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Subjective Bond Returns and Belief Aggregation

Andrea Buraschi Ilaria Piatti Paul Whelan

Abstract

The forecasting literature has presented overwhelming evidence that the aggregation of heterogeneous
expectations leads to improvements in forecast accuracy; however, outperforming a simple equal weight-
ing scheme has proved challenging. This paper proposes an aggregation scheme of subjective bond
return expectations based on the historical accuracy of professional interest rate forecasters. Our ag-
gregate belief proxy outperforms equal weight and median weight combinations and is comparable to
statistical projections even if its dynamics are quite different. With this measure at hand, we study
the relationship between quantities of risk and compensation for risk and demonstrate a strong link to
subjective expectations even if this is difficult to detect using realized returns.
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The estimation of expected returns is a central tenet of empirical asset pricing. It is, therefore, not

surprising that a variety of measurement approaches exist, ranging from simple historical averages to

sophisticated time-series models. Surveys are an alternative measurement approach, whose availability

has grown substantially over time, and are often available at the individual forecaster level. This greatly

increases the information available for measurement but poses challenges in how to aggregate heteroge-

neous survey forecasts. The most common approach when using surveys is to focus on consensus beliefs,

defined as an equally weighted average expectation, which is consistent with a conclusion from the forecast

combination literature that shows simple average forecasts are hard to beat in practice.

Motivated by the idea that simple averages might overlook useful information in the cross-section of

beliefs, this paper studies the aggregation of subjective bond return forecasts. Our main result demon-

strates that persistence in accuracy can be exploited to construct a novel real-time weighting of individual

beliefs, which outperforms common benchmarks, and is simple to implement: we discard historically bad

forecasters and form an expectation from the remaining good forecasters’ beliefs.

To establish this result, we estimate subjective bond return expectations from a monthly panel of pro-

fessional market participants’ beliefs about future U.S. Treasury yields. The availability of disaggregated

survey data is important since it allows us to track the relative performance of forecasters over time, which

is the key step in constructing a forecast combination that beats the simple average.

We begin by studying the cross-sectional properties of expectations about bond returns. At the

one-year forecast horizon, we document large disagreement about future bond returns which is highly

persistent. Forecasters in the top or bottom quartiles of the distribution of beliefs have around a 40%

probability of remaining in that quartile in the following year.

The cross-sectional distribution of bond return forecast accuracies also displays large heterogeneity;

moreover, it is skewed towards bad forecasters. For the 10-year bond, 37% of the forecasters statistically

underperform the consensus at the 5% level, while 9% outperform the consensus. Most importantly,
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accuracy is persistent: forecasters who are good tend to remain good and forecasters who are bad tend

to remain bad. Forecasters in the top quartile of the cross-sectional distribution of accuracy have a 49%

probability of being in the same quartile the following year, and they transition to the bottom quartile of

the distribution with a probability of only 3%.

Persistence in accuracy allows us to identify the best and worst forecasters ex-ante. We propose

and study a real-time measure of aggregate subjective expected excess bond returns that (a) accounts

for agents’ performance records; (b) does not rely on parameter estimation; and (c) accounts for time

variation in forecasting environments. We denote this measure EBR?
t which stands for ‘Expected Bond

Returns’. Each month we compute relative accuracies defined as a percentile position in the cross-sectional

distribution of squared forecast errors. Then, we compute the median of the accuracy ranking percentiles

over 5-year rolling windows ending at time t for each agent and sort them. Finally, we select the top

quartile of agents and aggregate their beliefs with linear weights that are increasing in past accuracy.

This measure is available for the cross section of U.S. long term bond maturities, although in the paper

we focus on 5 and 10-years tenors, and is available in real time from January 1988 to January 2020 at

monthly frequency.

The difference between EBR?
t and the equally weighted consensus belief can be substantial, varying

between -2% and +5% for 10-year bonds. Moreover, the mean squared forecast errors implied by EBR?
t

are smaller than those of equal weight or median forecasts and this difference is strongly statistically

significant. The outperformance of EBR?
t is quite striking given the conclusion from the forecast com-

bination literature that, once estimated, theoretically optimal combinations struggle to beat an equally

weighted consensus measure.

A decomposition of mean squared errors into squared mean errors and error variances shows the

existence of a trade-off in the construction of an aggregate measure. On the one hand, including a large

number of agents achieves greater forecast error diversification; on the other hand, this comes at the cost
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of introducing the beliefs of agents with larger average forecast errors. We document the existence of an

interior solution that balances out these two effects and maximizes overall accuracy. Selecting the 25%

of agents who have been more accurate in the past, and assigning them weights that are increasing in

historical performance, is an effective and simple way to address this trade-off. Moreover, we also find that

while it is important for the econometrician to use information on agents’ accuracy beyond 12-months,

this information eventually becomes redundant and one should discount information from the distant past.

We study the robustness of our measure along different dimensions and show that the outperformance

of EBR?
t with respect to the consensus holds in different forecasting environments and that the agents

selected by our procedure tend to have both low mean errors and low error variance. This suggests EBR?
t

agents are genuinely skilful and were not just lucky to have been relatively pessimistic about future yields

in a period of generally decreasing interest rates.

We provide an alternative statistical validation of our aggregation scheme using a Bayesian model

averaging approach. An asset manager with the prior belief that all groups of forecasters have identical

skill at the beginning of our sample would have learned to assign a weight of 100% to the quartile of most

accurate agents half way through our sample, and zero to the remaining three quartiles.

Our aggregation approach contributes to the literature that explores optimal forecast combinations.

Related to our work, Aiolfi and Timmermann (2006) show that competing forecasting models display

persistent periods of out-performance but also switch, that is, at times the best models become the worst

and vice versa. This is consistent with our selection approach that considers rolling relative accuracy as

a sorting variable. Our approach also relates to Diebold and Shin (2019) who propose a LASSO-based

procedure that sets some combining weights to zero and shrinks the survivors toward equality. Their

results suggests that the vast majority of forecasters should be discarded, and the remainder should be

averaged. A notable difference between our paper and existing literature is our focus on expected bond

returns. In fact, the forecast combination literature mostly studies macroeconomic variables such as GDP
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growth or inflation. This may be due to a belief that survey expectations of financial returns are not

consistent with rational expectations models (see e.g. Greenwood and Schleifer (2014) for expected stock

returns).

However, when we compare the properties of our survey-implied measure to predictions from bench-

mark equilibrium models which link variation in expected excess returns to conditional variances of state

variables, we find a statistically strong correlation whose sign makes sense economically. The risk factor

proxies we consider include economic uncertainty, dispersion in beliefs, consumption surplus, realized and

risk-neutral volatilities. We find quantities of risk can explain subjective expected excess returns with R2

ranging between 20% and 30% with highly significant regression coefficients. The loadings on the factors

are consistent with rational expectation models that predict investors demand compensation for holding

volatility risk. These findings provide a partial explanation for a long standing puzzle that fails to detect

a relationship between quantities of risk and expected excess returns. We argue that empirical results

based on projections on ex-post realizations can be quite different from ex-ante investors expectations and

that our measure can capture the link between risk compensation and the quantity of risk more precisely.

The paper proceeds as follows. Section 1 presents the data, reports the properties of the cross section

of subjective expected excess bond returns, and documents their degree of heterogeneity and persistence.

Section 2 investigates the accuracy of the forecasters. Section 3 describes our aggregation approach and

compares it to standard consensus measures and also to common statistical measures of expected excess

bond returns. Section 4 discusses the implications when an econometrician uses our EBR? measure to

examine the link between bond expected excess returns and the risk factors emerging from structural

models. Section 5 concludes. Finally, further empirical results and robustness checks are provided in an

Online Appendix (OA).
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1. The Cross Section of Beliefs

1.1. Data

BlueChip Financial Forecasts (BCFF) is a monthly survey providing extensive panel data on the expec-

tations of professional economists working at leading financial institutions about all maturities of the U.S

yield curve and economic fundamentals, such as GDP and inflation. We construct real-time measures of

subjective expected excess bond returns from BCFF for the sample period January 1988 to January 2020.

Our empirical approach exploits institution specific forecasts for Treasury bills with maturities 3-

months/6-months, Treasury notes with maturities 1, 2, 5, 7, 10-years, and the 30-year Treasury bond.1

The contributors to BCFF are asked to provide point forecasts at horizons that range from the end of

the current quarter to 5 quarters ahead (6 from January 1997). We restrict the panel such that agents

must contribute at least 60 times with a minimum number of 4 interest rate projections per month

which generates an unbalanced panel of 89 agents where the median number of contributions to the

panel is around 140 months. To obtain expected zero coupon discount rates we estimate a Nelson-Siegel

(NS) model on individual agent subjective par-yield forecasts. We calculate the term structures using

all available maturities (including 30-year Treasury yield forecasts) and obtain a monthly panel data

of expected constant time-to-maturity zero coupon (continuously compounded) discount rates.2 In the

following, we retain bond maturities evenly spaced between 1 and 10 years. One complication of BCFF

is that while surveys are conducted on a monthly basis the projections are reported on a future quarterly

calendar cycle so that the forecast horizon varies each month. To construct a j-quarter ahead constant

maturity forecast we linearly interpolate along adjacent horizons.3

1Forecasters are identified by institution’s name. For example, ‘J.P. Morgan’ or ‘Goldman Sachs’ or ‘Fannie Mae’. In the
paper we use the terms agent and institution interchangeably.

2We note that while these objects are actually estimated subjective expected zero-coupon yields, since they are not
elicited directly, in what follows we drop the qualifier ‘estimated’ to save space.

3Data are available from 1983 but we show in Section 1 of the OA that the number of contributors and quality of the
data improves substantially from 1988, which is where we begin our sample. The OA also reports a detailed discussion of
the BCFF data and our construction of constant maturity zero-coupon yield expectations.
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For realized bond data we use zero-coupon bond yields provided by Gürkaynak, Sack, and Wright

(2006) for the sample period June 1961 to January 2021, which are available from the Federal Reserve

website, and in robustness tests we use par yields reported in the Federal Reserve’s H.15 release.

1.2. Subjective excess bond returns

Given information on expectations about the cross section of future interest rates, BCFF allows us to

compute individual subjective expected excess bond returns as follows. Let pnt be the logarithm of the

time-t price of a risk-free zero-coupon bond that pays one unit of the numeraire n-years in the future.

Continuously compounded spot yields are then defined as ynt = −pnt
n . We can compute the implied cross

section of expected excess bond returns (EBRs) with 1-year (12 months) forecast horizon as erxni,t =

Ei
t

[
pn−1t+12

]
− pnt − y1t since from the surveys we directly observe yield forecasts Ei

t

[
yn−1t+12

]
:

erxni,t = −(n− 1)×Ei
t

[
yn−1t+12

]︸ ︷︷ ︸
Survey Yield

Forecasts

+nynt − y1t (1)

where t is measured in months, that is our observation frequency, and the bond maturity n is expressed

in years.4

1.3. Belief heterogeneity and persistence

The top panel of Figure 1 displays the forecasts of the 10-year expected excess bond returns from each

agent. The figure documents significant time-series variation of the entire distribution of beliefs and

clarifies the extent of cross-sectional dispersion around the consensus. The plot suggests there are no

outright ‘crazy ’ forecasts even though we do not winsorize. It also highlights that while on average

subjective expected excess bond returns are positive, there are a significant number of periods in which
4The literature studying yield predictability often focuses on continuously compounded log yields and interprets expected

excess log returns as risk premia. However, risk premia should really be measured from expected excess simple returns,
which differ from expected excess log returns by a convexity term. While in realized data the difference between simple and
log returns is known to be small. Section 1 in the OA shows this approximation is even tighter using surveys expectations.
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they are negative and, indeed, at some points towards the end of the sample almost the entire distribution

of beliefs shifts below zero.5

The bottom panel of Figure 1 highlights the time variation in heterogeneity by plotting the cross-

sectional interquartile range of subjective excess bond returns for 5 and 10-year maturities. Disagreement

about bond excess returns is clearly time-varying, large and persistent. For the 10-year bond, the average

value of the interquartile range is around 5 percentage points, which is one order of magnitude larger than

the median value of the expected 10-year bond excess return, that is around 0.6%.6

Given the relatively long forecast horizon (1-year) and the nature of the target variable (a multivariate

function of the state of the economy) we believe it is unlikely that such disagreement originates from

private information or differences in information sets. Instead, it is more likely due to heterogeneity in

priors or models as argued by Patton and Timmermann (2010), or to information frictions as argued by

Andrade, Crump, Eusepi, and Moench (2016).

[ Insert Figure 1 here ]

In order to quantify the persistence in beliefs, we compute annual transition probabilities between

quartiles of the distribution of forecasts. Table 1 shows the probability of a forecaster transitioning from a

given quartile of the cross-sectional distribution to another quartile in the following year (annual horizon).

To assess statistical significance, we compute confidence intervals by simulation under the null of zero belief

persistence, explicitly accounting for the unbalanced nature of our panel. Specifically, within each year we

sample from the data those agents contributing to the panel and compute a random permutation of their

beliefs with replacement so that every 12 periods the panel indices are randomized. Resampling from the

data 1000 times we compute the distribution under the null. If beliefs were not persistent, the entries

in these transition matrices should be approximately equal to 25%. Instead, we find that transitions in
5Figure 8 in the OA displays the fractions of positive versus negative forecasts at each point in time.
6Summary statistics for the quartiles of the distribution of subjective expected excess bond returns, for maturities of 5

and 10 years, are provided in Table 4 of the OA.
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the outer quartiles is highly persistent and statistically higher than 25%. For example, for the 10-year

bond, forecasters in the top quartile (Q1) have a probability of 41% to remain in the same quartile of the

distribution, while they have a probability of 14% of transitioning to the bottom quartile (Q4). Belief

persistence in the bottom quartile is quantitatively similar.

[ Insert Table 1 here ]

2. The Cross Section of Errors

2.1. Heterogeneity in accuracy

We now turn our attention to heterogeneity in forecasting ability. For each contributor i, we compute

forecast errors (FEn
i,t+12) and mean squared errors (MSEn

i ) at the one year horizon

FEn
i,t+12 = rxnt+12 − erxni,t (2)

MSEn
i =

1

Ti

Ti∑
t=1

(FEn
i,t+12)

2 (3)

where rxnt+12 is the realized excess return on an n-period bond and Ti is the total number of contributors to

the BCFF panel for agent i. In the following, we also study mean forecast errorsMEn
i = 1

Ti

∑Ti
t=1 FE

n
i,t+12,

squared mean errors SMEn
i = (MEn

i )2 and error variances EV ARn
i = MSEn

i − SMEn
i . Figure 2

summarizes the cross-sectional distribution of MSEs.7 The figure demonstrates significant unconditional

heterogeneity in accuracy for both bond maturities, and the 10-year bond MSE distribution is positively

skewed. Indeed, a large fraction (∼30%) of the distribution have root-mean-square errors in excess of

10%.

[ Insert Figure 2 here ]
7Our panel is unbalanced so individual forecast errors are computed over different samples. Section 2 of the OA explores

in greater detail the statistical properties of heterogeneity in accuracy. In Section 3 that follows, we explore conditional
properties of heterogeneity in accuracy and the decomposition of MSEs into SMEs and EV ARs.
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Figure 3 plots the cross section of Diebold and Mariano (1995) (DM) test statistics, computed at the

individual agent level for each of our 89 forecasters, under the null hypothesis thatMSEs are equal to the

consensusMSE, against the one-sided alternative. Throughout the paper, we calculate DM test statistics

and associated p-values as in Harvey, Leybourne, and Newbold (1997). There are two learning points to

be extracted. Firstly, the cross-sectional distribution of DM test statistics is not only disperse but strongly

skewed towards bad forecasters. Secondly, a large fraction of forecaster accuracy is statistically different

than the consensus. For the 10-year bond, 37% of the forecasters statistically underperform, while 9%

outperform the consensus, at the 5% level.

[ Insert Figure 3 here ]

2.2. Persistence in accuracy

A natural question that arises at this point is whether heterogeneity in accuracy is persistent. To address

this question, we compute annual transition probabilities on MSEs, defined as the probability that

forecasters in a given quartile of the MSE distribution at time t stay in that quartile the following year

or move to a different quartile of the distribution. We find strong evidence of persistence in accuracy,

especially in the outer quartiles, which are all significantly different than 25% at the 1% level. Statistical

inference is conducted under the null of no persistence by resampling randomly from the data as in Section

1.3. For example, for the 10-year bond, a good forecaster (Q1) has a probability of 49% of being a good

forecaster the following year. The probability that a bad forecaster (Q4) remains a bad forecaster is even

higher, equal to 63%. Transitioning from Q1 to Q4, or from Q4 to Q1 is highly unlikely, with probabilities

less than or equal to 3%. Interestingly, comparing Tables 1 and 2, we can see that the persistence in

accuracy is even stronger than the persistence in beliefs.

[ Insert Table 2 here ]
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3. A Real Time Measure of Subjective Bond Returns

Given the large heterogeneity in subjective bond return expectations, it is not surprising that one can,

ex-post, identify forecasters that are significantly better than others, but this does not imply that ‘good’

forecasters are identifiable ex-ante. While the persistence in forecast accuracy suggests that this might be

possible, it is an open question whether there exists an aggregation method that would allow a decision

maker to combine beliefs in real time to improve forecast accuracy relative to a simple aggregation, such

as an equally weighted consensus measure. This is a non-trivial task, since a large literature has shown

that while simple averages are not theoretically optimal under mean-square-error loss criteria, empirically

they often outperform implementations of theoretically optimal weights (‘the equal weights puzzle’).

To highlight this point, using our dataset and for our sample period, Table 3 reports the forecasting

performance of two empirical implementations of the theoretically optimal mean-square-error loss weights

vis-à-vis the equally weighted consensus forecast. In the first row of each panel we estimate the optimal

weights of Bates and Granger (1969) (BG), which depend on error variances and covariances. Empiri-

cally, estimating the off-diagonal elements of the covariance matrix is numerically challenging so we follow

common advice and set them to zero. The second row of each panel uses the optimal weights imple-

mentation of Granger and Ramanathan (1984) (GR), which is the outcome of a restricted least squares

regression. Here, we follow these authors and relax the unbiasedness assumption by including a constant

with unrestricted weights. The BG and GR weights are estimated in real-time using 5-year rolling win-

dows. Summarizing, once estimated, optimal weights do not outperform simple averages. Focusing on the

10-year bond, the BG weights generate MSEs that are larger than the consensus, while the GR weights

generate smaller MSEs but not significantly so. Section 3 in the OA reports the forecasting performance

of a wider set of existing aggregations and shows that, amongst the alternatives we consider, only the

median forecast beats the equally weighted average.
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[
Insert Table 3 here

]

3.1. The aggregation scheme

The results of the paper so far suggest that deviating from an equally weighted forecast combination might

lead to an improvement in the accuracy of the survey-implied expected excess bond returns. However, we

have just shown that traditional aggregation methodologies do not work well in our setting. Motivated

by these findings, we propose and test a novel aggregation scheme.

The proposed aggregation combines three objectives. First, it does not require the estimation of a

model. Second, it gives greater weight to agents with better historical accuracy. Third, it accounts for

differences in forecasting environments over time and for the unbalanced nature of survey forecasts. For

each time period t:

1. We compute a panel of squared forecast errors over rolling windows [t−N, t] and translate this to a

panel of percentile rankings Rit ∈ (0, 1). An agent with a low ranking corresponds to a low squared

error relative to their cohort.

2. For each agent present at date t, we compute their median percentile ranking over the rolling window

[t−N, t].

3. We select agents in the top Qth percentile of the median percentile ranking distribution, setting the

weights on complimentary agents to zero.

4. We aggregate the expectations of the selected agents using linear weights that are increasing in past

historical rank accuracy, i.e. linearly decreasing in median Rit.

Note that our aggregation approach can be applied to settings with unbalanced panels, as is often the

case with surveys. Moreover, measuring accuracy in terms of historical rankings, instead of the level of

average squared errors, addresses concerns related to heteroskedasticity since we do not favour agents who
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are only present when the level of interest rate volatility happened to be low or, more generally, when the

level of forecast errors is on average smaller.

We label this conditional measure of subjective n-year bond returns EBR?,n
t (N,Q). We denote con-

sensus expectations computed from equal weights as EBRc. We employ expectations running from 1988.1

to 2020.1 and realizations running from 1989.1 to 2021.1, and compute measures in real time using only

current and past information. We focus on the 5 and 10 year maturity bonds and consider the average

percentile rankings Rit across these two maturities in the construction of EBR?,n
t (N,Q).8

3.2. EBR? vs EBRc

The most important choice in the construction of EBR?,n
t (N,Q) is the trimming parameter Q which

determines which agents to discard and which agents to keep. Figure 4 summarizes how the forecasting

properties of EBR?,n
t change as a function of Q, for n equal to 5 (left panels) and 10 years (right panels),

and a look-back parameter N equal to 60 months. The top panels show the ratio of MSEs defined as

MSE(EBRc
t )

MSE(EBR?
t )
, when Q is allowed to vary between 0.05 and 1.

[ Insert Figure 4 here ]

A number of learning points emerge. Firstly, theMSE ratio is a humped shaped function of Q. When

Q is chosen to be either very small or very large, our forecast combination has a large MSE compared

to that of the consensus. This is clearly visible as we move from the left of the distribution, where we

combine the beliefs of a small number of historically good forecasters, to the right of the distribution where

the combination tends towards placing a linear weight across all agents. The lowest MSE is attained

for Q ∼ 0.25, i.e., when a quarter of the top performing agents is included in EBR?
t . The finding that

8Constructing EBR?,n based on maturity specific forecast errors produces quantitatively similar results. Indeed, there
is substantial overlap in the selected forecasters and their weights computing accuracy at the forecaster level or forecaster-
maturity level. For example, building weights based on maturity specific errors for the 5 and 10-year maturities, and then
computing the number of times agents appear in each measure as a fraction of times they appear in the dataset, we find
that the correlation between the two frequency of occurrence vectors is 77%.
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a relatively small subset of forecasters should be included implies that the majority of the cross-section

provide limited useful marginal information.

To study the statistical significance of these results, the bottom panels of Figure 4 plot the p-values of a

DM test for different values of Q. We test the null hypothesis of equality ofMSEs against the alternative

that the MSE of EBR?
t is lower than the consensus MSE. When EBR?,n

t (N,Q) is constructed with

0.20 ≤ Q ≤ 0.50, the p-values of the DM test statistics reject the null hypothesis of equality in forecast

accuracy. For the 10 year bond, when EBR?,10
t is based on a small set of most accurate agents, i.e.

Q = 0.05, the p-value of the DM test statistic is equal to 0.60 and above Q = 0.55 the p-values quickly

rise above the 10% significance level. When Q = 1 the DM statistics (not shown) are negative, i.e. the

MSE of the consensus is smaller than the MSE of EBR?. For Q = 1, both EBR?
t and EBRc

t use

the same sample of agents, but the former uses aggregation weights that are linearly increasing in past

accuracy while the latter uses equal weights.

To gain further insight, Figure 5 decomposes the MSEs of each forecast into the sum

MSE(N,Q) = SME(N,Q) + EV AR(N,Q), (4)

The top two panels show that SMEs are increasing for Q > 0.25 but that the variance of the forecast

errors are increasing for Q < 0.25. These two effects highlight the trade-off between the benefit of including

a larger number of agents to obtain greater forecast error diversification and the cost of introducing a

larger average forecast error. As a result, there exists an interior value of Q that balances out these two

effects and minimizes MSE. In what follows, we will focus on this case, namely Q = 0.25.

[
Insert Figure 5 here

]
The second choice in the construction of EBR?,n

t (N,Q) is N , which defines the length of the rolling

window used to estimate the median percentile rankings. Table 4 shows the sensitivity of the MSE
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to varying N , holding constant Q = 0.25. We find that for both bond maturities, the MSE is higher

when using a rolling window either of N = 24 or 120 months, compared to N = 60 months. This is

consistent with the empirical fact that while accuracy is persistent, so that the econometrician wants to

track the accuracy of an agents beyond 12 months, it has limited memory meaning that when computing

the time-varying weights one should discount or discard information from the distant past.

[
Insert Table 4 here

]
Next, we study alternative definitions of historical good performance. In addition to our benchmark

historical rankings based on squared errors (EBR?
t ), we also consider historical rankings based on mean

errors and error variances and we denote the corresponding aggregate measures EBRME
t and EBREV

t ,

respectively. For EBRME
t we follow exactly the same procedure as for EBR?

t but with ‘forecast errors’

instead of ‘squared forecast errors’ in the first step of the algorithm in Section 3.1. For EBREV
t we

compute the variance of the forecast errors over the rolling windows [t − N, t] and linearly weight the

quartile of agents with the lowest variance. The results are summarized in Table 5. We find that for our

benchmark measure and for EBRME
t , p-values easily reject the null for both maturities, while EBREV

t is

not superior to the consensus, at least statistically. Expanding on this finding, we measure the similarity

between the groups of agents selected by the different accuracy metrics. In order to do this, for each

metric, we compute how frequently agents appear in the set of good forecasters, relative to the number

of times they appear in the dataset, and then we compute the correlation between vectors of occurrence

frequencies. Table 6 shows that, for the 10 year bond, the similarity between the agents in EBR?
t and

EBRME
t is 64% while the correlation for EBR?

t and EBREV
t is 21%, and there is 29% correlation between

the agents in EBRME
t and EBREV

t . These results suggest that agents with the smallest mean errors also

tend to have low error variances, even if sorting directly on error variances does not produce significantly

lower MSE than the consensus. This could be because forecasters display more heterogeneity in mean

errors than in errors variances. In fact, unconditionally, the error variance is not significantly different
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across quartiles of the cross-sectional distribution of forecasters (see Section 2 and Table 6 of the OA).

We expand on the properties of the first two moments of the cross-sectional distribution of errors and on

the characteristics of the EBR?
t agents in Section 3.3 below.

[
Insert Tables 5 and 6 here

]
We study the robustness of EBR?

t ’s outperformance along three dimensions.9 As noted above, in

our data, the median forecast (EBRMed
t ) is statistically more accurate than an equally weighted average

forecast (EBRc
t). A natural question is whether EBR?

t outperforms EBRMed
t . Table 7 addresses this

question by repeating the DM tests from above with the alternative median benchmark. We find that

for both bond maturities EBR?
t produces statistically lower MSEs with a large degree of statistical

confidence. The following row of Table 7 asks whether an alternative version of EBR?
t computed from

equal weights, as opposed to linear weights, outperforms EBRMed
t . Comparing rows two and three, we

see that an equally weighted EBR?
t generates largerMSEs than a linearly weighted EBR?

t . However, the

equally weighted version still outperforms EBRMed
t and for the 10-year bond the difference is statistically

significant at the 10% level.10 The final rows in the table questions the importance of using a relative

versus an absolute measure of past accuracy, by computing a ‘non-ranked EBR?
t ’ (EBRNR

t ), where the

weights are linearly increasing in the median of the level of past squared errors rather than the median

squared error percentiles. We show that EBRNR
t produces clearly larger MSEs than EBR?

t for both

bond maturities, that are not significantly different from the benchmark EBRMed
t .

Taken together, these findings suggest that post trimming decision makers should overweight fore-

casters with historically good relative performance records but should retain a degree of diversification in

aggregation.

[
Insert Table 7 here

]
9Additional robustness tests are provided in Section 4.1. of the OA.

10The equally weighted version of EBR?
t is statistically more accurate than the equally weighted consensus at the 5% level

or below. Results available on request.
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Panel (a) of Figure 6 displays the dynamics of EBR? for 5-year and 10-year bond maturities. Eye-

balling the dynamics, we see that subjective expected excess bond returns appear countercyclical. In

Section 4 that follows we study this claim more formally. Panel (b) of Figure 6 displays the difference

between EBR?,n
t and EBRc. The figure shows that the spread between the two measures can be very

large. In late 1999, immediately before the burst of the internet bubble, the spread exceeded 200 basis

points for the 10 year bond. We observe similarly large positive spikes throughout the sample. Large

negative spreads are less frequent and, on average, the subjective bond return implied by EBR?
t is larger

than that implied by the consensus.

[
Insert Figure 6 here

]
In summary, we have demonstrated that a simple approach that gives greater weight to historically

good forecasters generates a subjective bond return expectation which is economically different and sig-

nificantly improves on the simple equally weighted average forecast.

3.3. Are EBR? agents skillful or lucky?

Our sample period is characterized by a downward trend in interest rates and persistent periods of high

and low interest rate volatility (see Figure 14 in the OA). Therefore, one could be suspicious of the fact

that the outperformance of our EBR?
t with respect to the consensus is an artefact of the sample and that

the EBR?
t agents were just lucky rather than skillful.

A common approach used in the fund management literature to distinguish skill from luck is to study

persistence in funds α (see, for example, Fama and French (2021)). Our dataset allows to address the

luck versus skill question in an analogous fashion. We define a forecaster as ‘skilful’ if the accuracy in

their forecasts is persistent and regime independent. In Section 2.2, we presented a test of the null of ‘no-

skill’ based on persistence in accuracy (annual mean squared forecast errors) and Table 2 demonstrated

a strong rejection. Unfortunately, it is extremely challenging to design a direct formal test of skill versus
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all plausible different permutations of luck.11 Instead, we follow an alternative approach that exploits

the disaggregated nature of our dataset. We decompose the MSEs of agents selected in EBR?
t in mean

prediction errors and error variance. Figure 7 shows the cross-sectional distribution of mean prediction

errors (top panel) and error variances (bottom panel) over time, for the 10-year bond excess return.12 The

mean and variances are computed over rolling periods of 5 years, which are equivalent to the look back

periods used to select the EBR?
t agents, denoted by red dots in the figure and in the x-axis we report the

timing of the realization of the forecast errors. Focusing on the top panel we note that, in the second part

of the sample, when the cross section of mean errors is almost completely positive, EBR?
t selects agents

with forecast errors that are persistently closer to zero on average. In fact, most red dots lie below the

solid blue line, which denotes the cross-sectional mean error of the consensus.

Over the full sample, more than 78% of the EBR?
t agents produce lower mean errors than the consen-

sus. When we split the sample before and after January 2006, we find that the fraction of EBR?
t agents

with a mean error below the consensus is on average 90% after January 2006 (see also Figure 12 in the

OA). Before January 2006, the distribution of mean errors for the EBR?
t agents is slightly wider and a

few of these agents are above the cross-sectional mean. Nonetheless, the outperformance is persistent over

time. Moreover, we find that over the full sample EBR?
t does not necessarily select the agents who are

most pessimistic about yields.

The bottom panel of Figure 7 shows that EBR?
t agents also tend to have persistently lower error

variance, i.e. higher forecast precision, than the consensus. The fraction of EBR?
t agents with an error

variance below the consensus is on average 72%. This effect is particularly strong in the first and in the

last few years of the sample, when almost all red dots in the plot lie below the blue line and in fact this

fraction is close to 85%. In the central part of the sample, between 2009 and 2011, the cross-sectional

distribution of error variance for all agents is very narrow and most agents which are part of the survey
11We thank an anonymous referee for helpful comments.
12The corresponding figure for the 5-year bond is displayed in the OA and shows similar results.
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produce low error variance. During this subsample, mean squared forecast errors are mainly driven by

squared mean errors, instead of error variance, and our aggregation approach rightly selects agents with

the lowest mean error in expected yields. Overall, these findings suggest the agents selection approach

which is part the construction of EBR?
t identifies agents that are persistently more accurate than others

(relatively skilled).

[
Insert Figure 7 here

]

3.4. A Bayesian approach to forecast aggregation

As an alternative to statistical inference based on DM test statistics, we consider how a Bayesian decision

maker might have exploited persistence in past accuracy. Suppose there are two types of forecasters, i = a

and b and an asset manager who observes their forecasts and forms beliefs about future bond returns to

decide her asset allocation. Let us assume that type a has shown better (past) accuracy in predicting

bond returns than type b but the prior beliefs of the manager is that the two forecasters are equivalent in

terms of skill. Given the observed accuracy, the posterior probabilities can deviate from 50%. Thus, in

aggregating the beliefs of the forecasters, the asset manager may assign a larger weight to the beliefs of

agent a. This approach of weighting different forecasting models by their posterior probabilities is called

Bayesian model averaging (BMA) and is used in a finance setting for example by Avramov (2002) to

predict stock returns and by Della Corte, Sarno, and Tsiakas (2009) to empirically evaluate the predictive

ability of exchange rate models.13

Following this methodology we split the sample of professional forecasters in N = 4 sets based on

past accuracy. Group Q1 corresponds to the quartile of agents who have been more accurate in the past,

group Q2 is the second quartile, Q3 is the third, and group Q4 is the quartile of agents who have been

less accurate. In order to be consistent with our EBR? construction, accurate agents are identified based
13Baks, Metrick, and Wachter (2001) use a similar Bayesian argument to estimate the expected alpha (managerial skills)

of mutual fund managers. Section 4.2. of the OA provides more details on the BMA approach.

18



on their ranked accuracy percentiles, over five years rolling windows, and linearly weighted. Therefore

group Q1 corresponds to EBR?. For the prior distribution, we assume that all groups have identical skill

and assign them equal weights 1/N = 25%. We then compute the Bayesian posterior probability of the

groups, i.e. their BMA weights, given their observed forecast errors as follows:

p(Qi|data) ≈ exp (−0.5BICi)∑N
j=1 exp (−0.5BICj)

, (5)

where the Bayesian information criterion (BIC) for each set of forecasters is only a function of their

prediction errors.

Figure 8 displays Bayesian weights (the posterior probabilities) assigned to each quartile. We find the

asset manager would have assigned weights of approximately 25% to each quarter for the first 5-years

in our sample. Beyond this date, she sharply increased her weight on the Q2 and Q3 forecasts, while

holding the weight on the Q1 forecast relatively constant and low. In other words, a Bayesian would have

first learned to discard the worst performing forecasters. Post dot-com bubble the manager was assigning

around 50% of their weight on the Q2 forecasters who historically were outperforming the median and

this weight increased to around 90% in 2005. Beyond that point the weight on Q1 = EBR? jumped above

80% and beyond 2010 remained close to 100% until the end of our sample.

This Bayesian approach provides an alternative statistical validation of our aggregation procedure and

provides additional evidence that heterogeneity and persistence in accuracy is strong enough to optimally

deviate from 1/N weights, i.e. the consensus approach. We also note how our approach relates to existing

contributions. First, Diebold and Pauly (1990), in the spirit of this subsection, propose improving on

consensus forecasts by estimating a Bayesian weighted average of an equal weights prior and least squares

projection weights. Second, Aiolfi and Timmermann (2006) show that competing forecasting models

display persistent periods of out-performance but also switch, that is, at times the best models become
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the worst and vice versa. This is related to the persistence in accuracy documented in Section 2 and the

selection approach of this section that considers rolling relative accuracy as a sorting variable. Third,

a decision to assign a weight of zero to the least accurate forecasts is consistent with Diebold and Shin

(2019), who study a LASSO-based procedure which suggests the vast majority of forecasters should be

discarded and the remainder should be averaged.

[ Insert Figure 8 here ]

3.5. How different is EBR? from statistical measures?

We now compare the dynamics of EBR? to a set of statistical models of expected excess returns that are

used in the literature. We consider four alternative specifications: a random walk model for yields (RW );14

a historical mean expected excess bond return (µH); a slope of the yield curve implied forecast (SLOPE),

defined as the spread between the n-year and the 1-year yield. This forecast requires computing the factor

loading on the slope, which we estimate in real-time using only historical information and an expanding

window which starts in June 1961, to avoid any look-ahead bias. The same expanding windows are used

to compute the average excess return for µH . The fourth benchmark is developed by Bianchi, Büchner,

and Tamoni (2020) and based on a non-linear predictive methodology that uses machine-learning (ML).

Their expected bond returns are based on the predictions implied by a neural network with one hidden

layer and three nodes using only forward rates (“NN 1 Layer Group Ensem + fwd rate net”, in their

classification).15

Table 8 shows that survey-implied expected returns and statistical models have different properties.16

The first difference is persistence. The autocorrelation coefficient of the 10-year expected excess returns

is 0.98 for the random walk and slope model and 0.95 for the machine learning model, while it is only
14The expected excess bond return under this model is obtained as in Equation (1) but with Ei

t

[
yn−1
t+12

]
substituted with

yn−1
t , the current yield.
15We thank Andrea Tamoni for providing us with the machine learning forecasts.
16The sample period considered is 1993.12 - 2017.1 for expectations and 1994.12 - 2018.1 for realizations which is determined

by the availability of the ML forecasts.
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0.73 for EBR?,n
t . The second difference relates to their dynamics. The correlation between EBR? and

the statistical models is positive but modest. For the 10-year bond, the correlation is between 0.24 (ML)

and 0.45 (RW ). To the extent that the SLOPE is a counter-cyclical risk premium proxy, this implies

that EBR? is also counter-cyclical. Moreover, the correlation with the SLOPE, which is equal to 0.34

for the 10-year bond, is relatively large but far from perfect, which is consistent with the idea that survey

forecasters exploit information beyond a simple slope projection and potentially base their forecasts on

information beyond the term structure. The third most noticeable difference is the mean excess return.

For the 10-year bond the average EBR? is close to zero, equal to 23 basis points, while the statistical

projections imply much larger mean excess returns ranging from 2.96% (ML) to 5.50% (SLOPE). Thus,

while EBR? significantly outperforms the consensus in predicting future realized excess bond returns, it

still displays a positive mean error. Indeed, even the most accurate agents were not able to fully capture

the extent of the decline in yields that we have witnessed over our sample period.

[
Insert Table 8 here

]
With the exception of the random walk forecast, the statistical models require parameter estimation

including a constant which can capture a trend in interest rates. In comparing accuracy of statistical

models versus surveys, we follow the forecast aggregation literature in relaxing the unbiasedness assump-

tion (see e.g. Granger and Ramanathan (1984)) and consider an extended version of EBR?
t that includes

a constant. In order to avoid any look-ahead bias, the constant correction is computed in real time.

Namely, the extended version of EBR?
t is equal to our benchmark EBR?,n

t plus its average forecast error

up to time t, starting with an initial window of 5 years and expanding. We denote the extended ver-

sion EBR?,n
t -ext.17 The two panels in Figure 9 display the time series of our benchmark EBR?,n

t versus

EBR?,n
t -ext. Consistent with the trend in yields, the constant correction is small initially but quickly

widens and stabilizes to around two percentage points. The correction leads to a significant improvement
17Figure 11 in the OA compares the dynamics of EBR?,n

t -ext versus the statistical benchmarks.
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in performance. Over the overlapping sample, i.e. November 1999 to January 2020, the MSEs of EBR?
t -

ext are 15.38 and 51.18 for the 5 and 10-year bond maturities, respectively, against 20.97 and 68.30 for

EBR?
t .

[
Insert Figure 9 here

]
Table 9 compares the predictive performance of the alternative models and shows that the MSE of

EBR?-ext is approximately equal to the MSE of the SLOPE, slightly lower than the MSE of µH and

slightly higher than ML. There are no statistically significant differences in accuracy. However, we note

that theMSE of the RW forecast is lower than theMSE of EBR?-ext for both maturities. Interestingly,

the best performer for 5-year bonds is the RW forecast, while the ML forecast is the best performer for

10-year bonds.

[
Insert Table 9 here

]

4. What Explains Subjective Expectations of Excess Bond Returns?

In this section we investigate the question of whether time variation in subjective expected excess bond

returns can be understood in terms of time variation in compensation for risk.

4.1. Countercyclical subjective bond returns

Figure 6 suggests that EBR?
t increases in periods of high market risk. This is particularly evident for

the 10-year bond, which spikes in the aftermath of the Russian crisis and the collapse of Long-Term

Capital Management, the 2001-2002 recession that followed the bursting of the dot-com bubble, and the

2008/2009 recession that followed the subprime mortgage crisis.

In order to evaluate more formally the countercyclicality of the EBR?
t dynamics, we compute the

correlation between EBR?,10
t and the Chicago Fed National Activity Indicator (CFNAIt), which is -0.18.
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Moreover, a regression of EBR?,10
t on CFNAI yields a significantly negative regression coefficient and R-

squared of 3.5%. Considering survey expectations of GDP growth the correlation between EBR?,10
t and an

equally weighted consensus expectation Et[GDPt+12] is -0.16, and a regression of EBR?,10
t on Et[GDPt+12]

yields a significantly negative regression coefficient and R-squared of 2.5%. These observations are in line

with investors requiring higher returns in bad states of the world.

4.2. Structural models

A long standing puzzle in asset pricing is that equilibrium models predict a mapping between variation

in expected excess returns and quantities of risk. However, the relationship has proved difficult to detect

empirically. We revisit this prediction by examining the link between EBR? and a set of proxies for risk

factors that arise in equilibrium models that generate time-varying bond risk premia:

EBR?,n
t = α+ β>Xt + εn,t. (6)

We consider four types of risk factor proxies to explain the dynamics of EBR?: (i) differences in beliefs;

(ii) consumption surplus; (iii) economic uncertainty and (iv) bond volatility.18 The empirical construction

of Xt follows existing literature; our innovation rests on the alternative specification for the subjective

expected excess bond return as the dependent variable.

Our sample for EBR?
n,t is from December 1993 to January 2020, and for realized bond excess returns

is from January 1994 to January 2021. To assess economic importance we standardize left and right

hand variables, so that a 1-standard deviation change in the right hand variables implies a β-standard

deviation in the dependent variable. Standard errors are reported in parentheses below the point estimates

and calculated using a block bootstrap where the optimal block length is chosen in a data driven way
18Section 5 in the OA discusses the estimation of the factors, plots their time series and discusses their interpretation.
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following Patton, Politis, and White (2009).19 The top panel of Table 10 reports point estimates and test

statistics.

[
Insert Table 10 here

]
The specification in row (i) studies differences in belief. We proxy for real disagreement (DiB(g)) and

nominal disagreement (DiB(π)) using the 4-quarter ahead cross-sectional inter-quartile range in GDP

and CPI forecasts from our survey dataset.20 Consistent with the prediction of heterogeneous beliefs

models, the slope coefficients of DiB(g) and DiB(π) are positive and significant at the 1% and 5%

level, respectively, with an R2 of 24%. The positive sign of the slope coefficient supports the prediction

of equilibrium models in which heterogeneous agents optimally trade on the basis of their beliefs: the

greater the disagreement, the greater the trading among agents and therefore the quantity of risk that

each agents holds in equilibrium. This induces a larger risk premium.

When agents have habit preferences, the price of risk is state-dependent and negatively related to the

consumption surplus ratio.21 To assess this link, in specification (ii) we followWachter (2006) and calculate

consumption surplus (Surp) using a weighted average of 10 years of monthly consumption growth rates:

Surp =
∑120

j=1 φ
j∆ct−j , where the weight is set to φ = 0.971/3 to match the quarterly autocorrelation of

the price-dividend ratio in the data. We find that the slope coefficient in this regression does have the

correct sign but has a very low statistical significance and the R2 in the regression is also small.

Specification (iii) focuses on the significance of proxies of economic growth and inflation uncertainty,

UnC(g) and UnC(π), as suggested by long-run risk models. To obtain a proxy for economic uncertainty

we adapt the procedure of Bansal and Shaliastovich (2013). First, we use our survey data on consensus

expectation of 4-quarter GDP growth and inflation and fit a bivariate VAR(1). In a second step, we

compute a GARCH(1,1) process on the VAR residuals to estimate the conditional variance of expected
19The code for the automatic block selection is kindly provided Andrew Patton.
20For predictions linking differences in belief to bond markets, see Xiong and Yan (2010), Ehling, Gallmeyer, Heyerdahl-

Larsen, and Illeditsch (2018) and Buraschi and Whelan (2020)
21Related studies include Buraschi and Jiltsov (2007), Campbell and Cochrane (1999) and Wachter (2006).
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real growth and expected inflation. The loading on UnC(g) is statistically significant at the 1% level and

the R2 is 20%. The positive slope coefficient shows that subjective bond excess returns increase with real

economic uncertainty. The coefficient on inflation uncertainty (UnC(π)) is not statistically significant.22

Specification (iv) studies the link between bond volatility and subjective bond expected excess returns.

We study this link using two proxies for interest rate volatility: the intra-month sum of squared bond

returns on a constant maturity n-year zero-coupon bond, which we denote as σ(n)B , and the 1-month

implied 10-year maturity bond risk neutral volatility published by the CME (TYVIX). The regression

results show that the quantity of risk channel is strongly positively related to EBR?,10
t : the R2 is large,

around 30%, and the coefficients on both physical and risk neutral volatility are significant at the 10% and

1% level, respectively. Importantly, the point estimates are also positive, consistent with the prediction

that investors demand compensation for holding volatility risk.

To highlight the difficulty in detecting a relationship between expected excess returns and quantities

of risk using traditional projection methods, the bottom panel of Table 10 shows regressions results using

realized future returns hprxt,t+12 as the dependent variable. The R2 of these regressions are much smaller,

and only one of the explanatory variables, TYVIX, is statistically significant. Moreover, the estimated

coefficient on realized bond return volatility, σ(n)B , is not only insignificant but has the wrong sign.

A possible explanation for these findings is that projections based on future realizations can be quite

different from survey-based expected returns. Finally, we note that the link between subjective expected

bond returns and factors that proxy for discount variation is different to what has been found in equity

markets, where financial ratios that proxy for risk compensation are negatively correlated with subjective

expected returns (Greenwood and Schleifer (2014)).
22For related work on the link between macroeconomic volatility and bond risk premia see Gomez-Cram and Yaron (2021)
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5. Conclusion

This paper studies aggregation of expectations from a cross-section of individual agent subjective yield

curve forecasts from financial institutions that allows the estimation of heterogeneous subjective expected

excess bond returns.

Belief heterogeneity about bond returns translates into a large dispersion in the distribution of mean

squared forecast errors and we show a significant fraction of the cross-section outperform (underperform)

consensus forecasts at conventional significance levels. More importantly, we show that heterogeneity in

forecasting ability is persistent: forecasters who are good tend to remain good and forecasters who are

bad tend to remain bad.

We show that persistence in accuracy can be exploited to construct a novel real-time weighting of

individual agents beliefs, which outperforms the equally weighted consensus belief, a benchmark the

literature has found difficult to beat. Our approach is simple to implement: we remove historically bad

forecasters and form expectations from the remaining set of good forecasters.

Studying the properties of our aggregate subjective measure, we find support for rational determinants

of expected bond returns. In particular, we find a strong correlation between quantity of risk factors and

subjective bond returns, even if this relationship is difficult to detect using ex-post realizations.

Finally, we note the forecast combination scheme we propose can be applied to subjective expectations

of macro quantities such as GDP growth or inflation. Comparing such measures within the same dataset

one could ask questions related to whether being good at forecasting fundamentals translates to being

good at forecasting asset prices. We leave this question for future research.
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6. Tables

Q1 Q2 Q3 Q4

5-year Bonds

Q1 40∗∗∗ 27∗ 19∗∗∗ 14∗∗∗

Q2 28∗∗ 29∗∗ 26∗∗ 17∗∗∗

Q3 21∗∗ 26∗∗ 28∗∗ 24∗∗

Q4 17∗∗∗ 19∗∗∗ 26∗∗ 38∗∗∗

10-year Bonds

Q1 41∗∗∗ 26∗∗ 19∗∗∗ 14∗∗∗

Q2 27∗ 30∗∗ 25∗∗ 18∗∗∗

Q3 20∗∗ 26∗∗ 30∗∗ 24∗∗

Q4 17∗∗∗ 19∗∗∗ 26∗∗ 38∗∗∗

Table 1. Belief transition probabilities
This table reports the year-on-year probability of a forecaster transitioning between the quartiles of the cross-sectional
distribution of excess bond return forecasts. Units are percentages. Statistical significance is assessed under the null
Qij = 25% against the alternative Qij 6= 25%. One, two or three stars indicate significance at the 10% , 5%, and
1% levels, respectively. Sample period is 1988.1 - 2020.1.
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Q1 Q2 Q3 Q4

5-year bond

Q1 51∗∗∗ 36∗∗∗ 12∗∗∗ 1∗∗∗

Q2 35∗∗∗ 36∗∗∗ 23 6∗∗∗

Q3 11∗∗∗ 25 41∗∗∗ 23

Q4 2∗∗∗ 5∗∗∗ 26 67∗∗∗

10-year bond

Q1 49∗∗∗ 32 15∗∗∗ 3∗∗∗

Q2 31∗∗ 32∗∗ 26 11∗∗∗

Q3 15∗∗∗ 25 35∗∗∗ 24

Q4 2∗∗∗ 10∗∗∗ 25 63∗∗∗

Table 2. Accuracy transition probabilities
This table reports the year-on-year probability of a forecaster transitioning between the quartiles of the cross-
sectional distribution of mean-square-errors. Units are percentages. Statistical significance is assessed under the null
Qij = 25% against the alternative Qij 6= 25%. One, two or three stars indicate significance at the 10% , 5%, and
1% levels, respectively. Sample period is 1988.1 - 2020.1.

31



MSE DM p-value (%)

5-year Bonds

EBRc 22.84

BG 23.77 -1.28 89.85

GR 24.08 -0.34 63.41

10-year Bonds

EBRc 80.25

BG 82.14 -1.00 84.11

GR 80.17 0.01 49.66

Table 3. Forecast evaluation of MSE loss optimal weights
This table reports the mean-square-error (MSE), Diebold-Mariano (DM) forecast evaluation test statistic and the
corresponding p-value testing that the MSE of the consensus forecast EBRc is equal to the MSE of a forecast using
optimal MSE loss weights, against the 1-sided alternative that the EBRc is less accurate. The optimal weights
are either computed using the diagonal covariance matrix version of Bates and Granger (1969) (BG) or from a
least-squares projection as in Granger and Ramanathan (1984) (GR). Details of the numerical implementation are
discussed in the OA. Sample period is 1993.12 - 2020.1 for expectations and 1994.12 - 2021.1 for realizations
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MSE DM p-value (%)

5-year Bonds

EBRc 23.60

N = 24 22.62 1.20 11.54

N = 60 21.35 2.83 0.25

N = 120 22.11 1.88 3.05

10-year Bonds

EBRc 80.49

N = 24 75.11 1.73 4.20

N = 60 70.97 3.33 0.05

N = 120 74.64 1.70 4.56

Table 4. EBR? vs EBRc varying N
This table displays mean square prediction errors (MSE), Diebold-Mariano (DM) forecast evaluation test statistics
and corresponding p-values testing for equality of MSEs of the consensus forecast EBRc versus EBR? (N,Q) for
N = 24, 60 and 120, and Q = 0.25. Sample period is 1993.12 - 2020.1 for expectations and 1994.12 - 2021.1 for
realizations.
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MSE DM p-value (%)

5-year Bonds

EBRc 22.84

EBR? 21.20 2.34 0.99

EBRME 21.22 2.13 1.72

EBREV 22.90 -0.09 53.65

10-year Bonds

EBRc 80.25

EBR? 73.57 2.49 0.67

EBRME 72.67 2.44 0.76

EBREV 77.33 1.09 13.92

Table 5. Forecast evaluation tests of EBR? computed from alternative accuracy metrics
EBR(N,Q) is computed for N = 60 and Q = 0.25 by sorting on past ranked (i) squared errors (EBR?), (ii)
mean errors (EBRME), or (iii) error variances (EBREV ). This table then reports the mean-square-error (MSE),
Diebold-Mariano (DM) forecast evaluation test statistic and the corresponding p-value testing that the MSE of the
consensus forecast EBRc is equal to the MSE of EBR?, EBRME and EBREV , respectively, against the 1-sided
alternative that the EBRc is less accurate. Sample period is 1993.12 - 2020.1 for expectations and 1994.12 - 2021.1
for realizations.
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EBR? EBRME EBREV

EBR? 1.00 0.64 0.21

EBRME 0.64 1.00 0.29

EBREV 0.21 0.29 1.00

Table 6. Similarity of forecasters in EBR? computed from alternative accuracy metrics
EBR?(N,Q) is computed for N = 60 and Q = 0.25 by sorting on past ranked (i) squared errors (benchmark EBR?),
(ii) mean errors (EBRME), or (iii) error variances (EBREV ). A frequency of occurrence for each agent is then
computed from the number of times they appear in the EBR measure as a fraction of the number of times they
appear in the dataset. This table reports the correlations between the vectors of frequency of occurrence for (i),(ii),
and (iii). Sample period is 1993.12 - 2020.1 for expectations and 1994.12 - 2021.1 for realizations.
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MSE DM p-value (%)

5-year Bonds

EBRMed 22.50

EBR? 21.20 1.93 2.76

EBREW 21.66 1.13 12.94

EBRNR 22.12 0.51 30.62

10-year Bonds

EBRMed 78.78

EBR? 73.57 2.18 1.51

EBREW 74.37 1.62 5.34

EBRNR 77.47 0.45 32.50

Table 7. Forecast evaluation robustness
EBR?(N,Q) is computed for N = 60 and Q = 0.25 by sorting on past ranked MSEs. This table then reports the
mean-square-error (MSE), Diebold-Mariano (DM) forecast evaluation test statistic and the corresponding p-value
testing that theMSE of EBR? is equal to the benchmark, against the 1-sided alternative that theMSE of EBR? is
smaller than the benchmark, where the benchmark is computed from the median forecast (EBRMed

t ). We also report
this test for an alternative ‘Equally weighted EBR?’ (EBREW

t ), which is based on the same sort as EBR?(N,Q)
but with equal weights instead of linear weights, and a ‘non-ranked EBR?’ (EBRNR

t ), where the weights linearly
increasing in the median of the level of past squared errors. Sample period is 1993.12 - 2020.1 for expectations and
1994.12 - 2021.1 for realizations.
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Mean Std Dev AR(1) ρ

EBR?

5-year -0.13 1.29 0.61

10-year 0.23 3.38 0.73

random walk

5-year 1.91 1.32 0.97 0.45

10-year 3.03 1.74 0.98 0.37

SLOPE

5-year 3.04 1.84 0.98 0.42

10-year 5.50 4.08 0.98 0.34

Machine Learning

5-year 1.89 1.64 0.94 0.38

10-year 2.96 3.46 0.95 0.24

Table 8. Summary Statistics
Summary statistics of bond expected excess returns are computed from EBR?, from a random walk forecast, from a
slope of the yield curve forecast and from the yields only machine learning forecast of Bianchi, Büchner, and Tamoni
(2020). The sample period is considered is 1993.12 - 2017.1 for expectations and 1994.12 - 2018.1 for realizations
which is determined by the availability of the ML forecasts.
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MSE DM p-value (%)

5-year Bonds

EBR?-ext 15.05

RW 13.24 1.18 11.93

µH 15.11 0.03 48.74

SLOPE 14.76 0.11 45.50

ML 13.65 0.64 26.06

10-year Bonds

EBR?-ext 45.88

RW 42.15 0.92 17.86

µH 52.75 1.51 6.65

SLOPE 40.85 0.53 29.78

ML 40.15 0.74 23.05

Table 9. EBR?-ext forecast accuracy comparisons against statistical projections
This table reports the mean-square-error (MSE), Diebold-Mariano (DM) forecast evaluation test statistic and the
corresponding p-value testing that the MSE of the extended EBR?-ext is equal to the MSE of a given statistical
model against the 1-sided alternative that the EBRc is less accurate. We consider 4 real-time statistical projections:
a random walk (RW ), a constant expected return forecast (µH), a slope of the yield curve forecast (SLOPE), and
the yields only machine learning forecast (ML) of Bianchi, Büchner, and Tamoni (2020). Sample period is 1998.12
- 2017.1 for expectations and 1999.12 - 2018.1 for realizations.
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DiB(g) DiB(π) Surp UnC(g) UnC(π) σ
(n)
B TY V IX R

2
(%)

Panel A: 10-year EBR?,10
t

(i) 0.32∗∗∗ 0.25∗∗ 24.03

(0.10) (0.11)

(ii) -0.17 2.66

(0.21)

(iii) 0.46∗∗∗ 0.01 20.47

(0.19) (0.22)

(iv) 0.17∗ 0.46∗∗∗ 30.21

(0.09) (0.13)

Panel B: 10-year hprxt,t+12

(i) -0.06 0.18 2.72

(0.12) (0.13)

(ii) -0.16 2.17

(0.14)

(iii) 0.19 0.13 8.11

(0.18) (0.16)

(iv) -0.00 0.21 3.93

(0.14) (0.18)

Table 10. Compensation for Risk
Panel A shows estimates from regressions of the subjective expected excess returns on 10-year bonds on a set of
explanatory variables:

EBR?
10,t = α+ β>Xt + ε10,t.

These factors are discussed in detail in the main body of the paper and all variables are standardized. Panel B
shows the results of the corresponding regressions using the ex post realized excess return, hprxt,t+12, as dependent
variable. Standard errors are reported in parentheses below the point estimates and are calculated using a block
bootstrap. Superscripts ∗, ∗∗ and ∗ ∗ ∗ denote statistical significance at 90%, 95% and 99%, respectively, based on
block bootstrap confidence intervals. Adjusted R-squared of the regressions are reported in the last column. Sample
period is 1993.12 - 2020.1
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7. Figures
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(a) 10-year excess bond return forecasts
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Figure 1. Subjective expectations
The top panel displays the cross-sectional distribution of one year subjective excess bond returns for 10-year zero
coupon bonds. The red solid line indicates the equally weighted mean (consensus) forecast. The bottom panel plots
disagreement returns defined as the cross-sectional interquartile range in subjective expectations. Sample period is
1988.1 - 2020.1
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(a) 5-year

(b) 10-year

Figure 2. Distribution of MSEs
Histograms of individual forecaster mean squared errors. We consider only the contributors with at least 60 months
of forecasts. Note that since our panel of forecasters is unbalanced errors are realized over different sample periods.
Sample period is 1988.1 - 2020.1 for the expectations and 1989.1 - 2021.1 for subsequent realizations.
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(b) 10-year

Figure 3. Cross-section of DM statistics
These figures plot the cross-section of individual forecaster DM test statistics. Positive values indicate outperformance
with respect to the consensus. Red bars indicate statistically significance at the 5% level where the variance of the
loss differential is calculated taking into account autocorrelation in the errors induced by the 11 overlapping forecasts.
Sample period is 1988.1 - 2020.1 for the expectations and 1989.1 - 2021.1 for subsequent realizations.
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(c) 5-year p-value
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(d) 10-year p-value

Figure 4. EBR? varying Q: MSE ratio and DM p-values
We compute EBR?(N,Q) fixing N = 60 and varying Q ∈ [0.05 , 1.00]. The top panels plot the ratio of the
consensus (EBRc) MSE to the MSE of EBR? and the bottom panels plot p-value of the Diebold-Mariano (DM)
forecast evaluation test statistic testing for equality of MSE’s of the consensus forecast EBRc versus EBR? against
the one-sided alternative that EBR? is more accurate. Dashed lines in the bottom plot indicate the 5% and 10%
levels. Sample period is 1993.12 - 2020.1 for the expectations and 1994.12 - 2021.1 for subsequent realizations.
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Figure 5. EBR? varying Q: SMEs and EVARs
We compute EBR?(N,Q) fixing N = 60 and varying Q ∈ [0.05 , 1.00]. For each value of Q, the top panels plot
associated squared mean errors and the bottom panels plot error variances for 5-year and 10-year bond maturities.
Sample period is 1993.12 - 2020.1 for the expectations and 1994.12 - 2021.1 for subsequent realizations.
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(a)

(b)

Figure 6. EBR? vs EBRc

The top panel plots EBR?,n(N,Q) for Q = 0.25 and N = 60 for 5-year and 10-year bonds. The bottom plot shows
the difference between the subjective expected excess bond returns of EBR?(N,Q) and consensus expectations
(EBRc), for bond maturities of 5 and 10 years. Sample period is 1993.12 - 2020.1 for the expectations.
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(a)

(b)

Figure 7. Cross-Sectional distribution of mean and variance of errors: 10-year bond
This figure plots the cross-sectional distribution of mean-errors (panel a) and error variances (panel b) computed
on 5-year rolling windows. The solid blue line in each plot is the equally weighted average (consensus) at each
point in time and the red-dots represent EBR? agents. The figure plots the results for the the 10-year bond (the
corresponding figure for the 5-year bond is displayed in the OA). On the x-axis we report the time of the realization
of forecast errors.
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Figure 8. Bayesian exercise
This figure displays the time-series of Bayesian posterior weights assigned to quartiles of linearly weighted (so that
weights sum to one within each quartile) beliefs which are formed from past historical mean-square errors. Group
Q1 corresponds to the quartile of agents who have been more accurate in the past, group Q2 is the second quartile,
Q3 is the third, and group Q4 is the quartile of agents who have been least accurate. The Bayesian updating is
discussed in the main body of the text and additional detailed are reported in the OA. Sample period is 1993.12 -
2020.1 for the expectations and 1994.12 - 2021.1 for subsequent realizations.
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(a) 5-year Bond

(b) 10-year Bond

Figure 9. EBR? vs EBR? extended
We propose an alternative version of EBR?

t that takes into account the positive sample average forecast errors in
individual forecasts by including a time-varying constant adjustment computed in real-time. The extended version of
EBR?

t is equal to our benchmark EBR?
t plus its average forecast error up to time t, starting with an initial window

of 5 years and expanding. This figure displays the time series of our benchmark EBR?
t versus EBR?

t -extended, for
a 5 and 10-year bond, respectively.
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