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sample is illustrated.

In this paper, we model an optimal regression tree through a continuous optimization problem, where a
compromise between prediction accuracy and both types of sparsity, namely local and global, is sought.
Our approach can accommodate important desirable properties for the regression task, such as cost-
sensitivity and fairness. Thanks to the smoothness of the predictions, we can derive local explanations
on the continuous predictor variables. The computational experience reported shows the outperformance
of our approach in terms of prediction accuracy against standard benchmark regression methods such as
CART, OLS and LASSO. Moreover, the scalability of our approach with respect to the size of the training

© 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license
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1. Introduction

Regression Analysis is one of the most used tasks in Statistics
and Machine Learning (Hastie, Tibshirani, & Friedman, 2009). The
classic linear regression is known to be outperformed by many
proposals that apply non-linear techniques, such as tree-based
methods, which are the focus of this paper. Tree-based methods
(Chikalov, Hussain, & Moshkov, 2018; Hu, Rudin, & Seltzer, 2019;
Yang, Liu, Tsoka, & Papageorgiou, 2017) are appealing due to their
learning performance and, since they are rule-based, seen as in-
terpretable (Athey, 2018; Baesens, Setiono, Mues, & Vanthienen,
2003; Carrizosa, Martin-Barragan, & Romero Morales, 2011; Freitas,
2014; Goodman & Flaxman, 2017; Jung, Concannon, Shroff, Goel,
& Goldstein, 2017; Martens, Baesens, Van Gestel, & Vanthienen,
2007; Martin-Barragan, Lillo, & Romo, 2014; Ridgeway, 2013; Us-
tun & Rudin, 2016).

Building optimal decision trees is an NP-complete task (Hyafil
& Rivest, 1976). For this reason, greedy heuristic procedures such
as CART (Breiman, Friedman, Stone, & Olshen, 1984) have been
proposed, yielding suboptimal trees instead. Even though some at-
tempts (Bennett & Blue, 1996) were made in the past, the latest
advances in both computer performance and Mathematical Op-
timization have led to a growing research on building such op-
timal decision trees (Bertsimas, Dunn, & Paschalidis, 2017; Bet-
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ter, Glover, & Samorani, 2010; Blanquero, Carrizosa, Molero-Rio, &
Romero Morales, 2020; Blanquero, Carrizosa, Molero-Rio, & Romero
Morales, 2021a; Dunn, 2018; Firat, Crognier, Gabor, Hurkens, &
Zhang, 2019; Giinliik, Kalagnanam, Li, Menickelly, & Scheinberg,
2021; Narodytska, Ignatiev, Pereira, Marques-Silva, & RAS, 2018;
Verwer & Zhang, 2017; 2019). The reader is referred to (Carrizosa,
Molero-Rio, & Romero Morales, 2021) for a review on this topic.
The modeling of a decision tree via Mathematical Optimization
yields, in general, an improvement in prediction accuracy with re-
spect to traditional approaches, but, equally important, it allows
the user to easily deal with desirable properties in Machine Learn-
ing that globally involve all the decision rules along the tree. Such
is the case of global sparsity (Tibshirani, Wainwright, & Hastie,
2015). While heuristic procedures, such as CART, or more sophisti-
cated tree-based approaches, such as Random Forest (RF) (Biau &
Scornet, 2016; Breiman, 2001; Fernandez-Delgado, Cernadas, Barro,
& Amorim, 2014; Genuer, Poggi, Tuleau-Malot, & Villa-Vialaneix,
2017), easily control local sparsity, that is, the number of predic-
tor variables to be used at each splitting rule, they find it hard to
control global sparsity, that is, the number of predictor variables
to be used across the tree (Deng & Runger, 2012; 2013; Ruggieri,
2019). This is not the case for approaches based on mathemat-
ical optimization which are flexible enough to model this objec-
tive directly (Bertsimas et al., 2017; Blanquero et al., 2020; Dunn,
2018; Firat et al., 2019; Verwer & Zhang, 2017), either with a LASSO
term, or by adding binary decision variables and additional con-
straints. In this paper, we tackle this issue and propose the Sparse
Optimal Randomized Regression Tree (S-ORRT). An S-ORRT seeks a
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good tradeoff between both prediction accuracy and both types of
sparsity, obtained by minimizing the mean squared error over the
training sample, as customary in Regression Analysis, plus two reg-
ularization terms. Other global desirable properties that one may
care for include the modeling of cost-sensitivity (Giinliik et al.,
2021) or fairness (Aghaei, Azizi, & Vayanos, 2019) constraints, with
the aim to protect critical groups or to avoid the discrimination of
groups that share sensitive features, respectively.

Optimal regression trees (Bertsimas et al., 2017; Dunn, 2018;
Verwer & Zhang, 2017) have been recently formulated using
mixed-integer models. These models include an integer decision
variable for each individual, as well as one for each predictor vari-
able. The resulting combinatorial framework hinders the tractabil-
ity of the problem when the dimensionality of the data grows,
yielding a significant computational effort even for small data sets.
Local-search strategies have been proposed to alleviate the com-
putational burden of these procedures (Dunn, 2018), however they
cannot control global desirable properties. Our approach considers
a continuous optimization model instead, where there are no de-
cision variables directly relating to the individuals, making it scal-
able with respect to the training sample. This is achieved through
(i) the inclusion of a continuous cumulative density function F at
each branch node that smoothens the transition from the left child
node to the right one, and (ii) the use of the ¢; and ¢,, norms to
control local and global sparsity, respectively.

Thanks to the smoothness of our approach, the impact that con-
tinuous predictor variables have on the individual prediction, that
is, local explanations (Lundberg et al., 2020; Lundberg & Lee, 2017;
Molnar, Casalicchio, & Bischl, 2020; Ribeiro, Singh, & Guestrin,
2016), can be easily derived. For nonlinear models one can make
use of generic post-hoc approaches to build local explanations,
such as the so-called Local Interpretable Model-agnostic Explana-
tions (LIME) (Ribeiro et al., 2016). Instead, and as advocated by
Rudin (2019), one can work with models that derive local expla-
nations directly (Gevrey, Dimopoulos, & Lek, 2003), as we do.

The remainder of the paper is organized as follows. In Section 2,
we introduce the S-ORRT and its mathematical formulation, as well
as the modeling of desirable properties. Some theoretical proper-
ties of S-ORRT are discussed in Section 3. Technical proofs can be
found in the Appendix. In Section 4, our computational experience
is reported. We illustrate that S-ORRT outperforms the benchmark
regression methods CART, OLS and LASSO in terms of prediction
accuracy. Moreover, we show our ability to easily trade in predic-
tion accuracy for a gain in local and global sparsity, as well as our
favorable scalability with respect to the size of the training sam-
ple. Finally, conclusions and possible lines of future research are
provided in Section 5.

2. Sparse optimal randomized regression trees
2.1. Introduction

Let T be a given set of individuals. Each individual i € T has as-
sociated a pair (X;,y;), where x; represents the p-dimensional vec-
tor of predictor variables of individual i, and y; € R indicates the
value of the response variable.

A Sparse Optimal Randomized Regression Tree (S-ORRT) is an
optimal binary regression tree of a given depth D, obtained by con-
trolling simultaneously prediction accuracy and local and global
sparsity. We briefly sketch here this randomized framework. For
further details on the construction of optimal randomized trees,
the reader is referred to (Blanquero et al., 2020; Blanquero et al.,
2021a). Figure 1 shows the structure of an S-ORRT of depth D = 2.
Unlike classic decision trees, oblique cuts, on which more than one
predictor variable is involved, are implemented. S-ORRTs are mod-
eled by means of a Non-Linear Continuous Optimization (NLCO)
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formulation. The usual deterministic yes/no rule at each branch
node is replaced by a smoother rule: a probabilistic decision rule at
each branch node, induced by a cumulative density function (CDF)
F, is obtained. Therefore, the movements in S-ORRTs can be seen as
randomized: at a given branch node of an S-ORRT, a random vari-
able will be generated to indicate by which branch an individual
has to continue. Since binary trees are built, the Bernoulli distri-
bution is appropriate, whose probability of success will be deter-
mined by the value of this CDF, evaluated over the vector of pre-
dictor variables. More precisely, at a given branch node t of the
tree, an individual with predictor variables x; will go either to the
left or to the right child nodes with probabilities F(%a?;x,- — It)
and 1— F(laix,- 7,u,f). respectively, where a; and j; are decision
variables OF the optimization problem that needs to be solved to
build the S-ORRT. In Fig. 1, p;;, pp, P;3 and their complement to
one denote such probabilities for the three branch nodes. With
this, we have the probability of each individual in the sample
falling into every leaf node. In Fig. 1, Py, Ps, P and P denote
such probabilities. To end, we need to define how S-ORRT makes
predictions. First, S-ORRT associates linear predictions to each leaf
node. Then, the estimated outcome value for each individual is de-
fined as the summation of these linear predictions, weighted by
the probability of belonging to the corresponding leaf node. This is
denoted by @i, ¢is, ¢ig and ¢;7 in Fig. 1.
The following notation is required:

Parameters

D depth of the binary tree,

p number of predictor variables,

[, ¥i)icz training sample, where x; € RP and y; € R, with
cardinality |Z],

F() univariate continuously differentiable CDF, used to
define the probabilities for an individual to go to the
left or the right child node in the tree,

AL AC local and global sparsity regularization parameters.

Nodes

T8 set of branch nodes,

T set of leaf nodes,

N (t) set of ancestor nodes of leaf node t whose left branch
takes part in the path from the root node to leaf
node t, t € 17,

Ng (1) set of ancestor nodes of leaf node t whose right
branch takes part in the path from the root node to
leaf node ¢, t € ;.

Decision

variables

aeR coefficient of predictor variable j in the oblique cut at
branch node t < g, or in the linear prediction at leaf
node t < 7;. The expressions ag and a; will denote the
p x |tg|- and p x |ty |-matrices that involve these
coefficients, respectively, ag = (af‘)jzl, pten and
a = (ﬂﬂ)j=1_ . ten- L€T @ denote the
P x (|tg| + |71 |)-matrix
a= (ﬂlf)j:L, otenn = (ay.ap). Both notations will be
used interchangeably when needed. The expressions
a;. and a, will denote the jth row and the rth
column of a, respectively,

Hrelk location parameter at branch node t e g, or intercept
of the linear prediction at leaf node t € 7;. The
expressions pp and u; will denote the |zz|- and
|7, |-vectors that involve these coefficients,
respectively, fip = (1e)gery, aNd ft = (ftc)rer,- LeT
denote the (|| + |t1])-vector g = (pg, ). Both
notations will be used interchangeably when needed.

Probabilities

pic(ac, pe) probability of individual i going down the left branch
at branch node t, Its expression is
Die (O, ju) = F(};“IXI‘ — ), i€ tem,

Py (ag, pg) probability of individual i falling into leaf node t. Its

expression is Py (ag. fty) =

M P (g, i) T (1= P @y )i €L, LT
LeNL(r) [reNg(1)

(continued on next page)
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Predictions

@i (A, Jor) linear prediction of individual i at leaf node t. Its
expression is ¢ (A, ;) =ax;— e, i€, t e,

@i(a, i) final prediction of individual i, Its expression is

gi(a, L) =Y Pr(ag. @i (A, pir). i€ In other
ten
words, for an individual i, its prediction is a weighted

average of the predictions ¢ along the different leaf
nodes, where the weights in such average depend on
the individual i.

2.2. The formulation

With these parameters and decision variables, the S-ORRT reads
as the following unconstrained NLCO problem:

14 p
min | MSE@ ) Y a3 e Y
j=1 j=1

(1)

where

MSE(a, p: ) = % > (gita. ) —yi).
ieT

The first term, prediction accuracy, is equal to the mean
squared error over the training sample between the actual re-
sponse values and the predictions returned by S-ORRT. The sec-
ond term controls local sparsity, since it penalizes the £;-norm of
the coefficients of the predictor variables used in the cuts along
the tree. The third term addresses global sparsity, which is mod-
eled by the inclusion of a penalization term that controls whether
a given predictor variable is ever used across the whole tree. Recall
that each predictor variable appears at both branch (in the oblique
cuts) and leaf (in the linear predictions) nodes. Then, the £,,-norm
is used as a group penalty function, by forcing all the coefficients
linked to the same predictor variable to be shrunk simultaneously
along all branch and leaf nodes.

1
pit ‘
2
pi2 1— pi2
4 5
Pia = pi1pi2 Pis = pi1 (1 — pi2)
Pi4 Pi5

Pie = (1 — pi1) pi3

European Journal of Operational Research 299 (2022) 1045-1054

Since there are no decision variables directly relating to the
number of individuals N, Problem (1) speaks favorably toward the
scalability of S-ORRT with respect to the size of the training sam-
ple. Hence, although the evaluation of the first term in the ob-
jective function becomes more time demanding with larger N, the
number of decision variables of the problem to be solved remains
the same. This makes our approach scalable with respect to N, as
illustrated in Section 4.4.

Once the tree model is built, the prediction of future data is
done as follows. Let (a*, u*) be the optimal solution to Problem
(1). The expected outcome of individual i € T is g;(a*, u*). For an
incoming individual with predictor vector X, the expected outcome
returned by the randomized tree is equal to

X — [(x) 1= gx(a, p*), (2)

where @y is defined similarly to ¢; with x replacing x;. Note that
[1(-) is smooth in the continuous predictor variables, since the CDF
F is assumed to be a smooth function. This means that even small
changes in these variables will produce changes in I1(-). This is
not the case for deterministic tree models such as CART and RE
where there are no changes at all in the expected outcome when
there are small changes in the continuous predictor variables. This
inherent property of our approach allows us to perform local ex-
plainability, as will be seen in Section 2.4.

2.3. A smooth reformulation

Problem (1) is non-smooth due to the ¢; and ¢, norms ap-
pearing in the objective function. Recall that F is assumed to be
continuously differentiable, therefore MSE inherits smoothness. By
rewriting both regularization terms using new decision variables,
we can formulate S-ORRT as a smooth problem, thus solvable with
standard continuous optimization solvers, as done in our computa-
tional section.

Regarding the first regularization term of Problem (1), deci-
sion variables a are split into their positive and negative coun-

1—pi

Pi3 1—pis

6 7

Pir = (1 - pi1) (1 — pi3)

Li6 Pi7

wi = Piapia + Pispis + Pispie + Pitpir

Fig. 1. Sparse Optimal Randomized Regression Tree of depth D =2,
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it , Ire-

terparts, at = ((17r

and a~ = (a )
j=1....p. tetpuT

|a;e| = + a7 and af, a5, = 0,

)j:]w..,p. rerBur,_
spectively, such that aj = a};
thus having

lapll, = 3= lag[= > (af+ap). j=1.....

teTpUTE teTpuT

ﬁ'
p.

New decision variables 8 = ('61)1:1 p are used to model the sec-

ond regularization term of Problem (1):
lai]. | =B85 i=1....p.
where Bj = 0. We also need to impose f; = |aﬂ| —a G, )=

1,...,p,t € tgU 1. Hence, we have that Problem (1) 1s equwalent
to the following smooth reformulation:

max
LeTpUTL

P
min MSE(a* —a ;) + 4 ) 3 (a +a;)
arap. B j=1tetpur
P
Jr}LGZﬁj (3)
=1
st. Bj=a +05, j=1.....p. teTpUTL (4)
ah. ay. Bi=0, j=1....p tepUTL. (5)

2.4. Desirable properties

As we show in this section, our approach can easily accommo-
date important desirable properties in the regression task, such as
cost-sensitivity and fairness, as well as local explainability.

Cost-sensitivity

As a regression method, S-ORRT seeks a rule yielding a good
overall prediction accuracy, although, at times, there are groups of
individuals in which predicion errors are more critical. It is then
more adequate not only to focus on the overall prediction accuracy,
but also ensuring a certain level of performance in those groups. S-
ORRT is flexible enough to allow incorporating constraints on ex-
pected performance (Blanquero, Carrizosa, Ramirez-Cobo, & Sillero-
Denamiel, 2021b) over critical groups. Let [7;,...,Jr be different
samples, possibly subsamples of Z. Given a threshold value p; for
the desired performance on sample 7;, one can simply add the
following constraints to Problem (1):

MISE(a, p; 7)) < pj,

Fairness

The increase of automatization in decision-making have evinced
the bias present on historical data, leading to models that may dis-
criminate groups sharing sensitive features such as gender or race.
In this line, we seek for a model that avoids such discrimination
and is fair to a sentive group. Let § ¢ Z be a group of individu-
als to be protected against discrimination by Problem (1). There
are different ways to handle fairness. For instance, we may impose
that the prediction errors for individuals in & does not differ much
from the prediction errors in the whole training sample Z. This can
be modeled through the following constraint

IMSE(a, w; S) — MSE(a, u; I)| <C,

for C = 0 sufficiently small. Alternatively, we may impose that the
average prediction for individuals in & does not differ much from
the average in the whole training sample 7, i.e.,

|¢(a, pw:S) —@(a, pu:I)| =C (6)
where ¢(a,pu; J) = %[ > ¢i(a,p) and C =0 sufficiently small.
ie

j=1,....r

Fairness as in Eq. (6) is illustrated for the Boston Housing data
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set (Harrison & Rubinfeld, 1978). See Table 2 for a description of
the response and predictor variables. Suppose that our sensitive
group & is composed by individuals above the third quartile of
predictor variable B, that is, those census tracts where there is
a high proportion of black population. The S-ORRT without fair-
ness constraints, and AL = A¢ =0, yields a mean squared error of
9.6462, with an average prediction on housing values over T equal
to 22.5333. A lower average value is obtained over S, 21.3263,
producing an absolute difference of Gy = 1.2070. See the first row
in Table 1. The next rows represent the results when fairness
constraints over S are added to the model for several values of
the threshold C = 1 -(y, with 7 varying in {0.75,0.5,0.25,0}. As
shown, one can obtain an S-ORRT which is fair to our sensitive
group S, since @(a, p; IT) = @(a, p; S), at the expense of slightly
harming prediction accuracy.

Local explainability

The goal of local explainability is to identify the predictor vari-
ables that have the largest impact on the individual predictions,
found in Eq. (2). As opposed to post-hoc approaches, we can di-
rectly derive local explanations on the continuous predictor vari-
ables thanks to the smoothness of I1. For simplicity, we consider a
problem where all predictor variables are continuous. For an indi-
vidual with predictor variables x0, we analyze how sensitive IT is
to an infinitesimal change A € RP?, i.e., how large is the difference
M(x% + A) — TT(x9). By linearizing TT close to x°, we have
IT(x° +A)~l‘l(x0)+z (x”) Aj.

j=1

Thus, the vector of partial derivatives

(81‘[

0X;
gives full information on the sensitivity of the outcomes Il around
x9. A positive value of coordinate j of the vector of partial deriva-
tives means a direct relationship between predictor variable j and
prediction of the response variable of individual %; and an inverse
relationship, otherwise. As opposed to linear regression, where
there is one single coefficient per predictor variable that indicates
its impact in prediction for any individual equally, here we have
different impacts of each predictor variable tailored to each partic-
ular individual.

Local explainability is
Housing data set in Table 2.

An S-ORRT with AL =0 and AC = ﬁ was built on this data set,
obtaining a mean squared error and an R-squared equal to 15.5654
and 0.8156, respectively. Figure 2 depicts the local explanations for
all individuals in the dataset by means of parallel coordinates. Each
predictor variable is represented by a vertical parallel axis. Each in-
dividual is represented by a series of lines connected across all the
axes. The position each individual takes on each axis reflects the
impact the corresponding predictor variable has on its prediction,
that is, each of the coordinates of vector (7). The color that rep-
resents each individual in the parallel coordinates goes from light
pink to purple depending on the reliability on prediction, mea-
sured as the ratio between the individual squared error and the
mean squared error. Thus, purple refers to the best reliable pre-
dictions according to the model. All predictor variables were nor-
malized before training the model to the 0-1 interval, in such a
way that a fair comparative analysis between them could be per-
formed. A larger absolute value on the axis represents a larger im-
pact caused by the corresponding predictor variable on the pre-
diction. Since CRIM gauges the threat to well-being that house-
holds perceive, it has a negative effect on housing values. A similar
pattern is observed for NOX, DIS, TAX, PTRATIO, as well as for
LSTAT, which means that an area with a high amount of lower

(7

illustrated below for the Boston
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Table 2
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Information about the Boston Housing data set, which consists of a collection of 506 observations about
housing values for census tracts of the Boston metropolitan area.

Variable Name Description
Predictor CRIM crime rate by town
ZN proportion of residential land zoned for lots greater than 25,000 squared feet
INDUS proportion of nonretail business acres per town
CHAS 1 if tract bounds river; 0 otherwise
NOX nitrogen oxide concentration in parts per hundred million
RM average number of rooms in owner units
AGE proportion of owner units built prior to 1940
DIS weighted distances to five employment centers in the Boston region
RAD index of accessibility to radial highways
TAX full value property tax rate per ten thousands of dollars
PTRATIO pupil-teacher ratio by town school district
B black proportion of population
LSTAT proportion of population that is lower status
Response  MEDV median value of owner-occupied homes in thousands of dollars
38.9286
20
0
—40
-60
| | 0.0000
CRIM ZN INDUS  CHAS NOX RM AGE DIS RAD TAX  PTRATIO B LSTAT Relative error

Fig. 2. Local explainability for Boston Housing data set derived from the S-ORRT with A} =0 and A% = % and a mean squared error and an R-squared of 15.5654 and

0.8156, respectively.

Table 1
Results of S-ORRT without and with fairness constraints on § in
the Boston Housing data set, where G = 1.2070.

T C=1-(G MSE(a. : 7) @a,pn:T) g(a, p;S)
- - 9.6462 22.5333 21.3263
0.75 0.9053 9.7586 22.5327 21.6275
0.5 0.6035 10.0282 22,5334 21.9298
0.25 03018 10.5051 22.5330 22,1312
0 0 11.2401 22.5332 22.5332

status population would have less valuable households. Other pre-
dictor variables have a positive effect on housing values. For in-
stance, RM, which represents spaciousness and it can be observed
that is directly related to a higher housing value.

3. Theoretical properties

In this section, some theoretical properties enjoyed by S-ORRT,
as formulated in Problem (1), are analyzed. In particular, we pay
attention to the most sparse tree, obtained when the optimal so-
lution of S-ORRT includes a* = 0, and thus none predictor variable
is used in the predictions. This is attained when the sparsity regu-
larization parameters, AL and AC, are taken large enough, and the
first term related to the prediction accuracy of the regressor be-
comes negligible. In the following, we study the optimal prediction
returned by S-ORRT with a* = 0, and derive upper bounds for Al

1049

and A in the sense that above them the most sparse tree (with
a* = 0) is a stationary point of the S-ORRT, that is, there exists
(a* =0, p*) such that the necessary optimality condition with re-
spect to @ is satisfied. In Section 4, we illustrate when these upper
bounds are already reached, by showing that above certain values
of AL and AC, the highest levels of local and global sparsity, respec-
tively, are achieved. See in Fig. 3 that for (XL, AG) = (12;0 ;21%) the
most sparse S-ORRT is already obtained, while not producing the
best performance in terms of prediction accuracy.

First, observe that, for any a and pp fixed, Problem (1) can be

easily reformulated as a linear regression problem. Indeed, we have
that the final prediction of each individual is

gi(a, ) = Pe(ap, jug) (X — i), €T,
te1;

and thus, defining

nia pup) = Pe(ap, pp)(arx; —y;). i€l
et

the MSE term in Problem (1) can be rewritten as
2

Yo\ i@ ) =3 Pe(ap py)pe )

ieT ter;

1
Izl

or, in matrix form,
1

7] l(a. ) — P(ag, pp)pll”,
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Fig. 3. Heatmaps representation, for Ailerons data set, of the average R-squared ob-
tained, R2, the average percentage of predictor variables not used per node, &%, and
the average percentage of predictor variables not used per tree, §°, respectively, as a
function of the grid of the sparsity regularization parameters, AL and A¢, considered
in the S-ORRT construction.

where

n(a, pg) = (0i(a, fg))iz

and

P(ag, pp) = [ Pe(ap, pp) ].‘EI‘ te,”

Then, minimizing MSE for a, pg fixed amounts to finding the
Ordinary Least Squares solution with design matrix P(ag, ng) and
response vector y(a, pg). With this, the following is shown:

Proposition 1. For (a*, p,E) fixed, pj minimizes MSE(a*, (g, por))
if, and only if,

PT(aj. pp)n(a, wy) = PT(ay. wy)P(ay. py)p;.

In particular, for the most sparse solution a* = 0, we have the follow-
ing corollary.
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Table 3

Information about the real-world data sets considered.
Data set Abbreviation N p
Boston-housing BH 506 13
Red-wine RW 1599 11
White-wine wWw 4898 11
Parkinson-motor PM 5874 16
Parkinson-total PT 5874 16
Ailerons A 7153 40
Cpu-act CA 8192 21
Cart-artificial CAr 40,768 10
Friedman-artificial FA 40,768 10

_ _ T .
Corollary 1. For any g, the vector pf=( -y, ---, =y ) , with

V= I]T\ Y yi. minimizes MSE(a* = 0, (pj, py); T), and then the pre-
ieT
diction is g;(a* = 0, (pg, p})) =7 forallic L.

Proof. See Appendix. O

As stated, when AL and AC are taken large enough in Problem
(1), the most sparse possible tree (with a* = 0) is obtained though
possibly not yielding the best prediction accuracy, since none of
the predictor variables is used to fit the model. As observed in
Fig. 3, it turns out that the solution a* =0 is not only the limit
case when AL and AC tend to infinity, but it is actually obtained
already for finite values of them. This is shown in the following.

2. Ler a =0,
-7 ) . leto e[o,1],

Proposition and
(-7

AI

;LE ER‘IEl, =

max | Va, MSE(0, (pj. pti): T) ||1.

A=

a

Then, for any pair (AL AC) such that At=> Al and AC > 2g
(a*, (uﬁ, f.cf)) is a stationary point of Problem (1).

Proof. See Appendix. O

4. Computational experiments

The aim of this section is to illustrate the performance of our
sparse optimal randomized regression trees (S-ORRT) using both
real-world and synthetic data sets. Section 4.1 gives details on the
procedure followed to test our approach in the real-world data
sets. In Section 4.2 we discuss the prediction accuracy of S-ORRT,
against several benchmark regression methods. In Section 4.3 we
illustrate our ability to trade in some of the prediction accu-
racy of S-ORRT for a gain in local and global sparsity. Finally, in
Section 4.4 we illustrate the scalability of S-ORRT in terms of the
number of individuals in the training sample, using a synthetic
data set.

4.1. Setup

A collection of well-known real-world data sets from the UCI
Machine Learning Repository (Lichman, 2013) has been chosen.
Table 3 lists their names, the abbreviations used throughout this
section to refer to them, together with their number of observa-
tions and predictor variables.

Each data set has been randomly split into two subsets: the
training subset (75%) and the test subset (25%). The corresponding
tree model is built on the training subset and, then, three perfor-
mance criteria, namely prediction accuracy, local and global spar-
sity, are assessed. The prediction accuracy is evaluated by the out-
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Table 4
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Comparison between S-ORRT with AL = A® =0, CART, OLS, LASSO, ORT-H LS and RF in terms of out-of-sample R-squared, R2, on real-

world data sets in Table 3,

Data set  Out-of-sample average R?
CART OLS LASSO ORT-H RF S-ORRT S-ORRT S-ORRT
LS D=1 D= D=3

BH 0.7416(5) 0.7391(7) 0.7401(6) 0.8040(2) 0.8759(1) 0.5987(8) 0.7931(3) 0.7785(4)
RW 0.3055(7) 0.3619(3) 0.3605(5) 0.3040(8) 0.4874(1) 0.3482(6) 0.3730(2) 0.3613(4)
ww 0.2539(8) 0.2714(6) 0.2699(7) 0.3490(2) 0.5196(1) 0.3121(5) 0.3291(4) 0.3337(3)
PM 0.1020(6) 0.0878(8) 0.0900(7) 0.2810(2) 0.3426(1) 0.1878(5) 0.2121(4) 0.2400(3)
PT 0.1294(6) 0.0849(8) 0.0863(7) 0.3160(2) 0.3545(1) 0.1724(5) 0.1965(4) 0.2445(3)
A 0.6466(8) 0.8167(7) 0.8173(6) 0.8360(1) 0.8211(3) 0.8207(5) 0.8288(2) 0.8211(3)
CA 0.9324(5) 0.7272(8) 0.7273(7) 0.9840(1) 0.9829(2) 0.8282(6) 0.9535(4) 0.9540(3)
CAr 0.8771(6) 0.7045(7) 0.7045(7) 0.9480(1) 0.9425(5) 0.9480(1) 0.9480(1) 0.9480(1)
FA 0.6058(8) 0.7222(7) 0.7223(6) 0.9560(1) 0.9245(4) 0.8493(5) 0.9501(3) 0.9505(2)
Average  0.5105(6.5) 0.5017(6.7) 0.5020(6.4) 0.6420(2.2) 0.6946(2.1) 0.5628(5.1)  0.6205(3.0) 0.6257(2.8)

of-sample R-squared (R2) in the test subset:

 MSEceq
Vtest '

where MSEs; is the mean squared error obtained by the regres-
sion method in the test subset and Vs is the variance of the ac-
tual response vector in the test subset too. The higher the R2, the
better the model in terms of prediction accuracy.

The control of local and global sparsity is one of the key fea-
tures of S-ORRT, as has been pointed out previously. Local sparsity,
8L, is measured as the average percentage of predictor variables
not used per node:

1
S — -
|7a| + |7l 2

teTguT;

RZ =1

|{aﬁ=0, j:l,...,p}|
p

x 100.

Global sparsity, 8¢, is measured as the percentage of predictor vari-
ables not used at any of the nodes, i.e., across the whole tree:

la, =0 j=1.....p}
p

The higher 8! and &6, the better the model in terms of local and
global sparsity, respectively.

The training/testing procedure has been repeated ten times. The
results shown in Table 4 and Fig. 3 represent the average of such
ten runs for the above-mentioned performance criteria.

The logistic CDF has been chosen for our experiments:

1
T+exp(=()p)’
with a large value of y, namely, ¥ =512. We will illustrate that
this small level of randomization is enough for obtaining good re-
sults.

The S-ORRT smooth formulation (3)-(5) has been implemented
using the scipy.optimize package (Jones, Oliphant, Peterson
et al., 2001) in Python 3.7 (Python Core Team, 2015). As a solver,
we have used the SLSQP method (Kraft, 1988) that allows one to
use gradient information. The predictor variables have been previ-
ously normalized to the [0, 1] interval, and the decision variables
ag and pg have been restricted to the [—1, 1] interval. Our experi-
ments have been conducted on a PC, with an Intel®Core™ i7-9700
CPU 3.00GHz processor (8 CPUs) and 64 GB RAM. The operating
system is 64 bits.

50 = { % 100.

F()=

4.2. Comparison of prediction performance

In this section we focus on illustrating the prediction accuracy
of all the methods tested on the real-world data sets. S-ORRT at
depths D=1, 2 and 3 with AL = A6 = 0 is compared against three
types of benchmark regression methods. The first type corresponds
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to standard regression methods, such as CART, the classic approach
to build decision trees, with no restrictions on depth, and OLS.
The second type is the leader regression method in terms of spar-
sity, LASSO. Finally, in the third type we have two sophisticated
tree-based regression methods competitive in terms of prediction
accuracy, such as ORT-H LS in Dunn (2018), a Mathematical Pro-
gramming based approach that employs a local-search heuristic for
building oblique trees with linear predictions at maximum depth
D =10; and Random Forest (RF), an ensemble of CARTs using a
boostrap aggregating scheme. Table 4 presents the average out-of-
sample prediction accuracy RZ, while in parenthesis we show how
the method ranks in terms of its prediction accuracy. For a given
data set, a rank of “1” indicates that the method is the best in
terms of out-of-sample R? while a rank of “8” indicates that the
method performed the worst. The average R? and rank of each
method across all data sets are found at the bottom of the table.

For S-ORRT, we have followed a multistart approach, where
the process is repeated 1000 times starting from different ran-
dom initial solutions. For a given initial solution, the computing
time taken by the S-ORRT typically ranges from 0.01 s (in BH for
D=1) to 2.08 s (in A and FA for D = 3). The default parameter
setting in rpart (Therneau, Atkinson, & Ripley, 2015), glmnet
(Friedman, Hastie, & Tibshirani, 2010) and randomForest (Liaw
& Wiener, 2002) R packages have been used for running CART, OLS
and LASSO, and RF, respectively. For ORT-H LS, the results are taken
from (Dunn, 2018), since open-source implementations were not
available.

We start discussing the results for our S-ORRT with depth D =
3. S-ORRT outperforms CART, OLS and LASSO, yielding increases in
the R? up to 34 percentage points (p.p.) with respect to CART, and
up to 24 p.p. with respect to OLS and LASSO, both with comparable
performance. Regarding ORT-H LS, S-ORRT presents an average pre-
diction accuracy 2 p.p. lower, however S-ORRT manages to be com-
parable in CAr and outperform in RW by 6 p.p. Finally, although
RF reports the best overall performance across all the methods, S-
ORRT is comparable to RF in A and CAr, while S-ORRT has the best
prediction accuracy in FA.

With depth D = 2, the conclusions for S-ORRT are similar to
those obtained using depth D = 3. With depth D =1, S-ORRT still
manages to be powerful in some data sets, despite the low com-
plexity of the model. S-ORRT outperforms CART, OLS and LASSO
in six of the data sets considered, all except for BH, RW and CA.
ORT-H LS generally outperforms S-ORRT at depth D = 1, with the
exception of CAr, where S-ORRT is comparable, and RW, where S-
ORRT is superior in 4 p.p. With respect to RF, S-ORRT is outper-
formed in general, but has a comparable prediction accuracy in A
and CAr.

In summary, these numerical results illustrate that, in terms
of prediction accuracy, S-ORRT with D =2,3 outperforms the
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Fig. 4. Scatterplot representation, for Ailerons data set, of the average R-squared
obtained, R?, and the average percentage of predictor variables not used per tree,
8C. Blue points refer to the solution of every pair of the sparsity regularization pa-
rameters (J\.L‘)LC) considered in the S-ORRT construction; the green diamond, to
CART solution; and the orange cross, to RF solution, (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version of
this article.)

standard benchmark regression methods (CART and OLS) and
the benchmark regression method in sparsity (LASSO). Regarding
more sophisticated tree-based approaches, ORT-H LS and RF show
slightly better prediction accuracies, although S-ORRT is competi-
tive in some data sets. Unlike CART, ORT-H LS and RF, our approach
has a direct control on global desirable properties such as sparsity,
cost-sensitivity and fairness.

4.3. Prediction accuracy and sparsity tradeoff

The aim of this section is to illustrate that, in contrast to so-
phisticated tree-based regression methods that rely on greedy or
local-search approaches, such as RF and ORT-H LS, our S-ORRT is
able to trade in some of its prediction accuracy for a gain in lo-
cal and global sparsity. For the sake of conciseness, we illustrate
this in the Ailerons data set. We have solved Problem (3)-(5) with
depth D =1 for the sparsity parameters AL and AC in a grid. We
have taken the grid {0} U {2", —12 <71 <5, r € Z}, normalized by
the number of predictor variables, and in the case of AL by the
number of nodes too. We start solving the optimization problem
with (1L, A€) = (0. 0). We continue with ! = 0 but for larger val-
ues of AC. Once all (O,kc) are executed, we start the process all
over again with the next value of Al in the grid. The solutions
found to Problem (3)-(5) for fixed (A%, AC), are given as initial so-
lutions to the next problem to be solved in the grid.

Figure 3 illustrates these results by means of three heatmaps:
one for the prediction accuracy, R?, another one for the local spar-
sity, 8L, and the final one for the global sparsity, 5¢. The color bar
of each heatmap goes from light green to dark blue, the latter in-
dicating the best (maximum) R2, 8¢ or 8 achieved, respectively.
By definition, the sparsest tree is obtained for large of values of
AL A6, We can observe that the best rates of prediction accuracy
are not only achieved for ()LL. )LG) = (0,0). Clearly, the R? remains

almost constant for pair of values (}\.L‘ AG) that verify AL < AL and
A0 = A% where (iL, 5\5) = (%—}é %ﬁ;
the best prediction accuracy, we can dramatically enhance both the
local and the global sparsity. Indeed, the local sparsity improves
from 1% to 84% and the global sparsity from 0% to 52%. For larger
values of AL and AC, our S-ORRT keeps improving sparsity but, in
this case, at the cost of diminishing R2.

Figure 4 reflects, against CART and RF, our ability to trade
off prediction accuracy and global sparsity in Ailerons data set.

). In this range, where we have
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Fig. 5. Scalability of S-ORRT in logarithmic scale, where the computing time is
measured in seconds as a function of N varying in {105‘ 106, 107],

The value of both performance measures are drawn through blue
points for every pair of the sparsity regularization parameters
(AL, A) considered in the S-ORRT construction. The values for
CART and RF are depicted with a green diamond and an orange
cross, respectively. It can be seen that S-ORRT outperforms CART
in both prediction accuracy and global sparsity for several pairs of
(}J. AG). With respect to RF, S-ORRT is comparable in terms of pre-
diction accuracy, while improving global sparsity in 50%.

4.4. Scalability depending on the number of individuals: a simulation
study

In this section we illustrate that S-ORRT scales up well with the
size of the training sample N. To this aim, we measure the comput-
ing time taken by S-ORRT to reach a solution with 30% improve-
ment on the mean squared error of CART.

We have designed a synthetic data set with p =25 predictor
variables and N taking values in {105, 108, 107}. The first two pre-
dictor variables, X; and X5, define two balanced groups of individ-
uals. They are generating following bivariate normal distributions,
N T, k=1,2.

1 =(050,075)7 and Z; = (0.005 0

0 0.00375) for Group 1,

and 7, = (0.25,0.50)" and ¥, = ¥; for Group 2. The remaining
23 predictor variables were generated following a uniform dis-
tribution, ¢/(0, 1). The response variable for Group 1 is equal to
Y = X3+ 2X4 + 5 + ¢ while for Group 2 is equal to Y = —X5 — 2Xg5 —
5+ ¢, where & ~ N (0, 0.5). Thus, X7, ..., X;5 have no impact in the
response variable. An S-ORRT tree of depth D =1 with AL =16 =0
is built. We feed Problem (3)-(5) with an initial solution, obtained
from a heuristic procedure based on the RF variable importance
measure. That is, in a first step we solve Problem (3)-(5) with a
multistart approach in which the predictor variables with low RF
variable importance, namely X;j, j=3,...,25, do not play a role.
This heuristic solution is given as the initial one to solve Problem
(3)-(5) with the whole set of predictor variables. The procedure has
been repeated 10 times and average results are presented. Figure 5
shows, as a function of N, the total computing time spent for the
whole procedure. Both axes are on logarithmic scale. We can see
that for this simulation study, the computing times have a linear
trend with respect to the number of individuals.

5. Conclusions and future research

In recent years, several papers have focused on building deci-
sion trees in which the greedy suboptimal construction approach
is replaced by solving an optimization problem, usually in in-
teger variables. In this paper, we have adapted the continuous
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optimization-based approach to build classification trees previously
proposed by the authors to consider regression trees. Local expla-
nations on the continuous predictor space can be derived thanks
to the smoothness of the predictions. Unlike CART and RF, we can
directly model desirable properties such as sparsity, cost-sensitivity
and fairness. The computational experience reported shows that
our method outperforms CART, as well as OLS and LASSO, in terms
of prediction accuracy. Finally, we show that our approach scales
up well when the size of the training sample grows.

Several extensions to our approach are attractive. First, the lin-
ear prediction made at each leaf node can easily be extended to
a non-linear one. This would be obtained by simply replacing the
linear functions ¢; with other functions, such as those in a Gen-
eralized Additive Model. Second, it is known that standard Regres-
sion Analysis seeks an estimate of the conditional mean of the re-
sponse variable, given the predictor vector, which is found by min-
imizing the mean squared error, as proposed in this paper. Nev-
ertheless, it would be interesting to infer other characteristics of
the distribution of the response variable, such as the conditional
quantiles, with the final goal to obtain prediction intervals. An ap-
propriate setting of our approach that considers quantile regression
(Meinshausen, 2006) requires a nontrivial design. Third, a bagging
scheme of our approach, where the collection of trees is solved si-
multaneously in order to have a global control on sparsity, is also
an interesting open question. A parallelization framework would be
suitable to make the training of a collection of trees tractable.
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Proof of Corollary 1. Observe that with a* =0, by construction,
P;(0, p3) is independent of i. Hence, P(0, pf) is a matrix with all
its rows identical to a vector u(,ug), with tezf: ut(ﬂg) =1

L

Moreover, 3)(0, ft;) = —(¥i)izr. and thus, for a* = 0 and g}, the

_ N T . .
-y ) , satisfies the system of linear
O

vector pf = ( -y, -,
equations in Proposition 1.

Proof of Proposition 2. First, let us consider the necessary opti-
mality conditions for a*. For Al = Al and AC > A8, we have, by con-
struction, that

M =(1—0)||Va, MSE(O, (3, pi): )| . Vi=1.....p,

26> o | VaMSEQ, ([LE,LLE);I)“l,Vj =1,...,p.
Hence,

~ (1-0) Va, MSE(@", (. 0): T) € 20, ([l ] )], o
Vi=1,...,p,

— 0 Va, MSE(@", (5. 1}): 7) € 1%, (| a; ||w)|aj:o,
VYi=1,....p,

and thus,
~Va, MSE(@", (. 1) T) € M, ([l |, )],,
+ 260, (@i | ), o Vi=1..p,

having that,

P
—VaMSE(@", (p, pt): 7) € 1oa | 3 |a; ],

=1 a—a*
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P
0 2 lai |
j=1

a=a*

Le.:

» p
0 e do | MSE(@*, (py, i) 1)+ 213 e || +2°3" [a; |
=1 j=1 acar
For a* =0, Corollary 1 shows that the chosen 754 minimizes
MSE, and is thus optimal for Problem (1). In consequence, u} sat-
isfies the necessary optimality conditions.
Finally, let us analyze the optimality conditions for g = 3.
Observe that

. 1
Vi, MSE(@, (pg. pp)) =

4] > 2(gia, p) —yi) Vi gi(a, p).

ieT
Since a* =0, V,,¢;(a*, p*) does not depend on ieZ, say
Vyppi(a*, p*)y = v for all i € 7. Hence,

1

V‘LBMSE(H*, (I‘LE; I’l'f)) = IIl

D 2(gi@, wt) —yiv.

ieT

By Corollary 1, g;(a*, p*) =y, and thus Y (¢;(a*, p*) —y;) =0,
il

implying

V‘LBMSE(G*, (I.L; ﬂ'f)) =0,

and the desired result follows. O
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