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A b s t r a c t 

Emission trading Scheme (ETS) is gaining momentum with its increasing market size and constantly 
improving information transmission mechanisms. With carbon assets becoming prominent as an 
alternative asset in investment portfolios, the ETS market has engaged a broad range of participants, 
including not only emissions-intensive energy corporations but also individual and institutional investors. 
As arbitrage opportunities arise, price fluctuations are likely to occur, which typically have a mutual 
spillover effect. This paper examines how market fluctuations (e.g., volatilities) in these markets interact 
with each other, among carbon prices across four jurisdictions – European Union, New Zealand, 
California, and Hubei (China) ETS. We use weekly return and volatility data, constructed by the daily 
prices from four markets, covering the period April 2014 - December 2021, and select the time-varying 
parameter (TVP)-VAR methodology to study the connectedness. We find that the dynamics of the carbon 
market is mainly explained by itself and not due to spillovers from other markets, indicating that the global 
carbon prices are largely (albeit not completely) dependent on themselves, not the cross-contribution due 
to individual shocks.   
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1. Introduction 

The Paris Agreement's objective is to keep global warming to 1.5 degrees Celsius above pre-industrial 

levels. However, the UNEP (2020) states that the world is heading for a temperature rise in excess of 

3°C of the end of this century. In order to reduce this gap, numerous major energy consumers and CO2 

emitters announced their commitment to reaching carbon neutrality by the mid-21st century 

(Broadstock et al., 2021; National Development and Reform Commission, 2020). States and cities are 

actively crafting innovative policies to mitigate the effects of climate change.  

Carbon pricing is one of the policies through which policy makers hope to achieve their objectives. In 

2022, there were 25 regional emission trading schemes (ETS) developed2, 9 under development, and 

12 under consideration internationally (ICAP, 2022). Emission trading is gaining momentum with its 

increasing market size and constantly improving information transmission mechanisms. With carbon 

assets becoming prominent as an alternative asset class in investment portfolios, the ETS market has 

engaged a broad range of participants, including not only emissions-intensive energy corporations but 

also individual and institutional investors. Trades between developing and developed emission 

markets increase the ties. Enterprises in certain markets may have to bear the carbon transaction cost 

caused by non-local shocks, namely, spillover effects (Guo and Feng, 2021). As arbitrage opportunities 

arise, price fluctuations are likely to occur, which typically have a mutual spillover effect (Liu and Gong, 

2020). Hence, it is worth exploring whether there are spillover effects to make the prices of 

international carbon markets co-movement; if exist, which market is driving (mainly driven by) the 

others? This paper examines the carbon price interactions and its dynamic drivers among different 

cross-border ETS markets from the perspectives of return and volatility spillover. 

Existing studies devoted to these impacts are not conclusive, few papers detect the correlations 

between developing and matured ETS markets. Previous studies have accounted for the price, return, 

and volatility dynamics between separate markets. For instance: carbon price dynamics between 

identical instruments trading on different exchanges (Benz and Hengelbrock, 2008; Mazza and 

Petitjean, 2015), carbon spot and future prices on the same exchange (Arouri et al., 2012; Liu et al., 

2021), EUA and CERs3 prices integration (Mansanet Bataller et al., 2010; Nazifi, 2013, 2010; Sadefo 

Kamdem et al., 2016). However, less attention has been paid to the connectedness of carbon markets 

 
2 Explain the difference between developed, developing, and under consideration. 
3 EUA (EU Allowances) are  carbon credits used in the European Union Emissions Trading Scheme (EU ETS). 
Certified Emission Reductions (CERs) is a primary product traded under the secondary market of the Clean 
Development Mechanism (CDM). 
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of Europe, China, US, and New Zealand. The paper most closely related to our work is Mizrach (2012), 

which investigates co-integration between European and US carbon prices. We will take the analysis 

one step further and studies how fluctuations in these markets interact with each other, 

Most of the above studies adopt time-series econometrics (cointegration tests, granger causality, 

vector autoregressive models, error correction models, and/or multivariate GARCH models) to 

examine spillover effects among carbon markets (Nazifi, 2010; Mizrach, 2012; Diaz-Rainey and 

Tulloch, 2018; Lyu, 2021). However, standard vector autoregressive models or cointegration models 

are estimated with fixed parameters, and the GARCH  models have drawbacks, namely imposing 

parameter restrictions that often violated by estimated coefficients, difficult in interpreting whether 

shocks to conditional variance persist or not (Nelson, 1991), as well as  not accounting the directional 

and time-varying characteristics of spillovers (Diebold and Yılmaz, 2014).  

Given the effects of increasing clean technology adoption, improving emission market efficiency, and 

the organic growth of linkages between ETS systems, the spillover effects among our four variables 

may change over the course of our sample period. A steady carbon prices increase was observed since 

Covid-19 outburst (March 2020 - December 2021) from the four ETS we chose; the higher price of 

carbon in 2020 and 2021 can be jointly explained by uncertainty, a tight energy resources supply, and 

generally increasing energy prices. Consequently, this paper focuses theoretically on the time-varying 

parameter (TVP)-VAR methodology, and empirically the connectedness approach, in the field of the 

economics, finance, and connectedness literature. Our sample consists of emission trading prices 

across four jurisdictions – European Union, New Zealand, California, and Hubei (China), from April 

2014 – December 2021. We examine patterns of the total, directional, and net return/volatility 

spillover effects among the four ETS schemes.  

The relevance of our study is threefold: (1) Given that return and volatility spillover effects are 

considered as necessary characteristics of market integration (Ciarreta and Zarraga, 2015; Han et al., 

2020), analysing these impacts is necessary for assessing the efficiency of existing market linkages and 

the possibility for future integration. (2) Understanding the return and volatility spillovers between 

these markets enables institutional and individual investors to manage risk more effectively and make 

better informed asset allocation decisions. (3) Examining such dynamic volatility interconnection 

among carbon markets is a prerequisite for correlating volatility connectedness to specific market 

characteristics, events, and regulatory policy.  

The contribution of this study is fourfold: First, to the best of our knowledge, no previous studies have 

undertaken return and volatility connectedness analysis among these carbon markets. As such, this 
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paper extends the work of Mizrach (2012) and Wang et al. (2021) by investigating more emerging 

cross-border carbon markets with the use of a more recent sample period. Second, this is the first study 

to employ the time-varying parameter (TVP) – VAR model with the connectedness approach 

introduced by Diebold and Yilmaz (2009; 2012) for the examination of the dynamics of carbon market 

returns and volatilities; a four-dimensional time varying parameter VAR model solves the defects of 

constant parameters and static analysis of the traditional measurement model. Third, from a practical 

standpoint, this study generates critical information to individual and institutional investors who are 

concerned about periods of significant volatility in carbon spot prices and their transmission across 

different carbon markets; these findings are of great significance to different stakeholders and provide 

practical suggestions to them. Finally, the detection of shock transmitter (receiver) from the return 

and volatility connectedness explains why and how the spillover effects change over time. 

The remainder of the paper is organized as follows: Section 2 reviews the relevant literature. Section 3 

presents the methodology to estimate the return and volatility spillover effects among different 

regional ETS. Section 4 describes the data and sample period. Section 5 discusses the empirical results. 

Section 6 concludes and provides policy implications. 

2. Background 

An ETS  offers advantages in addressing the heterogeneity in marginal abatement costs, and provides 

the possibility of connecting national schemes across borders (Flachsland et al., 2009; Stern, 2007). 

The ETS operates on a 'cap and trade' principle, which sets a limit for the total allowable emissions for 

each regulated entities in a given area at the start of each compliance year. The initial emission 

allowances are either auctioned or freely allocated to the regulated entities. By creating the supply and 

demand for emission permits, an ETS sets a market price for GHG emissions. The Kyoto Protocol 

designed three carbon emission-trading mechanisms: International Emission Trade (IET), Joint 

Implement (JI), and Clean Development Mechanism (CDM). At present, there are now 25 ETS 

markets in force, covering 17 % of global GHG emissions. 22 ETSs are currently under development 

or under consideration, mainly in South America and South-East Asia (ICAP, 2022). 

The ETS markets have developed into a significant component of the global financial system. The 

world’s first cap-and-trade systems were introduced in the US to curb air emissions4. EU followed this 

 
4  Following Clean Air Act amendments of 1990, the sulphur dioxide allowance trading programme was built in 
the US (Borghesi and Montini, 2016; Schmalensee and Stavins, 2017).  
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application of cap-and-trade systems and built its own EU ETS in 20055. The EU kept on extending its 

ETS system up to its present record dimensions, overtaking the US leadership in developing ETS. 

Subsequently, EU ETS has become the world’s first international ETS, covering 31 countries and 

11,500 installations; it remains the main driver of the other ETS and is considered as the prototype 

system for other ETSs (Borghesi and Montini, 2016). As for statewide ETS, California's cap-and-trade 

system has been operational since 2013 and has gradually expanded to regulate about 85% of the state's 

total emissions. It expresses interest in linking its cap-and-trade system with those in other sub-

national and national jurisdictions, and readily implemented a unilateral linkage to Quebec’s ETS in 

2014. Compared to the above two developed ETS, the New Zealand’s (NZ) ETS has a distinctive profile 

due to an economy dominated by the agriculture sector, responsible for almost 50% of New Zealand’s 

GHG emissions. NZ ETS launched in 2008 and is designed to cover the whole New Zealand economy. 

It was bilaterally linked to other international ETS, meaning that the Kyoto units (e.g., Certified 

Emission Reductions and Emission Reduction Units) can be used for compliance in NZ ETS. However, 

after several changes of domestic market regulation, NZ ETS was withdrawn from the Kyoto protocol 

in December 2013 6 . As a young startup, the Chinese ETS developed at a fast pace. Its ETS is 

representative of the world’s emerging ETS markets. With night regional ETS pilots running parallel 

to a national ETS, the whole system is surpassing EU ETS to be the largest ETS in market size7.  The 

selected four ETS either allow cross-market linkage or the use of external offset credit for compliance, 

hence induce potential risk transmission (Gavard et al., 2016). The relationship between emerging and 

mature carbon markets is crucial for global environmental market integration and liberalization, 

particularly as emerging markets expand (Guo and Feng, 2021).  

A long-term goal for developing ETS is to initiate an integrated market with comparable pricing across 

jurisdictions (ICAP, 2020). Potential benefits for market integration are likely to be substantial, 

including the support of international cooperation on climate change and the ability to better absorb 

 
5   European Commission (2003). Directive 2003/87/EC Establishing a Scheme for Greenhouse Gas Emission 
Allowance Trading within the Community and Amending Council Directive 96/61/EC. Strasbourg: The European 
Parliament and the Council of Europe. https://eur-lex.europa.eu/legal-
content/EN/ALL/?uri=CELEX%3A32003L0087.  
6 From mid-2011, as the international price for carbon fell below domestic NZU prices, the unlimited ability to 
import offsets to NZ ETS has dragged down the price of emission allowances in NZ ETS, leading to a glut of 
imported international units for surrender for obligations. Thus, from Jan 2012, the government gradually 
introduced bans on various international carbon credit to strengthen the credibility of the NZ ETS, but ended up 
withdrawing  from the second commitment period (CP2) of the Kyoto protocol in December 2013 (Diaz-Rainey 
and Tulloch, 2018) 
7 China’s nine regional and one nationwide ETSs covers in total 5426 MtCO2e in China. The national ETS covers 
4500 MtCO2e itself while the EU ETS covers 1597 MtCO2e. 

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32003L0087
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32003L0087
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price shocks from commodity or energy markets (Carbone et al., 2009; Flachsland et al., 2009; ICAP, 

2020; Kachi et al., 2015). Smaller ETS could benefit from the improved market liquidity and more 

stable prices by linking to a mature ETS (Flachsland et al., 2009; the European Commision, 2019). 

Theoretical and qualitative studies showed a distinct preference toward linking regional emission-

trading systems around the world (Doda et al., 2019; Heitzig and Kornek, 2018; Helm and Pichler, 

2015; Holtsmark and Midttømme, 2021; Ranson and Stavins, 2016). The past decade has seen the 

organic growth of linkages between many regional ETS in the world. Some interconnections between 

carbon markets already exist and these linkages may expand in the future (Gavard et al., 2016), for 

instance, the California and Québec have linked their ETS markets (California Environmental 

Protection Agency, 2013); Switzerland and EU ETS signed a linking agreement in 2017, and the linking 

has been operating since January 2020 (European Commission, 2019). China is considering linking its 

regional ETS to its national ETS gradually (Lyu, 2021).  

With respect to empirical investigation of spillover effects among ETS, previous empirical studies have 

examined the price, return, and volatility dynamics between separate emission markets. Mazza and 

Petitjean (2015) assess the integration dynamics of carbon future prices under EU ETS. They studied 

on European Union Allowance (EUA) futures traded on three platforms — European Climate 

Exchange (ECX), NASDAQ OMX, and European Energy Exchange (EEX), during Phase II of EU 

ETS (2008-2012). In the same vein, Benz and Hengelbrock (2008) compare the EUA future contract 

price across ECX and Nord Pool from 2005 to 2007. For the relationship between EU ETS and CDM 

market, Nazifi (2010) applies the generalized impulse response analysis to investigate dynamic 

interactions between EUA prices and CER prices, during  Phase II of EU ETS (2008-2012). 

Carbon futures markets are growing in significance because they play a critical role in risk mitigation 

and transfer between market participants, as well as in assisting the price discovery process in the spot 

market(s). The introduction of carbon futures markets has resulted in the emergence of a new class of 

individual and institutional carbon investor(s). There is rising concern over risk management of 

carbon assets or derivatives, as carbon-related derivatives can be utilized for a variety of investment 

objectives, including portfolio diversification, arbitrage, hedging, and speculation (Arouri et al., 2012; 

Conrad et al., 2012; Schultz and Swieringa, 2014). Existing literature has verified the close interrelation 

between carbon spot and futures under EU ETS. Liu et al. (2021) discuss the mean and volatility 

spillovers by non-linear methods of Granger Causality, showing there was a bidirectional mean 

spillover effect between EUA spot and future prices for phase 2 and 3 of the EU ETS. Arouri et al. 

(2012) suggest that shocks to EUA spot markets are observed to have a greater influence on both spot 

and future market returns than shocks to the futures market.  
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However, the literature seldom pays attention to the connectedness across major ETS systems around 

the world. Two papers closely related to our work are Mizrach (2012) and Wang et al. (2021). Mizrach 

(2012) proposes the first market integration study for cross-border ETS; the paper empirically found 

the prices across exchanges in Europe were cointegrated, and the U.S. carbon market was Granger 

Causal for the EU’s market. Wang et al. (2021) investigated the time-varying correlation and long-run 

price cointegration between the EUA price (traded at European Climate Exchange) and Beijing ETS 

pilot in China, by the use of 61 (for EUA) and 76 (for Beijing) monthly data, from 2013 to 2020. 

Modelled by wavelet analysis, they indicate that Beijing’s emission allowances prices are correlated to 

EUA price both in low-frequency domain and their co-movement on a longer time scale, however, 

their analysis doesn’t include the examination of price relationship between EUA and other ETS pilots 

in China. Furthermore, the directional return and volatility connectedness are not examined in their 

study. The effects of improving clean technology, improving market efficiency, and the increasing 

scarcity of natural resources could lead the relationships between our variables to change during the 

sample period. It is natural to improve the standard VAR model which assumes a static structural 

relationship over time, while neglecting the shifting supply and demand dynamics, growing global 

market for emission permits, and changing climate change policies.  

3. Methodology 

To investigate the connectedness of international ETS’s, we will use TVP-VAR methods. In recent 

years, scholars have been keen in developing TVP-VARs (see, among many others, Cogley and Sargent 

2001, 2005; Nakajima 2011; and Primiceri, 2005). The connectedness approaches are proposed by 

Diebold and Yılmaz (2009, 2012, 2014). Diebold and Yilmaz (2019, 2012) intuitively establish a 

framework for analysing both idiosyncratic and extrinsic effects based on the estimation of the forecast 

error variance decompositions (FEVD) derived from a VAR model. It should be noted that, albeit they 

improved the Cholesky-type decomposition (Diebold and Yilmaz, 2009) to a generalised VAR 

approach (Diebold and Yilmaz, 2012), the rolling window analysis in both studies assumes that the 

parameters remain unchanged in each of the windows, causing potential loss of observations. 

Antonakakis et al. (2020), on the other hand, propose a dynamic connectedness approach based on 

TVP-VAR, which allows the variance-covariance matrix to vary via a Kalman filter estimation with 

forgetting factor8. This TVP-VAR-based connectedness approach has the following advantages: (i) it 

 
8 Kalman filter approaches have several desirable properties; for example, they are fast because state space models 
encapsulate the Markov property and reduce to a set of recursions. And the forgetting factor approaches have been 
commonly used with state space models; they do not require the use of Markov Chain Monte Carlo, which can be 
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is insensitive to outliers due to the underlying Kalman filter, (ii) there is no need to arbitrarily choose 

the rolling-window size, (iii) no loss of observations, and (iv) it can be used for low frequency datasets 

(Antonakakis et al., 2020; Koop and Korobilis, 2013). The TVP-VAR approaches have been pursued 

in related cross-border or cross-region commodity markets (Umar et al., 2021a), stock markets (Bouri 

et al., 2022) , cryptocurrency markets (Asl et al., 2021), and energy markets (Akyildirim et al., 2022; 

Evrim Mandacı et al., 2020).  

3.1 Overview 

This paper follows the approach of Antonakakis et al. (2020). The objective is to provide a flexible 

framework for the estimation and interpretation of time variation in the systematic and non-

systematic parts of carbon markets and their effects on the rest of the markets. The TVP-VARs are 

state space models and one of the advantages is that statistical methods for state space models (based 

on the Kalman filter) are available. To describe the dynamics of volatility spillovers, the baseline TVP-

VAR model is set as follows: 

𝑦𝑦𝑡𝑡 = 𝑍𝑍𝑡𝑡−1A𝑡𝑡 + 𝜖𝜖𝑡𝑡,    𝜖𝜖𝑡𝑡|Ω𝑡𝑡−1~𝑁𝑁(0, Σ𝑡𝑡),    (1) 

𝑣𝑣𝑣𝑣𝑣𝑣(A𝑡𝑡) = 𝑣𝑣𝑣𝑣𝑣𝑣(A𝑡𝑡−1) + 𝜉𝜉𝑡𝑡, 𝜉𝜉𝑡𝑡|Ω𝑡𝑡−1~𝑁𝑁(0,Ξ𝑡𝑡),    (2) 

where  𝑍𝑍𝑡𝑡−1 = �

𝑦𝑦𝑡𝑡−1
𝑦𝑦𝑡𝑡−2
⋮

𝑦𝑦𝑡𝑡−𝑝𝑝

� , and A𝑡𝑡 = �

𝐴𝐴1𝑡𝑡
𝐴𝐴2𝑡𝑡
⋮
𝐴𝐴𝑝𝑝𝑡𝑡

�. 

In the above models, 𝑝𝑝  is the lag order, 𝑡𝑡  is the sample length of the model, and 𝑡𝑡 = 𝑝𝑝 + 1,𝑝𝑝 +

2, … ,𝑇𝑇. Ω𝑡𝑡−1 represents all information available until 𝑇𝑇 = 𝑡𝑡 − 1. 𝑦𝑦𝑡𝑡 is an 𝑁𝑁 × 1 vector containing 

observations on N time series variables. 𝑍𝑍𝑡𝑡−1 represents 𝑁𝑁 × 𝑝𝑝 matrix.  A𝑡𝑡  are 𝑁𝑁 × 𝑁𝑁𝑝𝑝 dimensional 

coefficient matrices while A𝑖𝑖𝑡𝑡  are 𝑁𝑁 × 𝑁𝑁  matrices. 𝜖𝜖𝑡𝑡  and Σ𝑡𝑡  are 𝑁𝑁 × 1  and 𝑁𝑁 × 𝑁𝑁  matrix, 

respectively. In equation (2), 𝑣𝑣𝑣𝑣𝑣𝑣(A𝑡𝑡) is the vectorisation of A𝑡𝑡  which is an 𝑁𝑁 × 𝑁𝑁𝑝𝑝  dimensional 

vector. The 𝜉𝜉𝑡𝑡  is an N2𝑝𝑝 × 1  dimensional vector. Moreover, Ξ𝑡𝑡  𝑎𝑎𝑎𝑎𝑣𝑣 N2𝑝𝑝 × N2𝑝𝑝  time-varying 

variance-covariance matrices; 𝜖𝜖𝑡𝑡 and 𝜉𝜉𝑠𝑠 are independent of one another for all s and t. The equation 

(2), which models the evolution of A𝑡𝑡  can be interpreted as a hierarchical prior for A𝑡𝑡 .  

 
computationally demanding (Antonakakis et al., 2020; Koop and Korobilis, 2013; Dangl and Halling, 2012). 
Supporting the main purpose of our study — to empirically examine the interdependency among global carbon 
markets — the detailed algorithm of the TVP-VAR model with the use of Kalman filter and forgetting factors can 
be found in Koop and Korobilis, 2013. Different measures, for example, the rolling window VAR analysis, will be 
provided in the robustness checks.  
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Allowing for parameter change increases over-parameterization concerns. However, the existing 

TVP-VAR literature works with relatively small dimensional models, for example, models with three 

dependent variables. This study works with four dimensional models, and so the concern of over-

parameterization and the need for prior shrinkage is less. 

3.2 Estimation of TVP-VAR using forgetting factors 

This study used the Primiceri (2005) and Del Negro and Primiceri (2015) prior, following Antonakakis 

et al. (2020). The mean and the variance of 𝐴𝐴0 are chosen to be the OLS point estimates (�̂�𝐴𝑂𝑂𝑂𝑂𝑂𝑂) and its 

variance  Σ𝑂𝑂𝑂𝑂𝑂𝑂𝐴𝐴  in a time invariant VAR. Thus, the  �̂�𝐴𝑂𝑂𝑂𝑂𝑂𝑂 , Σ𝑂𝑂𝑂𝑂𝑂𝑂𝐴𝐴 , and Σ𝑂𝑂𝑂𝑂𝑂𝑂 are equal to the VAR 

estimation results of the initial subsample (first year): 𝐴𝐴0  ~ N(�̂�𝐴𝑂𝑂𝑂𝑂𝑂𝑂,  Σ𝑂𝑂𝑂𝑂𝑂𝑂𝐴𝐴 ), and Σ0 = Σ𝑂𝑂𝑂𝑂𝑂𝑂 . Let 

𝑦𝑦𝑠𝑠 = (𝑦𝑦1, …𝑦𝑦𝑠𝑠); denote observations through time s. In this context filtering refers to inference on 

A𝑡𝑡  through combining of the information contained in a single observation y from the equation (1) 

with prior information on A𝑡𝑡  expressed through a prior distribution p(A𝑡𝑡). Key steps in Kalman 

filtering9 involve the result that: 

A𝑡𝑡−1|𝑦𝑦𝑡𝑡−1~𝑁𝑁(A𝑡𝑡−1|𝑡𝑡−1,𝑉𝑉𝑡𝑡−1|𝑡𝑡−1),    (3) 

where formulae for A𝑡𝑡−1|𝑡𝑡−1 and 𝑉𝑉𝑡𝑡−1|𝑡𝑡−1  are given in textbook sources (Koop and Korobilis, 2013). 

Kalman filtering then proceeds with the use of the below equation (4): 

A𝑡𝑡|𝑦𝑦𝑡𝑡−1~𝑁𝑁(A𝑡𝑡|𝑡𝑡−1,𝑉𝑉𝑡𝑡|𝑡𝑡−1),   (4) 

where 𝑉𝑉𝑡𝑡|𝑡𝑡−1 = 𝑉𝑉𝑡𝑡−1|𝑡𝑡−1 + Ξ𝑡𝑡.    (5) 

The prior density for 𝐴𝐴0|𝑦𝑦0 which involves the choice of 𝐴𝐴0|0 and 𝑉𝑉0|0 is required for the Kalman 

filtering. In addition, the predictive density p(𝑦𝑦𝑡𝑡|𝑦𝑦𝑡𝑡−1) provided by the Kalman filter can be used for 

forecasting 𝑦𝑦𝑡𝑡, given data through time t-1. Equation (5) is the only place where Ξ𝑡𝑡 enters the Kalman 

filtering, and it can be removed by replacing the formulae as below:  

𝑉𝑉𝑡𝑡|𝑡𝑡−1 = 1
𝜆𝜆
𝑉𝑉𝑡𝑡−1|𝑡𝑡−1,    (6) 

where λ is called a forgetting factor( 0 < λ ≤ 1). The equation (6) implied that observations j periods 

in the past have weight 𝜆𝜆𝑗𝑗 in the filtered estimate of A𝑡𝑡 . As we can see in equation (6), a forgetting 

factor approach negates the need to estimate Ξ𝑡𝑡. Now, to estimate the Σ𝑡𝑡, a similar approach involving 

a decay factor 𝜅𝜅  is applied. In particular, an exponentially weighted moving average (EWMA) 

 
9 For details of Bayesian inference for 𝐴𝐴0 involving the Kalman filter, see Frühwirth-Schnatter (2006, chapter 13.3). 
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estimator is adopted. With the use of an EWMA estimate for Σ𝑡𝑡, prior information is required only for 

A0: 

𝐴𝐴0 ~N(𝐴𝐴0|0, 𝑉𝑉0|0). 

Ξ𝑡𝑡 = (𝜆𝜆−1 − 1)𝑉𝑉𝑡𝑡−1|𝑡𝑡−1,    (7) 

Σ𝑡𝑡� = 𝜅𝜅Σ�𝑡𝑡−1 + (1 − 𝜅𝜅)𝜖𝜖𝑡𝑡�𝜖𝜖𝑡𝑡� ,   (8) 

Σ𝑡𝑡|𝑡𝑡−1 = 𝑦𝑦𝑡𝑡−1𝑉𝑉𝑡𝑡|𝑡𝑡−1𝑦𝑦𝑡𝑡−1′ + Σ𝑡𝑡,    (9) 

where 𝜖𝜖𝑡𝑡� = 𝑦𝑦𝑡𝑡 − A𝑡𝑡|𝑡𝑡𝑍𝑍𝑡𝑡 is produced by the Kalman filtering method for inference on A𝑡𝑡 . The EWMA 

estimators require the selection of the decay factor, 𝜅𝜅; this study considers the benchmark values10 for 

𝜆𝜆 = 0.99 𝑎𝑎𝑎𝑎𝑎𝑎 𝜅𝜅 = 0.96, and keeping them constant at fixed values11. 

3.3 TVP-VAR-based dynamic connectedness approach 

The time-varying coefficients and error covariances are used to estimate the generalised 

connectedness procedure of Diebold and Yilmaz’s spillover index. As mentioned above, this 

procedure is based on generalised impulse response functions (GIRF) and generalised forecast error 

variance decompositions (GFEVD) first developed by Koop et al. (1996) and Pesaran and Shin (1998).  

The important step to calculate the GIRF and GFEVD is to transform the VAR to its moving average 

representation – VMA, see below: 

𝑦𝑦𝑡𝑡 = ∑ Υ𝑗𝑗,𝑡𝑡
∞
𝑗𝑗=0 𝜖𝜖𝑡𝑡−𝑗𝑗,     (10)   

where Υ0,𝑡𝑡 = 𝐼𝐼, and  Υ𝑖𝑖,𝑡𝑡 = 𝐴𝐴1,𝑡𝑡Υ𝑖𝑖−1,𝑡𝑡 + 𝐴𝐴2,𝑡𝑡Υ𝑖𝑖−2,𝑡𝑡 + … + 𝐴𝐴𝑝𝑝,𝑡𝑡Υ𝑖𝑖−𝑝𝑝,𝑡𝑡 

where Υ𝑡𝑡 = �Υ1,𝑡𝑡,Υ2,𝑡𝑡,Υ3,𝑡𝑡, … ,Υ𝑝𝑝,𝑡𝑡�
′
 and𝐴𝐴𝑡𝑡 = �𝐴𝐴1,𝑡𝑡,𝐴𝐴2,𝑡𝑡,𝐴𝐴3,𝑡𝑡, … ,𝐴𝐴𝑝𝑝,𝑡𝑡�

′
.Both the𝐴𝐴𝑖𝑖,𝑡𝑡 and Υ𝑖𝑖,𝑡𝑡  are 

N × N dimensional matrices. The GIRFs represent the responses of all variables 𝑗𝑗, following a shock 

in variable  𝑖𝑖. Let  Θ𝑖𝑖𝑗𝑗,𝑡𝑡(𝐽𝐽) denote the J-step-ahead forecast error variances decompositions at time t. 

Each of the elements in the matrix can be obtained by the following formula: 

Θ𝑗𝑗,𝑡𝑡 (𝐽𝐽) = Υ𝐽𝐽,𝑡𝑡Σ𝑡𝑡𝑒𝑒𝑗𝑗
�Σ𝑗𝑗𝑗𝑗,𝑡𝑡

𝜍𝜍𝑗𝑗,𝑡𝑡

�Σ𝑗𝑗𝑗𝑗,𝑡𝑡
= Σ𝑗𝑗𝑗𝑗,𝑡𝑡

−12Υ𝐽𝐽,𝑡𝑡Σ𝑡𝑡𝑣𝑣𝑗𝑗, 𝜍𝜍𝑗𝑗,𝑡𝑡 = �Σ𝑗𝑗𝑗𝑗,𝑡𝑡,     (11)   

 
10 For example, for quarterly data, 𝜆𝜆 = 0.99 implies observations five years ago receive approximately 80% as 
much weight as last period’s observation (Koop and Korobilis, 2013). 
11  Koop and Korobilis (2013) found that the value added by time-varying decay factors with respect to the 
forecasting performance was questionable and increased the computation burden of Kalman filter algorithm, thus, 
we follow Antonakakis et al. (2020) to keep the decay factors constant at fixed values.  
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where 𝑣𝑣𝑗𝑗  is an 𝑁𝑁 × 1 selection vector with unity in the jth position, and zero otherwise. Σ𝑗𝑗𝑗𝑗,𝑡𝑡 is the 

standard deviation of the error term of the ith equation, also the jth diagonal element in 

Σ𝑢𝑢,𝑡𝑡 (𝑠𝑠𝑎𝑎𝑠𝑠𝑣𝑣 𝑎𝑎𝑠𝑠 Σ𝑡𝑡). We compute the GFEVD (𝜙𝜙�𝑖𝑖𝑗𝑗,𝑡𝑡(𝐽𝐽)), which represents the pairwise directional 

connectedness from 𝑗𝑗  to 𝑖𝑖  and illustrates the influence variable 𝑗𝑗  has on variable 𝑖𝑖  in terms of its 

forecast error variance share. To match the traditional variance decomposition, we normalize each 

element of the generalized variance decomposition matrix by the row sums as follows: 

𝜙𝜙�𝑖𝑖𝑗𝑗,𝑡𝑡(𝐽𝐽) = Σ𝑡𝑡=1
𝐽𝐽−1Θ𝑖𝑖𝑗𝑗,𝑡𝑡

2

Σ𝑗𝑗=1
𝑁𝑁 Σ𝑡𝑡=1

𝐽𝐽−1Θ𝑖𝑖𝑗𝑗,𝑡𝑡
2,     (12)   

with Σ𝑗𝑗=1𝑚𝑚 𝜙𝜙�𝑖𝑖𝑗𝑗,𝑡𝑡(𝐽𝐽) = 1 and Σ𝑖𝑖,𝑗𝑗=1𝑚𝑚 𝜙𝜙�𝑖𝑖𝑗𝑗,𝑡𝑡(𝐽𝐽) = 𝑁𝑁. The denominator represents the cumulative effect of 

all the shocks, while the numerator illustrates the cumulative effect of a shock in variable i. Using the 

GFEVD, we construct the total connectedness index (TCI) by below: 

𝐶𝐶𝑡𝑡(𝐽𝐽) =
Σi,j=1,i≠j
𝑁𝑁 𝜙𝜙�𝑖𝑖𝑗𝑗,𝑡𝑡(𝐽𝐽)

Σi,j=1
𝑁𝑁 𝜙𝜙�𝑖𝑖𝑗𝑗,𝑡𝑡(𝐽𝐽) × 100 =

Σi,j=1,i≠j
𝑁𝑁 𝜙𝜙�𝑖𝑖𝑗𝑗,𝑡𝑡(𝐽𝐽)

𝑁𝑁
× 100,     (13)   

This connectedness approach shows how a shock in one variable spills over to other variables. When 

variable i transmits its shock to all other variables j, this is called total directional connectedness to 

others (𝐶𝐶𝑖𝑖→𝑗𝑗,𝑡𝑡(𝐽𝐽)) and it is defined as: 

𝐶𝐶𝑖𝑖→𝑗𝑗,𝑡𝑡(𝐽𝐽) =
Σj=1,i≠j
𝑁𝑁 𝜙𝜙�𝑗𝑗𝑖𝑖,𝑡𝑡(𝐽𝐽)

Σj=1
𝑁𝑁 𝜙𝜙�𝑗𝑗𝑖𝑖,𝑡𝑡(𝐽𝐽)

× 100,    (14) 

We could calculate the directional connectedness variable i received from variables j, called total 

directional connectedness from others (𝐶𝐶𝑖𝑖←𝑗𝑗,𝑡𝑡(𝐽𝐽)) and defined as below: 

𝐶𝐶𝑖𝑖←𝑗𝑗,𝑡𝑡(𝐽𝐽) =
Σj=1,i≠j
𝑁𝑁 𝜙𝜙�𝑖𝑖𝑗𝑗,𝑡𝑡(𝐽𝐽)

Σi=1
𝑁𝑁 𝜙𝜙�𝑖𝑖𝑗𝑗,𝑡𝑡(𝐽𝐽)

× 100,    (15) 

And so, we subtract total directional connectedness to others from total directional connectedness from 

others to obtain the net total directional connectedness (𝐶𝐶𝑖𝑖𝑗𝑗,𝑡𝑡): 

𝐶𝐶𝑖𝑖𝑗𝑗,𝑡𝑡 = 𝐶𝐶𝑖𝑖→𝑗𝑗,𝑡𝑡(𝐽𝐽)−𝐶𝐶𝑖𝑖←𝑗𝑗,𝑡𝑡(𝐽𝐽),   (16) 

The sign of the net total directional connectedness illustrates whether variable i is driving the network 

(𝐶𝐶𝑖𝑖,𝑡𝑡 > 0) or driven by the network (𝐶𝐶𝑖𝑖,𝑡𝑡 < 0). Table 1 is from Diebold and Yilmaz (2009; 2012). The 

upper left N*N block provides the J-step-ahead forecast error variance decomposition matrix. Based 

on this matrix, various spillover effects can be examined, as will be explained in Table 4 in Chapter 5 . 
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Table 1. Schematic of ta connectedness table 

 EU ETS NZ ETS CA CaT HB ETS From Others 

EU ETS 𝑎𝑎11
𝐽𝐽  𝑎𝑎12

𝐽𝐽  𝑎𝑎13
𝐽𝐽  𝑎𝑎14

𝐽𝐽  Σ𝑗𝑗≠1𝑎𝑎1𝑗𝑗
𝐽𝐽  

NZ ETS 𝑎𝑎21
𝐽𝐽  𝑎𝑎22

𝐽𝐽  𝑎𝑎23
𝐽𝐽  𝑎𝑎24

𝐽𝐽  Σ𝑗𝑗≠2𝑎𝑎2𝑗𝑗
𝐽𝐽  

CA CaT 𝑎𝑎31
𝐽𝐽  𝑎𝑎32

𝐽𝐽  𝑎𝑎33
𝐽𝐽  𝑎𝑎34

𝐽𝐽  Σ𝑗𝑗≠3𝑎𝑎3𝑗𝑗
𝐽𝐽  

HB ETS 𝑎𝑎41
𝐽𝐽  𝑎𝑎42

𝐽𝐽  𝑎𝑎43
𝐽𝐽  𝑎𝑎44

𝐽𝐽  Σ𝑗𝑗≠4𝑎𝑎4𝑗𝑗
𝐽𝐽  

To Others Σ𝑖𝑖≠1𝑎𝑎𝑖𝑖1
𝐽𝐽  Σ𝑖𝑖≠2𝑎𝑎𝑖𝑖2

𝐽𝐽  Σ𝑖𝑖≠3𝑎𝑎𝑖𝑖3
𝐽𝐽  Σ𝑖𝑖≠4𝑎𝑎𝑖𝑖4

𝐽𝐽  Σ𝑖𝑖≠𝑗𝑗𝑎𝑎𝑖𝑖𝑗𝑗
𝐽𝐽  

Note: EU ETS, NZ ETS, CA CaT, and HB ETS stand respectively for EUA spot daily return/volatility under 
EEX, NZU daily return/volatility under New Zealand’s ETS, spot daily return/volatility under California’s 
Cap and Trade system, and Hubei Emission allowances daily return/volatility under Hubei ETS in China. 

4. Data 

The EU ETS, CA CaT, and China's ETS are the world's three largest ETS systems. New Zealand's ETS 

(NZ ETS) is unique in that it once permitted unrestricted use of Kyoto credits, exposing it to global 

carbon price fluctuations. These four markets are selected for the analysis of global carbon market 

integration12. We use the price of the European emission allowances (EUAs) spot since the EUA 

contracts are the major carbon product traded under EU ETS (Lutz et al., 2013; Sadefo Kamdem et al., 

2016; Wang et al., 2021). Prices and traded volumes of EUAs exceed the other equivalent products 

under EU ETS while those instruments (EUAA or CERs 13) can be used for acquiring 1 tonne of 

emission allowances. NZ ETS trades in carbon credits known as New Zealand Units (NZUs), which 

can be held and sold by secondary market traders and auctions. The carbon emission product 

California Carbon Allowances (CCA), which represents a carbon emission equivalent under CA CaT, 

is traded on the ICE Futures Exchange, US. Furthermore, we chose the spot price of Hubei pilot ETS 

as a representative of Chinese ETS instead of other pilot ETS, for these reasons: i) China's Hubei ETS 

regulates emission trading for a province whose economy is heavily based on secondary industries and 

coal. ii) Hubei's overall energy structure reflects China's as a whole country, hence its deemed 

representative for the entire economy. ii) Along with corporate and institutional investors, Hubei ETS 

attracted a substantial number of individual investors to the trading, with individual investors' daily 

trading volume accounting for over 30% of total turnover. And iii) Hubei ETS is the largest pilot ETS 

 
12 It is worth mentioning that other pilot ETS in China, such as Shanghai ETS (started from 2013.11.26), Shenzhen 
ETS (started from 2013.06.18), and Beijing (started from 2013.12.28) have longer trading history, in 2013 when 
they started breakpoints and missing data were observed due to the illiquidity and low trading volume, which 
impacts the data quality. Furthermore, the Shanghai, Shenzhen, and Beijing ETS are city-wide ETS; we argue that 
Hubei ETS, as a provincial ETS, is more comparable to the other markets in our study.    
13 EUAA stands for European Union Aviation Allowances. CERs stands for Certified Emission Reductions. Both 
EUA and CERs are emission  products. 
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in China in terms of trading volume, continuity, social capital invested, and incorporated firm 

participation. Table 2 summarizes the main differences across the four ETS in our study.  

In the carbon market integration literature, Wang et al. (2021) identify a long-run cointegration 

relationship between Chinese ETS and EU ETS. However, only a limited sample of Chinese ETS — 34 

months of data — are modelled in the cointegration test, which might lead to an inconclusive result. 

Mizrach (2012) examines the integration among carbon prices in EU and  North America. While some 

evidence showed the foundation for global carbon market integration among EU, US, and China’s 

(regional) ETS, the sample periods examined in the above two studies are different. And no research 

has included the California and New Zealand’s ETS, respectively to the global carbon market 

integration.  

Table 2. Market architecture – differences among four ETS 

 EU ETS NZ ETS CA CaT HB ETS 

Start 2005 2008 2012 2014 

Cap 1579 MtCO2e 34.5 MtCO2e 307.5 MtCO2e 166 MtCO2e 

Market 

threshold 
25 ktCO2e low 25 ktCO2e 10 MtCO2e 

Averagr price 54.76 Euro 30.91 Euro 20.65 Euro 4.92 Euro 

Total revenue 31 billion Euro 1.9 billion Euro 16.78 billion Euro 42 million Euro 

Covered 

emissions 
39% 49% 85% 45% 

Entities 9628 2475 500 373 

GHGs covered 𝐶𝐶𝐶𝐶2,𝑁𝑁2𝐶𝐶,𝑃𝑃𝑃𝑃𝐶𝐶𝑠𝑠  
𝐶𝐶𝐶𝐶2,𝐶𝐶𝐶𝐶4,𝑁𝑁2𝐶𝐶, 𝑆𝑆𝑃𝑃6, 

𝐶𝐶𝑃𝑃𝐶𝐶𝑠𝑠 ,𝑃𝑃𝑃𝑃𝐶𝐶𝑠𝑠 

𝐶𝐶𝐶𝐶2,𝐶𝐶𝐶𝐶4,𝑁𝑁2𝐶𝐶, 𝑆𝑆𝑃𝑃6, 
𝐶𝐶𝑃𝑃𝐶𝐶𝑠𝑠,𝑃𝑃𝑃𝑃𝐶𝐶𝑠𝑠 ,𝑁𝑁𝑃𝑃3,other 

fluoridated GHG 
𝐶𝐶𝐶𝐶2 

Source: Own elaboration based on information and data from Emission Trading Worldwide: Status 
Report, by International Carbon Action Partnership, 2022. 

To study the regional carbon market co-movement and integration , we use carbon prices from four 

emission markets — EU ETS, NZ ETS, CA CaT, and Hubei ETS14 (HB ETS). After examining several 

alternative data sources, we concluded Thomson Reuters and Bloomberg provide the carbon prices 

for the four ETSs with the longest time periods. Our sample covers the period 30 April 2014 through 

 
14 Daily spot prices for New Zealand Units and EU emission allowances (EUA) traded under European Energy 
Exchange (EEX) are sourced through Bloomberg and Reuters. Daily spot prices under Hubei ETS are found from 
Wind Database. Daily prices of California Carbon Allowance that traded on the ICE Future Exchange US are from 
California Carbon Info.  

https://www.californiacarbon.info/
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1 December 2021. All prices use in this study are quoted in Euro. We calculate weekly returns as the 

change in log price, from Friday-to-Friday. The continuously compounded returns of four sets are 

computed as 𝑎𝑎𝑖𝑖,𝑗𝑗,𝑡𝑡 = �𝑙𝑙𝑎𝑎𝑃𝑃𝑖𝑖,𝑗𝑗 − 𝑙𝑙𝑎𝑎𝑃𝑃𝑖𝑖,𝑗𝑗−1�, for market i, in week t. We use the realized (historical) 

volatility as proxy of volatility15. Four measures have been applied to estimate weekly volatility of 

carbon price16. The first measure is the standard deviation of weekly return over the five-day interval 

during each week:  

𝑆𝑆𝑆𝑆�𝑡𝑡 = �∑ �𝑟𝑟𝑖𝑖,𝑡𝑡−�̅�𝑟𝑡𝑡�
2𝑀𝑀

𝑖𝑖=1
𝑀𝑀−1

,    (17) 

where 𝑆𝑆𝑆𝑆�𝑡𝑡  measures the market volatility on week t, 𝑎𝑎𝑖𝑖,𝑗𝑗,𝑡𝑡 is the jth daily return in week t, for market i; 
and M is the number of trading days (in most case M=5). The corresponding estimate of the 

annualized weekly volatility in percentage is 𝑆𝑆𝑆𝑆�𝑡𝑡 = 100√52𝑆𝑆𝑆𝑆�𝑡𝑡. The second measure is the weekly 
range of price that considers five prices in a week. Following Diebold and Yilmaz (2012) and Parkinson 
(1980), we use weekly high and low prices obtained from daily data, from Monday open to the Friday 
close, to estimate weekly variance: 

𝜎𝜎�𝑖𝑖𝑡𝑡2 = 0.361[ln(𝑃𝑃𝑖𝑖𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚) − ln (𝑃𝑃𝑖𝑖𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚)]2,    (18) 

where 𝑃𝑃𝑖𝑖𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚  is the Monday-Friday highest price, 𝑃𝑃𝑖𝑖𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 is the Monday-Friday lowest price, 𝜎𝜎�𝑖𝑖𝑡𝑡2  is an 
estimator of weekly variance at market i, same as above. We calculated the annualized daily percentage 

volatility (standard deviation) 𝜎𝜎�𝑖𝑖𝑡𝑡 = 100�52𝜎𝜎�𝑖𝑖𝑡𝑡2 . According to the calculations above, the sample 

size is 397 observations for each series. The empirical results reported in Chapter 5 are generated with 

the first measure17 (i.e., 𝑆𝑆𝑆𝑆�𝑡𝑡 , from Equation 18). All return and volatility series are stationary, tested 
by the Augmented Dicky-Fuller (ADF) test. Figures 1 and 2 plot the weekly return and realized 
volatility for the four markets during the sample period18. The two figures show that all ETS except HB 
ETS have high volatility after March 2020 (when Covid-19 hit); however, because HB ETS had a 40-
day lockdown from February 10 to March 20, 2020, the movement of HB ETS during this period is not 
informative. Both the return and volatility in the NZ ETS in 2014 and 2015 appear to be high due to 
the withdrawal from the Kyoto Protocol.  

 
15 We can obtain only daily closing prices for the four markets; high frequency/intraday data are not available for 
CA CaT and HB ETS. By using the weekly highest, lowest, open, and close prices, we calculated the 
realized/historical volatility. To be consistent with the frequency of the historical volatility data, we use weekly 
returns.  
16 Note that we use Garman and Klass (1980) volatility as another proxy of volatility for the robustness check, 
descriptive statistics shown in Appendix in Section 7.  
17 The empirical results based on the two measures are very similar. The results based on the second measure (i.e., 
𝜎𝜎�𝑖𝑖𝑡𝑡) can be found in Appendix Table A1 and Figure A1 in Section 7 or are available upon request to the authors.  
18 Plots of Parkinson (1980) volatility (i.e., 𝜎𝜎�𝑖𝑖𝑡𝑡), 𝑆𝑆𝑆𝑆�𝑡𝑡  based volatility, and Garman and Klass (1980) volatilities are 
provided in Figure A2 in Appendix.  
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Figure 1: Weekly return from four ETS 

 
Source: Own elaboration based on data from Bloomberg, Reuters, and Wind Database. Reported are 
the descriptive statistics of the weekly log-return and volatility series, range from 30 April 2014 to 1 
December 2021.  

Figure 2: Weekly realized (annualized) volatility from four ETS 

 
Source: Own elaboration based on data from Bloomberg, Reuters, and Wind Database. Reported are 
the descriptive statistics of the weekly log-return and volatility series, range from 30 April 2014 to 1 
December 2021.  
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To dig into more details of the series, we report the descriptive statistics of the return and volatility 
series in Table 3, in which panel A shows that the means of all returns are positive, implying rising 
prices. Indeed, the prices of EUA, NZU, and CCA rose from 4.34, 1.03, and 11 Euro/ton emission 
allowances to 76.8, 41.34, and 26.21 Euro/ton, respectively. While the mean return on the HB ETS is 
positive but close to zero, the price of the Hubei emission allowances (HBEA) remained rather stable, 
with the most significant t-statistics from stationarity (ADF) test. Furthermore, several interesting 
facts emerge in the analysis of volatility: 1) The EU ETS has the highest mean, min, and max return 
volatility of the four series; sharply rising prices and the EU's rapidly shifting carbon reduction policies 
might be identified as contributors to this high level of volatility. 2) The HB ETS has the second highest 
volatility. As one of the newly built Chinese pilot markets which started trading in 2014, Hubei ETS 
has a flawed market structure, due to the lack of legislation through the provincial legislature in place 
and a large share of over the counter (OTC) trading. Thus high volatility is expected in such emerging 
market (Zhang, 2015). 3) CA CaT volatilities increased simultaneously from mid-2021 to end of 
sample period, indicating a shift in the pattern of spillover effect from or to CA CaT in the post-Covid-
19 period. 

Table 3. Descriptive statistics for the carbon price return and volatility 

Panel A: Return 
 Mean Min Max St.dev. Skew. Kurt. ADF 

EU ETS 0.007   -0.312 0.243  0.060  -0.312    5.996  -14.37*** 

NZ ETS 0.008   -0.112 0.232   0.036   1.944 12.041 -10.27*** 

CA CaT 0.003   -0.326 0.202   0.028  -3.064 59.992 -12.74*** 

HB ETS 0.001 -0.437 0.342 0.063 -0.764 17.080 -18.74*** 

Panel B: Volatility 

 Mean Min Max St.dev. Skew. Kurt. ADF 

EU ETS 16.734 1.368 78.881 10.081 1.782 8.622 -4.07*** 

NZ ETS 7.167 0.690 75.503 7.474 4.350 29.793 -5.74*** 

CA CaT 4.842 0.819 57.247 5.266 5.718 46.145 -4.09*** 

HB ETS 15.604 0.002 56.364 12.531 1.098 3.557 -5.45*** 

Source: Own elaboration based on data from Bloomberg, Reuters, and Wind Database. Note: Sample 
including carbon prices series from EU ETS, NZ ETS, CA CaT, and HB ETS from April 30,2014 to 
December 1, 2021. The hypothesis of the Augmented Dicky Fuller (ADF) test is 𝐶𝐶0: non-stationary 
against 𝐶𝐶1 : stationary. The lag length is determined by BIC criterion. * denotes significance at 10% 
level, ** denotes significance at 5% level, *** denotes significance at 1% level.  

5. Results 

In this section we report the results of empirical analysis by the method presented in Section 3. 

Specifically, Section 5.1 presents the total connectedness index (TCI), which measures the influence 

of one market on all others on average (see Equation 13 in Section 3.3). Sections 5.2 and 5.3 show the 
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total directional connectedness, which reflect the spillover relationship between a market and all other 

markets, including total directional connectedness to others (𝐶𝐶𝑖𝑖→𝑗𝑗,𝑡𝑡(𝐽𝐽)  from Equation 14), total 

directional connectedness from others ( 𝐶𝐶𝑖𝑖←𝑗𝑗,𝑡𝑡(𝐽𝐽)  from Equation 15), and net total directional 

connectedness from others (𝐶𝐶𝑖𝑖𝑗𝑗,𝑡𝑡 from Equation). The results reported in the following main text are 

generated with the first measure19 (i.e., 𝑆𝑆𝑆𝑆�𝑡𝑡 , from Equation 18). 

5.1 Dynamic total connectedness index 

In the following empirical model, we use first-order VARs (p=1) (selected by Schwarz information 

criterion), with 10-step-ahead forecasts20 (H=10). We define the total connectedness index (TCI) by 

summing all the non-diagonal elements of the generalized variance matrix (see Table 1, Section 3). We 

define that if this TCI rises, so does network member dependency, and therefore market risk. On the 

other hand, if the TCI decreases then the dependence between the members decreases and hence in 

turn the market risk decreases. Table 4 presents the averaged connectedness measures for the markets.  

Table 4. Average connectedness matrix of the system 

 EU ETS NZ ETS CA CaT HB ETS From Others 

Panel A: Return connectedness (%) 
EU ETS 88.99 2.88 4.98 3.15 11.01 
NZ ETS 3.46 92.03 2.72 1.79 7.97 
CA CaT 5.16 2.63 87.59 4.62 12.41 
HB ETS 4.54 1.53 4.22 89.70 10.30 

To Others 13.16 7.04 11.93 9.57 41.70 
Net Total 2.14 -0.93 -0.48 -0.73 TCI=10.42 

 EU ETS NZ ETS CA CaT HB ETS From Others 

Panel B: Volatility connectedness (%) 
EU ETS 89.40 2.95 5.71 1.94 10.60 
NZ ETS 3.72 86.03 7.36 2.89 13.97 
CA CaT 5.36 5.75 84.69 4.21 15.31 
HB ETS 2.38 2.51 3.60 91.50 8.50 

To Others 11.46 11.21 16.67 9.04 48.38 
Net Total 0.86 -2.76 1.36 0.54 TCI=12.10 

Source: This spillover table is generated based on 10-step-ahead generalized VAR forecast error 
variance decomposition. The 𝑖𝑖𝑗𝑗𝑡𝑡ℎ  entry estimates the fraction of 10-step-ahead error variance in 
forecasting market i due to exogenous shocks to market j (the spillover from market j to market i:  

 
19 The empirical results based on the other two measures are very similar. The results based on the second measure 
(i.e., 𝜎𝜎�𝑖𝑖𝑡𝑡) can be found in Appendix A (or are available upon request to the authors).  
20 A different choice of forecasting horizon, H from 2 to 9 will be assessed in the robustness check in the Appendix 
A, at Section 7 Following most of the literature (see for example Yilmaz, 2009), we use 10-step-ahead horizon in 
the main text. 
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𝑎𝑎𝑖𝑖𝑗𝑗
𝐽𝐽  ). According to Equation 16 (𝐶𝐶𝑖𝑖𝑗𝑗,𝑡𝑡 = 𝐶𝐶𝑖𝑖→𝑗𝑗,𝑡𝑡(𝐽𝐽) −𝐶𝐶𝑖𝑖←𝑗𝑗,𝑡𝑡(𝐽𝐽)), we obtain the net total directional 

connectedness, 𝐶𝐶𝑖𝑖𝑗𝑗,𝑡𝑡. 

The main diagonal of Table 4 shows own-variance shares of shocks, while the off-diagonal elements 

reflect the interaction across global ETS. The number in the bottom right corner represents TCI of the 

system. As such, the average return (volatility) TCI is 10.42% (12.10%). A total spillover of no more 

than 10.42% (12.10)% indicates that internal cross-contribution due to individual shocks is not a 

major driver of future performance across four ETS. Both the dynamics of each of the carbon market 

are mainly explained by themselves and not due to spillovers from other markets, which indicates that 

the global carbon prices are largely (albeit not completely) dependent on themselves. In other words, 

the degree of systemic risk among emission allowance markets is not high. 

Our results of return and volatility TCI are lower than those of the other commodity market TCIs. 

Among studies regarding carbon, energy, and financial market connectedness,  Ji et al. (2018) 

concludes 39.47% (30.52) return (volatility) TCI between carbon and energy markets, while system 

Tan et al. (2020) shows 42.26% (34.82) total return (volatility) spillover index in Carbon-Energy-

Finance. Studies regarding other commodity markets’ connectedness conclude 24.58% return 

connectedness across beverage, fertilizers, food, metals, precious metal, raw materials and oil market 

(Zhang and Broadstock, 2020), 53.71%  among four crude oil markets globally (Liu and Gong, 2020); 

and 12.5% across U.S. stock, bond, foreign exchange, and commodities markets (Diebold and Yilmaz, 

2012). In the agricultural market connectedness, Umar et al. (2021) reports 18.5% (27.6%) return 

(volatility) TCI of the dominant agricultural markets, and in another study Umar et al. (2021) shows 

31.2% (17.7%) return (volatility) connectedness in  fifteen selected agricultural markets and oil price 

stocks. 

As the objective of this paper is to learn more about the behavior of return and volatility spillovers over 

time, we move beyond the aggregated spillovers for the full sample. In particular, we demonstrate the 

TCI’s dynamic evolution over time, which is particularly relevant for examining the TCI’s response to 

major changes in carbon market regulation, economic and energy events, occurrence of extreme 

weather conditions, and disasters like the Covid-19 pandemic, respectively. The dynamic total return 

and total volatility connectedness are plotted in Figures 3 and 4. As shown in the figures the overall 

degree of return (volatility) total average connectedness/effects of spillover ranges from 3% (2%) to 

35.74% (35.69%) across the sample period. Periods with a high degree of connectivity corresponding 

to the events in Table 5 are upscaled by the event numbered and the shaded areas in Figure 3 and 4. 

Therefore, we focus on events shaded to to (i) global politics, (ii) carbon market linkage/delinked 

changes, (iii) temperature and weather, and (iv) public health crises — e.g., Covid-19. Table 5 shows 
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the key features of the events shaded. As confirmed by the literature, the driving factors of the supply 

and demand in an ETS are: (i) economic growth and government constraints; (ii) international climate 

change agreements; (iii) regulatory change and arbitrageurs; and (iv) market fundamentals, such as 

energy prices and weather (Benz and Trück, 2009; Mansanet-Bataller et al., 2007; Lyu, 2021). 

Table 5: Chronology of events for high connectedness 

Year No. Event Date Category 
2014 1 G7 Energy Ministers Summit, Rome 2014.05.05 global politics 
2015 2 China coal power plant closure 2015.03.01-31 global politics 
2015 3 COP21- Paris agreement 2015.11.30-12.12 global politics 

2016 4 
High-level UN debate on achieving the SDGs + Paris 

agreement open for signature 
2016.04.21-22 global politics 

2018 5 COP24 2018.12.2-14 global politics 
2019 6 COP25 2019-12.2-13 global politics 
2015 7 Korea built ETS 2015.01.01-02.01 carbon market 
2015 8 New Zealand delinked 2015.06.01-07.01 carbon market 
2019 9 Hubei carbon price spike 2019.05.20-06.03 carbon market 
2020 10 Swiss ETS linked to EU ETS 2020.01.01-02.01 carbon market 
2021 11 China national ETS operation 2021.07.21-08.21 carbon market 

2016 12 
Big jump occurred in Global Land-Ocean Temperature 

Index 
2016.02.01-28 weather 

2016 13 
Worst air pollution episode in China, schools and factories 

ordered shut, 200 flights cancelled21  
2016.12.01-30 weather 

2017 14 Yangtze River flooding; Hurricanes Harvey, Irma, and Maria 2017.06.30-10.01 weather 

2018 15 
Multiple deadly heat waves hit East Asia+ Monsoon flood in 

India  where Kerala state reported 500 deaths 
2018.07.20-08.30 weather 

2014 16 Oil price crisis 2014.06-2015.01 energy 
2015 17 Stock market selloff (initially began in China) 2015.06.12-08.26 finance 

2018 18 
2018 cryptocurrency crash-Bitcoin ultimately fell by 

approximately 65% 
2018.01-02 finance 

2019 19 Covid hits China 2019.12.31 covid-19 
2021 20 Covid-19 pandemic started 2021.03-2022.12 covid-19 

 

Repeatedly, the return connectedness can be observed in Figure 3, the dynamic connectedness of 

return network changes considerably over time, especially from 2015 to mid-2016 and following the 

Covid-19 outbreak, which is suggests that fact that the spillovers across carbon markets are time-

dependent.  

 
21  levels of fine particle pollution in Shijiazhuang, capital of northern Hebei province, hit 1,000 micrograms per 
cubic meter—40 times the WHO standard, in December 2016.  
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The first peak occurred in March 2015 (return spillovers jumped instantly, rising from 9.07% to 

21.88%), when the Chinese government shut down the last coal-fired power facilities in inner Beijing 

as part of a national trend to shut down over 2,000 coal-fired power facilities by 2015 (Event 2). Coal 

power plants were the most important participants in Hubei carbon markets. Changes in TCI indicate 

that phasing them out impacts China's carbon markets, which, in turn, affects international carbon 

markets, given China’s dominant role in global carbon emissions. The second peak is associated with 

Event 17, the global stock market selloff in the second half of 2015. Notably, the stock market crashes 

initially began in China, resulting in abnormal fluctuations in the world's economies. The return TCI 

went up to the second peak and remained at around 19%. The third peak of return TCI occurs along 

with Event 12, when the Global Land-Ocean Temperature Index surged from January to February 

201622. Fourth and, highest connectedness is associated with the Covid-19 outburst and sparking fears 

of the lockdown policies all over the world (Event 20). March 2020, the return spillovers jump from 

7.09% to 35.74%, global carbon market spillovers reached the highest point so far.  

It is worth to notice three moderate intensifications in the return connectedness starting from Dec 

2016, Jul 2017, and Aug 2018 respectively, coinciding several extreme weather events (Events 13, 14, 

and 15). Elevated concerns about global warming and decarbonisation have led the TCI to an respond. 

Two other carbon markets events (Events 9 and 11) have caused the index to small spikes. In June 

2019, the HB ETS experienced a huge price spike, causing volatility in its return series (see Figure 1, 

Panel D). A reasonable explanation is that the compliance period of China's pilot ETS is in June, and 

the price of the Hubei carbon market surged due to unusual activity of participant enterprises trading 

for compliance before the end of the compliance year. This unusual movement led to spikes in both 

return and volatility TCIs. Moreover, China launched its national ETS in July 2021, taking 34 power 

entities away from Hubei ETS at its opening, which caused a loss in allowances demand, and a decrease 

in the trading volume of emission allowances in Hubei ETS. The results were not surprising in a sense 

that the national ETS has a higher priority since launched, its existence will inevitably reduce the size, 

as well as reduce the liquidity of pilot ETS and weaken its influence. Carbon market regulation changes 

might alter investment decisions, resulting in market return changes. For instance, the decreased 

market threshold incentivizes institutional and individual investors to participate in carbon trading.  

 

 

 
22 NASA recorded that the average global surface temperature in February 2016 was 1.35C warmer than the average 
for the month between 1951-1980. Sourced by NASA, retrieved from https://data.giss.nasa.gov/gistemp/.  

https://data.giss.nasa.gov/gistemp/
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Figure 3: Dynamic total return connectedness 

 

Figure 4: Dynamic total volatility connectedness 

 

The volatility TCI, shown in Figure 4, jumps in a different pattern. A slight upward moves in volatility 

total connectedness from the September 2014 to January 2015 period reflects the effects of continued 

crude oil price crises(2014-2016). We observe that the first peak (TCI=17.31%) of carbon market 

volatility connectedness index occurred at the troughs ($44.08 a barrel in January 2015) of the crude 

oil price (Event 16). From Figure 4, it appears that the dependence between the markets increases with 
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the decreasing petroleum prices, from September 2014 to January 2015, which in turn results in lower 

market risk in the carbon market volatility network. Akyildirim et al. (2022)’s analysis of global energy 

market connectedness index also shows an increase from October 2014 to January 2015, this suggests 

that the carbon and energy market connectedness indices share the same features during global oil 

price crisis.  

During 2016 and 2020, the volatility spillover index moves up and down. The fluctuation of carbon 

market volatility the spillover index can be the joint consequences of extreme weather events in which 

booming the awareness of global warming (Event 12 - 15), cryptocurrency crash (Event 18),  and 

uncertainty brough by Covid-19 in China (Event 19). Noticeably, an instant upward move from 9.66% 

to 17.15% is witnessed following COP 25 (Event 6), however in December 2019 when Switzerland quit 

EU ETS, as well as Covid-19 first hit China, the index fall again. In March 2020, an extraordinary shift 

occurred when the Covid-19 virus began spreading globally: volatility TCI rose from 14.55% to 35.69%. 

Following the Covid-19 outbreak (Event 20), the total risk in the ETS markets, as measured by the TCI 

level, reached historic highs, owing to the quick and furious reaction to growing uncertainty at both 

the individual and national level. The unprecedented increase in the TCI as a result of the Covid 

outbreak is supported by other studies in energy markets (e.g., Akyildirim et al., 2022; Bouri et al., 

2021; Tiwari et al., 2022).  

Our findings also suggest that global negotiations and other political issues (e.g., Events 1, 3, 4, and 5) 

and carbon market events (Event 7 -11) have only a minor impact on the level of connectedness. Their 

impacts are far less than that of the energy or financial crises, and Covid-19 outbreak. In particular, 

the return spillover index (TCI) is less influenced by the global crude oil crises during mid-2014 and 

early 2015, but more so by financial market crashes and extreme weather events (e.g., Event 12-15, ). 

The volatility spillovers, on the other hand, seem mostly impacted by the crude oil crisis and 

cryptocurrency crash (Event 16, 18). Both return and volatility spillovers are heavily impacted by the 

Covid-19 outburst, which resulted in increasing market risks across carbon market network.  

5.2 Connectedness for ‘From’ and ‘To’ 

In this section, we investigate dynamic spillovers and their directions for each of the ETS’s. In Table 4, 

the time averaged values of To Others, From Others, and Net measures are computed from 𝜙𝜙�𝑖𝑖𝑗𝑗,𝑡𝑡(𝐽𝐽) 

(see Equation (12)). Recall what the diagonal of Table 4 represents the shocks from each of the markets 

themselves, while the upper and lower part of the off diagonal show the spillovers across the markets. 

For example, the EU ETS in the return connectedness analysis (see Table 3 Panel A), has received in 

total of 11.01% shocks from three other markets, 2.88% from NZ ETS, 4.98% from CA CaT, and 3.15% 
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from HB ETS, respectively. On the other hand, EU ETS spilled in total 13.16% to the above three 

markets: 3.46% to NZ ETS, 5.16% to CA CaT, and 4.54% to HB ETS.  

The highest value of the (aggregated) return spillovers from others are for CA CaT (Σ𝑗𝑗≠3𝑎𝑎3𝑗𝑗
𝐽𝐽 =12.41%), 

and the lowest value of the (aggregated) return spillovers from others are for NZ ETS 

(Σ𝑗𝑗≠2𝑎𝑎2𝑗𝑗
𝐽𝐽 =7.97%). In terms of the (aggregated) return spillovers to others, EU ETS and NZ ETS 

remain the highest (Σ𝑖𝑖≠1𝑎𝑎𝑖𝑖1
𝐽𝐽 =13.16%) and the lowest (Σ𝑖𝑖≠2𝑎𝑎𝑖𝑖2

𝐽𝐽 =7.04%). The volatility connectedness 

measures (see Table 4, Panel B) reveals that NZ ETS received 13.96% (aggregated) volatility spillover 

from other three markets. The highest value of spillovers to other markets are for CA CaT (16.67%), 

while HB ETS has taken an aggregated average value of 9.04% spillover. All the numbers shown in 

Table 4 are average aggregated measures. As we wish to show more about the behaviour of return and 

volatility spillovers over time, we also plot the directional evolution through time. Figure 5 and Figure 

6 show the directional return and volatility spillovers from and to four ETS over time.  

All plots in Figure 5, except for HB ETS reveal that there have been marked increases of spillovers from 

other markets right after the Covid-19 outbreak, both for the return and volatility networks. Although 

the average level of connectedness From Others remains 7-13 percentage for the markets, the spillovers 

From Others peaked at almost 50% for EU ETS and CA CaT in March 2020. What is interesting in 

these plots is that general patterns of HB ETS in both return and volatility systems, which have shown 

hardly impacted by the Covid-19 outbreak. Considering that the Covid-19 policies in China are unique 

in terms of the strict lock down, the carbon market movement could not be impacted by the other 

markets in other countries. Furthermore, there is a slight upward trend shown in return (volatility) 

systems of NZ ETS since mid-2017 (mid-2016), showing that delinking NZ ETS to global markets has 

increase the market risks in NZ ETS. 

In terms of the directional spillovers from each of the four to all markets, the EU ETS has the largest 

(aggregated) share of spillovers (13.16%) to all others in the return system while CA CaT has the largest 

(16.67%) to the others in the volatility system. Since March 2020, the return (volatility) spillovers from 

EU ETS and CA CaT to all others reached the unprecedented points, 55.30% (50.86%), and 54.04% 

(69.69%), respectively. There has been a steady decline of return spillovers from HB ETS to the others, 

from approx. 10% to nearly 2%, since mid-2019.  
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Figure 5: Dynamic directional return and volatility spillovers - FROM four markets 

 

 

Note: Panel A1 to A4 in grey colour are from the return connectedness system, Panel B1 to B4 in black 
colour are for the volatility connectedness system. The return series contains 397 observations (each) 
starting from 2 May 2014 to 1 December 2022 while the volatility series contains 398 observations 
(each) starting from 25 April to 1 December 2022. The predictive horizon for the underlying variance 
decomposition is H=10, both are first-ordered VAR (p=1). 
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Figure 6: Dynamic directional return and volatility spillovers – TO four markets 

 

 

Note: Panel A1 to A4 in grey colour are from the return connectedness system, Panel B1 to B4 in black 
colour are for the volatility connectedness system. The return series contains 397 observations (each) 
starting from 2 May 2014 to 1 December 2022 while the volatility series contains 398 observations 
(each) starting from 25 April to 1 December 2022. The predictive horizon for the underlying variance 
decomposition is H=10, both are first-ordered VAR (p=1). 
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Figure 7: Net return and volatility spillovers - four markets 

 

 

Note: Panel A1 to A4 in grey colour are from the return connectedness system, Panel B1 to B4 in black 
colour are for the volatility connectedness system. The return series contains 397 observations (each) 
starting from 2 May 2014 to 1 December 2022 while the volatility series contains 398 observations 
(each) starting from 25 April to 1 December 2022. The predictive horizon for the underlying variance 
decomposition is H=10, both are first-ordered VAR (p=1). 
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5.3 Net total connectedness 

Net total directional connectedness (see Equation (16)) calculated by subtracting total directional 

connectedness to others (Ci←j,t(J)) from total directional connectedness from others (Ci→j,t(J)). Given 

that a net positive (negative) value in the last row of Table 4 means that the market (from one of the 

four columns) is a net transmitter (receiver) of the shocks, hence, leading (being led by) the network. 

Therefore, the results shown in the rows Net Total in panels A and B of Table 4 point at the difference 

between the transmitting and the receiving shocks of each markets considering the entire network. 

Note that positive values in Figure 7 indicate periods when a specific carbon market acts as a net-

transmitter, whilst negative values indicate the period when one of the markets receives, on net terms, 

from all others. 

Table 4 suggests that EU ETS is the largest transmitter (2.14%) while NZ ETS is the largest receiver (-

0.93%) in the return connectedness systems. Notably, the EU ETS is the only return spillovers 

transmitter, confirmed by the positive value shown at the bottom of Table 4 Panel A. In terms of the 

volatility connectedness system, CA CaT is the largest transmitter (1.35%), followed by EU ETS 

(0.86%), while NZ ETS is again the largest receiver (-2.76%). NZ ETS has the least and only negative 

value in the last row – Net Total, which means all other three markets are identified as volatility 

transmitters, while NZ ETS receives more spillovers from the system than it transmits. Figure 7 

displays the evolution of net return and volatility spillover of the four ETSs. An inspection of Figure 7 

leads to several concise conclusions:  

(i) the EU ETS is persistently transmitting shocks to others (with few exceptions) in the return 

connectedness system, leading to a result that EU ETS has a persistent net-transmitting role. The 

phenomena could be explained by the maturity of the market performance and the market size (in 

terms of total participants, price, and revenues) of the EU ETS. The result is in line with the findings 

of Borghesi and Montini (2016) who suggest that EU ETS is the driver of international ETS and 

considered as the prototype system. 

(ii) In terms of volatility net total spillovers, what stands out in Figure 7, is the spike of 39.5% on 13 

December 2019 of the Net total spillovers of NZ ETS. Albeit NZ ETS is a net receiver in the aggregated 

level, in December 2019 it was leading the network in the short-term. This discovery matches the 

volatility jumps (from 1.72 to 47.81%) in New Zealand ETS's volatility series (see. Figure 2), where the 

market volatility was substantially impacted by Covid-19 when it first hit China.  

(iii) After Covid-19 outbreak, the CA CaT became a net transmitter while the NZ ETS and HB ETS 

remained in their roles as shocks receiver in systems. Ca CaT and EU ETS share several similarities, 
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for example, they are both structured upon three compliance phases, sector coverage is similar, as well 

as the market threshold of EU ETS and CA CaT are evidently higher than those in the other two, which 

means their participants are larger in scale, hence, less vulnerable to public crisis. Moreover, both EU 

ETS and CA CaT allow the use of other project based GHG emission offset programs, while NZ and 

HB ETS are relatively isolated markets  (Hua and Dong, 2019; Leining et al., 2020; Zhang, 2015). 

6. Conclusion 

This paper studies the connectedness among four Emission Trading Schemes: the EU ETS, New 

Zealand ETS, California's Cap-and-Trade, and Hubei ETS, from 2014 to 2021. Our examined sample 

period (2014-2021) covers a wide range of events, for example, the stock market crashes, global climate 

change negotiations, political events, carbon market regulation, and the Covid-19 outburst. Given the 

effects of increasing clean technology adoption, improving emission market efficiency, and the organic 

growth of linkages between ETS systems, the spillover effects among our four markets may be affected 

during the sample period. To find out, we employ a time-varying parameter (TVP)-VAR methodology 

to measure the connectedness along the four markets. This method extends Diebold and Yilmaz's 

(2009, 2012) connectedness approach by improving the rolling-window VAR, and allows us to 

examine patterns of the average, directional, and net total return (volatility) spillover effects among 

the four ETS schemes. We find that the dynamic connectedness of return and volatility networks 

changes considerably over time, especially during Covid-19 outbreak, this suggests that the fact that 

the spillovers across carbon markets is time-dependent. It shows that the average return (volatility) 

TCI is 10.42% (12.10%), which indicates that the global carbon prices are largely (albeit not completely) 

dependent. Changes in global climate change politics and carbon market reforms appear to have only 

minor impact, whereas the occurrence of energy and financial crises have a substantial effect on TCI 

(both in return and volatility). The EU ETS has a persistent net-transmitting role, it is the largest and 

only transmitter (2.14%) in return connectedness while CA CaT is the largest transmitter in the 

volatility connectedness (1.35%). Ca CaT and EU ETS share several common features regarding their 

resilience. They are both structured upon three compliance phases, e.g., EU ETS (CA CaT) phase one 

2005-2008 (2013-2014), phase two 2008-2012 (2015-2017), phase three 2012-2020 (2018-2020); 

sector coverage is similar, and the market threshold of EU ETS and CA CaT are evidently higher than 

the other two, which means their participants are larger in scale, hence, less vulnerable to public crisis. 

NZ ETS is the largest shock receiver in both the return (-0.93%) and volatility (-2.76%) connectedness 

systems. Furthermore, we establish the spillover patterns From and To. HB ETS have hardly been 

impacted by the Covid-19 outbreak, unlike the other three markets. A likely explanation is that the 

Covid-19 policies in China are unique in terms of the strict lock down, and especially closing the 



  

29 

 

boarder for other countries, the carbon market movement can hardly be impacted by the markets in 

other countries. 

Most studies in the field of carbon markets have focused on the relationship between carbon market 

and energy/financial markets (Ji et al., 2018; Tan et al., 2020; Tiwari et al., 2022). Several studies are 

limited to local/domestic carbon markets (Conrad et al., 2012; Diaz-Rainey and Tulloch, 2018; Lyu, 

2021). To the best of our knowledge, there are only three studies investigating the relationship among 

cross-border/cross-region carbon markets, which are (Guo and Feng, 2021; Lyu, 2021; Mizrach, 2012; 

Wang et al., 2021). No attempt was made to dealt with the directional return and/or volatility spillovers 

(from/to a particular market) across the four countries we examined. This study improves the carbon 

market integration literature by investigating four important emerging cross-border carbon markets 

with the use of a more recent sample period. A novel model, our four-dimensional time varying 

parameter VAR model solves the defects of constant parameters and static analysis of the traditional 

measurement model. Examining such directional dynamics among carbon markets is a prerequisite 

for correlating volatility connectedness to specific market characteristics, events, and regulatory policy. 

From a practical standpoint, the findings are not only relevant to the four selected study regions but 

also globally, as the establishment of ETS and improving market integration among regional markets 

through direct physical interconnections is ongoing globally.  

The results lead to below policy implications. Firstly, strategies to enhance market design might 

involve the introduction of a price floor, market stability reservice, and banking and/or borrowing 

mechanisms in the emerging markets. Learning from our empirical results, a price floor turns out to 

be useful to prevent California’s carbon prices from decreasing/increasing even further during the 

recent Covid-19 crisis. If such mechanisms are not in place, the allowances prices may keep 

falling/increasing and would not reflect the true value of emission allowances. ETS participants, for 

instances the power generators would most likely pass through the carbon cost to end users. Secondly, 

albeit Hubei ETS has the smallest market size compared to the other three in our study, extreme prices 

spike in Hubei ETS, and the launch of China’s national ETS would increase the market risk 

transmission in carbon market networks. Hence, a smooth transmission from China’s pilot ETS to 

national pilots is needed in a sense that the carbon market regulation change might alter investment 

decisions, resulting in market return changes. 

Due to data availability, we only obtained daily closing prices for each ETS, which further constrains 

the volatility series to a weekly frequency since the measure of daily realized volatilities can only be 

calculated by intraday data.  There would therefore seem to be a definite need for high frequency data. 
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In addition, possible future studies in this area would be to include more carbon markets in the panel, 

for example, the South Korea ETS, which is another nationwide ETS in Asia, Regional Greenhouse 

Gas Initiative (RGGI) in north America, and UK ETS that quit EU ETS since Brexit. Another possible 

area of future research would be to investigate the directional spillovers from compliance carbon 

markets to voluntary carbon markets.  
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Appendix A 

Table A1. Descriptive statistics for three volatility measures – three measures of historical volatility 

Panel A: Standard Deviation of Weekly Returns 

Statistic EU ETS NZ ETS CA CaT HB ETS 

N 398 398 398 398 

Min 1.4 0.7 0.8 0.002 

Mean 16.7 7.2 4.8 15.6 

Max 78.9 75.5 57.2 56.4 

St.Dev. 10.1 7.5 5.3 12.5 

Skewness 1.78 4.35 5.72 1.09 

Kurtosis 8.62 29.79 46.14 3.56 

Panel B: Parkinson (1980) 

Min 2.8 0.67 0.65 1.14 

Mean 23.53 10.73 6.86 21.03 

Max 125.39 100.66 127.29 166.78 

St.Dev. 15.83 11.42 9.11 20.42 

Skewness 1.98 3.64 7.70 2.88 

Kurtosis 9.75 20.73 86.83 16.08 

Panel C: Garman and Klass (1980) 

Min 26.04 15.95 28.59 15.64 

Mean 43.70 34.02 33.28 34.81 

Max 153.67 120.33 154.66 197.93 

St.Dev. 14.86 9.66 7.97 21.04 

Skewness 2.53 4.21 10.57 3.56 

Kurtosis 14.42 29.29 145.33 21.62 

 

Source: Own elaboration based on data from Bloomberg, Reuters, and Wind Database. Note: sample 
including carbon price volatility series from EU-ETS, NZ-ETS, CA-CaT, and HB-ETS from April 25, 
2014, to December 1, 2021. The corresponding estimate of the annualized weekly volatility in 

percentage is 𝑆𝑆𝑆𝑆�𝑡𝑡 = 100√52𝑆𝑆𝑆𝑆�𝑡𝑡. 
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 Figure A1. Plots of three volatility measures – St.Dev., Parkinson, and Garman and Klass 

Source: Own elaboration based on data from Bloomberg, Reuters, and Wind Database. Note: sample 
including carbon price volatility series from EU-ETS, NZ-ETS, CA-CaT, and HB-ETS from April 25, 
2014, to December 1, 2021. The corresponding estimate of the annualized weekly volatility in 

percentage is 𝑆𝑆𝑆𝑆�𝑡𝑡 = 100√52𝑆𝑆𝑆𝑆�𝑡𝑡. 

 

Figure A2. Robustness check – total connectedness index from three volatility measure  
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Figure A3. Sensitivity of the Total Connectedness Index to VAR lag structure 

 

Note: The indices were calculated based on the volatilities generated with the first measure (i.e., 𝑆𝑆𝑆𝑆�𝑡𝑡, 
from Equation 18). In the main text we used lag 1 as selected by Schwarz information criterion. Here 
in the robustness check we tried lag 1, lag2, and lag3 in the model (lag 3 was chosen byAkaike 
information criterion) 

 

Figure A4. Sensitivity of the Total Connectedness Index to Forecast Horizon 

 

Note: The indices were calculated based on the volatilities generated with the first measure (i.e., 𝑆𝑆𝑆𝑆�𝑡𝑡, 
from Equation 18). We used VAR (1) for these estimations. 2 to 10-week Horizons are chosen and 
plotted.  
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