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Abstract

We provide a new measure of automation based on patents and study its em-

ployment effects. Classifying all U.S. patents granted between 1976 and 2014 as

automation or non-automation patents, we document a strong rise in the number

and share of automation patents. We link patents to their industries of use and to

commuting zones. To estimate the effect of automation, we use an instrumental

variables strategy that relies on innovations developed independently from U.S.

labor market trends. We find that automation technology has a positive effect on

employment in local labor markets, driven by job growth in the service sector.
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1 Introduction

What is the effect of automation technology on employment? This question has received
a lot of attention in public discourse and among researchers. But the answers differ
widely and depend on the underlying definition of automation.
In economics, automation is often understood as a type of labor-saving technology
which reduces the demand for human workers at specific tasks.1 But automation
technology could also create new products or lead to productivity improvements with
no immediate replacement of human labor. Examples are a printer, an adaptive cruise
control or a program for automatic e-mail management, which do not necessarily
automate existing human tasks, but may still affect employment.
In this paper, we develop an approach to measure automation comprehensively from
patent texts. We start from a wide technological definition of automation without pre-
supposing the effects, if any, it will have on employment. Our definition encompasses
diverse areas such as software, robotics, or any other physical or immaterial innovations
describing a device that carries out a process independently of human intervention.
In contrast, the large literature on automation mostly relies on indirect proxies such
as the share of routine tasks in job descriptions (Autor et al., 2003, Goos and Manning,
2007, Autor and Dorn, 2013) or on narrow measures of automation such as investment
in computer capital (Beaudry et al., 2010; Michaels et al., 2014; Akerman et al., 2015;
Gaggl and Wright, 2017) or investment in robots (Graetz and Michaels, 2018; Acemoglu
and Restrepo, 2020; Dauth et al., 2017). Along with this data choice, papers typically
focus on changes in the occupational or skill composition of the workforce. A smaller
literature analyzes the total employment effects (e.g. Autor et al., 2015, Acemoglu and
Restrepo, 2020, Gaggl and Wright, 2017) but results are ambiguous which, too, is likely
due to difficulties in measuring automation comprehensively.
Patents are a natural candidate for measuring technological progress and frequently
serve as proxies of innovation. While the number of patents and patent meta-data are
often used (Hall et al., 2001; Acemoglu et al., 2014; Bell et al., 2018), the actual patent
texts have not been in the focus so far. We classify patents as automation patents based
on a standard technology-based encyclopedia definition of automation.
We extract the texts of all 5 million U.S. patents granted between 1976 and 2014 and
train a machine learning algorithm on a sample of 560 manually classified patents to
distinguish between automation and non-automation innovations. We document a
large number of automation patents and a strong increase over time. As a share of total
patents, automation patents have increased from 23 percent in 1976 to 59 percent in

1This holds for both theoretical contributions (e.g. Acemoglu and Autor, 2011; Acemoglu and Restrepo,
2018) and empirical contributions (e.g. Autor et al., 2003; Goos and Manning, 2007; Autor and Dorn,
2013; Michaels et al., 2014; Akerman et al., 2015; Graetz and Michaels, 2018; Acemoglu and Restrepo,
2020). The demand for non-automated tasks may increase if complementary to automated machines.
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2014. We match patents to the industries where they are likely to be used, based on a
concordance by Silverman (2002). This matching relies on the patents’ technology class
to assign them probabilistically to industries.
In this way, we derive a measure of newly available automation technology at a
detailed industry level (3-digit SICs). We validate this indicator by comparing it
to previously used measures of automation: The number of automation patents is
positively correlated across industries both with investment in computer capital and
with robot shipments. More automation patents have been granted in industries with a
larger share of employment in routine occupations in 1960, a result that is in line with
the literature on routine-biased technological change.
To estimate the labor-market effects of automation, we create a shift-share measure at
the level of U.S. commuting zones (CZs). The resulting panel dataset of new automation
technology covers 722 CZs over 39 years. Our identification strategy exploits the fact
that local economic outcomes are impacted by, but are unlikely to affect, the innovation
activity of industries at the national level. Additionally, we use information on the
patent assignee to identify innovations that are exogenous to U.S. labor market devel-
opments. Patenting activities by universities and public research institutes, foreigners
and governments are less likely to result from a business interest in the United States,
which makes them suitable instruments for patents filed by U.S. companies.
Our main econometric analysis is an instrumental variable, fixed effects panel regres-
sion. We interpret automation patents as a flow measure of the supply of automation
technology and assess their effect on local employment-to-population ratios over a
five-year horizon. We find a significantly positive effect of automation on total em-
ployment, which is in line with Gregory et al. (2016) and Gaggl and Wright (2017), but
paints a more positive picture than Autor et al. (2015), Graetz and Michaels (2018) and
Acemoglu and Restrepo (2020). We explain these differences by presenting a number
of additional novel findings: first, in a sector-level analysis, we show that the positive
effect arises entirely in the service sector, whereas manufacturing workers do not benefit
from automation. Second, interacting our automation measure with the routine-task
intensity of jobs, we find that in CZs with a higher share of repetitive job tasks in
manufacturing, automation has negative consequences for workers. Third, we show
that the effect of automation has become less positive over time. We also study wages
and provide evidence suggesting that automation has positive effects on wages in CZs
with a low routine-task share, but negative effects in others.
There are strengths and weaknesses to our approach to quantifying automation tech-
nology. Text classification is an inherently imprecise activity and we introduce further
inaccuracies through probabilistic matching of patents to industries and CZs. Also, we
make assumptions on the usefulness of patents and the way they are implemented. On
the upside, we impose fewer ex-ante assumptions on the nature of advances in automa-
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tion technology, compared to the literature using routine task shares or computer and
robot investment. Also, our indicator allows us to closely track the technology frontier,
translating newly granted patents into a fine-grained industry- or CZ-level dataset.
With the caveats in mind, we consider our indicator as a complement to previous
measures of automation.

2 New automation index

This section introduces the new automation index. We start by describing the data
source and argue why patents are a good indicator of technological progress. We discuss
our definition of automation, before showing how we construct the indicator and how
the classification algorithm works. Then, we explain how to link patents to industries in
which they are likely to be used. The resulting indicator traces the technology frontier
across 956 industries and 39 years and displays plausible co-movement with existing
indicators of automation.

2.1 Patents as indicators of technological progress

Patents are a suitable data source for measuring technological progress. The purpose of
patents is to encourage innovation by offering a temporary monopoly on an invention.
To be patentable, an innovation must be novel, non-obvious and useful. The applicant has
to provide detailed information on the invention, which will be rigorously examined
by patent officers. Once granted, a patent offers an intellectual property right for 20
years, which implies that nobody can re-engineer, create or sell the same object or idea.
In return, the content of the innovation is publicly disclosed.
Researchers in economics have made frequent use of patents as a measure of innovation,
often relying on the database by Hall et al. (2001).2 However, patents have mostly
been interpreted as proxies for innovative activity, not as increments of technological
progress whose effects can be studied. This relates to the fact that existing research
almost exclusively uses patents’ metadata, such as the location or affiliation of the
assignee or a patent’s importance as measured by citations. There is almost no research
which uses the actual texts of the patent document (Magerman et al., 2010), although
this has been recommended as early as in Griliches (1990). Two exceptions are worth
pointing out: Bessen and Hunt (2007) identify software patents by searching patent texts
for a set of prespecified keywords. Our approach differs as we use a state-of-the-art
text classification algorithm and thus do not specify the search dictionary beforehand.
In a recent paper and relating to our work, Dechêzlepretre et al. (2020) search for

2Griliches (1990) discusses various issues related to using patents in economics. Nagaoka et al. (2010)
provide an overview of the more recent literature.
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automation patents in machinery and use them to identify technology classes that relate
to automation.
In other areas of economics, text search has become common, with Gentzkow and
Shapiro (2010) and Baker et al. (2016) being prominent examples of papers that use
newspaper articles. However, patent texts hold several advantages for researchers over
other document collections: The language is precise, technical and highly standardized.
Applicants have an incentive to provide exact and correct information to obtain full
protection of their ideas, and the patent undergoes a review process. Finally, patent
texts are publicly available.

2.2 Patent data

We focus on U.S. patents and obtain the documents of all 5 million utility patents
granted by the United States Patent and Trademark Office (USPTO) between 1976 and
2014 from Google.3 While Europe, Japan and increasingly China are also important
patent legislations, of the roughly 10.9 million patents effective worldwide in 2014, the
largest fraction (about one fourth) has been granted in the United States (WIPO, 2016).
In addition, the most important innovations are usually patented in all major patent
legislations. These properties make U.S. patents a good proxy for the technological
frontier in the United States and beyond.
The patent grant document includes the title, patent number, name of the inventor,
date, citations of other patents, legal information, drawings, abstract and a detailed
description, as well as information on the technology class of the invention. Every
patent is assigned one or more technology classification numbers by the patent examiner,
which describe technological and functional characteristics of a patent and on which
we base our link from patents to industries. The main classification system used by
USPTO is the United States Patent Classification System (USPC). USPTO also references
the similarly structured International Patent Classification (IPC), which facilitates
international comparison.
The number of patents has increased strongly over the sample period, from about
70,000 granted patents in 1976 to more than 280,000 patents in 2014. Kortum and Lerner
(1999) show that this is mainly due to higher research productivity rather than changes
in patentability or regulatory capture. This is in line with an OECD survey among
patenting firms (OECD, 2004). There is thus no evidence that the quality of patents
has changed over time, which might have raised worries about the comparability of
patents.

3google.com/googlebooks/uspto-patents.html. Utility patents account for around 90 percent of all
patents (USPTO, 2015). Other patent types are design, plant and reissue patents and do not track the
type of technology that we aim to measure.
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2.3 Definition of automation

We define an automation patent to describe a device that carries out a process independ-
ently.4 The device can be a physical machine, a combination of machines, an algorithm
or a computer program. The process it automates may be a production process, but also
anything else where an input is altered to generate an output. An important element
of the definition is the notion of independence: It works without human intervention,
except at the start and for supervision. We require the innovation to be a reasonably
complete process, product or machine and to have an at least remotely-recognizable
application. This excludes patents that are minor parts of an automation innovation and
highly abstract patents with no obvious application. We make no difference between
process and product innovations, so an automation patent could describe either.
Our definition of automation describes a specific class of technologies without presup-
posing if and how the patent will be economically relevant. In many cases, automation
technology will be labor-saving, enabling tasks to be carried out with less human input.
However, this is not a requirement. The technology could alternatively introduce a
new type of product or service, potentially also leading to the creation of new tasks, or
improve an existing technology in an area where tasks have already been automated.
Some machines or processes that we classify as automation will not have any effect on
work processes at all.
In Online Appendix Section 1.1, we list examples of patents that we classify as auto-
mation patents. Our classification captures on the one hand technologies that are
conventionally thought of as automation technologies, e.g. physical inventions such
as assembly robots, self-checkout kiosks or automatic teller machines (ATMs) and
cognitive inventions such as e-mail management systems or financial advice software.
While many of these technologies will be labor-saving, they may also boost productivity
and lead to the creation of new jobs. On the other hand, our definition encompasses
inventions that will not be used for production purposes, e.g. a gaming machine or an
information terminal for funeral homes. Innovations like these could, however, be eco-
nomically relevant by leading to the introduction of new products or job descriptions.
In contrast, a large part of the literature uses a definition that is focused more directly
on the role of automation in the production process, and thus on the economic effects
of automation. For instance, the routine-task index by Autor et al. (2003) imposes that,
because automated machines are good at carrying out repetitive tasks, automation tech-
nology replaces workers in routine-intensive jobs. Similarly, in theoretical contributions

4This is a standard definition that can be found in encyclopedias. For example, the Encyclopedia
Britannica defines automata as “mechanical objects that are relatively self-operating after they have been
set in motion” and adds that “the term automaton is also applied to a class of electromechanical devices
[...] that transform information from one form into another on the basis of predetermined instructions or
procedures” (Encyclopædia Britannica, 2015).
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like Acemoglu and Autor (2011) or Acemoglu and Restrepo (2018), automation is a
labor-saving type of technology that replaces human workers at certain job tasks.
The advantage of our measure is that it is not biased towards any type of effect that
we believe automation to have based on prior knowledge. This becomes particularly
relevant when considering future innovations, which may be able to replace humans at
tasks previously thought of as non-automatable, e.g. self-driving vehicles and cleaning
robots carrying out non-routine manual tasks. The disadvantage of our measure is that
there will be automation patents without any economic relevance in our sample. These
may imply that we under-estimate the economic effect of automation in our regression
analysis.5

2.4 Classification of patents

Based on the definition above, all patents can be classified as either automation or
non-automation patents. We use an automated approach. To train a classification
algorithm, we manually classify 560 randomly drawn patents according to rules laid
out in manual coding guidelines (see Online Appendix Section 1 for details). Baker
et al. (2016) proceed similarly when they manually classify newspaper articles to check
the performance of their dictionary-based classification. We aim to minimize coding
mistakes and biases by providing a structured classification process, by classifying
patents in random order and by reviewing every classification by a second person.
By default, we classify most chemical and pharmaceutical patents as non-automation
patents.6 These patents generally do not meet our definition of an automation patent,
but often use words like “automatic” with a different meaning, which could pose a
problem for the algorithm.
A potential concern is that the language in patent texts may have changed over time.
However, the technical nature of the documents and the fact that legal terms change
slowly makes it unlikely that linguistic trends pose a problem for our classification
algorithm. Additionally, we classify a similar number of patents from each year in our
training sample, so that the algorithm takes into account the language of patent texts
throughout the whole sample period.
Another potential concern is that the set of patentable automation technologies may
have changed over time. During our sample period, the most relevant change in patent
law with respect to automation concerns software patenting: Until the 1980s, software
had to be associated with a concrete application in an industrial process, but rules were

5One way to take a patent’s economic relevance into account is via the number of citations. See Online
Appendix Section 6.3 for citations-weighted regressions.
6USPC technology numbers 127, 252, 423, 424, 435, 436, 502, 510-585, 800, 930, 987. A limited number
of chemical and pharmaceutical patents have been assigned different USPC numbers and are therefore
classified by the algorithm.
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subsequently softened following several court rulings.7 While software inventions thus
became more and more patentable over time, this process went hand in hand with
advances in software technology. A rise in automation patents throughout the 1990s
should thus primarily not be indicative of regulatory changes but mirror changes in the
technology frontier. Additionally, some software was already patented in the 1970s and
1980s despite different provisions (see also Bessen and Hunt, 2007).
From our sample of patents, we extract roughly 32,000 word stems, called tokens,
with the Porter2 stemming algorithm. This shortens “automation”, “automated”,
“automatically” and “automatable” to “automat”. A typical title contains about 5
tokens, a typical abstract about 36 and the rest of the patent (the “body”) about 500
to 600. To keep the computationally-intensive data collection feasible and to remove
noise features, we use the mutual information criterion to extract those tokens that are
most informative about a patent’s type of technology. This is an established statistic
for feature selection, which prefers tokens that appear significantly more often in one
of the classes and punishes tokens that appear rarely overall (Manning et al., 2009).
We then pick the highest ranked 50 title tokens, 200 abstract tokens and 500 patent
body tokens. Pooling these three dictionaries and removing duplicates yields our final
search dictionary of 623 tokens. Figure 1 visualizes the 150 tokens with the highest
mutual information criterion. The most important token is “automat”. After that come
“output”, “execut”, “inform”, “input” and “detect”. Some tokens are indicative of
software, such as “microprocessor”, “database”, “comput”, “program” or “transmiss”.
Others are more likely to appear in descriptions of physical machines, such as “motor”,
“metal” or “apparatus”. The last discernible group of tokens are action verbs that
appear in descriptions of a wide range of independently operating devices, such as
“distinguish”, “command”, “respons” or “perform”.
Our algorithm imitates how a human being would have classified each patent. We use
the Naive Bayes algorithm, a supervised learning method which is easy to interpret and
which computationally scales well with large amounts of data. Despite its simplicity,
the Naive Bayes algorithm has been shown to perform quite well (Domingos and
Pazzani, 1997).8 One reason for this is that the low number of parameters estimated
makes it unlikely to overfit (Murphy, 2012). The assumption of tokens appearing
independently of each other also makes this classifier more robust to conceptual drift
than other methods such as k-nearest neighbors (Manning et al., 2009). In Online
Appendix Section 2, we describe in detail how the algorithm works.

7In 1995, USPTO released software patent guidelines, where the import-
ance of effectively protecting software innovations was recognized, see
www.uspto.gov/about-us/news-updates/software-patent-guidelines (accessed 19.06.2018).
8Gentzkow et al. (2019) also recommend this algorithm if the number of observed features (tokens) is
much larger than the size of the training sample, as is the case in our analysis. Antweiler and Frank (2004)
proceed similarly, as they manually classify 1000 messages and then use the Naive Bayes algorithm to
generalize to over 1.5 million other messages.
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Figure 1: Words that indicate an automation patent

Note: Token size is proportional to the value of the mutual information criterion in
sample 560 classified patents. We show only the 150 highest ranked tokens.
Source: USPTO, Google and own calculations.

We assess the performance of the algorithm by comparing it to human classifications
in two sets of manually investigated patents, the training sample (560 patents) and
a test sample (199 patents). In the training sample, both the manual coding and the
algorithmic classification judged around a quarter of patents to be automation patents.
In 80 percent of cases both approaches agreed. The probability of a false positive (type
I error) is 21 percent. The probability of a false negative (type II error) is 17 percent. In
the test sample, there is agreement in 77 percent of cases, the probability of type I error
is 23 percent and that of type II error 22 percent. The out-of-sample performance of the
algorithm is naturally worse than its in-sample performance, but the numbers still make
us confident that the algorithm is capturing automation innovations reasonably well.
While some share of misclassified patents remains, as long as there is no underlying
bias in the classification, this only adds noise to our indicator series as we aim to
approximate trends in technology over time. This noise pushes our empirical estimates
towards zero, making it harder to detect an effect of automation.

2.5 Aggregate properties of the indicator

Figure 2 shows all 5 million patents granted in the United States between 1976 and
2014. We assign patents to the year when they were granted, not when applied for, as
inventions are unlikely to be shared before they are protected by a patent.9 We classify
altogether 2.2 million patents as automation patents. The red-shaded parts of the bars
show the patents which we classified as automation patents and blue colors signal all
other patents. We observe a sharp upward trend in automation patents from 16,000 in

9In our empirical analysis, we sum patents over five years to account for uncertainty about when
innovations become effective.
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Figure 2: Patents
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1976 to 160,000 in 2014. The share of patents related to automation also increased, from
23 percent of patents in 1976 to 59 percent of patents in 2014.
Figure 3 divides patents into broad technology categories based on an aggregation
method by Hall et al. (2001). There are large differences in the number of patents across
categories. The sub-category “Computers & Communications” has not only seen the
largest increase in patents over time (observe the different scale), but we also classify
most of them as automation patents. Innovations falling into this category typically
concern computer hardware or software. Electrical, electronic and mechanical patents
also contribute significantly to the stock of automation patents. “Electrical & Electronic”
is comprised of semiconductors, power systems and other types of electrical and
electronic devices. Mechanical patents relate to machinery for metal working, material
processing and handling, motors, engines and transportation equipment. Robots fall in
this category. By design, most chemical and pharmaceutical patents are not classified as
automation patents, but they make up a large portion of the non-automation patents.

2.6 From patents to industries

We want to study how automation technology affects labor markets. Therefore, we
need to assign patents to the industries where they are used, not where they have been
developed. These two need not be the same. For example, a software company might
patent a software that is used in the finance industry or in the retail sector. Attributing
the technology to the computer industry would thus overstate the automation intensity
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Figure 3: Patents by category
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there, while understating it in the other sectors.
Linking patents to the industries of their use is difficult.10 If we wanted to measure the
actual usage of a specific patent in a certain industry, we would need to know in which
products a patent is embedded and where these are used. Interpreting patents more
indirectly as a proxy for automation technology rather than a direct measure, we can
use information about the areas in which patents can potentially be applied. Early work
relied on manually linking patents to their industry of use (Schmookler, 1966; Scherer,
1984), but their approach is infeasible given our large sample size. Instead, we rely on
a rare case where a patent office has provided information on the link of patents to
industries. Between 1978 and 1993, Canadian patent officers assigned industries of their
likely use to all granted patents. Based on this information, Kortum and Putnam (1997)
assembled the “Yale Technology Concordance”, a way to link patents to industries of
use through their technological classification. This is based on the assumption that the
link from a patent’s technological classes to industries works the same in Canada and
in the United States. We use the files provided by Silverman (2002), who calculates
empirical frequencies for cross-overs from IPC technology classes to 1987 SIC industries
using 148,000 patents granted between 1990 and 1993.11

10Various researchers have proposed matchings of patents based on the industry of the inventor. For
example, Hall et al. (2001) identify firms filing for patents and Lybbert and Zolas (2014) propose an
automated approach that compares descriptions of industries with descriptions of patents’ technological
classes. The OECD (2011) reviews these techniques in more detail.

11http://www-2.rotman.utoronto.ca/~/silverman/ipcsic/documentation IPC-SIC concordance.htm,
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We apply a probabilistic matching. If a patent with IPC number A1 is used in two
industries X and Y, then half of the patent is assigned to industry X and half to Y. In
practice, patents are often assigned several IPC numbers. In that case, we divide by
the number of assigned IPCs. If our exemplary patent is now assigned a second IPC
number A2, then only a quarter of its value will be attributed to industries X and Y each
and the rest to industries in the other IPC. This fractional counting of patents ensures
that more general patents with several IPCs do not get more weight than specialized
patents with fewer IPCs. The resulting indicator consists of full patent equivalents,
which we will keep referring to as “patents” in the remainder of the paper.
We obtain an annual dataset of new (automation) patents that can be used in 956 indus-
tries and over 39 years. We provide detailed summary statistics in Online Appendix
Table 2. Out of a total of 2.3 million automation patents, 1.8 million (79 percent) can be
used in the manufacturing sector (division D in SIC 1987). Half a million automation
patents can be used for the production of computers (SIC 357), which includes personal
computers, mainframes, storage devices, terminals, billing machines, automatic teller
machines and peripheral equipment such as printers, scanners, office equipments or
typewriters. The production of electronic devices, sensors and communication equip-
ment also receive a large number of automation patents. Outside of the manufacturing
sector, industries with a large number of automation patents are hospitals, utilities
and medical laboratories. In large parts of the economy – such as agriculture, mining,
public administration, finance or retail – only few automation patents were granted.
The high number and share of automation patents in SIC 357 may raise concerns
about the precision of the matching, as SIC 357 is also the industry of many important
automation patent owners, among them IBM, the largest patent assignee in automation
technology. If patents were wrongly assigned to the industry where they are invented,
not used, we would not be measuring the employment effects of automation usage,
but of automation production or invention. In Online Appendix Section 3 we address
this issue and provide ample evidence, e.g. through placebo tests, that the effects of
automation presented in this paper do not stem from a wrong industry matching.
In our following empirical analysis, we interpret the industry patent indices as worker
intensities by assigning all new (automation) patents in an industry to each person
employed in that industry and year. This is equivalent to assuming that patents
assigned to an industry will potentially be used by everyone working in that industry.
If we considered our indicator narrowly as an exact measure of the use of patents in
the production process, this would not be a realistic assumption. But to us, a patent
is just one part of an innovation process that will produce many types of outputs.

accessed 25.10.2015. The fact that we use only data for 1990–1993 means that the matching should be
most precise during this period, while becoming less exact the further away we move from this period.
It helps that this period lies in the middle of our sample.
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Being a measurable outcome of this process, patents serve as a proxy for automation
technology.
In Online Appendix Section 4, we analyze how our automation measure is positively
correlated with established indicators of automation. We document a positive cor-
relation with measures of computerization, robot shipments, and the initial share of
routine-intensive jobs. This points to a high information content of our indicator.

3 Empirical strategy

We ask the following question: What is the impact of new automation technology on
employment at the local level? As in Section 2, we interpret the automation patents
as a worker intensity and assume that all patents can be used to the same extent by
every worker in an industry. We exploit local variation in the industrial employment
structure to find differential effects of automation across CZs, i.e. asking by how much
employment in one location is affected by new automation technology relative to other
locations.
To identify the causal effects of automation, we require the supply of automation
technology to be exogenous to employment changes. A potential source of endogeneity
is reverse causality, as firms might choose their research effort in response to changes in
the wage levels of their workers, regulations or the demand for their products. Another
concern are omitted variables, i.e. industry- or CZ-level shocks that affect employment
and are at the same time correlated with the automation measure. We aim to minimize
the risk of both types of endogeneity using a two-step strategy.
CZs are home to a large number of industries, while industries are located in many
different CZs across the country. This dispersion makes it unlikely that national indus-
tries react to trends in a specific CZ. Our first step is therefore to construct a shift-share
measure of automation. Shift-share measures have attracted considerable attention
over the last years and it has been discussed under which conditions they represent
valid instruments (see e.g. Goldsmith-Pinkham et al., 2018; Borusyak et al., 2018; Adao
et al., 2019). We discuss these assumptions below. We also directly control for a large
set of CZ factors, which mitigates the problem of omitted variables on the local level.
However, the shift-share set-up still leaves a risk of omitted industry-level factors. One
example is the “China shock”, the rising import competition from China, which affects
similar industries as automation. While we control for Chinese import competition in
Online Appendix Section 6.2, other – potentially unobserved – industry-level shocks
may bias the estimates. The second step in our identification strategy addresses this
issue. We identify groups of patent assignees whose research activities are less closely
linked to U.S. markets because they are either located outside the United States or
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do not patent primarily for commercial purposes. Patents filed by these types of
innovators should exhibit a weaker link to industry-level or nation-wide economic
trends. We therefore use patents held by these groups to create an instrument that
isolates exogenous variation in patenting activity to the extent possible.

3.1 Regional measure of automation

We study the effects of automation on employment at the level of U.S. CZs. Tolbert and
Sizer (1996) group all counties of the U.S. mainland into 722 CZs which exhibit strong
commuting ties within, but weak commuting ties between one another. These regions
are meant to approximate local labor markets. Studying the effects of automation on
employment at the level of CZs allows us to take into account worker flows from one
industry to another.12

To measure local labor market exposure to automation, we construct a shift-share
measure and apportion patents to CZs according to the local employment shares
of the different industries. To account for the large differences in patenting activity
across industries, we apply a transformation of (one plus) the natural logarithm of
industry-level automation patents. The nature of the patent data suggests a medium-
run horizon as new patents might be applied only with a certain lag. We therefore
consider changes in automation technology over a five-year period and fix employment
shares at the beginning of the period.13 Considering five-year periods also holds the
benefit of smoothing out business cycle effects. We interpret patents as a flow measure
of technology, and therefore use five-year sums of the automation index to represent
the five-year difference in the stock of patents. The resulting measure is

∆autointc,t =
I

∑
i=1

(
4

∑
s=0

ln(1 + automation patentsi,t−s)

)
Li,c,t−4

Lc,t−4
, (1)

where L is employment, i stands for industry, c for CZ and t for time period. Li,c,t−4
Lc,t−4

is thus the employment share of industry i in CZ c at the beginning of the five-year
period. We use employment data by the Census County Business Patterns (CBP).14 As
shown by Goldsmith-Pinkham et al. (2018) and Borusyak et al. (2018), this measure is
exogenous if either the shares (i.e. the employment shares) or the shocks (i.e. the

12In response to a shock to labor demand, most adjustments in the short- and medium-run will take place
within the local labor market (Blanchard and Katz, 1992, Moretti, 2011). This is because workers, when
laid off, tend to look for a new job within commuting distance.

13Results are robust to changing the length of a period to four or six years.
14In this dataset, employment numbers are reported by county and 4-digit SIC (6-digit NAICS) industry.
In contrast to Census data, which is sometimes used for CZ analysis, CBP provides annual data for the
whole period of analysis. Agriculture (SIC < 1000) and public administration (SIC > 9000) are excluded.
To avoid imprecision due to SIC-NAICS correspondences and missing CBP employment data for some
industries, we aggregate employment and the automation index on the 3-digit SIC level before matching.
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Figure 4: Intensity of automation patents across commuting zones, 1976-2014

(a) 1976-1985 (b) 1986-1995

(c) 1996-2005 (d) 2006-2014

Note: Shows the automation measure as in eq.(1) for 10-year (respectively, 9-year) horizons.
Source: USPTO, Google, Silverman (2002), CBP and own calculations.
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automation patents) are exogenous. Our approach rests on exogeneity of the automation
patents. There are good arguments why this assumption should be fulfilled. Patents
are the outcome of a complex research process, whose successful completion is to some
extent random. Also, the inventor and user of a patent are often not identical, which
weakens the link between demand and supply of innovation. However, there may also
be instances where patents are correlated with other industry-level trends that affect
employment, which is why we introduce instrumental variables approach in the next
section.
Figure 4 shows the automation measure across U.S. CZs in four sub-periods: 1976-85,
1986-95, 1996-2005 and 2006-14. The shades represent four quartiles of the distribution
of automation intensity in these sub-periods, ranging from light gray (least patents) to
dark gray (most patents). There are pronounced regional patterns in the dispersion
of available automation technology. Between 1976 and 1995, the region around the
Great Lakes had a high automation patent intensity. This stems from the combination
of both a high number of patents in manufacturing industries and a large share of
manufacturing employment in this area. Starting in the mid-1990s, the CZs with the
highest automation intensities become more dispersed, while the absolute number of
automation patents increases almost everywhere. The map therefore reveals substantial
variation across geographies and over time, which we exploit in the regressions.

3.2 Instruments

We use information about patent assignees to identify innovators without strong con-
nections to U.S. markets. Lai et al. (2011) extract assignees names from 1976 until 2012
and provide a host of other information about patents and their owners. Based on
their data, we sort assignees into four groups: U.S. companies, foreigners (these can be
companies, individuals or public entities), government bodies (U.S. or foreign) and uni-
versities and public research institutes.15 These groups are identical to the classification
by Lai et al. (2011) apart from universities and research institutes, which we identify by
manually classifying the 10,000 most important patent assignees. Appendix A contains
more details about the dataset.
The group of U.S. companies maintains the closest links to U.S. markets and will be
affected by labor market trends or characteristics of particular industries. Patents
filed by this group will have the strongest impact on domestic production, but at the
same time are most likely endogenous. We argue that automation patents filed by the
three other groups represent exogenous supply shocks of new technology. Research by
foreigners can be assumed to primarily respond to conditions in their home country, and

15These groups are mostly mutually exclusive, but we count foreign governments (a small group) in both
the “foreign” and the “governments” category and likewise, foreign universities and research institutes
also show up in two categories.

15



in consequence be less correlated with shocks at the level of U.S. industries. Universities
and public research institutes conduct more basic research than corporations. For them,
the immediate applicability or profit maximization matters less. Government patents
are also unlikely to be motivated by sector- or region-specific economic trends, but
should rather respond to military buildups, the needs of certain ministries or cycles
in budgetary planning. The share of automation patents is highest among U.S. firms
(47%, compared to 41% across the full sample) and their patents are most economically
relevant as reflected by the most citations. While in particular patents of foreigners
and governments are less widely cited, automation indices for foreigners and research
institutes are strongly correlated with U.S. automation intensity at the industry level
(correlation coefficients are 0.88 and 0.94, respectively). In contrast, the correlation is
almost zero for government patents. Overall, the three groups of assignees represent a
diverse set of sub-groups and we exploit this variation in the empirical analysis.
We construct three shift-share instruments analogously to eq. (1) and use these as
instruments for the endogenous assignee group of U.S. firms. Appendix B shows the
first-stage results and relevant statistics for various regression specifications. Generally,
the first stage is strong. The F-statistic is always very large and the overidentification
test in most cases points to the instruments being valid.
Borusyak et al. (2018) propose a strategy for testing the validity of the instruments
that relies on transforming the regional dataset into a sector-level dataset. In Online
Appendix Section 5, we follow their approach. We show that our shocks are large
in number, only weakly correlated across industries, and that they are sufficiently
dispersed. Regressions at the industry level with asymptotically valid standard errors
still produce significant results. This last point also addresses the overrejection problem
of shift-share designs as discussed by Adao et al. (2019).

3.3 Regression set-up

The estimation equation takes the form

∆
Lc,t

popc,t
= αk + γt + ∆autointc,tβ1 + ∆non-autointc,tβ2 + X′c,t−5 β3 + εc,t,t−5 , (2)

where c is the CZ and t the year. The dependent variable is the five-year change in
the local employment-to-population ratio Lc,t/popc,t, where population refers to all
individuals aged 16 or older. γt are time fixed effects and αk are state fixed effects.
In addition to CZ intensities of automation patents, we include intensities of non-
automation patents (non-autoint) in the regression, constructed analogously to eq. (1)
and equally instrumented in the IV regressions. This variable controls for the effect of
technological change other than in automation technology.
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We include further control variables at their initial level, summarized by Xc,t−5. These
comprise the initial share of manufacturing employment, which is meant to capture
structural change in the economy. Automation patents occur to a larger extent in the
manufacturing sector than in the service sector, so an increase in the automation index
may parallel a decline in the manufacturing industry for other reasons, such as cheap
imports of manufactured goods or changes in demand. Our set-up also includes the
log of initial CZ population because employment in urban and rural areas might follow
different trends. We additionally control for a range of demographic characteristics:
the local population share of non-white citizens, the share of people aged 65 and older,
the share of non-college educated individuals and the labor force participation rate of
females. Finally, we also control for log income. Appendix Table A1 summarizes the
variables in the dataset and lists the data sources.
We consider seven non-overlapping five-year periods 1977-81, 1982-86, 1987-91, 1992-96,
1997-2001, 2002-06 and 2007-11 across 708 CZs. While the patent data are available
until 2014, assignee information is not available after 2011. The number of CZs is lower
than the universe of U.S. mainland CZs due to trimming: CBP omits employment
in some SIC industries for certain years, which is why there are a few jumps in the
outcome variable. We exclude these from the analysis by dropping observations with
employment-to-population changes below the 1st and above the 99th percentile in each
year.

4 Estimation results

This section presents the regression results. All regressions are carried out separately for
total employment, manufacturing employment and non-manufacturing employment.16

We show the baseline regression results before studying the role of automation in
conjunction with the routine-task share. We then decompose the effect of automation
across time and study how automation affects wages. Finally, we discuss our findings in
the context of the existing literature. Additional robustness checks, including weighting
patents by the number of their citations, a placebo test with leads of automation and
regressions including Chinese import competition, are provided in Online Appendix
Section 6.

4.1 Baseline regressions

Table 1 presents OLS and IV regression results for the whole economy and by sector. We
show the results when including the full set of controls; additional regression outcomes

16We use the terms “non-manufacturing” and “services” interchangeably, but in fact “non-manufacturing”
also includes mining and construction.
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Table 1: Employment effects of automation

A. total B. manufacturing C. non-manufacturing
employment employment employment

(1) (2) (3) (4) (5) (6)
VARIABLES OLS IV OLS IV OLS IV

autoint 0.442*** 0.359*** -0.0216 -0.0463 0.395*** 0.353***
(0.121) (0.125) (0.0456) (0.0474) (0.0951) (0.106)

non-autoint -0.360*** -0.276** 0.0351 0.0626 -0.322*** -0.285***
(0.108) (0.114) (0.0411) (0.0450) (0.0802) (0.0938)

manufacturing -2.322** -2.538*** -2.617*** -2.695*** 0.0166 -0.0461
(0.988) (0.931) (0.320) (0.306) (0.621) (0.625)

population 0.197*** 0.198*** -0.0106 -0.00971 0.206*** 0.206***
(0.0403) (0.0392) (0.0227) (0.0223) (0.0387) (0.0378)

income -3.556*** -3.574*** -1.498*** -1.490*** -1.982*** -2.002***
(0.675) (0.650) (0.342) (0.335) (0.389) (0.379)

non-white -1.728*** -1.662*** -0.172 -0.155 -1.658*** -1.624***
(0.558) (0.520) (0.214) (0.205) (0.358) (0.347)

female 13.95*** 14.06*** 3.974*** 3.956*** 10.42*** 10.54***
(1.713) (1.667) (0.677) (0.661) (1.468) (1.439)

old 8.934*** 9.057*** 4.759*** 4.785*** 4.550*** 4.602***
(1.514) (1.498) (0.768) (0.750) (1.136) (1.127)

non-college 2.598 2.282 0.0427 -0.0121 2.892* 2.710*
(2.046) (1.980) (0.849) (0.831) (1.603) (1.589)

Observations 4,953 4,953 4,949 4,949 4,954 4,954
R2 0.45 0.45 0.30 0.30 0.40 0.40

Note: All regressions include state and year fixed effects and a constant. Robust standard errors
in parentheses are clustered on state. *** p < 0.01, ** p < 0.05, * p < 0.1. Sample size and
composition differs slightly across panels because observations were trimmed separately for
each type of employment.

are shown in Online Appendix Section 6.1. In the total employment regressions, the
coefficient on autoint is positive and significant in both the OLS and IV regression,
which means that automation leads to employment growth in local labor markets.
Relative to OLS, the IV coefficient is slightly smaller, which hints that OLS estimates
are subject to some degree of endogeneity. The coefficient on autoint in column (2)
should be interpreted such that a one-unit increase in the automation intensity leads to
a 0.359 percentage point increase in the employment-to-population ratio. This is about
one fourth of the average five-year increase across all observations. The within-year
interquartile range of autoint lies between 1.20 and 2.01, so a one-unit increase is well
within the range of variation of the sample. In terms of actual patent numbers, a one-
unit increase in autoint around its mean is equivalent to the number of new automation
patents in a CZ with a flat industry structure (i.e. assuming the same employment share
for all industries) rising from 23 to 29 per year. Given that the industry structure is
never flat, but a few industries often make up a large share of employment, the increase
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in the number of automation patents comprised in a one-unit increase of autoint will be
substantially higher than that.
Panels B and C reveal pronounced differences across sectors: The entirety of the
employment gain falls on service sector workers, whereas the effect for manufacturing
workers is insignificant. So not all workers benefit from automation. The overall fit of
the regressions is better for the non-manufacturing sample, which further suggests that
automation matters in particular for service-sector employees. In the Online Appendix
Section 6.3, we show that the results are robust to weighing patents by the number of
citations they receive, which is a way of measuring the economic importance of patents.
Non-automation patents are associated with negative changes in total and service-
sector employment. These patents include a wide range of innovations, so a priori it is
unclear which effect they should have on employment. The most frequent technology
classes of non-automation patents are chemicals (24%) and drugs and medicals (14%)
(see also Figure 3). Strategic patenting is particularly prevalent in these areas and many
patents are filed to block competitors’ market access17, which may have harmful effects
on competition and employment. Our results for autoint also hold when excluding
non-autoint from the set of control variables (see Online Appendix Table 11).
The initial manufacturing share is associated with employment losses among manufac-
turing workers. More populated CZs experience employment increases in the service
sector, hinting at potential agglomeration dynamics in certain industries. A higher per
capita income predicts employment losses across all specifications, perhaps because
it is more costly to create jobs in high income regions. The positive coefficient on the
share of older individuals may be due to correlations with the denominator of the
outcome variable. If the population tends to shrink in CZs with a high initial share of
old residents, the employment-to-population ratio will increase.

4.2 Automation and routine-task intensity

Why are manufacturing and service workers affected differently by automation? To
rationalize this finding, it is useful to consider the task composition of the CZs. We
measure the routine-task intensity of local manufacturing and service jobs by construct-
ing two separate routine-task shares.18 We include the initial routine-task shares and
interaction terms with automation, which are also instrumented.
As Table 2 shows, the employment share of routine manufacturing workers plays
an important role for the effect of automation. The interaction term is negative and
significant in all regressions. CZs with a high share of routine manufacturing workers

17For Japan, Nagaoka et al. (2010) report that the share of patents held to prevent other firms from using
certain technologies (“blocking patents”) is 40% in chemicals and 30% in drugs.

18We use Census data and follow Autor and Dorn (2013). Since we lack the geographical data necessary
to construct CZ measures for 1970, our sample starts in 1980.
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Table 2: Automation and routine-task intensity by sector

A. total B. manufacturing C. non-manufacturing
employment employment employment

VARIABLES (1) (2) (3) (4) (5) (6)

autoint 0.448*** 0.497*** -0.101* -0.0825 0.463*** 0.500***
(0.167) (0.170) (0.0558) (0.0519) (0.129) (0.127)

routine manuf. -0.493 5.771** -0.0722 2.453* -0.201 3.513*
(0.356) (2.943) (0.179) (1.480) (0.233) (1.866)

routine nonmanuf. 0.0748 0.394 -0.0384 0.00966 0.105 0.805
(0.260) (1.840) (0.120) (0.520) (0.260) (1.664)

autoint×routine manuf. -0.473** -0.190* -0.281*
(0.227) (0.112) (0.146)

autoint×routine nonmanuf. -0.0255 -0.00427 -0.0528
(0.134) (0.0355) (0.126)

Observations 4,245 4,245 4,242 4,242 4,246 4,246
R2 0.48 0.48 0.32 0.33 0.43 0.43

Note: Regressions are IV regressions and include the full set of control variables of Table 4 as well as state
and year fixed effects and a constant. Robust standard errors in parentheses are clustered on state. *** p <
0.01, ** p < 0.05, * p < 0.1.

experience a negative net effect of automation on manufacturing jobs and lower job
gains in services. The positive effect of automation on total employment becomes
insignificant for a routine manufacturing share above 0.39, which concerns only 2.6%
of all CZ-time observations. In services, the employment effect of automation is pos-
itive in almost all CZs. For around 5% of CZs, the effect is negatively significant in
manufacturing. So most CZs still experience positive employment effects, but the task
composition affects the size of the effect. In contrast, the coefficient on the interaction
term between the routine non-manufacturing employment share and automation is
never significant. The positive effect of automation on service jobs is therefore not
due to within-sector reallocation, but the results suggest that when automation makes
production (in manufacturing) more efficient, scale effects arise, which benefit the
service sector, but have no significant net effect on manufacturing jobs.
The level effect of the routine manufacturing share is insignificant, but in the absence of
any automation innovations (setting the interaction term to zero), we would observe
higher employment gains in routine-intensive CZs. Even though the effect is economic-
ally small, this is a noteworthy result. If no automation technology was available, the
fact that a CZ has a high routine-manufacturing task share would not be associated
with job losses. We interpret this finding such that repetitive manufacturing tasks still
play an important role in production and may even have gained importance over time.
It is only because these tasks get increasingly carried out by automated machines, that
we see a decline in employment in routine-intensive occupations.
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4.3 Sub-industries

Figure 5: Regression results for detailed industries
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Note: Representation of regression coefficients and confidence intervals with significance levels
for regressions as in Table 1, column (2). Industries at the level of 1- and 2-digit SICs.

The results in Table 1 mask large underlying differences across sub-industries. Figure
5 zooms in on more detailed industries. Here, we replace the left-hand side of eq. (2)
by employment changes within sub-industries, which correspond mostly to 2-digit
SICs. Within the manufacturing sector, there is a large degree of variation between
negatively and positively affected industries. The most negative effect of automation
falls on industrial and commercial machinery and computer equipment manufacturing,
followed by transportation equipment manufacturing. The production processes in
these industries can presumingly be easily carried out by machines – robot assembly
lines in car production come to mind. In contrast, the production of chemicals and
pharmaceuticals or wood products might involve more manual and precision work,
which are more difficult to automate. In the service sector, no industry loses jobs due
to automation, whereas a number of industries see large employment increases. The
strongest positive effect is in mining. We can only speculate about the reasons. Possibly,
automated machines allow miners to exploit new resources or apply new exploitation
techniques that allow for larger scale of operations. Business services, the second largest
beneficiary, includes computer programming and other computer services as well as
advertising, rental and leasing. As the increase in software patents goes along with a
growing importance of computers at the workplace and in daily life, it is not surprising
that computer services are among the beneficiaries of this development.
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4.4 Sub-periods

Figure 6: Effects by year
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Note: Effect of automation for different years. The graph shows point estimates and 95%
confidence intervals.

Automation technology has not just increased rapidly over our sample period, but
the nature of automation patents may also have changed over time. It is therefore
natural to ask whether the labor market effects of automation have gotten stronger
or weaker. To answer this question, we add interaction terms of year dummies with
autoint. Figure 6 illustrates that the positive labor market effects of automation are
mostly concentrated in the first half of the sample: Total employment (left graph) enjoys
significant employment gains only until the mid-1990s. The more negative outcome
since the 2000s is mostly driven by significant job losses in the manufacturing sector
(middle graph). Non-manufacturing employment (right graph) increased throughout
the whole sample period, but the effect weakened over time. An exception is the
2007-2011 period with significant creation of service sector jobs. This period was
marked by the global financial crisis and the subsequent economic recovery, and it
remains an open question whether the positive effect is sustainable or reverts in the
following years. Overall, the findings suggest that more recent vintages of automation
technology might be more harmful to human workers than older vintages, especially
in manufacturing. This may either be due to the fact that machines are able to carry
out more and more complex tasks, limiting the range of jobs where human workers
still enjoy a cost advantage over machines. An alternative explanation is that new
automation technology does not boost productivity as much as earlier vintages, so that
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demand for non-automated tasks is growing less (Acemoglu and Restrepo, 2019).

4.5 Wage effects

Table 3: Wage effects of automation

A. total B. manufacturing C. non-manufacturing
employment employment employment

VARIABLES (1) (2) (3) (4) (5) (6)

autoint 0.0116 0.0470*** 0.00723 0.0440*** 0.00959 0.0607***
(0.00904) (0.0168) (0.00701) (0.0157) (0.00913) (0.0183)

autoint -0.0584 -0.138*** -0.115***
× routine manuf. (0.0463) (0.0415) (0.0419)

autoint -0.145*** -0.107** -0.192***
× routine nonmanuf. (0.0497) (0.0480) (0.0539)

Observations 77,222 77,222 54,131 54,131 75,291 75,291
R2 0.09 0.10 0.06 0.06 0.09 0.10

Note: Regressions are IV regressions and include the full set of control variables of Table 1, the initial
routine-task shares as well as state and year fixed effects and a constant. Robust standard errors in
parentheses are clustered on state. *** p < 0.01, ** p < 0.05, * p < 0.1.

Automation may not just affect the number of jobs, but also the price of labor. To get a
full picture of the labor market effects of automation and assess the welfare effects as
well as potential policy responses, it is therefore important to also study wages. We
analyze the effect of automation technology on log-hourly wages over three ten-year
periods (1980-1990, 1990-2000 and 2000-2010) using Census data. Wage changes are
calculated for 80 demographic cells in each CZ, grouping individuals by education, age,
race and gender. Details on the construction of the dataset can be found in Appendix A.
As Table 3 shows, there is no significant level effect of automation technology on wages.
However, we find pronounced differences across routine and non-routine intensive CZs.
In a local labor market with zero routine jobs, a one-unit increase in automation would
lead to a 5% increase in wages according to column (2). In contrast, if all jobs were
routine service jobs, we would see a wage loss of 10%. The wage effect of automation
turns negative for routine-service intensities above 32%, which can only be found in
4% of CZ-time observations. In contrast to the findings in Table 2, it is the routine
share of service jobs that affects wages rather than the routine manufacturing share.
When considering the wage effects for the manufacturing or service sector separately,
however, both interaction terms are significant. Those groups that enjoy employment
gains from automation thus also experience wage gains - another piece of evidence
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pointing to polarizing effects of automation.

4.6 Discussion

We find that an increase in the supply of available automation technology leads to a
rise in employment in U.S. local labor markets. The effect of automation is therefore
benign. Our results are more positive than some findings in the literature, but align
with others. The various extensions and sub-analyses we presented help to shed light
on the origins of this disagreement.
Our analyses show that the effect of automation differs across sectors. Papers that find
negative or insignificant effects often focus mainly on the manufacturing sector, e.g.
by studying robots (Graetz and Michaels, 2018; Acemoglu and Restrepo, 2020). In line
with these papers, we find that the transport equipment and machine manufacturing
industries – where most robots are used – experience employment losses, but we also
show that some sub-sectors within manufacturing benefit. Automation has strongly
positive effects in the service sector. This finding aligns with Autor and Dorn (2013),
who report that automation increases the share of (non-college) service sector jobs.
Gaggl and Wright (2017) and Akerman et al. (2015) identify employment gains from
information and communication technology in jobs that are also more typically found
in the service sector (notably, cognitive non-routine jobs). However, these papers do
not distinguish explicitly between sectors.19

Our findings suggest that automation may be a driving force behind structural change,
the secular shift of economic activity from manufacturing to services. In follow-up
work, Mann (2021) studies this question in more detail. Interpreting automation as
a type of capital-embodied technology, she finds that it contributes somewhat to the
decline of the manufacturing sector.
In line with the literature on routine-biased technological change (e.g. Autor et al., 2003;
Acemoglu and Autor, 2011; Autor and Dorn, 2013; Autor et al., 2015), we find that
CZs with a high share of routine jobs experience more negative effects of automation.
We add further nuance to this result by showing that it is routine manufacturing jobs
that suffer from automation rather than routine service jobs. At the same time, job
losses are more than compensated by positive effects of automation in the service sector.
This finding aligns with theoretical literature, e.g. Acemoglu and Autor (2011) and
Acemoglu and Restrepo (2018), who argue that automation should displace workers
carrying out directly affected tasks, but on the other hand lead to the creation of new
jobs in other occupations or sectors that enjoy productivity gains from automation

19We also tried to separate the effect of robots from that of computer hardware and software more
explicitly by studying the technology class of automation patents. Unfortunately, not all technology
classes are associated with either one or the other type of automation, which is why the results do not
provide a clear answer. See Online Appendix Section 6.4 for details.
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technology (services in our case). We also show that routine jobs are proportionately
more in danger of being automated if the appropriate technology is available. This,
however, may happen gradually and at an unequal pace, so that the fact that a job is
routine-intensive is not immediately conclusive about whether and when it will be
automated. Still, the routine-task share serves as a good proxy for automatability.
The literature is also divided on the effects of wages. Here, our results support the
findings by Autor and Dorn (2013), who find that wages in routine-intensive jobs
decrease, whereas they increase elsewhere. Graetz and Michaels (2018) and Gaggl and
Wright (2017) also report positive wage effects of automation, whereas Acemoglu and
Restrepo (2020) find negative wage effects of increased robot usage.
Our CZ-level analysis masks differences in labor demand across firms. Not all employ-
ers in a CZ will adopt new automation technology to the same extent. Fast adopters
may change their labor demand more radically and their choices may affect other firms,
generating worker movements between firms within CZs (see Gaggl and Wright, 2017).
It is therefore plausible that automation technology has more positive or negative effects
on subsets of firms than on the local labor market as a whole.
In studying the employment effects of automation, we have focused on (potential)
technology usage. But the development of automation technology may also create
or cost jobs. In Online Appendix Section 3, we explore the employment effects of
inventing and producing automation technology. Our results document effects that
tend to be negative, which is probably not due to layoffs by the patenting firm, but
rather by its local competitors. It is well documented that there has been a rise in
concentration within industries over the last decades and that a few superstar firms
employ an increasing share of workers (see e.g. De Loecker et al., 2020; Autor et al.,
2020). These agglomeration effects might cost jobs, and thus somewhat reduce the
positive effects of automation.

5 Conclusion

This paper adds to the ongoing debate about the effect of automation technology on
labor market outcomes. We make two contributions: Firstly, we provide a new indicator
of automation by applying a text classification algorithm to the universe of U.S. patents
granted 1976-2014. Our automation measure includes a wide range of technologies,
from labor-saving technologies such as robots or software to other types of automated
machines and processes, which may affect the production process in various ways.
Linking patents to the industry of their use and to CZs, we construct geographical
intensities of newly available automation technology.
The second contribution is a fresh assessment of the labor market effects of automation.
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We show that new automation technology increases the employment-to-population
ratio at the CZ level. These effects are driven by job growth in the service sector.
Automation is less beneficial in routine-intensive CZs and the employment gains
from automation have become weaker over time. We identify these effects in an IV
estimation, where we instrument patents filed by U.S. firms by patents whose assignees
are universities or public research institutes, governments or foreigners, and which are
likely less responsive to developments in U.S. labor market.
A more general contribution of this paper is that it pioneers a way of extracting trends
in innovation from patent texts which can also be used to study the effects of other
technologies on the economy.
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A Additional details on data sources

Summary statistics for the main variables

Table A1: Summary statistics of main variables in baseline regression

Variable Source Mean Std. Dev Min Max

Overall Between Within

∆ emp/pop CBP & PEP 1.42 3.33 0.97 3.19 -11.16 13.10

∆ manuf.
emp/pop

CBP & PEP -0.45 1.30 0.61 1.16 -5.59 4.18

∆ nonmanuf.
emp/pop

CBP & PEP 1.87 2.67 0.77 2.56 -9.79 12.00

autoint own data 13.82 2.59 1.18 2.31 6.39 26.01

non-autoint own data 17.62 1.82 1.36 1.22 8.55 30.19

manuf. share CBP 0.23 0.14 0.12 0.06 0.00 0.75

population PEP 11.54 1.57 1.57 0.12 6.95 16.68

income REIS 3.16 0.27 0.17 0.22 2.17 4.58

nonwhite PEP 0.11 0.13 0.13 0.02 0.00 0.84

female Census & ACS 0.51 0.07 0.06 0.05 0.20 0.75

old Census & ACS 0.19 0.05 0.04 0.02 0.04 0.39

non-college Census & ACS 0.86 0.05 0.05 0.03 0.57 0.96

routine manuf. AD, Census & ACS 0.07 0.12 0.09 0.08 0.00 1.00

routine non-
manuf.

AD, Census & ACS 0.22 0.19 0.13 0.14 0.00 1.00

Note: AD: Autor and Dorn (2013). CBP: County Business Patterns. PEP: Census Population and
Housing Units Estimates. REIS: Bureau of Economic Analysis, Regional Economic Information
System. ACS: American Community Survey. Data from the Decennial Census cover 1980, 1990 and
2000. ACS data start in 2005. In constructing the demographic variables, we interpolate Census
observations and set ACS observations equal to midpoint of the reported five-year periods.

Assignee dataset

Table A2 shows summary statistics for patents by the different groups of assignees.
Domestic and foreign firms are the largest groups, with more than 1.8 million patents
each. Based on the classification by Lai et al. (2011), we identify 45,000 patents that
are assigned to governments. The most important assignees in this category are the
U.S. Navy with 10,922 patents, the U.S. Army with 6,217 patents, the US Department
of Energy with 4,416 patents, the U.S. Air Force with 3,448 patents and NASA with
2,823 patents. The largest foreign government institutions owning US patents are
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Table A2: Assignee summary statistics, 1976-2012

Assignee Patents Automat Share Cit. Cit. Length
(1000s) (1000s) (weighted)

US firm 1875.7 877.9 47% 12.2 1.24 1012.4
foreigners 1827.8 746.3 41% 7.1 0.78 831.5
universities 115.1 39.5 34% 10.4 1.03 1435.9
governments 44.8 16.2 36% 8.6 0.75 701
missing 609.9 169 28% 9.7 0.91 653.7

total 4473.3 1848.9 41% 9.7 1 897.4

Note: “Automat” are automation patents as described in text. “Cit.” are the average
number of citations, “Cit. (weighted)” are the number of citations after removing
time-subclassification (HJT) means. “Length” is the average number of lines in a
patent document.
Source: Lai et al. (2011) and own calculations.

French nuclear energy and aviation commissions and the British and Canadian defense
ministries. To identify patents assigned to universities and public research institutes, we
inspect the 10,000 assignees with the most patents and individually determine whether
they fall in this category. We find 581 such entities holding a total of 115,000 patents.
The most productive are the University of California (5,400 patents), the Industrial
Research Institute of Taiwan (4,289 patents), the Massachusetts Institute of Technology
(3,897 patents), the Electronics and Telecommunications Research Institute of South
Korea (3,606 patents) and the French Institute of Petroleum (2,471 patents). For the
remaining 610,000 patents we do not know the assignee, as this information is missing
in Lai et al. (2011). A casual inspection of these patents suggests that most of these also
belong to U.S. firms or individuals, which is why we bundle them with the U.S. firms
in the econometric analysis.
Table A2 shows that patents held by US firms are characterized by a larger share of
automation patents and are more widely cited than those held by other assignees. This
hints that the US company-held patents are more widely applicable. Nevertheless,
many of the other patents are also economically relevant, since for example in the year
2000, U.S. universities and U.S. public research institutions issued about 7000 patent
licenses to firms (OECD, 2003). The length of the patent texts in our dataset also varies
by assignee group, which is a symptom of the different kinds of innovations they entail.
The number of automation patents when only counting patents of foreigners or uni-
versities is highly correlated with our baseline indicator. The correlation is 0.88 for
universities and 0.95 for foreigners after removing time and industry trends. This is not
the case for government patents for which the correlation is 0.04. Correlations for the
total number of patents by industry are also positive for foreigners and universities,
but negative for governments. So while automation innovations by foreign and univer-
sity patentees seem to be applicable in similar industries as automation innovations
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patented by US firms or individuals, this is not the case for government patents.

Wage dataset

In the wage regressions, we study changes over ten-year periods due to data restrictions.
The ten-year autoint measures is created analogously to the five-year measure of eq. (1).
For wages, we use data from the Census Integrated Public Use Micro Samples for 1980,
1990 and 2000 and from the American Community Survey for 2010. We follow Autor
and Dorn (2013) in selecting the worker sample. We measure wage as the hourly wage,
which is the annual wage and salary income divided by the annual number of hours
worked (a multiple of annual weeks worked and the usual hours worked per week).
Values are in 2012 US Dollars. To map county or Public Use Micro Areas (PUMA) data
to CZs, we use the crosswalks from David Dorn’s website.
In the estimations, we closely follow the set-up of Acemoglu and Restrepo (2020): We
define 80 demographic cells as groups of individuals by education (four bins), age
(five bins), race (white vs. nonwhite) and gender (female vs. male) and for each year
and CZ compute average wages within each group. In this way, we can track changes
in wages of an average individual within each demographic cell across decades. We
define our main outcome variable of interest as the ten-year log-change in wages at the
demography-CZ level, and also create separate measures for wages of manufacturing
and non-manufacturing workers. The resulting panel is unbalanced as there are no
observations for some cells in a subset of CZs. We weight all observations by the
employment share of each demographic cell in the CZ and year.

B Additional results

First stage results

Table B1 shows the first-stage of the IV regressions of Table 1. Note that since the
trimming of the employment data resulted in slightly different samples, the coefficient
estimates differ across the three specifications. As the F-statistics show, the instruments
have high predictive power. We report both the Cragg-Donald Wald statistic and the
Kleinbergen-Paap rk Wald F statistic as the robust version for clustered standard errors.
The values are always much higher than the value of 10 and the critical values of
Stock and Yogo (2005). The two instruments based on government and foreign patent
assignees are highly correlated with the endogenous automation measure and have the
expected sign. In contrast, the coefficient on research institutes’ patents is insignificant
or even negative. This does not necessarily mean that autoint res has no predictive
power, but we interpret this rather as evidence of the fact that the three instruments are
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Table B1: First stage results

(1) (2) (3)
total manuf. non-manuf.

employment employment employment

autoint gov 0.415*** 0.411*** 0.429***
(0.0874) (0.0832) (0.0878)

autoint res -0.112 -0.116 -0.123*
(0.0732) (0.0756) (0.0729)

autoint fgn 0.606*** 0.610*** 0.607***
(0.0373) (0.0380) (0.0364)

Observations 4,953 4,949 4,954

F-stat (Cragg-Donald) 3716 3732 3662
F-stat (Kleibergen-Paap rk) 320.2 304.4 347.4
Stock-Yogo crit. value 15.72 15.72 15.72

Hansen J-stat 5.988 16.02 5.696
P-val 0.200 0.00299 0.223

Note: The table presents first-stage results for the baseline regressions as
shown in Table 1. Standard errors clustered at state level in parentheses. *** p
< 0.01, ** p < 0.05, * p < 0.1.

highly correlated with each other, so that they are to a large extent capturing a similar
part of the variation in the endogenous automation measure. We present a number
of robustness checks in Online Appendix Section 5. The regression results are very
similar when using only government and foreign patents as instruments or collapsing
the patents in all three assignee categories into a joint measure. We also run separate
regressions using only one of the three instruments at a time and discuss which role
each of the instruments plays in explaining the results.
The overidentification test does not reject the null hypothesis of valid instruments in
columns (1) and (3), but rejects in column (2). Based on our economic argumentation, we
still think that in particular government and university/research institutions’ patents
are exogenous to U.S. labor market development. The low p-value of the overidentific-
ation test might rather stem from the employment shares, not the patent data, being
endogenous. In Online Appendix Section 5 we address this issue by carrying out an
alternative estimation method which requires only the patents to be exogenous.
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