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Abstract  

In this paper we explore how to derive the variance risk premium which is a premium paid by investors to 

shield against large price swings. Formally, it is defined as the difference between the expectation of the 

risk-neutral and physical return variation and represents the payoff of a variance swap. We rely on the 

VIX volatility index and high frequency realized variance as proxies for risk-neutral and physical variance, 

respectively. An empirical challenge in the computation of the variance risk premium is modelling a 

forecast of the actual (or physical) expected volatility accounting for the distribution properties and 

stylized facts of the realized measure. To this end, we employ forecasting models based on a heterogenous 

autoregressive (HAR) framework to generate the one-month ahead estimate of the realized variance. 

Lastly, we show that the variance risk premium can be a predictor for stock returns at short horizons (i.e. 

less than one year). Although significant, the proportion of the variance in future returns explained by the 

variance risk premium is rather small in a univariate regression analysis. The degree of predictability is 

more impressive within a multivariate regression including other commonly employed predictor variables.  

 

Keywords: Variance Risk Premium, VIX, Realized Variance, Heterogenous Autoregressive Models, Stock 

Return Predictability  
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1. Introduction 

1.1 Overview  

Hardly any other field of research in finance has received as much attention as financial markets return 

volatility. Research on volatility has had substantial implications for security valuation, risk management 

and investment. Volatility is fundamental to option pricing models, notably as an input variable in the 

famous Black-Scholes option pricing model. Compared to historical volatility, volatility implied by option 

prices is often believed to contain superior information about future volatility (Jiang and Tian, 2005). 

Afterall, given the forward-looking nature of options, its implied volatility should provide the market’s 

expectation of future fluctuations of the underlying asset. Several early studies (e.g. Canina & Figlewski, 

1993) conclude that option implied volatility is an important, although biased, element of the true 

expected future volatility. However, these studies often focused on a narrow range of at-the-money 

options and exclusively relied on Black-Scholes implied volatility. Implied volatility backed out from the 

standard Black-Scholes model is flawed as it imposes the counterfactual assumption that returns on the 

underlying asset have constant implied volatility. Efforts have been devoted to modeling time-varying 

volatility into option pricing models, but it has proved difficult to create an empirically sound procedure. 

Advances in this field were made by Britten-Jones and Neuberger (2000) who outlined a model-free 

volatility procedure obtained from the cross-section of actively traded options. Jiang and Tian (2005) 

revisit the forecasting abilities of implied volatility within a model-free specification and find that it is a 

more efficient estimate of future realized volatility than the Black-Scholes implied volatility. They further 

note that model-free implied volatility is on average larger than the realized volatility; an observation that 

constitutes the premise of this paper. The information content in model-free volatility has become a 

prominent research area and has had wide implications. The influential VIX volatility index from the 
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Chicago Options Exchange (CBOE) is based on a model-free volatility configuration. Carr and Wu (2006) 

show that the squared VIX is analogue to a variance swap rate which equals the risk-neutral expected 

return variance. Given that options allow investors to lock in expectations about future price 

developments, the VIX theoretically contains information about the actual expected volatility and a 

premium accounting for the variance from the expected volatility. By extension, it would be possible to 

extract any variance risk premium by subtracting the expectation of the actual (or physical) variance from 

the VIX. The variance risk premium can be viewed as the premium investors are willing to pay to shield 

against future variance.  

1.2 Research Question  

An empirical challenge in the computation of the variance risk premium is modelling a forecast of the 

actual expected volatility. The desirable theoretical properties of high frequency realized variance has 

resulted in it becoming a suitable proxy for actual contemporaneous volatility. While the computation of 

the variance risk premium is of interest on its own due to varying approaches in deriving both the risk-

neutral and actual future variance, Bekaert and Hoerova (2014), among others, argue that the variance 

risk premium is a measure of aggregate risk aversion that could be a predictor for future stock return. 

The combination of multiple financial and economic fields of research provides both a challenging and 

interesting framework. Throughout this paper we review the latest developments in the research on 

variance risk premia and aim to provide novel insights on contested assumptions. More specifically, we 

aim to answer the following research questions:  

How can the variance risk premium of the S&P 500 be empirically estimated? 

Is the variance risk premium a predictor of future stock returns? 
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To this end, we contrast the performance of different realized variance forecasting models against a 

simple non-estimation technique and test the stock return predictability in the presence of other predictor 

variables.  

1.3 Limitations  

There are a number of initial limitations we need to impose to set the framework of this paper.  

In our analysis section we are going to exclusively focus on the U.S stock market. More specifically, we 

analyze the S&P 500 which is often perceived as a proxy for the overall U.S equity market. We have 

decided to restrict our analysis on the U.S market due to the abundance of available data allowing a 

straightforward replication of our analysis. Furthermore, the majority of research on variance risk premia 

has been performed with U.S data providing a comparable benchmark with our results. 

Another limitation is imposed in regard to the selection of the realized variance forecasting techniques. 

The research on forecasting models is too vast to provide a comprehensive comparison on all available 

techniques. Instead, we will compare the most relevant techniques and provide a qualitive argumentation 

in favor of the selected models. The selected forecasting models are then benchmarked in a quantitative 

performance analysis.  

Inevitably, this paper will build on a lot of theory and thus all relevant concepts that are material to this 

paper will be explained in detail. However, it may at times be assumed that the reader is familiar with 

some common concepts which will not be derived or explained in full. However, at all times are relevant 

academic sources included should additional material be sought by the reader.  

This paper is structured as follows. In section (2) we show the theoretical overlaps between variance 

swaps and the variance risk premium. Section (3) and (4) introduce the two key components of the 
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variance risk premium namely, the risk-neutral and the physical variance, respectively.  Section (5) ties 

the theory sections together and builds the path for the empirical analysis. After presenting the data in 

section (6), we dive into the methodology (7) for the forecasting models and ultimately the variance risk 

premium calculation. In section (8) we report the regression outputs of the models estimated using full 

samples. Section (9) presents the procedures for out-of-sample forecasting and model selection. In 

section (10) the capacity of the derived variance risk premia to predict stock returns is tested. The 

limitations of our study are discussed in section (11) and we conclude this paper in the section (12). 
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Figure 1: Thesis outline and flow 
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2. Variance Swaps 

2.1 Definition  

A variance swap is a derivative contract that is traded over the counter, meaning the terms of the contract 

are privately established between two or more counterparties outside of a public exchange. It pays the 

difference between the annualized variance of the underlying security and the annualized variance strike 

which is agreed upon at the inception of the trade (De Weert, 2008, p. 139). This class of contracts first 

appeared in the mid-1990s as a way to facilitate direct variance trading (Bossu, 2014). Prior to that, 

options were primarily used as vehicles to execute bets on volatility. However, option vega1 and gamma2 

exposures are concentrated around the strike price and tend to diminish as the price of the underlying 

moves away from it. The resulting local characteristic of option volatility exposure may lead to cases when 

a trader is right on volatility but still losses money on the strategy (De Weert, 2008). Variance swaps were 

introduced to tackle this issue.   

The variance swap payoff (VSP) for the buyer is defined as: 

𝑉𝑆𝑃 = (𝜎𝑅
2 − 𝜎𝐾

2)𝑁 (1) 

where 𝜎𝑅 is the annualized realized volatility for the duration of the contract, 𝜎𝑅
2 is the annualized realized 

variance for this duration, 𝜎𝐾
2 is the annualized variance strike and 𝑁 is the variance notional. Each 

contract must precisely describe the method for calculating the realized volatility. Generally, it is specified 

as the square root of the sum of the squared log-returns multiplied by an annualization factor. In other 

words, annualized realized volatility is a population standard deviation under a zero-mean assumption3 

 
1 Vega of an option measures sensitivity of the option´s premium to the changes of implied volatility. 
2 Gamma captures the sensitivity of the option´s delta to changes in stock price of the underlying. 
3 Mean is not subtracted from the observed returns which is equivalent to assuming the known mean return is 0. 
This is a fairly common practice when structuring volatility derivatives. 
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(Derman & Miller, 2016). Mathematically, 𝜎𝑅 for 𝑁 daily log-returns on the underlying 𝑆 between time 

𝑡 = 0 and 𝑡 = 𝑇 is calculated as (Bossu, 2014):  

𝜎𝑅 = √
252

𝑁
∑ (ln

𝑆𝑖+1
𝑆𝑖
)
2𝑁−1

𝑖=0

(2) 

Since traders are more comfortable thinking in terms of volatility rather than variance, the notional is 

commonly first stated as the vega amount with the variance notional derived from it. The variance 

notional, also referred to as variance units, is specified through the vega notional as: 

𝑁 =
𝑉𝑒𝑔𝑎 𝑛𝑜𝑡𝑖𝑜𝑛𝑎𝑙

2𝜎𝐾
(3) 

It represents a dollar amount that converts the variance difference into a dollar payoff. The vega notional 

is a term commonly used in volatility swap trading. It is equal to the payoff of a volatility swap if the 

difference between the realized volatility and the strike is one volatility point.   

To avoid the need for upfront cash exchange, a regular variance swap has a net market value of zero at 

the inception of the trade. Thereby, when the contract is constructed the variance strike, also known as 

the variance swap rate, which ensures the expected payoff of zero is chosen (De Weert, 2008). According 

to no arbitrage reasoning, the variance swap rate must be equal to risk neutral expected value[1] of the 

realized variance (Carr & Wu, 2009, p.5).   

𝜎𝐾
2 = 𝐸𝑡

𝑄
[𝜎𝑅,𝑡,𝑇
2 ] (4) 

The theory on variance swaps marks the outset for this paper and will provide the guiding theme 

throughout the theory section. More specifically, in the theory section we explain and derive the risk-

neutral and physical variance, the two core components of equation (1). We start by examining risk-

https://euc-word-edit.officeapps.live.com/we/wordeditorframe.aspx?ui=en%2DUS&rs=en%2DUS&wopisrc=https%3A%2F%2Fstudentcbs-my.sharepoint.com%2Fpersonal%2Floga19ab_student_cbs_dk%2F_vti_bin%2Fwopi.ashx%2Ffiles%2F3cf8140da97948b4be9b12a0c2fcc1c6&wdenableroaming=1&mscc=1&wdodb=1&hid=091BA59F-0097-B000-7785-FDBF6DD6C4B3&wdorigin=ItemsView&wdhostclicktime=1611678335212&jsapi=1&jsapiver=v1&newsession=1&corrid=6fa954d7-de49-464a-a0e6-71c930f0e621&usid=6fa954d7-de49-464a-a0e6-71c930f0e621&sftc=1&instantedit=1&wopicomplete=1&wdredirectionreason=Unified_SingleFlush&rct=Medium&ctp=LeastProtected#_ftn1
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neutral expectations and explaining its economic intuition, followed by the theoretical formulation of the 

risk-neutral variance. We conclude the first section by introducing a widely applied proxy for risk neutral 

variance namely, the VIX. The section on physical variance is kicked off by examining the concept of high 

frequency realized variance and related stylized facts. Next, we explore realized variance estimation 

models and build the path for the analysis section.  
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3. Risk-neutral Variance  

We continue our theory section by introducing the risk-neutral variance and outlining its theoretical 

formulation. Ultimately, this section is concluded by discussing a widely applied proxy for risk-neutral 

variance namely, the VIX volatility index. Again, the risk-neutral variance is one of two core components 

of equation (1).   

3.1 Risk-neutral Expectation 

An investor is risk-neutral when she is indifferent between a certain payment and a risky investment with 

an equal expected payoff. Such an investor only considers a price of the asset to be fair if the expected 

discounted price of the asset at some future date equals the current price. A price process satisfying this 

condition is called a martingale (Hilpisch, 2015, p. 54). 

Formally, martingales are processes “whose future variations have no specific direction based on the 

process history.” (Knopf & Teall, 2015, p.128).  A filtration 𝐹 adapted stochastic4 process is a martingale 

under probability measure 𝑄 if it fulfills: 

𝐹𝑜𝑟 𝑎𝑙𝑙 𝑡, 𝑠 ≥ 0, 𝑡 + 𝑠 ≤ 𝑇: 𝐸𝑡
𝑄[𝑆𝑡+𝑠] = 𝑆𝑡  (5) 

A probability measure is a function that contains information regarding the probability of the observable 

event’s occurrence and satisfies the measure properties below. 

1. ∀𝐸 ∈  Ϝ ∶ 𝑃(𝐸) ≥ 0 (6) 

2. 𝑃(𝑈𝑖=1
𝐼 𝐸𝑖) =∑ 𝑃(𝐸𝑖) 𝑓𝑜𝑟 𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡 𝑠𝑒𝑡𝑠 𝐸1

𝐼

𝑖=1
, 𝐸2, …𝐸𝐼 ∈  Ϝ (7) 

 
4 Stochastic process is a family of random variables indexed by some mathematical set. It can alternatively be thought 
of as a probability distribution over a space of paths. 
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3. 𝑃(𝛺) =  1 (8) 

where 𝐸 denotes a set in the algebra Ϝ which is a family of sets in the state space Ω representing all 

possible states ω. 

It is important to note that the risk-neutral probability is conceptually very different to the real world 

physical probability. For the purposes of risk-neutral pricing, probabilities of various state paths are 

implied from the prices of traded securities, payoffs of which depend on these paths. As the market actors 

are on aggregate risk-averse, they tend to overweight probabilities of bad states when pricing securities 

(Hatfield, 2009). This phenomenon of distinct bad state probability assignment between risk-neutral and 

physical worlds is of high relevance to the design of this study as will be outlined in the following sections. 

3.2 Pricing and Hedging 

Variance swaps can be replicated and therefore also priced with a static portfolio of put and call options 

with equal maturity which are subsequently delta-hedged. Appendix 1 provides a derivation of the fair 

value of the realized annualized variance by utilizing the relationship between variance swaps and a log 

contract. A log contract is an exotic derivative first introduced by Neuberger (1994). It pays the natural 

logarithm of the ratio between the underlying’s terminal price and its forward price (Bossu , 2014). 

Neuberger (1994, p.78) claims that; “A log contract can be delta-hedged without making any forecast of 

volatility, and the hedged position is a pure and simple volatility play.” 

In short, it can be shown that the realized variance can be replicated by continuously maintaining a 

position of  
2

𝑆𝑡
 in the underlying5 in addition to holding a certain quantity of log contracts (Bossu, 2014 

p.63). A log contract is not a traded instrument however, its payoff can be constructed by shorting a 

 
5 Where 𝑆𝑡 is the spot price of the underlying at time 𝑡. 
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forward contract on 𝑆 struck at the forward price 𝐹, being long all long puts with 𝐾 < 𝐹 and holding all 

long calls struck at 𝐾 > 𝐹 both in quantities 
𝑑𝐾

𝐾2
. 

The fair value of the annualized variance is then: 

𝜎𝐾
2 =

2

𝑇
𝐸 (ln

𝑆𝑇
𝐹
) =

2𝑒𝑟𝑇

𝑇
[∫

1

𝐾2
𝑝(𝐾)𝑑𝐾 +∫

1

𝐾2
𝑐(𝐾)𝑑𝐾

∞

𝐹

𝐹

0

] (9) 

where 𝑟 is the interest rate corresponding to maturity 𝑇, 𝑝(𝐾) is the price of the put struck at 𝐾 and 𝑐(𝐾) 

is the price of the call struck at 𝐾.  

As in the real world, only a finite number of strikes are available, thus the following proxy formula is 

needed: 

𝜎𝐾
2 ≈

2𝑒𝑟𝑇

𝑇
[∑

𝑝(𝐾𝑖)

𝐾𝑖
2 ∆𝐾𝑖

𝑛

𝑖=1

+ ∑
𝑐(𝐾𝑖)

𝐾𝑖
2

𝑛+𝑚

𝑖=𝑛+1

∆𝐾𝑖] (10) 

Multiple studies (e.g. Carr & Wu, 2009; Driessen et al, 2009) have pointed to significantly negative average 

payoffs on synthetized swaps that have the realized variance of U.S. stock market indices as the 

underlying. In other words, data implies there is a premium demanded from a party seeking to take the 

long position in the variance swap. The long position is held by the buyer of the contract who receives the 

payment when the annualized realized variance over the period ends up being higher than the variance 

strike. Following sections describe what factors are thought to cause the presence of this premium 

according to the existing literature.  

3.3 Volatility Index - VIX 

The VIX is a non-tradable volatility index established by the Chicago Board Options Exchange (CBOE). It is 

computed from the price cross-section of S&P 500 index option contracts and measures the 30-day (i.e. 
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30 calendar days and 22 trading days) ahead expected volatility of the S&P 500 (Whaley, 2009). Given that 

S&P 500 options are among the most actively traded derivatives and the S&P 500 itself is viewed as a 

proxy of the United States (US) stock market, the VIX is perceived as a sound measure of the US market’s 

expectation of future volatility (Sarwar, 2012). Edwards and Preston (2017, p.2) note that the VIX can be 

thought of as “a crowd-sourced estimate for the degree to which the market is uncertain about the 

future”. Hence, the VIX is often labelled the investor fear gauge since a high VIX level alludes to high 

uncertainty in the U.S stock market. The fear gauge is based on a “model-free” calculation since it is 

constructed from a multitude of actively traded out-of-the-money S&P 500 put and call options across 

different strike prices and is thus not extracted from a model, unlike the Black-Scholes implied volatility 

(BSIV) (Whaley, 2009). The VIX has emerged as a substitute for the renowned BSIV since the model’s 

assumptions of constant volatility and lognormal return distribution are not supported by actual market 

data (Figlewski, 2016). Empirical studies (e.g. Carr and Wu, 2009; Duan and Yeh, 2010) suggest that the 

VIX approximates the 30-day ahead variance swap rate of the S&P 500 which equates to the risk-neutral 

expected value of the return variance of the S&P 500, as already addressed in previous sections. For that 

reason, the VIX has been widely used in academic research as a proxy for the risk-neutral expected market 

variance, most notably in applications related to stock return predictability and market volatility 

forecasting (among others, Bollerslev et al., 2009; Bekaert and Herova, 2014; Giot, 2005).  

The general formula for the VIX as provided by CBOE (2019):  

𝜎2 =
2

𝑇
∑

∆𝐾𝑖

𝐾𝑖
2 𝑒

𝑅𝑇𝑄(𝐾𝑖)

𝑖

−
1

𝑇
[
𝐹

𝐾0
− 1]

2

(11) 

where, 𝐹 is the unique strike price for which the absolute difference between the put and call prices are 

minimized and 𝐾0 represents the strike price nearest to 𝐹, with 𝐹 being strictly larger than 𝐾0. 𝐾𝑖 and ∆𝐾𝑖 
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represent the strike price of the 𝑖th out-of-the-money contract and the average interval between two 

strike prices, respectively. 𝑅 entails the risk-free interest rate and is generally the t-bond yield closest to 

the expiration date of the contracts. 𝑄(𝐾𝑖) provides the average bid-ask spread for every option and 𝑇 

are the minutes to expiration.  

Near- (strictly more than 23 days) and next-term (strictly less than 37 days) call and put options across a 

wide range of strike prices serve as components for the formula above. Once a week, contracts are 

discarded and new ones with different maturities for both near- and next-term options are used. The 

near- and next-term contracts are then weighted to create the VIX. The number of options and strike 

prices considered to calculate the VIX change dynamically based on the liquidity of option contracts at 

various strike prices (CBOE, 2019). Specifically, options with zero bid prices and the two contracts 

preceding a no bid contract are excluded. These readjustments allow to extract the timeliest market 

information and reflect the market’s expected volatility on a real-time basis. Taking the option price cross-

section across a wide range of strike prices allows to extract the risk-neutral density which reflects 

investors beliefs about all the volatility properties of the underlying asset including potential risk premium 

(Figlewski, 2016). Naturally, the actual future volatility may not exactly correspond to the forward-looking 

VIX, however it is precisely the discrepancy between the risk-neutral expectations and the physical 

expectations that has attracted a wide range of research and is also of interest in the present paper.  

3.3.1 Historical Performance of the VIX  

It can be observed that the S&P 500 and the VIX movements are noticeably negatively correlated. The 

graph below shows that the relationship between S&P 500 and contemporaneous VIX levels (Figure 2). It 

can be observed the VIX and S&P 500 move in opposite directions. Level changes in the VIX are the result 

of greater relative changes in the option prices for puts than for calls or vice versa. That is, negative 
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(positive) shocks turn investors bearish (bullish) and hence put option prices soar (fall) relative to call 

option prices, ultimately leading to an increase (decrease) in the VIX (Low, 2004). Thus, the index presents 

an informative metric to assess the relationship of the markets risk perception and the market conditions 

(Low, 2004). 

Figure 2: Negative correlation between S&P 500 and VIX 

 

That expected volatility and price move together is hardly news, in his seminal paper, Sharpe (1964) 

predicted that as expected volatility increases (decreases), all else equal, investors require a greater 

(lower) rate of return and thus stock prices fall (rise). Correspondingly, the VIX shows extreme spikes 

during high market turmoil accompanied with considerable changes of the S&P 500 levels, for example 

during the financial crisis and the beginning of the global Covid-19 pandemic. It is, however, noteworthy 

Notes: The figure plots daily levels of Standard and Poor´s 500 index (top) and the VIX volatility index (bottom) between the 3rd of January 

2000 and 12th of February 2021. 



 

15 
 

that the relation between the S&P 500 and the VIX is not one-to-one, as might be reasoned by Sharpe 

(1964), but rather displays an asymmetric behavior. Figure 2 reveals that a drop in the S&P 500 causes a 

larger change, in absolute terms, in the VIX than a rise of the S&P 500 of equal magnitude would. Again, 

the asymmetric behavior between market volatility and stock prices has sparked an area of research on 

its own, dating back to, for example, Schwert (1990). In relation to the VIX, the most plausible explanation 

for this observation relates to the use of options as insurance tools. Over recent years, the S&P 500 option 

market has become dominated by portfolio hedgers who buy put options to shield their portfolios from 

downside risk during market turmoil (Whaley, 2009). The demand for portfolio insurance (i.e. puts) 

strongly influences the VIX since it serves as an input variable for its calculation. Hence, VIX levels reflect 

the market downside risk fears rather than investor excitement (Whaley, 2009). In other words, during 

bear markets investors are concerned about the future and prefer to insure their portfolios leading to 

spikes in the VIX, while they have a lower incentive to hedge during bull markets resulting in much more 

subtle VIX movements. By extension, since the VIX is derived from readily available options market 

information it provides an overall market sentiment indicator (Fassas & Papadamou, 2018).   

Despite its popularity, the accuracy of the VIX as a risk-neutral measure has been contested, particularly 

regarding the construction of the VIX and the influence of market structure noise as well as sudden 

extreme jumps (Jiang & Tian 2005; Andersen et al., 2015; Carr and Wu, 2006). In theory, the fair value of 

the return variance considers continuous strikes prices as illustrated by equation (9) however, the VIX 

necessarily relies on discrete strike prices which may results in discretization errors. Furthermore, 

equation (9) considers option strike prices ranging from 𝐹 to infinity, this cannot be translated into the 

VIX measure especially since deep out-of-the-money options often have no bids. While some have argued 

that these errors can introduce substantial bias others have advocated that the VIX remains a good 

approximation of the risk-neutral expectation of total return variation (e.g. Bollerselv et al., 2009). 
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Nonetheless, the computation of the VIX underlies a strong theoretical foundation with no easily 

accessible alternative. In the present paper, the VIX will serve as a measure for the risk-neutral expected 

market volatility to ensure the comparability of findings with other papers.  
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4. Physical Variance  

The second component of equation (1) that we examine in greater detail is the physical variance. The 

section on physical variance is kicked off by examining the concept of high frequency realized variance 

and its related stylized facts. Next, we explore realized variance estimation models and build the path for 

the analysis section. 

4.1 High frequency Realized Variance  

4.1.1 Overview 

Broadly speaking, volatility measures are practical tools to assess the market’s uncertainty surrounding a 

security’s price (Drechsler and Yaron, 2011).  Return volatility measures come in many different shapes 

and forms. The most common measure of return variance is based on the squared daily returns:  

𝜎2 =
1

𝑛
∑ (𝑟𝑖)

2
𝑛

𝑖=1
(12) 

However, early papers (e.g. Jorion 1995) have noted that the squared daily returns performed poorly in 

out-of-sample forecasting. Initially, these deficiencies were believed to be inherent to the forecasting 

model employed (e.g. GARCH). Andersen and Bollerslev (1998) refute these accusations, arguing that the 

problem rather relates to the squared inter-day returns being a relatively noisy proxy of the conditional 

return variance.  Advances in data collection and its increased accessibility have fueled the use of high-

frequency data in financial research, resolving some of the main constraints of low frequency data. Hansen 

and Lunde (2011) argue that the added benefits of high frequency data are directly related to finer 

sampling leading to increased precision in the dynamic properties of the variable which, ultimately allows 

for better forecasting capabilities. They further underline that high frequency data has sparked the 

development of new volatility models that show potential for superior forecasting performance over 
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other established forecasting models; a discussion that will be further addressed in section (4.2). The most 

common substitute for inter-day return volatility is realized volatility, generally computed as the sum of 

intra-day squared log returns.    

4.1.2 Theoretical Framework 

To define the realized variance and understand its properties it is useful to review its computation. 

Consider a time interval [𝑎, 𝑏] which includes a time index 𝑡𝑖 such that 𝑡𝑖 ∈ [𝑎, 𝑏]. The time interval is 

divided into a total of 𝜏 equidistant partitions. In other words, the interval between each 𝑡𝑖 is of equal 

length for all 𝑖 = 1,2,… 𝜏. It follows that the sampling frequency is given by 𝑚 =
𝑎−𝑏

𝜏−1
. For each 𝑡𝑖, one 

price observation is made and denoted [𝑝𝑡𝑖]𝑖=1
𝜏 . The logarithmic returns are then expressed as 𝑟𝑡𝑖 =

log (𝑝𝑡𝑖) − log (𝑝𝑡𝑖−1). The realized variance over the interval [𝑎, 𝑏] can then be formulated as,  

𝑅𝑉[𝑎,𝑏] =∑𝑟𝑡𝑖
2

𝜏

𝑖=1

(13) 

The theoretical underpinnings of realized variance are of interest since as the interval of the sampled 

returns becomes infinitesimal small, 𝜏 → ∞, the sum converges in probability towards the quadratic 

variation (QV) of the process (Degiannakis, 2015). In turn, for all stochastic volatility models the QV 

provides the integrated volatility (IV) (Hansen and Lunde, 2011). The integrated volatility (IV) is a measure 

of the conditional variance, 𝜎𝑡
2. Both the IV and the population volatility are not directly observable and 

need to be obtained by an accurate observable proxy. Again, under the assumption made above, the 

realized variance is, at least in theory, a proxy for the conditional variance and therefore often used in 

research as an input for variance forecasting (Hansen and Lunde. 2011). Inevitably, the sampling 

frequency cannot converge towards infinity since as the sampling frequency is further compressed 

substantial biases are introduced leading to deviations from the latent efficient price (Hansen and Lunde. 
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2011). The noises are often linked to bid-ask bounce and incorrect recordings among others. As such, the 

realized variance is, at best, only a good approximation of the true conditional variance but tends to 

outperform in precision the coarser inter-day squared returns (Bollerselv et al., 2009, Andersen et al., 

2001). In practice, 5-minute intervals have emerged as the gold standard in econometric applications as 

it provides a trade-off between accuracy and microstructure market noises (McAleer and Medeiros, 

2008). Liu et al. (2015) empirically test different time intervals and conclude that 5-minute intervals 

capture much of the favorable benefits of high-frequency data while smaller sampling intervals provide 

only marginal improvements. As a result, the present paper defines realized variance as the sum of 5-

minute squared logarithmic returns which will be retrieved from the Realized Library provided by the 

Oxford-Man Institute of Quantitative Finance.   

4.1.3 Stylized Facts of Realized Variance  

Multiple studies (Bollerslev, et al., 2018; Andersen et al., 2001) have found that realized variance 

distributions are generally extremely right-skewed and leptokurtic. In other words, when the realized 

variance is considered in its level form, the third and fourth moments of the probability distributions are 

significantly larger than normal. However, as pointed out by Andersen et al. (2001), the logarithmic 

distributions of realized variances approximately resemble a normal distribution.    

Financial time series generally showcase highly persistent volatility dynamics meaning that the impact of 

volatility shocks in the series volatility autocorrelation function dissipates over a very long period of time 

(Andersen & Bollerslev, 2018). Numerous studies focusing on the high-frequency stock return and 

currency exchange data (e.g. Andersen & Bollerslev, 1997; Andersen, Bollerslev, Diebold & Labys, 2001; 

Andersen et al., 2001) have proposed that the long-range dependence is best described by slow hyperbolic 

rate of decay. In their recent paper, Bollerslev et al. (2018) analyze the realized volatility characteristics 
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for 58 assets across 4 major asset classes and conclude that the general dynamic patterns and decay rates 

in autocorrelations for daily realized volatilities averaged across the different asset classes are very similar 

and all display long-range dependence. A multitude of approaches were introduced to achieve the goal of 

approximating the long-memory process. These span from the models utilizing fractional integration 

exemplified by FI-GARCH (Baillie, Bollerslev and Mikkelsen, 1996) or ARFRIMA to models using the 

superposition of short-memory frequencies like Heterogeneous Autoregressive model (HAR) (Bauwens, 

Hafner, Laurant, 2012). The models most pivotal for our study are introduced and described in the section 

(4.2). 

Leverage effect refers to one of the most prominent regularities in the financial time series. It has been 

observed that negative stock return innovations increase the stock return volatility more than the positive 

ones (Smith, 2015). The inverse relationship between the stock return and (future) volatility has been so 

enduring across multiple studies that it is now considered to be one of the stylized facts of stock return 

data (Zumbach, 2013). The phenomenon was first described by Black (1976) who theorized that this 

dynamic can be explained by the “direct causation” effect of financial leverage, hence the name leverage 

effect. A stock price decrease generally implies a drop in company´s equity value leading to increase in 

the leverage as the level of debt in the capital structure remains fixed in the short term. The heightened 

financial leverage in turn leads to higher equity return volatility. Black (1976) also provided an alternative 

explanation by introducing the “reverse causation” effect which describes a causal relationship from 

volatility changes to stock returns (Hasanhodzic & Lo, 2011). Increase in the expected future volatility 

must lead to the drop in the stock price in order to increase the stock´s expected return and thereby 

induce investors to continue holding it. Following this line of thought led to the development of an 

extensive separate branch of literature focusing on time-varying risk premia. 
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Black’s leverage hypothesis has been empirically tested numerous times over the years, with multiple 

authors (Christie, 1982; Ericsson et al. 2016) finding evidence in its favor while many others (French, 

Schwert, and Stambaugh 1987; Gallant et al., 1992; Duffee, 1995) have provided evidence against it. 

Hasanhodzic and Lo (2011) argue that leverage effect cannot be explained by financial leverage alone as 

they observed volatility asymmetry in stock returns when studying the sample containing only all equity 

financed firms. The validity of Hasanhodzic and Lo’s (2011) conclusions may be questioned on the merit 

that the authors did not take into account the presence of operating leverage6. More recently, Smith 

(2015) used a methodology revolving around a EGARCH model to study the sources of the leverage effect. 

His results were consistent with the predictions of Black’s leverage effect hypothesis (Smith, 2015). 

Due to the open-endedness of the debate regarding the leverage hypothesis validity, financial literature 

has suggested alternative causes of leverage effects. Avramov et al. (2006) link the asymmetry in stock 

returns and volatility relationship to information asymmetry between informed and uniformed traders. 

Authors argue that liquidity driven (herding) trades executed by uninformed traders following price 

declines drive the volatility up whereas the contrarian trades made by the informed market actors reduce 

the volatility following stock price increases (Avramov, 2006). Dennis et al. (2006) distinguish between 

systematic and idiosyncratic volatility which allows them to differentiate between the impact of market-

wide factors and firm-level factors explaining the asymmetric volatility phenomenon. The authors identify 

a broader set of market-level factors that cause the leverage effect besides the firm’s financial leverage. 

  

 
6 Operating leverage is defined as fixed costs that remain constant over a short term (Sanusi, 2017). 
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4.2 Modelling Realized Variance  

4.2.1 Overview  

Volatility modeling has received a lot of attention in financial research which has led to the emergence of 

numerous models of which the most relevant ones will be explained and analyzed in this section. A 

volatility model aims to generate a forecast of future volatility. In section (5) we will explain in detail the 

reasons we require volatility forecast for the computation of the variance risk premium. Prior to that, we 

will discuss different volatility models and focus in particular on direct forecasting models with the realized 

variance as a dependent variable. Importantly, the stylized facts described in the previous section play a 

crucial role in selecting a fitting volatility model.  

4.2.2 Volatility Models 

The appropriate model selection needs to be assessed in light of the inherent properties of the data 

dynamics. As discussed in section (4.1.3) the challenge of modelling realized variance depends on 

accurately capturing its stylized facts. 

Arguably one of the most influential volatility models for conditional volatility are the autoregressive 

conditionally heteroskedastic class models first introduced by Engle (1982). The two most popular models 

are the ARCH and GARCH models. As opposed to the traditional ARCH model, GARCH includes, in addition 

to lagged past squared innovations, 𝜀𝑡−𝑖, also lagged conditional variance terms, ℎ𝑡−𝑖 ,:  

ℎ𝑡 = 𝛼0 +∑𝛼𝑖𝜀𝑡−𝑖
2 +∑𝛽𝑗ℎ𝑡−𝑖

𝑝

𝑖=1

𝑞

𝑖=1

(14) 

The rationale to expand the ARCH model was to reduce the rapid decay of its autocorrelation function to 

improve the empirical fit to financial variance time series since volatility is generally highly persistent 

across time (Andersen et al. 2009). While similar properties can be achieved through a high-lag ARCH 
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model, the more parsimonious GARCH model is often preferred in application. Although the 

autocorrelation function of GARCH models decrease at a slower rate compared to their ARCH 

counterparts, they continue to decrease exponentially with the lag length, even with a high 𝛽 value. Engle 

and Bollerslev (1986) observed that if 𝛼 + 𝛽 = 1, the GARCH contains a unit root which implies that past 

shocks influence the conditional variance indefinitely. This model is labeled Integrated GARCH or IGARCH 

for short. The indefinite persistence of the IGARCH is however not empirically sound since volatility 

processes are generally mean reverting. The contrasting difference in variance persistence between the 

GARCH and IGARCH model has led to the emergence of a more flexible alternative namely, the Fractionally 

Integrated GARCH (FIGARCH). Baille et al. (1996) introduced the FIGARCH model which displays hyperbolic 

decay of its autocorrelation function and is thus compatible with the time dependence observed in 

financial market volatility.  

Empirical evidence suggests that forecasting models based on high frequency measures outperform 

standard GARCH models which are generally based on daily returns to model the latent volatility (e.g. 

Çelik et al., 2014). In other words, models that directly model realized variance tend to showcase superior 

performance (Andersen et al., 2003). We therefore explore other venues to directly model realized 

variance in order to take full advantage of the information content in high frequency realized variance 

data.  

A model that allows to directly model realized variance is the ARFIMA model which has been widely 

applied to capture the long-range dependencies of realized volatility (Degiannakis & Floros, 2013). A 

stationary ARFIMA process of order (𝑝, 𝑑, 𝑞), with 𝑝 and 𝑞 being non-negative integers and 𝑑 ∈ [0,0.5], 

may be expressed as:  

𝛼(𝐿)(1 − 𝐿)𝑑(𝑥𝑡 − 𝜇) = 𝛽(𝐿)𝜀𝑡 (15) 
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where 𝜇 represents the mean of 𝑥𝑡7, 𝜀𝑡 is independently identically distributed white noise, 𝐿 are backshift 

operators such that 𝛼(𝐿) and 𝛽(𝐿) are defined as 1 − ∑ 𝛼𝑗𝐿
𝑗𝑝

𝑗=1  and 1 + ∑ 𝛽𝑗𝐿
𝑗𝑞

𝑗=1 , respectively. From 

(15) it is apparent that the long-term dependence is introduced via the fractional difference filter 

(1 − 𝐿)𝑑. The exponent 𝑑, generally defined as the long memory parameter, dictates the dependence 

(i.e. short or long). As such, if 𝑑 = 0 or 𝑑 = 1 the ARFIMA model reduces to a ARMA and ARIMA model, 

respectively. Long persistence results from a fractional parameter (e.g. 𝑑 = 0.4) applied to the left side of 

equation (15). (Brockwell & Davis, 2016)  

Hosking (1981) shows that under the condition 𝑑 ∈ [0,0.5), the autocorrelation of the ARFIMA model is 

approximately 𝑘2𝑑−1 as 𝑘 tends to infinity. The function implies that the autocorrelation process decays 

at a hyperbolic rate with the length of the lags (i.e. 𝑘) which is in line with the stylized fact of realized 

variance data.  Empirical studies show that ARFIMA models tend to outperform standard GARCH models 

(Franke et al., 2019). 

A comparatively recent model is the Mixed Data Sampling (MIDAS) model which has been developed 

primarily to predict volatility (Andreau et al., 2011). In the context of realized variance (RV) the MIDAS 

model may be defined as:  

𝑅𝑉𝑡+ℎ,𝑡 = 𝜇 + 𝜙 ∑ 𝜔(𝑘, 𝜃)𝑋𝑡−𝑘 + 𝜀𝑡

𝑘𝑚𝑎𝑥

𝑘=0

(16) 

Unlike the ARFIMA model, MIDAS regressions do not necessarily rely on autoregressive components, such 

that the lagged independent variable, 𝑋𝑡−𝑘,  on the right does not necessarily represent lagged value of 

the regressand. For example, the independent variables included in MIDAS should be appropriate 

 
7 𝑥𝑡 can be the realized variance or its logarithmic transformation. 
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predicators of quadratic variation such as daily squared returns, realized power or daily range. The weight 

functions are selected based on a parameterized function such as a linear step function. (Ghysels & 

Valkanov, 2012) 

Important characteristics of MIDAS are that 1) the model provides the flexibility to analyze the 

performance of the individual regressors as they can be directly compared against each other to 

determine if one regressor dominates another 2) and the inclusion of data sampled at varying frequencies, 

all within a unified framework (Ghysels & Valkanov, 2012). The MIDAS model draws parallels with 

heterogenous autoregressive (HAR) regressions, introduced by Corsi (2004). As such, Forsberg and 

Ghysels (2007) build a MIDAS regression that considers discrete steps of partial sum high frequency 

variables which have been inspired by Corsi’s HAR model (Foroni & Marcellino, 2013). They conclude that 

MIDAS and HAR show very similar performance for realized variance modelling.  

The HAR model is a parsimonious and simple to estimate model that is analogue to long memory models. 

The HAR-RV model developed by Corsi (2004) adds distinct AR models into a single model to capture the 

long-range dependence of realized variance. The computational details are outlined in the following 

section. A key benefit of the HAR model is that it underlies a strong economic intuition. To understand 

this intuition, it is worthwhile to outline its theoretical underpinnings rooted in the heterogeneous market 

hypothesis. 

Müller et al. (1997) utilized a fractal approach to derive the theory of heterogeneous markets. The concept 

of fractals, first introduced by Mandelbrot (1983), revolves around analyzing objects on different scales 

or degrees of resolution and then comparing the results (Müller et al, 1997). One can think of this process 

as using yardsticks of different sizes to measure the length of a coastline. The length of the seashore is 
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then a function of the yardstick size. Applying this reasoning to time series, different time yardsticks 

represented by various data sampling frequencies are used to analyze the object. 

The rationale to consider distinct sampling frequencies is based on the premise that distinct agents in 

heterogeneous markets have different time horizons and trading frequencies. Müller et al. (1997) argue 

that the different transaction frequencies reflect different reactions to the same market news. In his view, 

“The market is heterogeneous, with a fractal structure of the participants’ time horizons as it consists of 

short-term, medium-term and long-term components.” (Müller, 1997, p. 12). This has consequences for 

the structure of market volatility memory as it is composed of multiple exponential declines with different 

time constants. 

Contrary to homogeneous markets where an increased number of market actors leads to more rapid 

convergence of prices to real market values on which all rational investors agree, an increased number of 

participants in heterogeneous market results in distinct market actors settling for different prices in 

different situations driving up volatility. The authors motivate this claim by pointing to empirically 

observed positive correlation between volatility and market presence. In their study, the lowest volatility 

as well as market presence was observed during the weekends while both variables were the highest 

during early European afternoons which coincide with North American mornings.  

4.2.3 Heterogenous Autoregressive Model – A close look at the HAR model   

As outlined above, market participants create different volatility movements such that they can be 

distinctively split to create an ‘additive cascade of partial volatilities’ (Corsi 2004, p.9). Corsi’s HAR model 

considers three horizons, daily (𝑑), weekly (𝑤) and monthly (𝑚) which corresponds to 1, 5 and 22 working 

days, respectively. Formally, the models for each of the three different time horizons are:  

𝜎̃𝑡+1𝑚
𝑚 = 𝑐𝑚 + 𝛼𝑚𝑅𝑉𝑡

𝑚 + 𝜀𝑡̃+1𝑚
𝑚 (17) 
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𝜎̃𝑡+1𝑤
𝑤 = 𝑐𝑤 + 𝛼𝑤𝑅𝑉𝑡

𝑤 + 𝛾𝑤𝐸𝑡[𝜎̃𝑡+1𝑚
𝑚 ] + 𝜀𝑡̃+1𝑤

𝑤 (18) 

𝜎̃𝑡+1𝑑
𝑑 = 𝑐𝑑 + 𝛼𝑑𝑅𝑉𝑡

𝑑 + 𝛾𝑑𝐸𝑡[𝜎̃𝑡+1𝑤
𝑤 ] + 𝜀𝑡̃+1𝑑

𝑑 (19) 

The daily and weekly volatilities are a function of their past realized variance and the expected value of 

the longer horizon partial volatility. The monthly partial variance translates to a simple first order 

autoregressive model. It is apparent that the three equations can be reduced to a single model through 

substitution of the larger time horizons into the daily variance.  

𝜎𝑡+1𝑑
𝑑 = 𝑐 + 𝛽𝑑𝑅𝑉𝑡

𝑑 + 𝛽𝑤𝑅𝑉𝑡
𝑤 + 𝛽𝑚𝑅𝑉𝑡

𝑚 + 𝜀𝑡̃+1𝑑
𝑑 (20) 

The daily latent volatility needs to be related to the forecast of the realized volatility.  

𝜎𝑡+1𝑑
𝑑 = 𝑅𝑉𝑡+1

𝑑 + 𝜀𝑡+1𝑑
𝑑 (21) 

As addressed in section (4.1.2), the realized variance is only an approximate measure of the latent 

volatility hence it is necessary to account for potential errors which are included in the error term, 𝜀. 

Substituting equation (21) into (20) it can be rewritten as  

𝑅𝑉𝑡+1
𝑑 = 𝑐 + 𝛽𝑑𝑅𝑉𝑡

𝑑 + 𝛽𝑤𝑅𝑉𝑡
𝑤 + 𝛽𝑚𝑅𝑉𝑡

𝑚 + 𝜀𝑡+1𝑑 (22) 

where, 𝜀𝑡+1𝑑 = 𝜀𝑡̃+1𝑑
𝑑 − 𝜀𝑡+1𝑑

𝑑  

The realized variances for each partial volatility model are obtained as follows,  

𝑅𝑉𝑡
ℎ =

1

ℎ
∑𝑅𝑉𝑡+𝑖

ℎ

𝑖=𝑖

(23) 

with ℎ = 1, 5, 22 representing the daily, weekly and monthly time scale, respectively. For each time 

horizon the realized variance is then the average of the realized variance series.  
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The HAR model as outlined above is at its core an autoregressive (AR) model with 22 lags onto which 

restrictions are imposed. Audrino and Knaus (2016) show that the HAR model can be reformulated as 

𝑅𝑉𝑡+1
𝑑 = 𝑎 +∑𝜙𝑖

𝐻𝐴𝑅𝑅𝑉𝑡−𝑖+1
𝑑 + 𝜀𝑡+1

22

𝑖=1

(24) 

with restrictions, 

𝜙𝑖
𝐻𝐴𝑅 =

{
 
 

 
 𝑏𝑑 +

1

5
𝑏𝑤 +

1

22
𝑏𝑚 𝑓𝑜𝑟 𝑖 = 1

1

5
𝑏𝑤 +

1

22
𝑏𝑚 𝑓𝑜𝑟 𝑖 = 2,… ,5

1

22
𝑏𝑚  𝑓𝑜𝑟 𝑖 = 6,… ,22

(25) 

Effectively, the HAR fits a partial autocorrelation function into a linear combination of realized variances 

that can be estimated through a simple ordinary least squares (OLS) regression (Bauwens 2012). 

A key benefit of the cascade composition of the HAR model is that, unlike a GARCH (1,1) model, it 

distributes the weight over distinct observations that contain varying information about future volatility 

developments. For example, for a large unexpected spike in volatility, a GARCH (1,1) model will assign a 

lot of weight on the last observation which may corrupt the next forecast while the HAR model spreads 

the weight across distinct horizons (Reschenhofer et al., 2020).  

The HAR model follows a similar rationale as outlined by LeBaron (2001) who showed that a linear 

combination of three autoregressive (AR) functions appears to model the long-term persistence observed 

with financial volatility, while a single AR function can match these properties. To underline the 

persistence observed in the HAR model, we simulate an AR and HAR function and contrast their 

autocorrelation function. Figure (3) illustrates the striking difference in autocorrelation decay between 
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the two models.  As discussed, the simple AR(1) model decays exponentially even with a high coefficient 

(i.e. 0.95) while the HAR8 model effectively models persistence in the data.  

 

  

 
8 For illustrative purposes we calibrate the coefficients in the HAR model to 0.35, 0.3 and 0.3 for the daily, weekly 
and monthly coefficients, respectively. 

Figure 3: Modelling autocorrelation decay – AR(1) vs. HAR 

Notes: The figure plots the autocorrelation functions of a simulated autoregressive process of order 1 (red) and a Heterogenous 

Autoregressive process (blue) with coefficients 0.35, 0.3, and 0.3 for the daily, weekly, and monthly observations, respectively. The processes 

are simulated based on random normally distributed observations.   



 

30 
 

5. Variance Risk Premium  

Now that all the relevant concepts have been introduced, we can frame the bigger picture and explain 

how these concepts are interrelated before moving on to the empirical analysis.   

High variance represents a price risk to an investor’s holdings and is often accompanied by market crashes, 

which is generally unfavorable to investors. In turn, it would be reasonable to expect that investors are 

willing to pay a price (or premium) to shield their positions against large price swings. The premium may 

be thought of as volatility insurance where premiums are high when there is a lot of volatility and low (or 

zero) when the market is steady. In other words, the premium investors pay should be time-varying and 

depends on expected market volatility. Hence, during turbulent times, investors going long on a variance 

swap will bear a premium to protect themselves against large future variance. 

To analyze this hypothesis the VIX and realized variance we discussed in the previous sections will play a 

central role. The difference between the expectation of the risk-neutral and physical return variation 

provides the variance risk premium and represents the payoff of a variance swap (equation 1) (Anderson 

et al., 2001):  

𝑉𝑅𝑃𝑡 = 𝐸𝑡
ℚ
(𝑉𝑎𝑟𝑡,𝑡+1) − 𝐸𝑡

ℙ(𝑉𝑎𝑟𝑡,𝑡+1) (26) 

These two measures are not observable and need to be replaced by proxies. As already outlined in 

previous sections the VIX and realized variance are appropriate proxies for the risk-neutral and physical 

return variance, respectively. Formally, the variance risk premium can then be defined as: 

𝑉𝑅𝑃𝑡 = 𝑉𝐼𝑋𝑡
2 − 𝐸𝑡(𝑅𝑉𝑡+1) (27) 

where 𝑉𝐼𝑋 is observable at time 𝑡 and 𝐸𝑡(𝑅𝑉𝑡+1) is the estimate of the one-step ahead realized variance. 

The corresponding estimation model for the realized variance forecast will be introduced in section (7.1). 
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The value of the variance risk premium (i.e. the difference of equation (27)) is generally positive since the 

VIX includes the insurance characteristics of options which market participants seek during turbulent 

times. Note that some academic articles write the variance risk premium in the inverse order and thus 

report a negative variance risk premium. Given that the variance risk premium is mostly negative, we 

report it as in equation (27) to facilitate readability.  

Other papers (e.g. Bollerselv et al., 2009) analyzing the variance risk premium have proceeded with the 

assumption that the realized variance follows a martingale diffusion process such that the current realized 

variance subsumes all information about its future realization, simplifying to 𝐸(𝑅𝑉𝑡+1) = 𝑅𝑉𝑡: 

𝑉𝑅𝑃𝑡 = 𝑉𝐼𝑋𝑡
2 − 𝑅𝑉𝑡 (28) 

Clearly, the benefit of this approach is that all variables are observable at time 𝑡 such that no estimation 

model for the realized variance is required. Bekaert and Hoerova (2014) oppose the latter approach, 

pointing out that the data does not support such assumptions and could bias the calculations of the 

variance risk premium. For the purpose of comparability between different findings and to test the 

relative performance, the present paper will extract the variance risk premium based on both approaches. 

As addressed in section (4.2.3) we rely on the HAR models and variations thereof to model the future 

realized variance. The exact configurations of the models are described in the Methodology section.  
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6. Data 

6.1 Data Description 

In this section the variables comprising our dataset are described and preliminarily analyzed. Our core 

dataset contains daily closing spot prices of the S&P 500 index which we use to calculate daily percentage 

and log-returns. In addition, the data also includes daily values of the S&P 500 realized variance computed 

based on observations conducted with 5-minute frequency as well as historical adjusted daily closing 

levels of the CBOE Volatility index VIX. The stock index and realized variance data were sourced from the 

Realized Library of the Oxford-Man Institute of Quantitative Finance while the CBOE Volatility index (VIX) 

figures were retrieved from the Yahoo Finance website. 

VIX levels are reported in annualized volatility terms. As we are interested in modelling monthly realized 

variance and variance risk premia, the VIX variable must be adjusted. Following Dreschler & Yaron (2009) 

we square the VIX figures to transform them into the variance space and then divide the product by 12 to 

obtain a monthly quantity. Realized variance data is on the other hand reported as the daily sum of the 

squared 5-minute returns. In order to make this variable comparable to our constructed monthly squared 

VIX quantity, we multiply the observations by 104 to convert them into squared percentages (Dreschler 

& Yaron, 2009). The monthly realized variance for a particular date is then obtained by summing the last 

22 of these squared percentages. Mathematically it is expressed as,  

𝑅𝑉𝑡
𝑚 =∑𝑅𝑉𝑡−22+𝑖

𝑑

22

𝑖=1

(29) 
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Figure 4:S&P 500 index development 

 

 

Overall, the dataset covers the period from the 3rd of January 2000 until the 12th of February 2021 which 

translates to 5,293 daily observations. Neither VIX nor realized variance data are reported during the 

weekends or public holidays. Moreover, the realized variance summation procedure of equation (29) 

leads to exclusion of the first 21 observations which leaves us with a sample size of 5,272 observations for 

each observed variable.    

As can be observed in the Figure 5 the sample period for the most part consists of expansions with steadily 

rising or recovering stock market. However, multiple recessions and depressions are also observed during 

the studied timespan. These include for example the aftermath of the Dot-com bubble in early 2000s, the 

financial crisis of 2008 and the recent 2020 stock market crash triggered by the Covid-19 pandemic. 

Notes: The figure plots daily levels of Standard and Poor´s 500 cash index between the 3rd of January 2000 and 12th of February 2021. Periods 

of major index declines are highlighted with annotations underneath the line. 
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Figure 5: Historical movement of implied and realized variance proxies 

 

As already outlined in the section (3.3.1), variance and returns tend to move in opposite directions. Figure 

5 corroborates that this is the case for our sample as well, with realized variance hovering at low levels 

during the bull-markets and soaring in the recessions. Realized variance peaked at unprecedented levels 

during the 2008 financial crisis which caused the liquidity in volatility derivatives to dry up (Bekaert & 

Hoerova, 2013). Expectedly, the monthly squared VIX index, an indicator which is considered to be the 

risk-neutral expectation of the realized variance moves in tandem with the monthly 5-minute realized 

variance  as evidenced by correlation of 0.88 between the two variables9. 

 
9 Strength of the relationship between the two proxies is also graphically displayed by Figure A.1 in Appendix 2. 

Notes: Simultaneous movement in the two variance proxies with major increases during the annotated recessions. Monthly squared VIX 

quantity is derived by squaring the annualized VIX index and then dividing the product by 12. Monthly realized 5-minute variance is obtained 

by summing 22 consecutive daily realized variances based on 5-minute observations which have been multiplied by 104. 
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6.2 Summary Statistics and Distributional Properties 

Table 1 provides the basic descriptive statistics for the studied variables. The summary provides 

information about the first four moments of the variables probability distributions (i.e. mean, standard 

deviation, skewness and excess kurtosis). In addition, number of observations, value of the middle 

observation, average distance between each data value and a mean as well as minimum and maximum 

are also reported. Since we are interested in modelling monthly realized variance, most emphasis is put 

on the description of variance variables at the monthly scale, however, we summarize the daily variance 

and return variables for the sake of completeness.  

Table 1: Summary statistics 

Figure 6 (a) displays the probability distribution of daily S&P 500 percentage returns which has a mean of 

approximately 0.03 and standard deviation of 1.24. The exhibited distribution is left skewed as indicated 

by its negative third moment. The distribution also has a sharper peak and heavier tails relative to the 

normal distribution. Information regarding the tail extremity of a probability distribution function can be 

conveyed through its fourth moment known as the kurtosis. The kurtosis statistic reported in Table 1 is 

an excess kurtosis of the distribution which is defined as its fourth moment minus the value of 3. Excess 

kurtosis of 10.51 implies a leptokurtic distribution with relatively fatter tails thus confirming the eye test 

and conforming to stylized facts of financial time series (Zumbach, 2013). Distributional properties of the 

Daily % return Daily log-return VIX2 monthly RV 5 daily RV 5 monthly ln(VIX2 monthly) ln(RV 5 daily) ln(RV 5 monthly)

N 5,272 5,272 5,272 5,272 5,272 5,272 5,272 5,272

Mean 0.027 0.019 39.841 1.111 24.468 3.347 -0.678 2.616

Standard deviation 1.244 1.246 46.591 2.649 42.963 0.754 1.149 0.980

Median 0.062 0.062 25.975 0.474 12.612 3.257 -0.747 2.535

Mean absolute deviation 0.773 0.771 18.394 0.451 10.289 0.807 1.118 0.958

Minimum -11.9 -12.67 6.962 0.012 1.141 1.940 -4.406 0.132

Maximum 11.229 10.642 569.803 77.477 464.186 6.345 4.350 6.140

Skewness -0.153 -0.387 4.743 10.773 5.83 0.703 0.383 0.557

Kurtosis 10.508 10.705 32.253 193.503 41.99 0.372 0.395 0.490

Returns Variance

Notes: Summary statistics of return and variance variables for the sample ranging from 3rd of January 2000 to 12th of February 2021.    
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S&P 500 log-returns whose probability distribution is shown in Figure 6 (b) are overall very similar to its 

perecentage counterpart with even more negative skewness and more extreme excess kurtosis.          

Figure 6: Distributional properties of return and variance variables 

 

 

Figure 6 (c) plots the probability distribution of squared monthly CBOE Volatility index (VIX). The histogram 

is right skewed with most of the density concentrated to the left of the mean and with significantly drawn-

out right tail. In terms of the third moment, the distribution has a positive skewness of 4.74. As for the tail 

extremity, considerable mass of the observations laying more than three standard deviations to the left 

of the mean, results in an excess kurtosis of 32.25. Thereby the curve represents a leptokurtic distribution 

with fatter tails relative to the normal distribution. The variable constructed as natural logarithm of 

Notes: Histograms, probability density functions and gaussian curves for the comparison in black to outline the distributional properties of 

daily returns as well as daily and monthly variance proxies in both percentage/level and log. Level variance charts 6(c), (e) and (g) showcase 

extremely right-skewed distributions while corresponding log charts 6(d), (f), (h) plot distributions that are much better approximated by 

the Gaussian curve.    
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squared monthly CBOE Volatility index has a bimodal probability distribution displayed in Figure 6 (d) with 

a mean of 3.35 and standard deviation of 0.75. The distribution’s third and fourth moments are closer to 

normality compared to the level variable with skewness and excess kurtosis much closer to 0.  

The probability density function of the daily realized variance is illustrated graphically in Figure 6 (e). The 

distribution has the expected value of 1.11 and standard deviation of 2.65. A skewness of 10.77 implies a 

significant right skew and prolonged right tail. Major outliers observed during the above-mentioned 

recessions contribute to gargantuan excess kurtosis of 193.5. The observation for the sample maximum 

of 77.48 from 10th of October 2008 provides an illustrative example of the extremity of the outliers. This 

value is located more than 29 standard deviations away from the sample average meaning its occurrence 

would be exceedingly improbable and close to impossible had the probability distribution for the variable 

been normal. The logarithmic distribution of the daily realized variance which is almost Gaussian can be 

found in Figure 6 (f). The last summarized variables are monthly realized variance and its natural logarithm 

represented by Figures 6 (g) and 6 (h), respectively. Relative to its daily counterpart, the probability 

distribution of monthly realized variance is less skewed and less tail-heavy. The distribution for the 

logarithm is again multimodal but the third and fourth moments are nearly Gaussian.  
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7. Methodology 

7.1 Model Specification 

Following the methodology of Bekaert and Hoerova (2014) we consider monthly realized variance of the 

S&P 500 returns as the one-step ahead estimate of the realized variance that is used to derive the variance 

risk premium (VRP). The basic model HAR-RV is specified as:   

𝑅𝑉𝑡+22
𝑚 = 𝑐 + 𝛽𝑑𝑅𝑉𝑡

𝑑 + 𝛽𝑤𝑅𝑉𝑡
𝑤 + 𝛽𝑚𝑅𝑉𝑡

𝑚 + 𝜀𝑡+22𝑑 (30) 

The regressand 𝑅𝑉𝑡+22
𝑚  is defined as the sum of daily realized variances over the 22 trading days. Since the 

dependent variable 𝑅𝑉𝑡+22
𝑚  is in fact just a future value of 𝑅𝑉𝑡

𝑚 we lose the last 22 rows of the data-frame 

to the estimation procedure. This leaves us with 5,250 observations that we use throughout the analysis. 

Mathematically;  

 

𝑅𝑉𝑡+22
𝑚 =∑𝑅𝑉𝑡+22−𝑖+1

𝑑

22

𝑖=1

(31) 

We allow for the intercept 𝑐 in the functional form. As has already been explained in detail in previous 

sections, the first three independent variables represent the squares of “the past realized volatilities 

viewed at different frequencies” (Corsi, 2004, p.10). We decided to pattern our model upon the tradition 

observed in the literature and chose the usual daily (h=1), weekly (h=5) and monthly (h=22) time scales 

for the first three volatility components in the regression. Considering that our model forecasts monthly 

variance, we express all realized variance variables in monthly units as follows: 

𝑅𝑉𝑡
(ℎ) =

22

ℎ
∑𝑅𝑉𝑡−𝑗+1

ℎ

𝑗=1

(32) 
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To illustrate, the weekly realized variance expressed in monthly units at time t is constructed by summing 

daily realized variances observed from time 𝑡 − 4 until (including) time 𝑡 and then multiplying the sum by 

22

5
. Correspondingly, the daily realized variance expressed in monthly units is obtained by substituting 1 

for ℎ in equation (32). As for the monthly quantities, no further transformation in addition to initial 

variance summation procedure covered in section (6.1) is needed.  

Corsi et al. (2012) extend the heterogeneous framework to include leverage effects as well. The authors 

were inspired by multiple studies (Corsi et al., 2005; Scharth & Medeiros, 2009; Fernandes et. al., 2009) 

which argued that the impact of negative price innovations on future volatility levels exhibits long-range 

dependence resembling the persistence in volatility itself. The inclusion of lagged negative returns with 

varying frequencies was thereby logically proposed as a way of modelling this dynamic feature. We mimic 

this procedure and supplement our base HAR-RV model with three additional factors representing the 

impact of daily (h=1), weekly (h=5) and monthly (h=22) negative returns on the level of the dependent 

variable estimate. 

Our heterogeneous autoregressive model augmented with leverage effects components is labelled L-HAR-

RV and is specified as follows: 

𝑅𝑉𝑡+22
𝑚 = 𝑐 + 𝛽𝑑𝑅𝑉𝑡

𝑑 + 𝛽𝑤𝑅𝑉𝑡
𝑤 + 𝛽𝑚𝑅𝑉𝑡

𝑚 + 𝛿𝑑𝑟𝑡
𝑑− + 𝛿𝑤𝑟𝑡

𝑤− + 𝛿𝑚𝑟𝑡
𝑚− + 𝜀𝑡+22𝑑 (33) 

The variables for modelling of leverage effects at different frequencies are constructed as: 

𝑟𝑡
ℎ− = min(𝑟𝑡

ℎ , 0) (34) 

where we start with the construction of the vector containing daily leverage effects and then apply the 

same methodology for conversion of daily and weekly leverage effects to monthly units. Mathematically; 
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𝑟𝑡
(ℎ)

=
22

ℎ
∑𝑟𝑡−𝑗+1

ℎ

𝑗=1

(35) 

The last of our models estimated in levels is labelled VIX-L-HAR-RV. As the name suggests the model is an 

extension of the L-HAR-RV with the addition of squared monthly VIX quantity as an extra independent 

variable. The motivation to include monthly quantity of CBOE´s volatility index stems from VIX’s definition 

of market’s expectation of future volatility. Some authors have argued that implied volatility contains 

information about the future realized volatility levels (Christensen and Prabhala, 1998). In addition, the 

VIX itself has been employed as a predictor of realized volatility in multiple studies (Bekaert and Hoerova, 

2014; Busch, Christensen and Nielsen, 2011). Nevertheless, due to the presumed existence of a variance 

risk premium it is generally acknowledged that the VIX is not an unbiased predictor of realized volatility.  

𝑅𝑉𝑡+22
𝑚 = 𝑐 + 𝛼𝑉𝐼𝑋𝑡

2 + 𝛽𝑑𝑅𝑉𝑡
𝑑 + 𝛽𝑤𝑅𝑉𝑡

𝑤 + 𝛽𝑚𝑅𝑉𝑡
𝑚 + 𝛿𝑑𝑟𝑡

𝑑− + 𝛿𝑤𝑟𝑡
𝑤− + 𝛿𝑚𝑟𝑡

𝑚− + 𝜀𝑡+22𝑑 (36) 

Recalling Figures 6 (d), (f) and (h) which showed that log variances in our sample have distributions that 

are much better approximated by the Gaussian curve, we also estimate all three models in Log-Log form. 

We again follow the example of Bekaert and Hoerova (2014) and take the natural logarithms of every 

variable in the regressions outside of the ones representing leverage effects which are already measured 

in logarithm. Finally, the models log HAR-RV, log L-HAR-RV and log VIX-L-HAR-RV are specified as: 

ln (𝑅𝑉𝑡+22
𝑚 ) = 𝑐 + 𝛽𝑑ln (𝑅𝑉𝑡

𝑑) + 𝛽𝑤ln (𝑅𝑉𝑡
𝑤) + 𝛽𝑚(𝑅𝑉𝑡

𝑚) + 𝜀𝑡+22𝑑 (37) 

ln (𝑅𝑉𝑡+22
𝑚 ) = 𝑐 + 𝛽𝑑ln (𝑅𝑉𝑡

𝑑) + 𝛽𝑤ln (𝑅𝑉𝑡
𝑤) + 𝛽𝑚ln (𝑅𝑉𝑡

𝑚) + 𝛿𝑑𝑟𝑡
𝑑− + 𝛿𝑤𝑟𝑡

𝑤− + 𝛿𝑚𝑟𝑡
𝑚− + 𝜀𝑡+22𝑑(38) 

ln (𝑅𝑉𝑡+22
𝑚 ) = 𝑐 + 𝛼ln (𝑉𝐼𝑋𝑡

2) + 𝛽𝑑ln (𝑅𝑉𝑡
𝑑) + 𝛽𝑤ln (𝑅𝑉𝑡

𝑤)

+𝛽𝑚ln (𝑅𝑉𝑡
𝑚) + 𝛿𝑑𝑟𝑡

𝑑− + 𝛿𝑤𝑟𝑡
𝑤− + 𝛿𝑚𝑟𝑡

𝑚− + 𝜀𝑡+22𝑑 (39)
 

For the models to be comparable, the estimates must be converted to the same scale. However, Jensen´s 

inequality dictates that: 
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𝐸[𝑓(𝑅𝑉𝑡+22
𝑚 )] ≠ 𝑓(𝐸[𝑅𝑉𝑡+22

𝑚 ]) (40) 

unless the function 𝑓 is linear. As the function applied in our application is concave, we obtain a strict 

inequality 𝐸[𝑓(𝑅𝑉𝑡+22
𝑚 )] < 𝑓(𝐸[𝑅𝑉𝑡+22

𝑚 ]) barring degenerate cases. This forces us to take into 

consideration the distributional aspects of ln (𝑅𝑉𝑡+22
𝑚 ) in order to get an unbiased estimate of 𝑅𝑉𝑡+22

𝑚  

when converting logarithmic estimates to level. Some authors (Bekaert and Hoerova, 2014) have tackled 

this challenge by assuming that the predicted variable is log-normally distributed and applying the 

corollary (Poulsen, 2010):   

𝐼𝑓 ln(𝑅𝑉𝑡+22
𝑚 ) ∼ 𝑁(𝜇′, 𝜎′

2
) 𝑡ℎ𝑒𝑛 𝐸(𝑅𝑉𝑡+22

𝑚 ) = 𝑒𝜇
′+
𝜎′
2

2 (41) 

Others (Jakobsen, 2018) solved the logarithm to level transformation problem through a simulation 

procedure where the empirical distribution of estimated residuals obtained by re-sampling is employed.  

Although it is fair to question the appropriateness of the log-normality assumption, due to the 

computational constraints, we have decided to lean on log-normality assumption and transform the 

estimates of monthly logarithmic variance to levels as follows: 

  

E [𝑅𝑉𝑡+22
𝑚 ] = 𝑒

(E [𝑟𝑣𝑡+22
𝑚 ]+

1
2
𝑣𝑎𝑟(𝑟𝑣𝑡+22

𝑚 ) (42) 

where,  

𝑟𝑣𝑡+22
𝑚 = ln(𝑅𝑉𝑡+22

𝑚̂ ) (43) 

The logarithmic model is used to calculate the conditional expectation of monthly logarithmic variance 

estimates 𝑟𝑣𝑡+22
𝑚  and the variance term is computed as the sample variance of 𝑟𝑣𝑡+22

𝑚 .  
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7.2 Addressing Heteroscedasticity and Serial Correlation of Residuals 

While the OLS estimator is still consistent and unbiased in the presence of the heteroskedasticity, the 

existence of non-constant variance of the error term brings serious problems for the standard inference 

procedures and efficiency of the OLS (Greene, 2014). To investigate whether the error terms in our models 

are heteroscedastic we conduct a Breush-Pagan test. Breusch and Pagan (1979) formulated a Lagrange 

multiplier (LM) test of the null hypothesis of homoscedasticity where the hypotheses can be formally 

defined as follows: 

𝐻0: 𝑉𝑎𝑟(𝑢𝑖|𝑋) = 𝜎
2       𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 (44) 

𝐻1: 𝑉𝑎𝑟(𝑢𝑖|𝑋) = 𝜎𝑖
2 (45)  

We perform the studentized version of the Breusch-Pagan test recommended by Koenker (1981) that 

addresses the original test’s sensitivity to the normality assumption by incorporating a more robust 

estimator of the error variance. The residuals extracted from each of the six estimated models are squared 

and then regressed on the matrices of the explanatory variables from the corresponding models. The ratio 

of the explained sum of squares and total sum of squares of this auxiliary regression is then used to 

calculate the LM statistic which in case of normality and under the null hypothesis of homoskedasticity 

follows a limiting chi-squared distribution with the degrees of freedom dictated by the number of 

independent variables in the particular model. There has been evidence that in the absence of normality 

this modified statistic provides a more powerful test relative to the base version (Greene, 2014). 

𝐿𝑀𝐵𝑃 = 𝑛𝑅ℎ
2 (46) 

Where 𝑛 is the number of observations and 𝑅ℎ
2 is the coefficient of determination for the auxiliary 

regression. The test results reported in the Table 2 provide strong evidence against the null of 

homoscedasticity in the error term.      



 

43 
 

Table 2: Heteroskedasticity and serial correlation testing 

 

 

Figure 7 plots the errors for each of the estimated models and displays a blatant clustering of the data 

points which indicates the presence of autocorrelation. Thereby, in addition to testing for general 

heteroscedasticity in the error term we also test for the serial correlation of the residuals by performing 

a Breusch-Godfrey test. Similar to the heteroscedasticity test described above, the procedure is again a 

LM test. 

BP statistic df p-value BG statistic df p-value

HAR-RV 457.030 3 < 2.2e-16 5,098.400 1 < 2.2e-16

L-HAR-RV 511.520 6 <2.2e-16 5,088.400 1 < 2.2e-16

VIX-L-HAR-RV 550.110 7 < 2.2e-16 5,097.400 1 < 2.2e-16

log HAR-RV 42.751 3 2.78E-09 5,018.600 1 < 2.2e-16

log L-HAR-RV 63.308 6 9.55E-12 5,033.500 1 < 2.2e-16

log VIX-L-HAR-RV 76.936 7 5.80E-14 5,070.300 1 < 2.2e-16

Breusch-Pagan test Breusch-Godfrey test

Notes: Provided are the statistics of tests for heteroskedasticity and serial correlation in the model residuals. Order of 1 was 

chosen for the Breusch-Godfrey test. The results above are for the models estimated in full sample (3rd of January 2000 until 12th 

of February 2021). 
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Figure 7: Residuals of models estimated using full sample 

 

 

The model residuals are regressed on the original independent variables of a corresponding model and 

the lagged residuals of order ranging from 1 up to  𝑝. The LM statistic is then computed by multiplying the 

number of observations 𝑛 and the coefficient of determination 𝑅𝑎
2 from this auxiliary regression. 

𝐿𝑀𝐵𝐺 = 𝑛𝑅𝑎
2 (47) 

The test statistic is asymptotically chi-squared distributed with 𝑝 degrees of freedom (Greene, 2014). The 

results of the Breusch-Godfrey tests against the first-order autocorrelation of the residuals are reported 

in Table 2. The strong evidence against the null of no autocorrelation in the error term at lag one is not 

surprising considering our use of overlapping data in the regressions. 

Notes: Plotted are residuals of each of the models estimated in the full sample (3rd of January 2000 until 12th of February 2021). 

Clustering which is especially noticeable in the residuals of models estimated in level form is an indication of serial correlation 

being present. 
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In the presence of heteroskedasticity and serial correlation the covariance matrix of the error term  can 

be represented as: 

Ω =

[
 
 
 
 
 
 
𝜎1
2 𝜎12 𝜎13 𝜎14 … 𝜎1𝑇

𝜎12 𝜎2
2 𝜎23 𝜎24 … 𝜎2𝑇

𝜎13 𝜎23 𝜎3
2 𝜎34 … 𝜎3𝑇

𝜎14 𝜎24 𝜎34 𝜎4
2 … 𝜎4𝑇

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
𝜎1𝑇 𝜎2𝑇 𝜎3𝑇 𝜎4𝑇 … 𝜎𝑇

2 ]
 
 
 
 
 
 

(48) 

which implies that the conditional variance of the least squares estimator is no longer the usual expression 

for the homoscedastic case (Greene, 2014): 

𝑉𝑎𝑟[𝑏|𝑋] = 𝜎2(𝑋´𝑋)
−1

(49) 

but rather the general expression: 

𝑉𝑎𝑟[𝑏|𝑋] = (𝑋´𝑋)
−1
𝑋´(Ω)𝑋(𝑋´𝑋)

−1
(50) 

Since the central term  cannot be simplified to 𝜎2𝐼, where X is a design matrix of predictor values and 𝐼 

is the identity matrix. As the structure of   is not directly observed we need to estimate it. In this paper, 

we employ autocorrelation consistent covariance estimator introduced by Newey and West (1987) which 

has over the years become very popular in econometric research. The authors utilize the estimated 

residuals 𝑢̂𝑡 and apply a weighting scheme with the assigned weighting terms diminishing in value as one 

moves away from the diagonal. This treatment ensures that the resulting matrix is positive semi-definite: 

Ω̂𝑁𝑊 =

[
 
 
 
 
 
 

𝑢̂1
2 𝑤1𝑢̂1𝑢̂2 𝑤2𝑢̂1𝑢̂3 0 … 0

𝑤1𝑢̂1𝑢̂2 𝑢̂2
2 𝑤1𝑢̂2𝑢̂3 𝑤2𝑢̂2𝑢̂4 ⋱ ⋮

𝑤2𝑢̂1𝑢̂3 𝑤1𝑢̂2𝑢̂3 𝑢̂3
2 𝑤1𝑢̂3𝑢̂4 ⋱ 0

0 𝑤2𝑢̂2𝑢̂4 𝑤1𝑢̂3𝑢̂4 𝑢̂4
2 ⋱ 𝑤2𝑢̂𝑇−2𝑢̂𝑇

⋮ ⋱ ⋱ ⋱ ⋱ 𝑤1𝑢̂𝑇−1𝑢̂𝑇
0 … 0 … … 𝑢̂𝑇

2 ]
 
 
 
 
 
 

(51) 
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The weight of covariances located on a particular off-diagonal is computed as: 

𝑤𝑙 = 1 −
𝑙

(𝐿 + 1)
(52) 

where 𝐿 is the so-called truncation parameter or a bandwidth which is usually defined as a function of the 

sample size. Unfortunately, there is no universal rule specifying the formula for 𝐿. For example, Greene 

(2014) recommends the rule of thumb 𝐿 ≈ 𝑇
1

4 while others (i.e. Stock & Watson, 2016) advise 𝐿 = 0.75𝑇
1

3. 

Finally, we calculate the variance of our estimated parameter 𝛽̂: 

𝑉𝑎𝑟𝑁𝑊(𝛽̂) = (𝑋
´𝑋)

−1
𝑋´(Ω̂𝑁𝑊)𝑋(𝑋

´𝑋)
−1

(53) 

Recent literature stresses that incorporating overlapping data when forecasting in long-horizons relative 

to the length of samples provides only a minor benefit (Boudoukh et al., 2019). According to the authors, 

the commonly used methods of correcting for serial correlation including Newey-West estimator provide 

fictious comfort to the practitioners and that standard error estimates obtained by these methods are in 

such cases unreliable. To account for the bias and noise caused by the features of our sample and method, 

we impose higher than usual “rule of thumb” number of Newey-West lags  when constructing the 

heteroskedasticity and autocorrelation consistent standard errors for our models.  

7.3 Variance Risk Premia Construction        

To construct the variance risk premia the one month ahead realized variance estimates of different 

models are subtracted from the squared monthly quantity of VIX. Formally: 

𝑉𝑅𝑃𝑡 = 𝑉𝐼𝑋𝑡
2 − 𝑅𝑉𝑡+22

𝑚̂ (54) 

This exercise is analogue to determining the premium demanded from a party taking the long position in 

the variance swap. One can recall equation (1) where the variance swap payoff for the party buying the 
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variance is the difference between the actual realized variance and a variance strike multiplied by variance 

notional. In our application 𝑉𝐼𝑋𝑡
2 acts as the variance strike and the model fitted values 𝑅𝑉𝑡+22

𝑚̂  

approximate the realized variance. We express the variance risk premia in monthly variance units instead 

of monetary terms and thereby no variance notional is required. As these payoffs tend to be generally 

negative, we expect a positive variance risk premia (Carr & Wu, 2009). 
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8. Realized Variance Modelling - Empirical Results 

We report the regression output for the level and logarithmic models in Tables 3 and 4, respectively. All 

of the models were estimated over the full sample of 5250 daily observations. The standard errors in 

brackets underneath the coefficients are Newey-West estimator with 44 lags. The applied 

heteroskedasticity and autocorrelation consistent standard errors are thereby considerably larger than 

the usual OLS standard errors, but they allow us to perform statistical inference. For comparison, the 

formula recommended by Greene (2014) yields 8.5 lags and the rule of thumb proposed by Stock & 

Watson (2016) results in 13 Newey-West lags. We consider this rather large derogation from the usual 

rules of thumb as appropriate reflecting on the remarks of Müller (2014) who states that for strongly 

autocorrelated time series the Newey-West estimators with the usual bandwidths are severely biased 

downwards and this bias can only be tackled by choosing a very large number of lags which itself leads to 

issues caused by high sampling variability of the estimator. A rather extensive branch of the literature has 

been developed attempting to address the poor small sample performance of these procedures by taking 

the sampling variability of the long run variance estimators into account. While we do not pursue this 

avenue further and rely only on somehow arbitrary increase in the size of the bandwidth10, the interested 

reader is directed to works of Sun et al.,(2008), Müller (2014) and Kiefer and Vogelsang (2005) for more 

information on the subject.  

 
10 As it was performed by Bekaert & Hoerova (2014). 
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Table 3: Full sample regressions in level form 

 

 

Notes: Sample period spans from the 3rd of January 2000 to 12th of February 2021. All regressions are based on daily observations 

leading to considerable overlapping. Therefore, the standard errors in brackets are constructed using 44 Newey-West lags. 

Significance of coefficients is indicated by the star symbol *,**,*** according to the scheme above. 
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The original HAR-RV model of Corsi (2004), whose coefficients are reported in column one of Table 3 

explained approximately 47% of all variation in the dependent variable. Three out of four estimated 

coefficients are statistically significant at the 1% level with only the coefficient for the monthly realized 

variance not meeting the 1% threshold but still being significant at the 90% confidence level. It is notable 

that each of the coefficients was estimated with the expected positive sign meaning that the increase in 

the past volatility observed over a particular horizon drives up the estimated value. The explanatory 

variable representing the weekly realized variance displays the largest effect among the volatility 

components appearing in the regression. This observation holds true across all estimated models, level 

and logarithmic alike, with the exception of log L-HAR-RV where the monthly component had the 

dominant impact on the estimates of the one-month ahead realized variance.  

Including the leverage effect variables increases the adjusted 𝑅2 by an additional 2.2%. The coefficients 

calculated for the daily and weekly leverage effects are both significant at 1% and 5%, respectively, while 

the monthly component of the leverage effects is not statistically significant. Paralleling the past realized 

volatility components, we again obtain the expected sign for the significant coefficients of leverage effect 

variables. As discussed in section (7.1) leverage effect variables are constructed by summing the vector of 

negative daily logarithmic returns. The negative coefficient therefore multiplies a variable that is by design 

non-positive. This captures the inverse relationship between the stock returns and variance covered in 

section (4.1.3) whereby the decreases in the stock price correspond to increases in the modelled realized 

variance.   

The addition of the squared monthly VIX quantity as a regressor in the level form does not have any 

noteworthy impact on model’s 𝑅2 but marginally affects the magnitudes and level of significance of other 

coefficients. Most notably the coefficient for monthly horizon of realized variance is no longer statistically 

significant. As for the added variable itself, its coefficient is not statistically significant either.  
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Table 4: Full sample regressions in logarithmic form 

 

 

Notes: Sample period spans from the 3rd of January 2000 to 12th of February 2021. All regressions are based on daily observations 

leading to considerable overlapping. Therefore, the standard errors in brackets are constructed using 44 Newey-West lags. 

Significance of coefficients is indicated by the star symbol *,**,*** according to the scheme above. 
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Estimating Corsi’s (2004) basic model in the logarithmic form leads to major improvements in the model’s 

fit. This is reflected by the adjusted 𝑅2 of the model increasing to 62%. In addition, each of the estimated 

coefficients is significant at the 1% level. As already mentioned, the weekly variance component has the 

largest coefficient however, it is only marginally bigger than the monthly component. Incorporating the 

leverage effects further improves the model’s capability to explain variations in the modelled variable. 

Paralleling the log L-HAR-RV’s to its level form counterpart, only the effects of daily and weekly leverage 

effects are statistically significant with weekly coefficient dominating in terms of magnitude.  

In contrast to the level regressions where the inclusion of squared monthly VIX variable failed to make a 

significant difference in model’s explanatory power, in the logarithmic regressions the same regressor 

helps to boost the adjusted 𝑅2 by an extra 2.1% relative to its nested model. 



 

53 
 

Figure 8: One month ahead estimates of monthly RV – full sample estimation 

  

  

The fitted values11 for each of the estimated models are compared to the actual one month-ahead levels 

of the realized variance in Figure 8. Overall, it appears that our models capture the long-range dependence 

and other stylized facts of the modelled variable reasonably well. However, it is notable that both log L-

HAR-RV and log VIX-L-HAR-RV tend to massively overpredict the level of the realized variance during the 

crisis periods. This might, at first glance, seem surprising considering the same is not observed for the 

 
11 For logarithmic estimates their transformations to the level. 

Notes: Fitted values of regressions estimated using full sample (from the 3rd of January 2020 to 12th of February 2021) in turquoise 

are compared to the actual level of the 22 days ahead realized variance in red. The plot is divided into 6 facets corresponding to 

each of the estimated models. Series for logarithmic models (log HAR-RV, log L-HAR-RV and log VIX-L-HAR-RV) are constructed by 

transforming the fitted values logarithmic estimates to level following the equation (42).  
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estimates of the less complex logarithmic model, log HAR-RV, and that the best fit was achieved by these 

two most comprehensive log-models. 

Plot A.2 in Appendix 3 as well as the relatively high 𝑅2’s reported for the two models corroborate that the 

root of this issue is not in the estimation itself but rather in the conversion of ln(𝑅𝑉𝑡+22
𝑚̂ ) to level form. In 

section (7.1), we assumed that the modelled variable is lognormally distributed when applying equation 

(42) to transform the log estimates to level. As is revealed by Figure 9, the probability density functions 

for the estimates generated by the two models in question deviate from normality considerably more 

than the ones for the fitted values of the basic logarithmic model. While the three estimated logarithmic 

variables have effectively identical first two moments, the distributions of log L-HAR-RV and log VIX-L-

HAR-RV estimates are significantly more skewed to the right and more leptokurtic. We are especially 

concerned about the mass of modelled values located in the right tail. To illustrate, the maximum value 

estimated by the log HAR-RV model is located 3.85 standard deviations away from the mean compared 

to 5.23 standard deviations for the maximum estimate of the log L-HAR-RV model. The right tails being 

more drawn out in combination with a larger share of the two distributions being located in these tails 

cause major issues during the logarithm to level transformation.      
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Figure 9: Distributions of logarithmic estimates 

  

 

Figure 10 presents the variance risk premia constructed as per equation (54) corresponding to each of the 

estimated realized variance models. In line with our theoretical expectations, the variance risk premia 

increase during times of crises and heightened economic uncertainty. On the other hand, we observe a 

reversion of the variance risk premia to lower levels during recovering, bull and stable markets. In 

addition, the expected value of the variance risk premium is positive across all models12. This is analogous 

to a negative expected payoff for a buyer of the underlying in a variance swap which is again aligned with 

the theory of variance risk premia. However, the constructed variance risk premium does sometimes turn 

negative, a problem that is not isolated to our study specifically but one which can be found in multiple 

 
12 Full set of descriptive statistics can be found in Table A.1 of Appendix 4. 

Notes: Histograms & probability density plots for the logarithmic estimates. The fitted values are estimated utilizing full sample 

(from the 3rd of January 2020 to 12th of February 2021). Black curve represents the gaussian probability density function with the 

same first two moments as the distributions of the modelled values. 
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similar papers (Bollerslev et al., 2009; Bekaert and Hoerova, 2014). These states appear during the 

absolute extreme peaks of realized variance and as argued by Bekaert and Hoerova (2014) they do not 

have a sound economic interpretation. The authors conjecture that negative variance risk premia are 

caused by the inherent shortcomings of the chosen model. It appears that the realized variance has 

different dynamics of mean reversion13 in the extreme periods relative to the rest of the economic states. 

Linear models thereby cannot satisfactorily capture the development in the conditional variance.  

Figure 10: VRPs constructed using full sample estimation 

 

 

 
13 Bekaert and Hoerova (2014) theorize that during the major crises selected realized variance movements should 
be able to revert to the mean faster resulting in lower effects on conditional variance.  

Notes: Daily VRP series constructed as the difference between the monthly squared VIX quantity and fitted values of level 

regressions or transformed fitted values of logarithmic regressions estimated using full sample (from the 3rd of January 2000 to 

12th of February 2021) according to the equation (54). The plot is divided into 6 facets corresponding to each of the estimated 

models.  
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It should also be noted that while the negative values of the variance risk premium during the extreme 

periods can be observed for each of our models, the overprediction of the realized variance levels by log 

L-HAR-RV and log VIX-L-HAR-RV models stemming from the logarithm to level transformation issue, 

outlined above, further exacerbates this problem. Following the Bekaert and Hoerova’s (2014) line of 

thought, non-linear model type would likely be better suited to handle the behavior of realized variance 

in the crisis period. Such models are however outside of the scope of this paper.   

The estimation of the models over the full sample has provided us with valuable insights regarding the 

dynamics of the process and ability of different models to capture it. However, it is still not clear which of 

the models should be preferred by the practitioners if the goal is to project future realized variance and 

eventually future stock returns as the above analysis is backward looking. The following section introduces 

the procedure designed to emulate the forecasting efforts of market participants which then allows us to 

analyze the quasi out of sample performance of different models in attempt to select the recommended 

one.  
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9. Model Selection and Forecasting 

9.1 Forecasting Approach 

To identify the best realized monthly variance estimation model, the out-of-sample forecasting 

performances of the six models specified in the previous sections are compared. The models are trained 

on the first 75% of the sample corresponding to the period between the 3rd of January 2000 and 09th of 

October 2015 and the remaining 25% of the dataset representing the period from 12th of October 2015 

until 12th of February 2021 is used as a reference for the forecast performance evaluation. 

Contrary to Bekaert and Hoerova (2014) who apply the same fixed coefficients estimated based on the 

first 75% of the data across the whole out-of-sample section of the dataset we continuously expand the 

sample size available to the out-of-sample model to imitate the process of market players performing the 

one month ahead forecasts. To this end, we run 1335 regressions for each of the six models and extract 

the coefficients which are then used for the construction of forecasted values. Our model estimates time 

𝑡 + 22 realized variance at time 𝑡 which would cause hindsight bias in the out-of-sample forecast as the 

value of the regressand is not observable at time 𝑡. To eliminate the hindsight bias, coefficients from time 

𝑡 − 22 are applied to variables observed at time 𝑡 to forecast the realized variance at time 𝑡 + 2214. The 

sample size for the calculation of sample variance of 𝑟𝑣𝑡+22
𝑚  is also recursively extended for each of the 

“newer” regressions. Figure 11 provides an illustration of this procedure.  

  

 
14 This is the reason for estimating 1335 regressions despite only 1313 values are to be forecasted. The coefficients 
from the last 22 regressions are deleted as we do not observe the one month ahead realized variances at those 
points in time and therefore the forecast cannot be compared to the actual value. 
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Figure 11: Forecasting procedure 

 

 

In addition to evaluating the forecasts separately, we also consider their combination. The seminal paper 

by Bates and Granger (1969) has sparked great interest in the potential benefits of combining projections 

from alternative sources. Numerous studies have successfully explored combination forecasts (e.g. 

Clemen, 1998; Stock & Watson, 2004; Marcellino, 2004). The common argument in favor of forecast 

combinations is the possible existence of diversification gains from the “robustification” of forecasts 

against misspecification biases and effects of structural breaks (Timmermann, 2006). On the other hand, 

Notes: The plot above graphically visualizes and explains the forecasting procedure. The figure should serve for illustrative 

purposes only as the ratios of block sizes representing particular dataset sections do not correspond to the ratios of their sample 

sizes. 
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there is also an extensive body of literature arguing against the method. Some authors (e.g. Diebold, 1989) 

argue that when all the underlying information sets are known, pooling of these sets is, from an 

econometric perspective, more desirable than pooling of the forecasts. Other papers (Yang, 2004; Kang, 

1986) highlight issues of contamination and instability of combination weights caused by the estimation 

errors and non-stationarities in the underlying data generating process.  

In this paper we use a simple equal weighting combination scheme which has historically proven to be 

difficult to beat and thereby has been viewed as a natural benchmark (Claeskens, 2016). Interested reader 

can find a large body of research focusing on the estimation of optimal weights in forecast combination 

and the topic of the forecast combination puzzle (Graefe et al., 2014;  Smith & Wallis, 2009). This theory 

is however outside of the scope of this paper. The following section introduces the procedure used to 

select the best performing models which are ultimately included in our combined forecast.   

9.2 Forecasting Performance Evaluation 

The Model Confidence Set (MCS) of Hansen et. al (2011) is implemented to statistically compare the 

forecasting performance of the estimated models and martingale15 model proposed by Bollerslev et.al 

(2009). The MCS refers to a sequential testing procedure which allows one to identify the group of 

Superior Set Models (SSM) 𝑀∗for which the null hypothesis of equal predictive ability (EPA), computed 

using a chosen loss function, is not rejected. The MCS begins with the set of competing objects, in our 

case models, 𝑀0 = {1,… . . , 𝑚} and an arbitrary criterion, usually a form of a loss function, that is used for 

 
15 As mentioned in section (5), Bollerslev et al.’s (2009) martingale model expects one step ahead realized variance 

to be equal to its value at lag one. Formally for one month ahead case: 𝐸𝑡(𝑅𝑉𝑡+22
𝑚 ) = 𝑅𝑉𝑡

𝑚 
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the empirical evaluation of these objects. The procedure then considers the loss differentials between the 

models 𝑖 and 𝑗  𝑑𝑖,𝑗,𝑡 defined as: 

𝑑𝑖𝑗,𝑡 = 𝐿𝑖,𝑡 − 𝐿𝑗,𝑡,               𝑖, 𝑗 = 1,… . ,𝑚,     𝑡 = 1,… , 𝑇 (55) 

where 𝑇 is the total number of observations out-of-sample and loss function for model 𝑖 is calculated as: 

𝐿𝑖,𝑡 = 𝐿(𝑅𝑉𝑡
𝑚, 𝑅𝑉𝑖,𝑡

𝑚̂) (56) 

With 𝑅𝑉𝑖,𝑡
𝑚̂ being a model 𝑖 forecast of the actual value 𝑅𝑉𝑡

𝑚 observed out-of-sample at time 𝑡. As has 

been stated above, the method allows for flexibility when choosing the utilized loss function which 

enables the user to compare models based on various aspects. For the purposes of our application, we 

focus on the punctual out-of-sample forecasting of realized variance16 and thereby choose the Mean 

Squared Error (MSE) as an evaluation criterion in the MCS due to its symmetry and robustness (Jakobsen, 

2018).  Formally: 

𝐿𝑖,𝑡 = (𝑅𝑉𝑖,𝑡
𝑚 − 𝑅𝑉𝑖,𝑡

𝑚̂)
2

(57) 

According to Patton (2011) a loss function is robust when “the ranking of any two volatility forecasts, by 

expected loss is the same whether the ranking is done using the true conditional variance or some 

conditionally unbiased proxy” (Patton, 2011, p. 248). The author then proceeds to evaluate the collection 

of the loss functions commonly seen in the literature17 and concludes that only MSE and Quasi-Likelihood 

(QLIKE) loss functions belong to the class of robust loss functions suitable for the comparison of volatility 

forecasts. 

 
16 As discussed at length in section High-frequency realized variance. Theoretical framework the realized variance is 
a proxy for inherently unobservable integrated volatility. 
17 Full list of the loss functions evaluated by Patton (2011): MSE, QLIKE, MSE-LOG, MSE-SD, MSE-prop, MAE, MAE-
LOG, MAE-SD, MAE-prop. 
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The procedure then continues with the application of the equivalence test 𝛿𝑀 testing the null hypothesis 

of EPA at a chosen significance level. The MCS assumes that 𝜇𝑖𝑗 = 𝐸(𝑑𝑖𝑗,𝑡) is finite and time independent. 

The null can be formulated as: 

𝐻0,𝑀: 𝜇𝑖𝑗 = 0                   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗 ∈ 𝑀 (58) 

where 𝑀 is a subset of 𝑀0 and the alternative hypothesis is stated as: 

𝐻𝐴,𝑀: 𝜇𝑖𝑗 ≠ 0                   𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖, 𝑗 ∈ 𝑀 (59) 

Special 𝑡 statistics must be computed for the hypotheses to be tested. To construct the 𝑡 statistics one 

has to calculate the relative sample loss statistics 𝑑̅𝑖𝑗 =
∑ 𝑑𝑖𝑗,𝑡
𝑇
𝑡=1

𝑛
 and 𝑑̅𝑖 =

∑ 𝑑̅𝑖𝑗𝑗∈𝑀

𝑚
, which represent the 

relative sample losses between 𝑖th and 𝑗th model and the sample loss of the 𝑖th model relative to the 

average of all models in 𝑀, respectively. We construct the 𝑡 statistics: 

𝑡𝑖𝑗 =
𝑑̅𝑖𝑗

√𝑉𝑎𝑟(𝑑̅𝑖𝑗)
̂

           𝑓𝑜𝑟 𝑖, 𝑗 ∈ 𝑀 (60)
 

and 

𝑡𝑖 =
𝑑̅𝑖

√𝑉𝑎𝑟(𝑑̅𝑖)
̂

              𝑓𝑜𝑟 𝑖 ∈ 𝑀 (61)
 

where 𝑉𝑎𝑟(𝑑̅𝑖𝑗)
̂  is the estimated variance of 𝑑̅𝑖𝑗  and 𝑉𝑎𝑟(𝑑̅𝑖)

̂  is the estimated variance of 𝑑̅𝑖  obtained by 

bootstrapping18. These two statistics are directly linked to the null hypotheses 𝐻𝑖𝑗: 𝜇𝑖𝑗 = 0 and 𝐻𝑖: 𝜇𝑖 = 0 

which19 are both effectively equivalent to 𝐻0,𝑀 since the “main” null hypothesis of EPA, 𝐻0,𝑀, 

 
18 Detailed characteristics of the bootstrap procedure will be outlined in section (9.4). 
19 Where 𝜇𝑖  is defined as 𝜇𝑖 = 𝐸(𝑑̅𝑖) 
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encompasses {𝐻𝑖𝑗 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗 ∈ 𝑀} while also being correspondent to {𝐻𝑖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝑀}. As the 

equivalence extends to {|𝜇𝑖𝑗| < 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗 ∈ 𝑀} and {𝜇𝑖𝑗 < 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝑀} authors map the 

hypothesis into the test statistics which are finally used to test the 𝐻0,𝑀: 

𝑇𝑅,𝑀 = 𝑚𝑎𝑥 |𝑡𝑖𝑗|𝑖,𝑗∈ 𝑀
(62) 

and 

𝑇𝑚𝑎𝑥,𝑀 = 𝑚𝑎𝑥 𝑡𝑖𝑖∈ 𝑀 (63) 

Hansen et al. (2011) point out that the asymptotic distributions of the test statistics are nonstandard due 

to their dependency on nuisance parameters and propose a bootstrap method that can handle the 

nuisance parameter problem.  

Lastly, the elimination rules 𝑒𝑀 ensuring the exclusion of inferior models in case of rejection of the 

equivalence test are introduced to the procedure. For the first test statistic, 𝑇𝑅,𝑀, the elimination rule is:  

𝑒𝑅,𝑀 = arg𝑚𝑎𝑥𝑖∈ 𝑀 𝑠𝑢𝑝𝑗∈ 𝑀𝑡𝑖𝑗 (64)  

where the test statistic for the eliminated model is a supremum of the set ensuring that 𝑡𝑒𝑅,𝑀𝑗 = 𝑇𝑅,𝑀. As 

for the test statistic 𝑇𝑚𝑎𝑥,𝑀 the elimination rule equates to:    

𝑒𝑚𝑎𝑥,𝑀 = arg𝑚𝑎𝑥𝑖∈ 𝑀 𝑡𝑖 (65)  

As the rejection of null hypothesis recognizes the hypothesis 𝜇𝑗 = 0 as being false for 𝑗 = 𝑒𝑚𝑎𝑥,𝑀 which 

leads to the procedure removing the model with the largest contribution to the test statistic. 

To summarize, 𝛿𝑀 is applied to the initial set of models, in case of its rejection, 𝑒𝑀 is utilized to eliminate 

the model with the poor sample performance from the set. This is repeated until 𝛿𝑀 is accepted at a 

chosen confidence level and the group of SSM is defined.  
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In addition to performing the MCS we also consider multiple standard measures of forecasting accuracy. 

These include Mean Error (ME), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean 

Percentage error (MPE), Mean Absolute Percentage Error (MAPE) as well as Mean Squared Error (MSE) 

which has been used as the evaluation criterion in the MCS itself. 

We now transition from the theoretical part of this section dedicated to realized variance forecasting and 

model selection to the empirical segment. The following section summarizes the models trained on the 

in-sample portion of the dataset. Afterwards, out-of-sample projections for each of the models are 

presented and evaluated based on their forecast accuracy.    

9.3 Regressions in-sample – Empirical Results 

Table 5 shows the in-sample regression coefficients for the three level models including the Newey-West 

standard errors in parentheses. The coefficients of the standard HAR-RV model have the expected sign 

and are all significant at least at the 10% significance level across all three level models. The significance 

of the independent variables across the three horizons displays the long-range dependence of realized 

variance. In the first model, the weekly realized variance variable has the largest coefficient such that, 

holding all other variables constant, a one unit change in 𝑅𝑉𝑡
𝑤 leads to a 0.306 unit change in the 

dependent variable. Similarly, Bekaert and Hoerova (2014) observe that the weekly realized variance 

carries the largest coefficient, although their comparable (levels) model also includes a squared VIX term, 

unlike our first model. Model 1 displays solid explanatory abilities, explaining 56.5% of the variations in 

the dependent variable. Expanding the first model by adding leverage effects (i.e. model 2), as is the case 

for the L-HAR-RV model, marginally improves the adjusted 𝑅2. Significant leverage effects are observed 

for daily and weekly horizon, while the monthly leverage effect is non-significant. Given that the leverage 

effect variables are expressed as natural logarithmic returns, the coefficient interpretation is different 



 

65 
 

from the realized variance coefficients. Specifically, all else equal, a 1% increase in one of the leverage 

effect variables will reduce the dependent variable by 
𝛽(.)

100
 units, where 𝛽(.) represents the respective 

coefficients at the different time horizons. Compared to model 2, the model fit does not improve by 

including the squared VIX term (model VIX-L-HAR-RV). The coefficient for the squared VIX variable does 

not have the expected sign, although given the large standard error there is not sufficient statistical 

evidence to infer that the coefficient is different from zero. The non-significance of some coefficients is 

largely driven by the corrected standard errors accounting for serial autocorrelation. The regression 

output of the in-sample logarithmic models is outlined in Table 6. These models are the logarithmic 

transformations of the models in the paragraph above. It appears that the logarithmic models display a 

superior fit than their level counterparts since the adjusted 𝑅2 is relatively larger for all log models. 

Interestingly, out of the three realized variance variables, the monthly realized variance has the largest 

influence on the dependent variable in the first two models, while for the level models the weekly realized 

variance dominated. Log model 2 (i.e. log L-HAR-RV) is fairly similar to the levels model although the 

coefficients showcase greater statistical significance. Log model 3 (i.e. log VIX-L-HAR-RV) includes a 

significant coefficient for the squared VIX term and now has the expected sign, unlike the corresponding 

levels model.  
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Table 5: In sample regressions in level form 

 

 

Notes: Sample period spans from the 3rd of January 2000 to 09th of October 2015. All regressions are based on daily observations 

leading to considerable overlapping. Therefore, the standard errors in brackets are constructed using 44 Newey-West lags. 

Significance of coefficients is indicated by the star symbol *,**,*** according to the scheme above. 
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Table 6: In sample regressions in logarithmic form 

 

 

Notes: Sample period spans from the 3rd of January 2020 to 9th of October 2015. All regressions are based on daily observations 

leading to considerable overlapping. Therefore, the standard errors in brackets are constructed using 44 Newey-West lags. 

Significance of coefficients is indicated by the star symbol *,**,*** according to the scheme above. 
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Our in-sample models achieved notably higher levels of 𝑅2 compared to the models estimated using the 

full sample. The increase was most prominent for the models estimated in levels. This is likely caused by 

the omission of two highly turbulent periods which now appear in the out-of-sample portion of the 

dataset, namely a portion of 2015/2016 stock market sell-off and the recent market crash triggered by 

Covid-19 pandemic. As has been covered in the previous sections, periods of severe crises when realized 

variance peaks, pose major challenges for our linear models. This is no different for the models estimated 

in-sample and thereby we still observe overprediction of realized variance levels during the extreme 

periods across all models.  This issue is again further amplified for transformed level values corresponding 

to log L-HAR-RV and log VIX-L-HAR-RV models due to the breach of lognormality assumption described in 

the previous sections. The fitted values are compared to actual one month ahead monthly realized 

variance in Figure 12 and the corresponding chart for the log form can be found in the Figure A.3 of 

Appendix 5.   

Figure 12: One month ahead monthly RV estimates – in sample estimation 

 



 

69 
 

 

The in-sample models summarized above are different to the starting point for our out-of-sample 

projections. As already mentioned, to avoid the look ahead bias the first out of sample forecast is obtained 

by multiplying the variables observed on 12th of October 2015 by the coefficients of the models estimated 

in sample ranging from the initial period to 10th of September 2015 to forecast 11th of November 2015 

realized variance.  The coefficients from these base models are then recursively updated with each passing 

day to incorporate new information; as described in section (9.1). It follows that the same coefficients as 

we have reported for the in-sample models are used to forecast the realized variance as of 11th of 

December 2015 (22nd out of sample forecast). We report the individual projections as well as their 

accuracy in the following section. In the following section we select the best performing models and thus 

conclude section (9). These are subsequently used to construct variance risk premia included in the stock 

return predictability regressions which are the main focus of the last part of our paper.   

9.4 Out-of-sample Forecasting Performance 

Figure 13 visualizes the comparison of the out-of-sample forecasts yielded by the considered models and 

the actual 22-day ahead monthly realized variance. When it comes to the general fit of the forecasts, one 

can note a substantial lag in the response of the models to developments in the realized variance. This is 

by virtue of the linear models we have employed to capture the long-range dependence in realized 

variance. In other words, large positive coefficients on weekly and monthly variance components cause 

the slow reaction to extreme spikes and by extension slow mean reversion of fitted values when the 

extreme values drop again.    

Notes: Fitted values of regressions estimated using 75% of the sample (from the 3rd of January 2020 to 9th of October 2015) in turquoise are 

compared to the actual level of the 22 days ahead realized variance in red. The plot is divided into 6 facets corresponding to each of the 

estimated models. Series for logarithmic models (log HAR-RV, log L-HAR-RV and log VIX-L-HAR-RV) are constructed by transforming the fitted 

logarithmic estimates to level following the equation (42).  
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Figure 13: Out of sample forecasts of monthly realized variance 

 

 

Notes: Forecasted level of RV in turquoise is compared to actual 22 day ahead RV in red. Forecasts are constructed by applying 

the RV observed at time t to coefficients of regressions using the sample spanning from the initial period to t-22 to avoid the look-

ahead bias. Forecasts for logarithmic models are converted to level as per equation (42). In contrast to full sample and in sample 

estimation, the applied sample variance if the estimate is non constant.   
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As has been the case throughout all our modelling attempts, we again observe substantial overprediction 

during the peak periods for nearly all models. Paralleling our efforts of estimating the monthly realized 

variance using full sample, Covid-19 has proven to be a remarkably challenging period for our logarithmic 

models particularly those including leverage effects. In fact, the extent to which log L-HAR-RV and log VIX-

L-HAR-RV overestimate the modelled values in levels during the extreme periods is materially amplified 

in the out-of-sample application. Figures 14(a) and 14(b) plot the two variables appearing in the 

transformation equation (35), namely the conditional expectation of monthly logarithmic variance 𝑟𝑣𝑡+22
𝑚  

displayed in panel (a) and its sample variance shown in panel (b). This representation allows us to contrast 

the two modelling approaches outlined in the paper.  

Figure 14: Log to level transformation components 

 

 

Notes: 14(a) compares out of sample forecasts of 𝑟𝑣𝑡+22
𝑚  in turquoise to fitted values of logarithmic models utilizing full sample in 

red. 14(b) plots the sample variances of logarithmic estimates generated by the out of sample regressions (in turquoise) and the 

full sample estimation (in red).     
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The logarithmic estimates of the monthly realized variance generated by our full sample models are 

generally relatively close to the out-of-sample forecasts which are a product of recursive regressions. 

Nevertheless, some of the exceptions when the estimates of 𝑟𝑣𝑡+22
𝑚  for particular models differ 

substantially across the applications appear during the Covid-19 peak when the two considered models 

produce forecasts with maxima that are 0.35 and 0.26 higher than the logarithmic estimates yielded by 

estimation of corresponding models utilizing full sample. All of these values are far in the right tail of the 

distribution, breaching the lognormality assumption of the corollary (41). Another notable cause of the 

augmented overprediction during the Covid-19 extreme period by the forecasting procedure for log L-

HAR-RV and log VIX-L-HAR-RV, is the higher sample variance of 𝑟𝑣𝑡+22
𝑚  applied in the transformation. 

Panel (b) in Figure 14 showcases that the sample variance of 𝑟𝑣𝑡+22
𝑚  for out-of-sample estimates overtakes 

the constant applied when transforming the full sample estimates to level at the time coinciding with the 

downturn caused by Covid-19 pandemic. Since the logarithmic estimates are converted to level with an 

exponential function, the transformation is extremely sensitive to further expansion of the distribution’s 

right tails. We demonstrate this effect graphically in Figure A.4 of Appendix 6.    

Table 7: Model Confidence Set procedure results 

 

Rank by Tmax ti p-value Rank by TR ti,j p-value MSE

HAR-RV loss 1 -1.168 1.000 3 0.564 0.961 1503.087

L-HAR-RV loss 2 -1.159 1.000 1 -0.173 1.000 1469.808

VIX-L-HAR-RV loss 3 -1.157 1.000 6 1.306 0.535 1471.826

log HAR-RV loss 4 -1.100 1.000 2 0.173 1.000 1479.241

log L-HAR-RV loss 7 0.995 0.575 4 1.036 0.826 4036.577

log VIX-L-HAR-RV loss 5 0.804 0.681 5 1.065 0.826 2341.869

Martingale loss 6 0.819 0.678 7 1.319 0.502 2517.839

Tmax TR
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Table 7 presents the results of the MCS procedure. A significance level of 20% was chosen in our 

application meaning that our group of SSM includes the best model with 80% confidence. The null 

hypothesis of EPA  𝐻0,𝑀 was tested utilizing the test statistic 𝑇𝑚𝑎𝑥,𝑀. Block bootstrap method with block 

length 𝑝 dictated by the maximum number of significant parameters in the AR(p) process on all 𝑑𝑖𝑗  and 

5,000 replications were used to derive the asymptotic distributions of test statistics and variance terms of 

the relative loss statistics. MCS failed to reject any of the models from the group of SSM. This is likely 

linked to the limited information content of the data. The nature of the procedure is such that the models 

remain in the set until they are proven to be significantly inferior to the surviving ones. Thereby as 

cautioned by the authors, while the MCS contains only the best models asymptotically, it might still 

contain several poor models in finite samples. Acknowledging this feature of the procedure, we will not 

select the best models solely based on the results of MCS but we will also take into account other factors 

such as economic interpretation and other forecast accuracy measures.  

It is important to add that Hansen et al. (2011) recommend estimating the competing models using rolling 

rather than expanding window to avoid cases when the main assumptions of MCS are not satisfied20. 

Inspired by the approach of Amendola et al. (2020) we address this by reporting the results of MCS 

procedure considering models estimated with non-expanding window scheme in Appendix 7 to showcase 

that our empirical results are robust to the choice of the estimation window. 

 
20 Hansen et al. (2011) alternatively recommend to only estimate the coefficients once and keep them as fixed. 

Notes: MCS procedure was conducted at 20% significance level choosing Mean Squared Error (MSE) as the evaluation criterion. Table 7 

reports the model´s rank, t statistics and corresponding p-values for both 𝑇𝑅,𝑀 and 𝑇𝑚𝑎𝑥,𝑀 test statistics. The evaluated forecasts were for 

period spanning from the 12th of October 2015 to 12th of February 2021. Bootstrapping was done using block length equal to the maximum 

number of significant parameters in the AR (p) process on all 𝑑𝑖𝑗 (default parameter in Catania & Bernardi, 2017) and 5,000 replications. 
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Table 8: Out-of-sample forecasting performance statistics 

 

 

Table 8 reports the common forecast accuracy measures for all estimated models, two of their linear 

combinations and a martingale model of Bollerslev et al. (2009). L-HAR-RV achieves the best performance 

among the estimated models across all statistics edging VIX-L-HAR-RV and log HAR-RV which performed 

only marginally worse. A slightly more pronounced drop-off in the forecasting accuracy is observed for 

Corsi’s basic model HAR-RV with ME, MPE and MAPE increasing by 62%, 64% and 43% relative to the best 

performing estimated model. The two logarithmic models containing leverage effects, log L-HAR-RV and 

log VIX-L-HAR-RV delivered by far the worst results reaching the highest absolute values for all reported 

measures outside of MPE and MAPE. Most notably, the MSE for the two models increased in comparison 

to L-HAR-RV by 179% and 59%, respectively. The poor statistics can to a large extent be explained by the 

extensive overprediction of realized variance levels during the Covid-19 period discussed at length in the 

last paragraph. As the overprediction intensifies the problem of negative variance risk premium which as 

argued, does not have any reasonable economic explanation we decided to construct another forecast 

combination by equally weighting the set of forecasts excluding the ones generated by log L-HAR-RV and 

log VIX-L-HAR-RV and compare it to the linear combination of all models not rejected by the MCS 

ME RMSE MAE MPE MAPE MSE

HAR-RV -1.681 38.770 14.445 -115.834 132.809 1,503.087 

L-HAR-RV -1.040 38.338 13.886 -70.592 93.018 1,469.808 

VIX-L.HAR-RV -1.202 38.364 13.940 -71.710 93.798 1,471.826 

log HAR-RV -1.374 38.461 14.087 -78.807 97.642 1,479.241 

log L-HAR-RV -4.722 63.534 16.567 -83.793 101.630 4,036.577 

log VIX-L-HAR-RV -4.438 48.393 15.871 -92.627 107.883 2,341.869 

Martingale -0.049 50.178 16.318 -40.045 77.974 2,517.839 

Combo MCS -1.870 40.499 14.345 -82.074 100.807 1,640.165 

Combo Four -1.324 38.296 13.953 -84.236 102.851 1,466.595 

Estimated models

Non-estimated & combined models

Notes: The listed accuracy measures are for forecasts of the RV in the out of sample period spanning from the 12th of October 2015 to 

12th of February 2021. Functional form of the estimated models is found in section (7.1) while the Martingale specification is defined in 

section (5). Combined forecasts are constructed using a simple equal weighting scheme. 
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procedure. This new combination of forecasts from the “restricted” set of models is referred to as Combo 

Four and the original combined forecast averaging all estimated models is termed Combo MCS.  

Figure 15: Forecast Combinations 

 

 

Figure 15 visualizes the forecasts produced by the two combination schemes. As expected, the Combo 

Four alleviates the overprediction during the Covid-19 period which should be reflected in the forecast 

accuracy measures. Indeed, the Combo Four beats its Combo MCS counterpart in four out of six 

considered statistics and above all achieves the minimum MSE across all models and combinations. The 

martingale model, added only for benchmarking purposes generates the lowest ME, MPE and MAPE. 

Nevertheless, it also produces the second worst MSE and major negative variance risk premium as 

showcased in Figure 16.  

Notes: Combined forecasts of the RV (turquoise) in the out of sample period spanning from the 12th of October 2015 to 12th of February 

2021 compared to the actual RV levels (red). Combo MCS vector is generated by summing the products of a constant  
1

6
 and the output of 

each of the estimated models. Combo Four construction is an analogue of the above utilizing only the 4 estimated models (HAR-RV, L-

HAR-RV, VIX-L-HAR-RV and log HAR-RV). 
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Figure 16: Projected VRPs out of sample 

 

 

Notes: Daily VRP series for the out of sample period (12th of October 2015 to 12th of February 2021) constructed as the difference between 

the monthly squared VIX quantity and the forecasted level of RV. The first 6 facets show the VRPs corresponding to estimated models, the 7 

th facet visualizes VRPs generated utilizing the martingale model and the last two facets plot VRPs derived using linear combinations of 

estimated RV models.  
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10. Stock Return Predictability 

In the previous sections we have outlined different models to obtain the variance risk premium and 

analyzed their relative forecasting performance. This section builds on the theory and findings of the 

previous sections and investigates whether the variance risk premium is a predicator for future stock 

returns.  

10.1 Risk Aversion and Expected Returns 

Market participants are exposed to at least two types of risks namely, return variance and the variance of 

return variance. The uncertainty about future variance exposes investors to variance risk.  To recap, in 

section (5), we discussed that a premium on variance risk can be theoretically derived from a variance 

swap whereby the premium is analogue to an insurance investor are willing to pay to shield against future 

volatility. Bakshi and Madan (2006) argue that rational risk-adverse market investors dislike extreme loss 

states and prefer to purchase protection to cover their exposure. They further note that the preference 

to shield against losses loads probability mass to the risk-neutral tail probabilities resulting in a spread 

between the risk-neutral and physical probabilities ultimately giving rise to the variance risk premium. As 

we have empirically demonstrated, the variance risk premium can be obtained from the VIX index by 

subtracting the forecasted realized variance which cleans the objective variation from the risk-neural 

variation. Bekaert et al. (2014) argue that the risk-neural variation incorporates probabilities that adjust 

for the pricing of risk. The variance risk premium is thus often referred to as a measure of aggregate 

market risk aversion and/or economic uncertainty (Bollerslev et al., 2014, Bekaert et al., 2013). In the 

same vein, Bollerslev et al. (2011) theoretically demonstrate that within an intertemporal asset pricing 

model a representative agent’s constant relative risk aversion is proportional to the variance risk 

premium. Overall, relating the variance risk premium to risk aversion has found strong support. Our 
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results appear to corroborate these claims. It is apparent from Figure 17 that the variance risk premium 

spikes during times of crisis and high uncertainty, most notably during the 2009 financial crisis aftermath 

and the beginning of the Covid-19 pandemic.  

Figure 17: VRPs constructed utilizing RV estimated over full sample  

 

A high variance risk premium thus implies a high degree of aggregate risk aversion in the market. 

Intuitively, it can be argued that during times of high-risk aversion (i.e. high variance risk premium), market 

participants reduce their investments and shift their holdings towards less risky assets. In turn, as risk 

aversion increases in the economy, investors require higher expected returns (Bollerslev et al., 2009). 

Notes: Variance risk premium one-month ahead estimations based on different realized variance forecasting models. Estimations are based 

on the full sample.  
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These insights have led to a large body of research examining the link between the variance risk premium 

and stock return predictability (e.g. Bekaert and Hoerova, 2014; Bollerslev et al., 2009). The variance risk 

premium may be a priced risk factor that could have predictive powers for stock returns over relatively 

short horizons. However, the degree of predictability varies greatly between studies. We aim to put our 

variance risk premium models to the test and determine whether they succeed to predict stock returns 

for different (short) horizons.  

10.2 Stock Return Predictability  

To determine if the variance risk premium is a predictor for future stock returns, we run simple scaled 

monthly regressions following the procedure of Bollerslev et al. (2009):   

1

ℎ
∑𝑟𝑡+𝑗

𝑒𝑥

ℎ

𝑗=1

= 𝛼ℎ + 𝛽ℎ𝜓𝑡 + 𝜀𝑡+ℎ (66) 

The regressor 𝜓𝑡 represents the variance risk premium estimated based on our different models in section 

(9). Specifically, we run univariate regressions for the best performing estimation models as well as the 

combined forecast model and the martingale model. The dependent variable 𝑟𝑡+𝑗
𝑒𝑥𝑐 denotes the excess 

return expressed in percentages, which is the difference between the logarithmic monthly returns of the 

S&P 500 and the three-month treasury bills. The treasury bill percentage rates 𝑟𝑡
3𝑚 are retrieved from the 

Federal Reserve Economic Data (FRED) database of the St. Louis Federal Reserve Bank. The excess return 

is given by: 

𝑟𝑡+𝑗
𝑒𝑥𝑐 = (ln(

𝑆𝑇
𝑆𝑡
) −

ln (1 +
𝑟𝑡
3𝑚

100)

12
) ∗ 100 (67) 
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where ln (
𝑆𝑇

𝑆𝑡
) is the one-month logarithmic return of the S&P 500 and the second term, 

ln(1+
𝑟𝑡
3𝑚

100
)

12
, 

provides the continuously compounded three-month treasury rate which is divided by 12 to match the 

monthly horizon of the returns. As equation (66) indicates, the monthly excess returns are summed and 

averaged by a factor ℎ to get the ℎ-month excess returns. To align with other papers, we rely on end-of 

month observations resulting in 239 observations over the full sample. This approach is not without 

controversy since the overlapping return data may create autocorrelation issues that could bias results 

(Britten-Jones & Neuberger, 2011). To mitigate this issue, we employ Newey West standard errors with 

increasing lags relative to the forecasting horizon, such that lag 𝐿 = max {3,2 ∗ ℎ}21. 

As mentioned, previous research has found that the variance risk premium has the highest predictive 

power over short monthly horizons as opposed to multi-year horizons. Therefore, we consider the time 

horizons ranging from one month to twelve months in the forecasting regressions. The quest for short 

horizon return predictability variables is economically relevant since trading strategies can be 

implemented more frequently ultimately generating high annual returns (Timmermann, 2008). We also 

test whether the variance risk premium can predict stock returns of the S&P 500 better than the squared 

VIX. Banerjee et al. (2007) and Giot (2005) find that squared VIX levels have predictive power over 

relatively short horizons especially during times of market turbulence. To this end, we construct a 

univariate regression substituting 𝜓𝑡 in equation (66) for VIX-squared and contrast the R-square to the 

variance risk premium regression output.   

 
21 Similar to Bekaert and Hoerova, 2014. 
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10.3 Univariate Regression Output  

The univariate regression coefficients at the monthly horizons are depicted in Figure (18). The dashed 

lines represent the 95% confidence bands based on Newey-West standard errors. If both dashed lines are 

above (or below) the solid horizontal line the coefficients are significant at the 95% confidence level. Thus, 

the univariate regression outputs based on the log HAR-RV model, 𝑉𝐼𝑋2 and Martingale are never 

significant at the 5% significance level for all horizons. The variance risk premium estimated from the L-

HAR-RV model and VIX-L-HAR-RV showcase significant coefficients from the fourth month onwards. The 

coefficient of the variance risk premium based on the baseline HAR-RV model turns significant at the 9-

month horizon and remains significant for the following three months. The coefficients of the combination 

model are significant as of the sixth month. Overall, similar to Bekaert and Hoerova (2014), we observe 

that our estimation models do not yield significant coefficients over short horizons (i.e. between 1 and 3 

months) in a univariate regression forecasting exercise.The variance risk premiums based on the HAR 

specification all have the expected positive coefficient sign for all horizons. This implies that an increase 

in variance risk premium leads to an increase in the future excess return of the S&P 500, as the theory 

suggests. The 𝑉𝐼𝑋2 coefficients are roughly zero for all time horizons. Surprisingly, the Martingale model 

carries a negative sign for all maturities unlike a priori expectations. This observation contrasts results of 

other studies that find that simple non-estimation models generally perform comparable to more complex 

variance risk premium estimation models.  
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Figure 18: Regression Coefficients and confidence interval bands 

Figure (19) summarizes the  𝑅2 for the individual regressions ranging from one to twelve months. Figure 

(19) only includes models that show significant coefficients during at least one of the considered time 

horizons. The best result is achieved with the HAR extension including leverage effects (i.e. L-HAR-RV) 

which steadily increases from the second month onwards and peaks at the 8 months horizon with an 

adjusted 𝑅2 of approximately 2.6% (and an unadjusted 𝑅2 of 3%). The model including the VIX component 

(i.e. VIX-L.HAR-RV) performs practically identical. The basic HAR-RV model shows comparatively poor 

predictability results with adjusted 𝑅2’s never exceeding 1.2% and is thus outperformed by the extended 

HAR models for all time horizons. The logarithmically transformed HAR-RV does not display improved 

results compared to its counterpart level model. The combination model averages the results of the four 

Notes: The red line in the graphs display the univariate regression coefficients for each of the 12 months considered in the stock return 

predictability analysis. The grey dotted lines represent the confidence bands at the 5% significance level.  
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models and positions between the best performing models and worst performing models. The 𝑉𝐼𝑋2 levels 

and the Martingale model do not have predictive power for any of the 12 monthly horizons.  

Figure 19: Regression R-squares 

 

Arguably, even for the best performing model, the explanatory power of the variance risk premium is 

relatively small. Bekaert and Hoerova (2014) reported 𝑅2’s as high as 4,5% at the 12-month horizon for a 

model similar to our L-HAR-RV model. More general, comparable empirical studies have documented that 

the variance risk premium can predict between 2% and 7% of U.S. excess return, generating the highest 

predictability in the first 12 months and declining thereafter (e.g. Bekaert and Hoerova, 2014; Bollerslev 

Notes: The red line graphs the R-square for each of the regressions at every time horizon in the stock return predictability analysis. Only 

models that have significant coefficients for at least one of the horizons under consideration are displayed.    

 

Months 

R
-
s
q
u
a
r
e
 



 

84 
 

et al., 2009). We find that our best performing models show the greatest degree of predictability at the 

8-month horizon (Table 9)22. 

Table 9: Univariate stock return predictability regression output for 8-month horizon  

 

 

 
22 The univariate regression output for the monthly, quarterly, semi-annually, and annually regressions can be found 
in Appendix 8. 

Notes: All univariate regressions are based on monthly observations. The standard errors in brackets are constructed using 

Newey-West lags which increase with the forecasting horizon. Significance of coefficients is indicated by the star symbol *,**,*** 

according to the scheme above. 
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Although some studies have reported remarkable predictability, as such, Bollerslev et al. (2011) find that 

the variance risk premium predicts close to 16% in the excess return variation at the quarterly horizon. 

The varying degree of predictability is likely driven by differences in sample characteristics and 

discrepancies in regression construction. As such, results between studies are not fully comparable since 

sample horizons greatly differ with some studies using data ranging back to the early 90s. Furthermore, 

there is no consensus on the excess return data used in the regression analysis. Bollerslev et al. (2011) 

used non-overlapping quarterly returns leaving them with only 54 observations which may explain their 

high predictability. We use overlapping data, as the majority of variance risk premium studies do, giving 

us 4.5 times more observations than Bollerslev et al. (2011).  

One may argue that our predictability exercise suffers from look-ahead bias. That is, since we use the full 

sample variance risk premium estimations, we inevitably rely on forward looking data. The coarse monthly 

excess return data on which we regress the variance risk premium estimations does not allow for a fully-

fledged out-of-sample analysis since we would be left with a small number of out-of-sample observations 

that would not allow for a meaningful inference. However, for our intents and purposes in-sample 

predictability is not necessarily misplaced and does not discredit our findings. Afterall, we are interested 

in the return predictability of the variance risk premium that exists on average in our sample. Rapach and 

Wohar (2006) argue that for such inferences in-sample return predictability is conceptually better suited 

than out-of-sample procedures.    

10.4 Robustness Check in Multivariate Regressions   

Our univariate regression output shows that the variance risk premium has statistical significance for 

return predictability, but the single variable models explain only a small part of the variation in excess 

returns. Ang and Bekaert (2006) have argued that, in general, univariate regressions tend to be mis-
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specified, leaving the majority of the components in return predictability unexplained. The goal is to 

determine whether the predictive power of the standalone variance risk premium could be the results of 

omitted economic variables or if it can complement other predictor variables. We consider three 

economic predictor variables as popularized by Fama and French (1989) in a combined multivariate 

analysis. The variables under consideration are, first, the dividend yield (DY) defined as the logarithmic 

difference between dividends and prices of the S&P 500, where dividends are summed over the past 12 

months on a moving sum basis. Second, the default yield spread (CS) derived from the difference between 

Moody’s BAA and AAA rated long-term bond yields. Lastly, the term spread (TS) extracted from the 

difference between ten-year and three months T-bill yields. The first variable is obtained from Robert J. 

Shiller’s database while default and term spreads are retrieved from the Federal Reserve Economic Data 

(FRED) database of the St. Louis Federal Reserve Bank. All variables are monthly observations and span 

over the same time horizon than the S&P 500 stock returns considered in the previous subsection. We 

only consider our best performing variance risk premia model from the univariate analysis (i.e. L-HAR-RV) 

in the multivariate exercise.  

Table 10: Summary statistics for other predictor variables  

 

Empirical studies have shown that these economic variables can predict returns (e.g. Schwert, 1990; Chen, 

1991; Boons, 2016). Fama (1990) argues that the dividend yield, default spread and term spread can 

capture the variation in expected returns based on business conditions. Boons (2016) shows that those 

Notes: Summary statistics of the three additional predictor variables namely, the default spread, term spread, and dividend yield denoted 

CS, TS and DY, respectively 

 

 CS 
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variables can predict macroeconomic activity and are priced risk factor. Thus, similar to the variance risk 

premium, these economic variables are related to wider macroeconomic changes.  

Table 11: Multivariate regression output including common predictor variables  

 

Notes: The table reports the output for the multivariate regressions at different time horizons which include standard predictor variables. All 

multivariate regressions are based on monthly observations. The standard errors in brackets are constructed using Newey-West lag which 

increase with the forecasting horizon. Significance of coefficients is indicated by the star symbol *,**,*** according to the scheme above. 

Table 11 shows that when controlling for other common state variables, the variance risk premium 

estimate based on the L-HAR-RV model remains highly significant and thus is not crowded out. This 

implied that the variance risk premium incorporates a priced risk factor that is not captured by traditional 

economic predictors. Other predictor variables could have been included but it would be practically 
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impossible to consider all of them. We therefore limited the selection to three intensively studied 

predictors. Overall, there appears to be significant evidence that variance risk premium is a predictor for 

stock returns although the magnitude of the predictability is rather small.  
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11. Discussion, Limitations and Future Research 

At this point it is worthwhile to again reflect on the two complementing research questions we outlined 

in section (1). We also devote this section to address the limitations of our findings and discuss the 

challenges we encountered throughout this paper to provide a reference point for scholars who wish to 

further explore the realm of variance risk premia research.  

The first question which we answered is how the variance risk premium can be empirically estimated. To 

this end, we proposed different models based on an additive cascade partial volatility technique, as 

popularized by Corsi (2004), whereby we relied on the information content comprised in realized variance 

at different horizons (i.e. daily, weekly and monthly). We extended the base HAR-RV model, to account 

for leverage effects which is a well-documented stylized fact of financial variance. We further composed 

a model including a VIX term which appears to be correlated with movements in realized variance.  

We noted that the realized variance times series in its level form displays fat tails deviating substantially 

from a normal distribution. Logarithmic transformations of the realized variance were much closer to 

being normally distributed. While the distributional properties of the logarithmic realized variance models 

appeared promising at first, we encountered a methodological challenge in transforming the logarithmic 

model results into level form. We ultimately decided to convert the log results under the convenient 

assumption of lognormality which is in contradiction to the right-skewed distribution of the estimates in 

our models causing biased converted estimates. As addressed in section (7.1)., alternative procedures 

exist but are much more burdensome in application.  

Although the models in this paper have proven to explain large and statistically significant variations in 

future realized variance it has become apparent, we could have selected superior models given the 

dynamic properties of realized variance. As discussed, especially in times of extreme market turbulences, 
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linear models have a difficult time to model the explosive dynamics of realized variance. The first 

limitation of our findings is thus that we possibly could have found more effective models if we had 

allowed for non-persistent jump components in our volatility models to deal with extreme spikes and 

quick mean reversion during crisis periods as observed during the financial crisis aftermath in 2009 and 

the Covid-19 selloff in 2020. Alternatively, one could use non-linear models which would likely perform 

better in times of crisis.  

An intriguing approach to smooth out any biases in our estimation is to combine the estimation results. 

Under the premise that combining forecast estimates would result in a diversification effect we equally 

weighted our four best performing models. In the performance analysis, the diversification effects are 

evident, with the combination estimates often showing the best performance statistics. However, by 

relying on equal weights we likely did not fully leverage the potential benefits that can result from 

combining forecasts. A large literature exists that provides alternative weighting procedures which we did 

not consider but provide an interesting venue for future research. 

The second research question which we answered in the present paper relates to the ability of variance 

risk premium to predict future stock returns. We did find statistically significant evidence at short (i.e. less 

than one year) horizons, although rather modest in magnitude. It appears that the variance risk premium 

complements commonly employed predictor variables. There are however a few important implications 

and limitations that are worthwhile to address.  

In our predictability exercise we relied on monthly overlapping S&P 500 return data. This procedure is 

commonly observed in predictability regressions. Overlapping data allows to maintain a large data set 

even for sparse monthly observations. However, overlapping observations are not without controversy 

and are believed to bias the confidence intervals and create inflated 𝑅2. We proceeded to mitigate the 
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effects by employing heteroskedasticity and autocorrelation consistent Newey-West standard errors. 

Although, it is difficult to prove that we effectively crowded out the bias. Alternatively, one can use non-

overlapping data for the predictive regressions, but this implies that the data set will be comparatively 

smaller. Given that we committed to monthly return data this was not a viable option for our purposes as 

it would have reduced the number of observations substantially which would have been insufficient to 

conduct any meaningful statistical inference. In hindsight, we could have used a narrower time frame (e.g. 

weekly) for our return data observations in the predictive regressions but this would have required major 

adjustment in the realized variance modelling section which was initially designed for monthly forecasts. 

Lastly, in our stock return predictability section we relied on ex post information to determine whether 

the variance risk premium carries any predictability for future stock returns at short horizons. As we have 

already stressed, this exercise was primarily to determine whether a relationship exists on aggregate. 

Naturally, an investor can not benefit from hindsight in real time trading strategies. It is particularly for 

this reason that we refrain from suggesting any variance risk premium trading strategies based on ex post 

information. An interesting venture for future research would be to analyze real time trading strategies 

modelled exclusively based on ex ante information.  
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12. Conclusion  

Throughout this paper we aimed to answer two research questions. First, we explored how to derive the 

variance risk premium. We introduced the underlying theoretical background on variance swaps and 

explained the relating concepts on risk-neutral and physical variance. To bridge the gap from theory to 

application we analyzed the respective variance proxies namely, the CBOE volatility index VIX and high 

frequency realized variance.  

As the variance risk premium can be obtained from the difference of the squared VIX and the expectation 

of the one-month ahead realized variance, the empirical challenge resided in constructing an appropriate 

forecasting model. To this end, we relied on 20 years of high frequency realized variance data which 

includes numerous volatile periods such as the Dotcom bubble, the recent financial crisis and the Covid-

19 pandemic. Importantly, realized variance data incorporates stylized facts such as volatility clustering 

and leverage effects, that need to be considered in selecting a fitting forecasting model. We ultimately 

decided to base our models on a heterogenous autoregressive framework, originally put forward by Corsi 

(2004). The HAR model accounts for distinct volatility movements created by heterogenous market 

participants and thus underlies a sound economic interpretation. Due to the distributional properties of 

the realized variance, we deemed it necessary to specify all models in their level and logarithmic form. 

For benchmark reasons we also considered a non-estimation model as well as a combination forecast to 

take advantage of possible ‘diversification’ benefits.  

The logarithmic models showed superior model fit compared to their otherwise identical level models, 

with the log VIX-L-HAR-RV reaching close to 66% model fit in the full sample. However, as addressed in 

the Limitations section the output transformation from log to level posed important complications, 
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deteriorating the model superiority due to large overpredictions over the actual realizations. Ultimately, 

we conclude the best out-of-sample forecasting performance was achieved by the L-HAR-RV model.  

Generally, over the full sample the modelled variance risk premium behaved as the theory would suggest. 

We observed low or no variance risk premia in steady periods and high premium during turbulent periods 

most notably during the 2008 financial crisis and beginning of the 2020 covid crisis. However, all models 

create negative variance risk premia that do not have any rational economic interpretation. As already 

addressed in the Limitations, these occurrences are partly due to the linear models employed. 

We also examined the abilities of the variance risk premium to predict future stock returns. We found 

support that the variance risk premium is a predictor for stock returns over short horizons (i.e. less than 

one year). Although significant, of the proportion of the variance in future returns explained by the 

variance risk premium is rather small. As such, the variance risk premium obtained from our best model, 

L-HAR-RV, generated the highest model fit at the 8-month prediction horizon with an 𝑅2 of 3% in our 

univariate regression analysis. The weak performance is likely a result of omitted variables that influence 

future stock returns. In fact, in a multivariate regression analysis including other common predictor 

variables the results are much more impressive explaining up to 14.5% of the variation of the 8 month 

ahead stock returns.  
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14. Appendix 

Appendix 1: Variance swap replication 

Derivation by Bossu and Carr: 

We have a log-contract whose payoff is -ln 𝑆𝑇 /𝐹where F is the forward price. By applying Ito-Doeblin 

theorem to ln 𝑆𝑇 we obtain. 

ln
𝑆𝑇
𝑆0
= ∫

1

𝑆𝑡
𝑑𝑆𝑡 −

1

2
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𝜎𝑡 is instant volatility of the underlying asset which is possibly stochastic. It can be shown that realized 

variance can be replicated as: 

∫ 𝜎𝑡
2𝑑𝑡

𝑇

0

= 2∫
1

𝑆𝑡
𝑑𝑆𝑡 − 2
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𝑆𝑇
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When assumed that risk-neutral dynamics of the underlying price are of form: 

𝑑𝑆𝑡 = 𝑣𝑡𝑆𝑡𝑑𝑡 + 𝜎𝑡𝑆𝑡𝑑𝑊𝑡 

where 𝑣𝑡 is the risk neutral drift, we obtain: 

𝐸 (∫
1

𝑆𝑡
𝑑𝑆𝑡

𝑇

0

) = 𝐸 (∫ 𝑣𝑡𝑑𝑡
𝑇

0

) = ln
𝐹

𝑆0
 

Therefore, the fair value of variance is equal to the fair value of two log contracts: 

𝐸 (∫ 𝜎𝑡
2𝑑𝑡

𝑇

0

) = 𝐸 (−2 ln
𝑆𝑇
𝐹
) 

Log-contracts are not traded. However, any European payoff can be decomposed as a portfolio of calls 

and puts struck along a continuum of strike prices. 
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The fair value of annualized variance is then 

𝜎𝐾
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Where r is the interest rate corresponding to maturity T, 𝑝(𝐾) is the price of the put struck at K and 𝑐(𝐾) 

is the price of the call struck at K.  

In the real world, only a finite number of strikes are traded which is accounted for in the proxy formula: 

𝜎𝐾
2 ≈
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Appendix 2: Correlation of the two monthly variance proxies 

Figure A. 1: Correlation of VIX and Monthly realized variance 

 

  

  

Notes: Plot graphically showcases the correlation between the monthly risk neutral (VIX) and physical (Monthly 5-minute RV) 

variance proxies. Full sample dataset (3rd January 2000 to 12th February) was used to construct the chart.  
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Appendix 3: Realized log variance modelling full sample 

Figure A. 2: One month ahead logarithmic realized variance - full sample estimates 

 

 

  

Notes: Fitted values of logarithmic regressions estimated using full sample (from the 3rd of January 2020 to 12th of February 2021) 

in turquoise are compared to the actual logarithmic value of the 22 days ahead realized variance in red. The plot is divided into 3 

facets corresponding to each of the estimated models.  
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Appendix 4: Variance risk premia summary statistics 

Table A. 1: Variance risk premia summary statistics - full sample estimation

 

 

  

VRP HAR-RV VRP L-HAR-RV VRP VIX-L-HAR-RV VRP log HAR-RV VRP log L-HAR-RV VRP VIX-L-HAR-RV

n 5,250 5,250 5,250 5,250 5,250 5,250

mean 15.346 15.346 15.346 13.752 12.804 12.466

sd 23.491 21.914 21.596 20.923 21.087 15.015

median 8.281 8.323 8.434 7.748 7.688 8.105

min -119.723 -65.809 -61.926 -65.732 -515.904 -170.595

max 278.981 250.051 246.265 281.646 193.957 168.983

skew 3.325 3.421 3.443 4.547 -1.88 3.332

kurtosis 19.086 18.736 18.862 33.939 97.934 26.453

Level models Log models

Notes: Summary statistics of variance premia estimated by 6 studied models. Full sample (3rd of January 2000 to 12th of February 

2021) was used.  
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Appendix 5: Realized log variance modelling in sample 

Figure A. 3: One month ahead logarithmic realized variance - in sample estimates 

 

 

  

Notes: Fitted values of logarithmic regressions estimated using 75% of the sample (from the 3rd of January 2020 to 9th of October 2015) in 

turquoise are compared to the logarithm of actual value of the 22 days ahead realized variance in red. The plot is divided into 3 facets 

corresponding to each of the estimated models.  
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Appendix 6: Sensitivity of log to level transformation equation 

Figure A. 4: Logarithm to level transformation equation sensitivity 

 

 

  

Notes: The plot compares the transformed level maxima of models log L-HAR-RV and log VIX-L-HAR-RV between the two 

estimation approaches (Full sample estimation and Out of sample forecasting procedure introduced in section (9.1)). 
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Appendix 7: Non-expanding rolling window forecasting 

Figure A. 5: Non-expanding window out of sample forecasts of monthly realized variance of level models 

 

 

Notes: Forecasted level of realized variance for all level models based on a non-expanding window, contrasted with the actual 

one-month ahead realized.   
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Figure A. 6: Non-expanding window out of sample forecasts of monthly realized variance of log models 

 

 

Table A. 2: Model Confidence Set procedure results for non-expanding window procedure 

 

 

Rank by Tmax ti p-value Rank by TR ti,j p-value MSE

HAR-RV loss 2 -1.06339 1 3 0.989138 0.776333 1509.407

L-HAR-RV loss 1 -1.08353 1 1 -0.74198 1 1376.849

VIX-L-HAR-RV loss 3 -1.03763 1 2 0.741976 1 1488.657

log HAR-RV loss 4 -1.02573 1 6 1.169094 0.46 1452.302

log L-HAR-RV loss 5 1.05066 0.497667 4 1.059451 0.703333 4586.474

log VIX-L-HAR-RV loss nonexp 6 1.083354 0.300667 5 1.084201 0.579667 2488.438

Tmax TR

Notes: Forecasted level of realized variance for all log models based on a non-expanding window, contrasted with the actual one-

month ahead realized.   

Notes: MCS procedure was conducted at 20% significance level choosing Mean Squared Error (MSE) as the evaluation criterion. The table 

reports the model´s rank, t statistics and corresponding p-values for both 𝑇𝑅,𝑀 and 𝑇𝑚𝑎𝑥,𝑀 test statistics. The evaluated forecasts were for 

period spanning from the 12th of October 2015 to 12th of February 2021 on a non-expanding window basis. Bootstrapping was done using 

block length equal to the maximum number of significant parameters in the AR (p) process on all 𝑑𝑖𝑗 (default parameter in Catania & 

Bernardi, 2017) and 5,000 replications. 
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Appendix 8: Stock return predictability regression output  

Table A. 3: Univariate stock return predictability regression output for 1-month predictability horizon 

 

 

Notes: Regression output for estimation and non-estimation models. Monthly variance risk premium regressed on the one-month 

ahead S&P 500 stock returns. Significance of coefficients is indicated by the star symbol *,**,*** according to the scheme above 
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Table A. 4: Univariate stock return predictability regression output for 3-month predictability horizon 

 

 

Notes: Regression output for estimation and non-estimation models. Monthly variance risk premium regressed on the three-

month ahead S&P 500 stock returns. Significance of coefficients is indicated by the star symbol *,**,*** according to the scheme 

above 
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Table A. 5: Univariate stock return predictability regression output for 6-month predictability horizon 

 

 

Notes: Regression output for estimation and non-estimation models. Monthly variance risk premium regressed on the six-month 

ahead S&P 500 stock returns. Significance of coefficients is indicated by the star symbol *,**,*** according to the scheme above 
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Table A. 6: Univariate stock return predictability regression output for 12-month predictability horizon 

 

 

Notes: Regression output for estimation and non-estimation models. Monthly variance risk premium regressed on the twelve-

month ahead S&P 500 stock returns. Significance of coefficients is indicated by the star symbol *,**,*** according to the scheme 

above 


