-period conditional expectation of

the intra-period quadratic covariation matrix for portfolio and currency returns, labelled the realized

currency betas. The model, hence, facilitates dynamic hedging strategies, depending exclusively on

the dynamic evolution of the ex-post quadratic covariation matrix. This has the strong theoretical im-

plication that interest rate differentials have no asymptotic impact on the optimal currency demands

for a given international portfolio, in stark contrast with existing hedging theory, e.g., Anderson &

Danthine (1981), Glen & Jorion (1993), and Campbell et al. (2010).5 Moreover, as the proposed

strategies do not rely on information about local trends in currencies in their construction, they are

notably different from traditional currency investment styles, such as carry, momentum, and value

trading. From a theoretical perspective, the development of the realized currency beta hedging frame-

work involves establishing new results for optimal currency exposures based on the notion of quadratic

covariation measures and infill asymptotic limits. From a practical perspective, the theory suggests

that an investor should sample as frequently as possible within fixed time intervals between portfolio

rebalances to construct accurate estimates the quadratic covariation matrix and model its dynamics.

Hence, this paper proposes to implement the new hedging strategies using modern, yet simple, non-

parametric techniques to accurately measure and dynamically model historical quadratic covariation

matrices, imposing only few parametric restrictions on the underlying processes.

The new dynamic hedging strategies are analyzed in an extensive empirical exercise, covering dif-

ferent international equity portfolios, as well as a balanced fixed income-equity portfolio, and different

rebalancing horizons, sampling frequencies, and currency investment universes (sets of foreign cur-

rencies available for hedging purposes). This produces several new and striking results that may be

summarized as follows: (i) The optimal currency exposures display substantial time-variation, which is

tied to important economic events such as the 2008-2009 global financial crisis, the European sovereign

5Even the dynamic VAR-GARCH implementation of currency hedging strategies in Opie & Dark (2015) depends implicitly
on interests rate differentials via the conditional mean specification for currency excess returns.
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debt crisis, and the “bloody Christmas” of 2018 global stock sell-off. The Swiss Franc and Japanese

Yen are, on average, the most important hedging currencies, and the Canadian Dollar and Euro the

main funding currencies. (ii) The proposed dynamic hedging strategies produce statistically signif-

icant, as well as economically substantial, volatility reductions for all baseline portfolios, compared

to fully hedging currency exposure, as well as to existing, static and pseudo-dynamic, approaches to

optimal hedging. (iii) These volatility reductions come without sacrificing returns, especially when

implemented using intra-daily data to estimate the quadratic covariation between assets, thereby de-

livering Sharpe ratios that are 61% larger than key benchmarks. (iv) The estimated economic gains to

the new hedging strategies are equally substantial, being 120-465 annual basis points after transaction

costs over full hedging – depending on baseline portfolio and investor risk-aversion – and 120-520 an-

nual basis points over existing hedging procedures. (v) The quality of the input quadratic covariation

measure seems to be more important for designing profitable realized currency beta hedging strategies

than the dynamic model specification or an expansion of the set of hedging currencies, with the former

being the second most important feature. (vi) The currency overlay behind the dynamic realized

currency beta investment strategy is negatively correlated with the FX carry trade, and only mod-

estly correlated with momentum and value investments. Interestingly, the empirical analysis strongly

suggests that the unwinding of carry trades, at least partially, fund the strong performance of the

proposed dynamic hedging strategy during the global financial crisis of 2008-2009.

All of the findings (i)-(vi) are new to the literature on global currency hedging. In particular, the

empirical hedging results go well beyond those in existing studies, such as Glen & Jorion (1993), Camp-

bell et al. (2010) and Opie & Dark (2015), by not only showing how dynamic hedging strategies can

be designed to obtain better volatility and risk-return trade-offs than full hedging and static optimal

procedures, but also by estimating the economic gains from such strategies to a risk-averse investor,

documenting important time-variation in optimal currency exposures, showing how this links to key

economic events, and by providing results that speak to the relative importance of currency universe,

dynamic model, and sampling frequency. Moreover, this paper is the first to leverage intra-daily data

to construct currency hedging strategies, and this feature is paramount for designing procedures that

deliver significant volatility reductions and superior economic performance.

The finding that dynamic hedging strategies based on intra-daily rather than daily data improves

portfolio performance is consistent with Fleming, Kirby & Ostdiek (2001, 2003), who study dynamic

asset allocation between S&P 500, Treasury bond, and gold futures.6 However, in addition to the

present analysis being one of hedging rather than asset allocation, the elicitation of gains from intra-

daily data in the international investments and currency trading case is more challenging than in their

single-country analysis, due to assets being traded on different exchanges with only partially overlap-

6It is also consistent with Andersen, Bollerslev, Diebold & Labys (2003), who consider VaR estimation using 30-minute
returns on two currencies, and with Chiriac & Voev (2011), and Varneskov & Voev (2013), who carry out mean-variance
analyses using intra-daily data on DJIA stocks. However, none of these studies considers the interaction between equity
investments and currency exposures, nor do they use intra-daily data to design currency hedging strategies. Finally, it is
consistent with Christoffersen & Diebold (2000), who show that volatility forecastability is important for risk management,
see also Andersen, Bollerslev, Christoffersen & Diebold (2013) for a comprehensive review.
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ping trading hours. Our results demonstrating that dynamic rather than static modeling of exchange

rate covariances leads to economic gains for a risk-averse investor are also consistent with Della Corte,

Sarno & Tsiakas (2009), who analyze asset allocation between fixed income and currencies by applying

different univariate dynamic models to monthly data. In contrast with these studies, the problem of

currency hedging can be viewed as a constrained, or conditional, asset allocation exercise in which

currency exposures are selected for a given baseline portfolio, unlike their unconstrained approaches.

Hence, it mirrors the problem faced by many institutional investors where one investment team takes

a strategy, or portfolio, of another as given, and carries out hedging to improve its performance.

Even though individual currencies have traditionally been viewed as poor investment vehicles with

low return and high volatility, there has been a recent surge of academic papers in a separate strand of

the literature on exchange rate modeling, showing that systematic application of traditional currency

trading, in particular carry trade, momentum, and value investments, may be highly profitable, even

on a risk-adjusted basis, see, for example, the recent contributions by Lustig & Verdelhan (2007),

Brunnermeier, Nagel & Pedersen (2009), Burnside, Eichenbaum, Kleshchelski & Rebelo (2011), Lustig,

Roussanov & Verdelhan (2011), Menkhoff, Sarno, Schmeling & Schrimpf (2012a, 2012b), Moskowitz,

Ooi & Pedersen (2012), Asness, Moskowitz & Pedersen (2013), and many references therein. The

dynamic hedging strategies proposed in this paper similarly constitute systematic trading opportunities

in currencies. However, they are designed with the specific purpose of improving the performance of

an already existing baseline portfolio. Moreover, as the realized currency betas are asymptotically

invariant to changes in interest rate differentials and only use information about the covariance between

foreign exchange rate and portfolio returns in their construction, that is, no information about local

trends in the former, they are notably different from traditional investment styles. In fact, their

favorable correlation properties, noted in (vi), suggest not only that the proposed dynamic strategies

may provide a hedge for carry trade, but also that there may be intriguing opportunities to combine

the four different methods in designing tactical foreign currency exchange rate trading.

The outline of the paper is as follows. Section 2 introduces the new economic model and the assump-

tions, then derives the theoretical foundation for the proposed dynamic currency hedging strategies.

Section 3 discusses the non-parametric implementation procedure. Section 4 introduces the data and

provides empirical evidence of time variation in the optimal currency exposures. The risk-return

performance and economic benefits from implementing different hedging strategies are examined in

Section 5. Section 6 relates the returns to the dynamic hedging strategies to those from traditional

currency investment styles, and Section 7 concludes. The Online Appendix provides additional theory,

proofs of the theoretical results, various robustness checks, and implementation details.

2 The Dynamic Modeling Framework

This section introduces a multi-period model for discrete-time hedging based on continuous-time

within-period movements in the underlying portfolio and foreign exchange rate returns. The model
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is intended to capture the decision problem of an investor who rebalances, or re-hedges, her port-

folio in fixed time intervals, but observes both portfolio and exchange rate movements within each

interval. Optimal currency exposures are established using infill asymptotic theory for a general

class of continuous-time price processes. The discrete time framework follows along the lines of An-

derson & Danthine (1981) and Campbell et al. (2010). However, as shown below, allowing for the

continuous-time within-period movements in the processes of interest not only generalizes the frame-

work considerably, it also simplifies the optimal, volatility-minimizing, hedging decision.

2.1 Discrete Time Decision Making

Suppose that at each discrete point in time t = 1, 2, . . . , T , an investor holds a position wc,t in country

c’s equities, c = 0, . . . , C, from time t until t + 1, when the holding pays a gross continuously com-

pounded return of Rc,t+1.
7 For simplicity, let c = 0 index the home country, which is assumed to be

the US, and let Sc,t+1 be the corresponding time t+ 1 spot exchange rate quoted in USD per foreign

currency unit. In this setting, the US investor earns an unhedged return Ruc,t+1 = Rc,t+1Sc,t+1/Sc,t on

her country c investment. To hedge the latter against currency risk, the investor buys a holding of

the one-period forward exchange rate Fc,t, equivalently measured in USD per foreign currency unit,

at time t in country c. Let θc,t be the dollar value of this holding per USD invested in the equity

portfolio. Thus, the investor gets to exchange θc,t/Sc,t units of Rc,t+1wc,t/Sc,t back into USD at the

exchange rate Fc,t, and the remaining (Rc,t+1wc,t/Sc,t − θc,t/Sc,t) units of foreign currency at the spot

exchange rate Sc,t+1. This suggests writing the hedged portfolio return as

Rht+1 =
C∑
c=0

wc,tR
u
c,t+1 +

C∑
c=0

θc,t
Fc,t
Sc,t
−

C∑
c=0

θc,t
Sc,t+1

Sc,t
. (1)

Notice that the choice of domestic hedge ratio, θ0,t, is arbitrary, since S0,t = F0,t = 1, for all t. Hence,

for ease of exposition, the hedge ratios are normalized to sum up to one, implying that

C∑
c=0

wc,t = 1, θ0,t = 1−
C∑
c=1

θc,t, (2)

for all t. Maintaining an assumption of absence of arbitrage throughout, it follows by covered interest

rate parity (CIP) that Fc,t/Sc,t = (1+I0,t)/(1+Ic,t), where Ic,t denotes the nominal short-term risk-free

interest rate. This identity may be inserted in (1).

The form of the portfolio return in (1) also allows for speculative positions in exchange rates if,

for example, the currency demand θc,t is driven by, e.g., a model for local trends in Sc,t, regardless of

its correlation with the portfolio return. Hence, to avoid confusion going forward, the label “hedging”

7The exposition is laid out for equities. This may without loss of generality, however, be changed to other assets held
in foreign countries, such as corporate bonds, commodities, derivates, etc., as long as the assumptions on the assets, as
outlined below, are satisfied. A balanced bond-equity portfolio is examined in the empirical analysis.
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in this paper signifies that currency demands are determined with the explicit objective of reducing

the risk of the portfolio return, thus seeking currencies with favorable correlation properties. In

other words, currency hedgers and speculators are distinguished according to whether they emphasize

correlation properties or local trends, respectively, when selecting foreign exchange rate exposure.

2.2 Intra-period Dynamics

Suppose that the processes of interest – equities, currencies, and bonds – are defined on a filtered

probability space, (Ω,F , (Ft,τ ),P), where τ ∈ [t, t + 1] is the within-period time indicator. In the

absence of arbitrage, prices are assumed to follow semimartingales, e.g., Back (1991). Hence, denote

by Pc,τ the price of the equity holdings in country c, measured in local currency, and Bc,τ the price

of a country c-denominated riskless bond. Then, for c = 0, . . . , C, the system of equity, currency, and

bond prices obeys

dPc,τ/Pc,τ = µc,τdτ + σc,τdWc,τ , (3)

dSc,τ/Sc,τ = αc,τdτ + ϕc,τdYc,τ , (4)

dBc,τ/Bc,τ = λc,τdτ, (5)

in which (µc,τ , αc,τ ) and (σc,τ , ϕc,τ ) capture the within-period drift and stochastic volatility of equity

and currency returns, Wc,τ and Yc,τ are standard Brownian motions adapted to (Ft,τ ), and λc,τ models

the instantaneous return from holding a short-term riskless bond.8 Moreover, for c 6= k, we define

the quadratic covariations d[Wc,Wk]τ = σc,k,τdτ and d[Yc, Yk]τ = ϕc,k,τdτ . Finally, let d[Wc, Yk]τ =

ψc,k,τdτ for all c, k. The theoretical analysis, then, necessitates additional structure on the system:

Assumption 1. For all c, k ∈ {0, . . . , C}, the components of (3)-(5) satisfy:

(a) µc,τ , αc,τ , and λc,τ are Ft,τ -predictable and locally bounded;

(b) σc,τ and ϕc,τ are Ft,τ -adapted, locally bounded, càdlàg, and strictly greater than zero;

(c) σc,k,τ , ϕc,k,τ , and ψc,k,τ are Ft,τ -adapted, locally bounded, and càdlàg.

The present setting generalizes the previously developed framework for deriving optimal currency

exposure in Anderson & Danthine (1981), Glen & Jorion (1993), de Roon et al. (2003), and Camp-

bell et al. (2010), by allowing for stochastic drift and volatility, as well as intra-period movements in

equites and currencies. The latter are assumed to belong to a general class of continuous Brownian

semimartingales, which, again, is commonly used in the literature on high-frequency volatility and co-

variance estimation, since it nests many continuous-time models in financial economics.9 For example,

the class accommodates the widely documented presence of leverage effects, i.e., non-zero correlation

8The time t subscript is dropped for notational simplicity when describing the intra-period price system (3)-(5), since the
representation is valid for all intervals, with τ ∈ [t, t+ 1], t = 1, . . . , T .

9See, e.g., Andersen & Benzoni (2012) and Andersen et al. (2006, 2013) for reviews.
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between innovations in the price process and the stochastic volatility process. The modeling system

implies that in a given time interval, [t, t+1], between the rebalancing times of the portfolio of equities,

currencies, and bonds, asset prices are allowed to evolve according to intra-period trajectories, which

will be important for determining the investor’s optimal, volatility-minimizing, currency position.

Remark 1. While it is convenient to work with locally riskless bonds, it is important to note that the

analytical results below are not contingent on a diffusive component being absent in (5). All our results

are asymptotically invariant to replacing the latter with dBc,τ/Bc,τ = λc,τdτ+ςc,τ,εdZc,τ , where dZc,τ is

a standard Brownian motion, which may have non-trivial quadratic covariation with dWk,τ and dYk,τ ,

and ςc,τ,ε = ςc,τ × (dτ)ε captures stochastic volatility, with ε > 0 and ςc,τ satisfying conditions similar

to Assumption 1(b). This models the volatilities of short-term bonds as an order of magnitude smaller

than the corresponding volatilities for equity and currency prices. For ε→∞, (5) is recovered.

Remark 2. The vector price system (3)-(5) may be extended to include jumps. This only leads to

minor changes in the interpretation of the results. The role of jumps is discussed in Section A of the

Online Appendix, where the theoretical results, provided below, are also extended.

Before deriving the optimal currency exposures, it is important to characterize the path of the

hedged portfolio return at each time τ ∈ [t, t + 1]. Hence, with Vτ denoting the value of the hedged

portfolio at time τ , the evolution of its instantaneous return may be described using (3)-(5),

dVτ
Vτ

=

C∑
c=0

wc,t
d(Pc,τSc,τ )

Pc,τSc,τ
+

C∑
c=0

θc,t
d(B0,τ/Bc,τ )

B0,τ/Bc,τ
−

C∑
c=0

θc,t
dSc,τ
Sc,τ

. (6)

As in Campbell et al. (2010), it simplifies the problem to work in logarithms and use matrix notation.

Hence, let rht+1 = ln(Rht+1) and xc,τ = ln(Xc,τ ) for X ∈ {P, S, V }. Similarly, let wt = (w0,t, . . . , wC,t)
′

be the (C+1)×1 vector of portfolio weights, Θt = (θ0,t, . . . , θC,t)
′ the corresponding (C+1)-dimensional

vector of currency hedging positions, xτ = (x0,τ , . . . , xC,τ )′ for x = (p, s, λ)′, and λ0,τ = ιλ0,τ , with

ι a (C + 1) × 1 vector of ones. Furthermore, to explicitly capture the fact that an investor can alter

her currency exposure by lending and borrowing (going long or short in bonds or forward contracts),

define βt ≡ (β0,t, . . . , βC,t)
′ = wt −Θt as the net exposures to the foreign currencies. For example,

βc,t = 0 corresponds to having a fully hedged position in country c’s equities, and βc,t = wc,t to leaving

the exposure completely unhedged. In general, βc,t > 0 implies that the investor demands exposure to

currency c and, equivalently, she wants to be underexposed if βc,t < 0. Note that (2) implies β′tι = 0,

that is, the dynamic currency hedging portfolio is a zero investment, meaning that all long positions

in currencies are financed by shorting bonds in funding currencies, similarly as in traditional currency

investment styles. Finally, a regularity condition is imposed on the elements of the vectors wt and Θt

to simplify the further theoretical analysis.

Assumption 2. For all t = 1, . . . , T , supc=0,...,C |wc,t|+ supc=0,...,C |θc,t| <∞.
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Assumption 2 innocuously states that both the equity portfolio weight in and currency exposure to

country c, c = 0, . . . , C, must be finite.10 The following proposition provides a representation result

for the within-period currency hedged log-returns, dvτ .11

Proposition 1. Suppose the representation (6) and Assumptions 1-2 hold. Then

dvτ = w′t(dpτ + λ0,τdτ − λτdτ) + β′t(dsτ − λ0,τdτ + λτdτ) + Σh
τdτ + op(dτ),

where Σh
τ is Fτ -adapted, locally bounded, and càdlàg.

Proposition 1, similarly to the representation in Campbell et al. (2010, Equation (1)), provides a

decomposition of the hedged log-return into three components; the first is the instantaneous excess

return on a fully hedged portfolio; the second term represents the instantaneous excess return on

currencies, which depends on the selected exposure, βt; and the last term is a Jensen’s inequality

correction. However, unlike in the corresponding framework in Anderson & Danthine (1981) and

Campbell et al. (2010), the instantaneous log-return on the hedged portfolio is allowed to evolve

stochastically in the interval τ ∈ [t, t+ 1], implying that the one-period log-return may be written

rht+1 =

∫ t+1

t
dvτ , t = 1, . . . , T, (7)

thus formally providing a link between their framework and ours. Equation (7) suggests that the one-

period log-return on a hedged portfolio may be interpreted as the sum of returns at a higher frequency.

For an investor with a monthly investment horizon, this could, e.g., be a sum of daily log-returns.

2.3 Optimal Dynamic Currency Exposure

The optimal dynamic selection of currency exposure requires the choice of an appropriate objective

function. Usually, in portfolio selection problems, this involves choosing the portfolio weights to

minimize portfolio variance subject to certain constraints. Similarly to the one-period log-return

(7), which is measured by cumulating returns at higher frequency, a measure of its variance must

also reflect the stochastic intra-period movements in dvτ . In this setting, quadratic variation (QV)

offers such a variability measure, see, e.g., Andersen, Bollerslev & Diebold (2010). Formally, suppose

the intra-period hedged log-return dvτ is observed on a discrete partitioning τi of the time interval,

t = τ0 < τ1 < · · · < τn = t+ 1. The QV of rht+1 is, then, defined as

[dvτ ]t+1 ≡ plim
n→∞

n∑
i=1

(vτi − vτi−1)2 = lim
h→0

∫ t+1

t
E
[
M(dvτ )2|Ft,τ−h

]
dτ, (8)

10Strictly speaking, the condition supc=0,...,C |θc,t| < ∞ should be shown endogenously in the dynamic model, since θc,t
will depend on the components of the intra-period price system (3)-(5). However, by assuming it from the outset, rather
than showing it endogenously, the proofs of Propositions 1-4 may be shortened considerably, without loss of intuition.

11We will be using the nomenclature op(dτ) to describe higher-order terms of the form (dτ)2, dτ × dWc,τ , dτ × dYc,τ , etc.,
which have no asymptotic impact in the further analysis below.
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with M( · ) isolating the martingale component of dvτ , for supi{τi+1 − τi} → 0 as n → ∞, see, e.g.,

Jacod & Shiryaev (2003).12 QV captures the entire realized ex-post variation of the hedged log-returns,

and its use will simplify the computations of the optimal currency exposures via the next result.

Proposition 2. Suppose the conditions of Proposition 1 hold. Then, as n→∞,

[dvτ ]t+1 =
[
w′tdpτ + β′tdsτ

]
t+1

.

Proposition 2 shows that the QV of the hedged log-return depends only on the QVs of the fully

hedged log-return and the total currency exposure return, as well as on their quadratic covariation

(QC). Hence, there is no impact from movements in nominal short-term risk-free interest rate differ-

entials nor from the Jensen’s inequality induced term, Σh
τdτ . This distinct advantage of the proposed

within-period model for equities, currencies, and bonds is due to the fact that drift components have

no asymptotic impact on QV in the infill asymptotic limit. As a result, Proposition 2 provides a

variance measure that contrasts starkly with the corresponding long-span variance measure used for

the development of the existing currency hedging theory by Anderson & Danthine (1981), and applied

in Glen & Jorion (1993), de Roon et al. (2003), and Campbell et al. (2010), and which depends on

period-by-period movements in short-term interest rate differentials.

Since the vector of dynamic net currency exposures, βt, represents a zero-investment portfolio, it

suffices to determine the C × 1 vector of foreign currency exposures β̃t = (β1,t, . . . , βC,t)
′, which spans

the unique elements of βt. Formally, and consistently with our distinction between foreign exchange

hedgers and speculators, exposures are selected to minimize the one-period conditional quadratic

variation of the hedged log-return, that is, as

β̃∗t = argmin
βt|wt

Lt(βt,wt), Lt(βt,wt) =
1

2
Et [[dvτ ]t+1] . (9)

Before stating the optimality result, let s̃τ = (s1,τ , . . . , sC,τ )′ denote the vector of currencies corre-

sponding to the unique exposures β̃t. Then, the following proposition solves (9).

Proposition 3. Suppose the conditions of Proposition 2 hold, and that Et [[ds̃τ ]t+1] is positive definite

for all t = 1, . . . , T . Then the limiting, unique, optimal currency exposures are determined by

β̃∗t = −Et [[ds̃τ ]t+1]
−1 Et

[
[ds̃τ ,w

′
tdpτ ]t+1

]
.

Proposition 3 demonstrates that the vector of optimal currency exposures is the negative vector of

realized regression coefficients from an implicit projection of the fully hedged log-return on the vector

of foreign exchange rate innovations, which is embedded in the one-period conditional expectation

of the QC matrix. This former is labelled the realized currency beta, in analogy with the market

12The quadratic covariation between two appropriately dimensioned vector processes xτi and yτi , for a similar partition
of the sample τi ∈ [t, t+ 1], i = 0, . . . , n, is analogously defined as [x,y]t+1, that is, as the probability limit of a sum of
outer products of their increments as the distance between observations tends to zero.
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exposure measured by the CAPM beta. However, it is stressed that while the market beta reflects

the uncertainty of a given asset in terms of its sensitivity to market movements, the realized currency

beta reflects the hedging potential from having active, and systematic, currency exposure in a given

equity portfolio and is, as a result, not a deep characteristic of a currency.

In addition, Proposition 3 suggests that realized currency betas may be computed dynamically

using only within-period equity and foreign exchange rate data by first obtaining a time series of their

QC estimates, and then specifying an appropriate dynamic model for these, to obtain one-step-ahead

conditional expectations. This is a highly desirable property, since it implies that the optimal currency

exposures are not only asymptotically invariant to short-term interest rate differentials, but also to the

validity of CIP, which is otherwise used to substitute out forward rates with interest rate differentials

in (1) and (6).13 Importantly, this invariance separates the optimal currency exposures from the

popular carry trade investments, which are designed with long positions in baskets of currencies with

high short-term interest rates and short in baskets of currencies with low interest rates, resting on the

failure of the uncovered interest rate parity. The resulting realized currency beta hedging strategies

may, thus, be viewed as an alternative to traditional currency investments, such as carry, momentum,

and value trading strategies, which rely solely on the modeling of local trends, rather than cross-asset

covariances. Empirical comparisons are made in Section 6 below.

Finally, focusing solely on volatility reduction in the objective function (9) has two additional

advantages. First, it mirrors the problem faced by many institutional investors, where one investment

team takes a trading strategy as given (here, an equity portfolio), then executes a hedging procedure to

improve its risk profile. Second, from an econometric perspective, Engle & Colacito (2006) show that

the economic value of time-varying covariances can only be consistently measured in a mean-variance

setting by the minimum variance portfolio. Hence, the objective function (9) facilitates consistent

evaluation of the proposed intra-period model for currency hedging.

Remark 3. Although the exposition is given from the perspective of a US investor, it is important to

note that the realized currency betas are dynamically invariant to base currency. This implies that,

e.g., a UK investor with the same equity portfolio will be choosing identical optimal currency exposures.

This invariance result is formally shown in the Online Appendix.

3 Estimating Optimal Currency Exposures

Dynamic implementation of the proposed realized currency beta hedging strategy requires both esti-

mation of the latent QC matrix over each discrete time interval between portfolio rebalances, and sub-

sequent dynamic modeling of the covariance matrices. Hence, two different non-parametric approaches

13While Akram, Rime & Sarno (2008) find that CIP holds approximately at daily or lower frequencies, Du, Tepper
& Verdelhan (2018) find persistent deviations from the no-arbitrage condition. Although realized currency betas are
invariant to CIP, the latter will have an impact on whether to apply forward rates or interest rate differentials to evaluate
the return performance of optimal hedging strategies ex-post. In the empirical analysis below, the investor is assumed
to trade FX forwards, and forward rates are applied, to avoid concerns about CIP violations.
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to QC estimation, which may be applied to data sampled at different frequencies, are discussed first.

Second, a simple filtering procedure for the construction of one-period-ahead conditional expectations

of the quadratic covariation matrix is then detailed.

3.1 Measuring Quadratic Covariation

Suppose that the vector xτi = (w′tdpτi , ds̃
′
τi)
′ is observed at the n + 1 discrete time points from

the portfolio rebalancing at t to the next, that is, at τi ∈ [t, t + 1], i = 0, . . . , n, then the realized

covariance (RC) estimator, introduced by Andersen et al. (2003) and Barndorff-Nielsen & Shephard

(2004), represents the empirical approximation to the computations (8). Formally, the estimator is

defined as

RC(x) =
n∑
i=1

∆xτi∆x
′
τi , (10)

where ∆ = 1−L is the usual first difference operator. Under mild conditions on the vector price system

in (3)-(5), RC(x)
P−→ [∆x]t+1 for supi{τi+1 − τi} → 0 as n → ∞. Its associated central limit theory

demonstrates that convergence occurs at the optimal rate, n1/2, to a mixed Gaussian distribution.

Implicit in these statements, however, is that the individual entries in xτi are observed synchronously

and without measurement errors. This approximation may not be too damaging if the rebalancing

horizon is, for example, weekly or monthly, and the intra-period observations are recorded daily or even

intra-daily at sufficiently sparse intervals.14 If the data are sampled intra-daily at higher frequencies,

on the other hand, market microstructure (MMS) effects and non-synchronicity related errors drive

a wedge between the observed equity prices and exchange rates and their theoretical counterparts,

leading the individual entries of standard covariance matrix estimators such as RC to diverge. Hence,

if the data are available intra-daily at frequencies higher than the conventional five minute rule-of-

thumb, it is pertinent to use an estimator that actively mitigates the impact from these measurement

errors while maintaining good efficiency properties. A class of estimators fitting these requirements is

the flat-top realized kernels, proposed by Varneskov (2016, 2017).

The notion of measurement errors may be quantified as follows: Let the observable, synchronized,

intra-daily observations follow an additive noise model of the form yτi = xτi + uτi , where uτi sum-

marizes the effects from an array of market imperfections, including synchronization errors, and is

referred to as MMS noise.15 Next, let Γh(y) =
∑n

i=|h|+1 ∆yτi∆y
′
τi−|h|

for h ≥ 0 and Γh(y) = Γ−h(y)′

for h < 0 be the realized autocovariance of y for given lag h. The class of flat-top realized kernels

is designed to eliminate the noise-induced bias and variance of the realized covariance estimator by

14It is generally not recommended to sample much more sparsely than daily since the asymptotic approximation of negligible
drift, or local trends, may be poor at such frequencies. If the series display non-negligible drift, this obviously needs to
be taken into account when computing the quadratic covariation estimates.

15Besides synchronization errors, the MMS noise captures both exogenous effects, such as bid-ask bounce movements, and
endogenous effects, such as asymmetric information and strategic learning among market participants.
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weighting higher-order realized autocovariances appropriately as

RK∗(y) = RC(y) +

n−1∑
h=1

k(h/H) {Γh(y) + Γ−h(y)} , (11)

for a bandwidth parameter H = an1/2, a > 0, and, in particular, a non-stochastic kernel function,

k(·), designed as

k(z) = 1{|z|≤k} + λ(|z| − k)1{|z|>k}, (12)

with k = H−ξ, ξ ∈ (0, 1), a shrinking function of the bandwidth H, and λ(·) a second-order smooth

kernel function, satisfying some mild regularity conditions, an example being the Parzen kernel. The

properties of these HAC-style estimators depend crucially on the kernel function, and by selecting k(z)

as in (12), the resulting class of flat-top realized kernels achieves optimal asymptotic properties in this

setting, such as consistency, asymptotic unbiasedness, and mixed Gaussianity at the optimal rate of

convergence, n1/4, under mild assumptions on the MMS noise and (possibly random) sampling times.16

If optimally designed, the estimator is, in addition, efficient in a Cramér-Rao sense. As a result, it

performs well in finite samples, even for sparse observations available at 1 to 5-minute frequencies.

Implementation details are provided in the Online Appendix.

When intra-daily observations are only available for a certain part of a day, the trading window, and

there is no recorded trading during weekends, holidays, etc., the estimates from the flat-top realized

kernel may be supplemented with the squared close-to-open return since the preceding (trading) day.

This approach essentially combines the estimates from RC(x) and RK∗(y).

3.2 A Simple Filtering Approach to Covariance Modeling

A number of different procedures to construct one-step conditional expectations of the QC matrix have

been proposed in the literature. However, rather than searching for the best covariance model, the aim

of this paper is to provide a baseline approach for dynamic implementation of the realized currency

betas, which is simple, of non-parametric flavor, and easy to implement for QC estimates with different

degrees of measurement errors, such that it can accommodate within-period sampling at both daily and

intra-daily frequencies. In particular, the procedure that is introduced here adapts the rolling window

estimator proposed by Foster & Nelson (1996) and Andreou & Ghysels (2002) in the univariate case,

and extended to the multivariate case in Fleming, Kirby & Ostdiek (2001), to the present setting. To

this end, let Σt and Σ̂t be short-hand notation for the latent conditional quadratic covariation matrix

and a generic estimator of this, respectively. Then, the use of rolling window estimators implies the

relation Σt =
∑∞

i=1$t−i � Σ̂t−i, where $t−i is a symmetric (C + 1) × (C + 1) matrix of weights,

and � is the Hadamard product. As proved by Foster & Nelson (1996, Theorem 5) under weak

assumptions, the mean-squared error optimal covariance weights are given by $t−i = γ exp(−γi)ιι′,
such that Σt = exp(−γ)Σt−1+γ exp(−γ)Σ̂t−1. The resulting covariance estimate is, however, generally

16The presence of additive MMS noise slows down the best attainable rate of convergence from n1/2 to n1/4.
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downward biased since (1+γ) exp(−γ) < 1 for γ > 0. Hence, a new bias-corrected version is introduced,

Σt = (1− (1 + γ) exp(−γ))Σ̄t−1.+ exp(−γ)Σt−1 + γ exp(−γ)Σ̂t−1, (13)

where Σ̄t−1 is the prevailing mean of Σ̂t−1.
17 In other words, this version of the rolling window

covariance estimator may be thought of as an exponentially weighted multivariate GARCH model

for the time series of QC estimates, Σ̂t, whose rate of decay is determined by a single parameter γ.

Despite being parsimoniously parametrized, this approach allows for persistent time-variation in Σt,

while implicitly reducing the impact of measurement errors in Σ̂t. Despite its simplistic structure,

Varneskov & Voev (2013) show that the forecasting performance of (13), without the bias-correction,

is insignificantly different from that of more sophisticated multivariate Cholesky decomposed HAR

and ARFIMA models when evaluated using a global minimum variance criterion for a portfolio of

ten stocks and various realized covariance measures.18 As a robustness check, however, the empirical

analysis of currency hedging strategies, presented in the next sections, has been carried out using a

multivariate HAR model in place of the MGARCH model. The results are very similar, albeit with

slightly worse risk-return properties, and are provided in Section F of the Online Appendix.

4 Data, Implementation, and Summary Statistics

This section introduces the data, which consist of daily and intra-daily observations covering the time

span from January 2000 through December 2019. Furthermore, it provides details on the construction

of the QC estimates and forecasts, as well as the computation of the realized currency betas. Moreover,

bid-ask spread data are used to estimate transaction costs for the evaluation of the dynamic hedging

strategies. Finally, novel evidence of time variation in optimal currency exposures is presented.

4.1 Data Collection and Construction

The empirical analysis is performed for a US investor who holds either an equity portfolio or a balanced

portfolio with fixed income and equity, and may use (a subset of) the G10 currencies to hedge her

foreign currency exchange rate exposure. In particular, two sets of currencies are considered. The first

includes the very liquid Canadian Dollar (CAD), Swiss Franc (CHF), Euro (EUR), Great Britain Pound

(GBP), and Japanese Yen (JPY). The second set further allows active investments in the Australian

Dollar (AUD), the Norwegian Krona (NOK), the New Zealand Dollar (NZD), and the Swedish Krona

(SEK). These sets are labeled G06 and G10, respectively. For each exchange rate, the last daily

spot price (bid, ask, trade) quoted on Bloomberg during NYSE trading hours is obtained, along with

17Specifically, the present approach differs from the procedure in Fleming, Kirby & Ostdiek (2003) by replacing the outer
product of returns, or the realized covariance estimator, with a generic quadratic covariation estimator, similarly to the
study in Varneskov & Voev (2013). Moreover, it differs from the latter by introducing a bias-correction.

18Using a statistical loss function, on the other hand, Varneskov & Voev (2013) find statistically significant gains from
using multivariate Cholesky decomposed HAR and ARFIMA models over the multivariate GARCH model.
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the corresponding one-month forward points, to construct forward prices, as well as estimates of the

transaction costs associated with FX trading. Summary statistics for forward returns, spot returns,

and implied returns on interest rate differentials are provided in Table 1, along with estimates of

transaction costs in basis points per annum (BP). Note that all return series are log-transformed.19

Table 1 illustrates that currencies such as the CHF and JPY have lower returns on interest rates

than the USD, and vice versa for the AUD and NZD. Moreover, the spot return fails to offset the

interest rate differentials, consistent with the former two being funding currencies for carry trades,

and the latter being high-yielding currencies in the G10 universe, see, e.g., Lustig et al. (2011). For

all individual currencies, the excess returns are modest compared to volatility, generating annualized

Sharpe Ratios (SRs) of no higher than 0.3. However, an extensive literature (see the introduction

for references) has documented that systematic FX trading can be very profitable, on a risk-adjusted

basis. The CHF exhibits extreme kurtosis relative to the remaining currencies, caused by the Swiss

National Bank’s abandonment of the EUR peg on January 15, 2015. The estimated transaction costs,

computed as 10, 000(ask − bid)/((ask + bid)/2) for the forward prices, shows that, on average, it is

cheaper to trade G06 currencies than G10. Following convention in the literature, e.g. Lyons (2001),

the cost of trading is fixed at half the average spread, that is, at 3BP for the G06 currencies and 6BP

for the G10 set. The results, however, are robust to increasing these numbers.

Three different baseline portfolios are considered. The first is the S&P 500, whose currency exposure

is determined implicitly through the international investments and cash flows of its constituents. The

second is an equally weighted portfolio in the DAX, FTSE 100, and S&P 500. All equity index

investments are carried out via futures contracts. The third portfolio has a 60% weight on the S&P

500 and 40% on 10-year Treasury bond futures. This balanced, risk-parity-style, benchmark has been

popularized by mutual funds, such as Vanguard, and is a prominent benchmark for passive investors.

As such, the setup resembles the one in Campbell et al. (2010), who consider currency hedging for

the S&P 500 and equal weighted (EW) international equity investments, i.e., the first two portfolios.

The main differences are that they use either monthly or quarterly observations, while we collect

daily data on the futures contracts. Moreover, they include the AUD in their set of (seven) hedging

currencies, whereas we consider both the G06 and G10 sets of currencies. Finally, the investment

horizons considered here are weekly and monthly, rather than monthly and quarterly.

In addition to the daily futures data for the baseline portfolios and FX forwards, we collect intra-

daily, one-minute data for the baseline portfolios and spot prices of the G06 currencies. The intra-daily

data are generally non-synchronous, and refresh time sampling is used to align observations, see, e.g.,

Varneskov (2016, Definition 1). Then, from either the daily or intra-daily data, estimates of QC is

constructed using RC or flat-top realized kernels, respectively.20 Hence, our final data set consists

19Since all summary statistics are computed directly from log-returns, there is no need to consider the Jensen’s inequality
correction in Proposition 1. The latter is only important when transferring log-returns back into gross return form.
Moreover, as seen by the general identity from Itô’s lemma, Rt = rt+[r]t/2, the use of log-returns leads to a conservative
assessment of the benefits from applying the proposed dynamic hedging strategies.

20Details on the cleaning of the intra-daily data as well as its characteristics, e.g., number of synchronized observations,
noise-to-signal ratios, etc., are provided in Section E of the Online Appendix.

15



of either weekly or monthly observations of returns on the baseline portfolios and FX forwards, QC

estimates for G06 and G10 constructed from daily data, as well as QC estimates for G06 constructed

from intra-daily data. This facilitates assessments of whether the new dynamic realized currency

beta hedging theory generates improved portfolio performance, whether there are differences across

baseline portfolios, or across different sets of hedging currencies, G06 versus G10, and whether there

are additional gains from leveraging intra-daily data to increase precision of the QC estimates.

4.2 Implementing Realized Currency Betas

The empirical analysis features several benchmark implementations of the dynamic realized currency

beta hedging strategies. First, to extrapolate expectations of the QC matrix, the dynamic MGARCH

specification in (13) is estimated using standard multivariate Gaussian maximum likelihood techniques

in conjunction with either the RC estimates from (10) for the G06 currency set in place of Σ̂t, the

corresponding for the G10 set, or the flat-top realized kernel estimates from (11)-(12) for the G06

set. Specifically, the smoothing parameter γ is estimated recursively using an expanding window of

observations and a two-year initialization period. Given this, a QC forecast is generated from (13)

and used to compute the realized currency betas from Proposition 3. These three adaptive dynamic

hedging (ADH) methods are labeled ADH-06, ADH-10, and ADH-HF to indicate the FX set for

daily data-based QC estimates and high-frequency data-based estimates, respectively. In addition,

a standard MGARCH model is included as a benchmark in the same G06 framework. This model

is nested in the setting (13) by replacing Σ̂t with the outer product of returns (weekly or monthly,

according to rebalancing frequency) and is labeled ADH-SM for Standard MGARCH.

These dynamic strategies are compared to a fully hedged baseline portfolio to examine if active

currency hedging adds economic value to the existing investments. Moreover, a real-time version of

the strategy in Campbell et al. (2010) is implemented, using the negative slope from a regression

of the portfolio returns on excess FX returns. This is included for both the G06 and G10 sets of

currencies, labeled CMV-06 and CMV-10, respectively, and utilizes an expanding window of either

weekly or monthly observations, depending on rebalancing frequency. Finally, to examine the relative

importance of the dynamic model for intra-day-based QC estimates, a further benchmark is added,

in which the QC expectations are based on the average flat-top realized kernel estimates using an

expanding window up to and including ten years, and subsequently a rolling ten year window. This

simple procedure circumvents the forecasting step (13) and is dubbed the ROL-HF estimator.

As a preliminary gauge of the similarities and differences between strategies, the average currency

exposures are provided in Table 2 for each benchmark portfolio. Some interesting discrepancies between

average exposures obtained from the various hedging procedures appear. First, for the S&P 500

portfolio, the CMV-06 strategy takes large long positions in the CHF and USD, funded by short

positions in CAD and EUR. The ADH-HF procedure holds JPY rather than USD, and the ADH-06

strategy has approximately equal (long) exposures to the JPY and USD. This is consistent with the

CHF, JPY and USD being considered as safe haven currencies during episodes of financial turmoil.
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Second, the absolute magnitude of the average FX exposures vary, with exposures in CMV-06 larger

than those in ADH-06, which in turn are larger than the corresponding in ADH-HF. Third, when the

FX set is extended from G06 to G10 for the CMV and ADH strategies, this generates a reduction in

the short positions in CAD and EUR (whose exposure actually changes sign), in favor of shorting the

AUD and SEK. Moreover, the CMV procedure indicates positive exposure to NOK. Fourth, whereas

the average exposures are similar in magnitude and sign for the S&P 500 and EW portfolios, the

optimal exposures for the balanced portfolio are significantly reduced. This is consistent with the

latter having lower volatility (cf. Table 3 below), implying that the hedging strategies must match a

lower volatility target.

Figure 1 depicts the optimal exposures for the ADH-HF procedure applied to the three baseline

portfolios. While this underscores the propensity of the hedging strategy to go long CHF and JPY,

and funding this by shorting the EUR and CAD, there are interesting dynamic patterns. First, the

exposures to the CHF and JPY are much larger during the global financial crisis of 2008-2009 than

during the years leading up to and following it. Hence, the strategy takes on larger “safe haven

bets” during financial turmoil. Second, the status of the CHF as a hedging currency is dramatically

affected by the Swiss National Banks’s abandonment of its EUR peg during January 2015, and while

the optimal exposure remains positive afterwards, it leaves the hedging demand much smaller. The

optimal exposure to the JPY, on the other hand, remains large after the financial crisis, with further

spikes occurring in early 2016, when fears of a slowdown of China’s economy lead to global stock

sell-offs, and during late 2018, when, again, stocks exhibit massive sell-offs over Christmas. Third, the

optimal exposure to the USD is flat both before 2010 and after 2015. However, the model suggests to

hold USD during the European sovereign debt crisis. Finally, Figure 1 also illustrates that is optimal to

hold more than a ±100% exposure to certain currencies over short portions of the sample period. This

may not be feasible for all institutional investors. Hence, as a robustness check, we will also examine

the performance of a modified version of the ADH-HF strategy, in which, if the optimal exposure is

larger than ±1, it is fixed at ±1. This constrained version is labeled the CON-HF strategy.

5 Benefits from Dynamic Global Currency Hedging

This section demonstrates that beside displaying interesting time-variation closely tied to important

economic events (cf. Figure 1), the estimated dynamic realized currency betas give rise to hedging

strategies that provide economic benefits to an investor beyond what is achieved by either fully hedged

equity investments or existing optimal hedging strategies from Campbell et al. (2010), which ignore

within-period variation in the economic system. Specifically, the gains from dynamic currency hedging

are illustrated from three different perspectives. First, standard risk-return results are provided.

Second, the statistical significance of the volatility reductions are formally tested. Third, the economic

benefits to a risk-averse investor are assessed. The results are described for monthly returns. The

corresponding results for weekly returns are very similar and available in Section F of the Online
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Appendix, together with robustness checks using the multivariate HAR model.

5.1 Risk-Return Benefits

As an initial gauge of the benefits to dynamic currency hedging, Table 3 reports the annualized mean

return, standard deviation, and Sharpe ratio, along with skewness and kurtosis, for an equity investor

who implements one of the eight hedging strategies, for each of the three baseline portfolios. There

are several striking findings, which are described in detail for the S&P 500 portfolio and subsequently

generalized to the remaining two portfolios. First, all strategies except ADH-SM provide non-trivial

volatility reductions relative to full hedging. Second, the dynamic ADH-06 and ADH-HF strategies

generate larger volatility reductions than the corresponding CMV-06 procedure, with the HF version

performing best. Specifically, the ADH-HF strategy delivers a 100BP improvement in volatility over

CMV-06, in addition to average returns that are 150BP higher. Consequently, the SR of ADH-HF is

61% higher than those for the fully and CMV-06 hedged portfolios, and 29% higher than for ADH-06.

Third, while the CMV-06 procedure delivers substantial volatility reductions, these come at a cost of

returns, thus failing to improve the SR relative to the fully hedged portfolio. This is consistent with

the empirical findings in Campbell et al. (2010), despite the different setup. Fourth, when comparing

equivalent strategies using either the G06 or G10 sets of currencies, the latter is seen to generate the

largest volatility reductions, but these are very costly, and the strategies deliver worse overall risk-

return performance. From Table 2, this follows since these strategies, on average, substitute a large

part of the short position in the CAD to the high-yielding AUD, which is very expensive.

The results in Table 3 demonstrate that a better risk-return trade-off can be achieved by the

proposed realized currency beta framework. Moreover, they show that obtaining precise high-frequency

data-based estimates of QC deliver the best results, judging by the SR, and that daily data-based

QC estimates also provide economic value over standard benchmarks. They further illustrate that

the selection of currency universe is important for overall performance, and that active trading in

high-yielding currencies can be expensive. Interestingly, the results also indicate that reasonable

performance can be achieved by the simple ROL-HF procedure, which has higher SR than ADH-06,

suggesting that the input covariance measure is relatively more important than the dynamic model.

Finally, and not surprisingly, given Figure 1, the results for ADF-HF and CON-HF are almost identical.

The few and small violations of ±1 exposure have little impact on overall performance.

In sum, the risk-return benefits from applying the realized currency beta hedging strategies, espe-

cially those leveraging intra-daily data, appear substantial. Importantly, they are also not confined to

the S&P 500 portfolio. The remaining portions of Table 3 show that the same performance pattern

appears for the EW and balanced portfolios. Specifically, the relative volatility and SR gains are

similar in magnitude for ADH-HF, thus delivering superior risk-return performance. The next two

subsections test the significance of the gains and assess them from the perspective of a risk-averse

economic agent.
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5.2 Significance Testing of Volatility Reductions

This subsection elaborates on the risk-return results by testing whether the volatility reductions

achieved by the dynamic hedging strategies are statistically significant. Specifically, the best set

of hedging models is determined by their ability to reduce volatility of the baseline portfolio. To this

end, the model confidence set (MCS) approach of Hansen, Lunde & Nason (2011) is applied to identify

the models in a manner which is robust against multiple testing biases. The testing procedure requires

the selection of an ex-post QC proxy and is implemented using both the RC and the flat-top realized

kernel estimates. Since the hedging strategies using the G10 universe consistently exhibit lower SRs

than those actively trading G06 currencies, and since flat-top realized kernel estimates are only avail-

able for the latter, this exercise will focus on the G06 universe. Moreover, the MCS is configured with

the T-max statistic and a 10% significance level (see Hansen et al. (2011) for details).

Results are collected in Table 4. The table shows the average ex-post volatility for each of the QC

measures, and indicates (by an asterisk) whether a given strategy belongs to the MCS. The message

is clear. The ADH-06 and ADH-HF strategies consistently deliver the largest volatility reductions,

significantly outperforming the fully hedged portfolio, as well as the CMV-06, ADH-SM, and ROL-

HF strategies, for all three baseline portfolios. The ADH-HF strategy achieves the most significant

volatility reductions when the flat-top realized kernel estimates are used as QC proxy, while the ADH-

06 is also included in the set of best performing strategies when the RC estimate is used to calculate

ex-post volatility. In fact, the latter is the best strategy for the EW portfolio in this case, although

its average volatility edge over ADH-HF is small. As for the risk-return results in Table 3, there is no

significant difference between ADH-HF and CON-HF.

The volatility reductions from applying the dynamic ADH-HF strategy rather than fully hedging

currency exposure or applying the existing CMV-06 approach to currency hedging are not only eco-

nomically meaningful, for the S&P 500 portfolio of the order 250BP and 100BP for the two strategies

(cf. Table 3), they are also statistically significant, based on the results in Table 4. Moreover, whereas

ADH-HF achieves the highest SRs in Table 3 for all baseline portfolios, the results in Table 4 show

that similar volatility reductions can be achieved by ADH-06. The advantage in terms of Sharpe ratio

from using intra-daily data in the implementation, thus, stems mainly from enhancing the returns to

the hedging strategy.

5.3 Economic Benefits from Dynamic Currency Hedging

The economic benefits are assessed via three different measures. First, using the SRs in Table 3, the

gain is quantified as the number of BP an investor is better off at a 10% volatility level, that is, by

$b,s = (SRb − SRs)× 10× 100, (14)

where SRb and SRs are the SRs of a benchmark strategy b and an alternative strategy s, respectively.

However, as emphasized by Han (2006) and Della Corte et al. (2009), the SR may underestimate the
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performance of dynamic portfolio strategies. In particular, as the SR is computed using the full sample

realized portfolio return and standard deviation, it may not adequately describe the conditional risk

faced by an investor at each point in time. Hence, following Fleming et al. (2001), the economic value

of a benchmark hedging strategy b relative to the alternative s is also assessed by determining the fee

that may be subtracted from the hedged portfolio return corresponding to the benchmark each period,

while still leaving average utility unchanged, compared to that achieved by investing according to the

alternative hedging strategy. In other words, this fee equals the amount a risk-averse investor is willing

to pay in order to switch from the alternative strategy s to the hedging benchmark b. Formally, as in

Della Corte et al. (2009), let Zbt = 1 + rbt and Zst = 1 + rst be the payoffs to the benchmark and the

alternative hedging strategy, respectively, then the switching fee Φb,s solves

T∑
t=T1+1

{
(Zbt − Φb,s)−

δ

2(1 + δ)

(
Zbt − Φb,s

)2}
=

T∑
t=T1+1

{
Zst −

δ

2(1 + δ)
(Zst )2

}
. (15)

Specifically, (15) equates the average realized period-by-period utility across the benchmark and alter-

native hedging strategies for an investor with quadratic preferences and relative risk-aversion indexed

by the parameter δ. In the empirical application, δ ∈ {3, 8} is fixed (see Fleming et al. (2001) and

Della Corte et al. (2009) for detailed discussions of this preference specification).21

Finally, while both $b,s and Φb,s speak to the (conditional) properties of means and volatilities for

returns to the currency hedging strategies, it is worth examining the robustness to higher moments.

For example, from Table 3, kurtosis and negative skewness are reduced by an expansion of the currency

universe, for otherwise identical stategies. Thus, the hedging strategies are further evaluated using

a measure capturing features of the whole return distribution, specifically, the Omega ratio statistic

introduced by Bernardo & Ledoit (2000) and Keating & Shadwick (2002), and studied extensively by

Caporin, Costola, Jannin & Maillet (2018). The ratio is defined as

Ωs(%) =
E[rst − %|rst > %]

E[%− rst |rst ≤ %]
× 1− Fs(%)

Fs(%)
, (16)

with the conditional expectation taken with respect to a threshold %, and Fs(%) the cumulative distri-

bution function. Hence, the statistic quantifies the ratio of favorable and unfavorable outcomes with

respect to a given threshold, where % ∈ {0, 0.1} is selected, following Caporin et al. (2018). As above,

define Ωb,s(%) = Ωs(%)/Ωb(%) to assess the omega ratio relative to a benchmark strategy.

Table 5 reports the estimates of $b,s, Φb,s, and Ωb,s(%) using ADH-HF as the benchmark strategy

for all three baseline portfolios. Interestingly, when considering the results for gains in SR, $b,s, the

ADH-HF strategy delivers 210-250 BP improvements over full hedging, 200-350 BP over the existing

CMV procedures, and 150-190 BP over ADH-06. These numbers are substantial, clearly illustrating

the value of using intra-daily data and the proposed economic model that actively utilizes within-

21Fleming et al. (2001, 2003) fix δ ∈ {1, 10} and Della Corte et al. (2009) let δ ∈ {2, 6}. A higher value of δ, such as 10,
implies that the investor is willing to pay a higher fee for strategies that reduce volatility.
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period information to carry out dynamic currency hedging. The differences are smaller relative to the

ROL-HF strategy, 70-100 BP, further underscoring the importance of QC measure quality relative to

dynamic model specification. The ADH-HF and CON-HF strategies are economically identical.

When turning to the corresponding estimates of switching fees, Φb,s, thus speaking to the relative

conditional risk of the hedging strategies, the qualitative rankings are identical.22 However, there are

differences between the absolute magnitudes of the $b,s and Φb,s estimates. The results for the S&P

500 and EW equity portfolios indicate even larger return differences than before. For the balanced

portfolio, on the other hand, the estimated switching fees are generally lower. However, since these fees

are always greater than the 96 BP reported for the ADH-06 strategy, they remain economically large.

The exception is the ROL-HF strategy, for which the relative gain is 35-60 BP, again demonstrating the

value arising from using the precise flat-top realized kernel estimates of QC. The smaller switching fees

for the balanced portfolio may readily be explained by the latter having substantially lower volatility

than both equity portfolios. Hence, a risk-averse investor places a smaller premium on further volatility

reductions, despite the $b,s measure indicating that the risk-return gains are large.

Finally, the Ωb,s(%) estimates show that these conclusions remain robust when allowing higher-

order return moments to impact the economic evaluation. The ADH-HF strategy, and its constrained

version, consistently outperform other approaches to currency hedging. In sum, the economic benefits

achieved by the dynamic realized currency beta hedging strategies, especially when implemented using

intra-daily data, are economically large, and volatility reductions statistically significant.

6 RCB and Traditional Currency Investment Styles

The previous section demonstrates that the investor can achieve substantial gains in baseline portfolio

performance by supplementing the latter with a tactical foreign exchange rate overlay based on the

proposed realized currency beta (RCB) hedging procedure, especially, the dynamic ADH-HF approach.

To synthesize and further explore these findings, this section relates the performance of the zero net

currency portfolio from the ADH-HF strategy to traditional currency investment styles, in particular,

carry, momentum, and value strategies. Following, among others, Lustig et al. (2011), Menkhoff,

Sarno, Schmeling & Schrimpf (2012a, 2012b), and Asness et al. (2013), the carry trade is constructed

by sorting on interest rate differentials, momentum on three month excess currency returns, and the

value trade by betting on mean-reversion against five-year average returns. Each of these strategies is

implemented with standard rank-based weights and using the G10 set of currencies.

Table 6 reports summary statistics of the FX strategies, as well as correlations between them,

with the currency overlay in the ADH-HF approach being designed to hedge the S&P 500 portfolio.23

Moreover, their respective cumulative returns are depicted in Figure 2. In line with prior work, the

22Note that the switching fee estimates in Table 5 are new to the currency hedging literature and, thus, provide further
perspectives on the economic value a risk-averse investor receives from implementing also the existing optimal hedging
procedures in Glen & Jorion (1993), de Roon et al. (2003), and Campbell et al. (2010).

23The results are very similar when applying the other two baseline portfolios and are, thus, omitted for brevity.
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carry and momentum investment strategies are very profitable until the 2008-2009 global financial

crisis, when, specifically, carry trades exhibit a massive drawdown during the fall of 2008, culminating

with a 12.4% loss in October. The strategy subsequently recovers, but has only delivered modest

returns since 2010. This observed tail behavior of carry trades is consistent with prior findings in the

literature, documenting that the strategy is exposed to “crash risk”, e.g, Brunnermeier et al. (2009),

Burnside et al. (2011), and Menkhoff, Sarno, Schmeling & Schrimpf (2012a). Momentum, on the other

hand, acts as a hedge during the financial crisis, delivering a positive return of 11.5% in October 2008,

but has performed abysmally since 2012. Finally, the value trading strategy similarly performed well

during the financial crises, but has been largely flat since 2010.

When traditional FX investment styles are compared to the ADH-HF overlay, the latter is also seen

to provide protection during the financial crisis, returning 13.5% in October 2008. Interestingly, when

comparing its performance to carry trades, keeping in mind the time-varying exposures of ADH-HF

from Figure 1, the long positions in traditional carry funding currencies, such as CHF and JPY, suggest

that the strong performance of ADH-HF is, at least partially, funded by carry traders unwinding their

positions. In addition, the hedging strategy provides protection during other episodes of financial

turmoil, such as those surrounding the downgrade of Greece’s sovereign debt to junk bond status during

the European sovereign debt crisis in April-May 2010, the Brexit vote in June 2016, and the “bloody

Christmas” equity sell-off in 2018, delivering returns of 6.4%, 5.0% and 4.5%, respectively, during these

episodes. In contrast, momentum and value strategies return −(1.4, 5.9, 2.7)% and (0.6, 1.5, 2.2)% over

the same time intervals. Hence, as intended, the ADH-HF overlay provides a robust hedge for an equity

portfolio when protection is needed the most, and it performs better than existing FX strategies during

such episodes. Moreover, the hedging strategy has lost less, on average, during bull market periods

than it has gained during sell-offs, thus providing a positive return on average, albeit not as high as

carry. Finally, the correlation between carry and the ADH-HF overlay is strongly negative, at −0.62

(cf. Table 6), suggesting that a profitable trading strategy could be constructed by combining the two.

However, asset allocation among currency investment styles is beyond the scope of the present paper.

7 Conclusion

This paper proposes a model for discrete-time currency hedging based on continuous-time movements

in portfolio and foreign exchange rate returns. The vector of optimal currency exposures is shown

to be given by the negative realized regression coefficients computed from a one-period conditional

expectation of the intra-period quadratic covariation matrix for portfolio and foreign exchange rate

returns, labeled the realized currency betas. The theoretical model, hence, facilitates the design of

dynamic hedging strategies that depend exclusively on the evolution of the intra-period quadratic

covariation matrix. This implies that interest differentials have no asymptotic impact on optimal

currency hedging demands, and that an investor should sample observations as frequently as possible in

fixed time intervals between portfolio rebalances to improve the accuracy of the quadratic covariation

22



estimates. Both implications contrast with prior theoretical results in the extant currency hedging

literature, which assume that assets are observed at the same frequency as that at which the portfolio

is being rebalanced. Moreover, since the proposed strategies only use information about the covariance

between exchange rate and portfolio returns, not about local trends in the former, they are notably

different from traditional currency investment styles, such as carry, momentum, and value.

The realized currency beta hedging strategies are implemented using modern, yet simple, non-

parametric techniques to accurately measure the historical quadratic covariation between assets and,

subsequently, capture their dynamic evolution. Methodologically, this procedure addresses two general

caveats in the literature. First, there has been a lack of dynamic modeling when computing optimal

currency exposures, except when tied to slowly varying conditioning variables, such as past interest

rate differentials. Second, previous work has been plagued by the use of forward-looking information

when estimating optimal exposures, thus providing investors with the benefit of hindsight. Addressing

both caveats is important for accurate assessments of intertemporal currency hedging demands and

real-time investment decisions.

In an extensive empirical analysis, the use of the new hedging strategies, based on realized currency

betas, produces novel results: (i) The optimal currency exposures display substantial time-variation,

which is tied to important economic events, such as the 2008-2009 global financial crisis, the European

sovereign debt crisis, and the “bloody Christmas” 2018 global stock sell-off. (ii) The proposed dynamic

hedging strategies produce statistically significant, as well as economically substantial, volatility re-

ductions for international equity portfolios and a balanced fixed income-equity portfolio, compared

to either fully hedging currency exposure or applying existing approaches to (static) optimal hedg-

ing. (iii) These volatility reductions come without sacrificing returns, especially when implemented

using intra-daily data, delivering Sharpe ratios 61% larger than key benchmarks. (iv) The estimated

economic gains to the new hedging strategies are substantial, at 120-465 annual basis points over full

hedging – depending on baseline portfolio and investor risk-aversion – and 120-520 basis points over

existing static approaches. (v) The quality of the input quadratic covariation measure seems to be

more important for designing profitable realized currency beta hedging strategies than the dynamic

model specification or an expansion of the hedging universe beyond the G06 currencies. (vi) The

currency overlay behind the dynamic realized currency beta investment strategy is negatively corre-

lated with the FX carry trade, and only modestly correlated with momentum and value investments.

Interestingly, the empirical analysis suggests that carry traders, at least partially, fund the strong

performance of the proposed dynamic strategy during global financial crisis of 2008-2009.
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Summary Statistics for Excess FX Returns

AUD CAD CHF EUR GBP JPY NOK NZD SEK

mean(IR) 2.16 0.15 -1.61 -0.55 0.44 -2.05 0.91 2.51 -0.34

mean(SR) 0.31 0.52 2.32 0.44 -1.01 -0.33 -0.52 1.20 -0.54

mean(ER) 2.47 0.67 0.71 -0.12 -0.58 -2.37 0.39 3.72 -0.88

Std. Dev. 12.43 8.75 11.12 9.60 9.10 9.75 11.75 12.65 11.75

Skewness -0.34 -0.10 3.73 0.05 -0.76 0.07 -0.15 -0.30 -0.04

Kurtosis 12.66 6.01 120.73 4.64 13.71 7.11 5.62 5.82 5.56

SR 0.20 0.08 0.06 -0.01 -0.06 -0.24 0.03 0.29 -0.07

mean(BA) 6.92 4.45 6.47 3.08 4.22 3.78 15.13 12.76 11.58

Std. Dev. 6.60 3.90 7.84 3.20 5.67 5.00 17.33 11.61 10.83

Q05 1.52 1.05 1.21 0.82 0.68 1.04 3.67 3.99 4.08

Q95 17.95 9.81 19.31 9.45 12.24 9.66 41.47 30.62 29.79

Table 1: Excess FX Returns. This table presents annualized summary statistics for daily excess FX returns,
in logarithms, from January 2000 through December 2019. Moreover, the mean excess return (ER) is decomposed
into interest rate (IR) differentials and spot FX returns (SR). The bottom part of the table provides the mean and
standard deviation as well as the 5% and 95% quantiles of estimated bid-ask (BA) spreads in basis poins (BP).
Specifically, the latter are computed as 10, 000(ask− bid)/((ask + bid)/2) for the forward prices.
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Average Exposures for Currency Hedging Strategies

CAD CHF EUR GBP JPY AUD NZD SEK NOK USD

S&P 500

CMV-06 -0.96 0.83 -0.69 0.09 -0.08 - - - - 0.81

CMV-10 -0.45 0.70 0.34 0.17 -0.04 -0.40 -0.03 -1.03 0.22 0.53

ADH-SM -0.99 0.53 -0.46 0.01 0.06 - - - - 0.86

ADH-06 -0.69 0.61 -0.49 -0.06 0.34 - - - - 0.29

ADH-10 -0.42 0.54 0.05 0.04 0.32 -0.27 -0.12 -0.32 -0.05 0.23

ADH-HF -0.43 0.30 -0.26 -0.03 0.39 - - - - 0.04

ROL-HF -0.42 0.43 -0.35 -0.01 0.36 - - - - -0.01

EW

CMV-06 -0.99 1.04 -0.91 0.30 0.07 - - - - 0.48

CMV-10 -0.48 0.93 0.14 0.39 0.11 -0.39 -0.05 -1.00 0.17 0.20

ADH-SM -1.39 0.76 -0.58 0.13 0.12 - - - - 0.96

ADH-06 -0.63 0.59 -0.44 0.01 0.30 - - - - 0.17

ADH-10 -0.36 0.52 0.13 0.10 0.29 -0.30 -0.04 -0.33 -0.11 0.10

ADH-HF -0.48 0.37 -0.32 0.01 0.44 - - - - -0.02

ROL-HF -0.47 0.46 -0.38 0.03 0.44 - - - - -0.08

Balanced

CMV-06 -0.54 0.45 -0.44 0.09 -0.12 - - - - 0.56

CMV-10 -0.26 0.38 0.13 0.13 -0.10 -0.21 -0.01 -0.60 0.14 0.40

ADH-SM -0.57 0.27 -0.28 0.04 -0.03 - - - - 0.56

ADH-06 -0.39 0.32 -0.27 -0.04 0.13 - - - - 0.25

ADH-10 -0.23 0.28 0.03 0.02 0.12 -0.14 -0.09 -0.18 -0.03 0.21

ADH-HF -0.24 0.15 -0.15 -0.02 0.17 - - - - 0.10

ROL-HF -0.23 0.22 -0.20 -0.01 0.16 - - - - 0.07

Table 2: Average Exposures. This table presents the average exposures for seven different approaches to
currency hedging and the three different baseline portfolios using a monthly rebalancing frequency. The baseline
portfolios are the S&P 500, an equal weighted (EW) basket of DAX, FTSE 100, and S&P 500 futures contracts,
and a balanced portfolio with 60% S&P 500 and 40% 10-year US Treasury bond futures. The different hedging
strategies are detailed in Section 4.2. The sample spans January 2000 through December 2019. The dynamic
covariance models are estimated using an expanding window with a two-year initialization period.
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CAD CHF

EUR GBP

JPY USD

Figure 1: Exposure plots. This figure depicts the optimal currency exposures to the CAD, CHF, EUR, GBP,

JPY, and USD, respectively, computed using the ADH-HF procedure for three different baseline portfolios and a

monthly rebalancing frequency. The exposures are depicted for January 2005 through December 2019.
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Risk-Return Performance for Currency Hedging Strategies

full CMV-06 CMV-10 ADH-SM ADH-06 ADH-10 ADH-HF ROL-HF CON-HF

S&P 500

mean 5.93 5.31 4.39 2.71 6.34 4.14 7.87 7.24 8.00

StdDev 14.29 12.79 12.47 15.49 12.22 11.58 11.76 12.85 11.79

Skewness -0.92 -0.78 -0.37 -1.54 -0.74 -0.43 -0.81 -0.81 -0.82

Kurtosis 5.23 4.89 3.77 9.42 6.73 5.97 6.33 4.66 6.29

SR 0.41 0.41 0.35 0.17 0.52 0.36 0.67 0.56 0.68

EW

mean 4.40 3.41 2.10 1.29 4.02 1.81 6.73 6.01 6.90

StDev 14.96 14.02 13.80 16.59 12.74 12.23 13.27 13.99 13.33

Skewness -0.93 -0.54 -0.43 -0.16 -0.45 -0.65 -0.58 -0.57 -0.55

Kurtosis 5.24 6.09 5.33 4.18 7.35 6.31 7.77 5.87 7.58

SR 0.29 0.24 0.15 0.08 0.32 0.15 0.51 0.43 0.52

Balanced

mean 5.03 4.89 4.38 2.92 5.05 3.71 5.96 5.73 5.96

StDev 8.15 7.37 7.20 8.59 7.13 6.65 6.88 7.49 6.88

Skewness -1.00 -0.39 -0.19 -1.52 -0.40 -0.13 -0.73 -0.80 -0.73

Kurtosis 6.55 4.13 3.79 8.60 6.61 6.52 6.38 5.35 6.38

SR 0.62 0.66 0.61 0.34 0.71 0.56 0.87 0.76 0.87

Table 3: Risk-return performance. This table presents annualized risk-return performance for nine different
approaches to currency hedging and three different baseline portfolios using a monthly rebalancing frequency. The
baseline portfolios are the S&P 500, an equal weighted (EW) basket of DAX, FTSE 100, and S&P 500 futures
contracts, and a balanced portfolio with 60% S&P 500 and 40% 10-year US Treasury bond futures. The different
hedging strategies are detailed in Section 4.2. The sample spans January 2000 through December 2019. The dynamic
covariance models are estimated using an expanding window with a two-year initialization period.
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Volatility Reductions for Currency Hedging Strategies

full CMV-06 ADH-SM ADH-06 ADH-HF ROL-HF CON-HF

S&P 500

FTRK 15.47 15.51 16.26 13.72 13.29? 14.34 13.30?

RC 15.37 13.85 14.61 12.35? 12.51? 13.69 12.52?

EW

FTRK 16.02 15.71 17.65 13.69 13.49? 14.75 13.50?

RC 14.83 13.75 15.55 12.28? 12.43 13.52 12.45

Balanced

FTRK 8.70 9.02 9.42 7.99 7.74? 8.23 7.74?

RC 8.75 8.28 8.60 7.41? 7.46? 8.03 7.46?

Table 4:Volatility reductions. This table presents the average, annualized, ex-post volatility for seven approaches
to currency hedging and three baseline portfolios using a monthly rebalancing frequency. The ex-post QC measures
are constructed using either realized covariance (RC) based on daily data or the flat-top realized kernel (FTRK)
based on intra-daily data. The baseline portfolios are the S&P 500, an equal weighted (EW) basket of DAX, FTSE
100, and S&P 500 futures contracts, and a balanced portfolio with 60% S&P 500 and 40% 10-year US Treasury bond
futures. The hedging strategies are detailed in Section 4.2. An asterisk (?) signifies that the hedging strategy belongs
to the 10% model confidence set of Hansen et al. (2011). The sample spans January 2000 through December 2019.
The dynamic covariance models are estimated using an expanding window with a two-year initialization period.
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Economic Benefits of Currency Hedging Strategies

full CMV-06 CMV-10 ADH-SM ADH-06 ADH-10 ADH-HF ROL-HF CON-HF

S&P 500

$b,s 255.06 254.74 318.02 494.84 151.06 311.96 0.00 106.49 -8.72

Φb,s(3) 294.68 294.97 374.87 669.15 170.37 366.85 0.00 104.57 -11.31

Φb,s(8) 465.80 360.71 419.66 923.56 199.82 356.25 0.00 175.52 -9.22

Ωb,s(0) 0.82 0.82 0.78 0.69 0.90 0.79 1.00 0.92 1.01

Ωb,s(0.1) 0.84 0.82 0.78 0.70 0.90 0.79 1.00 0.93 1.01

EW

$b,s 213.25 264.07 355.11 429.66 191.55 358.77 0.00 77.41 -10.20

Φb,s(3) 305.27 363.10 484.79 692.49 250.14 451.80 0.00 101.56 -14.15

Φb,s(8) 427.19 415.37 520.96 936.57 214.06 384.15 0.00 152.88 -10.30

Ωb,s(0) 0.83 0.80 0.74 0.70 0.85 0.74 1.00 0.93 1.01

Ωb,s(0.1) 0.84 0.80 0.74 0.71 0.85 0.74 1.00 0.93 1.01

Balanced

$b,s 248.43 203.09 258.29 526.20 158.09 308.95 0.00 101.99 0.00

Φb,s(3) 121.73 118.13 165.19 343.91 96.47 220.81 0.00 36.97 0.00

Φb,s(8) 170.97 136.07 176.83 410.97 105.57 212.79 0.00 59.87 0.00

Ωb,s(0) 0.84 0.85 0.82 0.68 0.91 0.80 1.00 0.93 1.00

Ωb,s(0.1) 0.86 0.86 0.82 0.69 0.90 0.79 1.00 0.94 1.00

Table 5: Economic gains. This table presents estimates of the economic gains arising from applying the
ADH-HF strategy in place of eight alternative currency hedging strategies. The gains are computed for three
baseline portfolios and a monthly rebalancing frequency. Specifically, as described in Section 5.3, $b,s quantifies the
SR difference, Φb,s(δ) the switching fee for a risk-averse investor with quadratic utility function and risk-aversion
parameter δ ∈ {3, 8}, and Ωb,s(%) the relative Omega ratio for % ∈ {0, 0.1}. The return differences $b,s and Φb,s(δ)
are quoted in annualized basis points (BP), and an Omega ratio less than one indicates that ADH-HF achieves a
higher value. The baseline portfolios are the S&P 500, an equal weighted (EW) basket of DAX, FTSE 100, and S&P
500 futures contracts, and a balanced portfolio with 60% S&P 500 and 40% 10-year US Treasury bond futures. The
different hedging strategies are detailed in Section 4.2. The sample spans January 2000 through December 2019.
The dynamic covariance models are estimated using an expanding window with a two-year initialization period.
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Risk-Return Performance for FX Trading Strategies

Summary Statistics Correlation

mean Std. Dev. Skewness Kurtosis SR RCB MOM CARRY VALUE

RCB 1.95 9.15 1.35 7.97 0.21 1.00 0.21 -0.62 0.24

MOM -1.24 7.39 0.52 6.23 -0.17 0.21 1.00 -0.10 -0.03

CARRY 3.38 8.01 -0.88 6.86 0.42 -0.62 -0.10 1.00 -0.60

VALUE 0.34 7.30 1.42 9.28 0.05 0.24 -0.03 -0.60 1.00

Table 6: FX trading strategies. This table presents annualized risk-return performance for four different FX
trading strategies using a monthly rebalancing frequency. These are carry, momentum, and value investments based
on the G10 currency set, as well as the FX overlay of the ADH-HF realized currency beta (RCB) hedging strategy for
the S&P 500 portfolio. Moreover, correlations between the strategies are reported. The sample spans January 2000
through December 2019. The dynamic covariance model is estimated using an expanding window with a two-year
initialization period.

Performance of FX Trading Strategies

Figure 2: Exposure plots. This figure depicts cumulative (log-)returns to four different FX trading strategies

using a monthly rebalancing frequency. These are carry, momentum, and value investments based on the G10

currency set, as well as the FX overlay of the ADH-HF realized currency beta (RCB) hedging strategy for the S&P

500 portfolio. The sample spans January 2000 through December 2019. The dynamic covariance model is estimated

using an expanding window with a two-year initialization period.
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