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Using machine learning to uncover 
the relation between age and life 
satisfaction
Micha Kaiser1*, Steffen Otterbach2,3 & Alfonso Sousa‑Poza2,3

This study applies a machine learning (ML) approach to around 400,000 observations from the German 
Socio-Economic Panel to assess the relation between life satisfaction and age. We show that with 
our ML-based approach it is possible to isolate the effect of age on life satisfaction across the lifecycle 
without explicitly parameterizing the complex relationship between age and other covariates—this 
complex relation is taken into account by a feedforward neural network. Our results show a clear 
U-shape relation between age and life satisfaction across the lifespan, with a minimum at around 
50 years of age.

There is much popular belief in the existence of a mid-life crisis, that is the notion that a period of unhappiness 
exists around the age of 40. A large body of literature dating back many decades addresses this issue, yet much 
controversy still remains1–4. In the past decade, this research topic has been invigorated by the publication of 
Blanchflower and Oswald5 which documents a U-shaped relation between age and life satisfaction in a cross-
sectional sample of over 500,000 individuals in the United States and Europe, with the minimum in life satisfac-
tion being reached between 36 and 53 years of age. Numerous studies followed and comprehensive literature 
reviews were conducted by López Ulloa et al.6 and Galambos et al.7, with the former covering 20 studies published 
before 2013 and the latter covering 29 studies published between 2014 and 2019. López Ulloa et al.6 conclude that 
"despite the numerous recent papers published on this topic, controversy regarding the effect that ageing has on 
life satisfaction still exists" (p. 241) and "in general, it is difficult to say with certainty whether the relationship 
between age and wellbeing across the lifespan is linear or convex" (p. 240). Galambos et al.7 go further by con-
cluding that "given the body of evidence over recent years, we cannot conclude that there is a universal U shape 
in happiness" (p. 908) and "we believe the conclusion that happiness declines from late adolescence to midlife 
(the first half of the U shape) is premature, and possibly wrong" (p. 900). Unsurprisingly, this conclusion is not 
shared by Danny Blanchflower who recently conducted a large-scale analysis that identified a U-shape in age 
in one hundred and forty-five advanced and developing countries8. His conclusion: "No ifs, no buts, wellbeing 
is U-shaped in age" (p. 618). Blanchflower and Graham9 review the psychology literature and show that two of 
the studies cited by psychologists suggesting there are no U-shapes are in error. Their conclusion: "It remains 
puzzling then why many psychologists continue to suggest that wellbeing is unrelated to age" (p. 15).

Although much of the evidence points to a U-shape, one cannot deny that conflicting evidence exists. 
Depending on the data used, the definition of wellbeing, estimation technique, and choice of covariates, several 
different forms can be observed in the literature. The ideal basis for any analysis of wellbeing across the lifespan 
would obviously be panel data that follow representative individuals for this entire period10, yet such data are 
seldom available. Thus, the literature on this topic is primarily based on cross-sectional data or on panel data in 
which the average duration in the panel is relatively short. Although it is intriguing that very many cross-sectional 
studies around the world produce a U-shape, they are inadequate for drawing conclusions about within-person 
change in wellbeing across the life span7,11. In this regard, panel data is more useful, yet selectivity issues and 
different answering styles of panel participants are pervasive10,12.

A further methodological issue is the choice of covariates. If the researcher’s aim is to capture the pure (or 
ceteris-paribus) age affect on wellbeing, then covariates need to be included. However, there is not much con-
sensus as to which covariates should be included. Economists tend to use a large number of covariates (often 
termed "the usual suspects"), including income, gender, education, number of children, marriage, employment, 
non-participant, unemployed and health10. Blanchflower8 and Blanchflower and Graham9 show in their multina-
tional studies that the U-shape holds, irrespective whether controls are used or not. However, some studies show 
that the use of controls matter13,14. Furthermore, many controls are not only dependent on age (e.g., income), 
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but also on wellbeing itself (e.g., marriage). Thus, not only is the choice of covariates important, but the way in 
which they are modeled also matters.

Considering all these methodological challenges, it comes as no surprise that quite a wide spectrum of results 
and opinions exists. In this paper, we circumvent a number of these issues by applying a machine learning (ML) 
approach in which the choice of model is largely data driven15. Because the age−life satisfaction relation is com-
plex and dependent on multiple factors, the ML algorithm’s ability to fit complex and highly flexible functional 
forms to the data without overfitting16,17 makes it a particularly suitable analytic tool. In this paper we develop 
an approach based on a neural network which is able to account for complex interdependencies of covariates 
(including interactions with age), and also able to isolate a pure age effect.

Data and methodology
Dataset.  The data is taken from the German Socio-Economic Panel (SOEP), sampled from around 20,000 
to 30,000 individuals between 1992 and 2016. Our outcome of interest is life satisfaction, measured on a scale 
from 0 to 10 and modeled as a function of around 30 variables (depending on the type of model) that capture 
both socioeconomic and sociodemographic characteristics (see Table 1). In particular, we include gender (i.e., 
being female, ’yes’ or ’no’), marital status (’married’ or ’not married’), number of children, years of education, 
real income, and employment status (being employed, being unemployed, not being in the labour force)—fea-
tures which are denoted "usual suspects" according to Frijters and Beatton10. In addition, we include the degree 
of disability and self-rated health status, the latter measured on a five-point scale (’poor’, ’suboptimal’, ’satisfac-
tory’, ’good’, ’excellent’) that is then recoded into a binary health dummy with the last two categories denoting 
good health. Finally, we include whether the survey was administered by an interviewer (’yes’ or ’no’), whether 
a respondent is a homeowner (’yes’ or ’no’) and whether a person in need of care lives in the household (’yes’ or 
’no’). After excluding observations with missing or implausible information and focusing exclusively on indi-
viduals between the ages of 20 and 70, our final dataset consists of 381,279 observations.

Complex dependency relationships characterize these control variables, and many of these variables are 
dependent on age, since most life events, such as marriage, the birth of children, and the acquisition of home-
ownership, take place at a particular stage of life. For example, for most people who have an uninterrupted 
educational biography from the time they enter primary school until they complete their school or university 
education, the number of years of education in this life stage is a linear function of age, whereas it becomes 
time-invariant after the highest educational degree is reached. It is also important to note that, in a conventional 
employment biography, income is also likely to change over the course of working life and is thus also a function 
of age. Furthermore, these variables are also interdependent in complex ways. For example, the fact that someone 

Table 1.   Descriptive statistics: variables.

Measure Mean SD Median

# Children Numeric 0.75 1.05 0.00

Years of education Numeric 12.18 2.7 11.50

Life satisfaction Numeric
(0–10) 7.07 1.75 7.00

Degree of disability Numeric
(0–100) 5.45 17.97 0.00

Age
(20–70) Numeric 44.8 13.36 44.00

Unemployed Factor
(no/yes) 0.06 0.23 0.00

Not in labor force Factor
(no/yes) 0.2 0.4 0.00

Homeowner Factor
(no/yes) 0.43 0.5 0.00

Person in need of care living in HH Factor
(no/yes) 0.03 0.17 0.00

Married Factor
(no/yes) 0.7 0.46 1.00

Female Factor
(no/yes) 0.53 0.5 1.00

Data collected by interviewer Factor
(no/yes) 0.59 0.49 1.00

Good health Factor
(no/yes) 0.53 0.5 1.00

Household income in real values Numeric 2696.05 2834.83 2303.52

Income satisfaction Numeric
(0–10) 6.33 2.29 7.00

5-year cohorts (1920–1995) factor
(1–16) – – –

N 381,279
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is married, has three children, and owns a home in which a person in need of care lives will affect labor market 
status and thus household income.

These complex interdependencies could be included in a conventional regression model only when using 
further strong assumptions. For example, whether and to what extent marriage affects life satisfaction to a differ-
ent extent if married at a young age compared to later could be represented in a regression model by an interac-
tion effect (married × age), in this case, assuming a linear relationship. If there is a non-linear relationship, the 
regression modeling (e.g., via higher-order polynomials of age) becomes very comprehensive and there is a risk 
that the model will suffer from multi-collinearity and over-specification. Neural networks are designed to take 
these complex interdependencies into account and map them comprehensively.

Empirical strategy.  To identify the life satisfaction pattern over the lifecycle, we need to define the real-
valued functions f, and g, that map the random variables x1, x2, . . . , xn (the features mentioned in the previous 
section, i.e., the potential predictors of life satisfaction) to the possible values of life satisfaction. Additionally, 
we assume that h is a real-valued function consisting of a (the individual’s age, i.e., the domain of a is the set of 
R≥0 ). Given the following proposition, we claim that it is possible to isolate the effect of age on life satisfaction 
(proof in the “Appendix”):

Proposition  If we define y:=f (x1, x2, . . . , xn)+ h(a) and z:=g(x1, x2, . . . , xn) to be given by functions of the ran-
dom variables x1, x2, . . . , xn and a, and if we further assume that E[f (x1, x2, . . . , xn)− g(x1, x2, . . . , xn)|a] = 0 
then h(a) = E[y − z|a].

The underlying idea is simple when viewed in a practical (or empirical) way: we think of y and z as predic-
tions from two distinct supervised machine learning models, with the first model containing age as an additional 
predictor. We further assume that the average effect of all other factors on life satisfaction (apart from age) is 
equal across the two models, conditional on age (this implies that—on average—f and g show the same mapping 
dependent on age). In that case, the lifecycle pattern of life satisfaction will result from the average differences of 
the predictions. The main advantage here is obvious: assuming that the assumptions hold, and assuming that we 
can (empirically) identify f and g, our method implies that we can identify the shape of life satisfaction across the 
lifecycle without parameterizing it a priori (as is common in this literatrure). Moreover, suppose life satisfaction 
is continuous in age and follows a U-shape. In that case, its empirical counterpart h (i.e. the average differences 
in predictions between the two ML models) should have precisely two roots according to Bolzano’s theorem, or 
more generally, the resulting graph of h should mimic a U-shaped pattern.

Feedforward neural network.  In order to predict y (and z) we first split our data randomly into a training 
set (containing 80% of the observations) and a test set (containing 20% of the observations). Based on the previ-
ous considerations, we then train a feedforward neural network model that includes all features—including age 
(and cohorts)—on the training data and evaluate its performance on the test set (we call this the baseline model 
in the following). We assume that this baseline model gives us a valid prediction of y.

Since the model’s performance is highly sensitive to the hyperparameters used, we have to check many 
possible combinations of all potential parameters and select a combination that shows a low error on both the 
training and the test data. In particular, we tune the following parameters to obtain the best predictive result by 
avoiding over-or underfitting: the number of epochs and the batch size used during the training; the number of 
nodes per layer; the number of layers and the dropout rate; activation functions used, the optimization algorithm; 
and the learning rate.

The final specification, that is the one that gives the lowest mean square error (MSE) for the training and test 
data, is described in Table 2. Thus, our baseline model consists of 3 layers (one input layer and two hidden layers), 
with 31 input nodes and 62 hidden nodes evenly distributed among the two hidden layers. It uses Leaky-ReLU 
activation functions in the hidden layers and ReLU activation for the final output layer (note that we choose 
ReLU instead of Leaky-ReLU activation to avoid negative values of y. See18, for a detailed comparison of ReLU 
and Leaky-ReLU). The dropout rate is set to 0, which is probably related to the fact that the model consists of 
"only" 2 hidden layers and is therefore not as susceptible to overfitting compared to "deeper" model architectures 
(see19 for a discussion of the use and benefit of dropout rates in deep neural networks).

The actual optimization is performed during 20 epochs (with a batch size of 1 per iteration) using an Adam 
optimizer with a learning rate of 0.0001 (again, note that we test different optimization techniques and learning 
rates. For a detailed discussion of the Adam algorithm, see20. Finally, before the first iteration of the training 
process, we initialize the weights according to a normal distribution with a mean of 0 and a standard deviation 
of 1√

31
  (i.e., wl

i ∼ N(0, 1√
31
) for the i-th weight in the lth layer).

Starting from this baseline model, we next train an additional model with exactly the same specifications 
(i.e., the same hyperparameter values), excluding age (since the only missing predictor is age, we argue that 
this model’s predictions reflect z). To rule out that cohort rather than age effects drive the difference between y 
and z, we also train two other models—one without cohort information and one without age as well as cohort 
information.

All these steps provide us with what we need to finally compute h(a) (i.e., the shape of life satisfaction over 
the life cycle), which is done by taking the difference of the predictions on the test data of the baseline model and 
the models without age, cohorts, and age and cohorts, respectively (the full code is available at https://​github.​
com/​13kai​ser/​life_​satis​facti​on/).

https://github.com/13kaiser/life_satisfaction/
https://github.com/13kaiser/life_satisfaction/
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Random forest and partial least square regression.  To check the robustness of our empirical strategy, 
we also apply a random forest (RF) model and a partial least squares (PLS) regression. While we perform a grid 
search over the maximum number of trees and the maximum depth of each tree when training the RF, we only 
tune the maximum number of components when training the PLS model. After training and grid search, our final 
baseline RF model consists of 200 trees, each with a maximum depth of 15, while the final PLS model consists of 
13 components (the full code is available at https://​github.​com/​13kai​ser/​life_​satis​facti​on/).

Results
The resulting baseline model shows a training MSE of 1.80 and a test error of around 1.95. As can be seen in 
Fig. 1, the predicted values correspond very closely to the actual values. This is in itself an interesting result as 
it shows that a relatively limited number of features that capture demographics, economic situation, and health 
status, combined with a neural network, can predict life satisfaction very accurately. The bottom panel of Fig. 1 
depicts the precited and actual values for different cohorts. These precited and actual values also correspond 
quite closely to each other, with the exception of the very young and very old cohorts for which there are lim-
ited observations. The top panel of Fig. 2 plots three versions of the h(a) function using the test data. The green 
function depicts the difference between the predictions made in the baseline model (y values) and the same 
model without including age or cohort variables (z values). Interestingly, a clear U-shape emerges with positive 
differences up to the age of around 40, negative differences between the ages of 40 and 60, and positive differ-
ences thereafter. The largest negative difference is found at around the age of 50. This function thus reveals that 
when omitting age and cohort variables in the neural network, life satisfaction levels will be underestimated 
among the young and the old, and overestimated among middle-aged individuals. In the top panel of Fig. 2, 
the blue line shows the difference when including cohorts but excluding age in the calculation of the z values. 
The orange line shows the difference when including age variables but excluding cohorts in the calculation of 
the z values. In both cases, we observe a relatively flat function around the value of zero. In other words, if we 
include age but omit cohorts, or if we include cohorts but omit age, the U-shape vanishes. This result is not very 
surprising as cohorts are defined using the age variable—and clearly, the neural network observes age, proxied 
by cohorts, when using the cohort variables. In the lower panel of Fig. 2 we observe the h(a) function plotted 
for different cohorts. If we focus on the green line that does not include any age or cohort variables, then we 
note that, in general, cohorts born immediately after the second world war (1950–1965) have h(a) values below 
zero, implying that when omitting age and cohort variables in the neural network, life satisfaction levels will be 
underestimated among these cohorts. Furthermore, the graph indicates that an overestimation will take place 
among cohorts born after 1965.

Concerning the RF and the PLS, we find that both additional models confirm the results of our main speci-
fication. That is, once we exclude age and cohorts, the U-shaped pattern emerges. Interestingly, the RF model 
seems to be more sensitive to the exclusion of age than to the exclusion of cohorts (no U-shape emerges when we 
exclude only cohorts), while the opposite is true for the PLS regression (see Figures S1 and S2 in the “Appendix”).

Discussion and conclusions
Specifying life satisfaction models that can determine the pure age effect on life satisfaction is challenging and 
the topic of much controversy. Not only does life satisfaction depend on numerous variables, but many of these 
variables are also, in turn, dependent on age. The relations between these variables are also complex. ML tech-
niques such as neural networks offer a valuable tool for modeling any complex relations in large, rich data sets, but 
particularly those between age and life satisfaction, a multidimensional construct that is intricately intertwined 

Table 2.   Model characteristics.

Basic characteristics

Type of neural net Feedforward neural network

Loss function MSE

Training characteristics

Batch size 1

Number of epochs 20

Optimization Adam optimization

Learning rate 0.0001

Initial weight distribution w
l
i
∼ N(0, 1√

31
)

Layer characteristics

Layer Input (1) Hidden (2) Hidden (3) Output (4)

Features/nodes 31 (Including 16 cohort dummies and age) 31 31 1

Activation Input Leaky-ReLU Leaky-ReLU ReLU

Dropout rate 0 0 0 0

Performance

Training error 1.80

Test error 1.95

https://github.com/13kaiser/life_satisfaction/
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with myriad other factors. Not only is a data-driven technique the best choice for such complicated modeling, 
but it is also the most feasible approach to handling the approximately 400,000 observations in the SOEP and 
their relations to a multiplicity of variables.

It is well-known that there are complex interdependencies between age and various covariates (such as mar-
riage, age, and income), yet these relationships are not a priori known and therefore cannot be meaningfully 
modeled parametrically. The existing literature on the age-life satisfaction relation does not try to model such 
interdependencies but usually merely adds age as one independent variable. In our approach, we actually solve 
the problem of interdependencies among the different determinants of life satisfaction. The underlying assump-
tion in our analysis which allows us to isolate the age effect, is that these dependencies do not play a crucial 
role within a given age or birth cohort, but they do matter across ages and cohorts (see Proposition). With this 
assumption, we can isolate a possible age effect across age and birth cohorts.

Our assumption that these dependencies do not play a crucial role within a given age or birth cohort implies 
that our model should be interpreted as an estimate of the long-run effect of age on life satisfaction, which admit-
tedly ignores possible short-run age effects. However, we do not believe that short-term age interdependencies 
are the key determinants of the long-term relation between age and life satisfaction, because, by the very nature 
of our model, these are interdependencies of age and other covariates that take place within a year (or 5 years 
in the case of birth cohorts).

Using this intuitive approach at isolating the age effect with ML techniques, our results reveal that, when omit-
ting age variables in a neural network that predicts life satisfaction, life satisfaction levels will be underestimated 
among the young and the old overestimated among middle-aged individuals. This indicates that life satisfaction 
is U-shaped across the lifespan, with a minimum at around 50 years of age. With the existence of large panel data 
sets in many countries, it would be interesting for future research to determine the generality of the U-shape 
relation between age and life satisfaction using such ML techniques. Although the focus of this paper was on 
the widely discussed age-life satisfaction relation, the approach taken in this paper could also be used to assess 
how other factors such as income and education affect well-being across the lifespan.

Data availability
The data used in this publication were provided to us by the Socio-Economic Panel (SOEP) at the German 
Institute for Economic Research (DIW), Berlin. The data are publicly available after registration at www.​diw.​de/​

Figure 1.   Predictions of life satisfaction on test data. Neural network predictions of life satisfaction as a 
function of age and cohorts. The blue line indicates the predicted values given the test data, while the orange line 
shows the actual values within the test data.

http://www.diw.de/en/diw_02.c.242211.en/criteria_fdz_soep.html
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en/​diw_​02.c.​242211.​en/​crite​ria_​fdz_​soep.​html. Because the SOEP data are fully anonymized secondary data, 
ethical approval was not required.
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