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Abstract

Copulas are a convenient tool for modelling dependencies in competing risks models with

multiple spells. This paper introduces several practical extensions to the nested copula model

and focuses on the choice of the hazard model and copula. A simulation study looks at the

relevance of the assumed parametric or semiparametric model for hazard functions, copula

and whether a full or partial maximum likelihood approach is chosen. The results show that

the researcher must be careful which hazard is being specified as similar functional form

assumptions for the subdistribution and cause-specific hazard will lead to differences in es-

timated cumulative incidences. Model selection tests for the choice of the hazard model and

copula are found to provide some guidance for setting up the model. The nice practical prop-

erties and flexibility of the copula model are demonstrated with an application to a large set

of maternity leave periods of mothers after they have given birth to up to their third child.
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1 Introduction

Classical analyses of failure time, duration or time to event data assume a random sample of

observations. Non-observation of the failure time is often assumed to be the result of independent

censoring, such as end of observation period. These assumptions may be incorrect when the

same unit generates more than one observed duration and if there are multiple causes of failure

or competing risks. Risk and spell dependencies can be conveniently modelled with the help

of a copula structure. Copula models for risk dependencies have been introduced by Carrièrre

(1994), Zheng and Klein (1995) and Rivest and Wells (2001). Various extensions to models with

truncation, covariates and multiple risks have been suggested by de Uña-Álvarez and Veraverbeke

(2017), Braekers and Veraverbeke (2005), Lo and Wilke (2010, 2014) and Ha et al. (2019) among

others. For an extensive treatment of copula modelling with dependent risks see Emura et al.

(2019). A nested copula model that allows for additional dependencies between multiple spells or

repeated occurrences has been suggested by Lo, Mammen and Wilke (2020). This paper bases on

the latter model and introduces several practically relevant extensions such as additional model

components that vary across multiple spells and flexible specifications of the hazard model. The

piecewise constant hazard model (Colvert and Boardman, 1976; Lancaster, 1990) is a popular,

because flexible model for the marginal hazard in applications. By dividing the time axis into

fixed intervals, it is capable of approximating unknown hazard functions by a sequence of constants

when intervals are short enough. Despite its flexibility it is a parametric model and is conveniently

estimated by maximum likelihood. Although this modelling approach has gained some popularity

for the marginal hazard function, the equivalent for the cause-specific hazard (Lawless, 2003) has

not been adopted frequently (prominent exceptions are Craiu and Duchesne, 2004; Craiu and Lee,

2005; Kyyrä, 2009). The standard route in applied research is to specify the related subdistribution

hazard by assuming a semiparametric proportional hazard model (Fine and Gray, 1999). This

model is implemented in the main statistical packages and has a Google citation count of more than

8,500. There are therefore three different hazard functions that can be modelled in an application:

the marginal hazard, the cause-specific hazard and the subdistribution hazard. The link between

them is elaborated in detail in Emura et al. (2020). While the marginal hazard can only be

identified under strong and non-testable additional restrictions on the model, the cause-specific

and subdistribution hazard are identified and can be more easily estimated. As pointed out by

Bakoyannis and Touloumi (2012), the latter two can be used to estimate cumulative incidence

curves but the interpretation of the subdistribution hazard is less natural than the cause-specific

hazard. Therefore, for an applied analysis it is more intuitive to work with the latter.

This paper extensively studies practical properties of the copula model, including finite sample

performance and applicability to large data. While previous numerical analyses had an illustrative
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nature and were restricted to simple parametric examples with time constant covariates, little is

known how the nested copula model performs in wider settings with more flexibility in the model.

This includes the setting when model components are allowed to change over multiple spells, the

choice of the hazard function or copula. It is shown that specifying similar proportional hazards

models for the cause-specific and subdistribution hazard can give substantially different estimates

for cumulative incidences. It therefore confirms the findings of Beyersmann et al. (2009) in a

more general setting with multiple spells. As an addition to the literature (e.g. Beyersmann et

al., 2009; Bakoyannis and Touloumi, 2012; Emura et al., 2020), we show that modelling the cause-

specific hazard is compatible with a richer pattern of covariate effects on cumulative incidences,

in particular that the effect can have opposite directions at different durations. We present di-

rect comparisons of different hazard models and comparative numerical analyses by simulating

a competing risks model with multiple spells and partly spell varying regressors. The analysis

also includes a comparison of the performance of a partial maximum likelihood approach that

omits spell dependencies and a full maximum likelihood approach. Additionally, the numerical

behaviour of model selection tests for non-nested models (Vuong, 1989) is analysed, which include

the choice of the functional form of the conditional hazard or the copula. Both are important

model ingredients which are typically unknown in applications and, therefore, a data based guid-

ance is preferable. It is also shown with large scale administrative maternity leave data that

the piecewise constant nested copula model gives insightful results in applications that require a

flexible shape of the hazard function due to the existence of mass points. In comparison to the

semiparametric subdistribution hazard model it has the advantage that the baseline cause-specific

hazard has a natural interpretation and can be visually inspected.

In our application we study the out of work duration of females who have given birth to a

child. Fertility rates below reproduction level are a severe threat to the future of a range of highly

developed countries in Eastern Asia, Europe and North America. Particular prominent examples

in Asia are South Korea (Birthrate: 1.0), Hong Kong (1.1), Taiwan (1.2) and Japan (1.4). The

social sciences literature (Waldfogel, 1997, Budig and England, 2001, Gangl and Ziefle, 2009)

blames child bearing and rearing to be a main reason for lower earnings of females compared to

males. In order to substantially increase fertility carefully designed policies are required. These

can only be developed with a profound understanding of the factors why and when mothers return

to the labour market after giving birth. Empirical analyses of maternity leave duration are still

pretty scarce (examples are Fitzenberger et al., 2016; Arntz et al., 2017; Rodrigues and Vergnat,

2019) and restricted to the first child. There is currently no study looking into multiple spells due

to giving birth to more than one child, although this multiple spell setting is the relevant scenario

in order to avoid that a population becomes extinct. Hence, our empirical analysis of maternity
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leave focuses on up to the first three children by applying a range of flexible specifications of the

copula duration model. Our data are linked social security records from Germany and contain in

total maternity leave data from 34,380 mothers. Our results suggest that covariate effects of the

determinants of the length of maternity leave strongly differ across competing risks and multiple

spells. By specifying a flexible model for the hazards, we are able to fit well the data with mass

points at certain durations which are due to the institutional framework.

Sample code for the models that are used in the numerical analysis in this paper can be

downloaded from: https://github.com/ralfawilke/copulamultiplespells

The structure of the paper is as follows. The second section introduces the model. The third

section presents results from simulation studies before the application results are presented in the

fourth section. The last section summarises the main findings and gives ideas for future work.

2 Model

We consider a copula model for multiple spells and multiple risks duration data. To simplify

the notation, we discuss a two-risks-K-spells model. Generalisation to more than two risks is

straightforward by using the risk pooling method (Lo and Wilke, 2010). In our numerical analysis

we restrict the model to K = 3 to reduce complexity for the reasons outlined in Lo et al. (2020).

Let Tjk be the latent duration for risk j in the k-th spell of a unit or agent, with j = 1, 2 and

k = 1, . . . , K. In the competing risks setting, latent durations are not observable, but the minimum

of them, Tk = min{T1k, T2k}, and the risk indicator ∆k = argmin{j : Tjk}. The distribution of the

observed tuples (Tk,∆k) for spell k = 1, . . . , K is described by the cumulative incidence curves

(CIC)

Qj(t;xk,βjk) = Pr(Tk ≤ t,∆k = j|xk,βjk), j = 1, 2, (1)

where xk is a Lk × 1 vector of spell specific observed covariates. In our model the covariates

differ across spells. This could be due to variation of the value but also due to different variables.

βjk are M × 1 vectors of unknown parameters. These include shape parameters of Qj and the

parameters on the covariates. Therefore, this model allows regressors and their parameters to vary

across spells, but covariates are constant within spells. Let T = (T1, . . . , TK)′, ∆ = (∆1, . . . ,∆K)′,

x = (x′1, . . . ,x
′
K)′, βk = (β′1k,β

′
2k)
′ and β = (β′1, . . . ,β

′
K)′.

Let S(t;xk,βk) = Pr(Tk > t|xk,βk) be the overall survival function. By definition,

S(t;xk,βk) = 1−Q1(t;xk,β1k)−Q2(t;xk,β2k). (2)

Identifiability of S(t;xk,βk) follows from identifiability of Qj for j = 1, 2. In order to identify

additional model components, one needs, in addition to Qj for j = 1, 2, an assumed dependence
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structure between competing risks (Zheng and Klein, 1995; Rivest and Wells, 2001). This is

true for both single spell and multiple spells models. Many empirical works with single spell

models restrict their focus on Qj to avoid making intestable assumptions about the dependence

structure (Bakoyannis and Touloumi, 2012). In a multiple spells setting, the additional depen-

dencies stemming from repeated observations also play a role for the joint distribution of dura-

tions, which are required to set up the likelihood. There are therefore two dependencies in our

model: risk dependence and multiple spells dependence, which can both be characterised by a

copula. To model this, we adopt a nested copula structure with the competing risks dependence

as the daughter copula CD and the multiple spells dependence as the mother copula CM . Let

Sjk(tjk;xk) = Pr(Tjk > tjk|xk,βk) be the marginal survival for risk j = 1, 2 in spell k = 1, . . . , K.

For the usual reasons (i.e. copula-graphic estimator), Sjk can be identified under additional re-

strictions as a function of the CICs for the two risks. We therefore write it as a function of the

parameters βk. According to Sklar’s theorem (Sklar, 1959), the joint distribution of two compet-

ing latent durations for the kth spell, i.e. (T1k, T2k), is generated by a unique copula CD(·,θD),

while the joint distribution between all latent durations for all risks and spells is generated by the

unique copula CM(·,θM) which links the joint survival function of two competing latent durations

for the K spells. The nested copula structure for K = 2 is therefore

Pr(T11 > t11, T21 > t21, T12 > t12, T22 > t22|x,β,θD,θM)

= CM{CD[S11(t11;x1,β1), S21(t21;x1,β1);θD], CD[S12(t12;x2,β2), S22(t22;x2,β2);θD];θM}.(3)

The dimension of the copula parameters θD and θM is copula specific and typically 1 or 2.

Without further restrictions on CD, the dependence structure between competing risks, Sjk are

not identified nonparametrically for j = 1, 2 (Lo et al., 2020). While CM is identified, CD cannot

or can only be weakly identified (Emura et al., 2020). We will only use Archimedean copulas

CM and CD in this paper for reasons of practicability, even though the model is compatible with

more general copula structures to some extent. For example, simulating the model without nested

Archimedean copula structure is a nearly impossible task. In this paper we specify Qj and CM

as this does not require non-testable restrictions on CD and Sjk. It is therefore the equivalent of

only studying Qj in the single spell framework as considered by Bakoyannis and Touloumi (2012).

We can therefore leave CD and θD unspecified.

Proposition 1 β and θM in models (1) and (3) are identifiable given observable (T , δ).

This follows directly from the fact that Qj for j = 1, 2 are identifiable from observed data.

Identifiability of θM follows from Proposition 1 in Lo et al. (2020) which can be carried over to

the model in this paper. A proof of Proposition 1 is therefore omitted.
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2.1 Estimation

Estimation of β and θM is by maximum likelihood and bases on the joint distribution of observed

durations and observed failure types. For a random sample of units i of size n, each i has Ki

spells, where Ki is a positive integer that is small in typical applications. Let {tijk, j = 1, 2; k =

1, . . . , Ki} be i = 1, . . . , n independent realisations from model (3). Define tik = min{ti1k, ti2k},
and δik = argmin{j : tijk}. Due to independent right censoring, either (tik, δik) or cik is observed

for all i and k, where censoring time Ck is independent of (Tk,∆k). Let yik = min{tik, cik}, and

ηik = δik × 1I(tik < cik). Hence, ηik = 0 if the k-th spell of unit i is censored, and ηik = δik

otherwise. Let yi = (yi1, · · · , yiKi
), y = (y1, · · · ,yn), ηi = (ηi1, · · · , ηiKi

), and η = (η1, · · · ,ηn).

The observed data are therefore (y,η,x). The unknown parameters β and θM in models (1) and

(3) can be estimated by maximum likelihood. The sample likelihood is

L(β,θM ;y,η,x)

=
n∏
i=1

Li(β,θM ;yi,ηi,xi)

=
n∏
i=1

(−1)Ki
∂KiCM{S(y1;x1,β1), · · · , S(yKi

;xKi
,βKi

);θM}
∂y1 · · · ∂yKi

∣∣∣∣
(y1,··· ,yKi

,x1,··· ,xKi
)=(yi1,··· ,yiKi

,xi1,··· ,xiKi
)

=
n∏
i=1

[
∂KiCM{S(y1;x1·,β1), · · · , S(yKi

;xKi
,βKi

);θM}
∂S(y1;x1,β1) · · · ∂S(yKi

;xKi
,βKi

)

∣∣∣∣
(y1,··· ,yKi

,x1,··· ,xKi
)=(yi1,··· ,yiKi

,xi1,··· ,xiKi
)

×
Ki∏
k=1

{
q1(yik;xik,β1k)

(2−ηik)q2(yik;xik,β2k)
(ηik−1)

}1I{ηik>0}
S(yik;xik,βk)

1I{ηik=0}

]
(4)

with S(yk;xk,βk) = CD[S1k(yk;xk,βk), S2k(yk;xk,βk);θD] and qj(tk;xk,βjk) = ∂Qj(tk;xk,βjk)/∂tk.

Because CD and θD are unknown, these components are partialed out of the likelihood by mod-

elling the distribution of observable yk. After taking the logarithm, the log likelihood lnLi for unit

i consists of two additive parts

lnLi = lnL1i(β,θM ;yi,xi) + lnL2i(β;yi,ηi,xi)

with

lnL1i(β,θM ;yi,xi)

= ln

{
∂KiCM{S(y1;x1,β1), · · · , S(yKi

;xKi
,βKi

);θM}
∂S(y1;x1,β1) · · · ∂S(yKi

;xKi
,βKi

)

∣∣∣∣ }
(y1,··· ,yKi

,x1,··· ,xKi
)=(yi1,··· ,yiKi

,xi1,··· ,xiKi
)

(5)
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and

lnL2i(β;yi,ηi,xi)

=

Ki∑
k=1

{
(2− ηik)1I{ηik > 0}lnq1(yik;xik,β1k) + (ηik − 1)1I{ηik > 0}lnq2(yik;xik,β2k)

+1I{ηik = 0}lnS(yik;xik,βk)

}
. (6)

The model can be estimated by means of different approaches. L2i is a function of β only.

Therefore, β can be consistently estimated by maximising lnL2i using partial likelihood. By

only maximising lnL2i, the dependence structure between spells is ignored. This comes down to

partial maximum likelihood by pooling all spells from all units and applying a usual single spell

model. But lnL2i only corresponds to the full likelihood if the multiple spells are independent,

as lnL1i is zero for all i in the case of independence copula. In presence of spell dependencies,

this approach is still consistent but inefficient and leads the information matrix equality to fail.

In consequence, the usual MLE inference is invalid. Maximising lnL1i and lnL2i jointly is efficient

and the usual MLE inference is valid. In the case the full likelihood is too complicated, it is

also possible to pre-estimate β by maximising lnL2i in a first step and then, in a second step,

maximise lnL1i(β̂,θM ;yi,xi) in θM . This is also less efficient than one-step estimation but gives

an estimate for θM . Joe (2005) shows that there is some loss in efficiency in two-step estimation

of copula models but the loss is not large. In our simulations we compare the performance of

pooled and one-step estimation to check whether ignoring spell dependencies is expected to lead

to considerable loss in efficiency.

2.2 Choices for Qj and CM

There is a wide range of choices for Qj and CM that are compatible with models (1) and (3).

In the following, we list some popular examples. Qj can be directly modelled or is implied by

models for the cause-specific or subdistribution hazards. In addition to parametric models with a

small number of shape parameters, there are more flexible choices such as piecewise constant and

semiparametric models. The cause-specific hazard is

λj(t;xk,βjk) = lim
ε→0

Pr(t ≤ Tk < t+ ε,∆k = j|Tk ≥ t,xk,βjk)/ε. (7)

The cumulative incidence curves and overall survival function can be computed from the cause-

specific hazards as follows:

Qj(t;xk,βjk) =

∫ t

0

λj(s;xk,βjk) exp

[
−
∫ s

0

λ1(u;xk,β1k) + λ2(u;xk,β2k)du

]
ds, (8)

S(t;xk,βk) = exp

[
−
∫ t

0

λ1(s;xk,β1k) + λ2(s;xk,β2k)ds

]
. (9)
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By specifying a functional form for λj, (8) and (9) can be substituted into the likelihood function

(4) to estimate parameters β without directly specifying or modelling Qj. We suggest the following

generalisation of popular single spell parametric models for λj that additionally allow parameters

to be spell specific:

(i) Log-normal accelerated failure time model (LNAFT) with parameters βjk = (νjk, ρjk,γjk),

where νjk ∈ IR+ and ρjk ∈ IR are the risk and spell specific shape or nuisance parameters

and γjk are risk and spell specific parameters on the covariates:

λj(t;xk,βjk) =

1
νjkt

φ
(

ln t−ρjk−x′
kγjk

νjk

)
1− Φ

(
ln t−ρjk−x′

kγjk

νjk

) ; (10)

(ii) Log-logistic proportional odds model (LLPOM) with parameters βjk = (νjk, ρjk,γjk), where

νjk ∈ IR and ρjk ∈ IR+ are again the risk and spell specific shape parameters and γjk are

risk and spell specific parameters on the covariates:

λj(t;xk,βjk) =
νjkρjk(νjkt)

(ρjk−1) exp(x′kγjk)

1 + (νjkt)ρjk exp(x′kγjk)
; (11)

(iii) Odd-rate transformation model with Gompertz cause-specific baseline hazard (ORGOM),

with parameters βjk = (νjk, ρjk, ζjk,γjk), where νjk ∈ IR+ , ρjk ∈ IR+, and ζjk ∈ IR are the

risk and spell specific nuisance parameters and and γjk are risk and spell specific parameters

on the covariates:

λj(t;xk,βjk) =
νjk exp(x′kγjk) exp(ρjkt)

1 + ζjkνjk exp(x′kγjk)(exp(ρjk)− 1)/ρjk
(12)

Another alternative is a proportional piecewise constant (PWCON) model for the cause-specific

hazard functions (7). The idea is here to approximate an arbitrary unknown baseline hazard

λj0(t; ...) as a sequence of constants. The smaller the distance between the grid points, the more

accurate the approximation. Even though the model is parametric, it has a semiparametric Cox

model nature if a fine enough approximation of the unknown baseline is chosen. The model in

the single spell context has been considered by Lawless (2003), Craiu and Duchesne (2004), Craiu

and Lee (2005) and Kyyrä (2009) but has not been equivalently popular as the piecewise constant

model for the marginal hazard. We suggest a generalised version that allows for risk and spell

specific components:

λj(t;xk,βjk) = λj0(t;αjk)φj(xk,γjk), (13)
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where φj(xk,γjk) = exp(x′kγjk) is typically assumed. The baseline cause-specific hazard function

λj0(t;αjk) is modelled as a series of Pj discontinuous horizontal lines:

λj0(t;αjk) =

Pj∑
p=1

αjk,p1I{ajk,p ≤ t < ajk,p+1},where ajk,1 = 0, ajk,Pj+1 =∞ (14)

with unknown parameters αjk = (Pj, αjk,1, · · · , αjk,Pj
, ajk,2, · · · , ajk,Pj

)′ and thus βjk = (αjk,γjk).

Due to the absence of a semiparametric Cox-type proportional hazard model for the cause-

specific hazard, a semiparametric model for the subdistribution hazard is widely used in applied

research. The model by Fine and Gray (1999) is among the most popular analysis models for

competing risks models. The subdistribution hazard is

λsj(t;xk,βjk) = lim
ε→0

Pr(s ≤ Tk < s+ ε,∆k = j|Tk ≥ s ∨ (Tk < s ∧∆k 6= j)/ε.

It has a different conditioning set than the cause-specific hazard and its interpretation is difficult

(Bakoyannis and Touloumi, 2012). However, it is possible to obtain Qj from λsj through

Qj(t;xk,βjk) = 1− exp{−Λs
0j(t) exp(x′kγjk)}, (15)

with Λs
0j(t) is the baseline cumulative subdistribution hazard

Λs
0j(t) =

∫ t

0

λs0j(s) ds. (16)

λs0j(t) is a nonparametric subdistribution baseline hazard and exp(x′kγjk) is the proportional shifter

of the baseline hazard that depends on covariate values. The single spell version of this model is

implemented in main statistical packages such as R and STATA. One can use this implementation

to obtain estimates for Λs
0j(t) and β and therefore Qj. θM can then be estimated in a second

step by maximising likelihood (5) for given γ̂jk and Q̂j. For comparison with the direct models

of the cause-specific hazard, we consider this model in our application. In particular, we consider

whether it matters for empirical results if one specifies the cause-specific or the subdistribution

hazard.

In what follows, we discuss the choice of copula. One popular choice for CM(. . . ;θM) in model

(3) is the family of Archimedean copulas with symmetry property in the sense that all arguments

in the copula function can be interchanged. As a result, the inter-spell dependencies are identical

for any pair of spells. More details about copulas can be found in Nelsen (2006) and Trivedi

and Zimmer (2005). In our numerical analysis we only consider one parameter copulas and we

write θM = θ for simplicity. In this case, there is a 1-1 link between the parameter and Kendall-

τ ∈ [−1, 1], the measure of rank correlation. Given that Kendall-τ has a clearer interpretation,

we consider it in our numerical analysis, where we work with the following popular Archimedean

copulas:
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(i) Clayton copula, with θ > 0:

C(s1, · · · , sk; θ) = (s−θ1 + · · ·+ s−θk − (k − 1))−1/θ. (17)

Kendall-τ = θ/(θ+ 2). Thus, τ > 0 and in a limiting case where θ → 0, the Clayton copula

becomes an independence copula with τ → 0. The Clayton copula has asymmetric tail

dependence with strong dependence in the left tail, while weak dependence in the right tail.

The Clayton copula is therefore best suited for applications in which repeated durations are

likely to experience low values together, while there is no relationship for long durations.

(ii) Frank copula, with θ ∈ IR\{0}:

C(s1, · · · , sk; θ) = −1

θ
ln

[
(exp(−θs1)− 1) · · · (exp(−θsk)− 1)

(exp(−θ)− 1)k−1
+ 1

]
. (18)

For θ = 0, it reduces to the independence copula with Kendall-τ = 0. The tail dependence of

the Frank copula is symmetric with stronger dependence in the centre and weaker dependence

at the tails. The Frank copula is therefore suitable in applications in which tail dependence

is weaker.

(iii) Gumbel copula with θ ≥ 1:

C(s1, · · · , sk; θ) = exp
[
−
{

(− ln s1)
θ + · · ·+ (− ln sk)

θ
}1/θ]

. (19)

Kendall-τ = 1 − 1/θ. Thus, τ > 0. The Gumbel copula has asymmetric tail dependence,

with stronger right tail dependence and weaker left tail dependence.

The choice of copula is ideally motivated by some knowledge or hypothesis about the dependence

structure. The evidence based on simulations in Lo et al. (2020) suggests that the choice of

Archimedean copula plays only a limited role for the estimated marginal survival curves. A

generalisation of the dependence structure to asymmetric dependencies that allow dependencies

to be pairwise different between multiple spells has been suggested in Lo et al. (2020) but more

general identification results are still to be developed.

2.3 Model selection test

In the case Qj or CM are unknown in an application, one can use the following model selection

test to reject models. The classical likelihood ratio tests cannot be conducted because the different

specifications of Qj or CM lead to non-nested models. An inference approach for non-nested model

selection tests has been introduced by Vuong (1989). The test statistic is

V =
n−1

∑n
i=1[lnL

∗∗
i (β,θ;yi,ηi,xi)− lnL∗i (β,θ;yi,ηi,xi)]

{n−1
∑n

i=1[lnL
∗∗
i (β,θ;yi,ηi,xi)− lnL∗i (β,θ;yi,ηi,xi)]

2}1/2 /
√
n
, (20)
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with L∗∗ is the likelihood function for the tested model while L∗ is that for the alternative model. V

is asymptotically standard normal distributed under the null hypothesis that E(lnL∗) = E(lnL∗∗).

It is important to mention that the test bases on a quasi-maximum likelihood approach and for

the statistic to be normal it is required that both models compared are incorrectly specified. It

is therefore not possible to find the true model with this test but only to reject models with a

greater degree of misspecification. In this paper we apply this test for the first time in the context

of copula duration models as a model selection tool.

2.4 Interpretability and Partial Effects

Depending on the chosen model for λj, λ
s
j and CM , the parameters obtained by maximising

the likelihood (4) have different interpretations. It is therefore indispensable to consider unified

measures to compare results across models. Besides from comparing the estimated Qj, we also

consider by how much the estimated partial covariate effects differ. This is by how much the

cumulative incidence increases or decreases in response to a change in one variate xl in spell k

holding all other variables constant, i.e. Q′jkl(t;xk,βjk) = ∂Qj(t;xk,βjk)/∂xkl for a continuous xl.

These partial effects are of key interest in applications but unfortunately, they are complicated and

not just the relevant parameter βjkl (Kyyrä, 2009). In fact, not even the sign of βjkl determines

the direction of the partial effect and the sign of the partial effect can change with t.

Proposition 2 It is possible that there exist t1 6= t2 such that signQ′jkl(t1;xk,βjk) 6= signQ′jkl(t2;xk,βjk)

for some j = 1, 2, k = 1, . . . , K and l = 1, . . . , Lk.

For a proof of the proposition see the Appendix. Whether there is a change in the sign of the

covariate effect as duration increases depends on the chosen model for Qj, its parameters and

the covariate. The result complements the observation by Kyrrä (2009) that the direction of the

partial effect is not unique for all t when a PWCON model for the cause-specific hazard functions

is used. There are, however, models for which the direction of the partial effect is the same for all

t. A prominent example is the semiparametric model for the subdistribution hazard by Fine and

Gray (1999) for which

Q′jkl(t;xk,βjk) = (Qj(t;xk,βjk)− 1) ln(1−Qj(t;xk,βjk))βjkl.

Thus, in this model the magnitude of the partial effect varies with t but its direction is determined

by the sign of βjkl for all t. This model therefore restricts more strongly the partial effects than

flexible proportional hazard models for the cause-specific hazard, including the PWCON model.

Our data analysis in Section 4 presents examples for this.
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3 Simulations

We conduct a simulation study to investigate the finite sample performance of the models de-

scribed in Section 2. Previous simulations in Lo et al. (2020) are for a simplified model without

regressors and spell-varying model components, and are limited to parametric models. Monte

Carlo evidences for parametric and semiparametric models with regressors can be found in Lo and

Wilke (2014) but are restricted to the single spell model and therefore non-nested copula struc-

ture. In our simulations we consider a generalised simulation design with nested copula structure

and spell-varying covariates xk and their parameters. The simulation procedure is described in

the Supplementary Material S.I. In addition to parametric models for the cause-specific hazard,

we study the behaviour of a flexible piecewise constant cause-specific hazard model and compare

it to the well-known semiparametric proportional hazard model for the subdistribution (Fine and

Gray, 1999). The latter allows us to investigate whether it matters in practice which type of

hazard function is being modelled and estimated. For the cumulative incidences, we estimate Qj

and partial covariate effects on Qj. For the copula parameters, we estimate the Kendall-τ for

the copula CM , which is written as τM for simplicity. We do not estimate the Kendall-τ for the

copula CD, but this parameter is involved in the data generating process (DGP) and thus is used

to simulate the model, so we write it as τD to distinguish it from τM .

We draw a random sample with n = 2, 000 units, where 50% have Ki = 1, 25% have Ki = 2 and

the rest have Ki = 3. Ki is random for all i. The pooled sample therefore consists of m = 3, 500

spells. In all simulation designs, we draw data from a known two-risks model with log-normal

accelerated failure time cause-specific hazards and the Frank copula for both CD and CM . We

simulate two binary xk = (xk1, xk2), where xkl = {0, 1} with Pr(xkl = 1) = 0.5 for k = 1, 2, 3

and l = 1, 2. Among them, xk1 does not change across spells, while xk2 can be different for each

spell, i.e. x11 = x21 = x31 and this restriction does not hold for xk2. We sample 500 times. The

parameters of the data generating process are given in Table 1.

We assess the performance of the estimates for τM , Qj and partial covariate effects on Qj

by computing their (average) squared bias and (average) mean squared error. For the partial

covariate effects, we consider the partial effect of a discrete change in xk1 and xk2 on Qj, where

dQjd1(t;xk,βjk) = Qj(t;xk1 = 1, xk2 = 0,βjk)−Qj(t;xk1 = 0, xk2 = 0,βjk),

dQjd2(t;xk,βjk) = Qj(t;xk1 = 0, xk2 = 1,βjk)−Qj(t;xk1 = 0, xk2 = 0,βjk).

While the squared bias and the mean squared error are obvious to compute for τ̂M , the measures

for Q̂j and partial effects vary in t. For the latter we therefore consider the average squared bias
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(ASB) and average mean squared error (AMSE) over t for the reference unit xk = (0, 0) which are

ASB(Q̂j) =
1

G

G∑
g=1

(
E[Q̂j(tg;xk, β̂jk)−Qj(tg;xk,βjk)]

)2
,

AMSE(Q̂j) =
1

G

G∑
g=1

E[(Q̂j(tg;xk, β̂jk)−Qj(tg;xk,βjk))
2]

for risks j = 1, 2 and spells k = 1, 2, 3, where tg = t1, . . . , tG are grid points on the support of T

with G = 3, 500. We estimate the expected values by taking the average over the resulting 500

estimates. As Qj partly varies across models due to different data generating processes, the ASB

and AMSE should be related to their magnitude for comparability. We therefore also consider

a relative AMSE (RAMSE) which has a percentage interpretation. It is obtained by dividing

AMSE(Q̂j) by Q̄j = 1
G

∑G
g=1E[Qj(tg;xk,βjk)]. It is zero if the AMSE was zero and it is one if

the AMSE had the same value as Q̄j. For the partial covariate effects, we replace Qj(tg;xk,βjk)

with dQjdl(tg;xk,βjk).

In what follows, we examine model performance when, first, the cumulative incidence is mis-

specified, second, CM is misspecified, and third, coefficients of covariates vary across spells. For

now, we study the performance of the model when the cumulative incidence is misspecified when

assuming the correct CM . The models for the cause-specific hazard λj comprise the log-normal

accelerated failure time model (LNAFT), the log-logistic proportional odds model (LLPOM), the

odd-rate transformation model with Gompertz cause-specific baseline hazard (ORGOM), and the

model with piecewise constant cause-specific hazard (PWCON). This is complemented by the

semiparametric proportional hazard model for the subdistribution hazard (semiparametric PH).

We present the results for 6 different estimated models. The estimated models are as follows:

Model 1 is correctly specified. Models 2-5 have misspecified Qj. Model 4 uses the flexible piece-

wise constant cause-specific hazard model with 15 intervals for each risk. Model 5 is a two-step

approach as described in Section 2, where the first step is a partial MLE (PMLE) with Qj implied

by the semiparametric proportional hazard model (Fine and Gray, 1999), and the second step is

estimating τM by maximising likelihood (5) given Q̂j. Model 6 is a partial MLE with the correct

model for Qj that only maximises (6) and therefore does not estimate τM . It is to analyse by

how much efficiency is affected when a part of the likelihood is ignored in the estimation. In this

simulation design the parameters do not change across spells, i.e. βj1 = βj2 = βj3 and for this

reason we remove k in this setup.

Table 1 shows the results for all models. Models 1-3, the first three parametric models, includ-

ing the correctly specified model, do a good job in estimating cumulative incidences, partial effects,

and the dependence structure. While all measures are low, the correctly specified model performs

best as expected. The similar performance of the three models can be explained by the fact that
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the underlying true parametric functions are smooth and regular and can be well approximated

by the misspecified models. The performance of Model 4 is worse than Models 1-3 but not far

off. Given that Model 4 works under very mild parametric restrictions, it is able to approximate

hazards without knowing their exact functional forms, and provide an accurate estimate for the

degree of spell dependence. Model 5 also provides an accurate estimate for the degree of spell

dependence. However, despite that it is even more flexible than Model 4, it results in larger ASB

and AMSE for Q̂j and d̂Qjdl. This can be explained by the fact that the assumed restrictions

on the role of covariates, i.e. proportional hazards, are for the subdistribution hazards and not

cause-specific hazards. Making the same restriction on the two different hazards is not compatible

with the same Qj and in our simulation design this makes the results for Model 5 worse. Figure

1 presents the mean of the estimated functionals for Models 1-5 and compares them to the data

generating process. For models 1-5 we plot the average of estimates over the 500 simulations

against time. We find that Model 1 with the correct specification overlaps with the true model for

all cumulative incidences and partial effects. Models 2-3 follow the true model closely, but not as

good as Model 1. Models 4-5 follow the shape of the true model to some extent, but their estimates

are further away from the true values compared to Models 1-3. Inspecting in more detail, Model

4 and Model 5 are close to each other for shorter durations, and for longer durations Model 4 is

closer to the true model than Model 5, which makes Model 4 usually outperform Model 5. In fact,

we can largely control the performance of the piecewise constant model by adjusting the intervals.

To show this more clearly, we estimate three piecewise constant models using different number

of intervals, which is 7, 12, 15 for M1, M2 and M3, respectively. We show the bias and mean

squared error related measures for the three models in Table S1, and the comparison of the three

models with the true data generating process and semiparametric PH model in Figure S1 in the

Supplementary Material S.II. The performance increases a lot from PWCON M1 to PWCON M2,

yet not much from PWCON M2 to PWCON M3. In general, we find that the finer the intervals,

the more closely it follows the true model. In the end, we choose to report PWCON M3 as Model

4 in Table 1.

Model 6 and the first step of Model 5 adopt a partial MLE approach by maximising likelihood

(6) and ignoring the dependence structure. With correctly specified cumulative incidence, Model

6 shows a negligible decrease in efficiency compared with Model 1 that uses the full MLE. We

further add Model 7 in Table S2 in the Supplementary Material S.II, which is a partial MLE for

the PWCON model. It also shows only a small decrease in efficiency compared with Model 4.

These results suggest that the MSE disadvantage of Model 5 is not due to its partial nature. We

investigate the reason for the MSE disadvantage of the semiparametric PH model by simulating

the model without regressors (i.e. all γs are zero). Results are presented in Table S3 in the
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Table 1: Bias and Mean Squared Error related measures for various models with n = 2000 and

m = 3500 for 500 simulated samples. Assumed model features correct unless otherwise stated.

DGP: Frank, LNAFT, ν = (2, 1.5), ρ = (0.5, 2), γ1 = (−2, 2), γ2 = (4,−4), τM = τD = 0.3

Model 1 2 3

Assumed correct LLPOM ORGOM

(A)SB (A)MSE RAMSE (A)SB (A)MSE RAMSE (A)SB (A)MSE RAMSE

τ̂M 0.0000 0.0002 0.0000 0.0003 0.0000 0.0002

Q̂1 0.0000 0.0001 0.04% 0.0001 0.0002 0.07% 0.0001 0.0002 0.07%

d̂Q1d1 0.0000 0.0001 0.04% 0.0002 0.0003 0.10% 0.0001 0.0002 0.08%

d̂Q1d2 0.0000 0.0002 0.06% 0.0003 0.0005 0.16% 0.0004 0.0006 0.21%

Q̂2 0.0000 0.0000 0.07% 0.0000 0.0001 0.09% 0.0001 0.0001 0.22%

d̂Q2d1 0.0000 0.0001 0.02% 0.0001 0.0002 0.04% 0.0001 0.0003 0.04%

d̂Q2d2 0.0000 0.0000 0.07% 0.0000 0.0001 0.09% 0.0001 0.0001 0.21%

Model 4 5 6

Assumed PWCON Semiparametric PH PMLE

(A)SB (A)MSE RAMSE (A)SB (A)MSE RAMSE (A)SB (A)MSE RAMSE

τ̂M 0.0001 0.0004 0.0001 0.0005

Q̂1 0.0005 0.0006 0.21% 0.0042 0.0043 1.45% 0.0000 0.0001 0.04%

d̂Q1d1 0.0019 0.0020 0.72% 0.0150 0.0151 5.43% 0.0000 0.0001 0.04%

d̂Q1d2 0.0036 0.0038 1.29% 0.0101 0.0102 3.42% 0.0000 0.0002 0.07%

Q̂2 0.0006 0.0006 0.98% 0.0009 0.0009 1.41% 0.0000 0.0000 0.07%

d̂Q2d1 0.0043 0.0045 0.74% 0.0033 0.0036 0.59% 0.0000 0.0001 0.02%

d̂Q2d2 0.0005 0.0005 0.83% 0.0007 0.0007 1.16% 0.0000 0.0000 0.07%
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Figure 1: Comparison of Models 1–5 with the true DGP.

Supplementary Material S.II and show that the semiparametric PH model performs as good as

the other parametric models. This provides evidence that the disadvantage of Model 5 in Table 1

comes from misspecification of the functional form for the role of regressors, leading to systematic

bias of estimated Qj and partial covariate effects. In addition, we find that the performance of

PWCON is also better in Table S3 than in Table 1, suggesting that PWCON also suffers from

misspecification of the functional form of the role of regressors, but the bias is smaller. The similar

performance of Model 1 and Model 6 suggests that ignoring the dependence structure does not

affect the estimation of cumulative incidences to a large extent. To see how robust this finding is,

we simulate another model with a stronger dependence using a larger τM and τD for comparison.

The estimation results in Table S4 in the Supplementary Material S.II show that differences in

the performance of the two approaches are larger and the performance of the two approaches is

worse when there is a strong dependence.

In the second step, we study the role of misspecifying the dependence structure CM . In the

context of our analysis this is assuming the Clayton or the Gumbel copula when the Frank copula

is correct. The results are reported in Table S5 in the Supplementary Material S.II. Compared

with Table 1, using the Gumbel copula leads to only small increases in ASB and AMSE for τ̂M and

almost no change in Q̂j and d̂Qjdl for the first four parametric models, but for the semiparametric
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PH model, the ASB and AMSE for τ̂M are larger. For the Clayton copula, the ASB and AMSE

for τ̂M are larger than the Gumbel copula for all models, especially for the piecewise constant and

the semiparametric PH model. However, the ASB and AMSE for Q̂j and d̂Qjdl are still almost

unchanged. While misspecification of the cumulative incidence Qj has less effects on τ̂M and more

effects on Q̂j and d̂Qjdl, misspecification of the Archimedean copula CM does not affect the ASB

and AMSE for Q̂j and d̂Qjdl, but affects τ̂M . In general, we find that compared with the Gumbel

copula, the Clayton copula leads to larger ASB and AMSE for τ̂M for all models. In particular,

when we use the semiparametric PH model and a misspecified copula - the Gumbel copula or

the Clayton copula - the ASB and AMSE for τ̂M increase a lot. These results suggest that it is

important not to choose the wrong copula in order to get a good estimate of τM .

We further apply the Vuong test for model selection, regarding the choice of copula and

model for the cumulative incidence curve. Note that the Vuong test is for pairwise comparison of

misspecified models, which means that we cannot include the correctly specified model in the test.

However, by focusing on copula and cumulative incidence separately, we can still infer the best

model out of the test results. That is, we can focus on the choice of copula when we use the same

cumulative incidence, and focus on the choice of cumulative incidence when we use the same copula.

We compute test statistics for pairwise comparisons between the misspecified parametric models,

i.e. Models 2-4 in Table 1 and Models 1-4 and 6-9 in Table S5 in the Supplementary Material S.II.

Each one of these 11 models is compared with the other 10, so in total we obtain 110 values of the

rejection probability. Then, for each model, we calculate the average rejection probability across

the 10 comparisons, so in total we obtain 11 values of average rejection probability. Figure 2 Panel

A shows the average probability of rejecting each model. For the three copulas, the order of average

rejection probability from smallest to largest is Frank, Gumbel, Clayton; and for the four cause-

specific hazards, the order of average rejection probability from smallest to largest is LNAFT,

LLPOM, ORGOM, PWCON. Given that the true model uses the Frank copula and LNAFT

cause-specific hazard, the results suggest that the Vuong test does a good job in model selection.

We further compute the ratio of sample log likelihood values for the two models in comparison. A

ratio larger than 1 suggests that the model is a worse fit in the pairwise comparison. The larger

the ratio, the worse the model performs relative to the other model. We plot the probability of

rejecting a model against the sample log likelihood ratio in Figure 2 Panel B. It shows that the

rejection probability increases with the sample log likelihood ratio, suggesting that a model with

a worse fit is more likely to be rejected in the Vuong test. Overall, we find that the results in

Table 1 and Table S5 correspond well to the results of the Vuong test. For example, the Clayton

copula and piecewise constant model are shown to have larger ASB and AMSE among all copulas

and cumulative incidence curves, and this is well captured by the average rejection probabilities
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of Clayton and PWCON in Figure 2 Panel A.
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Figure 2: Rejection probability of the Vuong test.

In the last step, we study the performance of the models when coefficients of covariates change

across spells. In particular, we set γ11 = (−1, 1), γ21 = (3,−3), γ12 = (−2, 2), γ22 = (4,−4),

γ13 = (−3, 3), γ23 = (5,−5). In such a setting we allow partial covariate effects on cumulative

incidence to differ across spells. We only study the role of misspecifying Qj, as the role of misspec-

ifying CM will be similar to what we have shown before. We estimate Models 1, 2, 4, 5 of Table 1

and show the results in Table S6 in the Supplementary Material S.II. The estimated τM is similar

for the four models, which replicates the findings in Table 1. Because we set the coefficients of

the second spell to be the same as those in Table 1, the performance of Q̂j and d̂Qjdl for the four

models is similar to Table 1 for the second spell. For the first and third spells, the first two para-

metric models still capture the spell-varying partial effects well. However, the ASB and AMSE

of the partial effects for PWCON and the semiparmetric PH model vary across spells. In some

cases, the ASB and AMSE are larger and in some cases are smaller. All in all, the comparison

of the four models is very similar to Table 1, so the presence of spell-varying coefficients does not

much affect previous findings.

4 Application

In this section we present a real world application with maternity leave periods to show the appli-

cability of the model in Section 2. Given the ongoing demographic change with retrogressive birth

rates in most industrialised countries, a better understanding of female behaviour after childbirth

and the interplay with maternal labour supply is key to tackle this problem. Furthermore, empiri-

cally assessing maternity leave duration is of great importance since inactivity after childbirth has

been found to be an important determinant of the gender wage gap (e.g. Waldfogel, 1997; Budig

and England, 2001; Gangl and Ziefle, 2009; Schönberg and Ludsteck, 2007; Beblo et al., 2008).
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It appears intuitive that post maternity leave labour market states and repeated maternity leave

spells are not independent. It is also plausible that the covariate effects may vary across spells.

In addition, biological constraints and incentives set by family policies (job protection periods,

cash benefits during maternity leave etc.) make the distribution of maternity leave durations non

smooth with mass points at certain times after childbirth. Therefore, allowing for nested depen-

dencies between risks and spells and for a flexible shape of the hazard function is well justified for

the analysis of maternity leave.

Duration models have been used for the analysis of maternity leave (Fitzenberger et al., 2016;

Arntz et al., 2017; Rodrigues and Vergnat, 2019). However, these studies only use the first child-

birth and abstract from maternity leave periods of any subsequent child. Our analysis design

bases on Arntz et al. (2017), who study sorting into different exit states after the first mater-

nity leave in Germany. In contrast, we adopt the nested copula model and consider maternity

leaves after birth of the first three children. We use large scale biographical data from Germany

(BASiD) which links administrative records from the German statutory pension insurance scheme

(Rentenversicherung) and the Federal Employment Agency (Bundesagentur für Arbeit). In total,

579,000 individuals are included in the data which constitute a 1% random sample of around

96% of the German population. The dataset contains daily spell information about periods of

employment, training, education and registered unemployment, demographic information (age,

sex, region etc.) and information about birth dates of own children. For more details about the

dataset see Hochfellner et al. (2012). We restrict our sample to females aged 18–45 who gave the

first birth between 1985 and 2005 and who were dependently employed at the time of conception.

This leaves us with 34,380 mothers. We construct maternity leave periods using the birth date of

children and information about various other labour market states. Maternity leave is defined as

any unobserved period after birth until exit into one of the four observable postmaternity states

listed below. There is independent censoring at the end of the data in 2009. In addition, we censor

durations after 50 months, since after this time only few transitions are observed.

For each female, we consider up to three maternity leave periods. Note that 97.3% of the

mothers in our sample have at most three maternity leave periods and 44.4% have more than one.

This means ignoring the 4th or higher spells is only relevant for less than 3% of the mothers.

We use a model with 4 competing risks or post maternity leave states:

1. return to the same employer,

2. start a new job with a different employer,

3. have a next child (new maternity leave period),
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4. enter a different state (education, training, self or minor employment, unemployment and

other).

Table 2 shows exit frequencies by spell. It is apparent that the distribution of observed exit

states varies strongly across spells. For example, while after the first spell, 19% of all mothers

give birth to a next child and only 46% return to the same employer, after the second spell only

5% give birth and 50% return to the same employer.

Table 2: Number and share of spells by exist state.

Spell 1 Spell 2 Spell 3

absolute relative absolute relative absolute relative

Risk 1 - same employer 15,888 0.46 5,024 0.50 438 0.48

Risk 2 - new employer 3,814 0.11 1,240 0.12 123 0.14

Risk 3 - next child 6,569 0.19 544 0.05 32 0.04

Risk 4 - other 5,213 0.15 1,587 0.16 185 0.20

Censored 2,896 0.08 1,645 0.16 133 0.15

Sum 34,380 1.00 10,040 1.00 911 1.00

Notes : Based on German maternity leave data (BASiD).

We first estimate and compare the cumulative incidences for the log-normal accelerated failure

time model (LNAFT), the log-logistic proportional odds model (LLPOM), the piecewise constant

cause-specific hazard model (PWCON) and the semiparametric proportional hazard model (Fine

and Gray, 1999). While the models with the first three cumulative incidences are estimated in

one step by full ML, the model with semiparametric PH is estimated in two steps, with the first

one being partial MLE as described in Section 3. The number and borders of the intervals are

chosen to fit the patterns for observed durations as given in Figure 3, first row. For example,

to well approximate the curve and mass points in panel (a), the interval borders for risk 1 are

0, 3, 5, 8, 11, 14, 20, 23, 26, 35, 38, 44, 50 which results in 12 intervals. Both, number and

borders, can be different across risks. We use the Gumbel copula to model dependencies between

spells because this copula is found to be most suitable as shown below. In the initial model we

restrict parameters on regressors to not vary by spell, even though the regressors themselves are

allowed to do so. Building on Arntz et al. (2017), the following categorical covariates are included:

educational degree (no vocational degree, vocational degree, tertiary degree), living in former East

Germany, age and employment status 10 months before birth (non-employed, part-time employed,

full-time employed with earnings in the lower, middle or upper tercile). Applying the risk pooling

approach (see Lo and Wilke, 2014), we estimate each model three times (for risks 1–3), each time
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for two risks where the first risk is the risk of interest and the second is a pool over all remaining

risks. Since risk 4 consists of aggregated remaining states without clear interpretation, we do not

consider explicit estimates for this risk.

Regression results for all models and risks are given in Table S7 in the Supplementary Material

S.III. Broadly speaking, the estimated parameters indicate that being young, well-earning and/or

from East Germany increases the probability of returning to the same employer, while being

highly educated and/or not well-earning makes transitions into the second exit state, starting

a job with a different employer, more likely. Young women from West Germany have a higher

likelihood of having directly their next child, ceteris paribus. For all risks and models, the Kendall-

τ varies between 0.15 and 0.27 with θ̂ always being highly significant. θ can be interpreted as a

random frailty term due to the presence of omitted variables such as characteristics of the father,

personal attitudes towards child-rearing and gender roles. For instance, being conservative is

likely to prolong the duration before returning to work, and this for all spells. Similar to positive

serial correlation in errors in unobserved effects panel models, the length of spells is expected

to be strongly positively correlated across multiple occurrences. At the same time, being highly

conservative might shorten the length of maternity leave before having a next child, again for all

spells. It is therefore crucial that our model allows for different roles of the covariates across risks

and for dependencies across spells.

Figure 3 visualises the share of females exiting into the respective state after a certain time

after childbirth pooled over the first three spells (histograms, first row). The second row of the

figure depicts the estimated cause-specific hazard functions for the various models and the third

row the according cumulative incidence curves for the reference mother. For all characteristics, the

reference is defined as the most frequently observed value at the first spell. This is West-German,

aged between 24 and 28, has a vocational degree and works full-time with earnings in the second

tercile of the income distribution. The histograms underline the existence and magnitude of mass

points which correspond greatly to biological constraints and economic incentives due to the legal

setup (see Arntz et al., 2017). For example, for risks one and two, a sizeable fraction of females

enters the exit state after 36 months, which is exactly when the job protection period ends since

1992. The share of females having a next child drops sharply around the same time as many

mothers attempt to have the next child within the job protection period of the previous child.

Similar jumps can be found after 8 weeks, 6 months, 12 months and 24 months (when maternity

leave and maternity benefits end). For the third risk, no transitions are observed before the

biological minimum of ten months. The hazard curves portrayed in the second row illustrate

the ability of the piecewise constant model to capture these mass points while the parametric

models fail to do so. This is, though less visible, translated in a worse fit of the cumulative
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Figure 3: Descriptives and estimation results for risks 1–3.

Notes: Rows (2) and (3): the Gumbel copula, spell-constant parameters, evaluated for the refer-

ence mother. Based on German maternity leave data (BASiD).

incidence curves (third row). For the cumulative incidence, the models can be compared to the

semiparametric proportional hazard model by Fine and Gray, which does not impose parametric

restrictions on the subdistribution baseline hazard functions. Overall, all estimated CICs look

similar but there are pronounced differences that stem from the greater flexibility of the piecewise

constant and semiparametric model. In particular, for risks 1 and 3, the flexible estimates suggest

a 5 percentage points higher CIC than the parametric models for some durations. Overall, the

additional flexibility leads to more realistic estimates of the cumulative incidence curves that

reflect the existence of mass points.

As suggested in Section 3, we perform pairwise Vuong tests using the piecewise constant cause-
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specific hazard model to decide which copula captures best the dependence structure between

spells. Table 3 reports the sample log likelihood (LL) and test statistic (V) of the pairwise

comparisons for the different copulas. For each risk, the Gumbel copula has a higher sample log

likelihood than the other two copulas. The Vuong test suggests that the Frank copula and the

Clayton copula should be rejected at p-values that are virtually zero. Hence, we maintain the

Gumbel copula as preferred copula for all subsequent analyses.

Table 3: Log likelihoods and Vuong test statistics for the Gumbel, Frank and Clayton copulas.

Risk 1 Risk 2 Risk 3

LL
V

Gumbel
V

Frank LL
V

Gumbel
V

Frank LL
V

Gumbel
V

Frank

Gumbel -184,015 -175,721 -176,789

Frank -184,340 -13.38 -175,964 -11.04 -177,080 -14.39

Clayton -184,321 -8.89 -1.34 -175,944 -6.50 -1.14 -177,060 -8.34 -1.15

Notes: Piecewise constant cause-specific hazard model (PWCON) with spell-constant param-

eters. Based on German maternity leave data (BASiD).

Next, we use the piecewise constant cumulative incidence curve combined with the Gumbel

copula and allow for spell-varying parameters on regressors. In general, any regressor, both

constant and spell-varying, can have parameters that differ by spell. We report results for a

model with spell-varying parameters on regressors if the parameters were found to significantly

vary across spells. For the other variables we reduce the complexity by using a single parameter

for all spells. Due to how our sample is constructed, there is no first time mother who has

not been employed at time of conception. To avoid multicollinearity, the binary regressor for

non-employment is therefore not included for the first spell. Table S8 in the Supplementary

Material S.III, columns 1 to 3 show the estimated parameters. Since the model with spell-constant

parameters is nested in the model with spell-varying parameters, we conduct likelihood ratio tests

to assess whether the additional parameters play a role in the models. For all risks, the likelihood

ratio test suggests a significant increase in the sample log likelihood when allowing for spell-varying

parameters, see Table 4. Hence, restricting the analysis to the first spell or pooling over multiple

spells is not accurate in our application. On average, the Kendall-τs are higher in this specification,

ranging from 0.17 to 0.31, indicating misspecification in the models with spell-constant parameters.

To better illustrate the effects of the covariates over time, we compute spell specific partial

effects of discrete changes in the regressors on the cumulative incidence curves as described in

Section 3. As baseline we use the cumulative incidence of the reference mother, see above. We

compare the partial effects of our preferred specification (the Gumbel copula, piecewise constant

hazard model with partially spell-varying parameters on regressors) with those obtained for the
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Table 4: Likelihood Ratio Test for model with spell-constant parameters vs. spell-varying parameters.

Risk 1 Risk 2 Risk 3

LL LR stat. (df) LL LR stat. (df) LL LR stat. (df)

spell-constant only -184,015 -175,721 -176,789

spell-varying -182,641 2748 (16) -175,539 364 (17) -176,300 978 (17)

Notes: Piecewise constant cause-specific hazard model (PWCON) with the Gumbel copula. Based

on German maternity leave data (BASiD).

semiparametric proportional hazard model (Fine and Gray, 1999) pooled over spells but partially

including interaction terms of the regressors and the spell indicator (Table S8 in the Supplementary

Material S.III, columns 4-6). Figure 4 shows the partial effects of the employment states ten

months prior to birth on CICs. The reference category is full-time employment in the second

income tercile. Figure S3 in the Supplementary Material S.III illustrates the partial effects of the

other covariates on CICs. Figures S2 and S4 in the Supplementary Material S.III illustrate the

according partial effects of the covariates on the hazard function.

The jumps in the cumulative incidence curve for the reference mother observed above (Figure

3) can also be found for the partial effects. For instance, the increase in the propensity to return

to the same employer due to having worked full-time with high earnings prior to the third birth

jumps from 23 percentage points after 36 months to 27 percentage points after 38 months.

Coefficients vary strongly in size across spells. For all prebirth employment states, the partial

effects on the probability of returning to the same employer tend to increase over spells while

the partial effects on the probability of changing employer decrease over spells (except for high

earnings). Similarly, the partial effects on the propensity to have a next child become smaller with

each spell for all prebirth employment states. For instance, the partial effect of receiving a wage

belonging to the upper tercile on the propensity to have a next child after 36 months is close to

zero after the first birth, -0.10 after the second birth and -0.16 after the third birth.

Even more interestingly, the partial effects also vary in sign across spells. If the mother was

part-time employed before the first birth, she is less likely to stay with the same employer. This

might be because part-time employment before motherhood is often involuntary. The effect is

reversed for the second and third spell: mothers who worked part-time prior to the second and

third birth are more likely to return to the same employer, probably because this work arrangement

is convenient for child-rearing. Mothers working full-time but earning relatively little show less

attachment to the former employer and use the opportunity to change employer after the first

childbirth, maybe in the hope of being better paid. After the second and third birth, however,

changes in employer become less likely, despite low earnings. The reason might be that changing
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Figure 4: Partial effects of employment states ten months prior to birth on CICs.

Notes: The Gumbel copula, spell-varying parameters. (a) worked part-time; (b) worked full-time

with an income in the first income tercile; (c) worked full-time with an income in the third income

tercile. S1 - first spell; S2 - second spell; S3 - third spell. Based on German maternity leave data

(BASiD).

employer is associated with search and transaction costs which mothers of more than one child

cannot or do not want to pay.

The partial effects for the semiparametric PH model and the piecewise constant model partly

diverge. The different underlying hazards (subdistribution hazard and cause-specific hazard) lead

to different implied CICs and to different restrictions on the partial effects. The difference is

often remarkably large. For instance, the difference in the partial effect of earning a high income

on the cumulative incidence for risk 1 is 7 percentage points after 36 months for spell 2 and

15 percentage points for spell 3. Even more worrying, the estimated directions of the effects

sometimes differ: having no vocational training is estimated to increase the cumulative incidence
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of risk 1 for spell 3 in the semiparamteric PH model (+3 percentage points after 36 months),

while it is the opposite in the piecewise constant model (-3 percentage points after 36 months,

see Figure S3 in the Supplementary Material S.III). As pointed out in Section 2, the partial

effects for the piecewise constant model can change direction for different t, while the direction is

unique for the semiparametric model. Although this is not found to happen often, it is present for

example for the effect of part-time work and the third income tercile for risk 2 in the second/third

spell. The differences between models are generally the smallest for the first spells, where the

number of observations is by far the largest, and greatest for the third spell with fewer observed

transitions. Whether the partial effects differ statistically could be investigated by an application

of the bootstrap.

Our results should be of interest to employers and policymakers alike. Employers benefit from

shorter maternity leaves, e.g. limited losses of human capital during inactivity. Therefore, any

variable that increases the cumulative incidence ceteris paribus contributes to a quicker return.

Our results show that in particular those with high wages have a much higher likelihood to return

to the same employer at a given time than those with a middle wage. The partial effect is in

particular pronounced for the second and third spell. The greater probability of returning to a

part-time job in the second and third spell also suggests that better compatibility of work and

family contributes to return.

Since many years policymakers aim at raising birth rates to counter population aging. Our

results confirm the importance of education and wages for having multiple children. Females

without educational degree are less likely to have a next child (-2 percentage points after the first

birth, -4.5 percentage points after the second birth and -6 percentage points after the third birth

after 50 months, see Figure S3 in the Supplementary Material S.III). Low paid mothers are 3

percentage point less likely to have a second child and 13 percentage points less likely to have a

third child (after 50 months). Furthermore, governments might also be interested in shortening

excessive job protection periods to reduce times of female inactivity and to enlarge labour supply.

In the considered German context, this would move the mass points at 36 months to the left and

lead to shorter leave periods. Especially quick transitions into an exit state are observed for females

with a tertiary education degree and for young women. The partial effect of higher education on

risk 1 is large up to month 12 (for risk 2 and 3 up to month 24) and abates thereafter. The same

holds for the partial effect of being aged between 18 and 23 years. Especially long maternity leaves

are observed for those not employed before birth.
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5 Summary and Extensions

This paper studies in detail the nested copula duration model with dependent competing risks

and dependent multiple spells. We suggest various practically useful extensions and analyse finite

sample performance with Monte Carlo studies. The applicability of the model is shown with an

application to large scale maternity leave data. The suggested inference methods can be used to

guide the construction of the model, in particular the choice of copula which is typically unknown.

It is found that a variety of different effects exists for different risks and spells. The suggested

flexible models are able to capture these features and can cope with partly unknown functional

forms of the underlying hazards. The piecewise constant cause-specific hazard model outperforms

the semiparametric proportional hazard model for the subdistribution in the simulations and allows

for richer partial covariate effects that in particular are compatible with changes in the direction

of effects for different durations. It should therefore be included in the toolbox of empirical

researchers and complement the results of the model by Fine and Gray (1999). We make STATA

sample code available to ease its adoption. The suggested model focuses on modelling identifiable

quantities such as the cumulative incidences and the multiple spell dependencies. In the case

the research interest is on the marginal survivals or the competing risks dependencies, the copula

graphic estimator or a direct copula model for the marginal survivals can be applied. While the

former requires an assumption about the competing risks copula (Lo et al., 2020), it is weakly

identified in the latter approach (Emura et al., 2020).

A disadvantage of the piecewise constant hazard model is that it requires user input about the

number of intervals and interval endpoints. Bouaziz and Nuel (2016) suggest an extension to data

driven selection of these parameters for the marginal hazard model. A similar extension would be

interesting for the cause-specific hazard model.

References

[1] Arntz, M., Dlugosz, S. and Wilke, R.A. (2017) The Sorting of Female Careers after First

Birth: A Competing Risks Analysis of Out of Work Duration, Oxford Bulletin of Economics

and Statistics, 79, 689–716.

[2] Bakoyannis, G. and Touloumi, G. (2012) Practical methods for competing risks data: A review,

Statistical Methods in Medical Research, 21, 257–272.

[3] Beblo, M., Bender, S. and Wolf, E. (2008) Establishment-level wage effects of entering moth-

erhood, Oxford Economic Papers, 61, 11–34.

27



[4] Beyersmann, J., Latouche, A., Bucholz, A., Schumacher, M. (2009), Simulating competing

risks data in survival analysis, Statistics in Medicine, 28, 956–971.

[5] Bouaziz, O. and Nuel, G. (2016) L0 regularisation for the estimation of piecewise constant

hazard rates in survival analysis, arXiv:1609.04595v2.

[6] Braekers, R. and Veraverbeke, N. (2005) A copula-graphic estimator for the conditional survival

function under dependent censoring, Canadian Journal of Statistics, 33, 429–447.

[7] Budig, M.J. and England, P. (2001) The wage penalty for motherhood, American Sociological

Review, 204–225.

[8] Carrière, J.F. (1994) Dependent Decrement Theory. Transactions of Society of Actuaries, 46,

45–74.

[9] Colvert, R.E. and Boardman, T.J. (1976) Estimation in the piece-wise constant hazard rate

model, Communications in Statistics - Theory and Methods, 5, 1013–1029.

[10] Craiu, R.V. and Duchesne, T. (2004) Inference based on the EM algorithm for the competing

risks model with masked causes of failure, Biometrika, 91, 543–558.

[11] Craiu, R.V. and Lee, T.C.M. (2005) Model Selection for the Competing-Risks Model with

and without Masking, Technometrics, 47, 457–467.
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Appendix

Proof of Proposition 2

To simplify the notation, we omit index k and βk. For the same reason, we treat all relevant

functionals to be sufficiently smooth such that they are differentiable and integrable in t and

differentiable in x. For example the PWCON model has a discontinuous cause-specific hazard in

t and would require a combination of summation and integration (see Kyrrä, 2009). Without that

this changes the nature of the results. Let

fj(t;x) = λj(s;x)S(s;x)

and therefore Qj(t;x) =
∫ t
0
fj(s;x)ds. We assume f ′jl(t;x) = ∂fj(t;x)/∂xl is bounded and there

exists an interval for t such that f ′jl(t;x) has the same sign for all t ∈ [t1, t2).

We have

Q′jl(t2;x) =

∫ t2

0

f ′jl(s;x) ds

=

∫ t1

0

f ′jl(s;x) ds+

∫ t2

t1

f ′jl(s;x) ds.

The sign of Q′jl(t1;x) is different from Q′jl(t2;x) if

(C1)

∣∣∣∣∫ t1

0

f ′jl(s;x) ds

∣∣∣∣ < ∣∣∣∣∫ t2

t1

f ′jl(s;x) ds

∣∣∣∣ , and

(C2) sign

(∫ t1

0

f ′jl(s;x) ds

)
6= sign

(∫ t2

t1

f ′jl(s;x) ds

)
.

Without loss of generality, we assume that∫ t1

0

f ′jl(s;x) ds > 0

and ∫ t2

t1

f ′jl(s;x) ds < 0.

The above conditions C1 and C2 can be combined as

(C3)

∫ t1

0

f ′jl(s;x) ds < −
∫ t2

t1

f ′jl(s;x) ds.

Let s1 = arg supt∈[0,t1) f
′
jl(s;x) and s2 = arg supt∈[t1,t2) f

′
jl(s;x). Then, f ′jl(s2;x) < 0 and takes the

least negative value of f ′jl(t;x) for t ∈ [t1, t2). We therefore have

0 <

∫ t1

0

f ′jl(s;x) ds ≤
∫ t1

0

f ′jl(s1;x) ds ≡ t1f
′
jl(s1;x), and

0 < −(t2 − t1)f ′jl(s2;x) ≡ −
∫ t2

t1

f ′jl(s2;x) ds ≤ −
∫ t2

t1

f ′jl(s;x) ds.

31



Hence, C3 holds if there existed t1 and ε = t2 − t1 > 0 such that :

0 < t1f
′
jl(s1;x) < −εf ′jl(s2;x),

0 <
t1
ε
f ′jl(s1;x) < −f ′jl(s2;x). (21)

(21) holds if (i) f ′jl(s2;x) < 0 and (ii) |f ′jl(s2;x)| > cf ′jl(s1;x) > 0 for some c > 0. c is small if t1

is small or t2− t1 is large. It depends on the model and covariate xl, whether these conditions are

satisfied or not. This is illustrated and discussed in more detail in what follows.

Note that

f ′jl(s;x) = λj(s;x)S ′(s;x) + λ′jl(s;x)S(s;x)

= −fj(s;x)(Λ′1l(s;x) + Λ′2l(s;x)) + λ′jl(s;x)fj(s;x)/λj(s;x)

= −fj(s;x)[Λ′1l(s;x) + Λ′2l(s;x)− λ′jl(s;x)/λj(s;x)].

Condition (i) f ′jl(s2;x) < 0 requires

Λ′1l(s2;x) + Λ′2l(s2;x) > Λ′jl(s2;x)/λj(s2;x), (22)

which may be the case or not. Take as an example a proportional hazard model Λj(t;x) =

Λj0(t)φj(x), λj(t;x) = λj0(t)φj(x) and φj(x) > 0. In this case (22) becomes

Λ10(s2)φ
′
1l(x) + Λ20(s2)φ

′
2l(x) > φ′jl(x)/φj(x).

This likely holds for s2 large as Λj0(s) grows to∞ as t increases, whenever φ′jl(x) > 0 for j = 1, 2.

(i) therefore cannot be ruled out even under strong restrictions on the role of the covariates. For

condition (ii) to hold, we need for some c > 0

|fj(s2;x)[Λ′1l(s2;x) + Λ′2l(s2;x)− Λ′jl(s2;x)/λj(s2;x)]|

> c|fj(s1;x)[Λ′1l(s1;x) + Λ′2l(s1;x)− λ′jl(s1;x)/λj(s1;x)]|.

Again, this may be true or not. Take again as an example Λj(t;x) = Λj0(t)φj(x), the above

condition becomes

|fj(s2;x)[Λ10(s2)φ
′
1l(x) + Λ20(s2)φ

′
2l(x)− φ′jl(x)/φj(x)]|

> c|fj(s1;x)[Λ10(s1)φ
′
1l(x) + Λ20(s1)φ

′
2l(x)− φ′jl(x)/φj(x)]|.

This generally holds if fj(s2;x) > cfj(s1;x) since by definition Λj0(s2) > Λj0(s1) for all s2 > s1.

Condition (ii) therefore holds for c small enough. We have therefore illustrated that even for the

proportional hazards model, where the direction of the partial effect on the hazard is unique for

all t, there is no analogous result for Q′jl(t;x) as the direction of partial covariate effect is not

restricted.
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