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Clonal Selection Algorithms for Optimal Product 

Line Design: A Comparative Study 
 

Product design constitutes a critical process for a firm to stay competitive. Whilst the biologically inspired Clonal 

Selection Algorithms (CSA) have been applied to efficiently solve several combinatorial optimization problems, they 

have not yet been tested for optimal product lines. By adopting a previous comparative analysis with real and simulated 

conjoint data, we adapt and compare in this context 23 CSA variants. Our comparison demonstrates the efficiency of 

specific cloning, selection and somatic hypermutation operators against other optimization algorithms, such as Simulated 

Annealing and Genetic Algorithm. To further investigate the robustness of each method to combinatorial size, we extend 

the previous paradigm to larger product lines and different optimization objectives. The consequent performance 

variation elucidates how each operator shifts the search focus of CSAs. Collectively, our study demonstrates the 

importance of a fine balance between global and local search in such combinatorial problems, and the ability of CSAs 

to achieve it. 

Keywords: OR in marketing, clonal selection algorithm, combinatorial optimization, product line design 

 
 

1. Introduction 

Product design constitutes one of the most important phases of a comprehensive product 

development process (Hauser et al., 2006). The Product (Line) Design (PLD) problem was 

introduced by Zufryden (1977), and 40 years later is still a priority in management science and 

operations research. In PLD, a product (e.g. a laptop computer) is represented by a set of attributes 

(e.g. screen size, processor speed, memory size), each taking a finite number of levels (e.g. the screen 

size can be 13’’, 15’’, 17’’ etc.). Consumer preferences for each attribute level (i.e., partworths) are 

usually measured through Conjoint Analysis (CA). Assuming additive utility functions, utilities for 

different product configurations are derived from summing up the partworths. These utilities are then 

transformed into hypothetical choice shares for each product with the application of a choice model, 

such as the first choice rule or the MNL. The goal of the optimal PLD problem is the design of a 

number (line) of products (selection of the attribute levels for each product in the line) that will 

optimize an objective of the company, usually profit, market share, or customer welfare (Green & 

Krieger, 1985; Tsafarakis & Matsatsinis, 2010).  

The problem is usually formulated as an integer program where we seek the levels of product 

attributes that optimize the company’s objective given consumer partworths and competitive 

product configurations. Kohli and Krishnamurti (1989) proved that even the design of a single 

product belongs to the class of NP-hard problems, and hence, different heuristic mechanisms have 

been proposed in an attempt to provide near optimal solutions in tractable time. Belloni et al., (2008) 

compared the performance of nine heuristics using data from a conjoint study previously conducted 

for a real product line design problem, as well as simulated data of various problem sizes. They 
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benchmarked the performance of the nine heuristics against the global optimum found by an 

implementation of Lagrangian relaxation with branch and bound. Simulated Annealing (SA), and 

Genetic Algorithms (GA) were the two heuristics that exhibited the best performance. 

In this paper, we apply Clonal Selection Algorithms (CSA) for solving the optimal PLD problem. 

CSA have been applied to a wide range of combinatorial optimization problems, showing very 

promising results. We investigate which CSA variants perform better in the specific optimization 

problem, and which are the underling mechanisms that drive the algorithms’ performance. In 

particular, we benchmark the performance of 23 CSA variants against SA and GA, using the 

datasets from Belloni et al., (2008), which we also extend to larger problem sizes and different 

optimization objectives.  

The rest of the paper is organized into five sections as follows: Section 2 provides a brief 

description of the optimal PLD problem, while in Section 3 and Section 4 the conceptual framework 

of the proposed approach as well as the problem formulation are descripted. In Section 5 the 

effectiveness of the CSA variants is evaluated through a comparison of their performance with that 

of GA and SA. Finally, Section 6 provides an overview of the main conclusions of the study and 

future research areas are suggested. 

 

2. Previous work in PLD 

The optimal product design problem was originally formulated by Zufryden (1977), and a few years 

later, Green and Krieger (1985) conceptualized the optimal PLD problem. Several optimization criteria 

have been utilized, the most important being the share of choices (market share maximization), the 

seller’s welfare (profit maximization), and the buyer’s welfare (customer utility maximization). Kohli 

and Krishnamurti (1989) proved that the share of choices for the single product design problem is NP-

hard. Since global optimality cannot be guaranteed in polynomial time, various heuristic approaches 

have been applied to solve the problem, including Integer programming (Zufryden, 1977), Interchange 

(or product-swapping) heuristic (Green & Krieger, 1985), Greedy Heuristics (Green & Krieger, 1985), 

Genetic algorithms (Alexouda & Paparrizos, 2001; Balakrishnan et al., 1995, 1996, 2004, 2006; Steiner 

& Hruschka, 2003), Ant Colony Optimization (Albritton & McMullen 2007), Particle Swarm 

Optimization (Saridakis et al., 2015), Simulated Annealing (Tsafarakis, 2016), and Differential 

Evolution (Tsafarakis et al., 2020). Lagrangian relaxation with branch and bound has also been 

employed to prove global optimality for the seller’s welfare in the PLD (Belloni et al., 2008), while 

recently Bertsimas and Mišić (2017) adopted a robust optimization approach to account for parameter 

and structural uncertainty in the choice model.  
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Although CSAs are reported to perform better compared with other heuristics (i.e., GAs, Neural 

Networks) in problems like function optimization and pattern recognition (Ulutas & Konak, 2011), 

they have never been applied to the PLD literature and the broader area of marketing science. The 

next section introduces the basic concepts of Clonal Selection theory in immunology from which 

CSAs were inspired, and explains how the algorithm is adapted to solve the PLD problem.  

3. Conceptual Framework 

Clonal Selection Theory (Burnet et al., 1959) with its subsequent improvements has become 

a widely accepted model (Cohn et al., 2007), describing the main characteristics behind a basic, 

antigen-specific, adaptive response. The human immune system is a complex, highly adaptive, 

defense system of interacting organs, cells and chemical species. The ability to protect the body 

from pathogens that are recognized as non-self molecules (called immunity) is determined by two 

components: the innate and the adaptive immune system. The latter largely consists of B and T 

lymphocytes, which execute the recognition of non-self species through the specific, affinity 

binding of their membrane receptors to associated foreign substances, called antigens. Specific 

antibodies to these antigens are then produced by B-cells to initiate the clearance response 

(Goldsby et al., 2002). Therefore, the adaptive system is responsible for specifically-targeted 

immune responses, and its functional features received most of the attention of both 

immunological (Germain, 2004; Timmis et al., 2008), and Artificial Immune System (AIS) 

research (Timmis et al., 2008, Hart & Timmis, 2008, Dasgupta et al., 2011). 

In the context of combinatorial optimization, a candidate solution to the problem is represented 

in CSAs by a vector called Antibody (Chromosome is the analogous in GAs). Each Antibody is 

evaluated on the problem’s objective function (the so-called Antigen) taking a value called Affinity. 

Regarding the operators of the algorithm, the following three physiological processes are of 

particular importance (De Castro & Von Zuben, 2002): 

1. A cloning process (reproduction and proliferation) of stimulated B-cells. 

2. Cellular diversity due to an affinity maturation process, a combination of both point 

and larger accelerated genetic mutations (called somatic hypermutation). Particularly, 

somatic hypermutation involves random genetic changes to the genes of the cloned cells. Cell 

mutation derives from the Genetic Algorithm and can be considered a form of local search. 

Moreover, it helps the algorithm to explore new areas of the search space that may not be visited 

otherwise. For instance, suppose that the solution is represented as a nine-length binary vector 

(Antibody) e.g. [1 0 1 0 0 1 0 0 1], with the second and the fifth value (bold values) to be mutated. 

The solution vector is then altered as [1 1 1 0 1 1 0 0 1]. 

3. Selection of high-affinity clones and elimination of low-affinity clones. Like GAs, CSA are 
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classified as computational systems inspired by genetics mechanisms since it can be viewed as a 

type of Darwinian microcosm where the fittest cells (best match with antigens) are selected for 

survival. 

Having introduced the terms and concepts in the setting of a physiological immune system, 

we can build the analogy among CSA, GA, optimization problems, and the PLD (Table 1). 

 

Table 1. Corresponding terms among CSA, GA, optimization problems and product line design. 
 

CSA Genetic Algorithm Optimization Problem Product Line Design 

Antibody Chromosome Solution Product line 
Affinity Fitness Value of objective function Profit 

Antigen Fitness function Objective function Function for profit 

Cloning antibodies Selection process Copying solutions Copying product lines 

Hypermutation Mutation Changes in a solution Changes in a product line 

Clonal selection Replacement 
(migration) strategy 

Selecting the best solutions Selecting the most 
profitable product lines 

 

4. Problem Formulation and Methods 

In this section the basic CSA that was adapted is examined to tackle the optimal PLD problem. In 

the literature, differences between CSA variants are mainly found during three steps, which 

correspond to the aforementioned processes of cloning, hypermutation and selection. In total, 

23 CSA variants were tested, which were derived from a combination of 13 different operators. 

Therefore, the unique characteristics of each operator are briefly explained. For better readability, 

each operator is associated with specific prefixes or suffixes, which are used in combination with 

previously proposed names for our variants throughout our analysis. The operators that each CSA 

variant employs, as well as their exact steps, are outlined in the Appendix A.1. 

 

4.1 Adaptation of Clonal Selection Algorithm 

Following the work of Belloni et al., (2008), we also begin our comparison using a real-life example. 

In particular, we use a real data set from the paper of Toubia et al., (2003), where a field experiment 

was conducted to measure consumer preferences for a new laptop bag product to be launched by 

Timbuk2 Designs Inc. (San Francisco, CA, USA). The authors collected pairwise comparison data 

from 330 respondents, and used these to estimate respondent-level partworths for nine binary product 

attributes, as well as price, which was restricted to two levels ($70 and $100). Belloni et al., (2008) 

considered seven price levels (they interpolated to derive partworths for the five intermediate levels) 

and used these partworths along with estimates of each feature’s cost (a base cost of $35 was also 

assumed for each bag), for designing a line of five laptop bags with the objective of profit 
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maximization. To derive status quo utilities for each consumer, the authors included a selection of three 

competing products. These competing bags were arbitrarily designed to include a product with all nine 

of the optional attributes priced at $100, a product with five of the attributes priced at $85, and a product 

with no optional attributes priced at $70. A first-choice rule is employed, where the customer 

deterministically purchases the product that offers her/him the highest utility. It is assumed that if the 

competing products provide the same utility as one of the five Timbuk2 products then the customer 

purchases the competing product. 

Next, we provide a complete step-by-step CSA for solving the optimal PLD problem, based on 

the Belloni et al., (2008) formulation. A complete list of the notations used here are provided in 

the Appendix A.2. Assume that a manufacturer focuses on 𝑛𝑎𝑡𝑡 product attributes. Then the total 

number of product combinations 𝑛𝑐𝑜𝑚𝑏 is known and fixed. Furthermore, we define 𝑠𝑝𝑟𝑜𝑑
𝑗

∈

{0, 1, … , 𝑛𝑙𝑒𝑣
𝑗

− 1}
1x𝑛𝑎𝑡𝑡

 as the jth row of a matrix 𝑺𝑝𝑟𝑜𝑑 ∈ {0, 1, … , 𝑛𝑙𝑒𝑣
𝑗

− 1}
𝑛𝑐𝑜𝑚𝑏x𝑛𝑎𝑡𝑡

, 

which includes all possible products, while 𝑛𝑙𝑒𝑣
𝑘  denotes the number of possible levels 

for each attribute k. Part-worth matrix W∈Rncust×natt of all ncust customers and all attributes is 

provided by CA. Moreover, the company assumes an estimated cost per attribute datt ∈ R1×natt . As 

a result, the perceived utility uij per customer i and the total profit pj of selling a unit of 

each product j at a certain price can be precomputed and stored. We further assume ncomp 

competing bags that are already in sale and calculate the status quo utility ui,base per customer 

i. Since a first choice (maximum utility) model is used, each customer chooses a product of the 

manufacturer’s new line only if its utility is higher than the utility of the most preferred 

competing bag. By denoting 𝒔𝑐𝑜𝑚𝑝 ∈ {1, … , 𝑛𝑐𝑜𝑚𝑏}
1x𝑛𝑐𝑜𝑚𝑝

 as a vector that contains the 

competing products, our algorithm consists of the following steps: 

1. Precompute 𝑝𝑗 for each possible product j∈{1, 2,…, ncomb} based on the cost of the 

selected attributes datt and the price level that is sold 

2. Precompute uij=𝒔𝑝𝑟𝑜𝑑
𝑗

𝒘𝑖
T for each customer i∈{1, 2,…, ncust} and product j. 

3. Find ui,base= 𝑚𝑎𝑥𝑗′:𝑗′∈𝒔𝑐𝑜𝑚𝑝
Uij’ 

4. Initialize optimization algorithm, by generating a random population of 

P1=U{[1, 2, … , 𝑛𝑐𝑜𝑚𝑏]}𝑁𝑃1 x 𝑛𝑝𝑟𝑜𝑑 , where U denotes a Uniform distribution, NP1 

denotes the amount of antibodies in the initial population, nprod represents the 

number of products in the new line. As a result, each antibody (solution vector) 

is a nprod-length vector which consists of values corresponding to one out of all 

possible products 𝑛𝑐𝑜𝑚𝑏, like the solution representation that Belloni et al., (2008) 
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used in their research. 

5. Calculate for each antibody a∈P1 a binary variable     

𝑥𝑖𝑗
𝑎 = {

0, if 𝑢𝑖𝑗 ≤ 𝑢𝑖,𝑏𝑎𝑠𝑒

1, otherwise
, which represents whether a customer i chooses product j. 

6. Find profit ∀𝒂 ∈ 𝑷1, 𝑝𝑎 = ∑ ∑ 𝑝𝑗𝑥𝑖𝑗
𝑎

𝑖∈𝐼𝑗∈𝑎 . 

7. Cloning operator ∀𝒂 ∈ 𝑷𝑔 (g: generation counter), creating set of clones C. 

8. Hypermutation operator for each clone c∈C, cz←U{[0, 1, … , 𝑛𝑙𝑒𝑣
𝑘 − 1]\𝒄𝑧}. For 

example, for clones consisted of 2 products with 3 attributes and 2 levels per 

attribute, position z=5 means that a mutation would occur at the second attribute 

of the second product, and its value would be simply inverted (since we force 

the attribute to change its prior value). 

9. Calculate ∀c∈C, 𝑥𝑖𝑗
𝑐 = {

0, if 𝑢𝑖𝑗 ≤ 𝑢𝑖,𝑏𝑎𝑠𝑒

1, otherwise
 

10. Find profit ∀c∈C, 𝑝𝑐 = ∑ ∑ 𝑝𝑗𝑥𝑖𝑗
𝑐

𝑖∈𝐼𝑗∈𝑐 . 

11. (Optional step) Generate a new random population Pnew 

12. Calculate for each antibody a∈Pnew a binary variable    

 𝑥𝑖𝑗
𝑎 = {

0, if 𝑢𝑖𝑗 ≤ 𝑢𝑖,𝑏𝑎𝑠𝑒

1, otherwise
, which represents whether a customer i chooses product j. 

13. Find profit ∀𝒂 ∈ 𝑷𝑛𝑒𝑤, 𝑝𝑎 = ∑ ∑ 𝑝𝑗𝑥𝑖𝑗
𝑎

𝑖∈𝐼𝑗∈𝑎 . 

14. Selection operator for next generation Pg+1, choosing a number of the most profitable clones, 

old, and new random antibodies. 

15. Repeat steps 7-14 for gmax generations or for gimp < gmax generations without improvement of the 

most profitable solution found. 

As can be seen, steps 7, 8 and 14 contain the processes of cloning, hypermutation and selection, and 

differences between the tested CSA variants depend on which operators are used respectively. 

  

4.2 Cloning Operators 

Static cloning 

This is the default form of cloning, as the amount of clones per antibody (per generation) is 

a constant, with the total amount of clones given by 𝑁𝑪 = ∑ 𝑟𝑜𝑢𝑛𝑑(𝛽 ∗ 𝑁)𝑁
𝑖=1  ( De Castro 

& Von Zuben, 2002; Cutello et al., 2004, 2005), where β is a multiplication factor, and         N 

= NPg  ∀g (namely population size remains constant with time). A pseudocode of static cloning 

operator is presented in Appendix A.1. 

Proportional cloning (prop-) 
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As the name implies, the amount of clones per antibody is proportional to the relative fitness 

fi ∈ [0, 1]. A form of a step function was used by De Castro and Von Zuben (2002) to 

calculate NC . However, we found it inefficient during the initial stages of our work. Instead, we 

employed an exponential function 𝑁𝑪 = ∑ 𝑐𝑒𝑖𝑙(𝑒𝜌𝑓𝑖𝑁)𝑁
𝑖=1 , where ρ is an exponent factor, 

modifying the inverse exponential function for the corresponding hypermutation operator (see 

Section 3.3). Finally, we adopted and properly modified the fitness functions used by Engin  and 

Döyen (2004): 𝑓𝑖 = 𝐹𝑖 ∑ 𝐹𝑖
𝑁
𝑖=1⁄ , where Fi = pi + 1 − mini pi denotes (absolute) fitness of 

antibody i. A pseudocode of proportional cloning (prop-) operator is presented in Appendix 

A.1. 

 

4.3 Hypermutation Operators 

Static hypermutation (stat-) 

The amount of positions (features) to be mutated for each clone mc is predetermined and 

constant (Cutello et al., 2004). 

Inversely proportional hypermutation 

The default hypermutation operator, it mimics the natural affinity maturation process, as mc 

= ceil(e−ρ·fi · nprod · natt) is now determined by the current fitness value (see Section 3.2) of the 

parental antibody (De Castro & Von Zuben, 2002; Engin & Döyen, 2004; Cutello et al., 2005). 

Notice that in our variants this operator is mutually exclusive with proportional cloning to avoid 

large computational time per generation. 

First constructive mutation (-fcm) 

Although the aforementioned hypermutation operators assume that exactly mc mutations 

happen, a strategy called “stop at First Constructive Mutation” (FCM) (Cutello et al., 2004, 

2006) allows them to stop mutating as soon as a clone with higher affinity than the parent 

has been produced. Hence, FCM may prevent detrimental mutations on already improved clones 

and delay premature convergence (Cutello et al., 2004). 

Contiguous hypermutation (BCA-) 

Based on the B-Cell Algorithm (BCA) (Kelsey & Timmis, 2003), this operator performs 

mutations on a randomly chosen contiguous part of a clone. 

Pseudocodes of hypermutation operators mentioned above are presented in Appendix A.1. 

4.4 Selection Operators 

As can be seen, our variants differ the most in their clonal selection operators. Nevertheless, 

all of them are based on two selection strategies presented for CLONALG by Cutello et al., 

(2004), thus naming their variants CLONALG1 and CLONALG2. Pseudocodes of selection 
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operators mentioned below are presented in Appendix A.1. 

Individual Selection Strategy (-CLONALG1-, -OPTIA1-, BCA1) 

The main feature of this strategy is that it takes into account the origin of each clone. Namely, 

each antibody can be substituted only by the best individual of its own clones, even if it is better 

than that clone. Note that in case of inserting new random antibodies in each generation, these 

antibodies substitute the worst performing selected clones. Therefore, population size N remains 

constant. 

Lumped Selection Strategy (-CLONALG2-, -OPTIA2-, BCA2) 

In contrast to Individual selection strategy, this operator selects the best individuals out of 

all clones, regardless of their origin. Furthermore, it can retain a subset of the best parental 

antibodies, while population size N remains constant in a similar way as before. 

optAInet 

A combination of CLONALG and immune networks with a dynamic population size, optAInet 

was originally developed to face multimodal optimization problems (De Castro & Timmis, 2002). 

In our adaptation, optAInet is identical to statCLONALG1 up to the selection of the best subset 

of clones. Then, relative profit 𝑝𝑖̂ =
𝑝𝑖

𝑚𝑎𝑥𝑖𝑝𝑖
 is calculated for each antibody. When the average 

relative profit of the new population is different enough, the algorithm continues as 

statCLONALG1. Otherwise, minimal changes indicate that optAInet has reached areas of local 

optima. To increase diversity, current antibodies (namely product lines) are compared pairwise, 

and if at least 70% of their products are the same, the worst of the two antibodies is removed. 

Subsequently, new random antibodies enter the population. As a consequence, population size 

may vary from generation to generation. 

Aging (-OPTIA-) 

Various aging operators consist another proposed way of escaping local optima during 

selection, with OPTIA algorithm being the best known example (Cutello et al., 2004, 2005). 

The present study adopted a static pure aging mechanism, because it has showed better results 

compared to stochastic aging (Cutello et al., 2005). Having defined a maximum age limit, 

tlim, this operator removes any antibodies that have remained in the population for more than 

tlim generations. For our study, we combine aging with both selection strategies. 

Elitism 

Adding this operator during the selection process results in keeping a subset of the best antibodies 

to the next generation, regardless of how they fair against their mutated clones. In the context 

of genetic algorithms, strong elitism (Cutello et al., 2004) seems to lead in premature convergence 

(Ahn & Ramakrishna, 2003). Therefore, we chose to utilize strong elitism only once (in 
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CLONALG1elit), whereas weak elitism (preserving only the best antibody of each generation) is 

exploited in most of our variants. 

Α dendrogram depicting which cloning, hypermutation and selection algorithms compose each CSA 

variant is presented in Figure A.1 of Appendix A.1. 

4.5 Parameter Configuration 

Efficient parameter values were manually determined by numerous trial-error steps. Succinctly, 

the Genetic Algorithm (GA) and Simulated Annealing (SA) of Belloni et al., (2008) served 

as benchmarks. To make GA and SA directly comparable, we first adjusted their parameters so 

that they run at a similar CPU time. Since all our CSAs (and SA) include a variable tracking 

the best achieved solution out of all generations, we also added it to GA to remove possible 

confounding effects. 

For CSA parameters, we began trials with values reported from previous implementations 

(De Castro & Von Zuben, 2002; Cutello et al., 2005). Next, we fine-tuned our methods according 

to the execution time of SA, reducing their mean computational time to SA levels while 

preserving the quality of their solutions as much as possible. Complete tables of parameter 

values, and observations for their role in CSA performance can be found in the Appendix A.2. 

Finally, all algorithms and data analysis were implemented using MATLAB 2016a for Windows 

10 64-bit in an Intel Core i-7 laptop with 8 GB RAM. 

 

5. Results 

In our analysis we utilize and extend the comparison paradigm of Belloni et al., (2008). Hence, 

we also investigated differences between the CSA methods using both real conjoint and 

simulated data. The performance of all CSA methods is compared to that of GA and SA. Two 

different implementations for GA and SA were used when performing on the real and the simulated data 

set, respectively, as Belloni et al., (2008) used in their research, to maximize the performance of 

both GA and SA. 

 

5.1 Comparison on Real Conjoint Data - Five Products 

To solve the problem of laptop bags, we likewise assumed a line of five bags (nprod = 5), with 

natt = 10, one attribute denoting the bag’s price with seven possible levels $70, $75, $80, $85, $90, 

$ 95 or $100, and nine binary attributes (existence or not of a particular feature), resulting in 

a solution space of 3,584 different products. Belloni et al., 2008 found the globally maximal 

earnings of $12,226 after one-week computational time by applying lagrangian relaxation with 

branch and bound to the same real conjoint dataset. 
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Table 2 presents averaged results for all CSAs, including SA and GA for comparison (further 

results can be found in the Appendix A.3). To control the variability of CSAs, each method was 

repeated 100 times and for gmax = 1000 in each run. We also recollected results from 100 trials 

of SA and GA. For a direct comparison, we configured all algorithms to run (on average) for 

approximately the same CPU time per trial; ±2 s from that of GA.  

 

Table 2 Comparison of all CSA methods on the real dataset assuming five bags per product line. Results are 

averaged over 100 trials. 

Methods 

Mean 
Best 

Earnings 
($) 

Best Solution 

Frequency 

(%) 

Standard 

Deviation ($) 

Difference 

from SA 

(p-value %) 

Difference 

from GA 

(p-value %) 

Mean # of 

Evaluations 

per Trial 

Mean CPU 

Time per 

Trial (s) 

optAInet 12225.98 99 0.25 <0.01 32.57 188730 17.98 

BCA1 12225.33 90 4.00 <0.01 55.71 172580 17.88 

GA 12224.30 99 17.05 <0.01 100.00 202725 17.36 

statCLONALG1fcm 12219.90 63 24.51 <0.01 14.22 211499 18.21 

statCLONALG1 12218.94 95 33.62 <0.01 15.66 198090 17.09 

propCLONALG1 12218.54 92 33.64 <0.01 12.86 212358 18.49 

CLONALG1 12215.28 87 37.92 <0.01 3.13 150470 17.15 

CLONALG1fcm 12207.14 72 51.56 <0.01 0.18 193857 18.07 

statOPTIA1fcm 12172.44 67 78.95 33.09 <0.01 208798 17.71 

statCLONALG2fcm 12170.58 53 79.68 41.93 <0.01 207079 18.26 

propOPTIA1 12165.00 54 82.65 74.81 <0.01 191825 16.48 

SA 12161.21 49 83.99 100.00 <0.01 145001 16.36 

statOPTIA2fcm 12156.30 58 84.02 67.98 <0.01 201320 17.89 

OPTIA1fcm 12152.32 54 85.72 46.00 <0.01 224920 19.22 

statOPTIA1 12149.54 46 86.19 33.36 <0.01 209396 18.02 

CLONALG1elit 12147.44 45 86.28 25.42 <0.01 184676 19.01 

OPTIA1 12142.71 50 87.75 12.94 <0.01 167668 18.89 

BCA2 12133.44 44 84.94 2.11 <0.01 148501 15.76 

OPTIA2fcm 12128.52 42 84.97 0.68 <0.01 172256 17.04 

CLONALG2fcm 12120.71 33 84.00 0.08 <0.01 179490 16.49 

OPTIA2 12114.34 33 82.95 0.01 <0.01 166331 18.00 

CLONALG2 12111.52 32 80.26 <0.01 <0.01 137480 15.57 

statCLONALG2 12108.67 29 79.50 <0.01 <0.01 192604 17.42 

statOPTIA2 12108.61 30 81.61 <0.01 <0.01 163550 15.61 

propCLONALG2 12099.05 22 76.81 <0.01 <0.01 204024 17.87 

 

Table 2 includes the average earnings and standard deviation (of the best reached in each trial), 

finding best solution frequency, average number of evaluations per trial, average execution time 

per trial, and p-values (two-sample t-test) for determining statistically significant differences from 

SA and GA. Judging by average earnings, several CSA variants exhibit significantly (p-

value<0.05) better solutions than SA. On the other hand, only optAInet and BCA1 slightly surpass 

GA, whereas statCLONALG1fcm, statCLONALG1 and propCLONALG1 are slightly behind 

without statistically significant differences. Nevertheless, Figure 1a depicts a clear advantage of 
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CSAs: while GA needed on average approximately 100000 function evaluations to reach earnings 

above $12000, CSAs reached that level with just 10000 to 20000 evaluations. 

CSAs based on Individual selection strategy showcased a better performance than Lumped 

selection strategy. For instance, the best performing method (on average earnings terms) that 

uses the second operator (statCLONALG2fcm) was still surpassed by eight other CSAs. This 

finding shows the advantage of independent evolution of each antibody, leading to more efficient 

solution space search. Furthermore, the static hypermutation and proportional cloning operators, 

in combination with CLONALG1 and OPTIA1, illustrated slightly better results. In contrast, 

BCA1 and inversely proportional hypermutation methods terminated using considerably less 

evaluations than their counterparts. 

 

 

 

Figure 1c compares the evolution of solutions between optAInet and statCLONALG1. Barely faster 

improvement by optAInet highlights the fact that statCLONALG1 constitutes a large part of 

optAInet. The network interactions of optAInet mainly emerged as soon as the method hit solutions 

close to or at the global optimum, appearing in Figure 1d with a highly fluctuating population mean 

due to insertion of random antibodies. 
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Interestingly, although FCM demonstrated a positive effect on mean best earnings when 

accompanying CLONALG2- and OPTIA-based methods, its contribution to CLONALG1-based 

methods was mostly negative. Similar effects of FCM on their frequency of best solutions also 

establishes this finding. Despite these differences, FCM required a higher average number of 

evaluations in all cases. 

 

5.2 Testing robustness to error in partworth estimation 

To ensure the robustness of our methods with respect to errors in customer preference measurement, 

we also assessed their performance in the presence of errors in partworth utilities. Following Belloni et 

al., (2008), we repeated our analysis after perturbing the original part-worth estimates by adding 

(simulated) error to the original partworths: 

𝑤𝑖𝑗
′ = 𝑤𝑖𝑗 + 𝜀𝑖𝑗 

where 𝑤𝑖𝑗
′  is the perturbed part-worth, 𝑤𝑖𝑗is the original part-worth for respondent i on product feature j, 

and 𝜀𝑖𝑗  is a zero-mean, independent (but not identical across customers or attribute levels) normal error 

term. The standard deviation of the perturbations was obtained by using the standard errors for the 

respective 𝑤𝑖𝑗 terms from the OLS estimations. These standard errors averaged approximately 55% of the 

part-worth absolute values. 

 
Table 3 Comparison of methods on the real dataset under measurement error. The robustness test of Belloni et al., (2008) 

was utilized, assuming five bags per product line. Results are averaged over 100 trials. 
 

 Methods 

Mean 
Best 

Earnings 
($) 

Standard 

Deviation ($) 

Products in 

Common (%) 

Features in 

Common (%) 

Difference 

from SA 

(p-value %) 

Difference 

from GA 

(p-value %) 

Mean # of 

Evaluations 

per Trial 

Mean CPU 

Time per 

Trial (s) 

optAInet 11809.18 138.29 39.60 85.84 2.27 30.12 195720 18.42 

propCLONALG1 11806.65 142.43 39.00 85.98 2.84 34.74 185418 15.95 

BCA1 11806.42 137.86 39.60 85.86 2.64 34.24 181464 18.78 

CLONALG1 11793.81 148.41 38.80 85.74 8.12 64.52 165122 18.59 

statCLONALG1 11792.34 142.35 38.80 85.50 9.08 68.53 198090 17.81 

GA 11781.34 196.36 38.00 85.12 19.74 - 204163 17.51 

statCLONALG1fcm 11773.97 137.91 39.20 85.54 27.21 77.85 205290 17.62 

statOPTIA1fcm 11772.70 140.16 38.00 85.20 31.76 75.61 209521 17.57 

statCLONALG2fcm 11756.56 150.03 36.60 84.88 65.37 38.46 210231 17.26 

SA 11742. 93 222.79 36.00 84.26 - 19.74 145001 16.21 

 
Table 3 illustrates that CSA methods are quite robust, exhibiting lower standard deviation in best earnings 

than SA, and more importantly, GA. Nevertheless, the mean best earnings of all methods declined by a 

similar amount (3-4%). A complete table of the results is presented in Table A.9, in Appendix A.3. 

5.3 Comparison On Real Conjoint Data - Ten Products 

To further test our algorithms in a larger solution space, we also investigated the performance 

of CSAs assuming the company wanted to manufacture a line of ten bags (nprod = 10). In this 
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case their average CPU time per trial was ±3 s from that of GA. 

 
Table 4 Comparison of methods on the real dataset assuming ten bags. Representative variants of each operator are 

shown. Results are averaged over 100 trials. 

Methods 

Mean 
Best 

Earnings 
($) 

Best Solution 

Frequency (%) 

Standard 

Deviation ($) 

Difference 

from SA 

(p-value %) 

Difference 

from GA 

(p-value %) 

Mean # of 

Evaluations 

per Trial 

Mean CPU 

Time per 

Trial (s) 

propCLONALG1 13741.04 45 11.56 <0.01 <0.01 365555 35.40 

statCLONALG1 13738.55 43 14.66 <0.01 <0.01 347636 35.99 

statOPTIA1fcm 13736.66 32 13.42 <0.01 <0.01 365376 36.90 

BCA1 13731.78 23 17.39 0.01 <0.01 293388 37.10 

CLONALG1 13725.13 17 20.47 2.89 <0.01 231110 35.60 

statCLONALG2fcm 13721.40 14 24.86 24.79 <0.01 448659 38.08 

optAInet 13718.41 23 28.60 68.41 <0.01 299076 35.24 

SA 13716.64 16 32.70 - <0.01 290001 37.28 

GA 13674.10 3 41.60 <0.01 - 347985 36.52 

statCLONALG1fcm 13673.01 0 28.46 <0.01 82.98 371767 36.18 

 

This problem was considerably more challenging, as shown in Table 4 by the much lower 

frequencies of finding the best attained solution of $ 13753 (only five methods managed to 

exceed 22%, namely the frequency of the worst performing algorithm for five bags). We can see 

that propCLONALG1, statCLONALG1, statOPTIA1fcm, BCA1 and CLONALG1 generated 

significantly more profitable solutions than SA, while GA was surpassed significantly by 

additional 14 CSAs. Among them, CLONALG1 and BCA1 found these solutions with 

considerably fewer function (profit) evaluations. Figure 1b illustrates how much sooner CSAs 

reach near best solution results than GA and SA (around 50000 against 200000 evaluations). 

Similar to our previous findings, CSAs following Individual selection strategy generally 

produced better solutions than Lumped strategy. However, this performance discrepancy was 

more prominent in the five bag problem, while it was again exaggerated when adding 

proportional cloning into the mix. This observation probably indicates that Lumped selection 

strategy variants reach local optima faster and are easier trapped in their neighborhood of 

solutions. Seeing that the five bag problem may benefit less by local solution improvement 

(due to smaller solution space) than the ten bag problem, Lumped strategy appears worse in the 

former case. 

This behavior can also explain the much better earnings of proportional cloning when 

combined with Individual than Lumped selection strategy. Considering that CLONALG2 

essentially focuses on selecting copies of the best antibodies, proportional cloning leads to even 

greater probability of being trapped in local optima. On the contrary, since CLONALG1 already 

guarantees a wider selection range, the increased number of clones from solutions at local 
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optima also increases the chance of jumping to better local or global optima. 

Intriguingly, GA and (to a lesser extend) optAInet ranked noticeably low for ten bags. A common 

feature of both methods is interactions between individuals (antibody network interactions in the 

former, chromosomal crossover in the latter). This trait allows wider exploration of the solution 

space, while it reduces local searches and consequently may prevent local optimization, which 

as illustrated is more important for the bigger sized ten bag problem. 

5.4 Comparison on Simulated Data 

With regard to simulated problems, we again expanded the approach of Belloni et al., (2008). 

Following Kohli and Sukumar (1990), individual part-worths and seller profits for each attribute level 

were simulated using iid uniform [0,1] distributions, while for each simulation three status quo 

products were randomly chosen to be offered by competing firms. We simulated 12 larger problem 

sizes in addition to the original 12, and generated 10 problem instances for each size. Tables A.10 

and A.11 with the complete results and the exact problem sizes, are included in the Appendix A.3, 

respectively. 

 

Table 5 Comparison of methods on 13 small-sized simulated problems, including sizes from Belloni et al., 

(2008). The same representative variants from Table 4 are shown. Results are averaged over 13×10 trials. 

Relative variables are normalized by the highest valued quantity out of all methods (best overall solution for 

each subproblem, and highest overall number of evaluations for each subproblem). 

Method 
Mean Relative Best 

Earnings (%) 

Best Solution 

Frequency (%) 

Difference from 

GA (p-value %) 

Mean Relative # 

of Evaluations 

per Trial (%) 

MeanCPU Time per 

Trial (s) 

propCLONALG1 99.91 90.77 25.01 28.89 9.99 

statOPTIA1fcm 99.87 90 68.92 27.07 9.28 

GA 99.86 89.23 - 53.95 9.46 

CLONALG1 99.84 86.15 41.94 26.57 9.55 

statCLONALG1 99.83 89.23 59.19 25.69 9.15 

BCA1 99.74 86.15 2.16 18.73 9.38 

SA 99.73 92.31 4.95 96.75 32.24 

statCLONALG1fcm 99.67 91.54 1.24 27.29 9.12 

optAInet 99.61 90 1.36 26.51 9.05 

statCLONALG2fcm 99.55 78.46 0.02 22.74 8.94 

 
In Table 5 we observe that for the small problems there are no significant differences (paired 

t-tests) between the mean relative earnings of GA and the best Individual strategy-based CSAs. 
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However, Table 6 confirms that in larger problem sizes, the performance of GA and (again to a 

lesser extend) optAInet diminishes. Tables A.12 and A.13 with the complete results and the exact 

problem sizes are included in the Appendix A.3, respectively. 

 

 

Table 6 Comparison of methods on 12 big-sized simulated problems. The same representative 

variants from Table 4 are shown. Results are averaged over 12×10 trials. 

Method 
Mean Relative Best 

Earnings (%) 

Best Solution 

Frequency (%) 

Difference from 

GA (p-value %) 

Mean Relative # 

of Evaluations 

per Trial (%) 

MeanCPU Time 

per Trial (s) 

CLONALG1 99.84 72.50 <0.01 55.22 15.17 

propCLONALG1 99.84 68.33 <0.01 50.77 14.20 

statOPTIA1fcm 99.83 68.33 <0.01 58.03 14.55 

statCLONALG1 99.71 60.00 0.99 58.19 14.80 

GA 99.59 42.50 - 93.18 14.65 

optAInet 99.56 60.00 84.85 57.61 14.55 

BCA1 99.54 45.00 52.95 38.19 15.40 

statCLONALG1fcm 99.28 42.50 <0.01 57.22 13.72 

statCLONALG2fcm 99.15 32.50 <0.01 55.71 15.18 

 
Finally, noticing that we simulated problems with smaller natt than the real problem, BCA1 

and BCA2 could not perform similarly well. Since the contiguous hypermutation operator 

usually changes a continuous part of the clone, few features per product mean that from such 

changes radically new product lines will emerge with more than one different products. 

Therefore, this operator limits the fine-tuning ability of CSA, which (as we have already seen in 

several instances) is important for large problem sizes. 

5.5 Comparison using different objectives 

To further explore and demonstrate conditions under which CSA could perform well, the 

performance of the comparing algorithms is now assessed using different objectives, such as 

market share, income and buyer’s welfare (Green & Krieger, 1985; Tsafarakis et al., 2011). A 

summary of the performance of the comparing algorithms is presented in Tables 7-9, while 

Table 10 shows if there are any statistically significant differences between them, at the 5% 

significance level. Particularly, (0) indicates that there is no statistically significant difference 

and (1) indicates that there is statistically significant difference. For instance, considering 
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optAInet and SA, (1,1,0) indicates that the differences when using market share or income as an 

objective function are statistically significant, and that the difference when using buyer’s 

welfare as an objective function, is not, respectively. Complete versions of the following tables 

(Tables A.15 -A.18) are included in Appendix A.3. 

 

Table 7 Comparison of methods when using market share (%) as an objective 

function 
 Worst Best Mean Median St.d. 

optAInet 98.15 98.15 98.15 98.15 2.00E-13 

GA 98.15 98.15 98.15 98.15 2.00E-13 

SA 95.99 98.15 97.89 98.15 5.79E-01 

 

Table 8 Comparison of methods when using income as an objective function 

 Worst Best Mean Median St.d. 

optAInet 28570 28570 28570 28570 0.00E+00 

GA 28440 28570 28567.4 28570 1.83E+01 

SA 28180 28570 28551 28570 8.34E+01 

 

Table 9 Comparison of methods when using buyer’s welfare as an objective function 

 Worst Best Mean Median St.d. 

optAInet 54807.5 54807.5 54807.5 54807.5 0.00E+00 

GA 54807.5 54807.5 54807.5 54807.5 0.00E+00 

SA 54706.9 54807.5 54806.49 54807.5 1.01E+01 

 

Table 10 Statistical analyses of comparison of methods 

 optAInet GA SA 

optAInet - 0,0,0 1,1,0 

GA 0,0,0 - 1,1,0 

SA 1,1,0 1,1,0 - 
 

As we can see the performance of optAInet is better than that of SA and comparable to that of GA, 

across three different objectives for the optimal PLD problem. 

 

5.6 Diversity of the final population of CSA 

Since most of the times product managers seek for a set of near-optimal solutions (Balakrishnan & Jacob, 

1995, 1996), the diversity of the alternative solutions retrieved from CSA, is assessed through the 

estimation of the number of unique solutions in CSA’s final population, by calculating the percentage of 

unique solutions in the final population as well as the percentage of unique solutions whose fitness is at 
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least 99% of the best solution's fitness. 100 reapplications of each algorithm are performed, when using 

the real dataset used in Subsection 5.1, and the results are demonstrated in Table 11. GA was not included 

in this comparison for the following two reasons: First, the diversity of GA’s final population has already 

been investigated in previous research (Balakrishnan & Jacob, 1995, 1996; Tsafarakis et al., 2011) and 

second, GA’s comparison with CSA regarding diversity, would not be considered fair, since GA is fine-

tuned by Belloni et al. (2008) when performing on the particular dataset, to run until the entire population 

is homogeneous (all product lines are the same). According to Tsafarakis et al. (2011), two product lines 

are different if they differ in at least one product, while two products are different if they differ in the 

level of at least one attribute. 

 

Table 11 Diversity of solutions in the final population  

Variant 
Population 

size 

Unique solutions (%) 
Unique solutions with fitness 

at least 99% of the best (%) 

Mean St.d. Mean St.d. 

BCA1 20 94.90 5.27E+00 33.55 1.52E+01 

BCA2 100 70.25 5.16E+00 8.49 7.81E+00 

CLONALG1 20 97.05 4.03E+00 7.45 4.63E+00 

CLONALG1elit 100 9.16 2.44E+00 4.67 2.20E+00 

CLONALG1fcm 75 98.12 1.64E+00 3.41 1.84E+00 

CLONALG2 100 84.25 3.25E+00 2.97 3.41E+00 

CLONALG2fcm 100 88.61 2.95E+00 1.87 2.22E+00 

statCLONALG1 20 94.25 4.73E+00 9.95 4.90E+00 

statCLONALG1fcm 20 99.25 1.79E+00 2.80 2.69E+00 

statCLONALG2 100 67.40 5.00E+00 8.87 8.68E+00 

statCLONALG2fcm 100 90.99 2.66E+00 1.73 1.28E+00 

statOPTIA1 20 48.60 1.21E+01 22.95 1.95E+01 

statOPTIA1fcm 20 90.95 7.13E+00 27.80 2.01E+01 

statOPTIA2 100 54.10 6.73E+00 12.28 1.23E+01 

statOPTIA2fcm 100 84.46 3.69E+00 11.22 7.45E+00 

optAInet 100 (Initial) 7.54 3.02E+00 1.32 5.84E-01 

OPTIA1 20 56.90 1.01E+01 21.10 2.17E+01 

OPTIA1fcm 20 84.10 9.60E+00 27.00 2.43E+01 

OPTIA2 100 47.15 8.54E+00 12.44 1.18E+01 

OPTIA2fcm 100 88.15 3.37E+00 1.41 1.60E+00 

propCLONALG1 20 95.40 4.80E+00 10.60 5.70E+00 

propCLONALG2 100 29.90 4.41E+00 11.18 1.03E+01 

propOPTIA1 20 53.55 1.25E+01 15.75 1.61E+01 

 

 

Table 11 demonstrates that most CSA approaches except CLONALG1elit and optAInet, have a 
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satisfying percentage of unique solutions in their final population, while 11 out of the 23 CSA variants 

have a percentage greater than 10 % of unique solutions in the final population with fitness at least 99% 

of the best. As a result, most CSA variants provide the decision maker with a wide range of unique high-

quality solutions, among which s/he can make his/her choice. CLONALG1elit and optAInet appear to 

converge to a final population of low diversity with multiple copies of a few good solutions. Such a small 

set of unique chromosomes can be too restrictive in many situations because the solutions may prove to 

be almost identical, representing product lines that differ in only a single attribute level of one product.  

 

6. Choosing Operators: Balance Between Local and Global Search 

In the previous sections we have developed and tested 23 CSA variants that contain several different 

operators. In spite of being the last step in the sequence of operations in CSAs, our results have 

shown that the choice between the clonal selection strategy of CLONALG1 and CLONALG2 

by Cutello et al., (2005) has the largest impact on the efficiency of CSAs. The former, 

Individual selection strategy, clearly dominates in all our product line optimization examples. 

As Cutello et al., (2005) recognized, Individual selection strategy allows for more diversity in 

the population by independently evolving each initial antibody. On the contrary, Lumped strategy 

mainly focuses on the best antibodies of each generation, because these are the most probable 

ones to generate the best clones. Therefore, we conclude that CLONALG1-based CSAs are better 

suited for optimizing product lines (among other multimodal objective functions (Cutello et al., 

2005)), and contributions from the other operators probably depend on how much they modify 

the searching focus of CSAs. Similarly, various operators have been used to increase the local 

search capabilities of GA (Fruchter et al., 2006). In an effort to further disentangle their 

contributions, we continue with analysis and discussion for the remaining operators. 

6.1 OptAInet 

We previously saw that the mean population earnings of optAInet highly fluctuate during 

the late generations. This is in agreement with the findings of De Castro and Timmis (2002), 

who considered this behavior as an effort to locate several local optima. However, we have showed 

that this network operation prevents local optimization of the best antibodies, which is normally 

present in CLONALG1 and has proven to be important in our larger-sized problems. 

Parameter configuration of optAInet additionally indicated its limitations. Modifying the threshold 

parameter (see Appendix A.2 for used values) for increasing diversity to higher values resulted in 

premature population increase and insertion of new random antibodies. Furthermore, we found insertion 

of new random antibodies fruitless, not only for optAInet, but for almost all CSAs as well. Finally, 

reducing the per cent similarity under 70% resulted in large population reduction and thus insufficient 



20 
 

search around the neighbor of deleted solutions. 

6.2 Elitism and Aging 

The use of strong elitism in CLONALG1elit returned considerably less profitable solutions. This 

finding is in concordance with Ahn and Ramakrishna (2003) for Genetic algorithms. In particular, 

they showed that strong elitism limited diversity in the population and therefore led to premature 

convergence. 

Intriguingly, the effect of weak elitism in our CSAs depended on their population size. For large 

populations (100 antibodies), weak elitism was beneficial. However, CSAs with just 20 antibodies 

per generation performed better without weak elitism. According to the same rationale as strong 

elitism, the impact of weak elitism on the diversity of such small populations is relatively large. 

BCA1 is the exception that proves the rule, since its hypermutation operator may incur dramatic 

changes to clones. Consequently, weak elitism in this case permits better local search around 

the best antibody of each generation. 

As far as aging operators go, we have not found significant differences to CSA efficiency, 

except statOPTIA1fcm for the problem of ten bags, which agrees with previous mixed results 

from various objective functions (Cutello et al., 2005). Since a large age limit tlim for OPTIA1 

would turn CLONALG1 into the worse performing CLONALG1elit, we chose tlim = 2, which 

kept its performance similar to CLONALG1 methods. For OPTIA2, tlim was varied between 2 

and 5, as tlim = 1 would mean no chance of evolving the antibodies of each generation, while large 

tlim would simply turn OPTIA2 into CLONALG2. 

6.3 Somatic Hypermutation 

Last but definitely not least, our results showed that the type of hypermutation plays an important 

role both in quality and speed of generating solutions. As previously mentioned, static 

hypermutation returned slightly better results than contiguous and inversely proportional 

hypermutation. Recall that we limited all algorithms to similar average CPU time intervals. 

Since the latter operators spent more time per generation due to more mutations (contiguous) or 

due to the extra fitness function evaluations (inversely proportional), their optimization process 

probably halted slightly prematurely compared to static hypermutation. 

These operators do not come without perks though, as they both required considerably 

less objective function evaluations. Recollecting that this profit maximization problem was 

supported by precomputation, in cases where precomputation is not possible and the 

computational cost of function evaluations is significant, both operators will offer faster 

convergence to best solutions (previously shown for BCA solving continuous optimization 
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problems (Kelsey & Timmis, 2003)). More specifically for BCA, small- and large-scale 

mutations by the contiguous hypermutation operator probably offer the opportunity to both 

adequately explore and escape areas of local optima. However, our results confirmed the 

hypothesis that the performance of BCA is data- representation-dependent (Kelsey & Timmis, 

2003), as illustrated by the reduced average earnings of BCA1 for problems with just a handful 

of features per product. Analogously, inversely proportional hypermutation performs local search 

around the best clones, and wider search for the worst ones. Our value for parameter ρ ensured 

that the operator would incur a single mutation on the best clones, two or three to middle-

performing ones, and several mutations to the last ranked clones. On top of this advantage, its 

methods (such as CLONALG1, unlike BCA1) were robust to changes in problem size. 

Finally, FCM had been previously adopted to prevent premature convergence and improve 

search when optimizing trap functions (Cutello et al., 2004, 2006). Although they indeed 

reported better results when using FCM, they only tested its performance with Lumped 

selection strategy. Our results revealed that the contribution of FCM to CSA performance 

depends on the type of selection strategy. While we confirmed previous findings for 

CLONALG2 and OPTIA2 variants, FCM instead worsened the solutions of CLONALG1-based 

methods. The little significance of FCM is further supported by having to set the amount of 

mutations per clone for static hypermutation to its meaningfully lowest value (mc = 2 for 

FCM methods, mc = 1 for the rest). Therefore, as independent antibody evolution in Individual 

selection strategy has already prevented premature convergence to local optima, further delay 

of convergence by FCM is detrimental. 

7. Conclusions 

In this paper we have implemented and compared several Clonal Selection Algorithms for solving 

the optimal PLD problem. Based on the previous comparative analysis of Belloni et al., (2008), 

we have illustrated the potential of several CSA methods compared to other optimization 

algorithms. Moreover, similarly to Balakrishnan and Jacob (1995) we also believe that the use of 

maximally different methods has permitted us to get a better fix on the solution and thereby 

increasing the product manager confidence in using CSA in the product designing process. Among 

our methods, CLONALG1-based variants have clearly and consistently exhibited the best 

results. Additionally, we have extended their paradigm to problems with larger solution space. 

Large problem sizes have allowed us to further investigate the robustness of each CSA operator. 

In this fashion, we have exemplified how searching focus modifications by optAInet, elitism, aging 

and other hypermutation strategies affect convergence speed, and thus solution quality.  In this 
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context, and to help the reader understand the way the CSA variants were coded, a Matlab code of 

optAInet can be found in Appendix B (.m file is available online). 

Although an extensive amount of CSA variants was considered here, we restricted our 

comparison to other optimization algorithms provided by Belloni et al., (2008). For instance, the 

performance of GA could be enhanced by a more robust approach to parameter selection or with 

the addition of Hybrid techniques that can improve GA’s convergence rate and speed (e.g. 

Zervoudakis et al., 2020). Furthermore, we limited our investigation to canonical CSA forms. 

Consequently, several hybrid methods that combine CSA with other heuristics remain to be 

tested in the present context (reviewed in Ulutas and Kulturel-Konak 2011, Dasgupta et al., 

2011). Considering the local search ability of CSA, it is expected that its cooperation with 

globally focused methods (such as GA, Particle Swarm and Ant Colony Optimization) could 

improve convergence speed in terms of objective function evaluations. However, translating fewer 

evaluations into significantly faster iterations should be more challenging.  

As more advanced underlying market models could be adopted for product line optimization 

(considering for example competitive reactions, dynamic customer preferences and multiobjective 

optimization), we believe that CSAs would solve these problems equally well. Obviously, the 

shape of solution space differs depending on problem type and formulation. Therefore, one 

should take these factors into account when selecting an optimization method. Nevertheless, 

our general conclusions should remain beneficial not only when applying CSAs to the field of 

PLD, but to other combinatorial problems as well. 

Finally, despite the more than promising algorithm’s performance in the present study, its 

effectiveness may be questionable in some cases. For instance, even though the best values for the 

algorithm’s parameters were used, the performance of the CSA variants is not only highly dependent 

on its parameter settings, but also on the dataset (Tsafarakis et al., 2020). As a result, CSA variants 

may not be as effective using the same parameters when performing on different datasets, and therefore 

it is very likely that a tuning process may be needed which may be time consuming. To overcome such 

difficulties, techniques as Fuzzy Logic (FL) can be applied for future research, to automatically 

determine the parameter settings of CSA (Noorbin & Alfi, 2018; Olivas et al., 2018). Moreover, the 

proposed method cannot be applied when some of the design decisions and product attributes are 

continuous variables (e.g. length size or weight capacity) (Michalek et al., 2011). In such cases, 

continuous operators must be combined with CSA in order to perform on continuous variables (Zhang 

et al., 2019). 
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