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Abstract

In the present day volatile electrical energy market, with ever growing demand in combin-

ation with decreasing supply due to the need to reduce the usage of fossil fuels, something

is needed to balance this possibly occurring gap, in addition to the negative externalities

stemming from its existence. This is where demand side management (DSM) would come

in. The objective of this thesis is to compare and determine optimal baseline estimation

methods inspired by existing literature, to the recently introduced benchmark method

set by the Czech regulator ČEPS, as well as quantification of demand response (DR)

schemes as a part of the initiative of DSM. The data set for this study, collected over

the 2022 heating season, is provided by the Czech energy conglomerate ČEZ a.s as the

thesis came to life as part of a pilot project by ČEZ a.s on the potential of DSM in the

specific regional setting of Czechia. Therefore, this paper carries a very specific regional

setting and framework. We conclude that in the context of residential heat pumps a

weather based regression would be the superior model out of the chosen methods in this

study, in addition to the accuracy of the baseline method being crucial for the outcome

of quantifying the DR. We also note that there are multiple moving parts in addition

to kWh usage such as real-time pricing, energy source, and tariffs to take into account

for precise DR valuation. Additionally, we suggest that adding the concept of a rebound

seems necessary for properly quantifying the value of a DR scheme.
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1 Introduction

In a world that is tending to the become so called ”all electric”, there is constant pressure

on a growing electrical energy demand. Given the nature of daily societal routines which

translate into daily energy consumption patterns, this pressure is even more present in

so called peak hours. With the additional constraint of phasing out fossil based energy

sources, this can prove to be a challenge to energy providers who often guarantee some

sort of electricity price range. Having flexible demand which would allow us to balance

out our daily load curves by effectively shifting some consumption out of these peak

hours and into periods with typically low consumption, may prove to be a vital tool in

our transition to a more sustainable and emission free energy sector. However, in order

for this demand side management (DSM) to be a viable solution, we need methods for

measuring, verifying, and quantifying its potential benefits in addition to identifying its

possible drawbacks. This is where baseline estimation becomes the essential piece of a

much greater puzzle.

In this paper our main focus, resp. the main research question, is quite clear. After

identifying baseline estimation methods usable for our specific data set we test the re-

spective method performances, always comparing them to the benchmark method which

arises from our given legal and industrial framework. We compare several methods, both

simpler and more sophisticated, while also testing adjustments to these methods. In total,

fourteen methods are defined and tested. Additionally, we apply these methods the un-

derlying demand response scheme. Finally, we propose the method which offers the most

precise baseline estimation results. We therefore aim to answer the question, which of the

methods performs in the best manner and what this means for baseline estimation, resp.

demand response valuation. Moreover, we look at the respective traits and limitations of

the tested methods.

The framework of this paper is closely related to the region of Czechia. Our context is

that of residential heat pumps, the load of which is our main data variable of interest. As

this paper is part of a pilot project on residential energy consumption flexibility currently

being carried out by the Czech energy conglomerate ČEZ a.s., we work in a very well

defined legal and industrial setting. ČEZ a.s. is one of the leading economic entities in

the Czech region, operating also in Central and Eastern Europe. With more than 7 mil-

lion customers it operates in all the activities within the energy sector, acting as producer,

distribution system operator (DSO), and retailer. The company is partially state owned
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which is why it is also involved in the the talks regarding the implementation of demand

response legislation into the current Czech system. Our benchmark method mentioned

above and additional methodological specifications are defined by the Czech regulator

and transmission system operator (TSO) ČEPS. The data used in this paper has been

collected by ČEZ over the duration of the last heating season, that is between December

2021 and March 2022.

The mentioned data set within the ongoing forming of a practically new market in which

several new legally defined parties will come to operate is one of the contributions of this

paper. The following actual application of chosen baseline methods is what could stand

as another new addition to existing literature. Supported by the findings on respective

method performance, we offer a first glance at how these methods could work and what

their workings in this regional environment are. With Czechia being one of the many

European countries looking to eventually rid itself of its dependency on Russian supplied

energy, the topic of demand side flexibility will become even more interesting. With this

comes the need for an accurate, transparent and effective baseline estimation methodology.

The thesis is structured as follows. In section 2 we define necessary terminology, offer the

several motivational viewpoints for DSM and baseline estimation and also offer a snapshot

in detail of the current industry status. Section 3 offers a literature review on the tackled

issues in this thesis, in addition to several other closely related topics. The data set is

meticulously described and presented in section 4. All used baseline methods along with

used performance metrics and demand response quantification theory and approaches are

covered in section 5. Section 6 presents the results and pitches several discussion topics

which are then covered in section 7, along with limitations and other reflections. Finally,

section 8 concludes the paper.
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2 Industry and Theoretical Background

This section provides a brief description of used terminology, as well as the industry back-

ground and the setting in which the paper is written. As noted, the origin of data and

region of interest is in this case Czechia. We will start by defining necessary terminology,

then present motivation for flexibility (resp. DSM) from several points of view, answer

the question why baseline matters and finally explain the role of aggregators and tar-

iffs including a quote on the current status of aggregator and tariff legislation. We also

present the baseline codex for balancing services providers as presented by ČEPS (the

Czech TSO). This codex defines the paper’s main framework as it gives us the benchmark

baseline method (Mid 4 of 6) along with general workings of the system. Note that as our

main focus and setting is household DR regarding heat pumps (HPs), we do not go into

detail on certain topics, e.g. the presence of PV and other sources which turn consumers

into so called ”prosumers”, hence occasionally, we may abstract from some details to keep

the paper concise and remain focused on the main topic.

2.1 Defining terminology

The measurement and verification (M&V) generally, and the baseline more specifically,

of demand response (DR) determines the volume of the resource, in our case electricity,

and thus is pivotal when determining the value it has to the electric system. Moreover,

all customer compensation is based on this M&V and so it has significant influence on the

number of types of customers who might be interested in participating in DR programs.

There are several ways how to, in detail, define the ”baseline” (see section 3), however

they all share the main attribute, that is: ”what would the customer’s load have been in

the absence of a DR event?”. There are many types of methods how to get the estimation,

utilising various inputs and being of various level of complexity. The classification of these

methods along with literature examples is presented in section 3, but for now the main

principle is sufficient.

Firstly, it is important to clarify the distinction between demand side management

(DSM) and demand response (DR). The difference between DSM and DR is the focus

on load flexibility and short-term customer action (in case of DR) and regular changes

in the demand pattern (in case of DSM), as noted by Khabdullin et al. (2017). In other

words, DR is a tariff or programme established to incentivise changes in electric con-
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sumption patterns by end-use consumers in response to changes in the price of electricity

over time, or to incentivise payments designed to induce lower electricity use at times of

high market prices or when grid reliability is jeopardised (Bertoldi et al., 2016). On the

other hand, DSM can then be understood as the overall effort to change consumption

patterns in the long run which is motivated for example by the aim to allow renewables

to supply electricity (energy) at larger than current levels or the overall need for a stable

grid (both of which is discussed below in section 2.2). Flexibility in heat pump (HP)

context can then be defined as the possible deviation in electricity consumption pattern

of the heat pump (as in e.g. Devriese et al. (2019)). Moreover both Bertoldi et al. (2016)

and Bampoulas et al. (2019) divide flexibility (or DR) into two groups:

1. Explicit – In this program, demand competes directly with supply in the wholesale,

balancing and ancillary services markets through the services of aggregators or single

large consumers (more on this in section 2.2). This is achieved through the control

of aggregated changes in load traded in electricity markets, providing a comparable

resource to generation, and receiving comparable prices. Consumers receive direct

payments to change their consumption upon request (to consume more or less).

Consumers can earn from their flexibility in electricity consumption individually or

by contracting with an aggregator. The latter can either be a third-party aggregator

or the customer’s retailer (resp. DSO).

2. Implicit – (sometimes called “price-based”) refers to consumers choosing to be

exposed to time-varying electricity prices or time-varying network tariffs (or both)

that partly reflect the value or cost of electricity and/or transportation in different

time periods and react to those price differences depending on their own possibilities

(no commitment). These prices are always part of their supply contract. Implicit

DR does not therefore allow a consumer to participate alongside generation in a

market.

We may also classify flexibility based on the direction it takes. This is useful when we

talk about the rebound effect below. To clarify, in the case of upward flexibility (in HP

context), the thermostat set point is increased (by e.g. 1-3°C), and heat is stored pass-

ively in the building fabric (see figure 1a). Downward flexibility is then the case where,

the thermostat set point is decreased (e.g. 1-3 °C), which subsequently decreases the HP

power consumption. In this case, heat is curtailed during the modulation period, and it is

restored later, for the building to return to the state before the DR action (see the figure
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1b). As one might guess, downward flexibility occurs when the aim is load decreasing

(e.g. peak shaving), whereas upward flexibility is related to when we aim to ”fill out”

daily low consumption periods. Figure 1a and 1b illustrate this along with the rebound

effect (described below).

(a) Upward flexibility with inverse rebound ef-

fect (b) Downward flexibility with rebound effect

Figure 1: Upward and downward flexibility illustration incl. respective rebound effects.

Source: Bampoulas et al. (2019)

Previously we have mentioned the term ”rebound effect”, an issue all DR (resp. flexibility)

events deal with. In general, the rebound effect is a term which points out a paradox

in energy saving policies, programs and solutions: ”the purchase and use of an energy

efficient utility (e.g. car, appliance, etc.) seldom results in the anticipated reduction in

the user’s energy consumption” (Klaassen et al., 2017). In the context of flexibility and

heat pumps, we have two types of rebound effects: (i) standard rebound effect and (ii)

inverse rebound effect. After every downward flexibility (fig. 1b) event, during which the

thermostat temperature can fall below desired levels, there is need to reheat the house

back to the same desired levels. Therefore, higher than baseline levels of consumption

possibly occur after the preceding load reduction, resulting in the standard rebound effect.

The rebound effect can also be caused by the people themselves, since one can also take

the standpoint where the idea of previously saving energy, justifies above normal-level

use in the following periods. The “inverse” rebound effect occurs in the case of upward

flexibility (fig. 1a), where the house is usually preheated above desired temperature levels

so that there is no need for consumption later during peak hours (a load shift occurs).

Following this higher than baseline consumption, it is usually the case that electricity

consumption falls below baseline levels, since the thermal mass of the household holds

heat and there is no need for active heating. In principle, the effect of the DR event is
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only positive if benefits of the load reduction outweigh the extra consumption from the

rebound. Various demand response schemes for various appliances and utilities (like HPs,

EVs, smart white goods, etc.) have different longitudes of rebound effects. In the context

of heat pumps these effects are inevitable, but one should always aim for solutions which

minimise the longitude, thus maximising the DR event benefits.

Participation of household customers in DR (resp. DSM), regardless of being only con-

sumers of energy or also as producers (through e.g. PVs, thus becoming ”prosumers”),

will in every case be pooled, resp. aggregated, and thus some degree of coordination will

be required. Parties or bodies who will facilitate this aggregation, ”aggregators”, can

either be retailer-based, that is embodied in already established market participants (tra-

ditionally distribution system operators (DSOs) and retailers, or stand as an independent

party. Aggregators, especially independent ones, have been heavily advocated in recent

years and are viewed as a fundamental building block within the European regulation

framework which aims to expand the role of demand side flexibility in EU countries (Ker-

scher and Arboleya, 2022). An EU demand response status report carried out by Bertoldi

et al. (2016) defines an aggregator as a service provider who operates – directly or indir-

ectly – a set of demand facilities to sell pools of electric loads as single units in electricity

markets. The service is provided separately from any supply contract. As noted before

and also in this report, such a service provider may or may not also be a distributor

(retailer) of electricity. The status of the presence of independent aggregators for a set of

chosen countries is summarised in section 2.3.1.

2.2 Why do we need DSM and why baseline matters?

Demand side management (DSM), demand response (DR) and flexibility are all terms

widely used, not only in the EU but in the U.S., Australia, and Japan, when discussing

tools on how to make energy cheaper and finding a way how to enable renewable sources

of energy (RES) cover larger shares of final consumption. This mainly means levelling out

the so called ”duck curve”1 (overall daily consumption curve) so that RES may supply

energy without being curtailed as much as possible during low consumption periods, and

are able to cover the consumption in full in peak periods. As the volume of installed RES

currently isn’t able to do so in a consistent and large scale manner, creating a flexible

1A reference to the shape the daily consumption curve gener-

ally takes, explained e.g. at https://www.energy.gov/eere/articles/

confronting-duck-curve-how-address-over-generation-solar-energy
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environment, where we allow for certain loads to be moved around, may help us in the

short-term to cut down on energy produced in traditional, fossil based, plants. The mo-

tivations for this are quite clear, as in the 2015 Paris climate conference, the EU and its

Member States have committed to limit global warming well below 2°C with reference

to pre-industrial levels in the legally binding Paris Agreement (United Nations Climate

Change, 2015). In alignment to this the main EU 2030 goals2 trigger the idea and com-

mitment to use a combination of many small producers of RE, with energy system storage

(ESS), electric vehicle (EV) integration and regular power plants infrastructure. As noted

by Kerscher and Arboleya (2022), distributed energy sources3 (DER) and DR coordina-

tion result in a potentially bidirectional4 power flow, which imposes different requirements

on the existing infrastructure. Those can be physical, e.g. transmission lines, installed

technology etc., and market related, that is mainly in terms of balancing markets, but

also for example hedging approaches of DSOs and retailers.

Benefits stemming from an environment with flexible, resp. shiftable consumption at

household level are several, however as noted by Kerscher et al., new business models rely

on adjusted legal regulations. Nevertheless, they present an opportunity of new value

streams and revenues in relation to a changing role of DSOs and TSOs in the market. If

done right, each party within the system may benefit. Starting with consumers, for them

this brings energy bill minimisation and if households choose to install private (decentral-

ised) energy sources such as PV panels and turn themselves into “prosumers”, they can

optimise their overall consumption even more, and further capitalise on potentially offer-

ing their capacity to suppliers. For retailers, demand response offers means how to hedge

their portfolio and for example avoid penalisation5 from the transmission system operator

(TSO) due to caused deviations in the energy balance. Moreover, they suddenly possess

a tool to change and tweak their portfolio diagram and so lower their overall costs. With

DSM, distributors or distribution system operators (DSO) can, alongside what is noted

above for pure retailers, effectively carry out peak shaving, thus pushing down market

prices and also lowering their own operation, maintenance and other costs. This may free

up funds so desperately needed to invest in the grid expansions and upgrades required to

2Include reducing GHG emissions to at least 40% 1990 levels, RES reaching at least 32% of the share

in the energy mix and at least 32.5% in energy efficiency improvements.
3Include e.g. ESS, PEV, heat pumps, combined heat and power systems (CHP), rooftop PV, etc.
4This is not the case of heat pumps and they do not produce any ”new” energy. Instead they work

as storage, which however still qualifies them as a DER instrument.
5Understandably penalisation is the worse of the two outcomes, as parties can also be subsidised if

their activity in the (balancing) market with electricity is beneficial to the overall system (grid).
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accommodate a future which heavily relies on RES and spread out the projected costs

of the overall transition. Finally, TSOs who face the everlasting need to maintain the

energy balance and security of the system may benefit from flexibility in the sense that it

may bring additional “wiggling room” regarding ancillary services, respectively reserves

(FCR, aFRR, mFRR). In the context of heat pumps, the frequency containment reserve

(FCR) and frequency restoration reserves (FRR) are, sadly, out of the question since at

household level only batteries are capable of such speedy (automatic) responses. Still for

manual frequency restoration reserves (mFRR) heat pump flexibility is viable tool how to

lower or shift consumption, thus expanding the volume usable for demand-supply balan-

cing. Moreover, for TSOs this means cutting down on other costs associated with energy

balancing like the operation of plants used for these purposes. Figure 2 offers a summary

of each participants6 revenues.

Figure 2: Main traditional stakeholders on the European electricity market, their functions

and revenues.

Source: Kerscher and Arboleya (2022)

A final note on how all above relates to baseline estimation, respectively, why does baseline

estimation matter. Typically, since demand response programs rely rather heavily on be-

ing able to create incentives for energy users to reduce their consumption, there exists

a pressing need for a trustworthy, precise and transparent measurement and verification

device. Since we are effectively basing the quantification and monetising of benefits on

something that did not actually take place (the baseline consumption during the DR

event), there must be a degree of trust alongside the legal framework. In other words,

6BRP in the figure stands for Balancing Response Party, which can generally refer to any balancing

service provider.
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the baseline is a “counter-factual,” a theoretical measure of what the customer did not

do, but would have done, had there not been a DR event (ENERNOC, 2011). This

makes baseline estimations a critical component of any DR (thus DSM) program. The

baseline is also the primary tool used to measure curtailment during a DR event thus

baselines enable grid operators and utilities to measure performance of DR resources. A

well-designed baseline benefits all stakeholders by aligning the incentives, actions, and

interests of end-user participants, aggregators, utilities, grid operators, and ratepayers.

2.3 Aggregators and tariffs – their role and status

In the context of residential heat pumps, demand response and flexibility ares linked

mainly to load shifting, resulting in the levelling out of the daily consumption curve. This

is due to the nature of heat7 demand and it’s strong correlation with routines of house-

holds. With certain tariffs in place, customer preferences, and technological constraints,

all these factors set certain boundaries within which aggregators will have to operate.

Firstly, with growing shares of RES, production in the system a degree of intermittence

arises , which inherently requires adequate (additional) means of control. The goal here

is very clear, that is using DSM and DR programs to ensure system reliability. As noted

in Kerscher and Arboleya (2022), a significant amount of studies have demonstrated a de-

gree of grid congestion and also voltage violation issues8 in the absence of processes and

strategies which would safely integrate high-penetration RES in the current networks.

Furthermore, Kerscher et al. point out that prosumers, especially the small ones, who

wish to participate in the market, may not possess sufficient capacities for market bid-

ding and may lack the knowledge of market interactions. The integrated or independent

aggregator should then be the body that enables this interaction between prosumers and

the market. Similarly, the European authorities have defined aggregation as an enabler

for prosumer market participation (Council of European Union, 2019). Thus, aggregators

potentially hold the power to participate in the electricity market in a beneficial way for

various involved parties. Moreover, they stand at the core of facilitating the achievement

of climate goals set for the future years and decades. A rather pleasing additional trait

of aggregators is that there is room and possible ways for how to incorporate them in

7Heat demand both in the sense of heating during the winter season and cooling during summer

months as modern day heat pumps are generally capable of providing both.
8The voltage frequency for the European continent is 50 Hz. Although there is room for deviation

from this frequency, it is extremely small, thus in principle it may be treated as if there was none. Failing

to maintain this frequency may result in full black-outs of the given system.
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standing European legislation. However, the last does bear several obstacles, which are

discussed below in section 2.3.1.

Turning to the so far slightly omitted role of tariffs. To incentivise and activate the

flexibility potential of the residential sector (not only heating sector) we must consider

certain contract types (tariffs). This gives the understanding of their role in the system

some importance. The next several paragraphs offer a short overview of what types of

tariffs are currently at our reach. Note that flexible electricity tariffs are nothing new as

they have been discussed well over a century, so to summarise, five main contract types

for settlement and activation have been defined thus far (Larsen, 2016):

• Volume-based static contracts (e.g. fixed load capping);

• Volume-based dynamic contracts (e.g. dynamic load capping and interruptable

contracts);

• Control-based contracts (e.g. direct control);

• Price-based static contracts (e.g. ToU);

• Price-based dynamic contracts (e.g. real-time pricing).

Even though volume-based static contracts are not suitable for household level consump-

tion, this still leaves several suitable candidates. Static price-based contracts, otherwise

know as time of use (ToU), are the most popular way of varying final price for consumers.

To simplify, they induce people to use electricity during periods when consumption is

lower, therefore, prices are set higher during high consumption periods and vice versa

(Stamminger and Anstett, 2013). The motivation behind this is to shift some day-time

peak consumption to the nighttime lull, effectively increasing the feasibility of conven-

tional generation with long minimum on and off times (such as nuclear), while reducing

the need for expensive peaking generators (Larsen, 2016). The consumer then receives a

fixed tariff for a longer period of time, typically several months or a year, where prices

change two or three times a day.

A trendy tariff related topic are dynamic price-based contracts, a.k.a real time pricing

tariffs (RTP). These offer instantaneous pricing of electricity based on the costs of the

electricity available for use at the time the electricity is demanded by the customer. Un-

derstandably, certain technologies are required (e.g. smart meters, smart heat pumps,
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etc.) for this to be possible.

Another type are critical peak pricing tariffs (CPP) which usually combine a ToU and

RTP tariff. Here the energy price varies by a time-variable structure with the objective of

reducing absolute load peaks at critical times (Stamminger and Anstett, 2013). Inverse

CPP tariffs are also possible, where participants are paid for the amounts that they reduce

consumption below their predicted consumption levels during critical peak hours. These

tariffs are called CPP with a rebate. Stamminger and Ansett also note that several studies

on this dynamic pricing offer very different savings results, ranging between almost 0 and

45%.

The tariff style depends on the country and varies from extremes such as 100% energy

component based for households in Romania, to 100% fixed and capacity components

based for households in the Netherlands, as well as a combination of the two in other

countries (Prettico et al., 2019). The next section (2.3.1) briefly looks at the status of

aggregators in chosen EU countries, as well as barriers for their existence.

2.3.1 Barriers for Aggregators and their status in the EU context

Even though as stated above there are ways how to incorporate aggregators, in current

legislation, established and running frameworks for these independent aggregators are

rather rare in the EU. This is in opposition to countries like the US, Australia, South

Korea or Japan who have already managed to do so (Bertoldi et al., 2016). This is in

part due to certain barriers which we will shortly present. A simple overview and some

examples follow.

The final report on demand side flexibility carried out by the EC (European Smart Grids

Task Force, 2019) identifies several areas in which some barriers arise. Namely,

• the customer perspective,

• market access,

• flexibility product design

• market process and coordination,

• measurement, validation and settlement of flexibility products,
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• technical solutions and platforms to fulfil system and grid needs for flexibility, and

• privacy and security.

Due to the large amount of these topics, we will note only the most relevant ones in the

next section.

Firstly, a valid argument is the lack of possible standardisation and interoperabil-

ity of the whole system which is very much needed if we talk about user acceptance of

DSM. The required presence of certain technologies in households (smart appliances, home

energy management solutions, etc.) on the one side, and systems that can incorporate

several business cases at once on the side of the energy managers (including peak shaping,

facilitating large buildings and industries to provide their flexibility to the grid along with

household customers) makes standardisation and interoperability essential. However, as

the report states that this condition is currently not fully met and market fragmentation

still persists. As one example, we can see different standards for providers of Energy

Management Systems (EMS) which in short means having to develop a new device and

system for each market. In many cases this might not be worth it, putting customers

from different countries at a disadvantage by not giving them access to the same services

and opportunities. Furthermore, as also noted in the report, different product design in

each country supposes an extra effort and a layer of complexity added to providers that

need to adapt their products.

Another topic is customer awareness and protection, which is very relevant in the

case of residential customers. As noted not only in the final report, there is a general lack

of awareness about what opportunities there are to engage in demand side response. Since

understandably customers look toward the financial side of things, this can be attributed

to a lack of clear information regarding what is possible (technologically speaking), what

is for offer and how well that serves their energy needs, both in terms of their energy

bill and additional electricity needs. For example, here the lack of possible comparison

of offers may increase risk averseness in potential participants. An obvious data privacy

and and security issue stems from this, as does the need for transparent and also high

enough financial incentives, which would cover the costs, risks and efforts of setting up

the system which allows participation. This is a moment where baseline estimation would

come in and offer some hard numbers.
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Baseline methodology is also linked to market access issues in terms of lack of frame-

work for DR providers. Clear allocation of energy volumes as well as balancing

responsibilities of DR providers are not always present, although it must always be con-

sistent with existing regulation9. Also absent is an appropriate, complete, transparent,

accurate and standardised methodology for baselining. This is commonly identified as

a barrier for access to the market, where especially the lack of transparency may dis-

courage as even slight mistakes in hedging may lead to voluminous financial losses for

DSM providers. Moreover, for example lacking clear and unified framework on the above

mentioned explicit and implicit DR provision is another topic worth addressing.

Out of those already mentioned, the issues related to measurement, validation and set-

tlement of flexibility products are those probably most closely related to baseline estim-

ations. Finding a baseline methodology that is simple, unbiased, transparent (and all

else mentioned above) is far from trivial, especially if we also demand it to be without

gaming-options. Inaccurate baselines may render flexibility assets not viable in terms

of economical value, thus lowering participation of all parties. The simplicity has been

stressed and will be again as it can impact reproducibility, transparency ,and implementa-

tion costs, which hurts both customers and providers. Furthermore, gaming-options could

easily introduce unwanted effects in day-ahead and intraday markets. Additionally, the

concept of independent aggregation typically introduces the need for a Transfer of Energy

(ToE). Since ToE has potential to influence wholesale settlement, clear formulations for

measurement, valuation and settlement (resp. baseline) are required.

As the above listed topics and legislation in general are not the main topic here, we will

not go any further into it here. However, the reason for listing some of the identified

barriers is to stress the need for a clear legislative environment, so that it becomes viable

for DR providers to enter and operate in the market of flexibility, thus possibly utilising

methods which we present and put to work in this paper.

In terms of actual status of aggregators (bodies utilising baseline methods), Stede

et al. (2020) provide us with an up to date overview of companies providing aggregator

(enabling) services in Europe. Based on the researched papers and reports and also as

noted by Bertoldi et al. (2016), in the EU (resp. Europe), to some degree only Belgium,

France, Ireland and the UK have both retailer-based and independent aggregators present

9Mainly the Clean Energy Package (CEP) and Electricity Balancing Guideline (EBGL)
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in the market. Other countries such as Germany or the Netherlands are in the midst of

erasing the withstanding barriers to demand response programs provided by independ-

ent aggregators. Other EU countries very often lack frameworks allowing either type of

aggregator to even offer such services straight to customers, less so to residential ones.

Moreover, from figure 3 we can see that the majority of aggregator services currently

focuses on major customers (MC) only, rather than targeting residential customers (RC)

as well. Again, Stede et al. (2020) and Lu et al. (2020) provide us with reasoning for why

this occurs:

• Existing infrastructures: the diffusion of basic EMS in the industry, for instance,

facilitates the identification of DR potentials.

• Forecasting: the baseline electricity consumption in the industry tends to be rather

predictable due to commonly planned consumption profiles, and applicable large-

scale RES forecasting models exist.

• Data privacy: non-disclosure agreements are already a common practise in industrial

collaborations.

Furthermore, Kerscher and Arboleya (2022) note that only a quarter of the companies

- those in the role of independent aggregators - do not provide service bundling. The

rest do, meaning they combine the roles of the aggregator and for example the role of a

balancing response party (BRP). Also, more than half of the aggregator companies dir-

ectly engage in the wholesale electricity market bidding. Stede et al. (2020) also point

out that even though being large enough to participate in wholesale markets themselves,

many industrial clients choose to collaborate with an aggregator due to, amongst others,

financial hurdles involved with ICT infrastructures.

We leave the topic of aggregators here, and before we move onward to the literature re-

view we will shortly present the codex, respectively framework set up by the Czech TSO,

that is ČEPS. The reason for this is the fact that not only does this codex give us our

benchmark baseline method which we will always compare to tested methods, but in a

more broader sense it also sets the environment we should take into consideration when

marking case specific decisions regarding our result interpretation and evaluation, in ad-

dition to when making some model related choices.
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Figure 3: Companies providing aggregator (enabling) services in Europe assessed accord-

ing to the functional roles presented by Stede et al. (2020).

ASup – Aggregator Supplier; IndepA - Independent Aggregator; SaS - Software as Service; VPP – Virtual

Power Plant.

Source: Kerscher and Arboleya (2022)
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2.4 The ČEPS codex for ancillary services providers

In the sections above, especially 2.3.1 we have listed several barriers which limit the large

scale deployment of DSM. One of these is the absence of transparent and simple baseline

methodologies. The role of the TSO in the Czech context covered by ČEPS, who is the

single TSO in the country, unlike in neighbouring Germany for example, which has sev-

eral TSOs. This year, specifically 16th of March 2022, ČEPS held an online presentation

where it introduced a Codex for Providers of Balancing Services (ČEPS, 2022). The mo-

tivation arises from the current EU legislation (discussed previously) and the fact that

from 2023, ČEPS will be a full time member of the FCRC10 which is the platform where

the cooperation of several TSOs in terms of cross-border FCR procurement takes place.

This codex is a positive signal to all market participants, and in the context of this paper

an important piece of documentation. We will mention the most relevant parts, that is

those that affect our main focus.

Firstly, baseline is presented as the tool which will be used to measure and control the

balancing services provided, thus replacing previous methodology. This allows market

entrance for a wider pool of providers and participants, most importantly, it allows par-

ticipants from the demand side to actively enter the balancing market. It is also noted

that this baseline methodology applies to energy utilities of the so called 2nd category,

that is those which have either an installed capacity smaller than 30 MW, or where the

voltage level of their connection node is under 110 kV. This very clearly targets small

providers, resp. calls for aggregation of small capacity participants. Each unit in the

market will also be allowed to simultaneously provide multiple services using the baseline

methodology, thus allowing for the presence of aggregators.

As for us only mFRR services are relevant, since heat pumps aren’t capable to supply

FCR and aFRR, we will note the calculation approaches related to mFFR, which for the

provider 11 are,

• The prediction interval is to be 30 minutes with a one second frequency (e.g. one

sent at 00:00:01 applies until 00:30:01).

10Information about the workings of this platform as well as results of it’s functioning are available at

https://www.regelleistung.net/ext/
11Only those truly relevant are listed.
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• The prediction interval starts 8 minutes before the mFRR supply interval and ends

5 minutes after this interval.

• The MAPE value will be calculated at 1 hour intervals from minute values.

and for the TSO (ČEPS) they are:

• The baseline method will be the general method of Mid 4 of 6.

• The baseline method will be adjusted by the multiplicative adjustment method.

The codex also lists that for the evaluation of accuracy of predictions within the provi-

sion interval, the mean absolute percentage error (MAPE) will be used as formulated and

described in section 5.5.
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3 Literature review

In this section a literature review is provided. While the main focus lies with actual

baseline and rebound estimation papers, we aim to include papers on the wider scope

of DSM and DR research and aggregators as well, since the field itself is only a piece in

a much larger puzzle. In literature, customer baseline load (CBL), or simply baseline,

is defined in several ways. Wi et al. (2009) defines it as the “usual” pattern of electric

demand, respectively it tells the consumed load when no interference takes place. In our

context, that is household heat pumps, this would be consumption of the heat pump under

no flexibility occurrence. Sun et al. (2019b) use the terminology of dynamic time of use

events (dToU) and non-time-of-use events (non-ToU). The former are periods with low

or high price events, where a dToU group is a group of customers who have received an

experimental (meaning flexible or other than default) dToU tariff. The latter are periods

where default prices apply to the customers in such a non-ToU group. To quantify the

DR event we can take historical values or estimations of the demand change between the

dToU and non-ToU (baseline) cases. Lastly, we could also turn to Zhang et al. (2016) and

use the term load reduction which is defined as the CBL subtracted by the actual load.

This distinction is offered here in order to illustrate that when understanding baseline

results, one should always bear in mind the legislative and terminology context in which

these results have been generated. Still, the main idea stands clear, baseline is what would

have been consumed if no DR events took place.

3.1 Baseline & Rebound

As one would expect, baseline and rebound estimation methodology literature closely

tracks publications on DR and DSM topics. Even though these baseline estimations of

energy consumption are usually only a part of bigger DSM solutions, they are the building

block for the evaluation and measuring of DR and should be of utmost concern for policy

makers and DR program designers. It comes as no surprise then, that the literature on

various estimation techniques is vast. If we understand baseline (and rebound) estima-

tion as described in section 2, we can see a trend in the sophistication and complexity

of these methods. However, as pointed out in e.g. Mohajeryami et al. (2016) simplicity

is an important trait when designing and choosing baseline methods. The following text

presents a brief overview of published methodology on baseline estimation, however one

last note is in order. If we were to take the general grouping of baseline methods as
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presented in the 2011 white paper by ENERNOC (ENERNOC, 2011), in this paper we

focus only on Baseline Type I methods, hence such methods where baseline is generated

using historical interval meter data and potentially also using weather and/or historical

load data to generate a profile baseline. Other groups may include maximum base load,

meter-before meter-after, baseline type II and generation, but these are not considered

here12 as those methods are inferior.

As described in section 5, when observing a methodology ”name” one should always

distinguish between the method’s historical load selection mechanism and the actual es-

timation methodology. For example, if we take the High X of Y method, the ”high X

of Y” refers to the selection rule, as the method uses the highest X days (in terms of

total load) of the last Y acceptable days for estimation. The actual estimation though,

is a simple averaging method. Usually, when grouping methods, the actual estimation

approach is used and we will follow this trend. Thus, based on the literature reviewed for

this paper, we feel it suitable to group covered methods as follows:

• averaging methods,

• regression methods,

• control group or cluster methods and

• other advanced methods.

The following text very briefly summarises the main characteristics of each method,

whereas table 1 offers an overview of some papers on baseline (rebound) estimation which

have been published as part of an underlying DSM trial or project.

Averaging methods are methods which use short historical data of close to given date

loads and calculate CBL by averaging the load of previous non-event days (days when

no DR occurred). These methods typically first choose reference days13 (denoted usually

as Y) and then from these a number of similar non-event days (denoted usually as X)

are chosen for the actual averaging. Taking our context of 15 minute interval data, this

would mean we always take the average from all chosen X days for each 15 minute interval

as our baseline. The values of Y and X differ from application to application, as do the

12Each of the listed methods is described in the ENERNOC white paper, page 6.
13Throughout the text, these are often referred to as ”acceptable days”.
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selection criteria resulting in a variety of methods, as pointed out by Lee (2019). For

example, the New York Independent System Operator (NYISO) High 5 of 10 method

(Jazaeri et al. (2016), where high translates to ordering the Y reference days by highest

total daily load and taking the highest X (here 5) days for averaging14. Another example

would be the California ISO (CAISO) which used High 10 of 10 (Wang and Tang, 2020).

Other possibilities to the ”high” selection criterion are ”mid” and ”low”, where mid refers

to taking the middle X (dropping the top and bottom days) and low the lowest X from

the Y reference days. The Mid 4 of 6 method will be the benchmark in this paper as it

will be used by the Czech TSO (ČEPS). It is also possible to use other selection mechan-

isms for averaging, e.g. a moving average based approach, used by e.g. the New England

ISO (ISONE) and probably to most advanced manner of baseline estimation within the

averaging methods.

Regression-based methods use regression models to “forecast” the baseline load pat-

terns during event periods. The difficulty here is to find the most accurate non-linear

relationship between chosen features (regressors) such as temperature, historical load,

etc., and baseline load (the dependent variable here). In opposition to simple averaging,

resp. similar-day methods, regression methods can be capable of including event day in-

formation in the model itself. However, as Sun et al. (2019a) point out, since DR events

are usually established for extreme weather conditions, there arises and issue of insuffi-

cient historical measurements in order for one to build a reliable model of this type. This

calls for the use of adjustments, which is further explained in section 5 and discussed in

section 7.

One way of overcoming the issues above can be using load profiles of customers who have

not been subject to any DR event but who match the typical load profile (TLP) of the

subject who’s CLP we are estimating. Such methods, control group (cluster-based)

methods, use various clustering methods (e.g. K-means) to link DR event customers to

clusters (control groups) of similar non-event customers, thus overcoming challenges such

as limited data during the extreme days Hatton et al. (2016). The main caveat of this

method type is the clustering itself. In order for these models to be effective and precise,

finding optimal matches of load profiles is key (Sun et al., 2019a). In the absence of this

historical data, synchronous pattern matching has been proposed by e.g. Wang et al.

14The listed methods in this sentence apply to weekday DR events. For weekend DR events the methods

are often different, e.g. the NYISO use the High 2 of 3 method for such occurrences.
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(2018) as an effective solution.

Other advanced methods include the use of more sophisticated tools such as neural

networks combined with machine learning, handling the stochastic uncertainty (which is

key for probabilistic estimation) and more. Some authors, e.g. Sun et al. (2019a) even

try to exploit both pre-event (historical) and post-event (“future”) dependencies. Prob-

abilistic estimation is another well explored group of methods. Vallés et al. (2018) use

probabilistic quantile regression, Weng et al. (2018) explore the possibilities of probab-

ilistic Gaussian process regressions and so on. Some authors also combine cluster-based

methods with regression method, such as Sun et al. (2019b) who combine deep embedded

clustering with quantile forest regression. Generally, these advanced methods give more

precise results to the previous methods, however, there are some drawbacks. The most

noteworthy is the need for massive datasets of fine-grained data and also the computa-

tional time of some of these approaches may become an issue if time is of the essence.

Moreover as noted before, such methods may not be suitable when evaluating the sim-

plicity of the baseline estimation as it would be probably safe to assume that most DR

participants, especially in the context of households, may not be fully comfortable with

terms like Gaussian processes, deep learning, neural networks, etc.

Even though sophisticated methods often produce better results, due to mentioned sim-

plicity requirements and also necessary computational time for example, they seem to be

more suitable for, e.g. post-DSM evaluation when the only true factor is the most precise

evaluation of the DR. This is also why regulators most often turn to averaging meth-

ods. To increase their ability to compete with other methods, adjustments can offer

additional precision. Some sort of adjustment can complement all estimation methods,

regardless the type. Generally, there are two approaches. The more simpler manner is an

additive adjustment, where one simply adds the difference between the baseline estima-

tion and actual load to the baseline estimated value at the beginning of the DR event. In

other words, we observe how ”off” the baseline estimate is at the start of the DR event

and add this error to the baseline itself throughout the whole DR event to adjust for any

event day change in load. This adjustment can also take multiple periods prior to the DR

event start and use their average differences as the final baseline adjustment (as in ISONE

Grimm (2008)). The alternative, a multiplicative adjustment, is similar with one main

difference, that is, the adjustment is done by multiplying the baseline by a calculated

”adjustment multiplicative” which is obtained again from hours prior to the DR event.
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The two mechanisms are described in more detail in the methodology section (section 5).

Both adjustment methods are very often used along with similar-day (X of Y) methods as

these methods give high estimation errors particularly due to neglecting event day data as

in Mohajeryami et al. (2016). Based on the papers which include (and compare) multiple

methods, we can expect decreasing error sizes with the increase in sophistication of the

methods.

Table 1: Relevant Baseline Estimation Papers (chronological order)

Paper Estimation method Data & Notes

Haas and Biermayr (2000) Regression based. Space heating data, Austria 1970-1995.

Wi et al. (2009) Regression (exponential smoothing) with

weather adjustment.

Past load data, PJM 2001-2003.

Wijaya et al. (2014) Averaging methods (Low X of Y, etc.). Irish CER smart metering trial dataset. In-

cludes High(Mid) XofY and regression as well.

Klaassen et al. (2017) Multiple regression and artificial neural

networks.

Dutch PowerMatching City (PMC) Pilot data.

Jazaeri et al. (2016) Averaging, regression, machine learning

and polynomial interpolation methods.

Comparison paper. Smart meter data from

Victoria, Australia.

Zhang et al. (2016) Cluster based with morning adjustments. Data form residential customers in a city in

Southern U.S.

Hatton et al. (2016) Control (cluster) based. Une Bretagne Avance trial DR with 280 DR

participants and a control group of 433.

Mohajeryami et al. (2016) Averaging methods and regression, includ-

ing adjustments.

Irish CER smart metering trial dataset, here

262 customers from 2009.

Weng et al. (2018) Probabilistic via Gaussian regression. PG&E and OhmConnect datasets from year

2011-2012 and 2014 respectively.

Vallés et al. (2018) Probabilistic quantile regression. Data from a DR field test in Castellón de la

Plana (ESP), part of EU ADDRESS project.

Wang et al. (2018) Cluster based - variations of Synchronous

Pattern Matching.

Irish CER smart metering trial dataset (2010).

Sun et al. (2019b) Cluster based (DEC) plus quantile regres-

sion forests.

Low Carbon London Progam data.

Lee (2019) Averaging methods (variations of Mid

XofY).

South Korean (DRTM) and French (NE-

BEFDR) mechanisms data.

Müller and Jansen (2019) Probabilistic estimation Data from 300 residential buildings with heap

pumps.

Sun et al. (2019a) Probabilistic based (Bayesian Deep Bid-

irectional LSTM Neural Network train-

ing).

Low Carbon London Program data.

Wang et al. (2019) Probabilistic based, combining (averaging)

quantile regression methods.

ISONE and Irish CER smart metering trial

data between 2013 and 2016.

Mancini et al. (2020) Cluster based (household archetypes, resp.

dwelling clustering)

–
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3.2 Other relevant literature

3.2.1 DSM and DR

Since demand side management (DSM) and DR trials are rather large and complex pro-

jects, the same goes for the literature that aims to present them. A good example of

this would be the multi-phase the PowerMatching City Pilot in the Netherlands, which

has, for several years, been the focus of a range of papers from network (market) model-

ling (e.g. Bliek et al. (2010)), including smart grid coordination (e.g. Kok (2013)) and

multi-goal system optimisation (e.g. Wijbenga et al. (2014) to those closest to our focus,

that is baseline estimation (Klaassen et al. (2017). The scale, area (region), included

technologies (e.g. heat pumps, EVs, photovoltaics15, etc.), present tariffs, characteristics

of buildings (apartment buildings, residential houses, industrial complexes, etc.) and also

ones standpoint (profit-seeking company, regulator, policymaker, etc.) are all determin-

ants in how these projects end up being set up, modelled and evaluated. As this paper’s

main focus is not the modelling and general set up of the underlying DR scheme, and

moreover, the size of the studied group is only 27 household heat pumps with no other util-

ities included, we will only touch the main topics associated with DSM and DR in general.

Smart grid modelling is a increasingly growing topic of it’s own, where demand side load

management is only one of the three domestic technologies usable, the other two being

distributed generation (e.g. PV) and energy storage. A good example that the interest in

this field is nothing new is the 2010 paper by Molderink et al. (2010) where the authors

offer an overview and general concept of then current research, along with some prom-

ising results of field tests. As one of the main motivations for DSM is to allow for higher

penetration of renewables into the energy mix16, models which can evaluate this are also

needed. Luckily such models have been around for some time now, as in Pina et al.

(2012). A good example of DSM modelling in a heat pump specific context would be e.g.

Hedegaard and Balyk (2013) where authors present a model that facilitates analysing

individual heat pumps and complementing heat storage in integration with the energy

system, while optimising both investments and operation. The results lead authors to

15The presence of any individual energy source, usually PV but possibly even EVs, adds an important

new element to any DSM since it turns consumers into so called ”prosumers”. Thus, households interact

not only as the demand side, but carry certain traits of the energy supply side too. The main being their

ability to reserve and sell their production capacity to their distributor for e.g. balancing purposes. Here

the pricing and set up of DSM becomes even more complex, as showed e.g. in Venizelou et al. (2020).
16Mainly by levelling out the daily consumption curve, the so called ”duck curve”.
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note the potential which heat pumps may have in terms of integrating wind power at

a national level, including impacts on investments, system costs, fuel consumption, and

CO2 emissions.

Another interesting question is the willingness of households to participate in DR in gen-

eral. This is tackled by for example Srivastava et al. (2020) who operate with a data set

of 186 respondents and focus on Belgium winter electricity peaks where the main ques-

tion relates to the willingness to accept limits on the use of home appliances in return

for a compensation. They find that willingness to enrol in a program increases with age,

environmental consciousness, home ownership, and lower privacy concerns. Moreover,

the analysis predicts that 95% of the sample surveyed could enrol in a daily load control

program for a compensation of AC41 per household per year, and the authors summarise

that while an initial roll out among older and more pro-environment homeowners could

be successful, a wider implementation would require an explanation of its environmental

and financial benefits to the population, and a greater consideration of their data privacy

concerns.

As mentioned above, buildings themselves are also an often concern as generally, insu-

lation and other characteristics have great power in reducing consumed energy. In the

context of the Danish newly built buildings regulations Foteinaki et al. (2018) study the

differences between a single-family house and an apartment block in terms thermal stor-

age capacity and what are the effects on flexibility. The findings showed that low-energy

buildings are highly robust and can remain autonomous for several hours and that the

potential for storage in the thermal mass is considerable. They also state that the ana-

lysis presented high dependence of flexibility potential on boundary conditions (ambient

temperature, solar radiation, internal gains) and underlined the importance of envelope

insulation. Similarly, Le Dréau and Heiselberg (2016) also study the effects of short term

heat storage in thermal mass on the energy flexibility of residential buildings.

Scale is also mentioned above as a determinant in DSM and DR methodology approaches.

As one might expect the approach mainly differs between urban scale DSM projects, as in

e.g. Hedegaard et al. (2019) where the authors include a whole residential neighbourhood

in Aarhus, Denmark, or simply taking a single representative as in Bampoulas et al. (2019)

who take a household type representing about 40% of the Irish building stock and infer

conclusions based on this. However, ultimately, these two approaches obviously share
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their aims. Also, whenever the scale grows, the optimisation issues gain on relevancy as

one has to handle different preferences, constraints and habits. Jin et al. (2017) offer a

good example of the development of a micro-grid optimal dispatch with DR (MOD-DR)

as they demonstrate a 17.5% peak load reduction and 8.8% cost savings on a campus

prototype.

3.2.2 Aggregators

The idea of aggregating small residential loads and allowing them to be bid to an open

(liberated) market is the principle motivation for any DSM or DR solution. This principle

and the theoretical background for aggregators was described in section 2.3 and so below

we only provide literature support and potential further readings. Probably the most re-

cent study looking at the role of aggregators in the EU legislation and energy framework

is the one by Kerscher and Arboleya (2022). In this study the authors present a magnifi-

cent techno-economic review of aggregator models and case studies17 and agree with the

EU regulation that assigns aggregators (especially independent ones) a pivotal role in the

upcoming energy transformation. However, they do confirm the cited findings in section 2

and point out that aggregators face various regulatory, technical, and economic barriers.

A paper analysing the German balancing mechanism by Koliou et al. (2014) illustrates

that DR has indeed potential, but is undermined by three mechanism design aspects:

minimum bidding volume, minimum bid duration and binding up and down bids. For a

consolidated insight into the optimisation functioning and bidding methodology expected

of the debated aggregators one can look to the paper by Babar et al. (2017), for example.

As mentioned, in this paper the ”prosumer” role of households is not considered, however,

Brusco et al. (2014) study the workings of an energy district as an aggregated coalition of

prosumers in the context of a Italian residential housing area. Finally, for completeness, as

we work only with household consumption, we abstract from industrial demand response,

however, for example Stede et al. (2020) offer a rather recent case study on industrial DR

in a German context.

17A tabulated overview of listed models and studies is available in Table 3 of the paper – https:

//www.sciencedirect.com/science/article/pii/S0142061521006001?via%3Dihub#t0015
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4 Data

This section presents the used data set, how it was obtained and handled. Furthermore it

describes the workings of the underlying demand response scheme and finally offers basic

descriptive statistics.

4.1 Data Origin, Collection and Handling

The data used in this paper has been collected by the energy conglomerate ČEZ a.s. as

part of a DR and flexibility pilot project during the 2021/2022 winter heating season. To

filter out possible sources of bias and other misleading factors, households from a single

region and county were targeted. As a result, all of the thirty-one households, which were

willing to take part and had the technical necessities installed18, come from the Domažlice

county located in the Pilsen region, south-west Bohemia in Czechia.

Usable data is available for the period starting on the 11th of December 2021 and ending

on the 26th of March 202219. This presents us with almost four full months (105 days)

of observations. As mentioned above, the original sample group contained 31 households,

however, data on four heat pumps (HPs) had to be omitted due to excessive amounts of

NA values. The presence of such values stems from the technical setup of data logging.

To cut down on data transfer volumes, only changes in heat pump load were logged. This

means the intervals between logs could be anything between several seconds to tens of

minutes, depending on momentarily consumption levels. This data was then internally

processed by ČEZ so that the final output would be minute data with the condition,

that in the case of any NA value, the last known (logged) load value was prolonged for a

maximum of 20 minutes. Beyond this 20 minute limit, the NA values were left as NAs,

as there was some uncertainty about why the HP wasn’t recording any values. Most

probably this was due to technical reasons, e.g. connection issues. The outside temper-

ature was logged similarly, with the difference that the last known value was prolonged

up to the next logged temperature, as we can be certain about the presence of outside

temperature. All collected variables are described in detail in section 4.3.

18Those being an electric or hybrid heat pump (HP) and a smart meter. Moreover, to be able to

effectively collect data, ideally the same company would be the heat pump supplier. In this case Tenaur

s.r.o., which is also part of ČEZ Group.
19The sample was cut here to avoid complications related to the time change.

26



Since simply omitting the NA values would result in an incomplete time series, and negat-

ively effect, or even restrain, our attempts at obtaining the baseline estimation, a way how

to replace them had to be found. Here we decided on the following approach, which was

also the recommended manner by ČEZ. For each NA value we took the average load of

all the other heat pumps in the sample for that time period20. Given the fact we had two

”types” of HPs, those undergoing DR events and those not, for each ”type” we used load

from heat pumps with a matching state of consumption. Thus, if the HP is consuming in

a DR decrease request state for example, only loads of HPs also in the state of decreased

consumption were used to obtain the NA replacement value for that period. This means

that those HPs which did not undergo any DR event throughout the whole sample time21

were not included in this calculation in all of the DR event periods. Similarly, we couldn’t

use data from HPs undergoing DR events when replacing NA values for heat pumps which

didn’t undergo any interventions. The DR mechanism properties are discussed in full in

section 4.2.

Finally, since the current EU regulation tackling imbalance settlement harmonisation

adopts the rule the ”by 1st January 2021, the imbalance settlement period must be 15

minutes in all scheduling areas, unless regulatory authorities have granted a derogation

or an exemption (derogations may be granted only until 31 December 2024)22” (Council

of European Union, 2019), and because imbalance settlements are one of the main mo-

tivation factors for this paper (as discussed in section 2.2), we transformed the initial

minute data into 15 minute intervals. This was done by taking the average load for each

HP for the given 15 minutes. Therefore, from the original time series of thirty-one heat

pumps with minute frequency data, we have a dataset with 27 heatpumps with 15 minute

frequency, resulting in 274,752 observations of heatpump load23. Out of these 22 HPs

underwent DR events and 5 did not. Table 2 summarises.

20If there were NAs also in the other HP load data for the given period, these were dropped from the

calculation. We faced one occurrence of full NA row (row 144,584). This row was replaced with the

average loads of ± 30 rows.
21These serve as the control group.
22Furthermore, the Article 8(4) also states that ”from 1 January 2025, the imbalance settlement period

must not exceed 30 minutes where an exemption has been granted by all the regulatory authorities within

a synchronous area”.
23If we include the remaining three variables – date-time, requests and outside temperature – we get

305,280 observations.
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Table 2: Number of Observations per Heat Pump Type

DR event HPs non-DR event HPs

# of HPs per type 22 5

# observations at 15 min interval 10,176 10,176

total observations per type 223,872 50,880

4.2 The Underlying Demand Response Mechanism

To provide full context on the understanding of the data sample and also the results

presented later, a final note on the underlying DR event scheme is necessary.

As described above in table 5, request values could be of either the value 0, 1 or 2. Zero

corresponds to no intervention into the heat pump load, and so for periods in which this

value is present in the data, the state of consumption is identical for both groups of HPs,

both controlled and uncontrolled. In those periods where this value equals 1, a request to

decrease load was sent to the heat pump, thus resulting in a downward DR event, where

the HP expectedly consumes below the later estimated baseline. Similarly for values of 2,

in which case the difference is that an increase request was sent, hence the HP expectedly

consumes above baseline. Furthermore, as pointed out be e.g. Wijaya et al. (2014), two

types of signals are possible for residential customers:

1. A signal which communicates the DR event start/end times and the amount of kWh

to be reduced.

2. A signal which communicates the DR event start/end times and lets the customer

decide how much she is willing to reduce.

Our specific underlying DR scheme uses signals of the second type, therefore it is to the

customer to choose the volume by which he or she wishes to decrease (increase) the load.

This type of DR signal has some interesting implications in regards to customer incentives

and possibilities in ”gaming” the system. These are discussed in section 7.

Table 3 shows the amount of requests along with type, for the 15 minute interval data24.

As clearly visible, the DR scheme was more active in December, January and March,

whereas less active in February. Since each request relates to a 15 minute interval, the

24Recall that initial data was in 1 minute frequency. For this data, the requests count obviously differ.
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total sum of hours, in which the HP load were intervened with sum up to 322 hours (or

just over 13 days), for all the given months.

Table 3: DR Requests Count

Request type December 2021 January 2022 February 2022 March 2022 Total

No request (0) 1677 2473 2664 2074 8888

Decrease request (1) 210 314 8 258 790

Increase request (2) 129 189 16 164 498

Controlling requests (1 & 2) 339 503 24 422 1288

In total, we have 68 and 46 days on which a decrease or increase event takes place, re-

spectively. These dates are available in the appendix (tables 15 and 16). The DR requests

are timed on a weekly basis where each day always follows a given time schedule of both

decrease and increase requests. Table 4 offers an overview of how the requests were timed

every week. Note, that most of the days we have two of each request type, except for

Thursday and Sunday. Also, Wednesday is rather peculiar, as its first DR event of the

day is a decreasing one, followed by a increasing event. Also, unlike in the other days,

on Wednesday, the two requests are always consecutive, which can pose some difficulties

when setting up the DR valuation, e.g. when wanting to quantify the rebound. Requests

occur in all months although in February, this is true only the first day of the month25.

Table 4: DR scheme –– weekly time schedule

Weekdays 1st Increase req. (2) 1st Decrease req. (1) 2nd Increase req. (2) 2nd Decrease req. (1)

Monday 01:00-02:00 06:00-07:00 11:00-12:00 17:00-18:00

Tuesday 01:00-03:00 06:00-08:00 11:00-13:00 17:00-19:00

Wednesday 11:00-13:00 10:00-11:00 16:30-17:00 17:00-19:00

Thursday – 06:00-06:30 – 17:00-19:00

Friday – – – –

Saturday 01:00-02:00 09:00-11:00 14:00-15:15 18:00-19:00

Sunday – 09:00-11:00 – 17:00-19:00

25Even though one might find oneself questioning the size of the dataset, we would like to note, that

based on the literature review of similar papers, often only a handful (or even a single) of DR events

are studied, as the main focus is not the DSM scheme, but the performance of each method. The same

applies to our case. In our case, maybe the opposite could be the issue, that is, having enough non-DR

days which we can actually use for baseline estimation. Luckily, having a full month where almost no

DR events occur makes for a large enough control sample.
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Here it should be noted that the DR scheme itself is not the main focus of this paper,

as apparent from the lack of some real-time factors26 when deciding the timing and scale

of the DR requests. It does, however, follow the general principle of peak-shaving and

”filling in” the low consumption periods of the day. This is clear from the request time

intervals described above. As the core focus of this paper is the comparison and evaluation

of the chosen baseline estimation methods, we will abstract from any judgement of the

DR scheme itself. The main output will be a proposal on which methods are most likely

to generate the lowest errors in our regional and time interval (15 minute) setting.

4.3 Variable Descriptions

This section provides a detailed overview of all the variables obtained and used. Table 5

offers a short description of each data variable, including the the ID of this variable used

in code and also throughout the text (mostly in section 5). Detailed descriptions of each

variable follow below, followed by relevant descriptive statistics.

Table 5: Data Variables – Basic Description

The id represents variable classes. DT is used as POSIXct, out temp as numeric, req as integer and

hp(i) j as numeric. The expression j = {t, f} and represents the type of HP, that is controlled (t) and

uncontrolled (f ).

Variable Simple description id

Date-time stamp Date and time expressed in the ISO 8601 format. DT

Outside temperature Outside temperate (°C) calculated as the average temperature of

all household locations included in the pilot.

out temp

DR request DR request signal with values 0 (no request), 1 (decrease request)

and 2 (increase request).

req

Heat pump load Actual load of household i heat pump in kW. hp(i) j

Our date-time variable is reported in the ISO 8601 format27 and as noted already, ranges

from the 11th of December 2021 to the 26th of March 2022. The outside temperature (in

°C) variable is collected in order to have some representative of weather when necessary.

Since all the locations (households) of the heat pumps were within the same region, the

final values are computed as the average temperature of all the locations at any given time

26E.g. real-time-pricing as discussed in section 2.
27That is: YYYY-MM-DD HH:MM:SS.
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period. There was no distinction between controlled (undergoing DR events) and uncon-

trolled (not undergoing DR events) heat pumps in the case of temperature. Regarding the

DR request variable, as noted above, being a request variable, it can take the value of

0, 1 and 2. Each relating to a DR request type, ”no request”, ”decrease load request” and

”increase load request”, respectively. The DR scheme itself is described in detail in section

4.2. Finally, the heat pump load is recorded for a total of 27 heat pumps. As noted in

table 2, 22 heat pumps undergo load interventions, whereas 5 heat pumps do not and serve

as a control group. The originally minute frequency data underwent transformation into

data with a 15 minute interval, for reasons described in section 4.1, by taking the average

load of all the minutes between e.g. 00:01 and 00:15 for the final value at 00:15. Table 6

offers an overview of basic descriptive statistics for all variables. As it seemed excessive,

and also fairly irrelevant, to report these statistics for each individual heat pump, the HPs

were grouped by type (controlled and uncontrolled) and the average of the given statistic

for all the individual HPs is reported (columns ”all hp t” and ”all hp f” in table 6 below).

Table 6: Basic Descriptive Statistics

Statistic DT out temp all hp t all hp f

Min.: 2022-01-01 00:00:00 -6.1044 0.0000 0.0000

1st Qu.: – 0.1561 0.5608 0.6653

Median: – 2.1911 1.6969 2.1960

Mean: – 2.6835 1.6992 2.0236

3rd Qu.: – 4.8115 2.6118 3.0368

Max.: 2022-02-28 23:45:00 20.5681 6.0923 7.7318

Before starting with the actual estimations, in order to understand the data, several visu-

alisations might be helpful. First, we grouped the controlled HPs by request type and

took the average load of all HPs for each time interval within a day. The output of this

is shown in figure 4, 5 and 6 for the request types 0, 1 and 2, respectively.
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Figure 4: Average daily load of all DR HPs – request type 0 (no request)

The red line in figure 4 represents the average load of all the 5 uncontrolled heat pumps. It is included

only here, as these are the days and hours in which controlled HPs were not following any requests (reg

= 0), thus their load were not intervened with.

Looking at figure 4 we should keep in mind that the effect of February is present here.

The February days are the non-DR event days in the data sample. If we were to generate

this plot only for February (not reported here), we see the exact same daily seasonal-

ity, only with slightly lower values (around 0.2 kWh) which may be explained by lower

temperatures in January and December relative to February (see fig. 8). The relation-

ship applies the March, however, here it is inverse. From the plot we can see the daily

peaks, between 08:00 and 09:00, and between 18:00 and 19:00. The daily lows during

night time and around noon are also rather clear. The average maximum load (peaks) are

somewhere just above 2 kWh and the daily minimum goes as low as just under 1.4 kWh.

The red line in figure 4 represents the average daily load for our group of uncontrolled

HPs. Interestingly, although this group follows a more or less similar daily consumption

curve, this group has slightly higher load. Here the small size of the group may be the

explanation, as taking an average from 5 HPs may be more prone to affects of extreme
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values (outliers). This difference persists even for when plotting just February data (not

reported here).

Figure 5: Average daily load of all DR HPs – request type 1 (decrease request)

Figure 6: Average daily load of all DR HPs – request type 2 (increase request)

Figure 5 shows the average load during decreasing DR events as described in table 4.

Recall that the decreasing request time intervals were not the same for each day, thus
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resulting in the gaps during the morning interval. The decreased load drops as far as

below 1.2 kWh in some cases. Also, in general the average load doesn’t exceed 1.7 kWh

even in peak hours. If we were to compare the load levels to those in fig. 4 we can see

that there is clearly some decrease in consumption. These moments are those which will

interest us the most in our baseline estimations. Finally, figure 6 shows the average load

of increase request time intervals. Again, we can observe a difference between these values

and those in figure 4 for given time stamps, only here as expected the load increases, in

some moments, even as far as beyond 2.3 kWh28.

Another useful visual description is to see the summed consumption of our controlled HPs

for the four months. Figure 7 plots total controlled HP load in for December, January,

February and March at 15 minute intervals. As we already know how the daily seasonality

looks like, the small interval doesn’t matter here. Instead, here we are interested in the

general level of consumption. Clearly, consumption was higher in December and January,

most probably as a result of lower outside temperature, as reported in figure 8. When

observing the two graphs, we can see a clear inverse relationship in general.

Figure 7: Summed load of all DR HPs (15min intervals)

28Note that these values are the average values of all the controlled HPs for the given time stamp, thus

the individual load increase can (and often did) go beyond even 2.8 kWh.
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Figure 8: Average outside temperature for all HP locations
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5 Methodology

In this section we describe all used baseline estimations models. We also present the

carried out adjustment method and how the DR events, including the rebound where

quantified. At this point it should be stated that based on the classification of ENER-

NOC (2011) we consider only so called Baseline Type I estimation methods. In these

methods the baseline is generated using historical interval meter data and may also use

weather and/or historical load data to generate a profile baseline that usually changes

hour-by-hour29, which is shown to be the most prominent. Furthermore, we would like

to stress that even though no estimate is perfect, there are some methods superior to

others or best suited to specific programs or customer types (ENERNOC, 2011). When

valuating a baseline method many sources, e.g. Mohajeryami et al. (2016) or ENERNOC

(2011), define three factors that are critical above all others. Those being: accuracy,

simplicity and integrity, and one should always keep these three in mind when choosing

or building a method. A final note, all coding in this paper was done using the RStudio

software and the code will be made available on GitHub. The section continues with the

simple averaging methods, then moves to exponential moving average and exponential

smoothing and finally presents the two regression models. It then moves to presenting

the used performance metrics and the approaches and methods utilised to quantify the

DR scheme along with the rebound.

5.1 Simple Averaging Methods

If we abstract from the simplest of baseline estimation methods, that is the last Y days

method, averaging methods with the various X of Y selection rules could be considered

as the more simplistic approach to baseline estimation. However, they are used by many

(independent) system operators (ISO) as they offer a very straightforward, transparent

and easy to understand30 methodology, all of which are traits that have been noted in

many papers (see section 3) to be crucial when deciding a good baseline method.

The general approach of these methods is to select a group of most recent days from

29Other baseline types include: Maximum Base Load, Meter Before – Meter After, Baseline Type II

and Generation.
30Especially for the customer, who’s willingness to take part in the DR program can very well be

diminished by a complicated method which he or she are unable to understand and thus possibly feel

lack of trust. This is covered in section 3) and also the discussed in section 7.
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the set of ”acceptable days” based on several conditions listed below, and then compute

the average for each time slot using a subset of these days. In other words, they share

a selection rule, last X of Y, and they all have the same estimation method, averaging.

What they differ in is the way they select the X days from the last Y days for the actual

baseline estimation. The following sections present each of the three estimated X of Y

methods: High X of Y, Low X of Y and Mid X of Y.

5.1.1 High 5 of 10

As mentioned, X of Y methods and especially the high X of Y method, is rather popular

amongst ISOs, e.g. in the United States. Papers by Wang and Tang (2020) or Wijaya

et al. (2014) confirm this offering the following :

• PJM: High 4 of 5 for a weekday, and High 2 of 3 for a weekend DR event.

• NYISO: High 5 of 10 for a weekday, and High 2 of 3 for a weekend DR event.

• CAISO: High 10 of 10 for a weekday, and High 4 of 4 for a weekend DR event.

The main reasoning being that most DR events31 happen on days where the usage, and

especially peak usage, are expected to be high. Thus, having a method able to replicate

these peak consumptions for DR event hours is desirable and most representative of the

actual potential consumption. For programs working all year round, especially programs

using both decrease and increase requests, this may not always be the case. As a result

some operators opt for the Middle X of Y (ENERNOC, 2011), which is what ČEPS has

published as their used method (ČEPS, 2022). This method is described later on. As

several specifics of the High X of Y method differ from application to application, we

choose to base our approach on the findings of Mohajeryami et al. (2016), Wang and

Tang (2020) and Grimm (2008).

High X of Y methods are defined by Jazaeri et al. (2016) as follows: From the original

pool of the last Z calendar days, the last Y working days are selected after applying the

exclusion rules. Here we follow the general approach and exclude all DR days, holidays and

also weekends when estimating for workdays. One could also generate more sophisticated

exclusion rules and exclude for example outlier days, however, this can decrease the set

31Many papers handle only decreasing DR events. In this paper we always have a combination of

multiple decreasing and increasing events, often in one single day. See section 4.2.
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of acceptable days and so we do not apply this rule. Next, the daily load (the sum of

loads from each individual time slot) of each of those Y days is calculated. The Y days

are ranked according to their daily load from the highest to the lowest and the highest X

days are selected. The baseline load of the event day is then the average of the same time

slot load from all of the X days. Mohajeryami et al. (2016) describes a widely used high

X of Y method used by the New York ISO. This method includes the following steps:

1. First, Y non-DR days must be selected. The NYISO method chooses Y = 10. Apart

from pervious DR event day, weekends and holidays are also excluded.

2. Next, X days are chosen from the aforesaid Y days based on the level of consumption.

The NYISO has X = 5 and chooses the highest consumption days.

3. Finally, taking the average load of these five days gives us the baseline.

If high X of Y is defined as:

High(X, Y, d) ⊆ D(Y, d),

then the high X of Y baseline of customer i ⊆ C for time slot t ⊆ T on event day d is the

following:

bi(d, t) =
1

X
·

∑
d∈High(X,Y,d)

li(d, t) (1)

The NYISO also uses an additional algorithm to select the past 10 non-DR days, which

they use for their ”Day-Ahead Demand Response Program”. The goal of this is to choose

the 5 days with highest kWh usage from a pool of 10 days that meet the requirements of

the algorithm, instead of them just being the past 10 non-DR days as e.g. in the Califor-

nia ISO method. This algorithm is described in more detail in Grimm (2008). However,

due to limitations in data size, we choose not to add additional exclusion rules so that

we preserve as much data as possible and thus choose to use the simpler approach of the

CAISO and simply use the last 10 acceptable days. Therefore, in summary, we take our

X and Y from the NYISO but abstract from the additional condition of the X days, as in

the CAISO.

Table 7 offers a snapshot from our X of Y methods selection mechanism. Note that the

DR days in this case are workdays between the 7th and 10th of March thus the vector

D(Y, d) is filled with all the days in column Date. Once the X days are identified, the
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baseline can be obtained as shown in table 8.

Table 7: Selection rule mechanism for each ”X of Y” method

The High 5 of 10, Low 5 of 10 and Mid 4 of 6 are used for illustrating how the respective X of Y methods

choose the days used for baseline estimation. This is why the mid 4 of 6 column contains only four x

values.

Date hp0 t high 5 of 10 mid 4 of 6 low 5 of 10

2022-02-16 162.46 x5

2022-02-17 129.22 x1

2022-02-18 138.05 x2

2022-02-21 171.09 x4

2022-02-22 173.47 x3 x2

2022-02-23 153.10 x4 x4

2022-02-24 148.18 x3

2022-02-25 162.03 x3 x5

2022-02-28 213.20 x1

2022-03-04 210.46 x2 x1

Table 8: Baseline calculation example for the High 5of10 method

Time 2022-02-16 2022-02-21 2022-02-22 2022-03-04 2022-02-28 baseline hp0 t

00:00:00 2.67 1.09 1.46 2.61 0.93 1.75

00:15:00 2.43 1.70 1.57 2.42 3.68 2.36

00:30:00 0.15 1.92 1.68 2.60 1.69 1.61

00:45:00 0.00 2.08 2.19 1.23 4.07 1.92

01:00:00 0.91 1.99 1.91 0.00 3.35 1.63

01:15:00 1.96 1.73 3.21 2.02 2.76 2.34

01:30:00 3.28 1.73 2.56 4.16 0.26 2.40

01:45:00 3.23 1.00 2.26 3.38 0.00 1.97
...

...
...

...
...

...
...

22:00:00 0.57 2.53 1.29 4.32 2.50 2.24

22:15:00 0.00 2.12 1.59 3.44 0.29 1.49

22:30:00 0.00 0.61 1.91 3.32 0.00 1.17

22:45:00 1.57 0.00 2.34 1.89 1.07 1.37

23:00:00 2.03 0.14 2.00 0.51 4.17 1.77

23:15:00 2.03 2.74 1.22 0.00 3.39 1.88

23:30:00 1.98 2.87 1.27 0.18 3.13 1.88

23:45:00 1.80 2.55 1.15 0.00 2.25 1.55
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5.1.2 Low 5 of 10

Mohajeryami et al. (2016) define low XofY as well as it basically mirrors the high XofY.

The methods are essentially the same with the distinction that the former chooses the X

days with the lowest daily consumption, instead of the highest consumption days. The

reasons for this and implications which stem from this are discussed later in the results.

As a result, if low X of Y is defined as

Low(X, Y, d) ⊆ D(Y, d),

then the low X of Y baseline of customer i ⊆ C for timeslot t ⊆ T on day d is the following:

bi(d, t) =
1

X
×

∑
d∈Low(X,Y,d)

li(d, t). (2)

Once again, if we look to table 7 we can compare which days would be chosen in com-

parison with the other two methods. The baseline calculation is then identical to table 8,

obviously using different days, thus different loads.

5.1.3 Mid 4 of 6 – The Benchmark Method

Middle (or Mid) X of Y is again very similar to the two previous methods, however carries

one main difference as it chooses the ”middle” X of the previous Y days which means it

drops the extreme values first and uses the remaining days for estimation. With Mid X

of Y defined as:

Mid(X, Y, d) ⊆ D(Y, d),

the mid X of Y baseline of customer i ⊆ C for time slot t ⊆ T on day d is then:

bi(d, t) =
1

X
×

∑
d∈Mid(X,Y,d)

li(d, t). (3)

Given the selection mechanism dropping always at least the one highest and one lowest Y

day, there is always a difference of at least two between Y and X. Here one could raise the

question why we do not use the same length of Y for all methods. Given the framework

of this thesis (see section 2) we choose the method used by ČEPS to be our benchmark

method to which we compare the remaining methods. It could also be argued that it

would then make sense to use the same Y values, that is six, for all the other X of Y
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methods. Here again our argument stands. As we are very clearly trying to identify a

somewhat better performing alternative to the regulators chosen method, there is little

reason to limit all our remaining proposed methods simply to match regulators choices

when in reality companies will not be required to do so. We therefore stick to our choices

of Y being 10 and X being 5 for the high and low X of Y.

5.2 Exponential Moving Average

Although also being an averaging method, the exponential moving average method is con-

sidered to be somewhat more sophisticated than the methods above. Also, compared to

the other averaging methods it has one possible advantage since it is able to weight days

closer the actual DR event day more strongly. In this paper we choose utilise two moving

average methods. The first is noted as ”exponential moving average” (EMA) while the

second as ”exponential smoothing”. Both methods are rather similar, however inspired

by different papers and also they handle certain specifics of the estimation slightly differ-

ently. The main distinction is the moving average equation terms set up, the way they

set their respective weights and also how they handle the calculation of the initial load.

Both are described below.

5.2.1 EMA

The use of exponential moving average is very well described in Mohajeryami et al. (2016).

The method is basically a weighted average of customers’ historical data from the begin-

ning of their subscription. We would like to stress that only days d from the set of

acceptable days D enter the calculations. The method begins with computing an initial

average load of a customer. Then, continues with calculating an exponential moving av-

erage using this initial average load. The baseline for the customer is achieved at the end.

The mathematical representation can be defined as follows. Let D(∞, d) = {d1, ..., dk}
also 1 ≤ τ ≤ k to be constant. This constant is the number of days used to determine

EMAi(dτ , t) (eq. 4) which is the initial average load for customer i ⊆ C or time slots

t ⊆ T . Here it is important to stress that the τ chosen days are days prior to the day in

which the customer joins the DR program. Note the difference in indexes, which are τ

for the initial load days and j for the DR program days.
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EMAi(dτ , t) =
1

τ

τ∑
j=1

li(dj, t) (4)

The exponential moving average for τ ≤ j ≤ k is then

EMAi(dj, t) = δ · EMAi(dj−1, t) + (1− δ) · li(dj, t) (5)

where δ ∈ [0, 1]. The choice of δ and τ is up to method user. The weight of each day

decreases exponentially with time, which is what theoretically makes this method superior

to the simple averaging methods. The baseline for customer i ⊆ C on day d for time slot

t ⊆ T can then be calculated as follows:

bi(d, t) = EMAi(dk, t) (6)

An obvious drawback of this method if defined as above, is that there is no way how to

include event day load data, as the baseline is technically the last preceding day’s estim-

ated EMA for every time slot. This can later be handled using adjustments. Adjustments

are explained in section 5.4 below. It should also be noted that for days earlier than dτ+1

the baseline cannot be defined in this method. This means that if a DR event happens

during this short time, the baseline for this customer cannot be calculated. This results

in DR programs not being able to include these customers in the program until they get

access to enough days for them to be able to calculate the initial average load.

One ISO that uses this methodology is the New England ISO (ISONE). ISONE employs

the following algorithm. For new customers of the DR program, the hourly average of

the five (τ = 5) previous business days is used as the initial load. Similarly to other

ISOs, weekends, holidays and other event days are excluded from this calculation. This

initial load is referred to as the CBL 6, where the six represents the 6th day after the five

business days. The equation for calculating CBL 6 is as follows:

CBL6 =

∑5
i=1 li(d, t)

5
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After the CBL 6 has been calculated, the new customer can be referred to as a current

customer, which means that equation 4 with δ = 0.9 can be used to calculate the next

day’s baseline. The EMA is calculated for every following acceptable day (again excluding

weekends, DR days and holidays). Having δ = 0.9 essentially means that a 90% weight

is given on the previous days CBL and a 10% weight is given to the consumption of the

current day. As our EMA method we choose to use the same contants as the ISONE,

that is δ equal to 0.9 and τ equal to 5.

Unfortunately, given the nature of our data where DR events occur from the very begin-

ning of the data sample, we do not have the five business day loads which are needed to

calculate the CBL 6. We handle this by taking the first five acceptable days for estimation

and use these as input into the CBL 6 formula. In reality this means that our vector D

of acceptable days must be shortened not only for this one method, but also for all the

other methods. Specifically, the days in table 17 which also appear in table 9 have to

be dropped, resp. treated as if they are days preceding DR program entry. This is the

closest we can get to the method of say, ISONE. Nevertheless, as observable in table 9,

the days are more than a month back from DR event32. One could technically use more

days to obtain the intial load, but since we want to follow the method of ISONE as closely

as possible for reference, we leave τ equal to five.

Table 9: Chosen days for EMA initial load calculation

# Date Weekday

1 2021-12-17 Fri

2 2021-12-24 Fri

3 2021-12-31 Fri

4 2022-01-07 Fri

5 2022-01-14 Fri

A final note. Given the nature of our data, all of the days used to calculate initial load

are Fridays, which is definitely something to note. But as mentioned earlier, this is our

only option in order to follow ISONE as closely as possible.

32Recall that the DR event days for which we estimate the baseline are days between the 7th and 10th

of March 2022.
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5.2.2 Exponential Smoothing

When using this method we build on a well cited paper by Wi et al. (2009). As noted

above, they way Wi et al. sets up the exponential smoothing equation slightly differs from

eq. 5. As with the EMA, the formula in eq. 7 is used to calculate the moving average

from the first estimated day to the day preceding the DR event day. Even though inspired

by Wi et al., we opt to make one slight change in the formula below. Instead of using the

time slot t− 1 as Wi et al. do, we use the time slot t as we don’t see a good reason why

one would calculate the given day moving average using the estimation from not only one

day back, but also one time slot back. To us, using the same time slot seems like a more

reasonable approach. In actual values, this means we estimate the load for e.g. 12:00

using load from one day back at 12:00, whereas Wi et al. would, based on their formula,

use the load from 11:00 (for an hourly data frequency). Using the t − 1 time slot before

would make sense if we were using same day data, however, this is not the case as we are

using previous day estimation and load values. The formula is thus as follows:

bi(dj, t) = α · li(dj−1, t) + (1− α) · bi(dj−1, t), (7)

where li(dj−1, t) is the actual consumption in time slot t on day d−1 and bi(d−1, t) is the

baseline estimate (resp. the calculated exponential smoothed average) for time slot t for

day d− 1. As in the EMA approach also here the baseline is then given by the estimated

values for the last preceding acceptable day.

The exponential smoothing method differs from the EMA in two more ways. Secondly,

it doesn’t calculate the CBL6 or any other averaged initial load to start the model, but

use the first day’s load as the estimate and get the model rolling from the second day.

This means we lose one observation (day). Thirdly, the weights (α) are not chosen to be

constant but instead they are defined using an exponential formulation, like so:

α =
2

N + 1

Given this definition, the weights change over time, as N changes, resp. grows. This

means that the closer we are to the event day, the larger is the weight of the second term

in eq. 7, that is the estimated moving average, resp. the baseline.
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One can clearly see that both the EMA and the exponential smoothing methods are

unable to include event day data. Wi et al handle this using an adjustment, however, as

such an adjustments can be made to all the listed methods, we define these separately in

section 5.4. A final note, the exponential smoothing stated like so could also be viewed as

an autoregressive integrated moving average (ARIMA) (0,1,1) without a constant. This

stems from having a simple AR(1) model (random walk) and correcting this model so

that instead of forecasting simply based on the most recent value, it filters out noise be

using an average of the last few observations, thus effectively correcting the local mean

estimate. Therefore, we can write:

bt = bt−1 + α · εt−1

where α · ε is the (exponentially) weighted error term and because εt−1 = lt−1 − bt−1 by

definition, we can write

bt = bt−1 + α · (lt−1 − bt−1),

and by rearranging we get

bt = α · lt−1 + (1− α) · bt−1.

Which results into an ARIMA (0,1,1) without a constant. Note that in terms of notation,

bt being our baseline is in fact an estimation of the load, thus could also be notes as l̂t,

which is used in section 5.3 when specifying the model. This is also why Wi et al. refer

to this method as a regression method.

5.3 Linear and Quadratic Regression

Regression models are widely proposed in baseline estimation methodology, as they offer

a way how to incorporate additional variables, which in the context of heat pumps, is

very relevant since e.g. weather obviously affects the need for heating and cooling, thus

affecting heat pump consumption. Linear regressions are, therefore, a commonly used

method for calculating customer baseline. Wi et al. (2009) state that the reason why

most of regressions used for estimation are linear is due to simplicity. Mohajeryami et al.

(2016) defines a possible regression for baseline estimation for customer i ⊆ C on day d

for time slot t ⊆ T is as follows:

bi(d, t) = (βit)
Txit + εit (8)
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where the feature vector xit for this econometric model can include many different vari-

ables connected to consumption, like outside temperature, humidity, historical load and

many more. Since for us the only available data other than load is outside temperature

(see section 4), we choose to work with only this additional explanatory variable.

The general algorithm of baseline estimation using regression goes as follows.

1. Identify the set of acceptable days for estimation (D).

2. Run the regression model (see below) for each time slot (in our case 96) using all

the observations in D for that given time slot.

3. Estimate the event day baseline using coefficients from step 2.

In this paper we choose to use the ordinary least squares (OLS) estimator (model) to

obtain the coefficients. Also, in order to capture a potential parabolic relationship out-

side temperature has with electricity consumption on heat pumps, our regressions will

include outside temperature and additionally outside temperature squared. When look-

ing at electricity consumption as a combination of many household utilities, finding a

parabolic relationship with outside temperature isn’t necessarily as obvious, but since we

are doing this specifically for heat pumps that are able to both heat up and cool down

the living space, it makes sense to use a quadratic regression as well. As shown in the

figure below, there are indicators for a parabolic relationship existing.
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Figure 9: Load grouped by date and time slot regressed on outside temperature.

One of the reasons why the parabolic relationship isn’t as prominent as it could be is

because our data has been obtained during the pure heating season (December to early

spring), where temperature-wise we would still be at the downward slope of the parabola.

Even though our maximum temperature in the data sample is approximately 20.5 °C, the

density for ”cooling” temperature range is very low as we can see in figure 9. We believe

that when the outside temperature moves beyond twenty in a more permanent manner,

we will be moving towards the upwards slope of the parabola. Additionally, when doing

these regressions for each heat pump and each time slot separately, parabolic curves were

often the results of plotting and statistical testing33.

This means that the OLS34 regressions we will be using for baseline estimations are the

following:

l̂it = α + β1 · out tempit + εit (9)

l̂it = δ + γ1 · out tempit + γ2 · out temp2it + εit (10)

33The results of statistical testing are not reported in the paper as the focus of this paper is not their

statistical significance but instead the capability of the method to estimate the baseline. For completeness,

the t-statistics and p-values rarely render the coefficients for the squared temperature terms statistically

significant at 5% level, however, often they are significant at 10 % level.
34We base our OLS theoretical framework on Wooldridge (2020)
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Making the equations for baseline estimation:

bi(d, t) = α̂ + β̂1 · out tempidt (11)

and

bi(d, t) = δ̂ + γ̂1 · out tempidt + γ̂2 · out temp2idt (12)

respectively. Note that the dependent variable here is the load, and the explanatory vari-

able are the outside temperature terms. Also, for notation purposes we separate l̂it and

bit even though for the DR event day, they are the same thing. This is done to show

the plugging in of the estimated coefficients from equations 9 and 10 into the baseline

equations as β̂ and γ̂.

This specification means that we run one linear and one quadratic OLS regression for

the relationship between actual load and outside temperature for all preceding accept-

able days, separately for all time slots. The coefficients obtained from these regressions

are then used to calculate the baseline for the DR event day based on its actual outside

temperature at each time slot. In real world application these regressions would be rerun

every time additional acceptable days have been obtained. This way the most updated

coefficients are used for calculation.

A final comment regarding possible regression models. Although considered, weighting

our observations, resp. opting for a GLS model wouldn’t necessarily be better for this

purpose since in our case the temperature should be as important regardless of what ob-

servation it is, as it correlates so closely with heat pump electricity consumption. When

doing this for complete household electricity usage one might want to consider using GLS

not only to weight the observations time wise but also differentiate between utilities, since

then the outside temperature doesn’t carry as much explanatory power as if we consider

solely heat pumps. In our data, the small heteroscedasticity found, could be explained by

the fact of having very few observations temperatures over 10 °C. The carried statistical

testing (available in the appendix, section 8) indicates that heteroscedasticity isn’t that

big of an issue here.
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5.4 Adjustments

Most of the methods stated above, especially the X of Y (similar-day) methods, by defin-

ition fail to include the event day information (load), thus rendering high errors. The

reason this is a problem could for example be weather conditions changing during the

event day, causing the load to shift significantly in one direction. In order to test this in

our dataset, we will include results of each method adjusted for event day load changes.

The load reduction during event periods is then defined as the difference between the

adjusted baseline and the actual load instead of the original baseline. The adjustment

is defined by a time frame. This time frame changes depending on application, but is

normally around 2–4 time slots before the start of the event.

Adjustments to each method are often seen as an integral part in making a baseline es-

timate more accurate (Mohajeryami et al., 2016) since as shown above, many ISOs use

X of Y methods which call for an adjustment. When making adjustments, the two most

commonly found methods are the additive and the multiplicative methods. A multiplic-

ative adjustment uses the percentage change and applies it to the estimated baseline. An

additive adjustment utilises the absolute change.

Grimm (2008) goes through the process how ISONE makes adjustments to exponential

moving average using the additive method. ISONE makes an adjustment to the baseline

only on an event day by calculating the average difference between the new baseline (the

baseline calculated with δ = 0.9) and the actual customer load two hours prior to the

event period. The adjustment is then applied to the two hours prior, in addition to all

the hours during the event. This adjustment is made only if the new baseline is lower

than the actual load at the start of the event.

The other, more commonly used method is the multiplicative method. Grimm (2008) goes

through the example of how the PJM Interchange Energy Market ELRP makes multi-

plicative adjustments to its estimations. The multiplicative method works by first taking

the average of actual load and the average of estimated baseline two and three time slots

prior to the DR event. Then, the average load from these two periods is divided by the

average estimated baseline from the same periods in order to get a percentage difference,

the ”adjustment multiplicative” (AM) in eq. 13. The adjusted baseline is then the product

of the original baseline and the AM for time slots within the DR event duration. The AM

formula can be written as:
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AM =
Average(li(d, t− 2) : li(d, t− 3))

Average(bi(d, t− 2) : bi(d, t− 3))
(13)

where li(d, t− 2) is the actual consumption at time t− 2 on day d whereas (bi(d, t− 2) is

the predicted consumption at time t − 2 on day d before the start of the DR event. An

example of how the AM is applied is shown in table 10.
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Table 10: Multiplicative adjustment example for DR events 10:00–12:45 and 16:30–18:45

Time Actual load Baseline AM Adjusted Baseline

0.00.00 3.58 1.75 1.75
...

...
...

...

9.15.00 1.65 2.23 2.23

9.30.00 1.39 1.47 1.47

9.45.00 1.86 1.68 1.68

10.00.00 4.05 2.33 0.82 1.91

10.15.00 1.01 2.12 0.82 1.74

10.30.00 1.01 2.13 0.82 1.75

10.45.00 0.58 2.57 0.82 2.10

11.00.00 0.56 2.42 0.82 1.99

11.15.00 1.28 2.24 0.82 1.84

11.30.00 2.48 2.17 0.82 1.78

11.45.00 2.56 2.03 0.82 1.67

12.00.00 2.55 1.40 0.82 1.14

12.15.00 2.09 1.77 0.82 1.45

12.30.00 1.91 1.92 0.82 1.58

12.45.00 2.43 2.52 0.82 2.07

13.00.00 2.23 1.73 1.73
...

...
...

...

15.45.00 1.08 2.10 2.10

16.00.00 1.99 2.32 2.32

16.15.00 2.23 1.97 1.97

16.30.00 2.17 1.83 0.69 1.27

16.45.00 2.07 2.01 0.69 1.40

17.00.00 2.10 1.99 0.69 1.38

17.15.00 1.20 1.81 0.69 1.26

17.30.00 0.86 1.76 0.69 1.22

17.45.00 0.48 1.89 0.69 1.31

18.00.00 0.62 2.16 0.69 1.50

18.15.00 1.48 1.65 0.69 1.14

18.30.00 2.20 1.47 0.69 1.02

18.45.00 1.98 1.27 0.69 0.88

19.00.00 1.88 1.15 1.15
...

...
...

...

23.45.00 3.84 1.55 1.55

It is also possible to set a condition which triggers the use of the adjustment, so that small

differences are not adjusted since they can then be counterproductive. For example, PJM
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have a requirement of the AM having to be greater than 1.05 and lower than 0.95 (a ± 5%

difference) for the adjustment to be applied. Note also that various papers and methods

use different windows to compute the AM. For example according to Grimm (2008), the

NYISO use data from t− 3 and t− 4 to obtain their AM.

In our application we will be using the PJM multiplicative method35 when making ad-

justments to our used baseline calculation methods, and since it has a requirement of the

difference having to be over 5%, not all methods necessarily get adjusted. Mohajeryami

et al. (2016) note reports that the choice of multiplicative or additive adjustment does not

change the outcome substantially. We will, therefore, use the multiplicative adjustment,

as the additive carries a caveat of the possibility of gaming by deliberately increasing load

just before the curtailment period to boost the baseline (Xenergy, 2002). This makes the

multiplicative method a bit better with combating the issue of gaming the system36 (Wi

et al., 2009) and moreover, ČEPS will also be using this method (ČEPS, 2022) making

the decision all the more easier. In terms of the look-back window for AM calculation,

we will use the values from two and three time slots prior to the DR event start.

5.5 Used Performance Metrics

To evaluate the precision of each method, generally some sort of performance metric is

used. The most common performance metric when estimating the performance of a CBL

calculation method is to calculate the mean absolute error (MAE). It is defined in Mo-

hajeryami et al. (2016) as follows:

MAE =

∑
i∈C

∑
d∈D

∑
t∈T |bi(d, t)− li(d, t)|

|C| · |D| · |T |
(14)

where C is the set of all customers, D is the set of all days and T is the set of all time

slots in a day d. The lower the value for MAE is, the higher the accuracy for the method.

In their codex, ČEPS states of the mean average percentage error (MAPE) when evalu-

ating the accuracy. It is described in the ČEPS codex, as follows (eq. 15):

35Except for hp4 in the low XofY and mid XofY methods, there we use an additive method due to a

data anomaly. The anomaly being, that for that heat pump we have zero consumption for a large portion

of the acceptable days vector, and thus these methods can return a zero baseline for the time slots used

to calculate the AM. Thus, technically dividing a number by zero. The R software treats this value as

infinity, which is why in these periods we use the additive adjustment instead of multiplying by infinity.
36Discussed more in section 7.
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MAPE[%] =
1

n
·

n∑
1

∣∣∣∣ li(d, t)− bi(d, t)

li(d, t)

∣∣∣∣ · 100 (15)

where li(d, t) represents actual consumption and bi(d, t) represents the baseline value at

time t. Multiplying by 100 is done to obtain a percentage, and n stands for the number

of fitted units.

Since ČEPS is working on an already aggregated level, it is possible to use the MAPE.

This is because you most likely won’t have actual or baseline loads being zero for any

time slot. When doing it on individual heat pump level, you can have loads being zero

for a time slot, which results in you dividing with or by zero, creating errors. This means

that we will be using the MAE for evaluation, even though the ČEPS codex is otherwise

used as a benchmark.

Additionally, we will use a method to calculate the bias of our CBL calculation methods.

Mohajeryami et al. (2016) shows a changed formula of MAE that allow for non-absolute

values for calculating the bias of the baseline method. The formula is changed to be the

following:

Bias =

∑
i∈C

∑
d∈D

∑
t∈T (bi(d, t)− li(d, t))

|C| · |D| · |T |
(16)

If the bias is positive the baseline method overestimates the consumers’ actual load

whereas negative values indicate the method is underestimating the consumers’ actual

load.

Both performance metrics will be used on non-DR days as well as DR event days (for

event periods). Here we deviate slightly from the cited papers, as they don’t generally

test the non-DR days. However, as stated later as well, we feel that one can see the true

performance of the method only if we compute the MAE and bias for periods in which

there are no DR events, since we can expect the baseline and actual load to be different

in event periods by definition.
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5.6 Quantifying a DR event

When quantifying a DR event one must always bare in mind the context in which this is

done. For example, if we look to industrial demand response, the event are often fixed

in time and, event though this is not the end game, currently contracted. On the other

hand, residential DR, by nature, is and has to be handled as dynamic, hence the number

of events are not set and scheduled up front as in the industrial setting. The whole process

of DR quantification can be summarised in three steps:

1. The DR signal is sent from the company facilitating the DR to the customer.

2. Each customer decides whether she would like to respond to the signal or not.

3. Using customer’s smart meter data, the company reads the actual load and calcu-

lates the customer’s incentive.

Moreover, as we state in section 4.2, Wijaya et al. (2014) define two types of DR signals,

those being:

1. The signal information contains the start and end times of the event itself, and also

the amount of kWh which are to be reduced.

2. The signal information contains the the start and end times of the event itself but

lets the customer decide how much he is willing to reduce.

In this paper out signals are defined as the latter, so the individual customers can de-

cide whether or not they let their HP decrease it’s consumption. As Wiyaya et al. also

state, this allows one to study how baselines and incentive allocation influence custom-

ers’ decisions to reduce their consumption. However, after consulting the representatives

supervising the thesis from ČEZ’s viewpoint, this assumes, resp. works better, when

one’s DR scheme and the signal timing are based on these real time prices. Since our DR

scheme is not, as it is based on one of the ”typical daily diagrams” (TDD)37 for residential

heating there would most probably be a misalignment in the timing of the requests and

thus our results would be bias, respectively influenced in a way we would not be able to

fully interpretable and couldn’t clearly state the causality of events. We therefore abstract

from multiplying our kWh quantification of the DR scheme by the given day prices and

37Specifically the TDD 7 as shown here: https://www.ote-cr.cz/en/statistics/

electricity-load-profiles/normalized-lp?set_language=en&date=2022-05-14.
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restrain ourselves to reporting the results in kWh only. Still, as we discuss certain implic-

ations stemming from the quantification as described in Wijaya et al. (2014), we choose

to briefly present their framework below. We present our simplified approach below.

5.6.1 Demand Response Quantification in Theory

Wijaya et al. (2014) propose the existence of three different loads during a DR event χ. An

actual load L(χ), an estimated baseline B(χ) and a theoretical true baseline B∗(χ), which

are the sums for all individual li(χ), bi(χ) and b∗1(χ). The ”true” baseline is obviously

unknown for the company, and can theoretically be known only by the customer, as they

know what they would consume. As Wijaya et al. (2014) propose, the cost function for

the company could be defined as a monotonically increasing and strictly convex function.

For renewable resources this does not necessarily hold true, though it is noted that in the

case for renewable resources, more expensive reserve generators may have to be activated

to meet the high demand at a certain time. As an example that would satisfy these

requirements, the following quadratic cost function is presented:

c(L) = a1L
2 + a2L+ a3 (17)

where c(L) is the total cost of meeting demand L and a1 a2 and a3 are constants. Since

the theoretical true baseline is unknown for the company, the perceived savings for the

company for a DR event χ can be estimated by the following:

c(B(χ)− c(L(χ) (18)

where the perceived saving is the difference between the cost of producing the estimated

baseline and the cost of producing the actual baseline, at the duration of the DR event.

A customer’s profit function is dependent on the reward a company would be willing to

payout for participating in decreasing the load for the DR event period. The coefficient

α ∈ [0, 1] in eq. 19 is defined as the proportion of savings the company is willing to pay

out as incentives. The received individual profit for one customer can then be defined as

rpi = α · ( bi(χ)
B(χ)

c(B(χ))− li(χ)

L(χ)
cL(χ)). (19)
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This holds only if the actual individual load is lower than the estimated individual baseline.

Otherwise the payout is 0. As an additional thing to note, since the customer could

theoretically know their true baseline, their true individual profit could be estimated as:

tpi = α · (b
∗
i (χ)

B(χ)
· c(B(χ))− li(χ)

L(χ)
· cL(χ)) (20)

only if the actual individual load is lower than the true individual baseline. Otherwise

the payout is 0. A customer’s additional profit can then be shown as:

rpi(χ)− tpi(χ) (21)

where if the value is positive, the customer i gets a higher reward than they would deserve.

The company’s true profit cannot be calculated in reality, since it would require know-

ledge of the true baseline. Therefore we define the company’s profit function as follows:

c(B(χ))− c(L(χ))−
∑

i∈C(rpi)

c(B(χ))
(22)

This means that a company’s savings have to be calculated by using the estimated

baseline, which makes it differ depending on which method is being used. This is why a

company would want to use a method that produces the lowest MAE.

Since we don’t have the data on prices, nor the data on potential reward paid out to

customers, we will quantify the company’s gain by calculating the difference of actual

aggregated load compared to the estimated baseline by our most accurate method (and

our benchmark method mid 4 of 6) for all DR events during Monday through Thursday

for week 10, and note in the 7 that there are some possible additional prices and costs to

take into account when calculating the whole profit. Additionally, we will extend the cal-

culation to include the rebound, for a more accurate representation of actual load change

owing to the DR scheme.

5.6.2 Our Quantification Approach

Our quantification period must be in alignment with the baseline estimation days, thus

we quantify the DR for days between the 7th and 10th of March. We therefore have a
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somewhat ”representative” week that we can present results for. The theoretical base is

explained in the previous section, however, it should be noted that due to several limit-

ations, which are described in the following text and discussed in depth in section 7, we

cannot provide a monetary representation of the DR scheme. Still, we believe that this

doesn’t greatly affect the implications of this paper, as the main focus here is the methods

themselves along with their impact on quantification, and not the underlying DR scheme.

The main limitations, resp. reasons for not quantifying the respective customer and com-

pany profit and cost functions are the following. Firstly, we do not have the cost data

to be able to truly quantify the cost functions, and even if we did, we would still run

into the issue linked to dynamic prices being applied on a DR scheme with a ”fixed”

nature, resp. one which doesn’t use real time prices for DR signals. This would cause the

mentioned misalignment and bias. The cost functions could only be quantified in terms

of parameters but since this papers main focus lies elsewhere, this would add value only

if we could actually produce monetary results. Hence we abstract from this and focus on

the results of the methods in terms of kWh.

Using a slightly simplified and modified equation 18, where we drop the cost function

term, thus having only

B(χ)− L(χ), (23)

we get estimation of kWh savings (or excessive use) for each the seven main method’s

baseline, including each methods adjusted baseline, thus giving us fourteen results. In

equation 23, B(χ) is obtained for each of the four estimated workdays. The two terms in

the equation can be defined as follows:

B(χ)d =
λend∑

t=λstart

∑C
i=1 bitd
C

L(χ)d =
λend∑

t=λstart

∑C
i=1 litd
C

where λstart and λend are the start and end times of the DR event, t ∈ T are the days

time slots, i ∈ C and the individual heat pumps (customers), d ∈ DDR are here not all

the acceptable days, but instead our four estimated DR event days. One can then sum
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the individual day results to obtain the full weeks DR quantification.

Moreover, as we believe than one should never omit the quantification of the rebound

from any form of DR assessment, we also repeat this for rebound duration hours. Prior

to rebound quantification, it is crucial to set the conditions defining the rebound effect.

As the main focus of this paper is not the DR scheme itself, we choose a simple rebound

identification mechanism. In short, if the rebound starts within 3 time slots from the end

of the DR event it is included and we do not consider deviations after this time limit to be

rebound effects. The rebound ends when the actual load line and the estimated baseline

intersect again, or with an upcoming event which can happen in our data set due to the

presence of multiple occurring events during the day. Since the effects of including the

rebound are done for demonstrational purposes, the extension of adjustment and quanti-

fication time is done based on the average rebound length. The chosen times are clearly

visible in the plots in section 6.3.
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6 Results

In the following section results are presented. These are the performance metrics, method

comparison, DR quantification with and without considering the rebound effect after the

event. In order to be able to offer at least a snapshot of the DSM scheme evaluation,

we choose to estimate the baseline for all heat pumps and take both their average load

and average estimated baseline to show the actual available flexibility representative. The

week we chose to test our methods are the workdays of week 10 in 2022. This is for a

few reasons. The 9th of March, Wednesday in week 10 has the highest summed load

(consumption) in the data set. Having the week in March also provides us with enough

acceptable days to do estimations with. If one were to go further forward from this week,

the only acceptable days added in our vector would be Fridays, giving our estimations a

bigger bias towards Friday load curve data.

6.1 Method comparison

For finding the method with the best performance metric, we choose to calculate and

compare the MAE and Bias for 5 non-DR days, the 4th, 11th, 18th, and the 25th of March.

The reason for this is that including DR events skewes these results, because a good

method could seem to have a high bias and MAE, because it correctly differentiates the

baseline from the actual load during DR events. This means that doing these metrics on

non-DR days is closer to comparing the estimated baselines to true baselines. The issue

here is that methods with adjustments cannot be measured, since the adjustments are

made based on DR events. One can therefore assume that most methods, especially the

simple averaging methods, perform better with adjustments included.

In figure 10 we can see how the other methods compare to our benchmark of Mid 4 of

6. Surprisingly, the benchmark method seems to have the highest MAE of all. But, the

figure also shows some things that are to be expected. The High 5 of 10 has a positive

bias, meaning that the method usually overestimates the baseline compared to actual

load, whereas the Low 5 of 10 underestimates it. The Mid 4 of 6 then having having

a very small bias. These methods have the three highest mean absolute errors, which

means that they on average estimate the model incorrectly, where the estimate evens

out for the Mid 4 of 6 in the long run due to the low bias, but not for the High and

Low 5 of 10. When looking at bias the linear regression, EMA and the Exponential
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Smoothing model shine through the most. This means that even though these methods

do on average have an error per time slot, when estimating a whole day, it measures

the complete usage very closely. This is a result that you could get for instance if the

estimate tracks the actual perfectly but the actual load curve includes a lot of spikes,

whereas the estimated baseline is rather steady. The exponential moving average and

the exponential smoothing method are both very similar, with the exponential moving

average having a slightly smaller bias, but the exponential smoothing method having a

slightly smaller MAE. The Regressions have the lowest MAE, with the Linear Regression

obtaining the lowest by far. The Linear Regression also clearly has a lower bias than the

Quadratic Regression, rendering the Linear Regression the superior method based on our

performance metrics. The reason for the Linear Regression performing so well compared

to the quadratic regression, could be that for week 10, the temperatures did not go over

10.4 °C. If there is to be a parabolic relationship between temperature and electricity

consumption one could assume that the parabolic curve starts growing monotonically in

days with generally warmer weather conditions. This assumes the installed heat pump

is capable of both heating and cooling, which is the case for our sample. These metrics

were also computed for a non-DR weekend, specifically the 26th and 27th of February (see

appendix 8). Interestingly, for weekends, the lowest MAE is produced by the Exponential

Smoothing. However, the Linear Regression still has the lowest bias, and with it also

having the second lowest MAE, one could still conclude that it is the superior method.

Moreover, since it only uses a very limited amount of days here (see table 18 in appendix

8) its performance will most probably grow with the amount of usable observations.
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Figure 10: Performance Metrics for non-DR Days

Table 11: Performance Metrics non-DR Days

Method MAE (kWh) Bias (kWh)

Mid 4of6 1.0757 -0.0145

High 5of10 1.0500 0.2224

Low 5of10 1.0710 -0.3633

Exp. Moving Average 0.9821 0.0045

Exp. Smoothing 0.9783 -0.0116

Linear Regression 0.8337 0.0164

Looking at the MAE and Bias of all of the methods in figure 11 (resp. table 12), during

DR event periods in week 10 one can see indications of potential DR scheme quantifica-

tion results. For example, if we were to combine the results of our performance metrics

on both non-DR and DR periods, we could conclude the following. If we assume the

linear regression method to be the most accurate, based on figure 10 (resp. table 11, then

after observing it’s bias during the DR periods (figure 11 or table 12) we could say it

indeed lowers overall consumption for measured days. Looking to the benchmark method

(Mid 4 of 6) we see that for DR days it would report an overall increase (negative bias).

Interestingly enough when adding adjustments, these two results become inverted. This

is touched upon mainly in section 6.2 where the results of the quantification are presented.
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Figure 11: Performance Metrics for DR Event Periods – Including Adjustments to Meth-

ods
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Table 12: Performance Metrics for DR Event Durations

Method MAE (kWh) Bias (kWh])

Mid 4of6 1.2210 -0.0828

Mid 4of6 Adj. 1.5414 0.3003

High 5of10 1.1842 0.1520

High 5of10 Adj. 1.1985 0.0006

Low 5of10 1.2557 -0.3486

Low 5of10 Adj. 2.0704 0.8131

Exp. Moving Average 1.1568 -0.0389

Exp. Moving Average Adj. 1.1254 -0.0485

Exp. Smoothing 1.1556 -0.0655

Exp. Smoothing Adj. 1.1253 -0.0492

Linear Regression 1.1047 0.0676

Linear Regression Adj. 1.1521 -0.0423

Quadratic Regression 1.1121 0.0734

Quadratic Regression Adj. 1.1770 -0.0026

Moving forward, based on the performance metrics in figure 11, we will show the process

of quantifying DR with the Linear Regression and our benchmark method Mid 4 of 6,

along with their respective adjustments. In figures 13 and 14 we find the average baseline

estimation along with adjustments for the estimated week for the methods Mid 4 of 6

and Linear regression respectively. We can see that the adjustments for the Mid 4 of 6

method do not always work that well. This is because the adjustments found in these

figures are the average adjustments from all heat pumps. If the estimated baseline vastly

differs from the actual load, the adjustment can become huge for some individual heat

pumps due to the properties of the multiplication method. For the Mid 4 of 6 method

this can happen frequently on individual heat pump level. For demonstrational purposes,

we find the estimated baselines of the two different methods along with their adjustments

for the Tuesday of the estimation week for a randomly selected heat pump in figure 12.
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Figure 12: Single Heat Pump Example – Actual load plotted against baseline and adjusted

baseline for the DR event and rebound.

Here we see that due to the properties of the AM, the value of the AM becomes quite large

when there has been a spike in consumption two to three time slots before the DR event.

This makes the adjustments quite substantial for some events. In turn, the averaged

adjustments from each heat pump look bigger compared to just making the adjustments

on an already aggregate level. The next section will go over the quantification of DR.
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Figure 13: Mid 4of6 – Actual load plotted against baseline and adjusted baseline for DR

event only.
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Figure 14: Linear regression – Actual load plotted against baseline and adjusted baseline

for DR event only.
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6.2 Quantification

Table 13 shows how the quantification of the DR scheme would look like in total kWh

for week ten38 as the total sum from each DR event. As one would expect, the increase

requests, depicted with an (I), show a total increase in consumption, where as the de-

crease requests, depicted with a (D), show a decrease in consumption. With more decrease

requests than increase requests (see table 3), one could expect the total sum to be pos-

itive (indicating kWh decreased) for the whole DR scheme. As mentioned above, the

adjustments can cause the value sign to be the opposite of what it was for the method

before the adjustment, indicating possible overcompensation. Therefore, to tackle these

over-compensations, it might be more prudent to aim for a method which generates small

bias to start with. This again points to the regression methods, as in their case, the

conditional adjustment often doesn’t even occur, and if so, it’s adjustment multiplicative

tends to be lower, meaning a lesser chance of possible overcompensation. Based on the

literature review, it is more common to quantify only the duration of the DR event. Doing

quantification this way doesn’t take into account the possible counter reaction to the DR

event, the rebound. While the consumption after the DR event isn’t strictly decided by

the DR event, it is most definitely affected by it, which is why we incorporate the rebound

consumption when quantifying DR in the next section.

Table 13: Quantification for Benchmark and Best Method – Only DR Event Duration

Method & Request Type Mon Tue Wed Thu Method Sum (kWh)

Mid 4of6 (D) 9.45 27.42 24.54 18.65 80.05

Mid 4of6 (I) -50.80 -70.27 -19.33 0.00 -140.40

Sum (kWh) -5.76 -72.14 -15.73 96.12 -60.35

Mid 4of6 Adj. (D) 20.67 17.79 28.69 32.34 99.49

Mid 4of6 Adj. (I) 32.25 -26.47 -21.29 0.00 -15.50

Sum (kWh) -5.76 -72.14 -15.73 96.12 83.98

Linear Regression (D) 20.09 47.63 19.90 18.57 106.19

Linear Regression (I) -22.38 -39.40 -30.54 0.00 -92.33

Sum (kWh) -5.76 -72.14 -15.73 96.12 13.86

Linear Regression Adj. (D) 10.30 13.99 21.55 26.57 72.40

Linear Regression Adj. (I) -25.34 -42.82 -39.24 0.00 -107.40

Sum (kWh) -5.76 -72.14 -15.73 96.12 -35.00

38Note that we quantify only the workdays as weekends are estimated used modified versions of the

same methods for reasons described in section 5 and thus we abstract from their estimation.
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6.3 Rebound Effect

When taking rebounds into account, both the adjustments and time of event quantific-

ation have been extended according to the criteria in section 5.6. Once including the

rebound, we can see that the kWh savings resulting from the DR scheme are in total

positive only for the unadjusted linear regression method. And even this methods final

sum is lower when compared to when include only the duration of the DR event. All

other methods would indicate that the DR scheme causes more consumption in kWh, if

one takes the rebounds into account. Whether or not complete savings in kWh is strictly

good or not is further discussed in section 7. Nevertheless, our results indicate that taking

rebound into account can indeed change the out-turn when quantifying the value of DR

and thus should not be omitted from DR quantification. In figures 15 and 16 above we

see the changed adjustments based on the criteria mentioned above.

Table 14: Quantification for Benchmark and Best Method – Including Rebound

Method & Request Type Mon Tue Wed Thu Method Sum (kW)

Mid 4of6 (D) -53.80 9.91 -113.00 -59.45 -216.34

Mid 4of6 (I) -50.80 -51.88 -113.00 0.00 -215.67

Sum (kW) -104.59 -41.96 -226.00 -59.45 -432.01

Mid 4of6 Adj. (D) 12.88 6.25 -114.89 -11.99 -107.76

Mid 4of6 Adj. (I) 32.25 -23.04 -114.89 0.00 -105.68

Sum (kW) 45.13 -16.79 -229.78 -11.99 -213.44

Linear Regression (D) 4.11 48.95 12.79 5.58 71.43

Linear Regression (I) -12.31 -12.50 -30.34 0.00 -55.15

Sum (kW) -8.20 36.45 -17.55 5.58 16.29

Linear Regression Adj. (D) -0.77 -2.51 18.71 20.30 35.72

Linear Regression Adj. (I) -16.59 -14.57 -41.94 0.00 -73.10

Sum (kW) -17.36 -17.08 -23.23 20.30 -37.37
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Figure 15: Mid 4of6 – Actual load plotted against baseline and adjusted baseline, including

the rebound effect.
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Figure 16: Linear regression – Actual load plotted against baseline and adjusted baseline,

including the rebound effect.
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7 Discussion

In this section we present discussion points that have not been fully explained in the

results section, as well as expand on some limitations and further research suggestions.

Also, before commenting further we would like to point out one last time the framework

of this paper. Our aim is not to quantify and evaluate the underlying DR scheme in full,

as our principle topic are the baseline methods and their workings themselves. That being

said, we attempt to show how the used methods would perform if we applied them in a

simplified quantification methodology to show a glimpse of how far the implications of

baseline calculations might go and why we are actually doing them. The answers to why

are always dependent on the participant who’s viewpoint we wish to study (see section 2).

In this paper we are interested mainly in the balancing market, which ČEZ a.s., being the

company providing the data and framework, will be interacting in. Thus, the deviations

of our methods are of great concern as a well defined and tweaked baseline method has

the potential to become a powerful hedging tool. For illustration, if we look at the website

of the Czech TSO ČEPS39, we can find the prices of deviations in CZK/MWh. Taking

the period of the last six months (from early October to late March) the highest hourly

price which occurred was 26,547 CZK per MWh. Although this value occurred during

the volatile times in last falls energy turmoil, we use such an extreme value to illustrate

the magnitude of potential risk that DSOs and retailers of energy can find themselves

facing. Hopefully, these extreme prices won’t be the standard of the upcoming years,

however, the volatility in energy production that will inevitably accompany the transition

away from traditional sources of energy will be a great challenge. Thus, we advocate the

idea of giving participants of this system tools by which they can ensure some kind of

price stability, and thus be able to at least mitigate and overcome the short term negative

externalities of this transition if most important. Demand response (resp. DSM) and the

overall flexibility of certain load is one of these tools, but without proper baseline estim-

ation there is currently not a way how to make these tools usable. We would therefore

like to stress the importance of focusing on this small but important piece of the greater

puzzle that is DSM.

To continue with this section we discuss the reasons for our regressions working so well

in our study. First off, one has to remember that the electricity usage measured in our

data is for heat pumps specifically. Heat pump usage can be assumed to be highly correl-

ated to the outside temperature, which our regressions are based on. What this means is

39https://www.ceps.cz/en/all-data#OdhadovanaCenaOdchylky
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that weather based regressions aren’t unquestionably the best for estimating baselines for

complete household electricity usage, even though the regression methods prove to be the

best for our data. Based on some of the poor adjustments created by the multiplicative

method and the relatively good performance of the regressions, one could suggest that

perhaps an averaging method that uses weather based regressions for adjustments could

be a decent option for baseline estimations for complete household electricity usage. But,

if one would want to keep a DR scheme separate for heat pump usage specifically, using

a weather based regression method for estimating the baseline seems like a reasonable

option based on our study.

As mentioned earlier, the linear regression seems to be superior to the quadratic regres-

sion. We would still recommend considering using a quadratic regression, if one is to

make baseline estimations for heat pump usage for a whole year. This is due to the fact

that for heat pumps that possess both heating and cooling capabilities, the relationship

between outside temperature and consumption has signs of being parabolic. The reason

for the linear regression performing so well in our study could be that the data is from

winter to early spring, where the temperature for our DR event week40 ranges from -4.6

°C to 10.4 °C, where the relationship is still at the former half of the parabola, which is

downward-sloping. When having the regression run for a whole year, the temperatures

get higher which would move us into the upward-sloping area of the parabola, rendering it

difficult for a linear regression to be exact. The is a risk of a linear fitted line being a flat

horizontal line if a whole years data is included, whereas for the short winter/early-spring

period the linear regression doesn’t necessarily have this same issue. If one would want to

still use a linear regression, one would most likely have to split up the regression period

into seasons during the year.

One could also make the argument that due to the effects of the pandemic, people spend

more time at home, which gives room to the question of whether or not differentiating

between workdays and weekends/holidays is necessary. While it is true that people’s daily

routines have changed due to the pandemic, we still believe that people are more likely

to be out of their home during weekends/holidays and usage of electricity in total still

varies between people’s work and leisure time, which is why we still chose to differentiate

between the two.

40Otherwise, for the whole sample the temperature range is wider, see section 4.
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As for limitations of this paper, due to limited data, some other more experimental meth-

ods were not able to be done. This includes a method of Synchronous Pattern Matching41

proposed by Wang et al. (2018). It is a method where a group of control customers are

grouped into clusters by the method of k-means. The cluster is then matched to a DR

participant based on the similarity of the actual load for the time before and after the DR

event. This would have been an interesting method to include, but with our data only

having 5 control heat pumps compared to 22 DR participant heat pumps, it was simply

unfeasible to do the method. The reason for not obtaining a larger control sample here are

certain technical issues. Additionally, even though this method is interesting and possibly

results in low errors, it would demand the majority of customers not participating in a

DR program, which one could think that in the long run is counterproductive to the goal

of DSM. If one was aiming for a fully flexible household demand, one wouldn’t necessarily

want a rather large portion of households not participating in the flexibility program.

For further research, Weng et al. (2018) mention that for residential users it might be

better to use probabilistic methods for baseline estimation since residential consumer us-

age is more more volatile and irregular compared to commercial customers, thus adding

stochastic terms could represent the baseline more accurately. The problem is that im-

plementing a method like this requires an enormous amount of ”fine grained data” (Sun

et al., 2019a) in addition to more computational power Weng et al. (2018), which is some-

thing we lack in our case.

Another limitation of SPM and probabilistic methods are that by using those methods

an operator could run into the problem of getting people involved in DSM, since the

customers have to understand and trust the quantification that the operator does. It is

important that an operator uses transparent and understandable methods (ENERNOC,

2011), where the simpler averaging methods shine through. An incredibly sophisticated

and complicated method could theoretically produce more precise results, but in the end

employing that method could cause people not to want to participate, rendering it not

as profitable. One has to keep in mind that words like Synchronous Pattern Matching,

Probabilistic and Stochastic can possibly evoke distrust and averseness in an ordinary

customer. Especially in current day Czechia where people recently witnessed one of the

larger retailers, Bohemia Energy, going out of business42, due to the combination of the

41a more detailed summary of SPM can be found in the appendix
42See for example here https://www.reuters.com/world/europe/

czech-firm-bohemia-energy-shuts-down-citing-surging-power-prices-2021-10-13/
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late price volatility and lack of hedging in combination fairly risky portfolio management.

Electricity bills have therefore become an even hotter topic. The effects of method sophist-

ication on willingness to participate in DR might be and interesting topic for behavioural

economists. Additionally, computational time plays a big role in method selection (Weng

et al., 2018) if one wishes to do these estimations in real-time. Due to the combination

of gaining people’s trust with understandable methods, in addition to the limitations

of computational time and data, we assume that ČEPS may have chosen the averaging

method of Mid 4 of 6 for these reasons.

When it comes to using adjustments, the problem of gaming the system was mentioned

earlier. When using additive and multiplicative adjustments, a customer can increase

their consumption for a short moment before the DR event, showing then an exaggerated

change in consumption during the DR event, if the adjustment was made on wrongful

basis. The additive method is even more vulnerable to this, due to the simplicity of

the additive adjustment, though the multiplicative method isn’t immune to this either.

Making an adjustment based on a regression with a weather component could then be

better at combating this issue. The gaming issue stems from giving customers additional

monetary incentive to participate in a DR scheme. Here a company falls into a dilemma

of wanting to get more people to participate via monetary compensation, while running

the risk of customers gaming the system. In the quantification methodology presented in

section 6.2, where we present the compensation scheme proposed by Wijaya et al. (2014)

one can see how a customer could essentially manipulate their received profit. Since

the incentive paid out to each individual customer is based on the estimated baseline, a

customer can deliberately increase their consumption for a short period before the DR

event, substantially changing the estimated baseline from the theoretical true baseline.

When the customer does this, not only are excessive amounts of energy used before the

event, but the incentive that the customer gets paid becomes inflated. This is why one

may consider using adjustments based on weather data instead of consumption prior to

an event. An additional issue with adjustments based on the consumption of a few time

slots prior to the event are that the consumption a few time slots prior could vastly differ

from the consumption right at the event, causing in an incorrect adjustment. Choosing

the correct amount of time slots to take into account when making an adjustment like

this can therefore vary depending on the situation. Even so, looking at the shortcomings

that simple averaging methods can have when comparing their performance metrics with

the more sophisticated methods, adjustments do seem to be an important piece in making
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simple averaging methods more precise.

When it comes to quantification of a DR scheme, there are a few things to take into

account. When choosing the period for which you want to value a DR scheme, you can

go with different options depending on your preferences. You could make a quantifica-

tion for each week separately, you could do it for each workday week and each weekend

separately, or you could do it for each day separately. We choose to isolate the workday

week, as that is how the methodology differentiates between them. When valuating the

DR scheme as a whole, you have to then sum together all of your quantified periods to see

the value of your chosen interval. This interval will most probably be determined by the

chosen settlement frequency DR participants, which will probably differ for every party

involved. For residential customers it could make sense to link this with their monthly

electricity bill, whereas for DSOs a daily or weekly basis could make more sense. The

final choice should be based on the existing infrastructure in order to be as much aligned

with current workings of the system as possible. When simplified, if we would strictly

look at the equations 17 and 18 proposed by Wijaya et al. (2014) one could assume an

actual load lower than the estimated baseline would result in more savings for the com-

pany. Additionally, in our case, one could assume that the participation in a DR scheme,

which includes more decrease requests than increase requests, should result in a decrease

of total kWh usage, so as to result in savings for the environment and the company. With

the data available for our study, this is how one could simply quantify the value of a DR

scheme. In reality, there are more things to take into consideration. Energy prices on

the real world market are dynamic, which means that depending how someone chooses to

time their consumption for a day, both a customer and a retailer can win or lose money.

It is known that the energy production of renewable resources peak at certain times of

the day. This means that producing electricity on different times of the day at different

capacities, can affect that periods energy mix. For example, when there is a significant

lack of supply for a short period, expensive and potentially environmentally unfriendly

backup energy generators may have to be activated to fulfil the demand. Satisfying this

short burst of demand can result in a lower total electricity consumption for a day, but the

electricity used could be more expensive and more damaging to the environment. This

means that when simply quantifying a DR scheme with the data at our hands, we cannot

know for certain if the result of either saving in kWh or using more kWh is good or not.

We would need data from the whole system to be able to make this statement. Since the

consumption during a DR event is affected on purpose, one could assume that a total
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increase in kWh consumption caused by a DR scheme could be more evened out through-

out the day, making it cheaper and giving opportunity for the usage of renewable sources.

Nonetheless, our results show that the accuracy of the method can substantially change

the outcome of quantification (changing the value from positive to negative). Besides, the

DR events weren’t based on real-time electricity prices, but pre-defined by TDD tariffs

(see section 5.6). This could result in a DR event proving to be unprofitable when taking

real-time prices into account, even though the scheme made sense when looking at the

tariffs. Either way, using anything other than real-time prices to make the quantification

would be faulty. As an addition, satisfying a short burst of demand could be cheaper

and result in a smaller kWh usage overall, but with the production being more damaging

to the environment. Here a retailer falls into the dilemma of prioritising between the

environment and short term profit. Though, these situations are something that could be

handled by tariffs and regulation.

DR schemes can also cause short bursts of high demand. This is either an increase re-

quest, or a possible rebound from a decrease request. A short burst of demand caused by

an increase request is most often controlled, and the retailer knows that the consumption

can be met sufficiently. As for a rebound effect, that may not always be the case. A DR

scheme can result in peak shaving for a DR event period, but the rebound after could

still prove to be problematic. That is if a rebound caused by a decrease request has a

higher peak than the consumption curve that would’ve happened without intervention.

Since a possible rebound effect is directly caused by a DR event, we would recommend

the inclusion of rebounds when quantifying the effects of DR. As our results show, when

including the rebounds of the DR events, the kWh amounts gained or lost clearly change.

Again, to surely estimate whether or not the DR scheme was valuable or not, one would

both need to consider dynamic prices, the energy sources and the individual parties’ view-

points. Even so, taking the rebounds into consideration seems to change the outcome.

Lastly, based on the discussion above, as a proposal for further research we suggest finding

reliable and exact methods for determining the exact durations and sizes of rebounds for

more accurate estimation and quantification of DR.
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8 Conclusion

In this thesis we compared different baseline estimation methods as well as quantified DR

for a regional data set in Czechia. Finding an optimal method for baseline estimation,

as well having the correct approach to quantifying DR is an important cornerstone of

demand side management, which in turn is vital for balancing and optimisation of the

energy market as a whole. Research on this data set had not been done before, as it is a

part of a pilot project by the Czech energy conglomerate ČEZ a.s. Thus, this can be seen

as the main contribution of our paper.

The methods chosen for baseline estimation were High-, and Low 5 of 10, EMA, Exponen-

tial Smoothing, Linear Regression, and Quadratic Regression along with the benchmark

method of Mid 4 of 6. We also carry out adjustments for each of these methods, specifically

the multiplicative adjustment. This means we effectively have 14 methods to compare.

Our estimated workday week is week 10 in 2022. In this week, all of the alternative meth-

ods had lower MAE when compared to the benchmark method. The EMA, Exponential

Smoothing and the Linear Regression all had very low biases, along with the benchmark

method, the rest had visibly higher biases. In the end, the Linear Regression proved to be

the most accurate method. Our results for quantification of DR show that depending on

the accuracy of the model, the implications of the quantification can substantially differ.

Moreover, we conclude that by including an estimate of the rebound when quantifying

the DR the overall outcome can change, if compared to only quantifying the duration of

the DR event itself. Lastly, we also conclude that in order to properly estimate the value

of DR, one would need to find a working alignment between using the dynamic price data

for the specific electricity market, data on which sources are penetrating the market at

every given point in time, the workings of tariffs in place, and the actual DR scheme

valuation itself. The final evaluation of a DR scheme very much depends on the chosen

viewpoint and preferences or goals this viewpoint holds. We also offer several further

research propositions, all of which however inevitably build on, or use, the methodology

and approaches listed in this paper.

With the intrigue of having a regional specific sample also came a downside of the sample

being small and for a relatively short time period. This also leaves room for future re-

search as putting these methods to test alongside those used here in a wider data setting

would give new insights and pave the way to finding the most reasonable baseline es-

timation method. The methods being, e.g. Synchronous Pattern Matching and various

77



probabilistic methods. The former requires a larger set of control observations than what

was available to us at this given point in time, whereas the latter requires huge amount

of fine grained data and computational power. Additionally, we would suggest finding

optimal methods for estimating the rebound most accurately for further research.
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obchod. Presented in an online format meeting with balancing services providers by
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Appendix

DR event days – Dates

Table 15: A. DR event days dates – Decrease Request

# Decrease DR event days weekday

1 2021-12-11 Sat

2 2021-12-12 Sun

3 2021-12-13 Mon

4 2021-12-14 Tue

5 2021-12-15 Wed

6 2021-12-16 Thu

7 2021-12-18 Sat

8 2021-12-19 Sun

9 2021-12-20 Mon

10 2021-12-21 Tue

11 2021-12-22 Wed

12 2021-12-23 Thu

13 2021-12-25 Sat

14 2021-12-26 Sun

15 2021-12-27 Mon

16 2021-12-28 Tue

17 2021-12-29 Wed

18 2021-12-30 Thu

19 2022-01-01 Sat

20 2022-01-02 Sun

21 2022-01-03 Mon

22 2022-01-04 Tue

23 2022-01-05 Wed

24 2022-01-06 Thu

25 2022-01-08 Sat

26 2022-01-09 Sun

27 2022-01-10 Mon

28 2022-01-11 Tue

29 2022-01-12 Wed

30 2022-01-13 Thu

31 2022-01-15 Sat

32 2022-01-16 Sun

33 2022-01-17 Mon

34 2022-01-18 Tue

# Decrease DR event days weekday

35 2022-01-19 Wed

36 2022-01-20 Thu

37 2022-01-22 Sat

38 2022-01-23 Sun

39 2022-01-24 Mon

40 2022-01-25 Tue

41 2022-01-26 Wed

42 2022-01-27 Thu

43 2022-01-29 Sat

44 2022-01-30 Sun

45 2022-01-31 Mon

46 2022-02-01 Tue

47 2022-03-01 Tue

48 2022-03-02 Wed

49 2022-03-03 Thu

50 2022-03-05 Sat

51 2022-03-06 Sun

52 2022-03-07 Mon

53 2022-03-08 Tue

54 2022-03-09 Wed

55 2022-03-10 Thu

56 2022-03-12 Sat

57 2022-03-13 Sun

58 2022-03-14 Mon

59 2022-03-15 Tue

60 2022-03-16 Wed

61 2022-03-17 Thu

62 2022-03-19 Sat

63 2022-03-20 Sun

64 2022-03-21 Mon

65 2022-03-22 Tue

66 2022-03-23 Wed

67 2022-03-24 Thu

68 2022-03-26 Sat
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Table 16: DR event days dates – Increase Request

# Increase DR event days weekday

1 2021-12-11 Sat

2 2021-12-13 Mon

3 2021-12-14 Tue

4 2021-12-15 Wed

5 2021-12-18 Sat

6 2021-12-20 Mon

7 2021-12-21 Tue

8 2021-12-22 Wed

9 2021-12-25 Sat

10 2021-12-27 Mon

11 2021-12-28 Tue

12 2021-12-29 Wed

13 2022-01-01 Sat

14 2022-01-03 Mon

15 2022-01-04 Tue

16 2022-01-05 Wed

17 2022-01-08 Sat

18 2022-01-10 Mon

19 2022-01-11 Tue

20 2022-01-12 Wed

21 2022-01-15 Sat

22 2022-01-17 Mon

23 2022-01-18 Tue

# Increase DR event days weekday

24 2022-01-19 Wed

25 2022-01-22 Sat

26 2022-01-24 Mon

27 2022-01-25 Tue

28 2022-01-26 Wed

29 2022-01-29 Sat

30 2022-01-31 Mon

31 2022-02-01 Tue

32 2022-03-01 Tue

33 2022-03-02 Wed

34 2022-03-05 Sat

35 2022-03-07 Mon

36 2022-03-08 Tue

37 2022-03-09 Wed

38 2022-03-12 Sat

39 2022-03-14 Mon

40 2022-03-15 Tue

41 2022-03-16 Wed

42 2022-03-19 Sat

43 2022-03-21 Mon

44 2022-03-22 Tue

45 2022-03-23 Wed

46 2022-03-26 Sat
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B. Days acceptable for estimation - Dates

Table 17: Acceptable dates for weekday baseline estimation

# dates weekday

1 2021-12-17 Fri

2 2021-12-24 Fri

3 2021-12-31 Fri

4 2022-01-07 Fri

5 2022-01-14 Fri

6 2022-01-21 Fri

7 2022-01-28 Fri

8 2022-02-02 Wed

9 2022-02-03 Thu

10 2022-02-04 Fri

11 2022-02-07 Mon

12 2022-02-08 Tue

13 2022-02-09 Wed

14 2022-02-10 Thu

15 2022-02-11 Fri

16 2022-02-14 Mon

17 2022-02-15 Tue

18 2022-02-16 Wed

19 2022-02-17 Thu

20 2022-02-18 Fri

21 2022-02-21 Mon

22 2022-02-22 Tue

23 2022-02-23 Wed

24 2022-02-24 Thu

25 2022-02-25 Fri

26 2022-02-28 Mon

27 2022-03-04 Fri

28 2022-03-11 Fri

29 2022-03-18 Fri

30 2022-03-25 Fri

86



Table 18: Acceptable dates for weekend baseline estimation

dates weekday

1 2022-02-05 Sat

2 2022-02-06 Sun

3 2022-02-12 Sat

4 2022-02-13 Sun

5 2022-02-19 Sat

6 2022-02-20 Sun

7 2022-02-26 Sat

8 2022-02-27 Sun

C. Regression Method – Heteroscedasticity Testing

In section 5.3 we present a linear and quadratic model, using OLS to estimate our coef-

ficients. As noted in the main body of the paper, we consider the presence of heterosce-

dasticity, which would mean we would have to use a GLS or FGLS estimator. However,

after testing for heteroscedasticity (both numerically and graphically) we come to the

conclusion that our data is borderline homoscedastic and that specifying an other-than-

OLS model would not add much precision. The figure below shows the plotted residuals

againts the fitted values, along with a Q-Q normality plot and other characteristics. The

Breusch-Pagan test statistic (BP) was 2.8826 with a p-value of 0.08954, therefore, we fail

to reject the null of homoscedasticity at a 8.9% significance level. We acknowledge this

doesn’t follow the standard rule of thumb (5 % significance level), however for reasons

discussed in the paper, we don’t see a need to deal with this any further.

D. Performance metrics for non-DR weekends example

Table 19: Performance Metrics for Weekend non-DR Estimation

Method MAE (kWh) Bias (kWh)

Mid 2of4 1.0500 -0.1832

High 2of3 1.0401 -0.1042

Low 2of3 1.0440 -0.4234

Exp. MA 1.0325 -0.1505

Exp. Smooth 0.9595 -0.1700

Reg. Linear 1.0016 -0.0348

Reg. Quadratic 1.0497 -0.0316
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Figure 17: Heteroscedasticity and Normality Plots.

Figure 18: Performance metrics for Weekend non-DR Estimation
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E. Quantification of DR Scheme

Table 20: Quantification for All Estimated Methods – Only DR Event Duration

Method & Request Type Mon Tue Wed Thu Method Sum

Mid 4of6 (D) 9.45 27.42 24.54 18.65 80.05

Mid 4of6 (I) -50.80 -70.27 -19.33 0.00 -140.40

sum (kWh) -41.35 -42.85 5.21 18.65 -60.35

Mid 4of6 Adj. (D) 20.67 17.79 28.69 32.34 99.49

Mid 4of6 Adj. (I) 32.25 -26.47 -21.29 0.00 -15.50

sum (kWh) 52.92 -8.68 7.40 32.34 83.98

High 5of10 (D) 16.72 44.37 39.89 29.72 130.70

High 5of10 (I) -36.75 -43.56 -4.73 0.00 -85.03

sum (kWh) -20.03 0.81 35.16 29.72 45.66

High 5of10 Adj. (D) 8.38 10.01 10.62 22.67 51.69

High 5of10 Adj. (I) -18.07 -40.53 -25.88 0.00 -84.49

sum (kWh) -9.70 -30.52 -15.26 22.67 -32.80

Low 5of10 (D) -1.96 -4.62 14.87 8.46 16.75

Low 5of10 (I) -65.30 -104.75 -34.50 0.00 -204.55

sum (kWh) -67.26 -109.37 -19.63 8.46 -187.80

Low 5of10 Adj. (D) 19.73 15.02 49.21 29.84 113.80

Low 5of10 Adj. (I) 114.28 116.97 3.66 0.00 234.91

sum (kWh) 134.01 132.00 52.87 29.84 348.72

Exp. Moving Average (D) 8.75 23.12 29.23 20.52 81.61

Exp. Moving Average (I) -45.74 -62.49 -15.24 0.00 -123.47

sum (kWh) -36.99 -39.38 13.98 20.52 -41.87

Exp. Moving Average Adj. (D) 8.90 3.43 9.39 20.52 42.25

Exp. Moving Average Adj. (I) -24.65 -45.66 -27.32 0.00 -97.62

sum (kWh) -15.74 -42.23 -17.93 20.52 -55.37

Exp. Smoothing (D) 7.64 20.75 28.10 19.21 75.70

Exp. Smoothing (I) -47.32 -65.23 -16.93 0.00 -129.49

sum (kWh) -39.68 -44.49 11.17 19.21 -53.79

Exp. Smoothing Adj. (D) 9.06 3.47 10.10 21.16 43.79

Exp. Smoothing Adj. (I) -26.00 -46.54 -27.57 0.00 -100.10

sum (kWh) -16.94 -43.07 -17.47 21.16 -56.32

Linear Regression (D) 20.09 47.63 19.90 18.57 106.19

Linear Regression (I) -22.38 -39.40 -30.54 0.00 -92.33

sum (kWh) -2.29 8.23 -10.65 18.57 13.86

Linear Regression Adj. (D) 10.30 13.39 21.55 26.57 71.81

Linear Regression Adj. (I) -25.34 -44.39 -39.24 0.00 -108.97

sum (kWh) -15.04 -31.00 -17.69 26.57 -37.17

Quadratic Regression (D) 19.31 46.68 20.55 18.70 105.25

Quadratic Regression (I) -20.45 -38.76 -30.04 0.00 -89.24

sum (kWh) -1.13 7.92 -9.49 18.70 16.01

Quadratic Regression Adj. (D) 10.07 13.99 9.13 23.27 56.46

Quadratic Regression Adj. (I) -25.18 -42.82 -40.20 0.00 -108.20

sum (kWh) -15.11 -28.83 -31.07 23.27 -51.73
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F. Synchronous Pattern Matching - Proposed Method

Synchronous Pattern Matching is a method proposed by Wang et al. in 2018, where

method matches each DR participant to the most similar group of participants in a con-

trol cluster. When this has been done, an estimate of the DR participants baseline is

made based on the concurrent load data of the control cluster. Unfortunately, since this

method requires at least a similar amount of DR participants and controls (preferably

more controls than DR participants for clusters to be created) and our data only having 5

controls compared to 22 DR-participants, it would be unfeasible to use this method with

our dataset. Nevertheless, we propose this method for possible further research. This

following section is based on Wang et al. (2018).

The method divides the dataset into M CONTROL groups and N DR groups. D = {d|d =

1, 2, ..., D} is defined as the set of DR event days and T = {t|t = 1, 2, ..., T} as the set of

timeslots for a DR event day. The CONTROL group customers are separated based on

their load profiles (LP) on the DR event day based on an iterative process. A cluster’s

centroid is derived by computing the average of every data point found in the cluster.

The aim of K-means is to minimize the sum of squared error between the CONTROL

customers load curves and the cluster centroids over all clusters K for each DR event day

d. This is defined in the formula below.

minf =
K∑
k=1

∑
m=1,m∈Ck

Lm,d − Ck,d∀k = 1, ..., K

Lm,d = [l1m,d, l
2
m,d, ..., l

T
m,d] is the actual load curve of control customer m.

Ck,d = [c1k,d, c
2
k,d, ..., c

T
k,d] is the cluster centroid.

To assess clustering performance, the Davies-Bouldin index (DBI) and Ratio of within

Cluster Sum of Squares to Between Cluster Variation (WCBCR) are used. A key compon-

ent of this method is the similarity metric. For each DR event day, each DR participant

should be matched to one of the obtained K clusters in the CONTROL group. SPM

here refers to using the very DR event day, therefore abstracting from the need of any

historical data out of the DR event day. Wang et al. represent the DR event time period

as δ where δ = {δs, δs + 1, ..., δe}, δs being the start and δe < T being the end. For each

DR day d ∈ D, the actual load data of DR participant n before and after DR event can

be utilized to perform the SPM based CBL estimation, which is defined as load curve

90



segments (LCSs), denoted by

LCSbefore
n,d = [l1n,d, l

2
n,d, ..., l

δs−1
n,d ]

and

LCSafter
n,d = [lδe+1

n,d , lδe+2
n,d , ..., lδe+T

n,d ]

Wang et al. define the cluster centroid k load data before and after the DR evenet simil-

arly. These are called cluster centroid segments (CCSs).

CCSbefore
k,d = [c1k,d, c

2
k,d, ..., c

δs−1
k,d ]

and

CCSafter
k,d = [cδe+1

k,d , cδe+2
k,d , ..., cδe+T

k,d ]

Then, the similarity between vectors x and y is given by the formula below

S(x, y) =
1

dis(x, y)

dis(x, y) is the distance between the two vectors. A common distance metric such as Euc-

lidean distance can be used. The larger the value S(x, y) obtains the more similar the two

vectors are. The SPM is done based on the similarity between the LCSs and CCSs. You

calculate the similarity between LCSbefore
n,d and each CCSbefore

k,d (for k = 1, 2, ..., K) denoted

as S(LCSbefore
n,d , CCSbefore

k,d ), for each DR customer n . Additionally, the similarity between

LCSafter
n,d and each CCSafter

k,d (for k = 1, 2, ..., K), denoted as S(LCSafter
n,d , CCSafter

k,d ) is cal-

culated. The similarity between each DR customer and cluster Ck (for k = 1, 2, ..., K)
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can then be expressed as the formula below.

S(DRcustomern, Ck) = S(LCSbefore
n,d , CCSbefore

k,d ) + S(LCSafter
n,d , CCSafter

k,d )

By this equation the DR participant will be matched to the cluster that shows the max-

imum similarity with the DR participant.

Finally, Wang et al. estimate the CBL for each DR participant. For this the authors use

optimized weight combination. First, they find all the control customers, belonging to

cluster k, to which a certain DR participant n has been assigned to. These are indexed

as follows, Ik = {1, 2, ...,Mk} where Mk is the number of CONTROL customers in cluster

k. Since the customers in the CONTROL cluster have load profiles similar to the DR

participant n, the load of each CONTROL customer n can be seen as individual baseline

estimations for DR participant n. Looking for inspiration in Bates and Granger (1969),

Wang et al. (2018) decide to combine the results of multiple different forecast models

to effectively improve the forecasting accuracy. Therefore, a ”combination estimation

model” is created, which combines the baselines of all customers in cluster k in order to

estimate the baseline for DR participant n. The formula of the above looks as follows.

btn,d = fi∈Ik(li(d, t), ∀n ∈ Ck, t = δs, ..., δe

btn,d is the estimated baseline for said DR participant and f(·) is a function that maps

the load of the CONTROL customers to the baseline of the DR participant. Wang et al.

(2018) Wang et al. (2018) use the following linear combination for the mapping function,

btn,d =

Mk∑
i=1

wil
t
i,d, t = δs, ..., δe

wi is the weight of the ith individual estimation model, which is corresponding to the ith

CONTROL customer in cluster k. At this point the method hits one of the key issues.

That is, finding an optimal set of non-negative weights W = [w1, w2, ..., wMk
] such that

the estimated CBL as close to the actual load as possible.

Because the actual baseline load is unknown in reality, only the load data outside of the
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DR event duration can be used when determining these weights. Denoting this “out-

side of DR event” time period by ε = {1, 2, ..., δs−1U{δe+1, δe+2, ..., T} and T = δUε .

eit = ltn,d − lti,d, t ∈ ε denotes the error of the ith individual estimation model at timeslot

t.

An estimation error vector ε can formed by all of the individual estimation models, which

is denoted by ei = [ei1, ei2, ..., ei|ε|]
T , where denotes |ε| the amount of timeslots in time

period ε . The error of the combined estimation model at the time slot t can be calculated

as follows.

et = bt∗n,d − btn,d = ltn,d −
Mk∑
i=1

wil
t
i,d =

mk∑
i=1

wieit

bt∗n,d is the actual baseline, which is the same as load ltn,d during the same time period

without the DR event.

Next, the linear combination is formulated as an optimization model where the goal is to

find the optimal weights to minimize the sum of squared errors. It is formulated follow-

ingly.

minJ =

|ε|∑
t=1

e2it =

|ε|∑
t=1

Mk∑
i=1

Mk∑
j=1

wieitwjejt

s.t.

{ ∑Mk

i=1 wi = 1

wi ≥ 0, i = 1, 2, ...,Mk

To offer this model in matrix form, Wang et al. define a square matrix named error in-

formation matrix with the size of MkxMk denoted as E(Mk) = (Eij)MkxMk
. The element

in this matrix is defined below.

{
Eij = eT ei =

∑|δ|
t=1 e

2
it

Eij = eT ej =
∑|δ|

t=1 eitejt

Then to rewrite the optimization in above a vector which has all it’s element values equal

to 1 has to be defined. It is denoted as R = [1, 1, ..., 1]T . Then, the optimisation problem
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from above can be written as follows.

minJ = W TEW

s.t.

{
RTW = 1

W ≥ 0

To solve this the Langrange multiplier method used, and the optimal weights can be ob-

tained from below.

W =
E−1R

RTE−1R

When optimal weights have been obtained the baseline is possible to be obtained properly

for the DR participant i based on control cluster k.
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