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Abstract: We study canonical consumption-savings problems of an individual

involving uninsurable biometric risk. These problems are important in many ap-

plications from insurance economics and actuarial science. Since biometric risk is

uninsurable, closed-form solutions do not exist and thus the problems must be ap-

proached by numerical methods. We propose a powerful approach where the solution

is obtained by optimizing over a parametrized family of consumption strategies. In

settings with mortality risk, critical illness risk, and habit formation, our solution

method outperforms the well-established finite-difference approach both in run time

and in precision. Our method also delivers a precision measure and closed-form

representations of the optimal controls.
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1 Introduction

Human wealth given by the present value of future income constitutes the most important asset

for typical households. Biometric risk such as mortality risk and the risk of critical illness or

disability is a severe threat since it potentially jeopardizes the ability to generate income. It is

thus crucial to include biometric risk in life-cycle problems of households and a large strand of

literature has developed in recent years (see, e.g., Gomes (2020) for a recent survey).

In practice, biometric risk cannot be perfectly insured (e.g., due to transaction costs) or insurance

contracts do not exist at all (e.g., critical illness insurance in some countries). Therefore, the

corresponding consumption-savings problem of a household involves unhedgeable shocks to labor

income and cannot be solved in closed form. In turn, it is typically approached by grid-based

numerical methods, which are computationally intesnive and cannot easily deal with a high

number of state variables.

Our paper introduces a powerful method to solve consumption-savings problems of individu-

als who have no or limited access to insurance contracts for biometric risk. In settings with

mortality risk, critical illness risk, and habit formation, our solution method outperforms the

well-established finite difference approach both in run time and precision. In contrast to these

approaches, our method also produces a closed-form consumption strategy and a precision mea-

sure. The latter can also be used to evaluate the performance of other numerical methods such

as grid-based implementations.

To highlight our main ideas, we focus on a problem with no insurance contracts.1 We refer to this

situation as the true market. Our method builds upon the observation that we can explicitly solve

the decision problem if we complete the market by adding continuously adjustable short-term

insurance contracts. Since the premium attached to these contracts is not uniquely determined

if they are not available, there are many complete markets that are consistent with the true

market. We refer to all these markets as artificial markets, which is also motivated by the fact

that the relevant contracts do not exist in practice.2

The explicit, optimal strategy in any of the artificial markets is generally infeasible in the true

market as it involves some insurance demand, positive or negative, and may violate various con-

straints.3 However, by minor modifications we can feasibilize the strategy, which leaves us with a

1Notice that our approach could also be applied to markets with partial access to insurance (e.g., term life
insurance, but no critical illness insurance).

2In reality, short-selling of insurance contracts is not possible. Furthermore, only long-term contracts are
available (if at all) that can only be revised at significant transaction costs. Therefore, real insurance markets are
incomplete.

3From a formal point of view, infeasible means that a strategy is not admissible in the sense of Definition 2.1.
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family of feasible consumption-savings strategies. The utility generated by each strategy is eval-

uated using Monte Carlo simulation. By embedding the simulation into a standard optimization

routine, we determine the best of these strategies. We refer to our method as SAIMS, Simulation

of Artificial Insurance Market Strategies.

First, we use the SAIMS method to solve a life-cycle consumption-savings problem with mortality

risk if the individual has preferences involving habit formation in consumption. These prefer-

ences are well-established in the economic literature and have been applied in several papers, e.g.,

Ingersoll (1992), Gomes and Michaelides (2003), Browning and Collado (2007), Polkovnichenko

(2007), and Munk (2008). Habit formation is numerically challenging since it leads to an addi-

tional state variable. For a wide range of calibrations (14 cases), we compare our approach with

two grid-based implementations relying on a coarse and a fine grid. The coarse grid consists of

20 steps per year, 150 steps in the direction of wealth, and 75 steps in the direction of habit.

The fine grid has 20 steps per year, 600 steps in the direction of wealth, and 300 steps in the

direction of habit.4 We find that our approach outperforms both implementations in all cases.

Next, we challenge our method by adding another layer of complexity: We add a third biometric

state in which the individual is critically ill implying lower income and higher mortality risk. In

this richer setup, our approach still outperforms the coarser implementation in all cases. The

implementation with the fine grid is beat by our method in 11 out of 14 cases. In the remaining

cases, our precision measure shows that this happens by an extremely small margin.

Conceptually, the SAIMS method is a generalization of an approach suggested and tested by

Bick, Kraft, and Munk (2013) for life-cycle consumption-investment problems without biometric

risk,5 which is inspired by theoretical work of Karatzas, Lehoczky, Shreve, and Xu (1991) and

Cvitanić and Karatzas (1992). Our paper makes a methodological contribution by showing how

their idea can be extended to consumption-savings problems involving biometric risk.

In insurance economics and actuarial science, Markov chains are widely used to model all kinds of

biometric risk (see, e.g., Bruhn and Steffensen (2011) and the references therein). For example,

with mortality risk as the sole biometric risk the corresponding Markov chain has two states

(alive and dead). In a continuous-time setting, the optimal consumption-savings strategy can be

found by solving a system of Hamilton-Jacobi-Bellman (HJB) equations, one equation for each

possible biometric state. A closed-form solution is only available if there is a complete insurance

market. Extending the work by Merton (1969), Richard (1975) was the first to add mortality risk

4Notice that to what we refer as a coarse grid is actually pretty fine as it involves 11,250 nodes per time step.
It is just coarser than fine grid that has 180,000 nodes per time step.

5Kraft and Steffensen (2013) consider an alternative approach to deal with portfolio constraints.
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to the optimal consumption-investment problem of a power-utility investor. He derives a closed-

form solution under the assumption that the decision-maker has continuously unrestricted access

to instantaneous life insurance contracts. Extending Richard’s idea, Kraft and Steffensen (2008)

show that with a general finite-state Markov chain representing the biometric state, the problem

amounts to solving a system of ordinary differential equations, again assuming the existence of

continuously adjustable short-term insurance contracts for all Markov chain transitions, i.e., for

all types of biometric risk. As emphasized above, this crucial assumption lacks realism as in

practice insurance products are not available for all contingencies or are long-term contracts that

can only be adjusted at significant costs.

Several papers have numerically solved life-cycle consumption problems with mortality risk or

other types of biometric risk in the absence of insurance contracts. For example, Cocco, Gomes,

and Maenhout (2005) consider a discrete-time model with deterministic mortality risk and a

labor income process that features non-hedgeable diffusion risk. Cocco and Gomes (2012) allow

for stochastic mortality risk and De Nardi, French, and Jones (2010) introduce health shocks.

Hambel, Kraft, Schendel, and Steffensen (2017) study a setting with three biometric states

(healthy, unhealthy, dead) and allow the individual to purchase long-term life insurance from a

short menu of contracts that are costly to adjust.

The paper proceeds as follows. Section 2 specifies the dynamic optimization problem to be solved.

Section 3 explains the details of our solution approach. Section 4 presents the benchmark calibra-

tion. Section 5 discusses numerical results for selected examples. We compare the performance of

our method to the performance of finite-difference approaches. Section 6 introduces our precision

measure, which can be used to evaluate any numerical method. Finally, Section 7 concludes. An

appendix provides additional material such as proofs and technical details.

2 Framework

This section presents the finite-state Markov model and the agent’s utility maximization problem.

2.1 Markov Chain Model

We consider a probability space (Ω,F , {Ft}{t≥0},P). The filtration {Ft}{t≥0} is generated by a

discrete state variable I = (It)t≥0 taking values in a finite set K = {0, . . . ,K} of possible states
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and starting in state I0 = 0 at time t = 0. We define the K + 1-dimensional counting process

N = (N0
t , . . . , N

K
t )t≥0 by6

Nk
t =

∣∣{s ∈ (0, t] | Is− 6= k, Is = k}
∣∣, (1)

which counts the number of jumps into state k until time t. We assume the existence of sufficiently

smooth, age-dependent, but deterministic functions λj,k : R+ → R+, j, k ∈ K, such that Nk

admits the stochastic intensity process (λIt− ,k(t))t≥0 for k ∈ K. We interpret the states of the

Markov chain I as the agent’s states of life which will be specified below. The state It = K is

assumed to be absorbing and corresponds to the agent’s death. We call the transition intensity

from a given state j to the state of death K, λj,K , the hazard rate of death. The random variable

τ models the time at which the agent dies and is thus defined as the first jump of NK or T ,

whichever occurs first, i.e.,

τ = inf
t≥0
{NK

t > 0} ∧ T. (2)

In other words, the agent dies the latest at time T . This framework is the canonical model

used in actuarial science.7 It enables us to consider an optimal control problem with unspanned

biometric risk and a stochastic planning horizon determined by the agent’s time of death.

We assume that the agent receives an age- and state-dependent income stream Y = (Yt)t≥0 with

Yt ≥ 0 for all t ∈ [0, T ]. The agent retires at a known time T̂ . In her active phase, income is

assumed to follow the dynamics

dYt = Yt−µ(t, It−)dt+
∑

k:k 6=It−

Yt−
[
p(t, It− , k)− 1

]
dNk

t , t < T̂ , (3)

where µ and p are deterministic functions. Here, µ(t, j) is the growth rate of income given that

the agent is in state j at time t and p(t, j, k) > 0 is the fraction of income that remains after a

transition at time t from state j to state k.

In retirement, income is assumed to be risk-free and given by a state-dependent fraction Γ(j) ∈

(0, 1] (the replacement ratio) of income just prior to retirement, i.e.,

Yt = Γ(I
T̂

)Y
T̂
, t > T̂ . (4)

6Notice that |A| denotes the cardinality of the set A.
7See, e.g., Kraft and Steffensen (2008) and the references therein.
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2.2 Canonical Examples 1

I = 0, alive I = 1, dead
λ

Figure 1: Survival Model.

I = 0, healthy I = 1, disabled

I = 2, dead

λ 0,1

λ 0,2 λ 1,2

Figure 2: Critical Illness Model.

I = 0, employed I = 1, unemployed

I = 2, dead

λ 0,1

λ 1,0
λ 0,2 λ 1,2

Figure 3: Unemployment Model.

Figure 1: Survival Model.

The standard model involving biometric risk is the so-called survival model with only two states,

called alive and dead. In this setup, the Markov chain jumps from the state 0 to state 1 upon

death of the agent. The mortality intensity λ is age-dependent. Figure 1 illustrates the structure

of the model.

1

I = 0, alive I = 1, dead
λ

Figure 1: Survival Model.

I = 0, healthy I = 1, disabled

I = 2, dead

λ 0,1

λ 0,2 λ 1,2

Figure 2: Critical Illness Model.

I = 0, employed I = 1, unemployed

I = 2, dead

λ 0,1

λ 1,0
λ 0,2 λ 1,2

Figure 3: Unemployment Model.

Figure 2: Critical Illness Model.

As a generalization, Figure 2 depicts the three-state Markov model studied by Hambel et al.

(2017) and Hambel (2020). In this setup there are several potential transitions: In state 0, the

agent can get critically ill. Then the chain jumps into state 1 with a certain age-dependent jump

intensity λ0,1. Second, the agent can die in each of these states. This happens with an age- and

state-dependent intensity λj,2, j ∈ {0, 1}. We refer to this model as critical illness model.

2.3 Optimization Problem

Since Bick et al. (2013) have already analyzed models with diffusive risk, we focus on a framework

with a Markov chain and abstract from risky financial assets. Therefore, the control variable of

the agent is the consumption rate c = (ct)t≥0. The agent’s financial wealth is kept on a bank

account earning a constant interest rate of r. Her financial wealth evolves according to

dXt = (rXt + Yt − ct)dt, (5)

where the initial financial wealth is positive, X0 > 0. To demonstrate the richness of our

approach, we allow the agent’s preferences to exhibit internal habit formation as, for instance, in
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Constantinides (1990) and Gomes and Michaelides (2003). The agent’s habit level satisfies the

dynamics

dHt = (αct − βHt)dt, (6)

where β ≥ 0 measures the habit’s persistence and α ≥ 0 is a scaling parameter. As Kraft, Munk,

Seifried, and Wagner (2017) point out, the difference β − α measures the strength of the habit.

The smaller the difference, the stronger the habit. We focus on the case β > α since otherwise,

the habit level would increase over the life-cycle irrespective of the chosen consumption strategy.

The agent’s optimization problem is thus characterized by four state variables: financial wealth

X, income Y , habit level H, and state of life I. We now define the set of admissible strategies

in the true market as follows.

Definition 2.1 (Admissible Strategy). A consumption strategy c is called admissible if

(i) c is progressively measurable w.r.t. the filtration {Ft}t∈[0,T ],

(ii) the differential equation (5) has a unique solution for all X0 > 0,

(iii) ct > Ht for all t ≥ 0, and

(iv) Xτ > 0 (a.s.) where τ is given by (2).

We denote the set of admissible consumption strategies attainable at time t by At.

Remark. We will consider two types of setups: the true market where the agent cannot insure

biometric risks and artificial markets where these risks are perfectly insurable. Since the agent

can die with a positive probability at any point in time, the constraint Xτ > 0 implies that

Xt > 0 for all t ∈ [0, τ ] if, first, the agent has a bequest motive satisfying the Inada condition as

assumed in (7) below and, second, there are no life insurance contracts. In the articial markets,

we can relax condition (iv) and financial wealth Xt is allowed to become negative as long as the

agent buys the right amount of life insurance contracts such that the sum of financial wealth and

insurance sum is positive. See, e.g., Richard (1975).

The agent’s preferences are captured by time-additive expected utility of surplus consumption,

st = ct −Ht, and bequest. An admissible consumption strategy c generates the utility index

Jc(t, x, y, h, j) = Et,x,y,h,j

[∫ τ

t
e−δ(s−t)

1

1− γ
(cs −Hs)

1−γds+ εe−δ(τ−t)
1

1− γ
X1−γ
τ

]
,
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where γ > 1 controls the agent’s risk aversion, δ > 0 is the time preference rate, and

ε > 0 (7)

is the weight of the bequest motive. The optimization problem is thus given by

sup
c∈A0

Jc(0, x, y, h, 0) (8)

and the agent’s value function (indirect utility function) is

J(t, x, y, h, j) = sup
c∈At

Jc(t, x, y, h, j). (9)

It is well-known that the above optimization problem cannot be solved in closed form unless the

agent can fully hedge the transitions between life states as assumed, for instance, in Kraft and

Steffensen (2008). Only if the agent has access to a frictionless insurance market that provides

fully flexible insurance products to hedge the transitions between the states of life, the model

is complete and the above optimization problem can be solved in closed form. In this case, the

value function has the representation

Jcom(t, x, y, h, j) =
1

1− γ
(x+ yF com(t, j)− hBcom(t, j))1−γGcom(t, j)γ . (10)

where Bcom, F com, and Gcom satisfy systems of ordinary differential equations. For the more

realistic case where such a perfect insurance market does not exist, a closed-form solution for

optimal consumption and the value function is not available. In particular, a separation of

the form (10) does not hold since, among other issues, labor income risk cannot be hedged by

available contracts.

3 SAIMS Solution Approach

3.1 Artificial Insurance Markets

Karatzas et al. (1991) and Cvitanić and Karatzas (1992) show how to construct the relevant

artificial markets for a number of different portfolio constraints including the constraint that the

financial market is incomplete. Applying this construction, Bick et al. (2013) develop an effi-

cient solution approach to a broad class of portfolio-consumption problems where incompleteness
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comes from portfolio constraints or unspanned Brownian motions. Since these papers disregard

biometric risk, we now generalize their approach.

First, we construct an artificial insurance market in which the agent can fully hedge all transitions

between the different states of life. As mentioned above, this requires a frictionless insurance

market with fully flexible insurance products that can be bought and sold without frictions such

as leverage constraints or transaction costs. In particular, an artificial insurance market gives

access to short-term insurance contracts for each type of biometric risk. These contracts provide

coverage over the infinitesimal time interval [t, t+ dt] at any point in time t. If the agent suffers

a life shock of type k at time τk, i.e., if Iτk− 6= k and Iτk = k, while holding the corresponding

insurance with notional ιk, the insurance company pays ιk such that

Xτk = Xτk− + ιkτk−. (11)

Following Richard (1975) and Pliska and Ye (2007), among others, we refer to ιK as a life

insurance sum. For the special case k = K, equation (11) is the agent’s total bequest in the

event of a death at time τ . For critical illness model, we interpret ι1 as a critical illness insurance

sum.

These insurances are available continuously and the agent buys them by paying an insurance

premium at a rate πj,kt that depends on both current age and state of life. The premium πj,kt is

proportional to the chosen notional ιkt . We refer to the ratio λ̂j,kt = πj,kt /ιkt as the unit premium

for insurance against a transition into state k while being in state j at age t. The artificial

insurance market is thus characterized by the set of unit premiums λ̂j,kt for all pairs (j, k) with

j 6= k and λj,kt > 0, i.e., all possible transitions of the Markov chain representing the different

biometric states. This leads to the following definition of an artificial insurance market.

Definition 3.1 (Artificial Insurance Market). An artificial insurance market is characterized by

a set of insurance contracts where the agent can fully flexible choose the corresponding notionals

ι0, . . . , ιK . The agent pays an insurance premium for holding the insurance at time t at a rate

πkt = ιkt λ̂
j,k
t , j 6= k.

Here, λ̂j,kt is a non-negative stochastic process satisfying suitable integrability conditions and

λ̂j,kt > 0 if and only if λj,kt > 0. (12)
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This process is called the artificial unit premium for a transition from state j to k.

Remarks. (a) Note that the insurances are actuarially fair if λ̂j,kt = λj,k(t). (b) In an artificial

insurance market, an admissible strategy will in general not satisfy Xt > 0, but the weaker

condition Xt + ιKt > 0 for all t ≥ 0, since the agent can buy life insurance contracts.

In an artificial insurance market characterized by a set of artificial transition intensities λ̂ =

(λ̂j,k)Kj 6=k,j,k=0, the agent must choose an insurance strategy ι = (ι0t , . . . , ι
K
t )t≥0 and a consumption

rate c in order to maximize her utility index. Let us denote by J(t, x, y, h, j | λ̂) the value function

in the artificial market characterized by λ̂. We emphasize that the value function in each artificial

market is an upper bound for the true, unknown value function associated with problem (9), i.e.,

J(t, x, y, h, j | λ̂) ≥ J(t, x, y, h, j),

since the agent can choose zero insurance.

3.2 Analytical Results

There is not a closed-form solution of the value function J(t, x, y, h, j | λ̂) for every choice of λ̂.

However, for artificial insurance markets that are characterized by a deterministic λ̂, the value

function J(t, x, y, h, j | λ̂) can be calculated analytically, as the following theorem shows.

Theorem 3.2 (Explicit Solution to Artificial Market Problem). The value function of the arti-

ficial market characterized by the deterministic unit premiums λ̂ = (λ̂j,k)Kj 6=k,j,k=0 is given by

J(t, x, y, h, j | λ̂) =
1

1− γ
(x+ yF (t, j)− hB(t, j))1−γ G(t, j)γ , (13)

where both B and G satisfy a system of linear ordinary differential equations

d

dt
B(t, j) =

[
r +

∑
k 6=j

λ̂j,k(t)− α+ β
]
B(t, j)− 1−

∑
k 6=j

λ̂j,k(t)B(t, k),

d

dt
G(t, j) = ∆(t, j)G(t, j)− 1−

∑
k 6=j

λj,k(t)
( λ̂j,k(t)
λj,k(t)

)1−1/γ
G(t, k)

with boundary condition B(t,K) = B(T, j) = 0 and G(t,K) = G(T, j) = ε1/γ. Here

∆(t, j) =
1

γ

[
δ +

∑
k 6=j

λj,k(t)
]

+
γ − 1

γ

[
r +

∑
k 6=j

λ̂j,k(t)
]
.
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Moreover, we obtain F (t, j) = F a(t, j)1{t<T̂}(t) + F r(t, j)1{t≥T̂}(t) where F r and F a satisfy

d

dt
F r(t, j) =

[
r +

∑
k 6=j

λ̂j,k(t)
]
F r(t, j)− 1−

∑
k 6=j

λ̂j,k(t)F r(t, k),

d

dt
F a(t, j) =

[
r +

∑
k 6=j

λ̂j,k(t)− µ(t, j)
]
F a(t, j)− 1−

∑
k 6=j

λ̂j,k(t)p(t, j, k)F a(t, k)

with boundary condition F r(t,K) = F r(T, j) = F a(t,K) = 0 and F a(T̂ , j) = Γ(j)F r(T̂ , j). The

optimal consumption-insurance strategy is given by the following feedback functions

c(t, x, y, h, j) = h+
x+ yF (t, j)− hB(t, j)

G(t, j)
(1 + αB(t, j))−1/γ , (14)

ιk(t, x, y, h, j) =
x+ yF (t, j)− hB(t, j)

G(t, j)

(
λ̂j,k

λj,k

)−1/γ

G(t, k)

− x+ hB(t, k)− yp(t, j, k)F (t, k). (15)

The proof is given in Appendix A.

The value function and the consumption strategy are of the same form as in other settings

settings with habit formation, labor income, and complete market. The term yF (t, j) represents

the agent’s human wealth defined as the present value of future income 8 Total wealth is thus

given by x + yF (t, j). Following Kraft et al. (2017), the term hB(t, j) is referred to as tied-up

wealth. It denotes the wealth that is necessary to finance minimum future consumption dictated

by the agent’s habit level. Therefore, the term x+ yF (t, j)− hB(t, j) can be interpreted as the

agent’s free wealth. The function G is determined by the agent’s preferences and the investment

opportunity set which includes the risk-free asset and the artificial insurance contracts.

In the special case where the underlying Markov chain is directed, i.e., if λj,k = 0 for k ≤ j, the

functions B, F , and G have explicit representations as shown in the following corollary.

Corollary 3.3 (Directed Markov Chain). Suppose λj,k = 0 for k ≤ j, then B, F , and G in

Theorem 3.2 are explicitly given by

B(t, j) =

∫ T

t
e−

∫ s
t (r+

∑
k>j λ̂

j,k(u)+β−α)du
(

1 +
∑
k>j

λ̂j,k(s)B(s, k)
)

ds,

G(t, j) =

∫ T

t
e−

∫ s
t ∆(u,j)du

(
1 +

∑
k>j

λj,k(s)
( λ̂j,k(s)
λj,k(s)

)1−1/γ
G(s, k)

)
ds+ ε1/γe−

∫ T
t ∆(u,j)du,

8Formally, human wealth is Ht = EQ
t

[ ∫ T∧τ
t

e−r(s−t)Ysds
]
, where Q is the risk-neutral measure, which is unique

due to market completeness. The risk-neutral transition intensities are equal to the artificial unit premiums. It
is straightforward to check that Ht = YtF (t, j).
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Figure 3: Survival Model without Habit Formation. Panel (a) depicts the optimal consumption-wealth
ratio in a survival model without habit formation for the calibration in Table 1. The graph is produced by solving
the optimization problem (8) with a grid-based approach. Panel (b) depicts the optimal artificial hazard rate of
death λ̂0,1 for which the optimal insurance demand is zero (black line), and the corresponding parametrization
via (17) (gray dashed line). The black line is computed using a grid-based approach.

F r(t, j) =

∫ T

T̂
e−

∫ s
t (r+

∑
k>j λ̂

j,k(u))du
(

1 +
∑
k>j

λ̂j,k(s)F r(s, k)
)

ds

F a(t, j) =

∫ T̂

t
e−

∫ s
t (r+

∑
k>j λ̂

j,k(u)−µ(u,j))du
(

1 +
∑
k>j

λ̂j,k(s)p(s, j, k)F a(s, k)
)

ds

+ Γ(j)F r(T̂ , j)e−
∫ T̂
t (r+

∑
k>j λ̂

j,k(u)−µ(u,j))du

3.3 Parametrization of the Unit Premiums

In the previous section, we have solved the problem for any artificial market with deterministic

specification of the unit premiums. To approximate the true solution well, we must find a suitable

parametrization of these premiums that gets us close to the unknown solution of the true market.

Bick et al. (2013) consider income diffusion risks and parametrize the artificial markets via affine

functions of time. In our setting, however, such affine forms for λ̂j,k are too simplistic. Intuitively,

the desire to insure biometric risks varies over life in a more complex way than the desire to fully

hedge diffusive income risk.

The value function of every artificial insurance market constitutes an upper bound for the value

function in the true market. To obtain a tight upper bound, we shall thus find a parametrization

where the minimum over the corresponding artificial insurance markets is sufficiently low. To

conjecture a suitable functional form of the artificial unit premiums, we first consider the special

case without habit formation, α = β = H0 = 0, where the state variableH is redundant. Cvitanić

and Karatzas (1992) show that in their setting the solution to the true market is obtained if the
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demand for the artificial contracts is zero. Applying these ideas to our framework, we thus

conclude that a suitable parametrization is characterized by an optimal insurance demand equal

or at least close to zero, i.e., ιk ≈ 0 for all k = 0, . . . ,K. According to (15) this requires

λ̂j,K ≈ ελj,K
(c(t, x, y, j)

x

)γ
, λ̂j,k ≈ λj,k

( c(t, x, y, j)
c(t, x, y, k)

)γ
. (16)

The optimal artificial hazard rate of death thus involves the consumption-wealth ratio. For

illustrative purposes, Panel (a) of Figure 3 depicts the optimal consumption-wealth ratio over

the life cycle for an initial wealth-to-income ratio of x/y = 1 in a survival model without habit

formation; this solution is calculated by applying a grid-based method to the utility maximization

problem where the calibration is summarized in Table 1. We emphasize that the consumption-

wealth ratio and thus the optimal artificial hazard rate of death depend on the initial wealth-to-

income ratio. Figure 3 shows that the optimal consumption-wealth ratio c/x is not a “simple”

function of time, which is very different from the results in Bick et al. (2013). Therefore, we use

the following parametrization of the artificial insurance markets9

λ̂j,k(t) = 1{t<T̂}

2∑
i=1

ϑj,ki,1 exp
{
−
[ t− ϑj,ki,2

ϑj,ki,3

]}
+ 1{t≥T̂}

4∑
i=3

ϑj,ki,1 exp
{
−
[ t− ϑj,ki,2

ϑj,ki,3

]}
, (17)

which takes the pronounced non-linear shape of the consumption-wealth ratio into account.

With this specification, the corresponding strategies and the value function are parametrized by

a set of constants θ = (ϑj,ki,n)i=1,...,4,n=1,2,3, k 6=j,k,j≤K . We denote the associated value function

by Jθ(t, x, y, h, j). Similarly, we use the notation F θ, Gθ, and Bθ to stress the dependence on

the parameter set θ. As each artificial market defines an upper bound on the value function (9)

in the true model, we apply a standard numerical optimization algorithm to determine a tight

upper bound, J , by a minimization over the parametrized artificial transition intensities, i.e.,

J(t, x, y, h, j) = Jθ(t, x, y, h, j) = min
θ
Jθ(t, x, y, h, j). (18)

For x/y = 1, the black line in Panel (b) of Figure 3 depicts the optimal artificial unit life insurance

premium λ̂0,1 for which optimal insurance demand is zero, whereas the gray dashed line shows

the best corresponding parametrization (17) in the sense of (18). Apparently, parametrization

(17) yields a close fit of the optimal artificial unit life premium.

9Of course, we have to calibrate (17) such that (12) is satisfied.
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Figure 4: Solution Approach. The axis shows the agent’s expected utility. Unknown optimal represents the
indirect utility in the original problem, i.e., the expected utility generated by the unknown optimal consumption
strategy. Each point to the right corresponds to the indirect utility in an artificial insurance market with deter-
ministic insurance premiums characterized by some parameter set θ. The corresponding strategy is transformed
into an admissible strategy in the true market which generates an expected utility on the left part of the axis.
The best of these strategies, parametrized by θ∗, is derived from the optimal strategy in an artificial insurance
market for some θ.

3.4 Best Strategy for the True Market

Recall that in an artificial insurance market, we do not require that financial wealth stays strictly

positive because the agent can decide to buy insurance contracts that compensate for a potentially

negative wealth. The optimal consumption strategy of an artificial market is thus in general not

admissible in the true market, but it can be transformed into an admissible strategy following

Bick et al. (2013).

Without habit formation we consider modified consumption strategies of the form

cθ,η(t, x, y, j) =
x+ yF θ(t, j)

(
1− e−ηjx

)
Gθ(t, j)

(19)

for a parameter set θ and a set of positive constants η = (ηj)j=0,...,K . Compared to (14),

the human wealth yF θ(t, j) is scaled down by the factor 1 − e−ηjx, which becomes negligible

as financial wealth x approaches zero. In particular, this factor turns (14) into an admissible

strategy in the true market as the following proposition shows. It implies that Xt > 0 for all

t ∈ [0, τ ].10

Proposition 3.4 (Feasibilization without Habit Formation). The strategy (19) is an admissible

consumption strategy in the true market for any choice of θ and ηj > 0.

The proof is given in Appendix A where we in particular show that the consumption rate becomes

approximately linear in financial wealth if financial wealth becomes small.

10See also the remark following Definition 2.1.
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With habit formation, the situation is more involved since the consumption rate does not show

this behavior. This is because the habit level is in general not linear in financial wealth for small

financial wealth levels. Consequently, we must ensure that the agent is able to finance her habit

level. Define

cθ,η(t, x, y, h, j) = h+
x+

[
yF θ(t, j)− hBθ(t, j)

](
1− e−ηjx

)
Gθ(t, j)

(
1 + αBθ(t, j)

)−1/γ
,

which is a modified version of (14). We thus consider the following consumption strategy where

the agent “plays safe” below a certain wealth level:

ct =


cθ,η(t,Xt, Yt, Ht, It) for Xt > Xt and cθ,η(t,Xt, Yt, Ht, It) > Ht,

kHt else,
(20)

where k ∈ (1, β/α) can be chosen arbitrarily. We will show below that (20) is admissible given

that we choose Xt appropriately. For our calibrations discussed in Section 5, the suitable choice

of Xt is sufficiently small such that in our numerical examples the financial wealth of the agent

never reaches this level. Besides, the second condition cθ,η(t,Xt, Yt, Ht, It) > Ht is also never

binding. Therefore, both conditions is practically less relevant albeit theoretically necessary.

Proposition 3.5 (Feasibilization with Habit Formation). Define the threshold Xt as in (23)

and assume that X0 ≥ X0.11 The strategy (20) is an admissible consumption strategy in the true

market for any choice of θ and ηj > 0.

We determine our best strategy by maximizing the indirect utility generated by cθ,η. For this

purpose, we compute the corresponding utility index Jθ,η(t, x, y, h, j) via Monte Carlo simula-

tion and maximize over the parameter set (θ, η). Figure 4 depicts the general structure of our

solution approach that we refer to as SAIMS, short for Simulation of Artificial Insurance Market

Strategies.

4 Calibration

The results presented in Section 5 are based on Monte Carlo simulations using 10 000 paths

where the strategies are updated 20 times per year. The initial time is t = 0 and corresponds to

an initial age of 25 years. Table 1 summarizes the model parameters.

11The condition X0 ≥ X0 ensures that the habit is initially financiable.
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General Parameters
α habit scaling parameter 0.1
β habit persistence parameter 0.174
γ risk aversion parameter 4
δ time preference rate 0.03
ε bequest weight 1
r risk-free rate 0.01
X0 initial financial wealth 2
Y0 initial income 2
H0 initial habit 1

T̂ retirement date 40
Γ replacement ratio 0.6
µy expected income growth 0.01
a age at t = 0 25

Survival Model
m x-axis displacement 84.56
b steepness parameter 8.8

Critical Illness Model
m x-axis displacement 89.45
b steepness parameter 6.5
k1 constant impact of a health shock 0.048
k2 age-dependent impact of a health shock 0.0008
â scaling parameter 0.02489

b̂ x-axis displacement 66.96
ĉ steepness parameter 29.42

p0,1(t < T̂ ) income level after a health shock while working 0.8

p0,1(t ≥ T̂ ) income level after a health shock during retirement 1
p0,2 income level at death without previous health shock 0
p1,2 income level at death with previous health shock 0

Table 1: Benchmark Calibration Parameters. The initial wealth X0 = 2 and annual income Y0 = 2 are
interpreted as $20 000.

4.1 General Parameters

We choose a risk-free rate of r = 0.01. The preference parameters are standard values in the

life-cycle literature. The agent has a risk aversion parameter of γ = 4, a time preference rate

of δ = 0.03, and a bequest weight of ε = 1. We consider models with and without habit

formation. For models with habit formation, we follow Kraft et al. (2017), and choose for the

scaling parameter α = 0.1 and for the persistence parameter β = 0.174. The agent retires at an

age of 65 years corresponding to T̂ = 40. The replacement ratio is set to Γ = 0.6. In the active

phase, income grows at a constant rate of µy = 0.01.
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4.2 Biometric Risk

Survival Model We assume that the hazard rate of death λ0,1(t) follows a Gompertz mortality

law of the form

λ0,1(t) =
1

b
exp

{a+ t−m
b

}
where a denotes the agent’s age at t = 0. Our calibration to the life tables from Germany as of

2010 yields b = 8.8, m = 84.56.

Critical Illness Model The calibration of the critical illness model is taken from Hambel

et al. (2017).The hazard rate of death follows a generalized Gompertz mortality model of the

form

λj,2(t) =


1
b exp

{
a+t−m

b

}
for j = 0,

1
b exp

{
a+t−m

b

}
+ k1 + k2(a+ t) for j = 1.

Notice that in case of a health shock the hazard rate of death increases by a constant term k1

and an age-dependent term k2t. The model is calibrated to German mortality and cancer data,

which yields m = 89.45, b = 6.5, k1 = 0.032, k2 = 0.0008. We assume that the health shock

intensity has the following age-dependent functional form

λ0,1(t) = â exp
{
−
(min(t, 65)− b̂

ĉ

)2}
.

The calibration to German cancer data yields â = 0.02489, b̂ = 66.95, ĉ = 29.42.

5 Numerical Results

This section discusses our numerical results. We firstly present our benchmark results with

and without habit formation. Then, we compare the performance with a well-established finite-

differences approach.

5.1 Benchmark Results

Survival Model Figure 5 depicts the best consumption strategy derived by our method (black

lines) and the corresponding habit level (gray lines). The light dashed lines show the best

consumption strategies for models without habit formation. Panel (a) depicts the results for the
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Figure 5: Optimal Consumption in the Survival Model. The figure shows the best consumption strategy
derived by our method (black lines) and the corresponding habit level (gray lines). The light dashed lines show
optimal consumption for models without habit formation. Panel (a) depicts the results for the benchmark model.
Panel (b) depicts the results for a model where the agent has access to a perfect insurance market with actuarially
fair priced life insurance as in Richard (1975).

benchmark model. Note that consumption is smoother if the agent’s preferences exhibit habit

formation. Interestingly, the consumption strategy involves a hump around the age of 45, which

is in line with empirical evidence, see, e.g., Gourinchas and Parker (2002). Panel (b) depicts the

results for a model where the agent has access to a perfect life insurance market as in Richard

(1975), i.e., the agent can continuously purchase and sell fairly priced life insurance. This panel

suggests that with access to a perfect life insurance market, the consumption pattern less in line

with real-world consumption data.

Critical Illness Model Figure 6 depicts the best consumption strategy conditional on staying

healthy. The shape of the curve is similar to the survival model with a hump at an age of about

age 45. The risk of becoming critically ill and thus receiving lower income induces the agent to

cut down on consumption while healthy in order to avoid a large reduction in the event of illness.

This is because the agent wants to smooth consumption across states. On the other hand, when

becoming critically ill, the mortality risk increases, which reduces the expected time span for

which consumption has to be financed and thus reduces the necessary savings.

5.2 Comparison with finite-differences

This section reports the numerical results for several model specifications and compares the

performance of our approach with a finite-difference implementation of the HJB equation, see,

e.g., Brennan, Schwartz, and Lagnado (1997) and Munk and Sørensen (2010). It is well known

that both the precision and the run time of this popular method strongly depend on the number of

state variables and grid points. To challenge our approach, we speed up our implementation of the
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Survival Model without Habit Formation

SAIMS Fine Grid Coarse Grid

Jθ
∗

P θ
∗

Jfi P fi Jco P co

Benchmark -5.996** 1.0000 -6.003 0.9996 -6.008 0.9993
γ = 2 -23.164** 0.9995 -23.168 0.9994 -23.172 0.9992
γ = 6 -2.859** 0.9999 -2.865 0.9995 -2.871 0.9991
δ = 0.01 -9.682** 0.9999 -9.670 0.9995 -9.703 0.9992
δ = 0.05 -4.124** 1.0000 -4.129 0.9999 -4.133 0.9996
ε = 0.2 -5.885** 0.9999 -5.892 0.9995 -5.897 0.9992
ε = 5 -6.173** 1.0000 -6.181 0.9996 -6.185 0.9993

Survival Model with Habit Formation

SAIMS Fine Grid Coarse Grid

Jθ
∗

P θ
∗

Jfi P fi Jco P co

Benchmark -66.660** 1.0000 -66.970 0.9984 -67.187 0.9974
γ = 2 -51.541** 0.9999 -51.614 0.9985 -51.650 0.9978
γ = 6 -159.916** 0.9999 -161.239 0.9983 -162.273 0.9970
δ = 0.01 -112.816** 1.0000 -113.200 0.9989 -113.419 0.9982
δ = 0.05 -43.051** 1.0000 -43.274 0.9983 -43.459 0.9969
ε = 0.2 -66.178** 1.0000 -66.498 0.9984 -66.724 0.9972
ε = 5 -67.437** 1.0000 -67.736 0.9985 -67.944 0.9975

Critical Illness Model without Habit Formation

SAIMS Fine Grid Coarse Grid

Jθ
∗

P θ
∗

Jfi P fi Jco P co

Benchmark -6.161** 0.9990 -6.165 0.9987 -6.171 0.9984
γ = 2 -23.483** 0.9859 -23.484 0.9859 -23.490 0.9856
γ = 6 -2.987** 0.9981 -2.993 0.9977 -2.999 0.9973
δ = 0.01 -10.114** 0.9992 -10.117 0.9991 -10.125 0.9989
δ = 0.05 -4.181* 0.9983 -4.177 0.9986 -4.182 0.9982
ε = 0.2 -6.057** 0.9992 -6.064 0.9988 -6.071 0.9985
ε = 5 -6.323** 0.9985 -6.327 0.9983 -6.333 0.9979

Critical Illness Model with Habit Formation

SAIMS Fine Grid Coarse Grid

Jθ
∗

P θ
∗

Jfi P fi Jco P co

Benchmark -70.234** 0.9984 -70.260 0.9983 -70.480 0.9972
γ = 2 -52.574* 0.9988 -52.548 0.9993 -52.585 0.9986
γ = 6 -175.346** 0.9989 -175.913 0.9982 -177.119 0.9969
δ = 0.01 -118.747* 0.9988 -118.631 0.9991 -118.848 0.9985
δ = 0.05 -44.952** 0.9982 -45.050 0.9975 -45.251 0.9960
ε = 0.2 -69.719** 0.9985 -69.778 0.9982 -70.005 0.9971
ε = 5 -71.037** 0.9984 -71.039 0.9984 -71.251 0.9974

Table 2: Numerical Results. The table reports the simulation results for several model specifications and for
when one key input variable is varied and the other parameter values are the same as in the benchmark case.
One star (*) indicates that the SAIMS method has a higher precision than the finite-difference approach on the
coarse grid. Two stars (**) indicate that the method even beats the finite-difference approach on the fine grid.
It also reports the values of the precision measure P discussed in Section 6. Here P θ

∗
is the precision of SAIMS,

whereas P fi and P co are the precisions of the grid-based methods (fine, coarse).

18



30 40 50 60 70 80 90
0

1

2

3
a) Consumption (benchmark)

30 40 50 60 70 80 90
0

1

2

3
b) Consumption (with life insurance)

Figure 6: Optimal Consumption in the Critical Illness Model. The figure shows the best consumption
strategy derived by our method (black lines) and the corresponding habit level (gray lines). The light dashed lines
show consumption for models without habit formation. Panel (a) depicts the results for the benchmark model.
Panel (b) depicts the results for a model where the agent has access to a perfect insurance market with actuarially
fair priced life and critical illness insurance products.

grid-based method and exploit the homogeneity property of the value function, J(t, x, y, h, j) =

y1−γV (t, x/y, h/y, j), which reduces the number of state variables by one, see Lemma B.1.

Solving for V requires a discretization of the simplified HJB equation (26), which leads to K

different grids each of dimension three with variables t, x̂ = x/y, and ĥ = h/y. With only one

state variable, the finite-difference approach is quite fast. The run time is below two minutes

in our examples without habit formation. To compare our SAIMS method with the grid-based

approach, we use two different grid sizes with 20 time steps per year. This is similar to Munk

and Sørensen (2010), but on the higher side compared to the existing literature. For the state

variables, the coarse grid involves Nx̂ = 150 steps for normalized wealth and N
ĥ

= 75 steps for

normalized habit. The fine grid uses Nx̂ = 600, N
ĥ

= 300. Notice that the fine grid involves

almost the double amount of grid points in the state-variable dimensions compared to Munk and

Sørensen (2010).

Table 2 shows that the SAIMS method outperforms the finite-difference approaches in almost all

cases. Although grid-based methods are supposed to deliver the optimal solution, the indirect

utility achieved by the fine grid is worse in 25 out of 28 cases. Our numerical analyses also

show that the run time of the finite-difference approach on the fine grid with two state variable

is on average eight times higher than the the run time of our SAIMS method. For instance,

the benchmark calibration of the critical illness model is solved in 39 minutes by the SAIMS

approach and in 310 minutes on the fine grid. This indicates that the SAIMS method also

outperforms the well-established finite-difference approach in run time.12 Finally, by contrast to

12The run time of the SAIMS method can be sped up even further if one parallelizes the Monte Carlo simulations.
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the finite-difference approach, the SAIMS method delivers closed-form solutions for the controls.

This simplifies the economic analysis, which typically relies on comparative statics, heavily.

6 Precision Measure

In contrast to a grid-based method, our approach also delivers a precision measure. This is

because we derive an upper bound J on the value function in the true market. We emphasize

that this upper bound can also be used to evaluate the performance of any other numerical

method such as grid-based implementations. Formally, our precision measure P is given as the

solution to

Jnum(t, x, y, h, j) = J(t, xP, yP, hP, j),

where Jnum is the estimate of the indirect utility derived form some numerical method such as

SAIMS or a grid-based implementation. Intuitively, the definition of P is based on an indifference

argument. The value 1− P can be interpreted as the maximal percentage of initial wealth that

the agent is willing sacrifice if she gets to know the theoretically optimal solution and not only

the one derived via the numerical method under consideration (e.g., grid based or SAIMS).

Therefore, a high value of P stands for a high precision.

For our paper, relative comparisons of the implementations are even more important, since we

want to show that our method outperforms grid-based implementations. In this case, one can

just compare the corresponding values of P . More precisely, the method that delivers the higher

value of P outperforms the other method.

As can be seen from Table 2, SAIMS generates higher values of P in 25 out 28 cases compared

to the implementation using a fine grid, which mirrors our earlier findings that our method is

superior to the grid-based implementations. In the three cases where SAIMS is worse, one can

however see that the relative margin, i.e., the difference of the values of P , is very small. In these

few cases, the increase of precision is a dearly bought advantage since the run time of the fine

grid is significantly longer than the run time of SAIMS.

A convenient feature of the precision measure P is its closed-form representation, which is given

in the following proposition:
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Proposition 6.1 (Closed-form Representation of P ). The precision measure P for some nu-

merical implementation delivering an indirect utility of Jnum is given by

P (t, x, y, h, j) =
(Jnum(t, x, y, h, j)

J(t, x, y, h, j)

) 1
1−γ

.

The proof is given in Appendix A.

Notice that for a relative comparison of two approaches, J is actually irrelevant as the following

argument shows: Let PSAIMS be the precision of a SAIMS implementation and P grid be the

precision of a grid-based implementation and consider the ratio RP = PSAIMS/P grid. If RP

is greater than one, then SAIMS outperforms the grid-based implementation. If it is smaller,

than it is outperformed. Therefore, RP is a relative performance measure that can be applied

to compare two implementations. Formally, we get

RP =
PSAIMS

P grid
=
(JSAIMS

Jgrid

) 1
1−γ

,

i.e., J drops out and is thus irrelevant for a comparison of two methods.

7 Conclusion

This paper proposes an efficient method to solve consumption-savings problems involving un-

hedgeable biometric risk. We analyze two canonical settings that are highly relevant in insurance

economics and actuarial science. In total, we solve the settings for 28 calibrations. It turns out

that our method outperforms standard grid-based solution techniques both in precision and run

time. More precisely, our method delivers a superior value of the goal function in all cases for

the coarse grid and in 25 out of 28 cases for the fine grid. In the remaining three cases, it is

only beat by a very small margin. Another advantage of our approach is that, in contrast to

grid-based methods, it delivers closed-form solutions of the best policies. This is very useful in

applications and simplifies comparative statics. Furthermore, our approach provides a precision

measure that can be used to evaluate any numerical method including grid-based implementa-

tions. Our approach can potentially be applied to many other consumption-savings problems

that involve biometric risk beyond mortality or critical-illness risk.
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A Proofs

Proof of Theorem 3.2 The dynamics of financial wealth for a given artificial insurance market

are

dXt = (Xtr + Yt − ct)dt−
∑
k 6=At

ιkt λ̂
It,k
t dt, Xτk = Xτk− + ιkτk−.

The Hamilton-Jacobi-Bellman (HJB) partial differential equation for the indirect utility function

J = J(t, x, y, h, j | Θ), j 6= K, is given by

δJ = sup
c,(ιkt )Kk=0

{
1

1−γ (c− h)1−γ + Jt + Jx

[
xr + y − c−

∑
k 6=j

ιkt λ̂
j,k
t

]
+ Jh(αc− βh)

+ Jyyµ(t, j) +
∑
k 6=j,K

λj,kt J(t, x+ ιk, yp(t, j, k), h, k) + λj,Kt
ε

1−γ (x+ ιK)1−γ −
∑
k 6=j

λj,kt J
}

where subscripts denote partial derivatives and the terminal condition is J(T, x, y, h, j) = ε
1−γx

1−γ .

The first-order conditions for optimal consumption and insurance decisions imply

c = h+ (Jx + αJh)−1/γ , Jx(t, x+ ιk, yp(t, j, k), h, k) = Jx(t, x, y, h, j)
λ̂j,kt

λj,kt
. (21)

We conjecture an indirect utility function of the form

J(t, x, y, h, j) =
1

1− γ
(x+ yF (t, j)− hB(t, j))1−γG(t, j)γ

where G(T, j) = ε1/γ , B(T, j) = 0, F (T, j) = 0. After substituting this conjecture into the

HJB equation, we collect terms involving (x+ yF (t, j)− hB(t, j))1−γ and terms involving (x+

yF (t, j)− hB(t, j))−γ . This leads to the system of ordinary differential equations

d

dt
F (t, j) =

[
r +

∑
k 6=a

λ̂j,k(t)− µ(t, j)
]
F (t, j)− 1−

∑
k 6=a

λ̂j,k(t)p(t, j, k)F (t, k)

d

dt
G(t, j) = ∆(t, j)G(t, j)− 1−

∑
k 6=j

λj,k(t)
( λ̂j,k(t)
λj,k(t)

)1−1/γ
G(t, k)

d

dt
B(t, j) =

[
r +

∑
k 6=j

λ̂j,k(t)− α+ β
]
B(t, j)− 1−

∑
k 6=j

λ̂j,k(t)B(t, k)
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with ∆(t, j) = 1
γ

[
δ +

∑
k 6=j λ

j,k(t)
]

+ γ−1
γ

[
r +

∑
k 6=j λ̂

j,k(t)
]
. Inserting the conjecture into (21),

we obtain the optimal consumption-insurance strategy

c(t, x, y, h, j) = h+
x+ yF (t, j)− hB(t, j)

G(t, j)
(1 + αB(t, j))−1/γ ,

ιk(t, x, y, h, j) =
x+ yF (t, j)− hB(t, j)

G(t, j)

(
λ̂j,k

λj,k

)−1/γ

G(t, k)

− x+ hB(t, k)− yp(t, j, k)F (t, k).

This finishes the proof.

Proof of Proposition 3.4 Fix an arbitrary parameter set θ and a set of positive constants

η = (ηj)j=0,...,K . Then, the consumption-wealth ratio is given by

cθ,η

x
=

1 + yF θ(t, j)1−e−ηjx

x

Gθ(t, j)
(22)

Applying l’Hospital’s rule yields

lim
x→0+

c

x
=

1 + yF θ(t, j)ηj
Gθ(t, j)

> 0.

Therefore, the consumption rate (22) is approximately linear in x for small financial wealth x.

This implies that financial wealth stays strictly positive implying that cθ,η is admissible in the

true market.

Proof of Proposition 3.5 Fix an arbitrary parameter set θ and a set of positive constants

η = (ηj)j=0,...,K and let k ∈ (1, β/α) be a constant. Define the threshold

Xt = max

{
ε;

1

r
(Htk − Y )

}
(23)

where ε > 0 can be arbitrarily small and Y is given by

Y = inf
t≤τ(ω), ω∈Ω

Yt,

i.e., Y is the minimum income across all paths as long as the agent is alive.13 It is obvious

that implementing the consumption strategy stated in the proposition implies ct > Ht. By

13Typically, this is strictly positive since most developed countries have a welfare system.
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construction, we also have Xt > 0 for all t ∈ [0, τ ] since Xt ≥ Xt > 0. It remains to show

that the strategy is financiable if Xt = Xt for some t ∈ (0, τ), i.e., that the financial wealth

also stays positive going forward. Therefore, we distinguish two cases: (i) Xt = Xt > ε and (ii)

Xt = Xt = ε.

For (i) we have rXt + Y −Htk > 0 and thus the consumption strategy satisfies

dXt

dt
= rXt + Yt − ct = rXt + Yt −Htk ≥ rXt + Y −Htk > 0

which implies that financial wealth stays strictly positive.

For (ii) we have rε+ Y −Htk ≥ 0 and thus

dXt

dt
= rXt + Yt − ct = rε+ Yt −Htk ≥ rε+ Y −Htk ≥ 0

which also implies that financial wealth stays strictly positive.

Finally, notice that choosing c = kH at the threshold (23) implies

dHt

dt
= (αk − β)Ht < 0,

so that the habit level declines. This shows that the consumption strategy is financiable even if

the agent’s income jumps to its lower bound Y . This finishes the proof.

Proof of Theorem 6.1 The precision measure P = P (t, x, y, h, j) is defined as

Jc(t, x, y, h, j) = J(t, xP, yP, hP, j).

It follows from Theorem 3.2 that

J(t, xP, yP, hP, j) = P 1−γJ(t, x, y, h, j),

so the precision measure becomes

P =
(Jc(t, x, y, h, j)
J(t, x, y, h, j)

)1/(1−γ)
.

This finishes the proof.

26



B Finite Difference Approach

In Section 5.2 we compare the SAIMS method with a grid-based finite difference approach.

This appendix briefly outlines the grid-based method. The HJB-equation corresponding to the

optimization problem (13) reads

δJ = sup
c

{ 1

1− γ
(c− h)1−γ + Jt + Jx

[
xr + y − c

]
+ Jyyµ(t, j) + Jh(αc− βh) (24)

+
∑
k 6=j

λj,kt
[
J(t, x, yp(t, j, k), h, k)− J

]}
,

where subscripts of J denote partial derivatives. The following lemma establishes a standard

separation result that reduces the number of state variables.

Lemma B.1. The number of state variables in the optimization problem (13) can be reduced by

one. The value function satisfies the following homogeneity property:

J(t, x, y, h, j) = y1−γV (t, x̂, ĥ, j) (25)

with x̂ = x
y and ĥ = h

y . V is a C1,2-function that satisfies the following HJB equation

0 = sup
ĉ

{ 1

1− γ
(ĉ− ĥ)1−γ + Vt + Vx̂

[
x̂
(
r − µ(t, j)

)
+ 1− ĉ

]
+ V

ĥ

[
αĉ− βĥ− µ(t, j)ĥ

]
+
∑
k 6=j

λj,kt V
(
t,

x̂

p(t, j, k)
,

ĥ

p(t, j, k)
, k
)
− V

[
δ +

∑
k 6=j

λj,kt − (1− γ)µ(t, j)
]}

(26)

subject to the terminal condition V (T, x̂, ĥ, j) = ε
1−γ x̂

1−γ. The optimal consumption strategy is

given by c∗ = ĉ∗y.

Proof. This can be proven by substituting the conjecture (25) into the HJB equation (24).

We solve the simplified HJB equation (26) by an implicit finite difference method on equally

spaced grids in the (t, x̂, ĥ, j)-space. To improve stability, we use an “up-wind” scheme. Technical

details on this method can be found in Munk and Sørensen (2010). For normalized wealth x̂ we

span the grid in the range (0, 6] and for normalized habit ĥ in the range (0, 3]. We choose 20

steps per year and compare two different grid sizes. First, a coarse grid with Nx̂ = 300 grid points

for x̂ and N
ĥ

= 150 for ĥ. Second, a fine grid with Nx̂ = 600 grid points for x̂ and N
ĥ

= 300

for ĥ. Starting at the terminal condition we work backwards through the time grid. We first

calculate the solution for the state of critical illness j = 1 followed by the state of healthiness

j = 0.
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