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ABSTRACT

This study examines whether we can learn from the behavior of blockchain-
based transfers to predict the financing of terrorist attacks. We ex-
ploit blockchain transaction transparency to map millions of transfers for
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hundreds of large on-chain service providers. The mapped data set permits
us to empirically conduct several analyses. First, we analyze abnormal transfer
volume in the vicinity of large-scale highly visible terrorist attacks. We docu-
ment evidence consistent with heightened activity in coin wallets belonging
to unregulated exchanges and mixer services—central to laundering funds
between terrorist groups and operatives on the ground. Next, we use foren-
sic accounting techniques to follow the trails of funds associated with the Sri
Lanka Easter bombing. Insights from this event corroborate our findings and
aid in our construction of a blockchain-based predictive model. Finally, using
machine-learning algorithms, we demonstrate that fund trails have predictive
power in out-of-sample analysis. Our study is informative to researchers, reg-
ulators, and market players in providing methods for detecting the flow of
terrorist funds on blockchain-based systems using accounting knowledge and
techniques.

JEL codes: G15, G18, G29, K29, K42, M40, M41, O16

Keywords: transparency; terrorist financing; economics of blockchain;
forensic accounting; bitcoin

Right now, large parts of the field of crypto are sitting astride of—not
operating within—regulatory frameworks that protect investors and con-
sumers, guard against illicit activity, ensure for financial stability, and yes,
protect national security.
–Gary Gensler (August 2021), chair of the U.S. Securities and Exchange
Commission

1. Introduction

In recent years, international money transfers through blockchain-based
currencies have grown significantly.1 The proliferation of cryptocurrencies
has had two opposing effects related to the transparency of the interna-
tional money-transfer system. On the one hand, governments, financial
institutions, and market regulators invest hundreds of millions of dollars
and numerous person hours in curtailing illegal transfers through the tra-
ditional financial system (Belasco et al. [2018]). Cryptocurrencies and, in
particular, Bitcoin, the most popular cryptocurrency, may enable criminals
to circumvent these efforts. On the other hand, fund transfers that used to
be known only to the involved parties are now transparent to anyone with
technical knowledge of the blockchain system and the ability to analyze
information in public blockchain ledgers (ICAEW [2018]). The increased
transparency of transfers may help outsiders identify and predict illicit ac-
tivities by monitoring abnormal transactions.

1 As of February 2022, more than 17,000 crypto assets (e.g., blockchain-based currencies)
are listed in more than 450 crypto exchanges across the globe, totaling 1.7 trillion dollars in
market capitalization (https://coinmarketcap.com/).
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This study examines whether we can learn from the behavior of
blockchain-based transfers in the vicinity of large-scale, highly visible
terrorist attacks to predict similar events.2 Many Bitcoin transfers have been
attributed to illegal activities (Foley, Karlsen, and Putnins [2019]), and
cryptocurrencies can be used by terrorists for donation campaigns (Irwin
and Milad [2016], Dion-Schwarz, Manheim, and Johnston [2019]). As the
analysis of donation campaigns (i.e., transfers between donors and terror-
ist organizations) depends on leaked addresses, our focus is on terrorist
attacks (i.e., transfers between the terrorist organization and operatives on
the ground), which do not require foreknowledge of terrorist wallets. The
transparency of the blockchain system suggests that it may be possible to
identify transfers associated with terrorist attack financing. Financing at-
tacks require intense money laundering, entailing abnormal volume in the
vicinity of an event as a potential proxy for terrorist financing.3 Our meth-
ods may help outsiders detect funds associated with terrorist attacks and,
perhaps more importantly, help them predict these events.4

Additional considerations motivate this study. First, the rise of blockchain
analytics provides several avenues for academic research. Fund transfers on
the Bitcoin blockchain are in the public domain and can be traced back
to wallets.5 With the development of deanonymizing algorithms, such as
the one we employ here, it is possible to connect additional addresses by
checking whether a known address co-spent with other addresses on the
chain.6 At the end of the mapping, we account for thousands of addresses
at the users’ wallet level, their respective balances at a given point in time,
and the flow of funds throughout time. As a result, blockchain-mapped
data provide a unique setting for the analysis of transfers and participants’
interactions.7

2 Our study focuses on Bitcoin, as it is the most liquid and used public blockchain-based
cryptocurrency. Bitcoin recently surpassed 1 trillion dollars in total market capitalization, has
more than 18 million units in circulation, and over half a billion transactions since its incep-
tion in 2009 (see Nakamoto [2008] for a detailed description of the Bitcoin protocol).

3 We use the term “vicinity” as a measure of chronological closeness (i.e., the days surround-
ing the date of the event).

4 This method may be applied to other illicit activities, such as laundering funds for tax
evasion, financing political unrest, and large-scale purchases of goods (e.g., weapons) on black
markets.

5 Wallet owners are anonymous (although their activity/fund transfers are public), except
for some wallet owners who reveal their identity willingly or by accident. For instance, we focus
on users that are business entities in the chain. These users willingly provide wallet addresses
to their clients.

6 By co-spending, we mean that two or more addresses share the same input in one trans-
action, which suggests that they belong to the same user. See subsection 3.1 for more details.
Moreover, the computer science literature develops refined techniques that allow parties to
identify users’ IP addresses in some cases (e.g., Kang et al. [2020]). Because users’ identities
may be revealed through these techniques, Bitcoin is considered pseudo-anonymous.

7 Unlike in public blockchain systems, in traditional banking fund transfers are opaque
to outsiders, including to a large extent, regulators. Additionally, even regulators generally
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Additionally, individuals with blockchain knowledge and (arguably) ac-
counting expertise may have a relative advantage in analyzing blockchain
transactions. The Institute of Chartered Accountants in England and Wales
(ICAEW), one of the oldest accounting organizations globally, has devel-
oped a conceptual view in which accounting expertise (broadly speaking)
is helpful to assess blockchain technology, as the blockchain can be viewed
as an accounting system that maintains a ledger of accurate financial in-
formation and provides clarity over ownership of assets.8 In this study, we
use accounting knowledge to investigate the financing of terrorist attacks
in blockchain-based systems.

Large-scale on-the-ground terrorist attacks require financing to buy
weapons, explosives, and other equipment and to pay operatives and their
families. If financiers are worried about eliminating their traces in the
blockchain, they will likely try to launder their transactions. This consists of
repeatedly reshuffling cryptocurrencies and transferring them across sev-
eral crypto wallets in the blockchain. For instance, assume that 10,000 dol-
lars are used to finance a terrorist attack, say, to buy machine guns on the
black market. If this amount is reshuffled 100 times, over a million dollars
is generated in volume due to laundering. We thus argue that one would
observe abnormally large volumes of transfers in the vicinity of terrorist
attacks.9 Using abnormal volume to investigate an event’s information con-
tent has been common since the work of Beaver [1968].

To conduct the empirical analysis, we aggregate millions of transactions
for hundreds of users in the Bitcoin blockchain and classify them into six
groups: dark markets, exchanges, gambling platforms, mining, mixers, and
other services. Users of dark markets usually sell illicit products or ser-
vices on the dark web. Exchanges provide services such as converting fiat-
to-crypto, crypto-to-fiat, and crypto-to-crypto. Gambling platforms operate
online casinos and betting markets. Miners mine Bitcoin and other cryp-
tocurrencies. Mixers provide tumbling services, which consist of reshuffling
cryptocurrencies into hundreds of transactions and interpolating transac-
tions with other users to decrease or eliminate traceability. The services
group provides general Bitcoin services, such as online payments, transfers,
and cold storage. We merge these data with terrorist attack data compiled

depend on the information they receive from banks by law or court rulings to gain insights
into transfers. Beyond that, the global regulatory system is fragmented, and regulators can
generally follow only the parts of the fund trail that are under their jurisdiction.

8 The ICAEW describes blockchain as “an accounting technology. It is concerned with trans-
ferring ownership of assets and maintaining a ledger of accurate financial information. The
accounting profession is broadly concerned with the measurement and communication of fi-
nancial information and the analysis of said information.... For accountants, using blockchain
provides clarity on ownership of assets” (ICAEW [2018]).

9 Furthermore, as we elaborate below, even if the documented abnormal volume is not nec-
essarily driven by terrorist wallets but by other market players screening for abnormal activity,
their association with the event is in itself informative.
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from the comprehensive list of attacks from the Global Terrorism Database
(GTD) for 2015 to mid-2019.

The vast majority of GTD events are not expected to be relevant for
our study because they consist of small-scale attacks (i.e., assassinations,
hostage taking, infrastructure attacks, unarmed assaults, arson, stabbings,
and melee attacks) concentrated mostly in regions marked by local in-
surgencies, such as Afghanistan, Iraq, and Syria. However, to provide a
benchmark for our examinations, we keep these small events in our base-
line specification, resulting in 21,323 unique events.10 For the main speci-
fication, our focus is on large-scale, highly visible events, as they are more
likely to require financing.

We identify large-scale events based on whether a terrorist attack has
been highly publicized in the media. To do so, we match the GTD data set
with Wikipedia articles.11 Wikipedia uses a series of criteria to determine
event notability (i.e., whether it deserves a standalone Wikipedia article).
For instance, a standalone article should be based on several reliable pub-
lished sources.12 In line with our focus on large-scale events, the average
number of victims is approximately five times larger in a notable attack
(26) than in the baseline specification (5). Finally, as notable events oc-
cur mainly within terrorists’ home territories and Bitcoin is more likely to
finance extra-territorial activities (e.g., Irwin and Milad [2016] and Dion-
Schwarz et al. [2019]), we further filter for attacks in foreign territories in
our third specification. This last specification is used only in the predictive
section of the paper to improve the model’s accuracy.

We start our analysis by examining Bitcoin’s cumulative abnormal vol-
ume (CAV) responses in the vicinity of terrorist attacks. Notable attacks
often entail multiple bombings (77.47%) or mass shootings (21.54%) and
involve many operatives on the ground; therefore, these events are likely
to require substantial financing. If terrorists use Bitcoin to finance these
events, they likely use mixers or mixer-like transactions to camouflage their
transfers. If executed in the vicinity of the event, such activities could be
observed via abnormal volume analysis. Consistent with this prediction,
we find a sharp increase in CAV in the period preceding notable attacks
(9.53%), followed by a decrease in the weeks thereafter (7.33%). This re-
sult is robust to controlling for events likely to affect Bitcoin on-chain vol-
umes, such as hardforks, price peaks, and public holidays.13 We obtain the

10 GTD fragments events. For instance, the Sri Lanka Easter bombing is treated as eight
events, because of multiple bombings in different locations. We treat all these attacks as one
unique event.

11 This approach has been shown to produce more informative events (e.g., Xia and Gu
[2019]).

12 The Sri Lanka Easter bombing standalone Wikipedia article is based on over 300 sources,
including The New York Times, The Independent, Reuters, The Washington Post, and The Guardian
(https://en.wikipedia. org/wiki/2019_Sri_Lanka_Easter_bombings).

13 “Hardfork” (or hard fork) is a blockchain split that leads to a new blockchain starting
from the split block. For instance, Bitcoin Cash is a Bitcoin blockchain hardfork created on
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reported CAV responses by bootstrapping notable events and reporting the
mean coefficients to mitigate selection concerns. In addition to the main
specification of notable events, we also examine the baseline specification
containing thousands of small-scale events. This procedure not only helps
us address our second prediction that Bitcoin is more likely to finance large-
scale events, but also works as a placebo test to mitigate model specification
concerns. We find that the bootstrapped mean-CAV response for the base-
line specification is small and statistically insignificant in the weeks before
a small-scale event occurs.

We then analyze CAV responses across different users by splitting users
into groups of similar services. We expect abnormal volume, in the vicinity
of the event, to concentrate at crypto exchanges and mixers, as operatives
on the ground need these services to withdraw Bitcoin, make online pay-
ments and camouflage illicit activity. We find that users of exchanges and
mixers present large positive CAVs in the weeks preceding the events. A
significant variation in the quality of regulation of crypto exchanges and
the level of compliance procedures, such as know-your-customer (KYC)
and anti-money laundering (AML), potentially facilitates illegal activities
(Amiram, Lyandres, and Rabetti [2021]).14 As the flow of illicit funds is
more likely to go through unregulated exchanges than through regulated
ones, we follow Cong et al. [2021] and separate these two groups according
to whether they are licensed by U.S., U.K., or Japanese authorities. We find
that unregulated exchanges drive most of the CAV responses. Finally, due
to sudden demand for mixing services, other services that commonly rely
on mixers for their daily activities are expected to have lower than expected
volume because these services are interconnected on the blockchain. Con-
sistent with this prediction, the abnormal volume in the vicinity of notable
attacks is smaller than expected for dark markets, gambling, and other
services.

Collectively, the event-study results are consistent with terrorists using
money laundering techniques to finance attacks primarily through un-
regulated exchanges and mixers. However, our research design precludes
us from establishing a direct relation to terrorist organizations. The ob-
served abnormal volume may reflect transfers from nonterrorist entities
with knowledge of the mechanics of money laundering or some other in-
formation on pending attacks. For instance, the laundering process associ-
ated with the attack may result not from direct financing but from terrorist
groups anticipating increased scrutiny of the blockchain by authorities after
a large-scale attack. This caveat does not alter the inferences we draw on the

August 1, 2017, to increase Bitcoin capacity and block size. See the online appendix for details
on these events.

14 KYC is the process of verifying a customer’s identity. AML is a series of procedures to iden-
tify and prevent money laundering. Together, they provide the highest level of compliance in
crypto exchanges to prevent illegal activities, such as money laundering, terrorist financing,
and tax evasion.
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association between abnormal volume and events and on the informative
role of abnormal volume in predicting large-scale terrorist attacks.

We complement our main analysis with a case study-type examination of
the Sri Lanka Easter bombing.15 In addition to being the largest attack in a
foreign territory for which the Islamic State of Iraq and Syria (ISIS) claimed
responsibility, it involved extensive logistics (i.e., multiple bombings and
many terrorists on the ground), and several news sources claimed that Bit-
coin was used to finance it.16 We identify suspicious users with abnormal
transfers in the vicinity of the event by applying forensic accounting and
anomaly detection techniques. We then examine flagged users for whether
alternative channels explain abnormal transfers around the attack and end
up with one user for which no alternative explanations are found. Focus-
ing on this suspicious user, we assess whether addresses linked to its wallet
have a history of association with other crimes. We track transfers backward
in time and find evidence of associations with several reported crimes, in-
cluding funding of jihadi cells in Syria. We also track the funds transferred
after the Sri Lanka attack and find that some of these funds were likely
converted to Ripple (XRP). We trace the funds one step further into the
Ripple network and identify a chain of transfers that resemble money laun-
dering, including one anonymous wallet serving as a deposit bank with over
$200 million in reserves.17 These findings provide further insights into the
mechanics of terrorist crypto financing.

Finally, we implement machine-learning algorithms to predict terror-
ist attacks. We consider three algorithms, the supported vector machine
(SVM), neural networks (NNs), and random forest (RF), as they stand out
as state-of-the-art solutions for supervised nonlinear learning classifiers. We
train these models across all users in the data set; however, the user flagged
with anomalous transfers around the Sri Lanka bombing provides the best
training accuracy. The list of notable terrorist events is the same as in the
main specification but adjusted for foreign attacks and filtered for Bitcoin
price peaks and hardforks, resulting in 30 events mostly claimed by either
ISIS or al Qaeda. We split the data into training and validation sets, the for-
mer (latter) comprising approximately 70% (30%) of the observations and
21 (9) events. Although all three models have predictive power, the random
forest model achieves the best performance for predicting out-of-sample
terrorist attacks a day before they occur. These results are potentially in-
sightful to market participants and agencies concerned with the on-chain
flow of terrorist funds. However, a couple of caveats apply, including one

15 According to The New York Times, the attack killed over 250 people (45 children)
and wounded over 500 people (https://www.nytimes.com/2019/04/24/world/asia/sri-lanka-
easter-bombing-attacks.html).

16 See, for instance, https://en.globes.co.il/en/article-exclusive-isis-funded-sri-lanka
bombings-with-bitcoin-donations-1001284276.

17 Although we followed the trails of funds likely associated with the Sri Lanka Easter bomb-
ing, proving that this big wallet belongs to ISIS is beyond the scope of this paper.
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related to the limited information we have on terrorist wallets. Addition-
ally, our results are limited to a group of large Bitcoin service providers
(users). Finally, our results may apply only to Bitcoin-like ecosystems.

This paper provides several contributions to the literature. First, it
joins studies examining the predictive power of accounting information
and knowledge in nonaccounting settings. For instance, Godsell, Welker,
and Zhang [2017] test whether accounting models can detect earnings
management in an import relief setting. The strategy of using accounting
knowledge to obtain information in other settings is not limited to con-
temporaneous work. Accounting information has already been used in
classic studies to predict stock returns (Bernard and Thomas [1989], Sloan
[1996], Abarbanell and Bushee [1997], Piotroski [2000]), bankruptcy
(Altman [1968], Beaver [1968], Ohlson [1980], Zmijewski [1984]), and
fraud (Singleton and Singleton [2010], Kranacher and Riley [2019]).
The uniqueness of our study lies not only in the novelty of the source
of “accounting information,” but also in the unobservability of the ul-
timate owner; therefore, predicting the ultimate owner (i.e., a terrorist
organization) is also part of our research goal and contribution.

Second, our study contributes to the relatively new literature examin-
ing transparency in alternative financing platforms. For instance, Michels
[2012] examines how voluntary disclosures attenuate market inefficiencies
in peer-to-peer lending markets. Bourveau et al. [2021] examine crypto an-
alysts’ role in assessing the quality of initial coin offerings. While the inter-
play of disclosure and consumer regulation has been studied by Cascino,
Correia, and Tamayo [2019] in reward crowdfunding markets, Lyandres,
Palazzo, and Rabetti [2021] examine the effects of disclosed information
on crypto-based projects’ operational and financial performance. We show
how transaction transparency enables outsiders to study the flow of funds
and users’ interactions in a blockchain-based financing system.

Finally, this paper contributes to the literature that examines the meth-
ods of terrorist organizations (e.g., Pieth [2002], Schott [2006], and
Rudner [2010]). Specifically, our paper provides novel empirical evidence
that responds to studies questioning whether cryptocurrencies contribute
to terrorist financing (e.g., Irwin and Milad [2016] and Dion-Schwarz et al.
[2019]). In this regard, our findings could also inform the current debate
over cryptocurrency regulation (Foley et al. [2019], Fusaro and Hougan
[2019], Griffin and Shams [2020], Makarov and Schoar [2020], Sokolov
[2021], Amiram et al. [2021], and Cong et al. [2022]) by demonstrating
that large unregulated market institutions might unwillingly operate as fa-
cilitators of terrorism.

2. The Financing of Terrorism

The financing of terrorism can be costly because it involves not only ex-
ecuting an attack, but also establishing, growing, and maintaining opera-
tions in distant territories (Malkin and Elizur [2002]). Research has shown
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that following money trails enables the tracking of terrorist attacks. For
instance, tracking terrorist funds, Limodio [2021] shows that terrorist or-
ganizations become more active after a positive funding shock. Another
example is a widely used informal system, Hawala, which usually involves
a sender, a receiver, and two dealers.18 As this system does not involve the
transfer of funds across countries, it is very difficult to track (Buencamino
and Gorbunov [2002]). In addition, the use of a variety of codes provides
security for the transaction (Kiser [2005]). Al Qaeda, for instance, for years
circulated funds under the authorities’ radar through Hawala before the
September 11, 2001, attack. In addition to cash transfers, terrorists also ac-
cumulate gold reserves. Al Qaeda and the Taliban used a Halawa network
to move millions of dollars worth of gold around the world (DeYoung and
Farah [2002], and Ashcroft and Snow [2003]).

However, following the September 11 attacks, authorities increased
scrutiny and shut down several Hawala operators worldwide (Heng and
McDonagh [2009] and Navias [2002]).19 Additionally, because not all
Hawala dealers operate illicitly, an internal movement attempted to reg-
ulate the system (Borgers [2009]). As a result, terrorists started seeking
options beyond Hawala. These include more formal remittance systems,
such as the Western Union, eBay, and PayPal (Cook and Smith [2011]).
Although the evidence suggests that terrorists jointly use Hawala, as well as
formal remittance systems, the authorities’ main focus remains on informal
networks (Acharya [2012]).

Cryptocurrencies are notorious for their potential criminal use due to
the pseudo-anonymity of their ownership, widespread usage, and the lack
of regulation of crypto exchanges and other services. Bitcoin, the most
popular cryptocurrency, is heavily used in dark markets, with an estimated
one-half of its transactions and one-fourth of its users linked to illicit ac-
tivities (Foley et al. [2019]). Silk Road, the most prominent dark market,
at its peak of activity, was moving hundreds of millions of dollars worth of
cryptocurrencies and providing services to over 100,000 buyers until the
Web site was shut down by the US Federal Bureau of Investigation and
the owner arrested.20 Several other marketplaces similar to the Silk Road
were launched and eventually seized; however, some dark markets are still
operating.

Cryptocurrencies are also used as the preferred means of payment by
cyber attackers. Bitcoin alone has over 224,000 addresses listed in illicit

18 The sender provides the local Hawala dealer with funds. The local Hawala dealer contacts
a corresponding Hawala dealer in the country where the sender wants to send the funds. The
Hawala dealer in the target country then provides the corresponding amount to the receiver.

19 See, for instance, https://archives.fbi.gov/archives/newyork/press-releases/2010/
nyfo091510a.htm or https://www.justice.gov/archive/usao/nys/pressreleases/January10/
safarharezaetalarrest spr.pdf.

20 See https://www.justice.gov/usao-sdny/pr/senior-adviser-operator-silk-road-website
pleads-guilty-manhattan-federal-court.
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address-screening services, such as Bitcoin Abuse. The number of “sex-
tortion” and ransomware attacks have increased with Bitcoin’s growing
popularity.21 A recent case, the ransomware attack at Colonial Pipeline,
spurred U.S. authorities to launch a task force to fight cyberattacks. At Colo-
nial, the attacker was able to raise $4.5 million in Bitcoin payments. How-
ever, due to blockchain transparency, agencies and other outsiders tracked
the money and recovered some of it.22 Nonetheless, most paid cyberattack-
ers succeed in keeping the funds.23

Mounting evidence of Bitcoin use in financing illicit activities, such
as dark markets and cyberattacks, suggests its potential use by terrorists
(Irwin and Milad [2016]). Although this argument may be contested (Dion-
Schwarz et al. [2019]), there is strong evidence from as early as 2013 of
cryptocurrencies in terrorists’ donation campaigns.24 In arguably the most
prominent such campaign to date, Hamas’s military arm, the al Qassam
Brigades, used its main Web page, social media channels, and officials to
call for donations following an Israeli embargo on external financial aid
(Katisiri [2019]). However, the US Department of Justice (DOJ) recently
dismantled the Bitcoin campaigns of the al Qassam Brigades as well as those
of al Qaeda and ISIS. This has hindered terrorist groups from raising funds
via cryptocurrencies. Chainalysis, a blockchain analytics provider, reports
that donation campaigns were able to raise only negligible amounts and
are just a tiny fraction of the total flow of illicit funds.25

Given the extensive evidence of the use of cryptocurrencies in illicit activ-
ities, including financing terrorist donation campaigns, terrorists may also
use them to finance their attacks. However, as terrorist wallets involved in
attack financing are not revealed to the public, we use event-study and ac-
counting techniques to descriptively examine Bitcoin transactions on ser-
vices likely used by terrorists in the financing process.

21 “Sextortion” is a cyberattack where the victim is asked to pay cryptocurrencies to prevent
the attacker from disclosing information related to the victim’s usage of adult web services.
Ransomware is an attack that usually targets corporations where hackers have stolen sensitive
data, such as clients’ private information, and demand payments in exchange for not leaking
the data to the public.

22 Agencies could follow the money trail on the blockchain and recover a large
part of it (https://www.cnbc.com/2021/06/07/us-recovers-some-of-the-money-paid-in-the-
colonial-pipelineransom-officials-say.html).

23 Cryptocurrency-based crime hit a new all-time high in 2021, with illicit addresses receiving
$14 billion over the course of the year (https://blog.chainalysis.com/reports/2022-crypto-
crime-reportintroduction/).

24 See the online appendix for a detailed discussion of donation campaigns.
25 See report in https://blog.chainalysis.com/reports/cryptocurrency-crime-2020-report.
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3. Data

3.1 blockchain data acquisition and classification

The pseudo-anonymity of Bitcoin imposes nontrivial challenges to the
identification of market participants. Owners of user wallets must be
identified off-blockchain, and each wallet may contain hundreds, even
thousands, of addresses. The methodology of recomposing user wallets
from transaction hashes involves two steps. First, to identify a wallet’s owner-
ship, we take advantage of the fact that Bitcoin is only pseudo-anonymous,
which means that all Bitcoin transactions are stored publicly and perma-
nently on the network (anyone can see the balance and transactions of
any Bitcoin address); however, the identity of the user behind an address
remains unknown until additional information is revealed. The connec-
tion between wallet ownership and the identity of a real person or busi-
ness entity may become publicly known because owners registered on an
exchange were leaked to social media or other Web sites by those who
transact with the wallet, or the wallet belongs to business entities that pro-
vide their addresses for services (e.g., crypto exchanges). For instance, an
online shopper obtains access to several addresses from Bitcoin providers
(e.g., exchanges), enabling those addresses to be revealed. Second, once
the addresses are obtained, data fusion algorithms are employed to asso-
ciate several connected addresses with a specific user.

To aggregate addresses to the user level, we implemented the union-find
algorithm, which has been used in several academic applications (e.g., Kap-
pos et al. [2018], Tasca, Hayes, and Liu [2018], and Foley et al. [2019]).26

Additionally, the union-find algorithm provides a more conservative clus-
tering method because it is less prone to incorrectly clustering sets of trans-
actions that involve more than one user (Meiklejohn et al. [2018], Foley
et al. [2019]). Based on this algorithm, we identify the wallets of 343 Bit-
coin users.27

A user in our data set is a collection of wallets for a business entity
and may contain thousands of transactions and addresses. For instance,
approximately 200,000 addresses and over 800,000 transactions linked to
the Binance exchange’s wallets are treated as one user in our data set.
As our data include the main service providers in the Bitcoin ecosystem,
we likely cover most of the transactions by known participants in the

26 The algorithm was designed by Cormen et al. [2001] and, in the context of cryptocur-
rencies, was first applied by Ron and Shamir [2013]. There are several types of data-fusion
algorithms and identifying strategies. See https://en.bitcoin.it/wiki/Privacy.

27 Consider the following as a simplified explanation of how the algorithm works. Say the
addresses X and Y co-spend (e.g., if the transaction is 1,000, each spends 500 units) in the
transaction Alpha, and the addresses Y and Z co-spend in the transaction Beta. As Y appears
in two different transactions by co-spending separately with X and Z, all addresses (X, Y, and
Z) must belong to the same user. By repeating this process several times in a pool of millions
of transactions, one can aggregate a large portion of addresses to the user data level.
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sample period.28 To classify Bitcoin users into business groups, we follow
prior research.29 We classify users into five portfolios: dark markets, ex-
change, gambling, mixer, and service, where Dark markets represent online
shops, usually on the dark web, responsible for selling illicit goods. Exchange
contains crypto exchanges responsible for providing exchange and with-
drawal services. Gambling includes gambling, rewarded games, and betting
platforms. Mixer relates to business associated with reshuffling cryptos into
several transactions and wallets to eliminate traces in the blockchain. Ser-
vice includes general business transactions, such as online payments, credit
cards, and wallet storage.

3.2 blockchain data processing and statistics

The data collected present a series of challenges. First, some users be-
come inactive. For instance, the Silk Road became inactive after the FBI
seized it. This translates to user sample variation around terrorist attacks,
with some users absent around the most recent attacks. Second, even
among active users, some users have no transactions in the vicinity of some
events. This usually happens when Bitcoin transactions are infrequent, due
to lower customer demand, or the service accumulating transfers before
transferring them to another user. We therefore apply the following process
to construct the final sample used in the paper. First, we exclude a mining
wallet that had 613,113 transfers with zero interactions with other users.
Second, we exclude 169,582 cold storage addresses, mostly of exchanges
and services, that are irrelevant to our analysis, as they are used only to store
coins. Finally, we exclude transactions that had no interaction with other
users (i.e., no output). The total number of transactions excluded repre-
sents only a tiny fraction (0.55%) of the data obtained.30 The final data set
contains 342 users responsible for engaging in 135.75 million transactions
from 2014 to 2019.

Table 1, panel A, presents the final blockchain sample summary statistics
and each step of the screening. Users have a total of 98.95 million addresses
resulting from data fusion of 135.75 million transactions from 2014 to 2019.
The extensive set of addresses and the total number of transactions indicate
the complexity of mapping the 342 large users in this data set. Exchange and

28 For comparison purposes, Foley et al. [2019] exclude users for which the transfer of cash
does not involve the acquisition of goods or services. Although they do not mention the num-
ber of users, they state that 88.4 million transactions were excluded. We obtain 105.67 million
transactions for the same group of users, which means that our sample is approximately 20%
larger, even though we cover a shorter time (2014–2019) than they do (2009–2017).

29 We follow the https://www.walletexplorer.com classification of users into Exchange, Ser-
vice, Mining (or Pools), and Gambling, while re-allocating other wallets from the historic group.
Additionally, we follow Foley et al. [2019] and add Dark markets as a category. Classifying users
into groups is also present in the accounting literature. For instance, Bushee [1998] assigns in-
vestors to dedicated, transient, and quasi-indexing investor groups to examine their influence
on firms’ R&D investment.

30 Our inferences are unchanged if these transactions are included in the final sample.
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T A B L E 1
Blockchain Sample Construction

Panel A: Sample construction (user)

Users Transactions Address Volume Average Median Balance Life

Obtained: 343 136.5 99.79 222.24 21.90 0.01 1,429.57 1,287
Excluded:

Mining 1 0.61 0.67 0.03 78.07 15.20 0.06 2,220
Cold Storages – 0.13 0.17 0.01 658.03 1.74 83.86 979
Lower Interaction – 0.01 0.01 0.01 182.03 45.11 0 125

Used:
Dark Markets 99 11.26 7.27 31.21 23.69 0.01 10.3 1,583
Exchange 101 62.12 51.99 155.31 7.85 0.02 4,884.85 1,496
Gambling 50 18.53 6.64 7.78 0.78 0.01 2.83 1,345
Mixer 36 0.34 0.28 0.37 6.13 0.01 1.55 81
Services 56 43.5 32.48 23.12 2.00 0.01 165.61 1,287

Total 342 135.75 98.95 217.8 10.24 0.01 1,458.19 1,290

Panel B: Aggregate summary (user)

Mean ($) SD ($) Median ($)

Volume (billions) 1.52 7.07 0.01
Balance (millions) 4.35 20.10 0.03
Fee (thousands) 0.70 4.30 0.01

Panel C: Distribution of volume (daily)

Mean (K$) SD (K$) Median (K$) Skewness (#) Kurtosis (#)

73.55 61.07 58.45 2.03 6.70
Q1 Q2 Q3 Q4 Q5
0.00 30.41 58.45 98.85 544.17

This table reports descriptive statistics on the composition of the blockchain sample. Panel A reports
the number of users, transactions, addresses, and volume for the obtained, excluded, and used blockchain
samples. We report variables in units, except Transactions, Address, and Volume, which are in millions,
and Life, which is in days. Panel B reports aggregated user-level statistics in dollars. Panel C reports the
distribution of daily volume in dollars, including quintiles.

Service have the largest number of addresses across groups, with 51.99 mil-
lion and 32.48 million, respectively. However, when volume is considered,
Dark markets become the second largest group, with 31.21 million Bitcoins.
Exchange has the largest number of Bitcoins transferred, with 155.31 mil-
lion units, or over 70% of transfers, in volume during the period. Although
some transfers contain large numbers of Bitcoins (mean of 10.24), most
of the transfers are very small (median of 0.01) across all users in the data
set. Notably, users in the Dark markets group have the largest number of Bit-
coins transferred per transaction (mean of 23.69), suggesting that this type
of business accumulates Bitcoins before cashing them out or converting
them to other cryptocurrencies. Exchange users tend to maintain a larger
balance of Bitcoins than users in different business niches. This is consistent
with exchanges needing reserves to operate their services and maintain a
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minimum amount of liquidity. The average life varies across business types.
For instance, Dark Markets had the longest average life (4.3 years) among
all groups. The reason is that these were the first type of business to adopt
Bitcoin. In contrast, Mixer, a service that receives dirty coins (coins linked
to illicit activities or additional privacy needs), mixes them into several
transactions and aggregates them into clean coins (difficult-to-trace coins),
has the shortest average life (2.7 months), consistent with this type of ser-
vice reducing traceability.

Panel B reports summary statistics in dollars aggregated at the user
level. The average user moves 1.52 billion dollars worth of Bitcoins dur-
ing its lifetime. The standard deviation among users is 7.07 billion dollars,
which indicates that a few large services dominate the market. A median of
0.01 billion dollars shows that most users move small amounts, reflecting
that Bitcoin is still young (i.e., most of its services have not yet matured).

Panel C reports the distribution of daily volume in dollars. An average day
moves 73.55 (58.45) thousand dollars in mean (median) on-chain transac-
tions. The standard deviation of 61.07 suggests that some days see extremely
large (small) volumes, possibly motivated by news or other events. The
skewness (2.03) and kurtosis (6.70) show that the distribution is right tailed
and not too different from normal. The panel also reports the distribution
quintiles. Twenty percent of the transfers are above 98,850 (below 30,410)
dollars, with a maximum daily transfer of 544,170 dollars. The quintile anal-
ysis provides further evidence of a right-tailed daily volume distribution.

3.3 terrorist events data

To create a list of terrorist events, we rely on the GTD, which provides
comprehensive details on terrorist attacks. It is curated at the University
of Maryland and has been used in several academic papers (e.g., Cuculiza
et al. [2021]).31 The data set contains 21,323 unique events from 2015 to
mid-2019 in multiple countries. We collect information on the number of
dead and wounded, location, method, and other details, such as whether a
ransom was paid and the total property damage for each event in the data
set. These details are essential for filtering the collected data of terrorist at-
tacks for attacks in which financing is potentially in place. For instance, one
may consider the total number of victims, the estimated property damage,
and the number of operatives on the ground as proxies for the scale of the
event.

As the choice of an attack’s scale may be subjective and prone to sam-
pling errors, leading to selection concerns in the empirical analysis, we rely
on a more agnostic approach guided by global media coverage. A highly
publicized and visible terrorist event is likely to have many victims, which
involves complex operations (e.g., multiple bombings) and several opera-
tives on the ground. To identify terrorist attacks that received global media

31 More information is available at https://start.umd.edu/gtd/.
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attention, we check whether a standalone Wikipedia article exists for every
event in the GTD sample. To have a standalone Wikipedia article, a terror-
ist attack must be (1) notable, (2) caused by violent nonstate actors, (3)
unrelated to drug wars or cartel violence, (4) unrelated to ongoing mili-
tary conflicts, and (5) in compliance with guidelines for the definition of
terrorism.32 The first item is particularly relevant for filtering the collected
list of terrorist events because notable attacks are largely documented by
the press and media. For instance, the Sri Lanka Easter bombing has a stan-
dalone Wikipedia article based on 351 sources (including BBC News and
The New York Times). This selection process results in 327 notable attacks.33

We use these notable attacks as our main specification and the initial full
sample of attacks as our baseline specification.

Table 2 details the sample composition. Panel A reports the filtering cri-
teria, the number of events (multiple events per attack), the number of
unique events (terrorist attacks), and the average number of victims (dead
and wounded) in each sample. In line with our focus on large-scale events,
the average number of victims is approximately five times larger in a no-
table attack (26) than in the baseline specification (5). Panel B reports ad-
ditional attack characteristics. Notable attacks are usually carried out with
bombs (77.47%) and occur mostly in the Middle East, North Africa, and
South Asia (75.88%). In approximately one-third of the attacks, the prop-
erty damage is less than one million dollars.

The sample of notable attacks is dominated by regions where local terror-
ist groups (e.g., ISIS, al Qaeda, al-Shabbab, and Boko Haram) operate. As
local operations are likely to use more practical methods than Bitcoin (e.g.,
Dion-Schwarz et al. [2019]), we form an additional sample from which we
exclude locations where the attacks are mostly carried out by local groups
or political insurgents. The resulting data set of foreign attacks contains 50
unique events, mostly carried out in Western Europe (39.02%) and North
America (29.27%). Bitcoin is more likely to finance activities distant from
the home territory of the terrorist group (e.g., to circumvent capital con-
trols and anti-terrorist financing measures); therefore, the refined vector
of notable foreign attacks is more likely to contain relevant attacks for the
purposes of this study. We use foreign terrorist attacks in the predictive part
of the paper (section 7.1) to improve the model’s accuracy.

4. Main Analysis: Abnormal Volume Around Terrorist Attacks

4.1 predictions

Our goal is to examine whether outsiders can exploit blockchain’s trans-
action transparency and identify flows of funds associated with terrorist
attacks. We argue that large-scale, highly visible (notable) attacks need

32 More information is available at https://en.wikipedia.org/wiki/List_of_terrorist_incidents.
33 See the online appendix for more details on sample construction.
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T A B L E 2
Terrorist Attacks Sample Description

Panel A: Summary statistics

Baseline Main Foreign

Sample criteria [1] [1–4] [1–5]
Number of total events 53,321 1,012 82
Number of total unique events (N) 21,323 327 50
Number of dead (mean) 2.62 10.22 7.85
Number of victims (mean) 5.13 26.07 27.89

Panel B: Terrorist attacks characteristics (percentage)

Baseline Main Foreign

Type:
Armed assault 22.35 21.54 47.56
Bombing/explosion 46.75 77.47 47.56
Hijacking 0.35 0.98 4.88
Others 30.55 – –

Region:
Eastern Europe 1.92 1.19 6.10
Middle East and North Africa 38.34 47.13 4.88
North America 0.75 2.37 29.27
South Asia 29.81 28.75 9.76
Southeast Asia 8.12 6.62 1.22
Sub-Saharan Africa 16.8 9.58 −
Western Europe 2.21 3.16 39.02
Others 2.06 1.19 9.76

Others:
Ransom 0.56 – –
Property damage (>$1 M) 0.04 0.19 –
Property damage (<$1 M) 24.44 28.56 25.61

This table reports descriptive statistics on the composition of the terrorist attacks sample. Panel A re-
ports the number of terrorist events in each of the three samples used in the analyses together with the
distribution of the number of dead and victims (i.e., wounded and dead). Panel B reports additional statis-
tics for the samples used in the paper. We use the following sample selection criteria: [1] Sample of all GDT
events in the period from January 2015 to June 2019 (retrieved on December 7, 2021). [2] Exclude attack
types: Assassination, Hostage Taking, Infrastructure Attacks, Unarmed Assaults and Unknown. [3] Exclude
attack method: Arson (Incendiary), Knife and Melee. [4] Notable events: events matched to standalone
Wikipedia page. [5] Exclude the following locations: Afghanistan, Bangladesh, Burkina Faso, Cameroon,
Central African Republic, Colombia, Democratic Republic of the Congo, Egypt, India, Indonesia, Iraq,
Israel, Ivory Coast, Jordan, Kenya, Kuwait, Lebanon, Libya, Mali, Myanmar, Nepal, Niger, Nigeria, Pak-
istan, Philippines, Saudi Arabia, Somalia, South Sudan, Sudan, Syria, Thailand, Tunisia, Turkey, Ukraine,
Venezuela, West Bank and Gaza Strip, Yemen, and Zimbabwe. See the online appendix for more details.

financing to buy weapons on the black market and pay terrorists on the
ground. If terrorist financiers are worried about eliminating traces in the
blockchain, they may use money-laundering techniques. If these tech-
niques involve repeated reshuffling in several wallets to reduce traceability
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of funds, then laundering creates excess volume.34 We therefore expect an
abnormally large volume to appear before an event.

Although we expect the volume after the attack to return to its normal
level, there may be reasons for the volume to decline even further. Notable
terrorist attacks are negative news, potentially suppressing Bitcoin trading.
The suppression could also reflect a reduction in activity in unrelated illicit
transactions that seek to fly under the radar of agencies searching for ter-
rorist linkages due to the attack. Nevertheless, other reasons predict that
volume could remain abnormally high after the event. For instance, if ter-
rorist financiers make Bitcoin transfers to pay the perpetrators’ families af-
ter the event using Bitcoin (as compensation for terrorist deaths), we may
observe a higher-than-normal volume (Levitt and Venkatesh [2000]). Thus,
Bitcoin volume patterns in the weeks after a large-scale terrorist attack are
difficult to predict, which is why we focus our search for suspicious volume
patterns to the weeks beforehand.

Additionally, abnormal volume is expected to increase in terrorist financ-
ing needs. We expect that small terrorist attacks are unlikely to be financed
or are financed with small amounts of Bitcoin. The reason is that these
attacks are usually carried out with a low level of equipment and logistics,
typically leading to very few injured or dead. Notable events, those that lead
to many injured and dead, are usually the consequence of a more signifi-
cant level of logistics (e.g., several perpetrators) and equipment (e.g., mass
shooting); therefore, they demand more funds to finance operations.35

Moreover, we expect that Bitcoin transfers associated with terrorist at-
tacks are likely to go through Exchange and Mixer service providers. While
the former provides users with the option to cash out or to use an exchange
wallet for payments and transfers, the latter is used to make Bitcoin tracing
more difficult. We assume that whereas terrorist organizations use profes-
sional mixers or mixer-like services to reshuffle Bitcoins, terrorists on the
ground use exchanges for payments and withdrawals (figure 1).

Finally, a significant variation in the regulation of crypto exchanges
coupled with flawed compliance measures suggests that terrorist funds
are likely to flow mostly through unregulated exchanges. For instance,
unregulated exchanges often do not observe compliance procedures—
such as KYC and AML—and are more likely to engage in deceiving activities
to attract demand (Aloosh and Li [2021], Amiram, Lyandres, and Rabetti
[2021], and Cong et al. [2021]).

34 See the online appendix for a detailed network analysis of al Qassam wallets. The reshuf-
fling factor is 38 laundering transfers to one final transfer or a laundering volume of 161,386
dollars to a total transfer amount of 4,246 dollars.

35 The number of injured and dead is a noisy proxy for the costs of the attack. There could
be a costly attack that ultimately left very few dead and injured and vice versa. Nevertheless,
the noise in our proxy makes it more difficult to find a relation between the proxy for the cost
of the attack and abnormal volume.
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Fig 1.—Mechanics of terrorist financing. This figure plots the mechanics of terrorist financ-
ing. The left-hand side (Revenue Sources) illustrates the terrorist group’s potential sources
of income from donation campaigns (known addresses) and other activities (unknown ad-
dresses). Most of the current evidence on terrorist financing (e.g., DOJ intervention in dona-
tion campaigns) is obtained from known addresses. Thus, the activities by unknown addresses
(e.g., financing terrorist attacks) are not accounted for as part of the total Bitcoin volume as-
sociated with illicit activities. The right-hand side of the plot (Laundering Services) illustrates
how terrorist groups may use blockchain-based currencies and services to finance large-scale
terrorist attacks. Although the addresses of terrorists on the ground are unknown, by focusing
on the services associated with camouflaging the transfers and funding the activities, outsiders
can analyze blockchain data to infer users from transfers and interactions—the focus of our
study.

5. Methodology

The accounting literature uses abnormal volume as a measure of infor-
mativeness in event studies as early as Beaver [1968]. Trading volume in
stocks has been associated with the magnitude of surprises in annual earn-
ings announcements (Bamber [1986]), stock price anomalies (Core et al.
[2006]), the role of the media in disseminating news (Rogers, Skinner, and
Zechman [2016]), and investors’ reaction to blockchain-related disclosures
(Cheng et al. [2019]). In line with these abnormal volume analyses, we
use an event study design that examines Bitcoin volume in the vicinity of
large-scale attacks. If a terrorist attack is financed with Bitcoin and money-
laundering techniques are used to eliminate traces in the blockchain, this
process generates large volumes. One possible technique, for instance, is
the use of a mixer or mixer-like service that consists of reshuffling Bitcoin
amounts hundreds of times among several addresses in the chain.36

36 See the online appendix for an example of mixed transactions between Bitcoin donors
and the terrorist group al Qassam Brigades.



coins for bombs 445

Our measure of Bitcoin volume is the daily sum of total inbound and
outbound transfers at the user level. We first estimate the expected volume
as the mean volume in the 20 days before the first day in the event window.
The event window comprises the two weeks before (after) the event. We
then mean-adjust the realized volume in the event window by subtracting
the mean volume from the benchmark window, both in logarithmic terms
(Beaver [1968], Copeland [1979], and Bamber [1987]),

AVu,t = lnVu,t − lnV̂u,t ,

where abnormal mean-adjusted volume AV is calculated at user u and time
t. The average abnormal mean-adjusted volume AAV on a given day t is
calculated by summing the abnormal volume for each user in the group
and dividing by the number of users in group Nt. The cumulative mean-
adjusted abnormal volume CAV is constructed by the sum of AAV in the
specified event windows T.

AAVt = 1
Nt

N∑
u=1

AVu,t .

CAVt =
T∑

t=1

AAVt ; t = 1, . . . , n.

We report the mean CAV for the period before [t – 15, t – 1] and after
[t + 1, t + 15] the event to check for abnormality. We base the choice of
the event window on two considerations. First, there are two types of cryp-
tocurrency transfers associated with terrorism. The first type is donation
campaigns, which happen over the long term and between donors and the
terrorist organization. The other type is direct financing between the ter-
rorist organization and terrorists on the ground. The latter has a short-term
characteristic (e.g., a machine gun purchase a week before the Paris attack)
and is the focus of our analysis. Second, even though we focus on notable
events, minor terrorist attacks occur very frequently. Therefore, we keep
our event and estimation windows relatively short so that the total window
[t – 35, t + 15] is less likely to be contaminated by any other similar event.

As an additional step to deal with multiple terrorist attacks clustered in
calendar time, we report all CAV responses as the mean CAV results from
bootstrapped analyses. The bootstrapping randomly selects 10 events from
the vector of terrorist attacks in each run. The procedure is carried out
50 times, and the mean-CAV results across all bootstrapped analyses are re-
ported in the tables. This method is important for two reasons. First, as we
are unsure which event within the vector of terrorist attacks is financed with
Bitcoin, bootstrapping mitigates this potential selection concern. Second,
the method also mitigates the influence of outliers and other factors un-
related to terrorist financing that may confound the results around some
specific dates.
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The test statistic in the event study could be affected by two issues. The
first is a potential cross-sectional correlation of abnormal volume due to
shared event dates across users.37 The second is that if unobserved events
cluster in time with observed events, this can lead to event-induced volatility
(Bernard [1987]). Consequently, both issues potentially introduce down-
ward bias in the standard deviation, leading to an overrejection of the null
hypothesis. To address these concerns, we use a nonparametric test, sug-
gested by Corrado and Zivney [1992], that corrects for induced volatility
and cross-correlation (Campbell and Wesley [1993]). One disadvantage of
this adjustment is that the test might lose power for larger event windows
(e.g., over 30 days).

We follow the Corrado [1989] rank test and transform abnormal volumes
into ranks in both the event and benchmark periods. If ranks are tied, the
midrank is used. To adjust for missing values, Corrado and Zivney [1992]
suggest a standardization of the ranks by the number of nonmissing values
plus 1, as follows:

K̄u,t = rank
(
AVu,t

)
Mu + Lu + 1

,

where Mu (Lu) refers to the number of nonmissing values in the (bench-
mark) event window. For multiple events, Campbell and Wesley [1993] con-
sider the sum of the mean excess rank for the event window,

K̄T1,T2 = 1
L2

T2∑
t=T1 +1

K̄u,t ,

S2
K̄

= 1
L1 + L2

T2∑
t=T0

Nt

N

(
K̄t − 1

2

)2

,

where L1 = T1 – T0 + 1 denotes the benchmark window length, with T0

(T1) representing the earliest (latest) day of the benchmark window; fur-
thermore, L2 = T2 – T1 denotes the event window length, with T1 (T2) de-
noting the earliest (latest) day of the event window. Therefore, we obtain
(H0: CAV = 0):

tstat =
√

L2

((
K̄T1,T2 − 1

2

)2

SK̄

)
.

For comparison, we also compute standard tests across all model spec-
ifications (not tabulated). However, the test statistics of the standard
approach are often larger than those of the nonparametric approach (Cor-
rado and Zivney [1992] and Campbell and Wesley [1993]). Therefore, we
opt for the more conservative nonparametric test statistic to prevent report-
ing significance tests with potential downward biased standard errors.

37 Brown and Warner [1985] show that cross-sectional tests are prone to event-induced
volatility.
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T A B L E 3
Abnormal Volume Analyses for All Users

Panel A: Terrorist attacks and other impactful events

Period Maina Baselineb Holidays Peaks Hardforks

Days before 9.53 2.73 −29.74 39.78 83.64
(2.73) (0.29) (−3.35) (12.73) (1.42)

Days after −7.33 1.90 −2.34 −17.79 −22.16
(−1.30) (2.29) (−0.71) (−9.74) (−9.10)

Panel B: Expanded event window (main sample)

Event Window 15 Daysa 30 Daysa 45 Daysa

Days before 9.53 12.51 14.10
(2.73) (2.14) (0.54)

Days after −7.33 −6.87 −6.92
(−1.30) (−1.96) (−2.58)

Panel C: Expanded benchmark window (main sample)

Benchmark Window 20 Daysa 90 Daysa 180 Daysa

Days Before 9.53 12.46 20.15
(2.73) (1.74) (0.89)

Days After −7.33 −6.61 −18.29
(−1.30) (−1.84) (−1.88)

This table reports the cumulative mean-adjusted abnormal volume (CAV) surrounding impactful trad-
ing events and terrorist attacks (panel A), for varying event windows (panel B) and for varying benchmark
windows (panel C) surrounding the terrorist attacks in the main sample for all Bitcoin users (U = 342).
The regular event window consists of the days in the intervals [–15, –1] and [1, 15], respectively. Volume is
calculated as the logarithmic change of the sum of inbound and outbound volumes. Unless indicated other-
wise, abnormal volume is mean adjusted for estimates generated in the period of 20 days before the first day
in the event window (regular benchmark window). The vector of terrorist attacks is selected through boot-
strapping in a total of 50 runs. Each run randomly selects ten unique events from the respective sample and
excludes events coinciding with impactful events. CAV responses are then averaged across all bootstrapped
vectors, and the mean-adjusted CAV response is reported in percentage. The t-statistic is reported in paren-
theses (see subsection 4.2 for details on the computation of the t-statistic). adenotes the main specification
based on notable attacks (N = 327). bdenotes the baseline specification based on all attacks, including
minor ones (N = 21,323).

6. Results

The left-hand side of table 3, panel A, reports the results for the main
specification (notable terrorist events) and the baseline specification (all
terrorist events). For each analysis, the bootstrapped mean-CAV response
is adjusted for impactful events.38 The main specification mean-CAV re-
sponse is 9.53% (–7.33%) in the weeks before (after) the event. The in-
crease in the mean-CAV response before the event is consistent with the

38 The concern that large-scale terrorist attacks occur at a higher rate during holidays, as
terrorists aim to maximize the number of deaths, or during other events such as hardforks
and price peaks is mitigated by excluding terrorist attacks that fall in the vicinity of these
impactful events in each bootstrap run.
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increase in money laundering to satisfy unexpected demand from terrorist
financiers. The decrease in the mean CAV response after the event is statis-
tically insignificant. The baseline specification mean-CAV response is 2.73%
(1.90%) in the weeks before (after) the event. The coefficient magnitude
and the statistical significance decrease in the baseline specification, consis-
tent with minor terrorist attacks needing little or no immediate financing.
In other words, abnormal Bitcoin volume (as a proxy for terrorist financ-
ing) increases with the estimated scale of an attack.

To provide context, we also calculate CAV responses to significant events
unrelated to terrorist attacks that are likely to impact Bitcoin. As opposed
to events used in the accounting literature, such as earnings announce-
ments and stock splits, the literature on cryptocurrencies is still in its in-
fancy. Therefore, by analyzing impactful events, we provide a context for
the interpretation of our main results. To capture CAV responses to im-
pactful events, we create vectors of events, such as holidays, price peaks,
and hardforks. Holidays is a vector of dates for the main western holidays,
such as Christmas and Easter. Peaks is a vector of dates for when the Bitcoin
price breaks the resistance price. Hardforks is a vector of dates for Bitcoin
blockchain splits.39

The right-hand side of panel A reports the results for benchmark events.
CAV responses to holidays are −29.74% (−2.34%) in the weeks before (af-
ter) the event. This result suggests a reduction in Bitcoin activities around
holidays such as Christmas and Easter. CAV responses around (Bitcoin)
price peaks are 39.78% (17.79%) in the weeks before (after) the event. This
result is consistent with increasing Bitcoin activity once it is near its price
resistance. CAV responses around Bitcoin hardforks are 83.64% (–22.16%)
in the weeks before (after) the event. Hardforks are potentially the most
impactful events on Bitcoin volume, as they work as a dividend for existing
Bitcoin holders (i.e., holders receive equivalent assets in the newly created
blockchain). Although the mean-CAV responses for impactful events are
several orders of magnitude larger than the mean-CAV responses for terror-
ist attacks, the results suggest that blockchain data are a significant source
of information to predict other sizeable events.

To test the robustness of our findings, we estimate the mean-CAV re-
sponse across different model specifications. In panel B, we expand the
event window to [t – 30, t + 30] and to [t – 45, t + 45]. The mean-CAV
response for 30-day event windows resembles the main specification. How-
ever, when we expand it to 45 days, the mean-CAV response increases for
the periods before the event. This result suggests induced volatility in the
event window due to overlapping events, which could lead to overestimated
coefficients. In panel C, we expand the benchmark windows to 90 and
180 days, respectively. Expanding the benchmark window, which incorpo-
rates other similar events, has a similar effect of inducing volatility in the

39 See the online appendix for details on these events.
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T A B L E 4
Abnormal Volume Analyses by Business Groups

Panel A: Exchanges

All Regulated Unregulated Diff
Period (U = 101) (U = 10) (U = 91) (U = 101)

Days before 9.28 4.11 12.72 8.61
(5.18) (2.24) (5.47) (3.97)

Days after −5.26 −9.07 −8.30 0.78
(−3.32) (−0.90) (−3.18) (0.19)

Panel B: Other services

Mixer Gambling Services Dark Markets
Period (U = 36) (U = 50) (U = 56) (U = 99)

Days before 11.09 −4.05 −9.76 −7.82
(3.85) (−2.36) (−3.16) (−3.04)

Days after −7.00 1.59 4.86 2.51
(−3.86) (4.47) (5.01) (5.33)

This table reports the cumulative mean-adjusted abnormal volume (CAV) for crypto exchanges (panel
A) and other business groups (panel B). The number of users in each group is reported following “U
= ”. The event window consists of the days in the intervals [–15, –1] and [1, 15], respectively. Volume is
calculated as the logarithmic change of the sum of inbound and outbound volumes. Abnormal volume is
mean adjusted for estimates generated in the period of 20 days before the first day in the event window. The
vector of terrorist attacks is selected through bootstrapping in a total of 50 runs. Each run randomly selects
ten unique events from the respective sample and excludes events coinciding with an impactful event.
CAV responses are then averaged across all bootstrapped vectors, and the mean-adjusted CAV response is
reported in percentage. The t-statistic is reported in parentheses. We use the terrorist attacks from the main
specification in this table (N = 327).

mean-CAV response, but the statistical power dissipates as the window in-
creases. We conclude that due to events clustering in time and the potential
contamination of the results by longer windows, the narrower window we
use seems adequate.

Our next set of tests examines which type of Bitcoin service is more likely
to be associated with terrorist attacks. Table 4, panel A, reports the mean-
CAV response for Exchange services. The mean CAV response for all ex-
changes is 9.28% (–5.26%) in the weeks before (after) the event. This re-
sult supports our expectation that Exchange channels concentrate most of
the illicit activity, as operatives on the ground need to cash out funds to
use them for payments of local operations. We then separate the effects
for regulated and unregulated exchanges.40 We do this for two reasons.
First, regulated exchanges are less likely to have flows of illicit funds than
unregulated exchanges due to regulatory oversight. For instance, some reg-
ulated exchanges, such as Coinbase and Kraken, must comply with NYSDFS
(New York State Department of Financial Services) guidance, keep a rela-
tively high level of compliance measures in place (such as KYC and AML

40 Regulated exchanges are services licensed by financial regulatory authorities in the
United States, United Kingdom, or Japan.
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rules) and are subject to further scrutiny by other U.S. regulators (i.e., the
Internal Revenue Service and the Securities and Exchange Commission).
Second, the separation permits us to provide insights into the ongoing de-
bate over cryptocurrency regulation (e.g., Amiram et al. [2021], Cong et al.
[2022], Griffin and Shams [2020], Foley et al. [2019], Fusaro and Hougan
[2019], and Sokolov [2021]). The difference in the mean-CAV responses
for unregulated and regulated exchanges is 8.61% (0.78%) in the weeks
before (after) the event. These results indicate that most of the funds likely
to finance terrorist attacks go through unregulated exchanges’ wallets.

Panel B reports the mean CAV response for the remaining services. The
response for Mixer is significantly larger in the weeks before terrorist at-
tacks. This pattern is consistent with unexpectedly large volumes of Bitcoin
being reshuffled in the period before an attack. The result supports our
prediction that mixers (together with the unregulated exchanges discussed
above) are potential channels for terrorist funding. Additionally, the cross-
sectional variation, such as the increased use of mixers, corroborates our
previous robustness test that confounding events are unlikely to drive the
effects we document. Moreover, as mixers and other blockchain services are
highly interconnected (figure 2), a large, unexpected demand for mixers
likely crowds out other services in the chain. During normal times, mixer
activities are mainly used to camouflage transfers between users and illicit
services (Foley et al. [2019]).41 As mixer volume increases in the vicinity of
terrorist attacks, increased fees and slower reshuffling services would then
temporarily crowd out other less time-sensitive users. The mean CAV re-
sponses to Gambling, Services, and Dark markets are negative (positive) 4.05%
(1.59%), 9.76% (4.86%), and 7.82% (2.51%), respectively, in the weeks be-
fore (after) a terrorist attack occurs. While the negative responses before
the event suggest crowding out, the positive responses in the weeks after-
ward suggest a normalization of these services to the users. These patterns
further mitigate concerns that earlier results are mechanical.

We next distinguish between terrorist attacks carried out locally and in
foreign territories. Foreign attacks are mostly perpetrated by ISIS and al
Qaeda, organizations known for having acquired both the resources and
the expertise in cryptocurrency usage to finance large-scale operations.
Table 5, panel A, reports the bootstrapped mean CAV results for foreign
and local events. The results suggest that CAV responses are larger for ter-
rorist attacks occurring in foreign versus local territories, consistent with
cryptocurrencies being used to evade capital restrictions and anti-terrorist
financing measures in traditional cross-country money-transfer venues. To
illustrate the effects of individual events composing the vector of foreign at-
tacks, we plot the CAV responses for three large events in panel B: Charlie
Hebdo, an al Qaeda-claimed attack that occurred in January 2015; Manch-
ester Arena, an ISIS-claimed attack that occurred in May 2017; and the Sri

41 Some exchanges, such as Coinbase, ban users that transfer coins directly to dark market
services. Therefore, users tend to use mixer services to camouflage the link.
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Fig 2.—Blockchain services network analysis. This figure illustrates the interconnectedness of
a sample of mixer services (Helix) with other blockchain services. The figure shows that mixer
services are commonly used by other Bitcoin users, such as crypto exchanges (e.g., Bitstamp,
LocalBitcoins, and Poloniex), gambling (e.g., NitrogenSports), dark markets (e.g., AlphaBay-
Market, AbraxasMarket, and EvolutionMarket), and other services (e.g., BitPay, CoinJoinMess,
and CoinKite). The figure was created with 52 nodes and 85 edges. The range was reduced to
improve readability. The size of each node measures centrality (i.e., larger nodes are central to
several transactions), and colors show proximity (i.e., nodes near each other are in the same
color).

Lanka Easter bombing, an ISIS-claimed attack that killed more than 250
people and wounded hundreds in April 2019.42

42 The GTD database underreports the number of victims in this event. We consider the
number of victims according to The New York Times article: “Sri Lanka Attacks: What We Know
and Don’t Know,” April 24, 2019 (https://www.nytimes.com/2019/04/24/world/asia/sri-
lanka-easter-bombing-attacks.html).
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T A B L E 5
Abnormal Volume Analyses by Location and Type of Event

Panel A: Attacks by location and type (CAV)

Notable Attacks All Attacks by Type

Foreigna Localb Ransom Damage Melee Arson
Period (N = 50) (N = 277) (N = 289) (N = 8,919) (N = 1,181) (N = 2,154)

Days before 28.39 2.71 3.57 1.19 1.69 1.53
(3.22) (0.59) (1.79) (0.12) (0.89) (0.93)

Days after −4.59 −3.56 4.18 1.80 1.54 0.87
(−1.89) (−2.07) (2.89) (0.21) (0.74) (0.39)

Panel B: Select foreign attacks

This table reports the cumulative mean-adjusted abnormal volume (CAV) for various types of terrorist
attacks (panel A) and plots the CAV around select foreign terrorist attacks (panel B) for all Bitcoin users (U
= 342). The event window consists of the days in the intervals [–15, –1] and [1, 15]. Volume is calculated as
the logarithmic change of the sum of inbound and outbound volumes. Abnormal volume is mean adjusted
for estimates generated in the period of 20 days before the first day in the event window. The vector of ter-
rorist attacks is selected through bootstrapping in a total of 50 runs. Each run randomly selects ten unique
events from the respective sample and excludes events coinciding with an impactful event. CAV responses
are then averaged across all bootstrapped vectors, and the mean-adjusted CAV response is reported in per-
centage. The t-statistic is reported in parentheses. adenotes the main specification but is limited to foreign
events. bdenotes the main specification but is limited to local events. The following filters do not include
notable attacks: Ransom, a vector of terrorist attacks for which information on ransom payment is available;
Damage, a vector of terrorist attacks for which information on property damage is available; Melee, a vector
of melee-based terrorist attacks; and Arson, a vector of arson-based terrorist attacks.

Finally, we carry out a series of additional robustness tests. One con-
cern is that the documented negative CAV responses in the weeks after
the event are spurious (e.g., driven by the research design or the model
specification). This concern is plausible because negative CAV responses
are also observed for impactful events such as price peaks and hardforks. A
potential explanation is that the CAV increases with transaction costs and
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therefore suppresses volume in the post-event window. Consistent with this
argument, Lennart [2020] finds that transactions with high levels of in-
formation asymmetry negatively affect abnormal trading volume once the
event becomes public knowledge. To mitigate this concern, we test a vector
of terrorist attacks for which ransom payments have been made. Because
ransom payments are made after the event happens, we expect positive
mean-CAV responses in the post-event window. Consistently, the mean CAV
response in the post-event window is 4.18% for a sample of ransom paid
attacks.

Furthermore, we also test samples based on whether the information on
property damage is available or the attack was carried out using a low-
tech method (e.g., a melee or arson attack). While the former provides
a randomly chosen sample—because information on property damage is
limited—the latter provide subsamples of attacks unlikely in need of financ-
ing.43 Therefore, we expect no substantial effects in any of these subsample
tests. The results support our assumptions, mitigating concerns about the
research design and the sample selection.

7. Case Study: The Sri Lanka Easter Bombing

The event-study methodology we used in the previous section has two pri-
mary limitations. First, parties interested in researching or tracking down
terrorist-associated services need to have more practical tools to pinpoint
these funds’ origin and destination. Second, the research design does not
allow us to pinpoint specific users in the Bitcoin network whose activities
are associated with terrorism. We address these limitations by comprehen-
sively analyzing anomalous transfers in the vicinity of the Sri Lanka Easter
bombing. This case study-type analysis also provides further insights into
our model for terrorist attack prediction. The motivation to examine the Sri
Lanka Easter bombing stems from rumors that arose after the event claim-
ing that Bitcoin had been used to finance it. However, there is no infor-
mation about the users and wallets involved, so we employ several forensic
accounting techniques to pinpoint anomalous transfers at the individual-
user level and to track the funds on the blockchain.44

We follow Laptev, Amizadeh, and Flint [2015] and Dai et al. [2019] and
employ a rolling three-sigma rule to detect anomalous transfers among in-
dividual users in the vicinity of the bombing. We consider a transfer anoma-
lous if the amount exceeds three standard deviations of the user’s last three

43 Alternatively, we run several placebo-tests based on randomly selected dates. However, be-
cause one may argue that terrorist attack dates were not randomized, we rely on chosen filters
(such as property damage information) whose incomplete information induces randomiza-
tion. For instance, many attacks without information on property damage likely resulted in
property damage.

44 We are thankful to Whitestream for providing additional evidence of terrorist-associated
transfers for this event and to DeepSeek for discussions on the mechanics of terrorist opera-
tions.
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T A B L E 6
Anomalous Transfers Surrounding Sri Lanka Easter Bombing

I II III IV V VI
Groups Users >3σ # #/User Mean Max

Dark Markets 3 0.02 11 3.67 57.86 255.48
Exchange 25 0.02 67 2.68 2,163.24 54,320.28
Gambling 8 0.02 22 2.75 18.15 194.00
Mixer 3 0.01 7 2.33 7,581.20 26,122.56
Services 9 0.02 28 3.11 188.84 1,382.84
Total 48 0.02 135 2.81 1,642.56 54,320.28

The table reports three-sigma rule anomaly detection results for 48 flagged users whose anomalies occur
during April 2019. Column I shows the number of flagged users per respective business group. Column
II reports the number of transfers (in percentage of total) larger than three standard deviations. As a
benchmark, three standard deviations fall in 0.27% of a normal distribution. Column III reports the number
of flagged transfers per user, and column IV shows the average flagged transfer per user. Columns V and VI
report the mean and maximum transfer amount in Bitcoin units, respectively.

months’ historical mean. In large samples, a small number of outliers is ex-
pected, but in a time series, the timing of the appearance of outliers could
indicate the presence of an anomaly. Outliers, being the most extreme ob-
servations, may be suspicious if they appear around specific events—in our
case, if they precede a large-scale terrorist attack.45 The rule is well suited
to our purposes because the transfer data tend to be normally distributed
and large-scale terrorist attacks are rare.

Table 6 reports the results for the three-sigma rule test. The rule iden-
tifies 48 users (out of 342) with at least one anomalous transfer around
the Sri Lanka Easter bombing (April 2019). On average, only 2% of the
transfers of a user exceed three standard deviations—as a benchmark, only
0.3% of the values exceed three standard deviations in a normal distribu-
tion. Dark markets wallets have, on average, more anomalies than the other
groups. The reason may be business-driven, as this type of business proba-
bly accumulates a certain number of payments before converting Bitcoins
to fiat. For instance, some users have a very low frequency of transfers dur-
ing a certain period but a few spikes in other periods. These spikes mostly
relate to transfers between Dark markets and Exchange wallets. Mixer anoma-
lies are the largest, followed by Exchange anomalies. In early April, a large
transfer initiated in a U.S.-based exchange had feedback effects on 38 users.
As this transfer was market-based (the BTC price rose by 10% that day) and
was made more than two weeks before the Sri Lanka Easter bombing, it is
unlikely that these 38 users were associated with the event. Another 4 users’
anomalies are observed too far away from the event, that is, exceeding [–15,

45 In probability theory, an event is considered to be practically impossible if it lies in the
region of values of the normal distribution of a random variable at a distance from its math-
ematical expectation of more than three times the standard deviation (Pukelsheim [1994]).
Laptev et al. [2015] use this approach to develop a generic and scalable system used by Yahoo
to detect anomalies in large time-series data. Dai et al. [2019] use a similar approach to detect
anomalies in accounting data.
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+15]. The remaining 6 suspicious users are distributed into Service (3), Ex-
change (2), and Dark markets (1). The largest anomaly in the period relates to
a popular gateway. The gateway’s main business consists of offering online
sellers the possibility to accept cryptocurrencies for payment. For instance,
it provides online shopping carts where clients click to buy a product with
Bitcoin. The gateway receives the payments in cryptocurrency, takes a fee,
and sends fiat payments to businesses. By doing so, it mitigates exchange
risks attributed to oscillations of cryptocurrency prices. The difficulty of ac-
cepting Bitcoin as payment is severe, as its volatility is much higher than
that of widely used currencies (Yermack [2015]). Assessing the wallet’s bal-
ance, we find that the mean balance increases significantly one day before
the event and falls sharply on the day of the event, which is a pattern con-
sistent with terrorist financing. A sharp decline is flagged at the event’s end
day at a value of 400 BTC ($2.8 million).

We further investigate whether wallets associated with money laundering
are used to feed the gateway’s abnormally large transfers. We find a wallet
constantly feeding transfers into the gateway. This wallet has over 1 million
transactions and approximately 1.9 million worth of Bitcoin inbound and
outbound transfers. The difference between inbound and outbound trans-
fers is just less than 0.001 BTC. The extremely high volume of transfers
and the fact that inbound and outbound transfers match almost perfectly
indicates that the associated wallet is a mixer used to reshuffle funds and
is likely related to illicit activities. We also find that this wallet is associated
with at least 29 reported crimes, including ransoms for kidnapped children
in Africa and the funding of jihadi cells in Syria.46

We next exploit the fact that some of the funds were transferred to a
crypto exchange. These funds likely were (1) exchanged to fiat and with-
drawn, (2) sent to several other addresses, or (3) exchanged for another
cryptocurrency. Unfortunately, testing the first two options is impractical
for two reasons. First, this exchange is one of the largest, containing thou-
sands of daily transactions.47 Second, exchange transfers may occur off the
blockchain in the exchange platform. However, the third option can be
tested by searching for an association between a particular user, date, and
value in other blockchains. To do so, we searched for the gateway’s associ-
ated wallets in other cryptocurrencies, such as Litecoin, Ripple, and Bitcoin
Cash. A few wallets denominated in these cryptocurrencies were found.
However, a wallet in Ripple stands out as the best candidate because the
timing, amount, and direction of the transfers match the information we
have on the exchange. The account was activated in December 2014 and

46 An address can be verified for reported crimes, such as extortion and ransomware,
through services such as https://bitcoinwhoswho.com/and https://www.bitcoinabuse.com/.

47 Although Bitcoin transactions are traceable, Bitcoin units are not. For instance, if two
Bitcoins are transferred from wallet A to wallet B already containing one Bitcoin, and then
another two Bitcoins are transferred from wallet B to wallet C, we know that one Bitcoin in C
came from A but we are not certain about the origin of the second Bitcoin.
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T A B L E 7
Analysis of Ripple Transactions for the Gateway Ripple Wallet

Panel A: Ripple transfers (January to April 2019)

Inflows Outflows

Min 34.44 31.93
Q1 64.20 58.60
Median 79.63 83.03
Mean 133.34 153.31
Q3 112.41 168.98
Max 811.50 696.35

Panel B: Volume frequency (January to April 2019)

Bins Observations Frequency

Below 1,000 43,805 90.589%
1,001 to 10,000 4,051 8.377%
10,001 to 100,000 481 0.995%
100,001 to 500,000 16 0.033%
Above 500,000 3 0.006%

Panel C: Volume frequency (before 2019)

Bins Observations Frequency

Below 1,000 217,114 98.587%
1,001 to 10,000 2,990 1.358%
10,001 to 100,000 121 0.055%
100,001 to 500,000 0 0%
Above 500,000 0 0%

The table reports descriptive statistics for Ripple transfers and volume. Panel A reports inflows and
outflows at the Gateway Ripple wallet for the period of January to April 2019. Flows are aggregated daily
and measured in thousands of XRP (Ripple currency). We then report volume frequencies for the Gateway
Ripple wallet for the period of January to April 2019 (panel B) and for the period before 2019 (panel C).
Frequencies are based on five bins of XRP values. Consistent with the business model (small payments),
transfers below 1,000 XRP are the most frequently occurring and represent 90% of transfers in the period.
However, a few extremely large transfers occurred during the period from January to April 2019. In contrast,
this user made no transfers above 100,000 XRP prior to 2019.

has over 250,000 transactions and a balance of over 17 million XRP ($5.15
million) at the time of this writing.

Table 7, panel A, shows the daily volume of transactions at the gateway
Ripple wallet (GRW), which we flagged for suspicious behavior during the
first half of 2019. The wallet moved, on average, 133 (153) thousand XRP
in daily inbound (outbound) transfers. However, April 23 is an atypical day
during that period, as seen in figure 3. On typical days, the GRW averages
200,000 XRP in total transfers. However, most of these transfers involve
less than 1,000 XRP. A large inbound transfer of 660,000 XRP ($212,000)
arrived on the morning of April 23, stayed in the GWR wallet for approx-
imately half an hour, and then was transferred to an anonymous wallet.
The transfer is suspicious for three reasons. First, the Ripple network’s in-
bound amount and timing match the outbound amount and timing in the
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Fig 3.—Historical Ripple transfers. The plot shows aggregated daily inbound (blue), out-
bound (red) and total (black) transfers on the Ripple network at the Gateway Ripple wal-
let (GRW) in 2019. XRP transfers are measured in units. An abnormally large transfer (0.7
million XRP) occurred in the early morning one day after the Sri Lanka Easter bombing.

Bitcoin blockchain. Second, the XRP transfer comes from the same ex-
change where BTC funds were sent. Finally, these transfers are outliers rel-
ative to the average historical transfer size in the GRW. To understand how
abnormal these transfers are, as seen in panel B, most of the GRW transfers
fall below 1,000 XRP. Small transfers (<1,000 XRP) are consistent with the
gateway’s main business, based on collecting crypto payments from online
stores. Larger transfers may relate to vault storage or other services and
are not obvious red flags, but extremely large transfers (>100,000 XRP)
are inconsistent with the gateway’s business model. As a benchmark for
the changes in the transfer behavior of this particular user, panel C shows
that before the period likely associated with the financing of the Sri Lanka
Easter bombing, the vast majority of transfers were below 1,000 XRP (con-
sistent with the business model), very few transfers were more than 10,000
XRP, and no transfers exceeded 100,000 XRP.

The flagged anomalous transfers allow us to track them a step fur-
ther on the Ripple network. Analyzing the network of associated wallets,
we flag three other wallets as having a peculiar behavior that resembles
money laundering. The first wallet behaves as a mixer, reshuffling large
sums among several hundred wallets. The second receives reshuffled funds
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from the mixer and distributes them to several anonymous wallets. Fi-
nally, the third wallet behaves as a deposit bank connected to this money
laundering chain and has far more inbound than outbound transfers dur-
ing its lifetime. As of August 2021, the third wallet had a balance of
over $200 million, making it one of the wealthiest wallets on the Ripple
blockchain.48

To conclude, the evidence in this section suggests that a chain of sophisti-
cated money-laundering wallets in both the Bitcoin and Ripple blockchains
was associated with anomalous transfers in the vicinity of the Sri Lanka
Easter bombing. As the data behavior, such as the type, amount, and timing
of transfers and wallets associated with the terrorist attack, is a potentially
rich source for predicting terrorist attacks, we exploit this information in
the next section.

7.1 predictive ability of blockchain data

In this section, we test whether we can use the above insights to construct
a model that increases our ability to predict terrorist attacks. To do so, we
employ three different machine-learning models in the training set and
choose the best performer for the analysis in the validation set. We consider
SVM, NN, and RF machine learning models, as they stand out as state-of-
the-art solutions of supervised nonlinear learning classifiers. Although we
must calibrate the SVM to provide reasonable results, the NN and RF are
specification-free. A drawback of NN is that the parameters are harder to
interpret compared to the other two approaches. Despite these differences
between models, we cannot anticipate which model best fits our purposes.

We identify the model with the best fit by using similar tuning (model
calibration) across models and choosing the one that has the best perfor-
mance. Several performance metrics can be used, as we elaborate below.49

We train the models using the flagged user, discussed in the previous sec-
tion, that had several anomalous transfers in the vicinity of the Sri Lanka
Easter bombing. To define the parameters included in the classification
model, we use predictors from the blockchain data that our case-study anal-
ysis has shown to be associated with terrorist attacks. For each model, we
run the following formula:

Ter ror (t ) = V ol ume(t−1) + I n(t−1) + Out(t−1) + Li f e(t−1)

+ Anonymous(t−1) + E xchange(t−1),+Mixer(t−1)

+ DarkMarket s(t−1) + Bal ance(t−1) + Sigma(t−1) (1)

48 The wallet is among the top 0.1% richest wallets on the Ripple blockchain. See
https://ledger. exposed/richstats#percentage.

49 We adjusted the performance of the SVM model using the Gaussian kernel function to
approximate the NN and RF performances. As training classifiers in high dimensions (i.e., in
the presence of several parameters or resampling) is time-consuming, the adjustment helps
this model yield better results.
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where Terror is an indicator variable that captures whether an attack oc-
curred on that day. The list of terrorist events is the same as used in the main
specification but is limited to foreign attacks. However, as several events are
in the vicinity of impactful events, such as price peaks and hardforks, we
exclude these impactful events from the training and validation samples
to improve the machine-learning model’s accuracy. This filtering shrinks
the vector of foreign attacks from 50 to 30 events, mostly claimed by ei-
ther ISIS or al Qaeda.50 Volume is the logarithm of the sum of inbound and
outbound transfers measured in Bitcoin units. In is the logarithm of the
inbound transfer value measured in Bitcoin units. Out is the logarithm of
the outbound transfer value measured in Bitcoin units. Life is the life of the
wallet, defined as the distance in days from the first to the last trade, that
is associated with sending or receiving the funds from users in our sam-
ple. Anonymous is an indicator variable that captures whether funds were
transferred to an anonymous address. Exchange is an indicator variable that
captures whether funds came from, or were sent to, an exchange address.
Mixer is an indicator variable that captures whether funds came from or
were sent to a mixer address. DarkMarkets is an indicator variable that cap-
tures whether funds came from, or were sent to, a dark market address.
Balance captures the total balance of the user’s wallet in Bitcoin units. Sigma
is an indicator variable that captures whether transfer size exceeds three
standard deviations from the user’s last three months’ historical mean. All
predictors used in the classification model are at the transfer-user level and
lagged by one day.

The flagged user we employ for training purposes provides a set of
7,443,285 transfers in the period from 2015 to mid-2019. We split the set
into training and validation sets, with the former (latter) having approxi-
mately 70% (30%) of the observations for the period. This results in 21 (9)
events in the training (validation) sample. Rather than manually setting
parameters that we believe have high predictive power, we tenfold cross-
validate all three models (James et al. [2017]). The cross-validation com-
bines averages of measures of fitness to derive a more accurate estimate
of model prediction performance. Each round of cross-validation involves
partitioning the training data into 19 equally sized subsets, performing the
analysis on each subset, and comparing the results to arrive at the model’s
best fit. Once the final tuning values are assigned, we refit the final model
by using the entire training set. The technique also helps mitigate overfit-
ting (Kuhn and Johnson [2018]). This process is repeated 100 times for
each model.51

50 Since the user data start from mid-April 2015, three events happening early in that year
are not included in the analysis. We did not exclude holidays because of the user’s association
with the Sri Lanka Easter bombing. For robustness, we also report the training results for the
original vector of notable events.

51 Although very unlikely, it is possible to implement resampling incorrectly. However, per-
forming 100 repetitions in the resampling technique mitigates this issue.
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Another concern arises from having too many binary predictors. As we
tune models using resampling methods, a random sample of the training
set may result in some binary predictors becoming a zero-variance predic-
tor. Near-zero-variance predictors can cause numerical problems during
resampling for some linear models (Zorn [2005]). We address the issue by
implementing nonlinear classification models that are less prone to having
numerical issues derived from near-zero- or zero-variance predictors. Addi-
tionally, we test all binary predictors on whether the percentage of unique
values is less than 20% and whether the ratio of the most frequent to the
second-most frequent value is greater than 20. The SVM model best fit is
specified with a parameter cost of 0.5 and 3,856 supported vectors, result-
ing in an accuracy of 0.994 and a Kappa of 0.108. The NN’s model best fit is
specified with size 5 and decay 0.1, resulting in an accuracy of 0.994 and a
Kappa of 0.108. The RF’s model best fit is specified with 500 trees and nine
variables at each split, resulting in perfect accuracy and a Kappa of 0.994.

Table 8, panel A, reports results across all models for the subsample of
the training sample in which these models have their respective highest
performance. The No information rate (or a naive guess) is a guess based on
the historical expected probability that tomorrow there will be no terror-
ist attack. The high rate indicates that terrorist attacks are rare. However,
all three models’ accuracy suggests that the machine-learning models pre-
dict better than a naive guess. In other words, even for highly skewed no-
terrorist attack occurrences, these models can predict attacks with better
accuracy than a naive guess. However, as indicated by the lower Kappa, the
SVM and NN results are not significant at the 95% confidence level. This
is important because Kappa is a more relevant performance metric than
accuracy when classes are highly unbalanced (Landis and Koch [1977]).

The confusion matrix, which is the tabulation of model prediction and
real outcomes, demonstrates that SVM and NN produce false positives
(NO/YES), while the prediction (YES/NO) indicates that both models pro-
duce many false negatives. We follow McNemar [1947] and find no signif-
icant sampling error affecting the differences between correlated propor-
tions in the confusion matrix table. Perhaps a more appropriate measure
is Balance accuracy, which equally weights the accuracy for predicting pos-
itive and negative events. For instance, the naive predictor that there are
never terrorist attacks has a balanced accuracy of 0.4968 ((0.994 + 0)/2).
All models have a better balance accuracy than a naive guess. The tuning
results suggest that the RF model stands out as the best fit for predicting
terrorist attacks in the validation set.52 Table 8, panel B, reports the most
important parameters in the RF model. Life appears to be the most impor-
tant parameter, with a mean decrease accuracy (MDA) of 35.13%, followed

52 As a robustness test, we train the Random Forest model using the vector of notable events
without adjusting for foreign attacks and impactful events. The results of this test are inferior
to a naive guess, suggesting that Bitcoin financing is more likely to be used for attacks geo-
graphically distant from the home territory of the terrorist organization.



coins for bombs 461

T A B L E 8
Predicting Future Terrorist Attacks: Training Sample

Panel A: Training (N = 21 events)

Model SVMa NNa RFa RFb

Accuracy–(ACC) 0.9939 0.9939 1 0.8830
Kappa 0.1076 0.0895 1 0.1685
No Information Rate–(NIR) 0.9937 0.9937 0.9937 0.9725
p-Value (ACC > NIR) 0.0525 0.0949 <0.0001 1
McNemar’s p-value <0.0001 <0.0001 <0.0001 <0.0001
Balanced Accuracy 0.5292 0.5240 1 0.7222
Precision 0.9941 0.9940 1 0.8924
Recall 0.9999 0.9989 1 0.5514
F-measure 0.9969 0.9969 1 0.6816

Panel B: Parameter importance

Parameter 0 1 MDA MDG

Life 33.64 37.32 35.13 1,414.37
Balance 32.93 25.44 33.85 281.19
Volume 10.91 8.80 13.34 49.39
Anonymous 9.20 5.74 10.69 1.30
Exchange 7.76 1.83 6.50 0.99

This table reports machine learning results for the training sample. Panel A reports the results for the
trained set across three machine learning algorithms. SVM stands for Super Vector Machine. NN stands
for Neural Networks. RF stands for random forest. For each model, we run the following classification
formula: Terror(t) = Volume( t-1) + In( t-1) + Out( t-1) + Life( t-1) + Anonymous( t-1) + Exchange( t-1) + Mixer( t-1)
+ DarkMarkets( t-1) + Balance( t-1) + Sigma( t-1), where Terror is an indicator variable that captures whether a
terrorist attack occurred on that day. Volume is the logarithm of the sum of inbound and outbound transfers
measured in Bitcoin units. In is the logarithm of the inbound transfer value measured in Bitcoin units.
Out is the logarithm of the outbound transfer value measured in Bitcoin units. Life is the life of the wallet
defined as the distance in days from the first trade and the last trade, associated with sending or receiving
the funds from users in our sample. Anonymous is an indicator variable that captures whether funds came
from or were sent to an anonymous address. Exchange is an indicator variable that captures whether funds
came from, or were sent to, an exchange address. Mixer is an indicator variable that captures whether funds
came from or were sent to a mixer address. DarkMarkets is an indicator variable that captures whether
funds came from, or were sent to, a dark markets address. Balance captures the total balance of the user’s
wallet in Bitcoin units. Sigma is an indicator variable that captures whether the transfer size exceeds three
standard deviations from the user’s historical mean over the last three months. All predictors used in the
classification model are at the transfer-user level and lagged by one day. Panel B lists parameters’ importance
in the tuned model in decreasing order of importance, where MDA stands for mean decrease accuracy, and
MDG stands for mean decrease Gini. N indicates the number of unique events used in the training set.
adenotes the main specification limited to foreign attacks after adjusting for Peaks and Hardforks. bdenotes
the main specification (32 events in the training sample).

by Balance (33.85%), Volume (13.34%), Anonymous (10.69%), and Exchange
(6.50%).53 This result suggests that alternative models based on any single
parameter, such as Life, can be exploited to improve predictability.54

53 Their relative importance measured as a mean-decreasing Gini (MDG) follows a similar
order.

54 However, there are two issues with an analysis that is based on the Life parameter. First, the
proper identification of young wallets is challenging as these wallets could be created for the
main purpose of illicit usage and, therefore, not be linked to known addresses. Second, Bitcoin
mapping should occur in real time to reflect the vast number of newly created addresses.
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T A B L E 9
Predicting Future Terrorist Attacks: Validation Sample

Validation (N = 9 Events)

User Exchange Gambling Service

Accuracy 0.627 0.752 0.815 0.701
95% Confidence Interval (0.626, 0.629) (0.742, 0.756) (0.812, 0.818) (0.695, 0.705)
Sensitivity 0.628 0.755 0.819 0.704
Specificity 0.424 0.246 0.250 0.277
Prevalence 0.996 0.996 0.995 0.995
Detection Rate 0.626 0.751 0.815 0.700
Detection Prevalence 0.628 0.755 0.818 0.704
Balanced Accuracy 0.526 0.500 0.534 0.490

This table reports machine learning results for the validation sample. The first column reports statistics
for the flagged user (i.e., GRW). The remaining columns report the mean statistics for each group of users.
The results in this table are for a 10-fold cross-validated random forest model with 500 trees and nine
variables at each split. N indicates the number of unique events used in the validation set. All specifications
use the vector of notable events limited to foreign attacks after adjusting for Peaks and Hardforks.

We therefore apply our RF-trained model to the validation sample at the
flagged user and to a group of users defined by their business type: Ex-
change, Gambling, and Service. The model accuracy improves in the group
of users (table 9), suggesting that some of these users have transfers that
follow the same pattern of transfers associated with terrorism. Likewise, the
mean sensitivity (precision) is higher for grouped data, which means that
the model is more precise in detecting terrorist attacks when they indeed
happen. However, the mean specificity (recall) drops considerably, trans-
lating to a larger number of false alarms. However, as mentioned above,
because the predicted variables’ class is highly skewed toward no terrorist
attacks, accuracy is not the most appropriate measure. Therefore, we fo-
cus on balanced accuracy, as this measure equally weights the accuracy of
predicting terrorist attacks and predicting no terrorist attacks. As stated, a
naive guess that there is no terrorist attack is accurate 99.37% of the time,
but the balanced accuracy for this guess is 49.68%. Using this measure of
performance, we observe that the RF model has better performance at the
flagged user and in the Gambling group but is not significantly different
from a naive guess in the Exchange group and has worse performance in
the Service group. Most of the anomalous transfers flagged by the model
(approximately 370 transfers) correspond to the Sri Lanka Easter bomb-
ing; however, we also successfully predict several other events in the period.

Detecting terrorist financing is challenging due to the expertise of ter-
rorist financiers in camouflaging money transfers. However, blockchain
transparency may enable learning from transaction patterns to detect fu-
ture similar behavior. Although a simple blockchain-based model to pre-
dict terrorist attacks has several shortcomings, the performance of these
models is better than a naive guess. The performance further improves in a
group of select users. These results are helpful for agencies to incorporate
blockchain inputs into their anti-terrorist attack models. Additionally, the
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results provide a baseline approach for market players to detect on-chain
suspicious activities.

8. Conclusion

The proliferation of blockchain-based cryptocurrencies, which essen-
tially use public accounting ledgers, may impede the significant efforts of
governments, market regulators, and financial institutions to curtail illicit
activities. However, the public blockchain ledger ensures transparency of
the flows of funds previously observed only by the involved parties. We
demonstrate, using accounting knowledge and forensic accounting tech-
niques, that the behavior of users and transfers can be exploited to detect
and predict large-scale, highly visible terrorist attacks.

However, the predictive ability of on-chain transfers is subject to several
limitations. First, the predictive accuracy may improve if the training set
contains known transfers associated with terrorist events—for instance, in
the case where the researcher has off-chain information about specific ter-
rorist wallets. Second, the results are limited to a group of large Bitcoin ser-
vice providers. Model accuracy likely increases with the number of mapped
wallets used in the learning and validation sets. Third, our model predicts
large-scale events one day before they happen. Agencies working to foil
large-scale terrorist attacks may need more time to implement anti-terrorist
operations. Finally, our results are limited to Bitcoin-like ecosystems.

While the evolution of blockchain analytics, the increasing scrutiny by
regulators, and the rise of more opaque cryptocurrencies (such as Monero
and ZCash) suggest that the usage of Bitcoin for illicit purposes is likely
to decrease in the future, the increasing accessibility of Bitcoin around
the world suggests otherwise. In addition, the launch of decentralized ex-
change platforms may raise the hurdle to prevent illicit cross-border trans-
fers and money laundering. Therefore, it will not be surprising if the need
for improved prediction models of on-chain transfers for illicit activities,
in general, and for terrorist financing, in particular, increases in the near
future.
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