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A B S T R A C T   

Interested in fundamental analysis and inspired by Bartram and Grinblatt (2018, 2021), we apply 
linear regression (LR) and tree-based machine learning (ML) methods to estimate monthly 
peer-implied fair values of European stocks from 21 accounting variables. Comparing LR and ML 
models, we document substantial heterogeneity in the importance of predictors as measured by 
SHAP values. Examining trading strategies based on deviations from fair values, we find 
ML-strategies earn substantially higher risk-adjusted returns (“alpha”) than simple 
LR-counterparts (48–66 vs. 11–36 bp per month for value-weighted portfolios). Our findings 
document the importance of allowing for non-linearities and interactions in fundamental analysis.   

1. Introduction 

Does fundamental stock analysis work, and how should analysts derive fundamental values? While the theoretical literature has 
developed discounted cash flow models and other highly stylized fundamental valuation models, Bartram and Grinblatt (2018, 2021) 
(hereafter BG) recently suggested an agnostic approach to fundamental analysis. The authors “take the view of a statistician with little 
knowledge of finance” (BG, 2018, p. 125) and use linear regression analysis to proxy a firm’s market value of equity as a linear function 
of 21 commonly reported and readily available accounting items. 

BG document that deviations from their “peer-implied fair value” reliably predict future returns in the US (BG, 2018) and most 
regions around the world (BG, 2021). Interestingly, however, the strategy proposed by BG seems to not work in Europe, which is quite 
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puzzling given that the literature finds ample evidence of inefficiencies in European stock markets (e.g., Walkshäusl, 2021; Abour-
achid et al., 2017). One might argue that this is because eventually, BG are not perfectly agnostic. Indeed, while BG are agnostic to 
predictors’ relevance, they impose a linear relationship between market value and fundamentals. Even while conceptually sound (e.g., 
Ohlson, 1995), this assumption is discretionary. 

A natural alternative would be to take the view of a data scientist (also with only very little finance knowledge) and allow the data 
to speak for itself. Our objective is to explore this data scientist view: Interested in fundamental analysis and inspired by BG (2018, 
2021), we apply linear regression (LR) and machine learning (ML) methods to estimate monthly fair values for stocks from 17 Eu-
ropean countries over the years 1993–2019 and study the return predictability of corresponding mispricing signals, i.e., the difference 
between the stock’s model-based fair value and its actual market value. The LR approach closely follows BG (2018, 2021). Regarding 
ML, we apply least absolute shrinkage and selection operator (LASSO) to the 21 accounting variables and its full set of cross-products, 
and tree-based regression methods. Specifically, we deploy random forest and gradient boosting models, as they can deal with any 
form of non-linearity and interactions, handle noisy features we face, but at the same time do not require subtle tuning compared to 
more complex methods (see Athey and Imbens, 2019). Moreover, we consider an ML ensemble that combines random forest and 
gradient boosting. 

Training the models with the accounting variables suggested by BG (2021), our main findings can be summarized as follows: First, 
comparing LR and ML models, we document substantial heterogeneity in the predictors’ importance measured by SHapley Additive 
exPlanations (SHAP) values. Second, examining trading strategies building on mispricing signals, we find that tree-based ML-based 
trading strategies earn significant risk-adjusted monthly value-weighted portfolio returns (“alpha”) of 48 – 66 bp and substantially 
outperform their LR counterparts. These results are robust across different factor models and varying portfolio construction choices. 
Third, in cross-sectional Fama MacBeth (1973) regressions, only ML methods remain highly significant, while LR methods show little 
ability to predict returns. Fourth, while a naïve extension of the linear model for cross-products and imposing parameter parsimony by 
applying LASSO improves the predictive power compared to simple LR, such an approach does not result in a trading strategy that 
generates returns comparable to tree-based ML-based strategies. Finally, the performance of the three tree-based ML methods is quite 
similar, with a small advantage of the ML ensemble. Our findings document the importance of allowing for non-linearities and in-
teractions in fundamental analysis, as well as substantial non-naïve market inefficiencies in European stock markets. 

This study contributes to the literature in at least three ways. First, it adds to the discussion of whether fundamental valuation adds 
value, how valuation (value) strategies have performed over the last decades, and how they could be improved (e.g., Arnott et al., 
2021; Blitz and Hanauer, 2021; Israel et al., 2021; Park, 2019). Second, it contributes to the rapidly expanding literature on machine 
learning methods in finance and accounting research (e.g., Bali et al., 2021; Bianchi et al., 2021; Erel et al., 2021; Ghosh et al., 2021; 
Bao et al., 2020; Gu et al., 2020). Finally, it adds to the literature on asset pricing in European markets (e.g., Drobetz et al., 2019; 
Walkshäusl, 2014), aiming to reduce the underrepresentation of the non-US studies in finance (Karolyi, 2016). 

2. Data and methodology 

2.1. Data 

Our sample construction closely follows BG (2021). First, we start with all active and dead stocks in Refinitiv Datastream issued by 
firms incorporated in EU17 countries (EU15, Switzerland, and Norway) over the 1987–2019 period. Second, as it is common in the 
literature (e.g., Hanauer, 2020; Ince and Porter, 2006), we exclude non-common equity stocks, foreign listings, secondary listings, 
financial firms, and firms with non-positive total assets or missing industry identifiers. Also, we require non-missing values for all 
accounting variables used in BG (2021).2 Third, in line with BG (2021), we draw returns in USD and apply dynamic screens for stock 
returns as recommended in the literature. Finally, we eliminate microcap stocks using a monthly threshold of a ten million USD market 
capitalization. Our final sample comprises 8,121 unique firms. Appendix A provides details on variable definitions, sourcing, and 
cleaning. 

2.2. Linear fundamental analysis 

BG (2018, 2021) propose a simple linear approach to fundamental valuation, in which a company’s fundamental (“fair”) equity 
value V is a linear function of contemporaneous and readily available accounting items x1,…, xN, i.e.: 

Vi,t = a1,t ⋅ xi,1,t + ⋯ + aN,t ⋅ xi,N,t, (1)  

with i indicating the firm, t indicating time, and coefficients a1,t, ⋅⋅⋅, aN,t determined by a cross-sectional OLS regression of market 
capitalization on contemporaneous x1,…, xN. Specifically, the valuation model of BG (2021) relies on N = 21 accounting items from 
the firm’s cash flow statement, income statement, and balance sheet. To replicate the analysis of BG (2021), we run monthly 

2 Our analysis consciously builds on the variable set of BG (2021), despite multicollinearity problems, noted by BG, and despite the fact that ML 
methods could manage much larger variable sets. 
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cross-sectional OLS regressions of market capitalization on winsorized versions of the 21 accounting items and deploy coefficients of 
these regressions to estimate a stock’s fundamental equity value according to model (1).3 We refer to this exercise as LR(BG). 

2.3. Non-linear fundamental analysis 

While BG (2018, 2021) are agnostic to the coefficients a1,t, ⋅⋅⋅, aN,t in model (1), they still impose an important restriction: 
Their valuation model (1) specifies a time-specific linear relation between the peer-implied fair value Vt and accounting variables 
(x1,t,…,xN,t). We aim to relax this assumption and allow for time-specific, highly non-linear relationships between a firm’s fundamental 
value V and its contemporaneous accounting items, i.e.: 

Vi,t = φt
(
xi,1,t,…, xi,N,t

)
(2) 

To specify the relation, we employ random forest (subsequently referred to as RF) and gradient boosting (GBRT) as two popular and 
powerful tree-based ML methods (e.g., Varian, 2014) and fit the φts to minimize the degree of mispricing in the market.4 Interested in 
improving prediction performance even further, we also average the predictions of both methods in the spirit of ensemble averaging 
(and refer to this as Combi). 

However, allowing for non-linearity comes with costs. While a linear model asks for a single parameter for each predictor, in the 
case of non-linear ML models, the number of parameters to estimate rapidly expands even with a moderate number of predictors (e.g., 
Gu et al., 2020). As such, a cross-sectional modeling approach following BG will arguably suffer from a low observations-to-parameters 
ratio. Thus, we fit the non-linear valuation models φt leveraging information from pooled data of 48 cross-sections that were publicly 
known at time t. Moreover, we follow the standard approach of ML applications and use model (2) “out-of-sample”, which means that 
we train and tune our valuation models φt on: 

⎛

⎝
xi,1,t− 1 ⋯ xi,N,t− 1

⋱
xi,1,t− 48 ⋯ xi,N,t− 48

⎞

⎠. (3) 

To do so, we follow standard ML procedures and transform all accounting items by cross-sectionally ranking them in ascending 
order and mapping these ranks into the [− 1,1] interval (e.g., Freyberger et al., 2020; Gu et al., 2020).5 Moreover, we deflate firms’ 
market capitalization by the total market value to alleviate the effect of changing market tastes and time-specific valuation norms. 
Internet Appendix IV describes our implementation choices on the hyperparameter tuning for the ML methods in detail. Similarly, 
Internet Appendix V provides detailed information on the sample splitting and validation design. 

One might argue that allowing ML models to evaluate multiple cross-sections of data gives an advantage to ML models. Relatedly, 
the data transformation applied for ML methods differs from the approach used for the linear models above. To ensure that the results 
of ML methods are not due to the leveraging of more information or alternative data transformation, we also fit OLS on the pooled 
(transformed) data (3) and use the estimate for monthly linear out-of-sample predictions following (1) (LR(pooled)). 

To further bridge the gap between linear regression and ML methods and to better understand the nature of potential non-linearities 
and interactions, we augment the set of 21 accounting items by their quadratic and interaction terms.6 To estimate the fundamental 
value from the resulting 252 variables, we employ the least absolute shrinkage and selection operator (LASSO).7 LASSO is inherently a 
linear model but can handle a large set of variables acting as variable selection model and thus, mitigating multicollinearity concern. 
For tuning and fitting LASSO, we apply the same sample splitting schema as for ML and LR(pooled) models. 

2.4. Misprising signals and return predictability 

Once we have predicted a firm’s fundamental equity value for time t using a particular model m, we follow BG (2018, 2021) and 
calculate the corresponding mispricing signal as the percentage difference between the fundamental value Vi,t,m and the observed 
market value MVi,t as: 

MSi,t,m =
Vi,t,m − MVi,t

MVi,t
(3) 

3 For this, we winsorize accounting variables at the top and bottom 5% of the distribution of the normalized variable (% of total assets, to avoid 
size effects) with data available prior to the evaluation date t.  

4 The general idea behind a single tree is to split the data into subsamples consisting of observations with similar behavior. Thereby, the function 
is approximated with the average of the outcome variable within each split (Breiman et al., 1984). Yet, while a deep tree can fit perfectly, it is often a 
weak learner and prone to overfitting. One way to improve the performance is to utilize an ensemble.  

5 In untabulated results, we apply an alternative data transformation method. Instead of rank-transformation, we normalize accounting items by 
the min-max normalization method as a common practice in the ML literature (e.g., Al Shalabi et al., 2006). The min-max normalization maps a 
value of each item to the range [0, 1]. Our qualitative conclusions remain unchanged. We thank an anonymous reviewer for raising this point.  

6 We thank an anonymous reviewer for this suggestion.  
7 In untabulated results, we also fit LASSO without additional terms to address the concerns of overfitting and multicollinearity in the linear 

model. LASSO leads to a sparse version of the input set and thus, might improve results of the linear model. However, the results obtained from the 
“first-order” LASSO model are nearly identical to those obtained from LR(pooled) model. 
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Table 1 
Summary Statistics. The table describes the averages of selected characteristics of the sample firms. In particular, Panel A reports the time-series 
average of the mean characteristics across all firms, the average cross-sectional correlation of the characteristic with the particular mispricing 
signal, and the average of the mean characteristics across quintiles of firms sorted by the mispricing signal from Q1 (low) to Q5 (high) employing 
breakpoints based on large firms. Large firms are defined as those which account for an aggregated share of 90% of the total market value in a 
particular month (Fama and French, 2017). Statistics are shown separately for the mispricing signals based on the LR model of Bartram & Grinblatt 
(2021), pooled LR, LASSO (augmented by squared and interaction terms), Random Forest, Gradient Boosting, and the combination of Random Forest 
and Gradient Boosting. Panel B reports average cross-sectional Spearman’s rank-order correlation of mispricing signals in the lower diagonal and 
time-series correlation of spread (Q5-Q1) value-weighted portfolio (industry-adjusted) returns in the upper diagonal of the matrix for a particular 
method.  

Panel A: Summary statistics for mispricing signals and selected firms’ characteristics  

Mispricing Signal Quintiles  

All Correlation Q1 (low) Q2 Q3 Q4 Q5 (high)  

LR(BG) 

Mispricing 4.29 1.000 − 1.89 − 0.40 − 0.14 0.18 6.74 
BM(current) 0.80 0.398 0.56 0.37 0.43 0.52 1.04 
Ln (Market Cap) 12.27 − 0.473 13.78 14.43 14.23 13.86 11.64 
Momentum 0.10 − 0.146 0.17 0.20 0.17 0.14 0.05  

LR (pooled) 

Mispricing − 11.02 1.000 − 50.18 − 0.14 0.52 1.41 16.83 
BM(current)  0.154 0.70 0.44 0.46 0.49 0.99 
Ln (Market Cap)  0.329 11.38 15.06 14.46 13.94 12.29 
Momentum  0.042 0.10 0.18 0.17 0.16 0.07  

LASSO 

Mispricing 0.76 1.000 − 24.13 0.02 0.71 1.66 36.96 
BM(current)  0.024 0.81 0.44 0.48 0.54 0.95 
Ln(Market Cap)  − 0.053 11.84 14.74 14.38 13.93 11.80 
Momentum  − 0.010 0.11 0.17 0.16 0.14 0.06  

RF 

Mispricing 1.63 1.000 − 0.54 − 0.25 − 0.05 0.19 2.89 
BM(current)  0.605 0.21 0.32 0.41 0.52 1.10 
Ln(Market Cap)  − 0.448 13.79 13.78 13.70 13.27 11.32 
Momentum  − 0.185 0.34 0.22 0.17 0.13 0.02  

GBRT 

Mispricing 0.65 1.000 − 0.50 − 0.13 − 0.03 0.08 1.58 
BM(current)  0.399 0.41 0.47 0.52 0.58 1.13 
Ln(Market Cap)  − 0.275 12.52 13.53 13.84 13.55 11.49 
Momentum  − 0.176 0.27 0.18 0.14 0.11 0.00  

Combi 

Mispricing 1.14 1.000 − 0.45 − 0.18 − 0.04 0.13 2.10 
BM(current)  0.572 0.23 0.35 0.43 0.52 1.11 
Ln(Market Cap)  − 0.420 13.39 13.74 13.78 13.35 11.35 
Momentum  − 0.198 0.34 0.21 0.17 0.13 0.01 

Panel B: Correlation analysis of mispricing signals and of the corresponding spread returns  

LR(BG) LR(pooled) LASSO RF GBRT Combi  

LR(BG) 1.000 0.453 0.552 0.708 0.504 0.674  
LR(Pooled) − 0.050 1.000 0.958 0.496 0.226 0.447  
LASSO − 0.067 − 0.289 1.000 0.596 0.336 0.553  
RF 0.622 − 0.117 0.033 1.000 0.743 0.942  
GBRT 0.459 0.073 − 0.006 0.671 1.000 0.815  
Combi 0.605 − 0.073 0.030 0.966 0.809 1.000   
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We then evaluate the return predictability of these mispricing signals following BG (2021). Thereby, we use the LR results as a 
benchmark since BG have demonstrated their performance in regions all over the globe. 

3. Results 

We proceed in five steps to derive our empirical results. First, we determine fundamental stock values using the six valuation 
approaches, i.e., LR(BG), LR(pooled), LASSO, RF, GBRT, and Combi, and calculate corresponding mispricing signals. We do this for the 
last day of the month over the 01/1993 – 11/2019 period.8 

Second, for LR(BG), LR(pooled), LASSO, RF, and GBRT, we compute SHAP values for all covariates to shed some light on the 
question which variables contribute most strongly to a model’s fair value estimate.9 Fig. 1 shows the average SHAP value of the 21 
accounting items over the sample period. LR models seem to draw information mainly from two or three variables, i.e., Net Income 
Available to Common (Equity), Net Income before Extraordinary Items/Preferred Dividends, and Total Assets. While LASSO identifies Total 
Assets as most important, it indicates the relevance of both linear effects of used items and their interactions (e.g., Total Assets and Total 
Liabilities) or their quadratic terms (e.g., Pre-tax Income). In contrast, the ML models seem to draw information more uniformly along 
covariates, with Pre-tax Income/Income Taxes, Common Equity, and Dividends being among the most relevant ones. It is interesting to see 
that the data confirms the considerations proposed in the theoretical literature. For instance, Ohlson (1995) relates prices to earnings, 
equity book value, and dividends. 

Fig. 1. SHAP values to illustrate predictors’ importance. The figure plots variable importance for the LR model of Bartram & Grinblatt (2021), 
pooled LR, LASSO (augmented by squared and interaction terms), Random Forest, and Gradient Boosting. Variable importance for each model is 
defined based on SHAP (SHapley Additive exPlanations) values as a time-series average of mean predictor importance across all firms in a test 
sample. The SHAP values are normalized to sum to one, enabling the interpretation of relative importance in a particular method. For the LASSO 
method, we illustrate the first 21 most important variables from 252 variables used in the LASSO estimator. 

8 With Refinitiv Datastream providing reliable data for European stock markets from 1987 onwards and training our ML models on a four-year 
period, our prediction period starts in 1993.  

9 Pioneered by Lundberg and Lee (2017), SHAP is a game-theoretic approach to estimate the extent to which a particular predictor contributes to 
pushing the model’s output away from the unconditional expectation. Thereby, it is important to bear in mind, that while SHAP values make the 
prediction generation process somewhat transparent, they do not indicate any causality. For RF and GBRT, we also calculate impurity-based 
importance (Breiman et al., 1984) and obtain very similar results. 
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Third, we follow BG and sort stocks into five quintiles based on the corresponding mispricing signal.10 Table 1, Panel A,11 reports 
time-series averages of mispricing signals and selected firm characteristics for the quintile portfolios. All methods show large negative 
(positive) mispricing signals for the first (fifth) quintile. Thereby, ML and LASSO signals are considerably smaller because of the non- 
linearity of these valuation models and thus their ability to better fit the data. Further, Panel B shows the correlation between mis-
pricing signals as well as between the corresponding spread returns. Interestingly, correlations between LR, LASSO, and ML models are 
moderate, which can be attributed to the heterogeneity in the relevance of accounting variables to the valuation models, as shown in 
Fig. 1. Furthermore, the correlation between mispricing signals from RF and GBRT is also limited, suggesting that ensemble averaging 
(Combi) may be valuable by “averaging out” noise. 

Fourth, we calculate value-weighted and industry-adjusted monthly portfolio returns and perform a time-series analysis to study the 
relation between mispricing signals and subsequent month’s returns.12 Table 2, Panel A, shows that ML investment strategies earn 
statistically and economically significant industry-adjusted returns spreads, profiting quite uniformly from the long and short posi-
tions. While LR and LASSO quintile spreads are significant, their economic relevance is substantially weaker, with a higher portion of 

Table 2 
Portfolio Sorts. The table reports the results from a quintile portfolio analysis based on mispricing signals obtained from different models. The 
breakpoints for sorting stocks in portfolios are calculated based on large firms. Large firms are defined as those which account for an aggregated share 
of 90% of the total market value in a particular month (Fama and French, 2017). Panel A shows the average monthly industry-adjusted returns of the 
value-weighted quintile portfolios as well as the spread portfolios (Q5-Q1), based on the LR model of Bartram & Grinblatt (2021), pooled LR, LASSO 
(augmented by squared and interaction terms), Random Forest, Gradient Boosting, and the method ensemble, respectively. Panel B shows results from 
a factor model time-series regressions of the following form: rq,t+1 = aq +

∑L
l=1βq,lFl,t+1 + εq,t+1, where rq,t+1 is the month t+1 industry-adjusted 

returns of the value-weighted quintile portfolios, aq is the intercept in the time-series regression, and Fl,t+1 is the return of the lth factor portfolio. 
For brevity, Panel B reports the results for the difference in the alphas of Q5 and Q1 (Q5-Q1) only. We test whether the industry-adjusted val-
ue-weighted Q5-Q1 portfolio returns can be explained by the following asset pricing models: The Fama-French 5 factor model plus momentum 
(FF5FM+MOM); the Fama-French 5 factor model plus momentum plus short-term and long-term reversals (FF5FM+MOM+LT&ST Rev.); the 
modified Fama-French 5 factor model, using HML based on the current market value of equity (as by Asness and Frazzini, 2013) plus momentum 
(FF5FMHMLcurrent+MOM); the modified Fama-French 5 factor model, using HML based on the current market value of equity (as by Asness and 
Frazzini, 2013) plus momentum plus short-term and long-term reversals (FF5FMHMLcurrent+MOM+LT&ST Rev.). Numbers in parentheses are t-sta-
tistics. *, **, *** correspond to statistical significance at the 10%, 5%, and 1% levels, respectively.  

Panel A: Industry-adjusted returns  

LR(BG) LR(pooled) LASSO RF GBRT Combi 

1 (low) − 0.24* − 0.25* − 0.24* − 0.35** − 0.25** − 0.37***  
(− 1.93) (− 1.85) (− 1.84) (− 2.57) (− 2.27) (− 2.77) 

2 − 0.16 − 0.07 − 0.11 − 0.23* − 0.54*** − 0.33**  
(− 1.22) (− 0.68) (− 0.98) (− 1.83) (− 4.10) (− 2.49) 

3 − 0.19 − 0.02 − 0.06 − 0.25* − 0.27** − 0.26*  
(− 1.44) (− 0.24) (− 0.62) (− 1.82) (− 2.07) (− 1.95) 

4 − 0.16 − 0.03 − 0.02 − 0.02 0.08 0.05  
(− 1.38) (− 0.39) (− 0.28) (− 0.18) (0.60) (0.36) 

5 (high) 0.12 0.05 0.12* 0.22** 0.24** 0.23**  
(1.17) (1.01) (1.77) (2.29) (2.12) (2.23) 

Q5-Q1 (Spread) 0.36*** 0.30** 0.37** 0.57*** 0.49*** 0.60***  
(2.65) (2.18) (2.55) (3.36) (3.11) (3.46)        

Panel B: Alphas and t-values from assets pricing tests 

FF5FM+MOM 0.23* 0.22*** 0.27*** 0.60*** 0.66*** 0.64***  
(1.79) (2.82) (2.83) (4.99) (4.76) (4.86) 

FF5FM+MOM+LT&ST Rev. 0.22* 0.21*** 0.26*** 0.57*** 0.56*** 0.59***  
(1.68) (2.71) (2.72) (5.05) (4.73) (4.96) 

FF5FMHMLcurrent+MOM 0.11 0.15** 0.18** 0.48*** 0.54*** 0.50***  
(1.04) (2.18) (2.21) (4.77) (4.46) (4.57) 

FF5FMHMLcurrent+MOM+LT&ST Rev. 0.11 0.13** 0.17** 0.48*** 0.49*** 0.49***  
(1.04) (2.04) (2.12) (4.96) (4.51) (4.75)  

10 In line with the current standards (e.g., Hou et al., 2020; Fama and French, 2017, 2012), we calculate breakpoints using large stocks to avoid 
small stocks dominating our results. Large stocks are defined as the largest stocks in the sample that add up to 90% of the aggregate market 
capitalization. We also experiment with intra-country breakpoints as in BG and sample breakpoints. As expected, after these changes our trading 
strategies deliver even higher risk-adjusted returns. Results of these exercises are documented in the Internet Appendix.  
11 See Internet Appendix I for the extensive summary statistics.  
12 We follow BG and adjust returns by average industry portfolio, using Fama-French 38 industry classifications. 
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Table 3 
Fama-MacBeth Regressions. The table shows results from Fama and MacBeth (1973) regressions. In Panel A, the next-month return is regressed on the 
mispricing signal based on a particular model: Bartram & Grinblatt (2021)-based LR model in Column 1, pooled LR in Column 2, LASSO (augmented 
by squared and interaction terms) in Column 3, Random Forest in Column 4, Gradient Boosting in Column 5, and the method ensemble in Column 6. 
Each specification controls for market beta, book-to-market, using the current market value of equity as in Asness and Frazzini (2013), the natural 
logarithm of market capitalization, momentum, short-term reversal, long-term reversal, accruals, gross profitability, earnings yield, and earnings 
surprise as well as for country and industry (38 Fama-French industries) fixed effects. Regressions employ quintile dummies for all covariates (except 
for fixed effects dummies). All quintiles are calculated with breakpoints based on large firms. Large firms are defined as those which account for an 
aggregated share of 90% of the total market value in a particular month (Fama and French, 2017). The regressions include dummy variables for 
quintiles 2, 3, 4, and 5 of each signal or firm characteristic. We display the coefficients of the quintile 5 dummy (Q5) for brevity. In Panel B, Columns 
1–4 (5–8), the specification from Panel A, Column 1 (2), is extended by LASSO mispricing quintiles in Column 1 (5), by RF mispricing quintiles in 
Column 2 (6), by GBRT mispricing quintiles in Column 3 (7), and by Combi mispricing quintiles in Column 4 (8). Numbers in parentheses are 
t-statistics. *, **, *** correspond to statistical significance at the 10%, 5%, and 1% levels, respectively.  

Panel A: Regression for a single method 

Model LR(BG) LR(pooled) LASSO RF GBRT Combi 
Dependent Return(t + 1)  

(1) (2) (3) (4) (5) (6) 

Mispricing (Q5) 0.16* 0.02 0.15*** 0.33*** 0.26*** 0.32***  
(1.69) (0.26) (3.52) (3.11) (3.89) (3.29) 

Beta (Q5) − 0.08 − 0.08 − 0.09 − 0.08 − 0.09 − 0.08  
(− 0.54) (− 0.58) (− 0.65) (− 0.55) (− 0.66) (− 0.58) 

BMcurrent (Q5) 0.17* 0.22** 0.23** 0.14 0.15 0.13  
(1.70) (2.17) (2.17) (1.38) (1.47) (1.29) 

Ln(MarketCap) (Q5) − 0.14 − 0.17 − 0.10 − 0.07 − 0.14 − 0.10  
(− 1.04) (− 1.15) (− 0.73) (− 0.52) (− 1.03) (− 0.77) 

Momentum (Q5) 0.94*** 0.93*** 0.93*** 0.96*** 0.97*** 0.97***  
(6.74) (6.68) (6.69) (7.06) (7.09) (7.16) 

ST reversals (Q5) − 0.67*** − 0.67*** − 0.67*** − 0.66*** − 0.64*** − 0.65***  
(− 5.36) (− 5.37) (− 5.31) (− 5.27) (− 5.20) (− 5.23) 

LT reversals (Q5) − 0.29*** − 0.29*** − 0.29*** − 0.27*** − 0.28*** − 0.27***  
(− 3.98) (− 4.02) (− 3.94) (− 3.76) (− 3.83) (− 3.76) 

Accruals (Q5) − 0.28*** − 0.28*** − 0.27*** − 0.26*** − 0.27*** − 0.26***  
(− 5.21) (− 5.16) (− 5.01) (− 4.87) (− 4.97) (− 4.89) 

Gross profitability (Q5) 0.31*** 0.30*** 0.31*** 0.32*** 0.31*** 0.33***  
(5.78) (5.63) (5.79) (6.12) (5.80) (6.11) 

Earnings yield (Q5) 0.32*** 0.37*** 0.38*** 0.31*** 0.31*** 0.30***  
(5.70) (6.59) (6.75) (5.48) (5.25) (5.26) 

SUE (Q5) − 0.00 − 0.01 − 0.04 − 0.02 − 0.02 − 0.02  
(− 0.03) (− 0.21) (− 0.75) (− 0.28) (− 0.27) (− 0.30) 

Constant 2.43** 1.30 0.73 0.21 0.83 1.63  
(2.25) (1.22) (1.33) (0.42) (1.57) (1.52) 

Industry FE (38 FF) Yes Yes Yes Yes Yes Yes 
Country FE Yes Yes Yes Yes Yes Yes 
Aver. observations 2742 2742 2742 2742 2742 2742 
Aver. Adj. R2 0.081 0.081 0.080 0.081 0.081 0.081  

Panel B: Marginal effect of the LR mispricing signals  

LR(BG) vs: LR(pooled) vs: 

Model LASSO RF GBRT Combi LASSO RF GBRT Combi 
Dependent Return(t + 1) Return(t + 1)  

(1) (2) (3) (4) (5) (6) (7) (8) 

Mispricing (Q5) 0.15*** 0.29*** 0.23*** 0.28*** 0.15*** 0.34*** 0.26*** 0.32***  
(3.35) (2.87) (3.62) (3.03) (3.42) (3.07) (3.99) (3.22) 

Mispricing (Q5)OLS 0.13 0.11 0.12 0.10 0.04 0.05 0.01 0.05  
(1.35) (1.24) (1.31) (1.09) (0.63) (0.83) (0.21) (0.72) 

Constant 1.24** 0.79 0.48 0.89* 1.18** 0.68 0.90 0.96*  
(2.05) (1.30) (0.80) (1.68) (2.19) (0.65) (1.54) (1.75)          

Firm controls Yes Yes Yes Yes Yes Yes Yes Yes 
Industry FE (38 FF) Yes Yes Yes Yes Yes Yes Yes Yes 
Country FE Yes Yes Yes Yes Yes Yes Yes Yes 
Aver. observations 2742 2742 2742 2742 2742 2742 2742 2742 
Aver. Adj. R2 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081  
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alpha’s profitability coming from the short leg. 
In Panel B, we verify our results employing four different factor models, with factors constructed following the approach of Fama 

and French (2012, 2017) for international data.13 Controlling for these common factors largely explains the returns of the LR(BG) 
strategy and renders its alpha insignificant when using the monthly updated HML factor (third and fourth model). Similarly, the alphas 
for LR(pooled) decrease for all models, although they remain significant (t-value between 2.04 and 2.82). In contrast, the alphas for the 
ML models remain similar or become even stronger across all factor models. Their annualized returns amount to 6% to 8%, depending 
on the method and factor model.14 Interestingly, the alphas for LASSO are only slightly higher than for LR(pooled), indicating that 
trivial non-linear forms are not sufficient to improve the performance of LR compared to those obtained from ML. As such, ML methods 
seem to detect hidden non-linearities that are important in predicting stocks’ fundamental value. 

Finally, we dig deeper into whether using ML methods adds value from a portfolio selection perspective. Indeed, although ML seems 
to dominate LR in economic terms (Table 2), we still find positive and significant returns for LR. To analyze if LR is priced after 
controlling for ML (and other variables), i.e., measuring the marginal effect of the LR mispricing signals, we conduct Fama and 
MacBeth (1973) cross-sectional regressions. We include the same set of controls as BG and closely follow their variable definition. As in 
BG, we run regressions with quintile dummies, calculated as described above, for easier interpretation of coefficient estimates. Table 3 
confirms our findings, showing statistically and economically significant coefficient estimates on the Q5 for ML-strategies (Panel A, 
Columns 4–6), while Q5 returns for LR-strategies (Panel A, Columns 1–2) are statistically and economically neglectable. Even more 
important, when including ML methods and LR(BG) (LR(pooled)) jointly in Panel B, Columns 2–4 (6–8), we find that only ML methods 
remain significant, while LR methods have little marginal ability to predict returns. Finally, Q5 returns for the LASSO-strategy are 
statistically significant in single specifications (Panel A, Column 3) and remain significant in joint specifications with LR methods 
(Panel B, Columns 1 and 5). Although the significance of LASSO in cross-sectional regressions is comparable to ML methods, the point 
estimate is still substantially lower than that of ML strategies. This finding underlines the importance of interaction and non-linearities 
for stocks’ value predictions, on the one hand, and the superiority of ML methods in their detection, on the other hand. 

4. Conclusion 

Consistent with the intuition that ML may discover additional structure in the data, we document that portfolio spreads based on 
BG-inspired ML mispricing signals can earn large and significant alphas and outperform corresponding LR mispricing signals. These 
findings suggest that it is important to allow for non-linearities and interactions in fundamental analysis. Also, these findings suggest 
substantial non-naïve market inefficiencies. Future research may test the performance of other ML methods, such as multilayer per-
ceptron or recurrent neural networks, and a larger array of predictors, probably outside simple accounting items. 
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Appendix 

A. Variables 
In our analysis, we use accounting and return data. We source accounting data from Refinitiv Worldscope Fundamentals. In 

contrast to BG, we do not use point-in-time but annual accounting data. However, we are very conservative when feeding our models 
with accounting information. Specifically, we allow our models to learn from recent accounting information only six months after the 
calendar year-end in order to ensure that the information is indeed in the public domain (e.g., Walkshäusl, 2014; Fama and French, 
1992). Studying European stock markets, we draw accounting data in EUR. 

We source monthly return data from Refinitiv Datastream. Following BG (2021), we calculate monthly returns from the total return 
index in USD. However, as described by Ince and Porter (2006), raw return data from Datastream may not be error-free. To ensure data 
quality, we follow Ince and Porter (2006) and Hanauer (2020) and apply dynamic screens. To eliminate delisted firms, we delete all 
zero returns (in local currency) from the end of the time series to the first non-zero return. In addition, we remove returns above 300% 

13 Next to the standard HML factor, we also use a monthly updated value factor that uses the most recent market capitalization (HML(current)) as the 
latter is seen as superior in combination with momentum (cf., Barillas et al., 2020; Hanauer, 2020; Hanauer and Lauterbach, 2019; Asness and 
Frazzini, 2013). Appendix A describes all factors used in the analysis.  
14 We also experiment with equal-weighted portfolio returns. Our qualitative conclusions remain unchanged. Results of these exercises are 

documented in the Internet Appendix. 
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reversing within one month. Finally, following Jacobs (2016), we cross-sectionally winsorize all returns at the 0.1th and 99.9th 
percentiles. 

All variables used are reported and defined in Table A. 

Table A 
Variable definition. The table presents the names, definitions, or construction for all variables used in the paper. The table also specifies the Refinitv 
code for accounting data items. All factor model variables and variables for cross-sectional regression are based on the Datastream data and are self- 
constructed.  

Name Definition Refinitiv Code 
Accounting items   

TotalAssets Total Assets WC02999 
NItoCommon Net Income Available to Common WC01751 
NIbefEIPrefDiv Net Income before Extraordinary Items/Preferred Dividends WC01551 
PrefDiv Preferred Dividends Requirements WC01701 
NIbefPrefDiv Net Income before Preferred Dividends WC01651 
Sales Net Sales or Revenues WC01001 
GainLossAssetSale Extraordinary Items & Gain/Loss Sale of Assets WC01601 
PPT Property, Plant and Equipment - Net WC02501 
LTDebt Long Term Debt WC03251 
CommonEquity Common Equity WC03501 
PrefStock Preferred Stock WC03451 
OtherIncome Other Income/Expense - Net WC01262 
TotalLiabilities Total Liabilities WC03351 
PreTaxIncome Pretax Income WC01401 
IncomeTaxes Income Taxes WC01451 
OtherTA Other Assets Total WC02652 
OtherLiabilities Other Liabilities WC03273 
CashSTInv Cash & Short-Term Investments WC02001 
OtherCA Total Current Assets WC02201 
OtherCL Total Current Liabilities WC03101 
TotalDiv Cash Dividends Paid - Total WC04551 
MV Market Capitalization MV 

Factor model variables 

Mkt Value-weighted monthly market return net of risk-free rate (one-month Treasury bill rate, obtained from Kenneth French’s website) 
SMB Monthly small minus big size portfolio return, using market capitalization (MV) to construct size 
HML Monthly high minus low book-to-market portfolio return with latest available book value of common equity, divided by the market 

capitalization at the end of December of the same year as book equity 
HML(current) Monthly high minus low book-to-market portfolio return with latest available book value of common equity, divided by the most recent 

monthly market capitalization (BMcurrent) 
CMA Monthly conservative minus aggressive investment portfolio return, with investment factor based on asset growth 
RMW Monthly robust minus weak profitability portfolio return, with profitability factor defined as gross income plus depreciation and depletion, 

scaled by total assets 
WML Monthly winners minus losers portfolio return with prior (2–12) returns to construct momentum 
ST reversals Monthly low prior portfolio returns minus high prior portfolio returns with prior (1–1) returns to construct short-term reversals. 
LT reversals Monthly low prior portfolio returns minus high prior portfolio returns with prior (13–60) returns to construct long-term reversals 

Variables for cross-sectional regression 

Beta Monthly market beta with regards to the European market estimated over prior 60 months, using value-weighted returns 
BMcurrent Latest available book value of common equity, divided by the most recent market capitalization updated each month 
MarketCap Natural logarithm of stock market capitalization (in USD) 
Momentum Return in prior year excluding prior month 
ST reversals Return in prior month 
LT reversals Return in prior five years excluding prior year 
Accruals The percentage difference in net operating assets in the current and previous year. Net operating assets is defined as operating assets minus 

operating liabilities. Operating assets is defined as total assets less cash and short-term investments. Operating liabilities is defined as total 
assets less total debt less book value of total common and preferred equity less minority interest 

Gross profitability Gross income plus depreciation and depletion, scaled by total assets 
Earnings yield Latest available net income after preferred dividends, divided by the market capitalization 
SUE Yearly earnings surprise based on a rolling random walk model  
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